A JUZVINSKIĬ ADDITION THEOREM FOR FINITELY GENERATED FREE GROUPS ACTIONS

LEWIS BOWEN & YONATAN GUTMAN

ABSTRACT. The classical Juzvinskiĭ Addition Theorem states that the entropy of an automorphism of a compact group decomposes along invariant subgroups. Thomas generalized the theorem to a skew-product setting. Using L. Bowen's f-invariant we prove the addition theorem for actions of finitely generated free groups on skew-products with compact totally disconnected groups or finitely dimensional Lie Groups (correcting an error from [Bo10c]) and discuss examples.

CONTENTS

1. Introduction	1
2. The f -invariant	2
3. Skew-products	5
4. Relative entropy	7
5. A key Lemma	g
6. Proof of Theorem 3.3	11
7. Examples	14
7.1. The Ornstein-Weiss Example	15
7.2. A generalization	15
7.3. An algebraic example	16
Appendix A. Erratum to [Bo10c]	19
References	23

1. Introduction

The following result was proven independently by H. Li [Li11] and Lind-Schmidt [LS09].

Date: November 15, 2011.

¹⁹⁹¹ Mathematics Subject Classification. 37A35, 20E05.

 $Key\ words\ and\ phrases.$ Juzvinskii Addition Theorem, f-entropy, Rokhlin-Abramov Addition Formula, finitely generated free groups.

Theorem 1.1. [Addition theorem for amenable groups] Let Γ be a countable discrete amenable group, G be a compact metrizable group and $\alpha: \Gamma \to Aut(G)$ an action of Γ on G by group-automorphisms. Suppose $N \triangleleft G$ is a closed normal $\alpha(\Gamma)$ -invariant subgroup. Denote by $\alpha_N:\Gamma\to Aut(N)$ and $\alpha_{G/N}:\Gamma\to Aut(G/N)$ the induced actions and by $\mu_G, \mu_N, \mu_{G/N}$ the Haar probability measures on G, N and G/Nrespectively. Then the entropies of these actions satisfy:

$$h_{\mu_G}(\alpha) = h_{\mu_N}(\alpha_N) + h_{\mu_{G/N}}(\alpha_{G/N}).$$

In the case $\Gamma = \mathbb{Z}$, this result is due to Juzvinskiĭ [Ju65] from which it receives its name. The case $\Gamma = \mathbb{Z}^d$ was proven in [LSW90]. Special cases were obtained by Miles [Mi08] and Björklund-Miles [BM09].

The paper Bo10a introduced a measure-conjugacy invariant, called the *f-invariant*, for probability-measure-preserving actions of finitely generated free groups. (Later a more general theory of sofic entropy was introduced in [Bo10b], of which we have little to say in the present article). In [Bo10c], a proof is claimed that the above addition formula extends to the case when Γ is a finitely generated free group, the entropy is replaced with the f-invariant, and G is either totally disconnected, a Lie group, or a connected finite-dimensional abelian group (whenever the f-invariant is well-defined). However, there is an error in the proof which this paper corrects (at least under a mild extra hypothesis). The main result is Theorem 2.3 below. We also prove a skew-product addition formula in Theorem 3.3 which may be of independent interest.

Organization: §2 reviews the f-invariant and states the main theorem; §3 reviews skew-products and proves Theorem 2.3 from Theorem 3.3. In §5 and §6 Theorem 3.3 is proven; §7 discuss examples, including the Ornstein-Weiss example. The appendix offers an erratum to |Bo10c|.

Acknowledgements. We'd like to thank Hanfeng Li for helpful conversations and the Fields Institute where some of the work for this project occurred. The second author would like to thank Benjamin Weiss, Eli Glasner and Jon Aaronson for helpful discussions. L.B. was partially supported by NSF grants DMS-0968762 and DMS-0954606.

2. The f-invariant

Let $\Gamma = \langle s_1, \ldots, s_r \rangle$ be a rank r free group. Let α be a measurepreserving action of Γ on a standard probability space (X, \mathcal{B}_X, ν) . We consider α as a homomorphism from Γ to the group of automorphisms of (X, \mathcal{B}_X, ν) and write α_g for $\alpha(g)$ ($\forall g \in \Gamma$). Let $\mathcal{P} = \{P_1, P_2, \ldots\}$ be a countable partition of X into measurable subsets. The Shannon-entropy of \mathcal{P} is

$$H_{\nu}(\mathcal{P}) := -\sum_{P \in \mathcal{P}} \nu(P) \log(\nu(P)).$$

By convention $0 \log(0) := 0$. If \mathcal{P}, \mathcal{Q} are two partitions of X then their join is defined by $\mathcal{P} \vee \mathcal{Q} := \{P \cap Q : P \in \mathcal{P}, Q \in \mathcal{Q}\}$. If $W \subset \Gamma$ is finite, we let $\mathcal{P}^W := \bigvee_{w \in W} \alpha_w \mathcal{P}$. Note that α is only implicit in this notation. If $H(\mathcal{P}) < \infty$ then define

$$F_{\nu}(\alpha, \mathcal{P}) = (1 - 2r)H_{\nu}(\mathcal{P}) + \sum_{i=1}^{r} H_{\nu}(\mathcal{P} \vee \alpha_{s_{i}}\mathcal{P})$$

$$f_{\nu}(\alpha, \mathcal{P}) = \inf_{W \subset \Gamma} F_{\nu}(\alpha, \mathcal{P}^{W})$$

where the infimum is over all finite $W \subset \Gamma$.

For $g \in \Gamma$, let $h_{\nu}(\alpha_g, \mathcal{P})$ denote the entropy rate of \mathcal{P} with respect to the \mathbb{Z} -action generated by α_g . To be precise,

$$h_{\nu}(\alpha_g, \mathcal{P}) = \lim_{n \to \infty} (2n+1)^{-1} H\left(\bigvee_{i=-n}^n \alpha_g^i \mathcal{P}\right).$$

The entropy of the action α_g is $h_{\nu}(\alpha_g) = \sup_{\mathcal{P}} h_{\nu}(\alpha_g, \mathcal{P})$ where the supremum is over all finite measurable partitions \mathcal{P} of X. Define

$$F_{\nu}^{*}(\alpha, \mathcal{P}) = (1 - r)H_{\nu}(\mathcal{P}) + \sum_{i=1}^{r} h_{\nu}(\alpha_{s_{i}}, \mathcal{P})$$

$$f_{\nu}^{*}(\alpha, \mathcal{P}) = \inf_{W \subset \Gamma} F_{\nu}^{*}(\alpha, \mathcal{P}^{W})$$

where the infimum is over all finite $W \subset \Gamma$.

The partition \mathcal{P} is said to be *generating* (for the action α) if the smallest $\alpha(\Gamma)$ -invariant sigma-algebra containing \mathcal{P} is \mathcal{B}_X (up to sets of measure zero).

Theorem 2.1. Let α be a measure-preserving action of Γ on a standard probability space (X, \mathcal{B}_X, ν) . If \mathcal{P}, \mathcal{Q} are any two finite-entropy generating partitions for α then $f_{\nu}(\alpha, \mathcal{P}) = f_{\nu}(\alpha, \mathcal{Q})$.

Proof. Define

$$f'_{\nu}(\alpha, \mathcal{P}) = \inf_{n>0} F_{\nu}(\alpha, \mathcal{P}^{B(n)})$$

where $B(n) \subset \Gamma$ denotes the ball of radius n with respect to the word metric induced by $\{s_1^{\pm 1}, \ldots, s_r^{\pm 1}\}$. This is the definition of the f-invariant given in [Bo10a] and [Bo10c]. Clearly, $f_{\nu}(\alpha, \mathcal{P}) \leq f'_{\nu}(\alpha, \mathcal{P})$. However, if $W \subset \Gamma$ is any finite set with $e \in W$ then it follows

from [Bo10c, Propositions 4.3 and 5.1] that $F_{\nu}(\alpha, \mathcal{P}^{B(n)}) \leq F_{\nu}(\alpha, \mathcal{P}^{W})$ for all sufficiently large n. Thus $f'_{\nu}(\alpha, \mathcal{P}) \leq f_{\nu}(\alpha, \mathcal{P})$ which implies $f'_{\nu}(\alpha, \mathcal{P}) = f_{\nu}(\alpha, \mathcal{P})$. The result now follows from the main theorem of [Bo10a].

Because of this theorem, we define $f_{\nu}(\alpha) := f_{\nu}(\alpha, \mathcal{P})$ where \mathcal{P} is any finite-entropy generating partition for α . If there does not exist a finite-entropy generating partition for α then $f_{\nu}(\alpha)$ is undefined. One of the main results of [Bo10c] is:

Theorem 2.2. Let α be a measure-preserving action of Γ on a standard probability space (X, \mathcal{B}_X, ν) . Then for any finite-entropy generating partition \mathcal{P} for α , $f_{\nu}(\alpha) = f_{\nu}^*(\alpha, \mathcal{P})$.

The main result of this paper is:

Theorem 2.3. Let $\Gamma = \langle s_1, \ldots, s_r \rangle$ be a rank r free group, G be a compact metrizable group and $\alpha : \Gamma \to Aut(G)$ an action of Γ on G by group-automorphisms. Suppose $N \lhd G$ is a closed normal $\alpha(\Gamma)$ -invariant subgroup. Denote by $\alpha_N : \Gamma \to Aut(N)$ and $\alpha_{G/N} : \Gamma \to Aut(G/N)$ the induced actions and by $\mu_G, \mu_N, \mu_{G/N}$ the Haar probability measures on G, N and G/N respectively. Suppose there exists finite-entropy generating partitions for $\alpha, \alpha_N, \alpha_{G/N}$ and one of the following hold.

- (1) N is totally disconnected and there exists a clopen finite-index normal subgroup $N_0 \triangleleft N$ such that $\{gN_0 : g \in N\}$ is a generating partition for α_N .
- (2) G is a compact finite-dimensional Lie group and the action α is by smooth automorphisms.

Then

$$f_{\mu_G}(\alpha) = f_{\mu_N}(\alpha_N) + f_{\mu_{G/N}}(\alpha_{G/N}).$$

Remark 2.1. The proof shows slightly more: if case (1) occurs and $\alpha_{G/N}$ has a finite-entropy generating partition, then α automatically has a finite-entropy generating partition. This follows from Lemmas 3.2 and 6.4. To be more precise, Lemma 3.2 shows that α is measurably conjugate to a skew-product action of the form $\alpha_{G/N} \times_{\sigma} \alpha_N$. If \mathcal{P} is a finite-entropy generating partition for $\alpha_{G/N}$ and $\mathcal{Q} = \{gN_0 : g \in G\}$ is a generating partition for α_N of the kind described in case (1) above, then Lemma 6.4 shows that $\mathcal{P} \times \mathcal{Q}$ is generating for $\alpha_{G/N} \times_{\sigma} \alpha_N$. Because \mathcal{P} has finite-entropy and \mathcal{Q} is finite, $\mathcal{P} \times \mathcal{Q}$ has finite entropy as required.

Remark 2.2. Suppose N is totally disconnected and $N_0 \triangleleft N$ is a closed finite-index normal subgroup (the fact N_0 is closed and finite-index implies N_0 is clopen). Let $M = \bigcap_{g \in \Gamma} \alpha_g N_0$. Let $\alpha_{G/M}, \alpha_{N/M}$ be the induced actions on G/M and N/M respectively. Let $\mu_{G/M}, \mu_{N/M}$ be the respective Haar probability measures. Suppose that $\alpha_{G/M}$ and $\alpha_{G/N}$ admit finite-entropy generating partitions. Note that $\{gN_0/M: g \in G\}$ is a generating partition for $\alpha_{N/M}$. So the above theorem implies

$$f_{\mu_{G/M}}(\alpha_{G/M}) = f_{\mu_{N/M}}(\alpha_{N/M}) + f_{\mu_{G/N}}(\alpha_{G/N}).$$

By the previous remark, this formula holds as long as $\alpha_{G/N}$ admits a finite-entropy generating partition.

3. Skew-products

The proof of Theorem 2.3 is based on a more general skew-product theorem of independent interest, the construction of which we recall next.

Definition 3.1. Let Γ be a group. Let (X, \mathcal{B}_X, ν) be a Lebesgue space equipped with a Γ -action α . We consider α as a homomorphism from Γ to the group of automorphisms of (X, \mathcal{B}_X, ν) and write α_g for $\alpha(g)$ ($\forall g \in \Gamma$).

Let G be a compact group with Borel sigma-algebra \mathscr{B} and Haar measure μ . Let β be a Γ -action by group-automorphisms on G. Let $\sigma: \Gamma \times X \to G$ be a cocycle for β and α , i.e., σ is a measurable mapping so that for all $g, h \in \Gamma$, $x \in X$

(3.1)
$$\sigma(gh, x) = (\beta_g \sigma(h, x)) \cdot \sigma(g, \alpha_h x).$$

Define the skew-product action $\alpha \times_{\sigma} \beta$ of Γ on $X \times G$ by:

$$(\alpha \times_{\sigma} \beta)_g(x,y) = (\alpha_g x, (\beta_g y) \cdot \sigma(g,x)) \ (g \in \Gamma, x \in X, y \in G).$$

The connection between skew-product actions and the addition theorem is the following standard result (which we obtained from [Li11, Proof of Corollary 6.3]).

Lemma 3.2. Let Γ be a countable group, G be a compact metrizable group, $\alpha: \Gamma \to Aut(G)$ an action of Γ on G by group-automorphisms and $N \lhd G$ a closed normal $\alpha(\Gamma)$ -invariant subgroup. Denote by $\alpha_N: \Gamma \to Aut(N)$ and $\alpha_{G/N}: \Gamma \to Aut(G/N)$ the induced actions. Then there is a cocycle $\sigma: \Gamma \times G/N \to N$ such that $\alpha_{G/N} \times_{\sigma} \alpha_N$ is measurably conjugate with α .

Proof. Let $\pi: G \to G/N$ denote the quotient map. Every continuous open surjective map between compact metrizable spaces has a Borel cross section by [Ar98, Theorem 3.4.1]. Thus we can find a Borel map

 $\psi: G/N \to G$ such that $\pi\psi$ is the identity map on G/N. It is easily verified that the map $\phi: G/N \times N \to G$ sending (gN,h) to $\psi(gN)h$ is an isomorphism from the measurable space $(G/N \times N, \mathcal{B}_{G/N} \times \mathcal{B}_N)$ onto the measurable space (G, \mathcal{B}_G) (where $\mathcal{B}_G, \mathcal{B}_N, \mathcal{B}_{G/N}$ denote the Borel sigma-algebras on G, N and G/N respectively). Furthermore, denoting the Haar probability measures on G, N, G/N by $\mu_G, \mu_N, \mu_{G/N}$ respectively, one sees that $\phi_*(\mu_{G/N} \times \mu_N)$ is left-translation invariant and hence $\phi_*(\mu_{G/N} \times \mu_N) = \mu_G$. It is also readily checked that the map $\sigma: \Gamma \times G/N \to N$ defined by

$$\sigma(\gamma, gN) = \psi(\alpha_{G/N}(\gamma)(gN))^{-1}\alpha(\gamma)(\psi(gN))$$

is a cocycle for the actions $\alpha_{G/N}$ and α_N so that ϕ intertwines the actions $\alpha_{G/N} \times_{\sigma} \alpha_N$ with α .

The main technical result of this paper is:

Theorem 3.3. Let $\Gamma = \langle s_1, \ldots, s_r \rangle$ be a rank r free group, α a measure-preserving action of Γ on a standard probability space (X, \mathcal{B}_X, ν) , G a compact metrizable group, β an action of Γ on G by group-automorphisms, and $\sigma : \Gamma \times X \to G$ a cocycle for these actions. Suppose that G is totally disconnected and there exists a finite-index clopen normal subgroup $N \triangleleft G$ such that $\{gN : g \in G\}$ is a generating partition for β . Let μ denote the Haar probability measure on G. Suppose also that there is a finite-entropy generating partition for α . Then

$$f_{\nu \times \mu}(\alpha \times_{\sigma} \beta) = f_{\nu}(\alpha) + f_{\mu}(\beta).$$

The analog of this theorem for discrete countable amenable groups Γ when G is an arbitrary compact metrizable group was established in [Li11]. The case $\Gamma = \mathbb{Z}$ was proven earlier by Thomas [Th71] and the case $\Gamma = \mathbb{Z}^d$ is shown in [LSW90].

Theorem 3.3 is proven in the next section. Next we combine this result with the next two lemmas to complete the proof of Theorem 2.3.

Lemma 3.4. Let M be a smooth compact Riemannian manifold. Let $T: M \to M$ be a diffeomorphism. Then $h_{\mu}(T) < \infty$ for any T-invariant probability measure μ .

Proof. This is due to Kushnirenko [Ku65]. Alternatively, it follows from Ruelle's inequality (see e.g. [KH95, Corollary S.2.17]). \Box

Lemma 3.5. Let $\Gamma = \langle s_1, \ldots, s_r \rangle$ be a rank r free group with r > 1, M be a smooth compact Riemannian manifold, α a measure-preserving action of Γ on M by diffeomorphisms and μ a non-atomic $\alpha(\Gamma)$ -invariant probability measure on M. Then $f_{\mu}(\alpha) = -\infty$ if there is a finite-entropy generating partition for the action.

Proof. Let $m = \max_{i=1}^r h_{\mu}(\alpha_{s_i})$. By the previous lemma, $m < \infty$. Let \mathcal{P} be a finite-entropy generating partition for α . Let N > 0. Because μ is non-atomic, there is a finite partition \mathcal{Q} of M with $H_{\mu}(\mathcal{Q}) > N$. So after replacing \mathcal{P} with $\mathcal{P} \vee \mathcal{Q}$ if necessary, we may assume that $H_{\mu}(\mathcal{P}) > N$. By Theorem 2.2

$$f_{\mu}(\alpha) = f_{\mu}^{*}(\alpha, \mathcal{P}) = \inf_{W \subset \Gamma} F_{\mu}^{*}(\alpha, \mathcal{P}^{W})$$

$$\leq (1 - r)H_{\nu}(\mathcal{P}) + \sum_{i=1}^{r} h_{\nu}(\alpha_{s_{i}}, \mathcal{P})$$

$$\leq (1 - r)N + rm.$$

Because N > 0 is arbitrary and r > 1, this implies the lemma.

[Proof of Theorem 2.3 from Theorem 3.3] By Theorem 1.1, we may assume, without loss of generality, that r > 1. Because the case when G is trivial is clear, we assume G is non-trivial. Similarly, the case when G = N is obvious, so we assume $G \neq N$. We also assume that the actions α , α_N and $\alpha_{G/N}$ all have finite-entropy generating partitions.

Suppose item (1) holds. By Lemma 3.2, α is measurable conjugate with $\alpha_{G/N} \times_{\sigma} \alpha_N$ for some cocycle σ . So Theorem 3.3 implies

$$f_{\mu_G}(\alpha) = f_{\mu_G}(\alpha_{G/N} \times_{\sigma} \alpha_N) = f_{\mu_{G/N}}(\alpha_{G/N}) + f_{\mu_N}(\alpha_N)$$

as required.

Suppose that item (2) holds; i.e., G is a finite-dimensional compact Lie group and α is an action by smooth group-automorphisms. If G is finite then the theorem is clear because

$$f_{\mu_G}(\alpha) = -(r-1)\log|G| = -(r-1)\log|G/N| + -(r-1)\log|N| = f_{\mu_{G/N}}(\alpha_{G/N}) + f_{\mu_N}(\alpha_N).$$

If G is infinite then, because it is compact, it has positive dimension. So μ_G is non-atomic. So the previous lemma implies $f_{\mu_G}(\alpha) = -\infty$.

Also, because G is infinite, either N or G/N is infinite. Therefore, either μ_N or $\mu_{G/N}$ is non-atomic. Of course, the actions α_N and $\alpha_{G/N}$ are smooth. It should be noted that the f-invariant does not take on the value $+\infty$. So the previous lemma implies $f_{\mu_{G/N}}(\alpha_{G/N}) + f_{\mu_N}(\alpha_N) = -\infty$.

4. Relative entropy

The proof of Theorem 3.3 uses the relative f-invariant theory developed in [Bo10c], which we review here. So let (X, \mathcal{B}_X, ν) be a standard probability space. Let \mathcal{P} be a countable measurable partition of X and let $\mathcal{F} \subset \mathcal{B}_X$ be a sub-sigma algebra. Recall that for a.e. $x \in X$, the conditional expectation $\mathbb{E}[\cdot|\mathcal{F}](x)$ is a probability measure on (X, \mathcal{B}_X) satisfying

- (1) $x \mapsto \mathbb{E}[A|\mathcal{F}](x)$ is \mathcal{F} -measurable for any $A \in \mathcal{B}_X$;
- (2) $\int \mathbb{E}[A|\mathcal{F}](x) \ d\nu(x) = \nu(A)$ for any $A \in \mathcal{B}_X$.

The information function $I(\mathcal{P}|\mathcal{F})$ is a function on X defined by

$$I(\mathcal{P}|\mathcal{F})(x) = -\mathbb{E}[P_x|\mathcal{F}](x)\log(\mathbb{E}[P_x|\mathcal{F}](x))$$

where $P_x \in \mathcal{P}$ is the unique partition element with $x \in P_x$. Shannon entropy of \mathcal{P} relative to \mathcal{F} is

$$H_{\nu}(\mathcal{P}|\mathcal{F}) = \int I(\mathcal{P}|\mathcal{F})(x) \ d\nu(x).$$

If T is a measure-preserving transformation of (X, \mathcal{B}_X, ν) then the entropy rate of (T, \mathcal{P}) relative to \mathcal{F} is

$$h_{\nu}(T, \mathcal{P}|\mathcal{F}) = \lim_{n \to \infty} (2n+1)^{-1} H_{\nu} \left(\bigvee_{i=-n}^{n} T^{i} \mathcal{P}| \mathcal{F} \right).$$

This is well-defined whenever \mathcal{F} is T-invariant. We also define the entropy rate of T relative to \mathcal{F} by

$$h_{\nu}(T|\mathcal{F}) = \sup_{\mathcal{P}} h_{\nu}(T, \mathcal{P}|\mathcal{F})$$

where the supremum is over all finite-entropy partitions \mathcal{P} of X.

Now suppose $\Gamma = \langle s_1, \dots, s_r \rangle$ and α is a measure-preserving action of Γ on (X, \mathcal{B}_X, ν) . Define

$$F_{\nu}(\alpha, \mathcal{P}|\mathcal{F}) = (1 - 2r)H_{\nu}(\mathcal{P}|\mathcal{F}) + \sum_{i=1}^{r} H_{\nu}(\mathcal{P} \vee \alpha_{s_{i}}\mathcal{P}|\mathcal{F})$$
$$f_{\nu}(\alpha, \mathcal{P}|\mathcal{F}) = \inf_{W \in \Gamma} F_{\nu}(\alpha, \mathcal{P}^{W}|\mathcal{F})$$

where the infimum is over all finite $W \subset \Gamma$. Also define

$$F_{\nu}^{*}(\alpha, \mathcal{P}|\mathcal{F}) = (1 - r)H_{\nu}(\mathcal{P}|\mathcal{F}) + \sum_{i=1}^{r} h_{\nu}(\alpha_{s_{i}}, \mathcal{P}|\mathcal{F})$$
$$f_{\nu}^{*}(\alpha, \mathcal{P}|\mathcal{F}) = \inf_{W \subset \Gamma} F_{\nu}^{*}(\alpha, \mathcal{P}^{W}|\mathcal{F})$$

where the infimum is over all finite $W \subset \Gamma$.

Theorem 4.1. Let α be a measure-preserving action of Γ on a standard probability space (X, \mathcal{B}_X, ν) . If \mathcal{P}, \mathcal{Q} are any two finite-entropy generating partitions for α and $\mathcal{F} \subset \mathcal{B}_X$ is an $\alpha(\Gamma)$ -invariant subsigma-algebra then $f_{\nu}(\alpha, \mathcal{P}|\mathcal{F}) = f_{\nu}(\alpha, \mathcal{Q}|\mathcal{F})$.

Proof. Define

$$f'_{\nu}(\alpha, \mathcal{P}|\mathcal{F}) = \inf_{\substack{n>0 \ \ o}} F_{\nu}(\alpha, \mathcal{P}^{B(n)}|\mathcal{F})$$

where $B(n) \subset \Gamma$ denotes the ball of radius n with respect to the word metric induced by $\{s_1^{\pm 1}, \ldots, s_r^{\pm 1}\}$. This is the definition of the relative f-invariant given in [Bo10c]. Clearly, $f_{\nu}(\alpha, \mathcal{P}|\mathcal{F}) \leq f'_{\nu}(\alpha, \mathcal{P}|\mathcal{F})$. However, if $W \subset \Gamma$ is any finite set with $e \in W$ then it follows from [Bo10c, Propositions 4.3 and 5.1] that $F_{\nu}(\alpha, \mathcal{P}^{B(n)}|\mathcal{F}) \leq F_{\nu}(\alpha, \mathcal{P}^{W}|\mathcal{F})$ for all sufficiently large n. Thus $f'_{\nu}(\alpha, \mathcal{P}|\mathcal{F}) \leq f_{\nu}(\alpha, \mathcal{P}|\mathcal{F})$ which implies $f'_{\nu}(\alpha, \mathcal{P}|\mathcal{F}) = f_{\nu}(\alpha, \mathcal{P}|\mathcal{F})$. The result now follows from [Bo10c, Theorem 5.3].

Because of this theorem, we define $f_{\nu}(\alpha|\mathcal{F}) := f_{\nu}(\alpha, \mathcal{P}|\mathcal{F})$ where \mathcal{P} is any finite-entropy generating partition for α . If there does not exist a finite-entropy generating partition for α then $f_{\nu}(\alpha|\mathcal{F})$ is undefined. One of the main results of [Bo10c] is:

Theorem 4.2. Let α be a measure-preserving action of Γ on a standard probability space (X, \mathcal{B}_X, ν) . Let \mathcal{P}, \mathcal{Q} be finite-entropy partitions of X. Let $\Sigma(\mathcal{Q})$, $\Sigma(\mathcal{P})$ be the smallest Γ -invariant sub-sigma-algebras containing Q and P respectively. Assume $Q \subset P$. Then

$$f_{\nu}(\alpha, \mathcal{P}|\Sigma(\mathcal{Q})) = f_{\nu}^{*}(\alpha, \mathcal{P}|\Sigma(\mathcal{Q})).$$

Proof. This is [Bo10c, Theorem 9.1]. The proof requires a small correction; see §A.

Theorem 4.3. [The f-invariant Abramov-Rokhlin Addition Formula] Let α be a measure-preserving action of Γ on a standard probability space (X, \mathcal{B}_X, ν) . Let \mathcal{P}, \mathcal{Q} be finite-entropy partitions of X. Let $\Sigma(\mathcal{Q})$ be the smallest Γ -invariant sub-sigma-algebra containing Q. Then

$$f_{\nu}(\alpha, \mathcal{P} \vee \mathcal{Q}) = f_{\nu}(\alpha, \mathcal{Q}) + f_{\nu}(\alpha, \mathcal{P}|\Sigma(\mathcal{Q})).$$

Proof. This is [Bo10c, Theorem 1.3]. The proof requires a small correction; see §A.

5. A KEY LEMMA

The purpose of this section is to prove the key lemma below for skew-products of \mathbb{Z} -actions. So let (X, \mathcal{B}_X, ν) be a Lebesgue space, $T \in Aut(X, \mathcal{B}_X, \nu)$, G be a compact metrizable group, equipped with Haar measure μ and S be a group-automorphism of G. A cocycle for T and S is a cocycle for the actions of \mathbb{Z} induced by T and S. That is, it is a measurable map $\sigma: \mathbb{Z} \times X \to G$ such that

(5.1)
$$\sigma(n+m,x) = (S^n \sigma(m,x)) \cdot \sigma(n,T^m x).$$

Let $T \times_{\sigma} S$ be the automorphism of $(X \times G, \nu \times \mu)$ defined by

$$T \times_{\sigma} S(x,g) = (Tx, S(g)\sigma(x)).$$

This is the *skew product* of T and S with respect to σ .

Lemma 5.1. Let $(X, \mathcal{B}_X, \nu), G, T, S, \sigma$ be as above. Let \mathcal{Q} be a finite-entropy partition of G. Let

$$K(\mathcal{Q}) = \sup_{g \in G} H(\mathcal{Q}g|\mathcal{Q}) + H(\mathcal{Q}|\mathcal{Q}g).$$

Then

$$\left| h_{\nu \times \mu} \left(T \times_{\sigma} S, X \times \mathcal{Q} | \mathcal{B}_X \right) - h_{\mu}(S, \mathcal{Q}) \right| \leq K(\mathcal{Q}).$$

Proof. By the definition of conditional entropy :

$$h_{\nu \times \mu}(T \times_{\sigma} S, X \times \mathcal{Q} | \mathcal{B}_{X}) = \lim_{m \to \infty} \frac{1}{m} h_{\nu \times \mu} \left(\bigvee_{k=0}^{m-1} (T \times_{\sigma} S)^{-k} X \times \mathcal{Q} | \mathcal{B}_{X} \right)$$

where

$$h_{\nu \times \mu} \left(\bigvee_{k=0}^{m-1} (T \times_{\sigma} S)^{-k} X \times \mathcal{Q} | \mathcal{B}_X \right) = \int I \left(\bigvee_{k=0}^{m-1} (T \times_{\sigma} S)^{-k} X \times \mathcal{Q} | \mathcal{B}_X \right) (x, y) d\nu(x) d\mu(y)$$

and the *conditional information* is given by:

$$I\left(\bigvee_{k=0}^{m-1} (T \times_{\sigma} S)^{-k} X \times \mathcal{Q} | \mathcal{B}_X\right)(x,y) = -\mathbb{E}[P_{x,y} | \mathcal{B}_X](x,y) \log(\mathbb{E}[P_{x,y} | \mathcal{B}_X](x,y))$$

where $P_{x,y} \in \bigvee_{k=0}^{m-1} (T \times_{\sigma} S)^{-k} X \times \mathcal{Q}$ is the partition element containing (x,y). Observe that the conditional expectation $\mathbb{E}[\cdot|\mathcal{B}_X](x,y)$ is the probability measure $\mu_x := \delta_x \times \mu$ (where δ_x is the Dirac measure concentrated on $\{x\}$). Thus

$$\int_{G} I\left(\bigvee_{k=0}^{m-1} (T \times_{\sigma} S)^{-k} X \times \mathcal{Q} | \mathcal{B}_{X}\right) (x, y) d\mu(y) = H_{\mu_{x}}\left(\bigvee_{k=0}^{m-1} (T \times_{\sigma} S)^{-k} X \times \mathcal{Q}\right).$$

We claim that for any set $P \subset G$,

$$\{x\} \times \mathcal{G} \cap (T \times_{\sigma} S)^{-k}(X \times P) = \{x\} \times S^{-k}(P\sigma(k,x)^{-1}).$$

Indeed, (x,y) is contained in $(T \times_{\sigma} S)^{-k}(X \times P)$ if and only if

$$(T \times_{\sigma} S)^k(x, y) = (T^k x, (S^k y)\sigma(k, x)) \in X \times P$$

which occurs if and only if

$$y \in S^{-k}(P\sigma(k,x)^{-1}).$$

So if

$$Q_x^m = \bigvee_{k=0}^{m-1} S^{-k} (Q\sigma(k, x)^{-1}).$$

then

$$H_{\mu_x}\left(\bigvee_{k=0}^{m-1} (T \times_{\sigma} S)^{-k} X \times \mathcal{Q}\right) = H_{\mu}(\mathcal{Q}_x^m).$$

So $I\left(\bigvee_{k=0}^{m-1} (T \times_{\sigma} S)^{-k} X \times \mathcal{Q} | \mathcal{B}_X\right)(x,y) = H_{\mu}(\mathcal{Q}_x^m)$ which implies:

(5.2)
$$h_{\nu \times \mu}((T \times_{\sigma} S), X \times \mathcal{Q}|\mathcal{B}_X) = \lim_{m \to \infty} \frac{1}{m} \int_X H_{\mu}(\mathcal{Q}_x^m) d\nu(x)$$

Define:

$$\mathcal{Q}^m = \bigvee_{k=0}^{m-1} S^{-k} \mathcal{Q}$$

By the definition of entropy:

(5.3)
$$h_{\mu}(S, \mathcal{Q}) = \lim_{m \to \infty} \frac{1}{m} \int_{Y} H_{\mu}(\mathcal{Q}^{m}) d\nu(x)$$

Note $|H_{\mu}(\mathcal{Q}^m) - H_{\mu}(\mathcal{Q}_x^m)| \leq H_{\mu}(\mathcal{Q}^m|\mathcal{Q}_x^m) + H_{\mu}(\mathcal{Q}_x^m|\mathcal{Q}^m)$. Thus:

$$|H_{\mu}(\mathcal{Q}^{m}) - H_{\mu}(\mathcal{Q}_{x}^{m})| \leq \sum_{k=0}^{m-1} H_{\mu}(S^{-k}\mathcal{Q}|S^{-k}(\mathcal{Q}\sigma(k,x)^{-1})) + H_{\mu}(S^{-k}(\mathcal{Q}\sigma(k,x)^{-1})|S^{-k}\mathcal{Q})$$

$$= \sum_{k=0}^{m-1} H_{\mu}(\mathcal{Q}|\mathcal{Q}\sigma(k,x)^{-1}) + H_{\mu}(\mathcal{Q}\sigma(k,x)^{-1})|\mathcal{Q}) \leq mK(\mathcal{Q}).$$

Finally (5.2) and (5.3) imply $|h_{\nu \times \mu}((T \times_{\sigma} S), X \times \mathcal{Q}|\mathcal{B}_X) - h_{\mu}(S, \mathcal{Q})| \leq K(\mathcal{Q}).$

6. Proof of Theorem 3.3

For the rest of this section, let Γ , (X, \mathcal{B}_X, ν) , (G, \mathcal{B}_G, μ) , α, β, σ be as Theorem 3.3. A *special partition* of G is a partition \mathcal{Q} such that there exists a finite-index normal clopen subgroup N < G such that $\mathcal{Q} = \{gN : g \in G\}$.

Lemma 6.1. If Q is special and T_1, \ldots, T_n are automorphisms of G then $\bigvee_{i=1}^n T_i Q$ is also special.

Proof. Let $\mathcal{Q} = \{gN : g \in G\}$ where N is a finite-index normal clopen subgroup. Because each T_i is an automorphism, $M := \bigcap_{i=1}^n T_i N$ is a finite-index normal clopen subgroup. So $\mathcal{Q}_M := \{gM : g \in G\}$ is

special. Because each $T_i \mathcal{Q}$ coarsens \mathcal{Q}_M , it follows that $\bigvee_{i=1}^m T_i \mathcal{Q} \geq \mathcal{Q}_M$.

On the other hand, $M \in \bigvee_{i=1}^m T_i \mathcal{Q}$. Because each $T_i \mathcal{Q}$ is G-invariant (i.e., $gT_i \mathcal{Q} = T_i \mathcal{Q}$ for every $g \in G$), $\bigvee_{i=1}^m T_i \mathcal{Q}$ is G-invariant. Hence $gM \in \bigvee_{i=1}^m T_i \mathcal{Q}$ for every $g \in G$. So $\bigvee_{i=1}^m T_i \mathcal{Q} \leq \mathcal{Q}_M$. Thus $\bigvee_{i=1}^m T_i \mathcal{Q} = \mathcal{Q}_M$ is special.

Lemma 6.2. If \mathcal{P} is any finite-entropy partition of X and \mathcal{Q} is a special partition of G then

$$F_{\nu \times \mu}^*(\alpha \times_{\sigma} \beta, \mathcal{P} \times \mathcal{Q} | \mathcal{B}_X) = F_{\mu}^*(\beta, \mathcal{Q}).$$

Proof. Because Qg = Q for any $g \in G$, it follows that K(Q) = 0 where $K(\cdot)$ is as defined in Lemma 5.1. So that Lemma implies

$$F_{\nu \times \mu}^{*}(\alpha \times_{\sigma} \beta, \mathcal{P} \times \mathcal{Q}|\mathcal{B}_{X}) = (1-r)H_{\nu \times \mu}(\mathcal{P} \times \mathcal{Q}|\mathcal{B}_{X}) + \sum_{i=1}^{r} h_{\nu \times \mu}((\alpha \times_{\sigma} \beta)_{s_{i}}, \mathcal{P} \times \mathcal{Q}|\mathcal{B}_{X})$$

$$= (1-r)H_{\mu}(\mathcal{Q}) + \sum_{i=1}^{r} h_{\mu}(\beta_{s_{i}}, \mathcal{Q}) = F_{\mu}^{*}(\beta, \mathcal{Q}).$$

Lemma 6.3. Let Q be a special partition of G, $g \in \Gamma$ and let \mathcal{P}_g denote the partition of X obtained by pulling $\beta_g(Q)$ back under the cocycle $\sigma(g,\cdot)$. Also, let \mathcal{P}' be an arbitrary measurable partition of X. Then

$$(\alpha \times_{\sigma} \beta)_g((\mathcal{P}_g \vee \mathcal{P}') \times \mathcal{Q}) = \alpha_g(\mathcal{P}_g \vee \mathcal{P}') \times \beta_g(\mathcal{Q})$$

(up to sets of measure zero).

Proof. Let N be the finite-index clopen normal subgroup of G such that $\mathcal{Q} = \{qN : q \in G\}$. Let $P \in \mathcal{P}_g, P' \in \mathcal{P}'$ and $qN \in \mathcal{Q}$. It suffices to show that there exists some $q'' \in G$ such that

$$(\alpha \times_{\sigma} \beta)_q((P \cap P') \times qN) = \alpha_q(P \cap P') \times q''\beta_q(N)$$

up to sets of measure zero. By definition of \mathcal{P}_g , there exists a coset $q'\beta_g(N) \in G/\beta_g(N)$ such that for every $y \in P$, $\sigma(g,y) \in q'\beta_g(N)$.

Let $x \in P \cap P'$ and $n \in N$. Then there exists some $m \in N$ such that

$$(\alpha \times_{\sigma} \beta)_g(x,qn) = (\alpha_g x, \beta_g(qn)\sigma(x,g)) = (\alpha_g x, \beta_g(qn)q'\beta_g(m)).$$

Because N is normal, $\beta_g(qn)q'\beta_g(m) \in \beta_g(q)q'\beta_g(N)$. Thus $(\alpha \times_{\sigma} \beta)_g(x,qn) \in \alpha_g(P \cap P') \times \beta_g(q)q'\beta_g(N)$. Since x,n are arbitrary, this implies $(\alpha \times_{\sigma} \beta)_g((P \cap P') \times qN) \subset \alpha_g(P \cap P') \times q''\beta_g(N)$ where $q'' = \beta_g(q)q'$. Because

$$\nu \times \mu((P \cap P') \times qN) = \nu \times \mu((\alpha \times_{\sigma} \beta)_g((P \cap P') \times qN)) = \nu \times \mu(\alpha_g(P \cap P') \times q''\beta_g(N))$$

it follows that $(\alpha \times_{\sigma} \beta)_g((P \cap P') \times qN) = \alpha_g(P \cap P') \times q''\beta_g(N)$ up to sets of measure zero. Because P, P', qN are arbitrary, $(\alpha \times_{\sigma} \beta)_g((\mathcal{P}_g \vee \mathcal{P}') \times \mathcal{Q}) = (\alpha_g(\mathcal{P}_g \vee \mathcal{P}')) \times (\beta_g \mathcal{Q})$ as claimed.

Lemma 6.4. Let \mathcal{P}, \mathcal{Q} be measurable partitions for α, β respectively. Suppose \mathcal{Q} is special and \mathcal{P} is generating. Let $\Sigma(\mathcal{P}, \mathcal{Q})$ be the smallest $\alpha \times_{\sigma} \beta(\Gamma)$ -invariant sigma-algebra containing $\mathcal{P} \times \mathcal{Q}$. Similarly, let $\Sigma(\mathcal{Q})$ be the smallest β -invariant sigma-subalgebra of \mathcal{B}_G which contains \mathcal{Q} .

Then $\Sigma(\mathcal{P}, \mathcal{Q})$ is the smallest sigma-algebra containing $\mathcal{B}_X \times \Sigma(\mathcal{Q})$ (up to sets of measure zero).

Proof. Clearly, $\mathcal{P} \times G$ is contained in $\Sigma(\mathcal{P}, \mathcal{Q})$. Because

$$(\alpha \times_{\sigma} \beta)_q(\mathcal{P} \times G) = (\alpha_q \mathcal{P}) \times G, \quad \forall g \in \Gamma,$$

it follows that $(\alpha_g \mathcal{P}) \times G \subset \Sigma(\mathcal{P}, \mathcal{Q})$ for every $g \in \Gamma$. Because \mathcal{P} is generating, this implies $\mathcal{B}_X \times G \subset \Sigma(\mathcal{P}, \mathcal{Q})$ (up to sets of measure zero).

For each $g \in \Gamma$, recall that \mathcal{P}_g is the partition of X obtained by pulling $\beta_g(\mathcal{Q})$ back under the cocycle $\sigma(g,\cdot)$. Because $\sigma(g,\cdot)$ is \mathcal{B}_{X^-} measurable, $\mathcal{P}_q \times \mathcal{Q}$ is contained in $\Sigma(\mathcal{P}, \mathcal{Q})$. By Lemma 6.3,

$$(\alpha \times_{\sigma} \beta)_g(\mathcal{P}_g \times \mathcal{Q}) = (\alpha_g \mathcal{P}_g) \times (\beta_g \mathcal{Q}) \subset \Sigma(\mathcal{P}, \mathcal{Q})$$

(up to sets of measure zero). Because $X \times \beta_g \mathcal{Q}$ coarsens $(\alpha_g \mathcal{P}_g) \times (\beta_g \mathcal{Q})$, it follows that $X \times \beta_g \mathcal{Q} \subset \Sigma(\mathcal{P}, \mathcal{Q})$ for every $g \in \Gamma$. By definition of $\Sigma(\mathcal{Q})$, this implies $X \times \Sigma(\mathcal{Q}) \subset \Sigma(\mathcal{P}, \mathcal{Q})$. Because $X \times \Sigma(\mathcal{Q})$ and $\mathcal{B}_X \times G$ generate $\mathcal{B}_X \times \Sigma(\mathcal{Q})$ (up to sets of measure zero), this implies $\Sigma(\mathcal{P}, \mathcal{Q}) \supset \mathcal{B}_X \times \Sigma(\mathcal{Q})$.

To show the opposite inclusion, it suffices to show that $(\alpha \times_{\sigma} \beta_g)(\mathcal{P} \times \mathcal{Q}) \in \mathcal{B}_X \times \Sigma(\mathcal{Q})$ for any $g \in \Gamma$. By the previous lemma,

$$(\alpha \times_{\sigma} \beta_g)(\mathcal{P} \times \mathcal{Q}) \leq (\alpha \times_{\sigma} \beta)_g((\mathcal{P}_g \vee \mathcal{P}) \times \mathcal{Q}) = (\alpha_g(\mathcal{P}_g \vee \mathcal{P})) \times (\beta_g \mathcal{Q}) \in \mathcal{B}_X \times \Sigma(\mathcal{Q}).$$

This shows the opposite inclusion.

[Proof of Theorem 3.3] By Theorem 4.3

$$f_{\nu \times \mu}(\alpha \times_{\sigma} \beta) = f_{\nu}(\alpha) + f_{\nu \times \mu}(\alpha \times_{\sigma} \beta | \mathcal{B}_X).$$

Let \mathcal{P} be a finite-entropy generating partition for α and \mathcal{Q} be a special generating partition for β . By the previous lemma, $\mathcal{P} \times \mathcal{Q}$ is generating for $\alpha \times_{\sigma} \beta$. So Theorem 4.2 implies

$$f_{\nu \times \mu}(\alpha \times_{\sigma} \beta | \mathcal{B}_X) = \inf_{W \subset \Gamma} F_{\nu \times \mu}^*(\alpha \times_{\sigma} \beta, (\mathcal{P} \times \mathcal{Q})^W | \mathcal{B}_X)$$

where

$$(\mathcal{P} \times \mathcal{Q})^W = \bigvee_{w \in W} (\alpha \times_{\sigma} \beta)_w \mathcal{P} \times \mathcal{Q}$$

and we take the infimum over all finite sets $W \subset \Gamma$. More generally, if \mathcal{L} is any partition of $X \times G$, we let $\mathcal{L}^W = \bigvee_{w \in W} (\alpha \times_{\sigma} \beta)_w \mathcal{L}$. If \mathcal{L} is a partition of X, we let $\mathcal{L}^W = \bigvee_{w \in W} \alpha_w \mathcal{L}$ and if \mathcal{L} is a partition of G then we let $\mathcal{L}^W = \bigvee_{w \in W} \beta_w \mathcal{L}$.

For each $g \in \Gamma$, let \mathcal{P}_g be the partition of X obtained by pulling $(\beta_q \mathcal{Q})$ back under $\sigma(g,\cdot)$. By Lemma 6.3, for any partition \mathcal{P}' of X,

$$(\alpha \times_{\sigma} \beta)_g((\mathcal{P}_g \vee \mathcal{P}') \times \mathcal{Q}) = (\alpha_g(\mathcal{P}_g \vee \mathcal{P}')) \times (\beta_g \mathcal{Q}).$$

Let $\mathcal{R}_W = \bigvee_{g \in W} \mathcal{P}_g$ and $\mathcal{R}_W^W = \bigvee_{w \in W} \alpha_w \mathcal{R}_W$. By Lemma 6.3,

$$(\mathcal{P} \vee \mathcal{R}_{W}) \times \mathcal{Q})^{W} = \bigvee_{w \in W} (\alpha \times_{\sigma} \beta)_{w} ((\mathcal{P} \vee \mathcal{R}_{W}) \times \mathcal{Q})$$
$$= \bigvee_{w \in W} \alpha_{w} (\mathcal{P} \vee \mathcal{R}_{W}) \times \beta_{w} (\mathcal{Q})$$
$$= (\mathcal{P} \vee \mathcal{R}_{W})^{W} \times \mathcal{Q}^{W}.$$

Because we are conditioning on \mathcal{B}_X and $(\mathcal{R}_W \times G)^W = (\mathcal{R}_W^W \times G)$,

$$F_{\nu \times \mu}^{*}(\alpha \times_{\sigma} \beta, (\mathcal{P} \times \mathcal{Q})^{W} | \mathcal{B}_{X}) = F_{\nu \times \mu}^{*}(\alpha \times_{\sigma} \beta, (\mathcal{P} \times \mathcal{Q})^{W} \vee \mathcal{R}_{W}^{W} \times G | \mathcal{B}_{X})$$

$$= F_{\nu \times \mu}^{*}(\alpha \times_{\sigma} \beta, ((\mathcal{P} \vee \mathcal{R}_{W}) \times \mathcal{Q})^{W} | \mathcal{B}_{X})$$

$$= F_{\nu \times \mu}^{*}(\alpha \times_{\sigma} \beta, ((\mathcal{P} \vee \mathcal{R}_{W})^{W} \times \mathcal{Q}^{W} | \mathcal{B}_{X}).$$

By Lemma 6.2,

$$F_{\nu \times \mu}^*(\alpha \times_{\sigma} \beta, ((\mathcal{P} \vee \mathcal{R}_W)^W \times \mathcal{Q}^W | \mathcal{B}_X) = F_{\mu}^*(\beta, \mathcal{Q}^W).$$

So we now have

$$f_{\nu \times \mu}(\alpha \times_{\sigma} \beta) = f_{\nu}(\alpha) + f_{\nu \times \mu}(\alpha \times_{\sigma} \beta | \mathcal{B}_{X})$$

$$= f_{\nu}(\alpha) + \inf_{W \subset \Gamma} F_{\nu \times \mu}^{*}(\alpha \times_{\sigma} \beta, (\mathcal{P} \times \mathcal{Q})^{W} | \mathcal{B}_{X})$$

$$= f_{\nu}(\alpha) + \inf_{W \subset \Gamma} F_{\mu}^{*}(\beta, \mathcal{Q}^{W})$$

$$= f_{\nu}(\alpha) + f_{\mu}(\beta).$$

The last equality holds by Theorem 2.2.

7. Examples

It is convenient to introduce the following notation. Let $\Gamma = \langle s_1, \ldots, s_r \rangle$ be the rank r free group. If K is a set then K^{Γ} is the set of all functions $x : \Gamma \to K$. The *shift-action* of Γ on K^{Γ} is defined as follows. For $g, f \in \Gamma$ and $x \in K^{\Gamma}$, $gx \in K^{\Gamma}$ is the map $(gx)(f) = x(g^{-1}f)$.

If Γ acts on a compact group G and the action is understood, we write $f(\Gamma \curvearrowright G)$ to mean the f-invariant of the action of G with respect to Haar measure.

7.1. The Ornstein-Weiss Example. This example comes from the appendix to [OW87]. To explain its relevance, let us recall some basic facts from classical entropy theory. Let Δ be an amenable group, K a finite set and u the uniform probability measure on K. It is straightforward to compute the entropy of the shift action of Δ on (K^{Δ}, u^{Δ}) : it is $\log |K|$. Because entropy never increases under a factor map, it follows that if |K| > 1 then the action $\Delta \curvearrowright (K^{\Delta}, u^{\Delta})$ cannot factor onto the action $\Delta \curvearrowright ((K \times K)^{\Delta}, (u \times u)^{\Delta})$.

By contrast, Ornstein and Weiss showed that if Γ is the rank 2 free group then $\Gamma \curvearrowright (\mathbb{Z}/2\mathbb{Z})^{\Gamma}$ factors onto $\Gamma \curvearrowright (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\Gamma}$. This convinced many researchers that there could not be an entropy theory for free groups.

The factor map is defined by

$$\phi: (\mathbb{Z}/2\mathbb{Z})^{\Gamma} \to (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\Gamma},$$

$$\phi(x)(g) = (x(g) + x(gs_1), x(g) + x(gs_2)), \forall x \in (\mathbb{Z}/2\mathbb{Z})^{\Gamma}, g \in \Gamma.$$

We consider $(\mathbb{Z}/2\mathbb{Z})^{\Gamma}$ and $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\Gamma}$ as compact groups under pointwise addition. It is a straightforward exercise to show that ϕ is a surjective homomorphism which is equivariant with respect to the shift-actions of Γ and therefore, defines a factor map. Moreover, the kernel of ϕ consists of two elements, x_0, x_1 , where $x_i : \Gamma \to \mathbb{Z}/2\mathbb{Z}$ is defined by $x_i(g) = i$. Let $N = \{x_0, x_1\}$. Because N is finite, it clearly satisfies the conditions of Theorem 2.3. So that result implies

$$f(\Gamma \curvearrowright (\mathbb{Z}/2\mathbb{Z})^{\Gamma}) = f(\Gamma \curvearrowright N) + f(\Gamma \curvearrowright (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\Gamma}).$$

In [Bo10a], it is shown that $f(\Gamma \curvearrowright (\mathbb{Z}/2\mathbb{Z})^{\Gamma}) = \log(2)$ and $f(\Gamma \curvearrowright (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{\Gamma}) = \log(4)$ as expected. Therefore, $f(\Gamma \curvearrowright N) = -\log(2)$. This is easy to verify by direct computation.

7.2. A generalization. The example above can be generalized with the help of [MRV11, proof of Theorem B] which states the following: if $\Gamma = \langle s_1, \ldots, s_r \rangle$ is any finite rank free group, K is any compact second countable group, K^{Γ} is the group of all functions $x : \Gamma \to K$ under pointwise multiplication and K is identified with the constant functions in K^{Γ} then the action $\Gamma \curvearrowright K^{\Gamma}/K$ is measurably conjugate to $\Gamma \curvearrowright (K^r)^{\Gamma}$ (where the measures involved are the Haar measures and the actions are the shift actions).

When K is finite, we can apply Theorem 2.3 to obtain

$$f(\Gamma \curvearrowright K^{\Gamma}) = f(\Gamma \curvearrowright K) + f(\Gamma \curvearrowright (K^r)^{\Gamma}).$$

This is easy to check: $f(\Gamma \curvearrowright K^{\Gamma}) = \log(|K|)$ and $f(\Gamma \curvearrowright (K^r)^{\Gamma}) = r \log(|K|)$ by [Bo10a]. By a straightforward computation, $f(\Gamma \curvearrowright K) = -(r-1) \log |K|$.

7.3. An algebraic example. As above, let $\Gamma = \langle s_1, \ldots, s_r \rangle$ be a finite rank free group. Let p > 1 be a prime number and $h \in (\mathbb{Z}/p\mathbb{Z})\Gamma$. We consider h as a function from Γ to \mathbb{Z} such that h(s) = 0 for all but finitely many $s \in \Gamma$. Define the convolution operator $\phi_h : (\mathbb{Z}/p\mathbb{Z})^{\Gamma} \to (\mathbb{Z}/p\mathbb{Z})^{\Gamma}$ by

$$\phi_h(x)(g) = \sum_{s \in \Gamma} x(gs)h(s^{-1}), \quad \forall g \in \Gamma.$$

This is a Γ -equivariant homomorphism. Let $X_{h,p}$ denote the kernel of ϕ_h . Let $X_{h,p}^* < X_{h,p}$ be the subgroup consisting of all elements $x \in X_{h,p}$ with x(e) = 0. This is a finite-index normal clopen subgroup and $\{gX_{h,p}^*: g \in X_{h,p}\}$ is a generating partition for the shift-action of Γ . Therefore, we can apply Theorem 2.3 to obtain

$$f(\Gamma \curvearrowright (\mathbb{Z}/p\mathbb{Z})^{\Gamma}) = f(\Gamma \curvearrowright X_{h,p}) + f(\Gamma \curvearrowright \phi_h((\mathbb{Z}/p\mathbb{Z})^{\Gamma})).$$

Theorem 7.1. ϕ_h is onto if h is nonzero.

Therefore,

$$f(\Gamma \curvearrowright \phi_h((\mathbb{Z}/p\mathbb{Z})^{\Gamma})) = f(\Gamma \curvearrowright (\mathbb{Z}/p\mathbb{Z})^{\Gamma}).$$

Thus $f(\Gamma \curvearrowright X_{h,p}) = 0$.

To prove Theorem 7.1, we need a little preparation.

Definition 7.2. Let C_r be the Cayley graph of Γ . It has vertex set Γ and edges $\{g, gs_i\}$ for all $g \in \Gamma$ and $1 \le i \le r$. Given a set $F \subset \Gamma$, the induced subgraph of F is the subgraph $C_r(F) \subset C_r$ which has vertex set F and contains every edge of C_r which has both endpoints in F. A subset $F \subset \Gamma$ is said to be connected if its induced subgraph in C_r is connected. The convex hull of a set $F \subset \Gamma$ is the smallest connected set $F' \subset \Gamma$ with $F \subset F'$. An extreme point of F is an element $f \in F$ that has degree 1 in $C_r(F)$. We let $\operatorname{Ex}(F)$ denote the set of extreme points of F. Note that if F' is the convex hull of F then $\operatorname{Ex}(F') \subset F$.

Lemma 7.3. Let $F = \{g \in \Gamma : h(g^{-1}) \neq p\mathbb{Z}\}$. Let \overline{F} be the convex hull of F. Suppose there exists an ordering $\gamma_0, \gamma_1, \gamma_2, \ldots$ of Γ such that for every $n \geq 1$ $\{\gamma_0, \ldots, \gamma_n\}$ is connected and

$$\gamma_n \overline{F} \nsubseteq \bigcup_{i=0}^{n-1} \gamma_i \overline{F}.$$

Then ϕ_h is onto.

Proof. By compactness of $(\mathbb{Z}/p\mathbb{Z})^{\Gamma}$ and continuity of ϕ_h , it suffices to show that for every $y \in (\mathbb{Z}/p\mathbb{Z})^{\Gamma}$ and every $n \geq 0$, there exists an $x \in (\mathbb{Z}/p\mathbb{Z})^{\Gamma}$ such that $\phi_h(x)(\gamma_i) = y(\gamma_i)$ for every $0 \leq i \leq n$. We will prove this statement by induction on n. It is clearly true for n = 0. So suppose there is an $n \geq 0$ for which the statement is true. Fix

 $y \in (\mathbb{Z}/p\mathbb{Z})^{\Gamma}$ and let $x \in (\mathbb{Z}/p\mathbb{Z})^{\Gamma}$ be such that $\phi_h(x)(\gamma_i) = y(\gamma_i)$ for every $0 \le i \le n$.

By hypothesis, $\gamma_{n+1}\overline{F} \nsubseteq \bigcup_{i=0}^n \gamma_n \overline{F}$. Because $\bigcup_{i=0}^n \gamma_n \overline{F}$ and $\gamma_{n+1}\overline{F}$ are connected and the convex hull of the exreme points set of a connected set is the connected set itself, there must be an extremal point $f \in \operatorname{Ex}(\overline{F})$ such that $\gamma_{n+1}f \notin \bigcup_{i=0}^n \gamma_n \overline{F}$. However, $\operatorname{Ex}(\overline{F}) \subset F$. So $f \in F$. By definition, this means that $h(f^{-1}) \neq p\mathbb{Z}$. Because p is prime, we may therefore define an element $m \in \mathbb{Z}/p\mathbb{Z}$ by

$$m = h(f^{-1})^{-1} \left(y(\gamma_{n+1}) - \sum_{g \in \Gamma \setminus \{f\}} x(\gamma_{n+1}g)h(g^{-1}) \right).$$

Define $x' \in (\mathbb{Z}/p\mathbb{Z})^{\Gamma}$ by x'(g) = x(g) if $g \neq \gamma_{n+1}f$ and $x'(\gamma_{n+1}f) = m$. Because $\gamma_{n+1}f \notin \bigcup_{i=0}^n \gamma_n \overline{F}$, it follows that $\phi_h(x')(\gamma_i) = \phi_h(x)(\gamma_i)$ for all $0 \leq i \leq n$. Also a straightforward computation shows $\phi_h(x')(\gamma_{n+1}) = y(\gamma_{n+1})$. So $\phi_h(x')(\gamma_i) = y(\gamma_i)$ for all $0 \leq i \leq n+1$. This completes the inductive step and the claim.

Definition 7.4. Let $S = \{s_1, \ldots, s_r\}$. For $g \in \Gamma$, let |g| be the smallest number $n \geq 0$ such that there exist elements $t_1, \ldots, t_n \in S \cup S^{-1}$ with $g = t_1 \cdots t_n$. We also let $d(g_1, g_2) = |g_1^{-1}g_2|$ for any $g_1, g_2 \in \Gamma$. For $g \in \Gamma$ and $n \geq 0$, let $B(g, n) = \{k \in \Gamma : d(k, g) \leq n\}$ be the ball of radius n centered at g.

Let $K \subset \Gamma$ be a finite set. The radius of K is the smallest number $r \geq 0$ such that there exists a $v \in \Gamma$ such that $B(v,r) \supset K$. An element $v \in \Gamma$ is called a center of K if $B(v,r) \supset K$ where r is the radius of K. For any $v, w \in \Gamma$, we let $[v, w] \subset \Gamma$ be the set of all $g \in \Gamma$ such that the shortest path from v to w in the Cayley graph C_r contains g.

Lemma 7.5. Let K be a connected finite set with radius $r \ge 1$. Suppose the identity element e is a center of K. Then there exist elements $v, w \in K$ such that $[e, v] \cap [e, w] = \{e\}, |v| = r$ and $|w| \in \{r - 1, r\}$.

Proof. Because K has radius r and center e, there is an element v with |v|=r. To obtain a contradiction, suppose that there is no $w\in K$ with $|w|\in\{r-1,r\}$ and $[e,v]\cap[e,w]=\{e\}$. Let $v_1\in S\cup S^{-1}$ be the unique element with $|v_1^{-1}v|=r-1$. We claim that $B(v_1,r-1)\supset K$. To see this, let $w\in K$. If $|w|\leq r-2$ then $w\in B(e,r-2)\subset B(v_1,r-1)$. If |w|>r-2 then, because K has center e and radius $r,|w|\in\{r-1,r\}$. By assumption, this implies $[e,v]\cap[e,w]\neq\{e\}$. So let $y\in[e,v]\cap[e,w]$ with $y\neq e$. Then $[e,y]\subset[e,v]$. This implies that $v_1\in[e,y]$. In particular, $v_1\in[e,v]\cap[e,w]$, so $v_1\in[e,w]$. Because $|w|\leq r$, this implies $d(v_1,w)\leq r-1$ as claimed. So we have shown that in all cases,

if $w \in K$ then $w \in B(v_1, r-1)$. This shows that the radius of K is at most r-1, a contradiction. This contradiction proves the lemma. \square

Lemma 7.6. Let K be a connected finite set with radius $r \geq 1$. Suppose the identity element e is a center of K. Suppose $g_1, \ldots, g_n \in \Gamma \setminus \{e\}$ are elements with

$$K \subset \bigcup_{i=1}^n g_n K$$
.

Then e is contained in the convex hull of $\{g_1, \ldots, g_n\}$.

Proof. Let $v, w \in K$ be elements such that $[e, v] \cap [e, w] = \{e\}$, |v| = r and $|w| \in \{r-1, r\}$. Let $g_i, g_j \in \{g_1, \ldots, g_n\}$ be such that $v \in g_i K$ and $w \in g_j K$. Let $x, y \in K$ be such that $v = g_i x$ and $w = g_j y$.

Let $v_1, v_2, x_1, x_2 \in \Gamma$ be such that $v = v_1v_2, |v| = |v_1| + |v_2|, x_2 = v_2, x = x_1x_2, |x| = |x_1| + |x_2|$ and $|v_2| = |x_2|$ is as large as possible. Thus $g_i = vx^{-1} = v_1x_1^{-1}$ and $|vx^{-1}| = |v_1| + |x_1|$. Because r is the radius of K, e is a center and $x \in K$ we have $|x| \le r$. Also, we cannot have v = x (since this would imply $g_i = vx^{-1} = e$, a contradiction). So we must have $|v_1| \ge 1$. Thus $[e, v] \cap [e, g_i] \ne \{e\}$.

Let $w_1, w_2, y_1, y_2 \in \Gamma$ be such that $w = w_1 w_2, |w| = |w_1| + |w_2|$, $y_2 = w_2, y = y_1 y_2, |y| = |y_1| + |y_2|$ and $|w_2| = |y_2|$ is as large as possible. Thus $g_j = wy^{-1} = w_1 y_1^{-1}$ and $|wy^{-1}| = |w_1| + |y_1|$. Because r is the radius of K, e is a center and $y \in K$ we have $|y| \leq r$.

Case 1. If |w| = r, then, as in the previous paragraph, we must have $[e, w] \cap [e, g_j] \neq \{e\}$. Because $[e, v] \cap [e, w] = \{e\}$, this implies $e \in [g_i, g_j]$ which implies the lemma.

Case 2. Suppose |w| = r - 1 and $|w_1| \ge 1$. Thus $[e, w] \cap [e, g_j] \ne \{e\}$. Because $[e, v] \cap [e, w] = \{e\}$, this implies $e \in [g_i, g_j]$ which implies the lemma.

Case 3. Suppose |w| = r - 1 and $|w_1| = 0$. Then $w = w_2$, so $|w_2| = r - 1$. Because $g_j = wy^{-1} = w_1y_1^{-1} = y_1^{-1} \neq e$, we must $y_1 \neq e$. Thus $|y| = |y_1| + |y_2| = |y_1| + |w_2| = |y_1| + r - 1$. Because $y \in K$ and K has radius r and center e, we must have $|y_1| = 1$ and |y| = r. If $[e, y] \cap [e, v] = \{e\}$ then, after replacing w with y we are in the situation of Case 1 (note $y = g_k y'$ for some $1 \leq k \leq n$ and $y' \in K$). So we may assume $[e, y] \cap [e, v] \neq \{e\}$ which implies $y_1 \in [e, v]$. Because $g_j = y_1^{-1}$, and $[e, v] \cap [e, g_i] \neq \{e\}$, we have $[e, g_i] \cap [e, g_j] = \{e\}$ which implies $e \in [g_i, g_j]$ which implies the lemma.

[Proof of Theorem 7.1] Let $F = \{g \in \Gamma : h(g^{-1}) \neq p\mathbb{Z}\}$. Let \overline{F} be the convex hull of F. For any $g \in \Gamma$, ϕ_h is onto if and only if ϕ_{gh} is onto. So after replacing h with gh for some $g \in \Gamma$, we may assume that e is a center of \overline{F} .

Let g_0, g_1, \ldots be an ordering of Γ such that for every $n \geq 0, \{g_0, \ldots, g_n\}$ is connected. We claim that for every $n \geq 1$,

$$\gamma_n \overline{F} \nsubseteq \bigcup_{i=0}^{n-1} \gamma_i \overline{F}.$$

To obtain a contradiction, suppose that the claim is false for some $n \geq 1$. Then $\overline{F} \subset \bigcup_{i=0}^{n-1} \gamma_n^{-1} \gamma_i \overline{F}$, $\gamma_n^{-1} \gamma_i \neq e$ for any $0 \leq i \leq n-1$ and because $\{\gamma_0, \ldots, \gamma_{n-1}\}$ is connected, $\{\gamma_n^{-1} \gamma_0, \ldots, \gamma_n^{-1} \gamma_{n-1}\}$ is connected which implies that e is not in the convex hull of $\{\gamma_n^{-1} \gamma_0, \ldots, \gamma_n^{-1} \gamma_{n-1}\}$. This contradicts the previous lemma. So we must have that for every $n \geq 1$,

$$\gamma_n \overline{F} \nsubseteq \bigcup_{i=0}^{n-1} \gamma_i \overline{F}.$$

The theorem now follows from Lemma 7.3.

APPENDIX A. ERRATUM TO [Bo10c]

[Bo10c, Lemma 9.3] is incorrect because the support of ν is not contained in the image of ϕ in general. However, the proof of [Bo10c, Lemma 9.3] remains correct when $\beta = \alpha^n$ (see justification below). This special case is the only case used to prove [Bo10c, Theorem 9.1] and the Abramov-Rokhlin Addition Formula [Bo10c, Theorem 1.3]. So those theorems hold as stated.

Proof. [Justification of a key step in the proof of Lemma 9.3] We now justify the claim that the proof of [Bo10c, Lemma 9.3] remains correct when $\beta = \alpha^n$. Recall that K is a finite set, $G = \langle s_1, \ldots, s_r \rangle$ is a finitely generated free group and $n \geq 0$. Let $B(e,n) \subset G$ denote the ball of radius n centered at the identity element (with respect to the word metric). Let $L = K^{B(e,n)}$. Let $\phi: K^G \to L^G$ be the map

$$\phi(x)(g)(f) = x(gf), \quad x \in K^G, g \in G, f \in B(e,n).$$

Let μ be a shift-invariant probability measure on K^G and let ν be the Markov measure on L^G induced from $\phi_*\mu$. Then ν is supported on the set $Z \subset L^G$ of all $z: G \to L$ with the property that, for any $g \in G$ and $s \in S \cup S^{-1}$ (where $S = \{s_1, \ldots, s_r\}$), there exists a $y \in K^G$ with $\phi(y)(g) = z(g)$ and $\phi(y)(gs) = z(gs)$. We claim that $Z \subset \phi(K^G)$ (which implies that the proof of [Bo10c, Lemma 9.3] remains correct when $\beta = \alpha^n$).

To prove the claim, define $\psi: Z \to K^G$ by $\psi(z)(g) = z(g)(e)$. It suffices to show that $\phi\psi$ is the identity map on Z. Because ϕ and ψ are G-equivariant, it suffices to prove that $\phi(\psi(z))(e) = z(e)$ for any $z \in Z$. Equivalently, it suffices to show that for every $f \in B(e, n)$, $\phi(\psi(z))(e)(f) = z(e)(f)$ which, by definition of ϕ , is equivalent to

 $\psi(z)(f) = z(e)(f)$. By definition of ψ , this is equivalent to z(f)(e) = z(e)(f).

So let $f \in B(e, n)$. Let us write $f = t_1 \cdots t_m$ where $t_i \in S \cup S^{-1}$ and m is the word length of f. Let $f_i = t_1 \cdots t_i$ for $1 \le i \le m$. Also let $f_0 = e$ the identity element. Let z_i be the map from $B(f_i, n)$ (the ball of radius n centered at f_i) to K defined by $z_i(f_ig) = z(f_i)(g)$ for $g \in B(e, n)$. By the definition of Z, we must have that z_i and z_{i+1} agree on $B(f_i, n) \cap B(f_{i+1}, n)$ for $0 \le i \le m-1$. Therefore, z_0 and z_m agree on the set $\bigcap_{i=0}^m B(f_i, n)$. It is easy to see that $f \in \bigcap_{i=0}^m B(f_i, n)$. Therefore, $z_0(f) = z_m(f)$ which implies z(e)(f) = z(f)(e) as claimed.

The proof of [Bo10c, Proposition 12.1] relies on the incorrect [Bo10c, Lemma 9.3]. Moreover, the statement is incorrect even when $G = \mathbb{Z}$ because of the next result.

Theorem A.1. There exists an ergodic automorphism $T \in \text{Aut}(X, \mu)$ (where (X, μ) is a standard probability space), a finite generating partition α of X and an increasing sequence $\{\mathcal{P}_n\}_{n=1}^{\infty}$ of finite partitions such that $\bigvee_{n=1}^{\infty} \mathcal{P}_n$ is the partition into points and $f_{\mu}(\alpha) = h_{\mu}(T) \neq \lim\inf_{n\to\infty} H_{\mu}(\mathcal{P}_n|T^{-1}\mathcal{P}_n) = \liminf_{n\to\infty} F_{\mu}(\mathcal{P}_n)$.

To prove this, we need the next few lemmas.

Lemma A.2. Let x > 0. Then for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $x_1, \ldots, x_n > 0$ are such that $\sum_{i=1}^n x_i = x$ and $x_i < \delta \ \forall i$ then

$$\sum_{i=1}^{n} x_i^2 \le \epsilon \ and \quad \sum_{i=2}^{n} x_i x_{i-1} \le \epsilon.$$

Proof. Let $\delta < \frac{\epsilon}{x}$. Notice $\sum_{i=1}^{n} x_i^2 \le \max_i x_i \sum_{i=1}^{n} x_i < \delta x < \frac{\epsilon}{x} x = \epsilon$. Similarly $\sum_{i=2}^{n} x_i x_{i-1} \le \max_i x_i \sum_{i=2}^{n} x_i < \epsilon$.

Let
$$[n] = \{1, \dots, n\}.$$

Lemma A.3. Let (X, μ) be a standard probability space and $B \subset X$ a set of positive measure. Let $\epsilon > 0$. For any measurable partition $\{B_1, \ldots, B_n\}$ of B and function $\phi : [n] \to [2]$, for $i, j \in [2]$, let

$$C_{ij}(\phi) = \mu(\cup \{B_r : \phi(r-1) = j, \phi(r) = i\}).$$

Then there exists a $\delta > 0$ such that if $\{B_1, \ldots, B_n\}$ is any measurable partition of B with $\mu(B_i) \leq \delta$ for every i and

$$Y_{ij} := \{ \phi : [n] \to [2] : |C_{ij}(\phi) - (1/4)\mu(B)| < \epsilon \}$$

then $2^{-n}|Y_{ij}| > 1 - \epsilon$ (for every $i, j \in [2]$).

Proof. Fix $i, j \in [2]$. Let $\phi : [n] \to [2]$ be chosen uniformly at random. To prove the lemma, by Chebyshev's inequality, it suffices to show that, as $\delta \setminus 0$, the expected value of $C_{ij}(\phi)$ tends to 1/4 and the variance of $C_{ij}(\phi)$ tends to 0. Let $Z_k = 1$ if $\phi(k) = i$ and $Z_k = 0$ otherwise.

Case 1. Let us assume i = j. Then

$$C_{ij}(\phi) = \sum_{k=2}^{n} Z_{k-1} Z_k \mu(B_k).$$

The expected value of $Z_{k-1}Z_k$ is 1/4. So, the expected value of $C_{ij}(\phi)$ is $(1/4)(\mu(B) - \mu(B_1))$. This implies that, as $\delta \searrow 0$, the expected value of $C_{ij}(\phi)$ tends to 1/4.

The variance of $C_{ij}(\phi)$ is

$$Var(C_{ij}(\phi)) = \sum_{k=2}^{n} \mu(B_k)^2 Var(Z_{k-1}Z_k) + 2\sum_{j < k} \mu(B_j) \mu(B_k) Cov(Z_{j-1}Z_j, Z_{k-1}Z_k).$$

Note that

$$\mathrm{Var}(Z_{k-1}Z_k) = \mathbb{E}[Z_{k-1}^2Z_k^2] - [\mathbb{E}Z_{k-1}Z_k]^2 = (1/4) - (1/16) = (3/16).$$

If j < k-1 then $Z_{j-1}Z_j$ and $Z_{k-1}Z_k$ are independent which implies $Cov(Z_{j-1}Z_j, Z_{k-1}Z_k) = 0$. On the other hand, if j = k-1 then

$$Cov(Z_{j-1}Z_j,Z_{k-1}Z_k) = \mathbb{E}[Z_{k-2}Z_{k-1}^2Z_k] - \mathbb{E}[Z_{k-2}Z_{k-1}]\mathbb{E}[Z_{k-1}Z_k] = (1/8) - (1/16) = (1/16).$$

Therefore,

$$Var(C_{ij}(\phi)) \le (3/16) \sum_{k=1}^{n} \mu(B_i)^2 + (2/16) \sum_{k=2}^{n} \mu(B_{k-1}) \mu(B_k).$$

By the previous lemma, $Var(C_{ij}(\phi))$ tends to zero as $\delta \searrow 0$. This finishes Case 1.

Case 2. Let us assume $i \neq j$. Then

$$C_{ij}(\phi) = \sum_{k=2}^{n} (1 - Z_{k-1}) Z_k \mu(B_k).$$

The expected value of $(1 - Z_{k-1})Z_k$ is 1/4. So, the expected value of $C_{ij}(\phi)$ is $(1/4)(\mu(B) - \mu(B_1))$. This implies that, as $\delta \searrow 0$, the expected value of $C_{ij}(\phi)$ tends to 1/4.

The variance of $C_{ij}(\phi)$ is

$$Var(C_{ij}(\phi)) = \sum_{k=2}^{n} \mu(B_k)^2 Var((1-Z_{k-1})Z_k) + 2\sum_{j < k} \mu(B_j) \mu(B_k) Cov((1-Z_{j-1})Z_j, (1-Z_{k-1})Z_k).$$

Note that

$$\operatorname{Var}((1-Z_{k-1})Z_k) = \mathbb{E}[(1-Z_{k-1})^2 Z_k^2] - [\mathbb{E}(1-Z_{k-1})Z_k]^2 = (1/4) - (1/16) = (3/16).$$

If j < k-1 then $(1-Z_{j-1})Z_j$ and $(1-Z_{k-1})Z_k$ are independent which implies $Cov((1-Z_{j-1})Z_j, (1-Z_{k-1})Z_k) = 0$. On the other hand, if j = k-1 then

$$Cov((1 - Z_{j-1})Z_{j}, (1 - Z_{k-1})Z_{k})$$

$$= \mathbb{E}[(1 - Z_{k-2})Z_{k-1}(1 - Z_{k-1})Z_{k}] - \mathbb{E}[(1 - Z_{k-2})Z_{k-1}]\mathbb{E}[(1 - Z_{k-1})Z_{k}]$$

$$= 0 - (1/16).$$

Therefore,

$$Var(C_{ij}(\phi)) \le (3/16) \sum_{k=1}^{n} \mu(B_i)^2.$$

By the previous lemma, $Var(C_{ij}(\phi))$ tends to zero as $\delta \searrow 0$. This finishes Case 2.

Lemma A.4. Let $T \in \operatorname{Aut}(X, \mu)$ be a free ergodic automorphism of a standard probability space. Let \mathcal{P} be a finite measurable partition of X. Let $\epsilon > 0$. Then there exists a finite measurable partition $\mathcal{Q} \geq \mathcal{P}$ such that $H_{\mu}(\mathcal{Q}|T^{-1}\mathcal{Q}) \geq H_{\mu}(\mathcal{P}|T^{-1}\mathcal{P}) + \log(2) - \epsilon$.

Proof. Let $\delta > 0$ and N > 0 be an integer. By the Rokhlin Lemma, there exists a measurable set $B \subset X$ and an $n \geq N$ such that $B, TB, \ldots, T^{n-1}B$ are pairwise disjoint and

$$\mu\left(\bigcup_{i=0}^{n-1} T^i B\right) > 1 - \delta.$$

Let $\phi : [n] \to [2]$ be chosen at random and for $i \in [2]$, let $C_i = \bigcup_{j \in \phi^{-1}(i)} B_j$, and $Q = \mathcal{P} \vee \{C_1, C_2, X \setminus (C_1 \cup C_2)\}$. Let $\epsilon' > 0$. By the previous lemma, it follows that, by choosing δ small enough and N large enough, with high probability, for every $P, P' \in \mathcal{P}$ and $i, j \in [2]$,

$$\left| \mu(P \cap T^{-1}P' \cap C_i \cap T^{-1}C_j) - (1/4)\mu(P \cap T^{-1}P') \right| < \epsilon'.$$

By choosing ϵ' to be sufficiently small, we see that there exists such a ϕ so that $H_{\mu}(\mathcal{Q}|T^{-1}\mathcal{Q}) \geq H_{\mu}(\mathcal{P}|T^{-1}\mathcal{P}) + \log(2) - \epsilon$ as required. \square

Proof of Theorem A.1. Let (X, μ) be a standard probability space, $T \in \operatorname{Aut}(X, \mu)$ a free and ergodic automorphism such that there exists a finite generating partition for T. Let $\{\mathcal{P}_n\}_{n=1}^{\infty}$ be a sequence of increasing finite partitions such that $\bigvee_{n=1}^{\infty} \mathcal{P}_n$ is the partition into points. Using the previous lemma and an inductive argument, we see that there exists a sequence $\{\mathcal{Q}_n\}_{n=1}^{\infty}$ of increasing finite partitions such that $\mathcal{P}_n \leq \mathcal{Q}_n$

and $H_{\mu}(\mathcal{Q}_n|T^{-1}\mathcal{Q}_n) \geq H_{\mu}(\mathcal{P}_n|T^{-1}\mathcal{P}_n) + \log(2) - \frac{1}{n}$. Therefore, $\bigvee_{n=1}^{\infty} \mathcal{Q}_n$ is the partition into points and

$$\liminf_{n\to\infty} H_{\mu}(\mathcal{Q}_n|T^{-1}\mathcal{Q}_n) \ge \log(2) + \liminf_{n\to\infty} H_{\mu}(\mathcal{P}_n|T^{-1}\mathcal{P}_n).$$

So either $\{\mathcal{P}_n\}_{n=1}^{\infty}$ or $\{\mathcal{Q}_n\}_{n=1}^{\infty}$ satisfies the theorem.

The proof of the addition theorem, [Bo10c, Theorem 13.1], relies on the incorrect [Bo10c, Proposition 12.1] (however, nothing else in [Bo10c] relies on this proposition). We conjecture that the statement of [Bo10c, Theorem 13.1] is correct. The proof also relies on [Bo10c, Theorem 13.2], a result which is assumed to follow from minor modifications of [Th71, Theorem 2.3]. It now appears that [Bo10c, Theorem 13.2] does not so follow and we do not know whether it remains true.

REFERENCES

- [Ar98] W. Arveson. An Invitation to C*-algebras. Graduate Texts in Mathematics, No. 39. Springer- Verlag, New York, reprinted 1998.
- [BM09] M. Björklund and R. Miles. Entropy range problems and actions of locally normal groups. Discrete Contin. Dyn. Syst. 25 (2009), no. 3, 981–989.
- [Bo10a] L. Bowen. A measure-conjugacy invariant for actions of free groups. Ann. of Math. (2) 171 (2010), no. 2, 1387–1400.
- [Bo10b] L. Bowen. Measure conjugacy invariants for actions of countable sofic groups. J. Amer. Math. Soc. 23 (2010), 217–245.
- [Bo10c] L. Bowen. Nonabelian free group actions: Markov processes, the Abramov-Rohlin formula and Yuzvinskii's formula. Ergodic Theory Dynam. Systems 30 (2010), no. 6, 1629–1663.
- [Ju65] S. A. Juzvinskii. Metric properties of the endomorphisms of compact groups. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 29 1965 1295–1328.
- [KH95] A. Katok and B. Hasselblatt. Introduction to the modern theory of dynamical systems, with a supplement by Anatole Katok and Leonardo Mendoza. Encyclopedia of Mathematics and its Applications 54, Cambridge University Press, 1995, 822 pp.
- [Ku65] A. G. Kushnirenko, An upper bound of the entropy of classical dynamical systems. (Russian), Sov. Math. Dokl. 6 (1965), 360–362.
- [Li11] H. Li. Compact group automorphisms, addition formulas and Fuglede-Kadison determinants. arXiv:1001.0419.
- [LS09] D. Lind and K. Schmidt, preprint.
- [LSW90] D. Lind, K. Schmidt and T. Ward. Mahler measure and entropy for commuting automorphisms of compact groups. Invent. Math. 101 (1990), no. 3, 593–629.
- [MRV11] N. Meesschaert, S. Raum and S. Vaes. Stable orbit equivalence of Bernoulli actions of free groups and isomorphism of some of their factor actions. arXiv:1107.1357
- [Mi08] R. Miles. The entropy of algebraic actions of countable torsion-free abelian groups. Fund. Math. 201 (2008), 261D282.

- [OW87] D. Ornstein and B. Weiss. Entropy and isomorphism theorems for actions of amenable groups. J. Analyse Math. 48 (1987), 1–141.
- [Th71] R. K. Thomas. The addition theorem for the entropy of transformations of G-spaces. Trans. Amer. Math. Soc. 160 (1971), 119–130.

Lewis Bowen, Mathematics Department, Mailstop 3368, Texas A&M University College Station, TX 77843-3368 United States.

lpbowen@math.tamu.edu

Yonatan Gutman, Institut des Hautes Études Scientifiques, Le Bois-Marie, 35 route de Chartres, 91440 Bures-sur-Yvette, France. yonatan@ihes.fr