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Abstract. The classical Juzvinskĭı Addition Theorem states that
the entropy of an automorphism of a compact group decomposes
along invariant subgroups. Thomas generalized the theorem to a
skew-product setting. Using L. Bowen’s f-invariant we prove the
addition theorem for actions of finitely generated free groups on
skew-products with compact totally disconnected groups or finitely
dimensional Lie Groups (correcting an error from [Bo10c]) and
discuss examples.
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1. Introduction

The following result was proven independently by H. Li [Li11] and
Lind-Schmidt [LS09].
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Theorem 1.1. [Addition theorem for amenable groups] Let Γ be a
countable discrete amenable group, G be a compact metrizable group
and α : Γ → Aut(G) an action of Γ on G by group-automorphisms.
Suppose N C G is a closed normal α(Γ)-invariant subgroup. Denote
by αN : Γ → Aut(N) and αG/N : Γ → Aut(G/N) the induced actions
and by µG, µN , µG/N the Haar probability measures on G,N and G/N
respectively. Then the entropies of these actions satisfy:

hµG
(α) = hµN

(αN) + hµG/N
(αG/N).

In the case Γ = Z, this result is due to Juzvinskĭı [Ju65] from which
it receives its name. The case Γ = Zd was proven in [LSW90]. Special
cases were obtained by Miles [Mi08] and Björklund-Miles [BM09].

The paper [Bo10a] introduced a measure-conjugacy invariant, called
the f -invariant, for probability-measure-preserving actions of finitely
generated free groups. (Later a more general theory of sofic entropy
was introduced in [Bo10b], of which we have little to say in the present
article). In [Bo10c], a proof is claimed that the above addition for-
mula extends to the case when Γ is a finitely generated free group,
the entropy is replaced with the f -invariant, and G is either totally
disconnected, a Lie group, or a connected finite-dimensional abelian
group (whenever the f -invariant is well-defined). However, there is
an error in the proof which this paper corrects (at least under a mild
extra hypothesis). The main result is Theorem 2.3 below. We also
prove a skew-product addition formula in Theorem 3.3 which may be
of independent interest.
Organization: §2 reviews the f -invariant and states the main theo-

rem; §3 reviews skew-products and proves Theorem 2.3 from Theorem
3.3. In §5 and §6 Theorem 3.3 is proven; §7 discuss examples, includ-
ing the Ornstein-Weiss example. The appendix offers an erratum to
[Bo10c].
Acknowledgements. We’d like to thank Hanfeng Li for helpful

conversations and the Fields Institute where some of the work for this
project occurred. The second author would like to thank Benjamin
Weiss, Eli Glasner and Jon Aaronson for helpful discussions. L.B. was
partially supported by NSF grants DMS-0968762 and DMS-0954606.

2. The f-invariant

Let Γ = 〈s1, . . . , sr〉 be a rank r free group. Let α be a measure-
preserving action of Γ on a standard probability space (X,BX , ν). We
consider α as a homomorphism from Γ to the group of automorphisms
of (X,BX , ν) and write αg for α(g) ( ∀g ∈ Γ). Let P = {P1, P2, . . .}
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be a countable partition of X into measurable subsets. The Shannon-
entropy of P is

Hν(P) := −
∑
P∈P

ν(P ) log(ν(P )).

By convention 0 log(0) := 0. If P ,Q are two partitions of X then their
join is defined by P ∨ Q := {P ∩ Q : P ∈ P , Q ∈ Q}. If W ⊂ Γ is
finite, we let PW :=

∨
w∈W αwP . Note that α is only implicit in this

notation. If H(P) <∞ then define

Fν(α,P) = (1− 2r)Hν(P) +
r∑
i=1

Hν(P ∨ αsi
P)

fν(α,P) = inf
W⊂Γ

Fν
(
α,PW

)
where the infimum is over all finite W ⊂ Γ.

For g ∈ Γ, let hν(αg,P) denote the entropy rate of P with respect
to the Z-action generated by αg. To be precise,

hν(αg,P) = lim
n→∞

(2n+ 1)−1H

(
n∨

i=−n

αigP

)
.

The entropy of the action αg is hν(αg) = supP hν(αg,P) where the
supremum is over all finite measurable partitions P of X. Define

F ∗ν (α,P) = (1− r)Hν(P) +
r∑
i=1

hν(αsi
,P)

f ∗ν (α,P) = inf
W⊂Γ

F ∗ν
(
α,PW

)
where the infimum is over all finite W ⊂ Γ.

The partition P is said to be generating (for the action α) if the
smallest α(Γ)-invariant sigma-algebra containing P is BX (up to sets
of measure zero).

Theorem 2.1. Let α be a measure-preserving action of Γ on a stan-
dard probability space (X,BX , ν). If P ,Q are any two finite-entropy
generating partitions for α then fν(α,P) = fν(α,Q).

Proof. Define
f ′ν(α,P) = inf

n>0
Fν(α,PB(n))

where B(n) ⊂ Γ denotes the ball of radius n with respect to the
word metric induced by {s±1

1 , . . . , s±1
r }. This is the definition of the

f -invariant given in [Bo10a] and [Bo10c]. Clearly, fν(α,P) ≤ f ′ν(α,P).
However, if W ⊂ Γ is any finite set with e ∈ W then it follows
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from [Bo10c, Propositions 4.3 and 5.1] that Fν(α,PB(n)) ≤ Fν(α,PW )
for all sufficiently large n. Thus f ′ν(α,P) ≤ fν(α,P) which implies
f ′ν(α,P) = fν(α,P). The result now follows from the main theorem of
[Bo10a]. �

Because of this theorem, we define fν(α) := fν(α,P) where P is
any finite-entropy generating partition for α. If there does not exist a
finite-entropy generating partition for α then fν(α) is undefined. One
of the main results of [Bo10c] is:

Theorem 2.2. Let α be a measure-preserving action of Γ on a standard
probability space (X,BX , ν). Then for any finite-entropy generating
partition P for α, fν(α) = f ∗ν (α,P).

The main result of this paper is:

Theorem 2.3. Let Γ = 〈s1, . . . , sr〉 be a rank r free group, G be a
compact metrizable group and α : Γ → Aut(G) an action of Γ on G
by group-automorphisms. Suppose N C G is a closed normal α(Γ)-
invariant subgroup. Denote by αN : Γ → Aut(N) and αG/N : Γ →
Aut(G/N) the induced actions and by µG, µN , µG/N the Haar probability
measures on G,N and G/N respectively. Suppose there exists finite-
entropy generating partitions for α, αN , αG/N and one of the following
hold.

(1) N is totally disconnected and there exists a clopen finite-index
normal subgroup N0 CN such that {gN0 : g ∈ N} is a gener-
ating partition for αN .

(2) G is a compact finite-dimensional Lie group and the action α
is by smooth automorphisms.

Then

fµG
(α) = fµN

(αN) + fµG/N
(αG/N).

Remark 2.1. The proof shows slightly more: if case (1) occurs and
αG/N has a finite-entropy generating partition, then α automatically
has a finite-entropy generating partition. This follows from Lemmas
3.2 and 6.4. To be more precise, Lemma 3.2 shows that α is measurably
conjugate to a skew-product action of the form αG/N ×σ αN . If P is
a finite-entropy generating partition for αG/N and Q = {gN0 : g ∈
G} is a generating partition for αN of the kind described in case (1)
above, then Lemma 6.4 shows that P×Q is generating for αG/N×σαN .
Because P has finite-entropy and Q is finite, P ×Q has finite entropy
as required.
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Remark 2.2. Suppose N is totally disconnected and N0 C N is a
closed finite-index normal subgroup (the fact N0 is closed and finite-
index implies N0 is clopen). Let M = ∩g∈ΓαgN0. Let αG/M , αN/M be
the induced actions on G/M and N/M respectively. Let µG/M , µN/M be
the respective Haar probability measures. Suppose that αG/M and αG/N
admit finite-entropy generating partitions. Note that {gN0/M : g ∈
G} is a generating partition for αN/M . So the above theorem implies

fµG/M
(αG/M) = fµN/M

(αN/M) + fµG/N
(αG/N).

By the previous remark, this formula holds as long as αG/N admits a
finite-entropy generating partition.

3. Skew-products

The proof of Theorem 2.3 is based on a more general skew-product
theorem of independent interest, the construction of which we recall
next.

Definition 3.1. Let Γ be a group. Let (X,BX , ν) be a Lebesgue space
equipped with a Γ-action α. We consider α as a homomorphism from
Γ to the group of automorphisms of (X,BX , ν) and write αg for α(g) (
∀g ∈ Γ).

Let G be a compact group with Borel sigma-algebra B and Haar
measure µ. Let β be a Γ-action by group-automorphisms on G. Let
σ : Γ×X → G be a cocycle for β and α, i.e., σ is a measurable mapping
so that for all g, h ∈ Γ, x ∈ X
(3.1) σ(gh, x) = (βgσ(h, x)) · σ(g, αhx).

Define the skew-product action α×σ β of Γ on X ×G by:

(α×σ β)g(x, y) = (αgx, (βgy) · σ(g, x)) (g ∈ Γ, x ∈ X, y ∈ G).

The connection between skew-product actions and the addition the-
orem is the following standard result (which we obtained from [Li11,
Proof of Corollary 6.3]).

Lemma 3.2. Let Γ be a countable group, G be a compact metrizable
group, α : Γ → Aut(G) an action of Γ on G by group-automorphisms
and N C G a closed normal α(Γ)-invariant subgroup. Denote by αN :
Γ → Aut(N) and αG/N : Γ → Aut(G/N) the induced actions. Then
there is a cocycle σ : Γ×G/N → N such that αG/N×σαN is measurably
conjugate with α.

Proof. Let π : G → G/N denote the quotient map. Every continuous
open surjective map between compact metrizable spaces has a Borel
cross section by [Ar98, Theorem 3.4.1]. Thus we can find a Borel map
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ψ : G/N → G such that πψ is the identity map on G/N . It is easily
verified that the map φ : G/N × N → G sending (gN, h) to ψ(gN)h
is an isomorphism from the measurable space (G/N ×N,BG/N × BN)
onto the measurable space (G,BG) (where BG,BN ,BG/N denote the
Borel sigma-algebras on G,N and G/N respectively). Furthermore,
denoting the Haar probability measures on G,N,G/N by µG, µN , µG/N
respectively, one sees that φ∗(µG/N × µN) is left-translation invariant
and hence φ∗(µG/N×µN) = µG. It is also readily checked that the map
σ : Γ×G/N → N defined by

σ(γ, gN) = ψ(αG/N(γ)(gN))−1α(γ)(ψ(gN))

is a cocycle for the actions αG/N and αN so that φ intertwines the
actions αG/N ×σ αN with α. �

The main technical result of this paper is:

Theorem 3.3. Let Γ = 〈s1, . . . , sr〉 be a rank r free group, α a measure-
preserving action of Γ on a standard probability space (X,BX , ν), G a
compact metrizable group, β an action of Γ on G by group-automorphisms,
and σ : Γ×X → G a cocycle for these actions. Suppose that G is to-
tally disconnected and there exists a finite-index clopen normal subgroup
N CG such that {gN : g ∈ G} is a generating partition for β. Let µ
denote the Haar probability measure on G. Suppose also that there is
a finite-entropy generating partition for α. Then

fν×µ(α×σ β) = fν(α) + fµ(β).

The analog of this theorem for discrete countable amenable groups
Γ when G is an arbitrary compact metrizable group was established in
[Li11]. The case Γ = Z was proven earlier by Thomas [Th71] and the
case Γ = Zd is shown in [LSW90].

Theorem 3.3 is proven in the next section. Next we combine this
result with the next two lemmas to complete the proof of Theorem 2.3.

Lemma 3.4. Let M be a smooth compact Riemannian manifold. Let
T : M → M be a diffeomorphism. Then hµ(T ) < ∞ for any T -
invariant probability measure µ.

Proof. This is due to Kushnirenko [Ku65]. Alternatively, it follows
from Ruelle’s inequality (see e.g. [KH95, Corollary S.2.17]). �

Lemma 3.5. Let Γ = 〈s1, . . . , sr〉 be a rank r free group with r > 1, M
be a smooth compact Riemannian manifold, α a measure-preserving ac-
tion of Γ on M by diffeomorphisms and µ a non-atomic α(Γ)-invariant
probability measure on M . Then fµ(α) = −∞ if there is a finite-
entropy generating partition for the action.
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Proof. Let m = maxri=1 hµ(αsi
). By the previous lemma, m < ∞. Let

P be a finite-entropy generating partition for α. Let N > 0. Because
µ is non-atomic, there is a finite partition Q of M with Hµ(Q) > N .
So after replacing P with P ∨ Q if necessary, we may assume that
Hµ(P) > N . By Theorem 2.2

fµ(α) = f ∗µ(α,P) = inf
W⊂Γ

F ∗µ(α,PW )

≤ (1− r)Hν(P) +
r∑
i=1

hν(αsi
,P)

≤ (1− r)N + rm.

Because N > 0 is arbitrary and r > 1, this implies the lemma.
[Proof of Theorem 2.3 from Theorem 3.3] By Theorem 1.1, we may

assume, without loss of generality, that r > 1. Because the case when G
is trivial is clear, we assume G is non-trivial. Similarly, the case when
G = N is obvious, so we assume G 6= N . We also assume that the
actions α, αN and αG/N all have finite-entropy generating partitions.

Suppose item (1) holds. By Lemma 3.2, α is measurable conjugate
with αG/N ×σ αN for some cocycle σ. So Theorem 3.3 implies

fµG
(α) = fµG

(αG/N ×σ αN) = fµG/N
(αG/N) + fµN

(αN)

as required.
Suppose that item (2) holds; i.e., G is a finite-dimensional compact

Lie group and α is an action by smooth group-automorphisms. If G is
finite then the theorem is clear because

fµG
(α) = −(r−1) log |G| = −(r−1) log |G/N |+−(r−1) log |N | = fµG/N

(αG/N)+fµN
(αN).

If G is infinite then, because it is compact, it has positive dimension.
So µG is non-atomic. So the previous lemma implies fµG

(α) = −∞.
Also, because G is infinite, either N or G/N is infinite. Therefore,

either µN or µG/N is non-atomic. Of course, the actions αN and αG/N
are smooth. It should be noted that the f -invariant does not take on
the value +∞. So the previous lemma implies fµG/N

(αG/N)+fµN
(αN) =

−∞. �

4. Relative entropy

The proof of Theorem 3.3 uses the relative f -invariant theory devel-
oped in [Bo10c], which we review here. So let (X,BX , ν) be a standard
probability space. Let P be a countable measurable partition of X and
let F ⊂ BX be a sub-sigma algebra. Recall that for a.e. x ∈ X, the
conditional expectation E[·|F ](x) is a probability measure on (X,BX)
satisfying

7



(1) x 7→ E[A|F ](x) is F -measurable for any A ∈ BX ;
(2)
´

E[A|F ](x) dν(x) = ν(A) for any A ∈ BX .
The information function I(P|F) is a function on X defined by

I(P|F)(x) = −E[Px|F ](x) log(E[Px|F ](x))

where Px ∈ P is the unique partition element with x ∈ Px. The
Shannon entropy of P relative to F is

Hν(P|F) =

ˆ
I(P|F)(x) dν(x).

If T is a measure-preserving transformation of (X,BX , ν) then the en-
tropy rate of (T,P) relative to F is

hν(T,P|F) = lim
n→∞

(2n+ 1)−1Hν

(
n∨

i=−n

T iP| F

)
.

This is well-defined whenever F is T -invariant. We also define the
entropy rate of T relative to F by

hν(T |F) = sup
P
hν(T,P|F)

where the supremum is over all finite-entropy partitions P of X.
Now suppose Γ = 〈s1, . . . , sr〉 and α is a measure-preserving action

of Γ on (X,BX , ν). Define

Fν(α,P|F) = (1− 2r)Hν(P|F) +
r∑
i=1

Hν(P ∨ αsi
P|F)

fν(α,P|F) = inf
W⊂Γ

Fν
(
α,PW |F

)
where the infimum is over all finite W ⊂ Γ. Also define

F ∗ν (α,P|F) = (1− r)Hν(P|F) +
r∑
i=1

hν(αsi
,P|F)

f ∗ν (α,P|F) = inf
W⊂Γ

F ∗ν
(
α,PW |F

)
where the infimum is over all finite W ⊂ Γ.

Theorem 4.1. Let α be a measure-preserving action of Γ on a stan-
dard probability space (X,BX , ν). If P ,Q are any two finite-entropy
generating partitions for α and F ⊂ BX is an α(Γ)-invariant sub-
sigma-algebra then fν(α,P|F) = fν(α,Q|F).

Proof. Define
f ′ν(α,P|F) = inf

n>0
Fν(α,PB(n)|F)
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where B(n) ⊂ Γ denotes the ball of radius n with respect to the word
metric induced by {s±1

1 , . . . , s±1
r }. This is the definition of the rela-

tive f -invariant given in [Bo10c]. Clearly, fν(α,P|F) ≤ f ′ν(α,P|F).
However, if W ⊂ Γ is any finite set with e ∈ W then it follows from
[Bo10c, Propositions 4.3 and 5.1] that Fν(α,PB(n)|F) ≤ Fν(α,PW |F)
for all sufficiently large n. Thus f ′ν(α,P|F) ≤ fν(α,P|F) which im-
plies f ′ν(α,P|F) = fν(α,P|F). The result now follows from [Bo10c,
Theorem 5.3]. �

Because of this theorem, we define fν(α|F) := fν(α,P|F) where P
is any finite-entropy generating partition for α. If there does not exist
a finite-entropy generating partition for α then fν(α|F) is undefined.
One of the main results of [Bo10c] is:

Theorem 4.2. Let α be a measure-preserving action of Γ on a standard
probability space (X,BX , ν). Let P ,Q be finite-entropy partitions of
X. Let Σ(Q), Σ(P) be the smallest Γ-invariant sub-sigma-algebras
containing Q and P respectively. Assume Q ⊂ P. Then

fν(α,P|Σ(Q)) = f ∗ν (α,P|Σ(Q)).

Proof. This is [Bo10c, Theorem 9.1]. The proof requires a small cor-
rection; see §A. �

Theorem 4.3. [The f -invariant Abramov-Rokhlin Addition Formula]
Let α be a measure-preserving action of Γ on a standard probability
space (X,BX , ν). Let P ,Q be finite-entropy partitions of X. Let Σ(Q)
be the smallest Γ-invariant sub-sigma-algebra containing Q. Then

fν(α,P ∨Q) = fν(α,Q) + fν(α,P|Σ(Q)).

Proof. This is [Bo10c, Theorem 1.3]. The proof requires a small cor-
rection; see §A. �

5. A key Lemma

The purpose of this section is to prove the key lemma below for
skew-products of Z-actions. So let (X,BX , ν) be a Lebesgue space,
T ∈ Aut(X,BX , ν), G be a compact metrizable group, equipped with
Haar measure µ and S be a group-automorphism of G. A cocycle for
T and S is a cocycle for the actions of Z induced by T and S. That is,
it is a measurable map σ : Z×X → G such that

(5.1) σ(n+m,x) = (Snσ(m,x)) · σ(n, Tmx).

Let T ×σ S be the automorphism of (X ×G, ν × µ) defined by

T ×σ S(x, g) = (Tx, S(g)σ(x)).
9



This is the skew product of T and S with respect to σ.

Lemma 5.1. Let (X,BX , ν),G, T, S, σ be as above. Let Q be a finite-
entropy partition of G. Let

K(Q) = sup
g∈G

H(Qg|Q) +H(Q|Qg).

Then ∣∣∣hν×µ(T ×σ S,X ×Q|BX)− hµ(S,Q)
∣∣∣ ≤ K(Q).

Proof. By the definition of conditional entropy :

hν×µ(T ×σ S,X ×Q|BX) = lim
m→∞

1

m
hν×µ

(
m−1∨
k=0

(T ×σ S)−kX ×Q|BX

)
where

hν×µ

(
m−1∨
k=0

(T ×σ S)−kX ×Q|BX

)
=

ˆ
I

(
m−1∨
k=0

(T ×σ S)−kX ×Q|BX

)
(x, y)dν(x)dµ(y)

and the conditional information is given by:

I

(
m−1∨
k=0

(T ×σ S)−kX ×Q|BX

)
(x, y) = −E[Px,y|BX ](x, y) log(E[Px,y|BX ](x, y))

where Px,y ∈
∨m−1
k=0 (T ×σ S)−kX × Q is the partition element con-

taining (x, y). Observe that the conditional expectation E[·|BX ](x, y)
is the probability measure µx := δx×µ (where δx is the Dirac measure
concentrated on {x}). Thus
ˆ

G

I

(
m−1∨
k=0

(T ×σ S)−kX ×Q|BX

)
(x, y) dµ(y) = Hµx

(
m−1∨
k=0

(T ×σ S)−kX ×Q

)
.

We claim that for any set P ⊂ G,

{x} ×G ∩ (T ×σ S)−k(X × P ) = {x} × S−k(Pσ(k, x)−1).

Indeed, (x, y) is contained in (T ×σ S)−k(X × P ) if and only if

(T ×σ S)k(x, y) = (T kx, (Sky)σ(k, x)) ∈ X × P

which occurs if and only if

y ∈ S−k(Pσ(k, x)−1).
10



So if

Qmx =
m−1∨
k=0

S−k(Qσ(k, x)−1).

then

Hµx

(
m−1∨
k=0

(T ×σ S)−kX ×Q

)
= Hµ(Qmx ).

So I
(∨m−1

k=0 (T ×σ S)−kX ×Q|BX
)

(x, y) = Hµ(Qmx ) which implies:

(5.2) hν×µ((T ×σ S), X ×Q|BX) = lim
m→∞

1

m

ˆ
X

Hµ(Qmx )dν(x)

Define:

Qm =
m−1∨
k=0

S−kQ

By the definition of entropy:

(5.3) hµ(S,Q) = lim
m→∞

1

m

ˆ
X

Hµ(Qm)dν(x)

Note |Hµ(Qm)−Hµ(Qmx )| ≤ Hµ(Qm|Qmx ) +Hµ(Qmx |Qm). Thus:

|Hµ(Qm)−Hµ(Qmx )| ≤
m−1∑
k=0

Hµ(S−kQ|S−k(Qσ(k, x)−1)) +Hµ(S−k(Qσ(k, x)−1)|S−kQ)

=
m−1∑
k=0

Hµ(Q|Qσ(k, x)−1) +Hµ(Qσ(k, x)−1)|Q) ≤ mK(Q).

Finally (5.2) and (5.3) imply |hν×µ((T ×σ S), X ×Q|BX)− hµ(S,Q)| ≤
K(Q). �

6. Proof of Theorem 3.3

For the rest of this section, let Γ, (X,BX , ν), (G,BG, µ), α, β, σ be
as Theorem 3.3. A special partition of G is a partition Q such that
there exists a finite-index normal clopen subgroup N < G such that
Q = {gN : g ∈ G}.

Lemma 6.1. If Q is special and T1, . . . , Tn are automorphisms of G
then

∨n
i=1 TiQ is also special.

Proof. Let Q = {gN : g ∈ G} where N is a finite-index normal clopen
subgroup. Because each Ti is an automorphism, M := ∩ni=1TiN is a
finite-index normal clopen subgroup. So QM := {gM : g ∈ G} is
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special. Because each TiQ coarsens QM , it follows that
∨m
i=1 TiQ ≥

QM .
On the other hand, M ∈

∨m
i=1 TiQ. Because each TiQ is G-invariant

(i.e., gTiQ = TiQ for every g ∈ G),
∨m
i=1 TiQ is G-invariant. Hence

gM ∈
∨m
i=1 TiQ for every g ∈ G. So

∨m
i=1 TiQ ≤ QM . Thus

∨m
i=1 TiQ =

QM is special. �

Lemma 6.2. If P is any finite-entropy partition of X and Q is a
special partition of G then

F ∗ν×µ(α×σ β,P ×Q|BX) = F ∗µ(β,Q).

Proof. Because Qg = Q for any g ∈ G, it follows that K(Q) = 0 where
K(·) is as defined in Lemma 5.1. So that Lemma implies

F ∗ν×µ(α×σ β,P ×Q|BX) = (1− r)Hν×µ(P ×Q|BX) +
r∑
i=1

hν×µ((α×σ β)si
,P ×Q|BX)

= (1− r)Hµ(Q) +
r∑
i=1

hµ(βsi
,Q) = F ∗µ(β,Q).

�

Lemma 6.3. Let Q be a special partition of G, g ∈ Γ and let Pg
denote the partition of X obtained by pulling βg(Q) back under the
cocycle σ(g, ·). Also, let P ′ be an arbitrary measurable partition of X.
Then

(α×σ β)g((Pg ∨ P ′)×Q) = αg(Pg ∨ P ′)× βg(Q)

(up to sets of measure zero).

Proof. Let N be the finite-index clopen normal subgroup of G such
that Q = {qN : q ∈ G}. Let P ∈ Pg, P ′ ∈ P ′ and qN ∈ Q. It suffices
to show that there exists some q′′ ∈ G such that

(α×σ β)g((P ∩ P ′)× qN) = αg(P ∩ P ′)× q′′βg(N)

up to sets of measure zero. By definition of Pg, there exists a coset
q′βg(N) ∈ G/βg(N) such that for every y ∈ P , σ(g, y) ∈ q′βg(N).

Let x ∈ P ∩P ′ and n ∈ N . Then there exists some m ∈ N such that

(α×σ β)g(x, qn) = (αgx, βg(qn)σ(x, g)) = (αgx, βg(qn)q′βg(m)).

Because N is normal, βg(qn)q′βg(m) ∈ βg(q)q
′βg(N). Thus (α ×σ

β)g(x, qn) ∈ αg(P ∩ P ′) × βg(q)q
′βg(N). Since x, n are arbitrary,

this implies (α ×σ β)g((P ∩ P ′)× qN) ⊂ αg(P ∩ P ′)× q′′βg(N) where
q′′ = βg(q)q

′. Because

ν×µ((P∩P ′)×qN) = ν×µ((α×σβ)g((P∩P ′)×qN)) = ν×µ(αg(P∩P ′)×q′′βg(N))
12



it follows that (α×σ β)g((P ∩P ′)× qN) = αg(P ∩P ′)× q′′βg(N) up to
sets of measure zero. Because P, P ′, qN are arbitrary, (α×σ β)g((Pg ∨
P ′)×Q) = (αg(Pg ∨ P ′))× (βgQ) as claimed. �

Lemma 6.4. Let P ,Q be measurable partitions for α, β respectively.
Suppose Q is special and P is generating. Let Σ(P ,Q) be the smallest
α ×σ β(Γ)-invariant sigma-algebra containing P × Q. Similarly, let
Σ(Q) be the smallest β-invariant sigma-subalgebra of BG which contains
Q.

Then Σ(P ,Q) is the smallest sigma-algebra containing BX × Σ(Q)
(up to sets of measure zero).

Proof. Clearly, P ×G is contained in Σ(P ,Q). Because

(α×σ β)g(P ×G) = (αgP)×G, ∀g ∈ Γ,

it follows that (αgP) × G ⊂ Σ(P ,Q) for every g ∈ Γ. Because P is
generating, this implies BX×G ⊂ Σ(P ,Q) (up to sets of measure zero).

For each g ∈ Γ, recall that Pg is the partition of X obtained by
pulling βg(Q) back under the cocycle σ(g, ·). Because σ(g, ·) is BX-
measurable, Pg ×Q is contained in Σ(P ,Q). By Lemma 6.3,

(α×σ β)g(Pg ×Q) = (αgPg)× (βgQ) ⊂ Σ(P ,Q)

(up to sets of measure zero). BecauseX×βgQ coarsens (αgPg)×(βgQ),
it follows that X × βgQ ⊂ Σ(P ,Q) for every g ∈ Γ. By definition of
Σ(Q), this implies X × Σ(Q) ⊂ Σ(P ,Q). Because X × Σ(Q) and
BX ×G generate BX ×Σ(Q) (up to sets of measure zero), this implies
Σ(P ,Q) ⊃ BX × Σ(Q).

To show the opposite inclusion, it suffices to show that (α×σβg)(P×
Q) ∈ BX × Σ(Q) for any g ∈ Γ. By the previous lemma,

(α×σβg)(P×Q) ≤ (α×σβ)g((Pg∨P)×Q) = (αg(Pg∨P))×(βgQ) ∈ BX×Σ(Q).

This shows the opposite inclusion.
[Proof of Theorem 3.3] By Theorem 4.3

fν×µ(α×σ β) = fν(α) + fν×µ(α×σ β|BX).

Let P be a finite-entropy generating partition for α and Q be a special
generating partition for β. By the previous lemma, P×Q is generating
for α×σ β. So Theorem 4.2 implies

fν×µ(α×σ β|BX) = inf
W⊂Γ

F ∗ν×µ(α×σ β, (P ×Q)W |BX)

where
(P ×Q)W =

∨
w∈W

(α×σ β)wP ×Q

13



and we take the infimum over all finite sets W ⊂ Γ. More generally, if
L is any partition of X × G, we let LW =

∨
w∈W (α ×σ β)wL. If L is

a partition of X, we let LW =
∨
w∈W αwL and if L is a partition of G

then we let LW =
∨
w∈W βwL.

For each g ∈ Γ, let Pg be the partition of X obtained by pulling
(βgQ) back under σ(g, ·). By Lemma 6.3, for any partition P ′ of X,

(α×σ β)g((Pg ∨ P ′)×Q) = (αg(Pg ∨ P ′))× (βgQ).

Let RW =
∨
g∈W Pg and RW

W =
∨
w∈W αwRW . By Lemma 6.3,

(P ∨RW )×Q)W =
∨
w∈W

(α×σ β)w((P ∨RW )×Q)

=
∨
w∈W

αw(P ∨RW )× βw(Q)

= (P ∨RW )W ×QW .
Because we are conditioning on BX and (RW ×G)W = (RW

W ×G),

F ∗ν×µ(α×σ β, (P ×Q)W |BX) = F ∗ν×µ(α×σ β, (P ×Q)W ∨RW
W ×G|BX)

= F ∗ν×µ(α×σ β, ((P ∨RW )×Q)W |BX)

= F ∗ν×µ(α×σ β, ((P ∨RW )W ×QW |BX).

By Lemma 6.2,

F ∗ν×µ(α×σ β, ((P ∨RW )W ×QW |BX) = F ∗µ(β,QW ).

So we now have

fν×µ(α×σ β) = fν(α) + fν×µ(α×σ β|BX)

= fν(α) + inf
W⊂Γ

F ∗ν×µ(α×σ β, (P ×Q)W |BX)

= fν(α) + inf
W⊂Γ

F ∗µ(β,QW )

= fν(α) + fµ(β).

The last equality holds by Theorem 2.2. �

7. Examples

It is convenient to introduce the following notation. Let Γ = 〈s1, . . . , sr〉
be the rank r free group. If K is a set then KΓ is the set of all func-
tions x : Γ→ K. The shift-action of Γ on KΓ is defined as follows. For
g, f ∈ Γ and x ∈ KΓ, gx ∈ KΓ is the map (gx)(f) = x(g−1f).

If Γ acts on a compact groupG and the action is understood, we write
f(Γ y G) to mean the f -invariant of the action of G with respect to
Haar measure.

14



7.1. The Ornstein-Weiss Example. This example comes from the
appendix to [OW87]. To explain its relevance, let us recall some basic
facts from classical entropy theory. Let ∆ be an amenable group, K a
finite set and u the uniform probability measure on K. It is straight-
forward to compute the entropy of the shift action of ∆ on (K∆, u∆):
it is log |K|. Because entropy never increases under a factor map, it
follows that if |K| > 1 then the action ∆ y (K∆, u∆) cannot factor
onto the action ∆ y ((K ×K)∆, (u× u)∆).

By contrast, Ornstein and Weiss showed that if Γ is the rank 2 free
group then Γ y (Z/2Z)Γ factors onto Γ y (Z/2Z × Z/2Z)Γ. This
convinced many researchers that there could not be an entropy theory
for free groups.

The factor map is defined by

φ : (Z/2Z)Γ → (Z/2Z× Z/2Z)Γ,

φ(x)(g) = (x(g) + x(gs1), x(g) + x(gs2)),∀x ∈ (Z/2Z)Γ, g ∈ Γ.

We consider (Z/2Z)Γ and (Z/2Z × Z/2Z)Γ as compact groups under
pointwise addition. It is a straightforward exercise to show that φ is
a surjective homomorphism which is equivariant with respect to the
shift-actions of Γ and therefore, defines a factor map. Moreover, the
kernel of φ consists of two elements, x0, x1, where xi : Γ → Z/2Z is
defined by xi(g) = i. Let N = {x0, x1}. Because N is finite, it clearly
satisfies the conditions of Theorem 2.3. So that result implies

f(Γ y (Z/2Z)Γ) = f(Γ y N) + f(Γ y (Z/2Z× Z/2Z)Γ).

In [Bo10a], it is shown that f(Γ y (Z/2Z)Γ) = log(2) and f(Γ y
(Z/2Z × Z/2Z)Γ) = log(4) as expected. Therefore, f(Γ y N) =
− log(2). This is easy to verify by direct computation.

7.2. A generalization. The example above can be generalized with
the help of [MRV11, proof of Theorem B] which states the following:
if Γ = 〈s1, . . . , sr〉 is any finite rank free group, K is any compact
second countable group, KΓ is the group of all functions x : Γ → K
under pointwise multiplication and K is identified with the constant
functions in KΓ then the action Γ y KΓ/K is measurably conjugate
to Γ y (Kr)Γ (where the measures involved are the Haar measures and
the actions are the shift actions).

When K is finite, we can apply Theorem 2.3 to obtain

f(Γ y KΓ) = f(Γ y K) + f(Γ y (Kr)Γ).

This is easy to check: f(Γ y KΓ) = log(|K|) and f(Γ y (Kr)Γ) =
r log(|K|) by [Bo10a]. By a straightforward computation, f(Γ y K) =
−(r − 1) log |K|.
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7.3. An algebraic example. As above, let Γ = 〈s1, . . . , sr〉 be a finite
rank free group. Let p > 1 be a prime number and h ∈ (Z/pZ)Γ. We
consider h as a function from Γ to Z such that h(s) = 0 for all but
finitely many s ∈ Γ. Define the convolution operator φh : (Z/pZ)Γ →
(Z/pZ)Γ by

φh(x)(g) =
∑
s∈Γ

x(gs)h(s−1), ∀g ∈ Γ.

This is a Γ-equivariant homomorphism. Let Xh,p denote the kernel
of φh. Let X∗h,p < Xh,p be the subgroup consisting of all elements
x ∈ Xh,p with x(e) = 0. This is a finite-index normal clopen subgroup
and {gX∗h,p : g ∈ Xh,p} is a generating partition for the shift-action of
Γ. Therefore, we can apply Theorem 2.3 to obtain

f(Γ y (Z/pZ)Γ) = f(Γ y Xh,p) + f(Γ y φh((Z/pZ)Γ)).

Theorem 7.1. φh is onto if h is nonzero.

Therefore,

f(Γ y φh((Z/pZ)Γ)) = f(Γ y (Z/pZ)Γ).

Thus f(Γ y Xh,p) = 0.
To prove Theorem 7.1, we need a little preparation.

Definition 7.2. Let Cr be the Cayley graph of Γ. It has vertex set Γ
and edges {g, gsi} for all g ∈ Γ and 1 ≤ i ≤ r. Given a set F ⊂ Γ, the
induced subgraph of F is the subgraph Cr(F ) ⊂ Cr which has vertex
set F and contains every edge of Cr which has both endpoints in F . A
subset F ⊂ Γ is said to be connected if its induced subgraph in Cr is
connected. The convex hull of a set F ⊂ Γ is the smallest connected
set F ′ ⊂ Γ with F ⊂ F ′. An extreme point of F is an element f ∈ F
that has degree 1 in Cr(F ). We let Ex(F ) denote the set of extreme
points of F . Note that if F ′ is the convex hull of F then Ex(F ′) ⊂ F .

Lemma 7.3. Let F = {g ∈ Γ : h(g−1) 6= pZ}. Let F be the convex
hull of F . Suppose there exists an ordering γ0, γ1, γ2, . . . of Γ such that
for every n ≥ 1 {γ0, . . . , γn} is connected and

γnF * ∪n−1
i=0 γiF .

Then φh is onto.

Proof. By compactness of (Z/pZ)Γ and continuity of φh, it suffices to
show that for every y ∈ (Z/pZ)Γ and every n ≥ 0, there exists an
x ∈ (Z/pZ)Γ such that φh(x)(γi) = y(γi) for every 0 ≤ i ≤ n. We will
prove this statement by induction on n. It is clearly true for n = 0.
So suppose there is an n ≥ 0 for which the statement is true. Fix
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y ∈ (Z/pZ)Γ and let x ∈ (Z/pZ)Γ be such that φh(x)(γi) = y(γi) for
every 0 ≤ i ≤ n.

By hypothesis, γn+1F * ∪ni=0γnF . Because ∪ni=0γnF and γn+1F are
connected and the convex hull of the exreme points set of a connected
set is the connected set itself , there must be an extremal point f ∈
Ex(F ) such that γn+1f /∈ ∪ni=0γnF . However, Ex(F ) ⊂ F . So f ∈ F .
By definition, this means that h(f−1) 6= pZ. Because p is prime, we
may therefore define an element m ∈ Z/pZ by

m = h(f−1)−1

y(γn+1)−
∑

g∈Γ\{f}

x(γn+1g)h(g−1)

 .

Define x′ ∈ (Z/pZ)Γ by x′(g) = x(g) if g 6= γn+1f and x′(γn+1f) = m.
Because γn+1f /∈ ∪ni=0γnF , it follows that φh(x′)(γi) = φh(x)(γi) for all
0 ≤ i ≤ n. Also a straightforward computation shows φh(x′)(γn+1) =
y(γn+1). So φh(x′)(γi) = y(γi) for all 0 ≤ i ≤ n + 1. This completes
the inductive step and the claim. �

Definition 7.4. Let S = {s1, . . . , sr}. For g ∈ Γ, let |g| be the smallest
number n ≥ 0 such that there exist elements t1, . . . , tn ∈ S ∪ S−1 with
g = t1 · · · tn. We also let d(g1, g2) = |g−1

1 g2| for any g1, g2 ∈ Γ. For
g ∈ Γ and n ≥ 0, let B(g, n) = {k ∈ Γ : d(k, g) ≤ n} be the ball of
radius n centered at g.

Let K ⊂ Γ be a finite set. The radius of K is the smallest number
r ≥ 0 such that there exists a v ∈ Γ such that B(v, r) ⊃ K. An element
v ∈ Γ is called a center of K if B(v, r) ⊃ K where r is the radius of K.
For any v, w ∈ Γ, we let [v, w] ⊂ Γ be the set of all g ∈ Γ such that the
shortest path from v to w in the Cayley graph Cr contains g.

Lemma 7.5. Let K be a connected finite set with radius r ≥ 1. Suppose
the identity element e is a center of K. Then there exist elements
v, w ∈ K such that [e, v] ∩ [e, w] = {e}, |v| = r and |w| ∈ {r − 1, r}.

Proof. Because K has radius r and center e, there is an element v with
|v| = r. To obtain a contradiction, suppose that there is no w ∈ K with
|w| ∈ {r−1, r} and [e, v]∩ [e, w] = {e}. Let v1 ∈ S∪S−1 be the unique
element with |v−1

1 v| = r − 1. We claim that B(v1, r − 1) ⊃ K. To see
this, let w ∈ K. If |w| ≤ r − 2 then w ∈ B(e, r − 2) ⊂ B(v1, r − 1). If
|w| > r−2 then, because K has center e and radius r, |w| ∈ {r−1, r}.
By assumption, this implies [e, v]∩ [e, w] 6= {e}. So let y ∈ [e, v]∩ [e, w]
with y 6= e. Then [e, y] ⊂ [e, v]. This implies that v1 ∈ [e, y]. In
particular, v1 ∈ [e, v] ∩ [e, w], so v1 ∈ [e, w]. Because |w| ≤ r, this
implies d(v1, w) ≤ r−1 as claimed. So we have shown that in all cases,
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if w ∈ K then w ∈ B(v1, r − 1). This shows that the radius of K is at
most r − 1, a contradiction. This contradiction proves the lemma. �

Lemma 7.6. Let K be a connected finite set with radius r ≥ 1. Suppose
the identity element e is a center of K. Suppose g1, . . . , gn ∈ Γ \ {e}
are elements with

K ⊂ ∪ni=1gnK.

Then e is contained in the convex hull of {g1, . . . , gn}.

Proof. Let v, w ∈ K be elements such that [e, v] ∩ [e, w] = {e}, |v| = r
and |w| ∈ {r−1, r}. Let gi, gj ∈ {g1, . . . , gn} be such that v ∈ giK and
w ∈ gjK. Let x, y ∈ K be such that v = gix and w = gjy.

Let v1, v2, x1, x2 ∈ Γ be such that v = v1v2, |v| = |v1|+ |v2|, x2 = v2,
x = x1x2, |x| = |x1|+ |x2| and |v2| = |x2| is as large as possible. Thus
gi = vx−1 = v1x

−1
1 and |vx−1| = |v1| + |x1|. Because r is the radius

of K, e is a center and x ∈ K we have |x| ≤ r. Also, we cannot have
v = x (since this would imply gi = vx−1 = e, a contradiction). So we
must have |v1| ≥ 1. Thus [e, v] ∩ [e, gi] 6= {e}.

Let w1, w2, y1, y2 ∈ Γ be such that w = w1w2, |w| = |w1| + |w2|,
y2 = w2, y = y1y2, |y| = |y1| + |y2| and |w2| = |y2| is as large as
possible. Thus gj = wy−1 = w1y

−1
1 and |wy−1| = |w1| + |y1|. Because

r is the radius of K, e is a center and y ∈ K we have |y| ≤ r.
Case 1. If |w| = r, then, as in the previous paragraph, we must

have [e, w] ∩ [e, gj] 6= {e}. Because [e, v] ∩ [e, w] = {e}, this implies
e ∈ [gi, gj] which implies the lemma.
Case 2. Suppose |w| = r−1 and |w1| ≥ 1. Thus [e, w]∩[e, gj] 6= {e}.

Because [e, v] ∩ [e, w] = {e}, this implies e ∈ [gi, gj] which implies the
lemma.
Case 3. Suppose |w| = r − 1 and |w1| = 0. Then w = w2, so
|w2| = r − 1. Because gj = wy−1 = w1y

−1
1 = y−1

1 6= e, we must y1 6= e.
Thus |y| = |y1| + |y2| = |y1| + |w2| = |y1| + r − 1. Because y ∈ K and
K has radius r and center e, we must have |y1| = 1 and |y| = r. If
[e, y]∩ [e, v] = {e} then, after replacing w with y we are in the situation
of Case 1 (note y = gky

′ for some 1 ≤ k ≤ n and y′ ∈ K). So we may
assume [e, y] ∩ [e, v] 6= {e} which implies y1 ∈ [e, v]. Because gj = y−1

1 ,
and [e, v] ∩ [e, gi] 6= {e}, we have [e, gi] ∩ [e, gj] = {e} which implies
e ∈ [gi, gj] which implies the lemma.

[Proof of Theorem 7.1] Let F = {g ∈ Γ : h(g−1) 6= pZ}. Let F be
the convex hull of F . For any g ∈ Γ, φh is onto if and only if φgh is
onto. So after replacing h with gh for some g ∈ Γ, we may assume that
e is a center of F .
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Let g0, g1, . . . be an ordering of Γ such that for every n ≥ 0, {g0, . . . , gn}
is connected. We claim that for every n ≥ 1,

γnF * ∪n−1
i=0 γiF .

To obtain a contradiction, suppose that the claim is false for some
n ≥ 1. Then F ⊂ ∪n−1

i=0 γ
−1
n γiF , γ−1

n γi 6= e for any 0 ≤ i ≤ n − 1 and
because {γ0, . . . , γn−1} is connected, {γ−1

n γ0, . . . , γ
−1
n γn−1} is connected

which implies that e is not in the convex hull of {γ−1
n γ0, . . . , γ

−1
n γn−1}.

This contradicts the previous lemma. So we must have that for every
n ≥ 1,

γnF * ∪n−1
i=0 γiF .

The theorem now follows from Lemma 7.3. �

Appendix A. Erratum to [Bo10c]

[Bo10c, Lemma 9.3] is incorrect because the support of ν is not
contained in the image of φ in general. However, the proof of [Bo10c,
Lemma 9.3] remains correct when β = αn (see justification below).
This special case is the only case used to prove [Bo10c, Theorem 9.1]
and the Abramov-Rokhlin Addition Formula [Bo10c, Theorem 1.3]. So
those theorems hold as stated.

Proof. [Justification of a key step in the proof of Lemma 9.3] We now
justify the claim that the proof of [Bo10c, Lemma 9.3] remains correct
when β = αn. Recall that K is a finite set, G = 〈s1, . . . , sr〉 is a finitely
generated free group and n ≥ 0. Let B(e, n) ⊂ G denote the ball of
radius n centered at the identity element (with respect to the word
metric). Let L = KB(e,n). Let φ : KG → LG be the map

φ(x)(g)(f) = x(gf), x ∈ KG, g ∈ G, f ∈ B(e, n).

Let µ be a shift-invariant probability measure on KG and let ν be the
Markov measure on LG induced from φ∗µ. Then ν is supported on the
set Z ⊂ LG of all z : G → L with the property that, for any g ∈ G
and s ∈ S ∪ S−1 (where S = {s1, . . . , sr}), there exists a y ∈ KG

with φ(y)(g) = z(g) and φ(y)(gs) = z(gs). We claim that Z ⊂ φ(KG)
(which implies that the proof of [Bo10c, Lemma 9.3] remains correct
when β = αn).

To prove the claim, define ψ : Z → KG by ψ(z)(g) = z(g)(e). It
suffices to show that φψ is the identity map on Z. Because φ and ψ
are G-equivariant, it suffices to prove that φ(ψ(z))(e) = z(e) for any
z ∈ Z. Equivalently, it suffices to show that for every f ∈ B(e, n),
φ(ψ(z))(e)(f) = z(e)(f) which, by definition of φ, is equivalent to

19



ψ(z)(f) = z(e)(f). By definition of ψ, this is equivalent to z(f)(e) =
z(e)(f).

So let f ∈ B(e, n). Let us write f = t1 · · · tm where ti ∈ S ∪ S−1

and m is the word length of f . Let fi = t1 · · · ti for 1 ≤ i ≤ m. Also
let f0 = e the identity element. Let zi be the map from B(fi, n) (the
ball of radius n centered at fi) to K defined by zi(fig) = z(fi)(g) for
g ∈ B(e, n). By the definition of Z, we must have that zi and zi+1

agree on B(fi, n) ∩B(fi+1, n) for 0 ≤ i ≤ m− 1. Therefore, z0 and zm
agree on the set

⋂m
i=0B(fi, n). It is easy to see that f ∈

⋂m
i=0 B(fi, n).

Therefore, z0(f) = zm(f) which implies z(e)(f) = z(f)(e) as claimed.
�

The proof of [Bo10c, Proposition 12.1] relies on the incorrect [Bo10c,
Lemma 9.3]. Moreover, the statement is incorrect even when G = Z
because of the next result.

Theorem A.1. There exists an ergodic automorphism T ∈ Aut(X, µ)
(where (X,µ) is a standard probability space), a finite generating par-
tition α of X and an increasing sequence {Pn}∞n=1 of finite partitions
such that

∨∞
n=1Pn is the partition into points and fµ(α) = hµ(T ) 6=

lim infn→∞Hµ(Pn|T−1Pn) = lim infn→∞ Fµ(Pn).

To prove this, we need the next few lemmas.

Lemma A.2. Let x > 0. Then for every ε > 0 there exists a δ > 0
such that if x1, . . . , xn > 0 are such that

∑n
i=1 xi = x and xi < δ ∀i

then
n∑
i=1

x2
i ≤ ε and

n∑
i=2

xixi−1 ≤ ε.

Proof. Let δ < ε
x
. Notice

∑n
i=1 x

2
i ≤ maxi xi

∑n
i=1 xi < δx < ε

x
x = ε.

Similarly
∑n

i=2 xixi−1 ≤ maxi xi
∑n

i=2 xi < ε. �

Let [n] = {1, . . . , n}.

Lemma A.3. Let (X,µ) be a standard probability space and B ⊂ X
a set of positive measure. Let ε > 0. For any measurable partition
{B1, . . . , Bn} of B and function φ : [n]→ [2], for i, j ∈ [2], let

Cij(φ) = µ(∪{Br : φ(r − 1) = j, φ(r) = i}).
Then there exists a δ > 0 such that if {B1, . . . , Bn} is any measurable
partition of B with µ(Bi) ≤ δ for every i and

Yij := {φ : [n]→ [2] : |Cij(φ)− (1/4)µ(B)| < ε}
then 2−n|Yij| > 1− ε (for every i, j ∈ [2]).
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Proof. Fix i, j ∈ [2]. Let φ : [n]→ [2] be chosen uniformly at random.
To prove the lemma, by Chebyshev’s inequality, it suffices to show that,
as δ ↘ 0, the expected value of Cij(φ) tends to 1/4 and the variance
of Cij(φ) tends to 0. Let Zk = 1 if φ(k) = i and Zk = 0 otherwise.
Case 1. Let us assume i = j. Then

Cij(φ) =
n∑
k=2

Zk−1Zkµ(Bk).

The expected value of Zk−1Zk is 1/4. So, the expected value of Cij(φ)
is (1/4)(µ(B)−µ(B1)). This implies that, as δ ↘ 0, the expected value
of Cij(φ) tends to 1/4.

The variance of Cij(φ) is

Var(Cij(φ)) =
n∑

k=2

µ(Bk)2Var(Zk−1Zk)+2
∑
j<k

µ(Bj)µ(Bk)Cov(Zj−1Zj,Zk−1Zk).

Note that

Var(Zk−1Zk) = E[Z2
k−1Z2

k]− [EZk−1Zk]2 = (1/4)− (1/16) = (3/16).

If j < k − 1 then Zj−1Zj and Zk−1Zk are indepedent which implies
Cov(Zj−1Zj,Zk−1Zk) = 0. On the other hand, if j = k − 1 then

Cov(Zj−1Zj,Zk−1Zk) = E[Zk−2Z2
k−1Zk]−E[Zk−2Zk−1]E[Zk−1Zk] = (1/8)−(1/16) = (1/16).

Therefore,

Var(Cij(φ)) ≤ (3/16)
n∑

k=1

µ(Bi)
2 + (2/16)

n∑
k=2

µ(Bk−1)µ(Bk).

By the previous lemma, Var(Cij(φ)) tends to zero as δ ↘ 0. This
finishes Case 1.
Case 2. Let us assume i 6= j. Then

Cij(φ) =
n∑
k=2

(1− Zk−1)Zkµ(Bk).

The expected value of (1 − Zk−1)Zk is 1/4. So, the expected value
of Cij(φ) is (1/4)(µ(B) − µ(B1)). This implies that, as δ ↘ 0, the
expected value of Cij(φ) tends to 1/4.

The variance of Cij(φ) is

Var(Cij(φ)) =
n∑

k=2

µ(Bk)2Var((1−Zk−1)Zk)+2
∑
j<k

µ(Bj)µ(Bk)Cov((1−Zj−1)Zj, (1−Zk−1)Zk).

Note that

Var((1−Zk−1)Zk) = E[(1−Zk−1)2Z2
k]−[E(1−Zk−1)Zk]2 = (1/4)−(1/16) = (3/16).
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If j < k−1 then (1−Zj−1)Zj and (1−Zk−1)Zk are independent which
implies Cov((1 − Zj−1)Zj, (1 − Zk−1)Zk) = 0. On the other hand, if
j = k − 1 then

Cov((1− Zj−1)Zj, (1− Zk−1)Zk)

= E[(1− Zk−2)Zk−1(1− Zk−1)Zk]− E[(1− Zk−2)Zk−1]E[(1− Zk−1)Zk]

= 0− (1/16).

Therefore,

Var(Cij(φ)) ≤ (3/16)
n∑

k=1

µ(Bi)
2.

By the previous lemma, Var(Cij(φ)) tends to zero as δ ↘ 0. This
finishes Case 2. �

Lemma A.4. Let T ∈ Aut(X, µ) be a free ergodic automorphism of a
standard probability space. Let P be a finite measurable partition of X.
Let ε > 0. Then there exists a finite measurable partition Q ≥ P such
that Hµ(Q|T−1Q) ≥ Hµ(P|T−1P) + log(2)− ε.

Proof. Let δ > 0 and N > 0 be an integer. By the Rokhlin Lemma,
there exists a measurable setB ⊂ X and an n ≥ N such thatB, TB, . . . , T n−1B
are pairwise disjoint and

µ

(
n−1⋃
i=0

T iB

)
> 1− δ.

Let φ : [n] → [2] be chosen at random and for i ∈ [2], let Ci =
∪j∈φ−1(i)Bj, and Q = P ∨ {C1, C2, X \ (C1 ∪ C2)}. Let ε′ > 0. By
the previous lemma, it follows that, by choosing δ small enough and N
large enough, with high probability, for every P, P ′ ∈ P and i, j ∈ [2],∣∣∣µ(P ∩ T−1P ′ ∩ Ci ∩ T−1Cj)− (1/4)µ(P ∩ T−1P ′)

∣∣∣ < ε′.

By choosing ε′ to be sufficiently small, we see that there exists such a
φ so that Hµ(Q|T−1Q) ≥ Hµ(P|T−1P) + log(2)− ε as required. �

Proof of Theorem A.1. Let (X,µ) be a standard probability space, T ∈
Aut(X, µ) a free and ergodic automorphism such that there exists a fi-
nite generating partition for T . Let {Pn}∞n=1 be a sequence of increasing
finite partitions such that

∨∞
n=1Pn is the partition into points. Using

the previous lemma and an inductive argument, we see that there exists
a sequence {Qn}∞n=1 of increasing finite partitions such that Pn ≤ Qn
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and Hµ(Qn|T−1Qn) ≥ Hµ(Pn|T−1Pn)+log(2)− 1
n
. Therefore,

∨∞
n=1Qn

is the partition into points and

lim inf
n→∞

Hµ(Qn|T−1Qn) ≥ log(2) + lim inf
n→∞

Hµ(Pn|T−1Pn).

So either {Pn}∞n=1 or {Qn}∞n=1 satisfies the theorem.
�

The proof of the addition theorem, [Bo10c, Theorem 13.1], relies
on the incorrect [Bo10c, Proposition 12.1] (however, nothing else in
[Bo10c] relies on this proposition). We conjecture that the statement
of [Bo10c, Theorem 13.1] is correct. The proof also relies on [Bo10c,
Theorem 13.2], a result which is assumed to follow from minor modifi-
cations of [Th71, Theorem 2.3]. It now appears that [Bo10c, Theorem
13.2] does not so follow and we do not know whether it remains true.
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