Fractal structure of the block-complexity function
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Abstract
We demonstrate that the block-complexity function for words from 3-letter and 4-letter alphabets
exhibits a fractal structure. The resulting fractals have dimensions approximately equal to 1.892
and 1.953 respectively. We visualize approximations of the corresponding fractals using sequences
of length 6 and 5 respectively. We note that a similar fractal structure has been established recently
for the block-complexity function for words from a 2-letter alphabet, using a different terminology.

In this case, the resulting fractal has dimension approximately equal to 1.584.
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I. INTRODUCTION

In the modern theory of dynamical systems, there is a standard arsenal of concepts and
techniques for studying the complexity of arbitrary symbolic sequences with elements from
a finite alphabet.

In the recent paper [4], the authors demonstrate how a seemingly simple combinatorial
construction leads to a fractal reminiscent of the Sierpinski Gasket. They call their fractal
K2 and they show that its dimension is equal to the dimension of the Sierpinski Gasket,
namely Ez Their combinatorial construction employs binary strings of length m, arranged
in 2 x m matrices and for each pair of sequences A and B they define the complementary
pairing number as being equal to p(A,B) = 4 — p(A, B), where p(A, B) is the pairing
number associated to A and B. Note that the pairing number p(A, B) is the number of
distinct columns in the 2 x m with A as its first row and B as its second row. Since p(A, B)
can take on the values 0, 1,2, 3, the authors use a color-coding of the complementary pairing
number to draw their fractal K2, in fact they use sequences of length m = 9, which already
give a quite accurate approximation of the limit. The authors generalize their construction

to higher dimensions, by considering K binary strings and they calculate the dimensions of
In(2% — 1)

n2
Upon examining more closely the combinatorial construction leading to the K2 fractal,

these higher dimensional fractals to be equal to

one sees that this construction essentially embodies the definition of the block-complexity

function, see [1] and [2] for instance.

II. CONSTRUCTION OF THE K3 AND K4 FRACTALS

In this paper we generalize the construction of [4] in another direction, namely we use
ternary and quaternary sequences, instead of binary sequences. For simplicity, we use the
3-letter alphabet {—1,0,+1} and the 4-letter alphabet {—1,0,+1,+2} . Since there are now
3% = 9 and 4? = 16 possible columns respectively, the ternary and quaternary complementary

pairing numbers are now defined as
]53(147 B) =9- p3(A7 B) and ﬁ4(A7 B) =16 — p4(A7 B)

where p3(A, B) and py(A, B) are the ternary and quaternary pairing numbers associated

to the sequences A and B (which are defined according to the prototypical binary pairing
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numbers in [4]). Note that the ternary complementary pairing number takes on the nine
values 0, . .., 8 and the quaternary complementary pairing number takes on the sixteen values
0,...,15.

Following [4] we call K3 and K4 the sets that arise via the ternary and quaternary com-
plementary pairing numbers, in the same way that K2 arises via the binary complementary
pairing numbers.

We will now use the box-counting method to compute the fractal dimension of the freedom
regions of the fractals K3 and K4. These computations use the Stirling numbers of the
second kind, see [3], for instance.

The dimension D3 of the freedom region of the K3 fractal is calculated via the Stirling

numbers of the second kind
91S(m,9) =9+9™ —98™ + 367" —846™ 4 126 5™ — 1264™ 4 84 3™ — 362™

and it is found to be equal to
32 —91S(m, 9 3In2
D3 = lim (m’ ) = -

m—00 32m In3

= 1.892789260.

The dimension D, of the freedom region of the K4 fractal is calculated via the Stirling

numbers of the second kind 16!5(m, 16) =
—16 + 16™ — 16 15™ + 120 14™ — 560 13™ + 1820 12™ — 4368 11™ + 8008 10™ — 11440 9™+

+128708™ — 11440 7™ + 8008 6™ — 4368 5™ + 18204™ — 560 3™ + 120 2™

and it is found to be equal to

42m — 161S(m,16) In3+1In5
D, = lim (m,16) _In3+In
oo 42m 21n2

= 1.953445298.

ITI. PICTURES OF K3 AND K4
1. K3

We produced a picture of K3 (see appendix) using ternary sequences of length m = 6, so
we had to compute 3% x 3% = 531,441 complementary pairing numbers. The distribution of

these ternary complementary pairing numbers for m = 6 is as follows:

value of p3(A, B) ‘0 12 3 4 5 6 7 8
# elements for m:6‘0 0 0 60,480 226,800 196,560 45,360 2,232 9
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We remark that since there are only six non-zero values in the above table, we only need six

colors to color-code the K3 fractal.

2. K4

We produced a picture of K4 (see appendix) using quaternary sequences of length m = 4,
so we had to compute 4* x 4* = 65,536 quaternary complementary pairing numbers. The

distribution of these complementary pairing numbers for m = 4 is as follows:

value of ps(A, B) ‘012345678910 11 12 13 14 15
# elements form:4‘0 000000000 O 0O 43,680 20,160 1,680 16

We remark that since there are only four non-zero values in the above table, we only need

four colors to color-code the K4 fractal.

IV. CONCLUSION

We demonstrate that the block-complexity function for words from 3-letter and 4-letter al-
phabets exhibits a fractal structure. We compute explicitly the associated fractal dimensions
and we furnish visual approximations of the corresponding fractals using sequences of length

6 and 4 respectively.
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