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Abstract

Let V be a vertex operator algebra satisfying certain reductivity and finiteness
conditions such that Cy, the category of V-modules, is a modular tensor cate-
gory. We study open-closed field algebras over V equipped with nondegenerate
invariant bilinear forms for both open and closed sectors. We show that they
give algebras over certain C-extension of the Swiss-cheese partial dioperad, and
we obtain Ishibashi states easily in such algebras. We formulate Cardy condition
algebraically in terms of the action of the modular transformation S : 7 +— —% on
the space of intertwining operators. We then derive a graphical representation of
S in the modular tensor category Cy . This result enables us to give a categorical
formulation of Cardy condition and modular invariant conformal full field algebra
over V ® V. Then we incorporate the modular invariance condition for genus-one
closed theory, Cardy condition and the axioms for open-closed field algebra over
V equipped with nondegenerate invariant bilinear forms into a tensor-categorical
notion called Cardy Cy|Cygy-algebra. We also give a categorical construction of
Cardy Cy|Cygy-algebra in Cardy case.
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0 Introduction

This work is the second half of a study on open-closed field algebra, the first half of which
appeared in [Ko2]. It is a part of an extension [H9][HKo1]|[Ko2] of the program, initiated
by I. Frenkel and largely developed by Huang [H1]-[H12], of constructing conformal
field theories using the theory of vertex operator algebra. Zhu’s work [Z] is also very
influencial in this development. In this work, we give only those references on which this
work is based. For other references which are related to this extended program, we refer
readers to [H9][HKo1]|[Ko2], in which one can also find more thorough introductions of
the program and related things.

In [Ko2|, we introduced the notion of open-closed field algebra over a vertex op-
erator algebra V' with central charge c. It describes a special class of tree-level open-
closed-string interactions, in which arbitrary number of in-coming open strings fuse with
arbitrary number of in-coming closed strings into a single out-going open string, in a
genus-zero open-closed conformal field theory with boundary conditions preserving the
chiral symmetry given by V. We studied some basic properties of such algebra, and
gave an operadic formulation and a tensor-categorical formulation of such aglebra when
V satisfies certain reductivity and finiteness conditions.

In this work, we study a few more basic open-closed-string interactions in an open-
closed conformal field theory (not necessary genus-zero). Our goal is to give an algebraic
formulation of open-closed conformal field theory with boundary conditions preserving
chiral symmetry V' as open-closed field algebra over V' equipped with bilinear forms and
satisfying finite number of compatibility conditions.

In [Kol], we studied the tree-level closed-string interactions in which arbitrary num-
ber in-coming closed strings fuse and split into arbitrary number out-going closed strings.
A few examples of such interactions, which are not studied in [Ko2], are shown in Figure
1 with the convention that in-coming (out-going) strings sit on the left (right). Such
interactions can be studied in terms of conformal full field algebra over V@V [HKo2)
equipped with a nondegenerate invariant bilinear form, where V* and V' are two vertex
operator algebras of central charge ¢ and ¢ respectively and satisfy certain finiteness
and reductivity conditions. In this work, we reformulate this type of interactions op-
eradically by a notion called sphere partial dioperad (see Section 1.1) denoted as K.
Then one result in [Kol] can be restated as follow: a conformal full field algebra over



D @

Figure 1: closed-string interactions studied in [Kol]
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Figure 2: open strings interactions

VI @ VE equipped with a nondegenerate invariant bilinear form canonically gives an

algebra over K ® KcR, which is a partial dioperad extension of K.

In this work, we also study the tree-level open-string interactions in which arbitrary
in-coming open strings fuse and split into arbitrary number of open strings. Some
examples of such interactions are shown in Figure 2 with the same convention as that of
Figure 1. Such interactions of open strings can be described operadically by the so-called
disk partial dioperad (see Section 1.1) denoted as D. We show that an open-string vertex
operator algebra of central charge ¢ [HKol] equipped with a nondegenerate invariant
bilinear form canonically gives an algebra over D¢, which is a partial dioperad extension
of D.

Combining above two results, we can study the genus-zero open-closed-string in-
teractions in which arbitrary number of in-coming open strings and closed strings fuse
and split into arbitrary number of open strings and closed strings. An example of such
interactions are depicted in Figure 3. Such interactions can be formulated operadically
by the so-called Swiss-cheese partial dioperad (see Section 2.2) denoted as S. When V
satisfies conditions in Theorem 0.1, we show that an open-closed field algebra over V'
equipped with nondegenerate invariant bilinear forms for both open and closed sectors
canonically gives an algebra over S¢, which is an extension of S. Moreover, we show
that Ishibashi states in the closed sector can be obtained from vacuum-like states in the
open sector.

Note that all surfaces of any genus with arbitrary number of boundary components,
interior punctures and boundary punctures can be obtained by sewing operations among
genus-zero surfaces with only one boundary component. The operadic structure of such
genus-zero surfaces, are completely captured in the notion of Swiss-cheese partial di-
operad. Therefore, an open-closed field algebra over V equipped with nondegenerate
invariant bilinear forms for both open and closed sectors contains all the data needed
for the construction of an open-closed conformal field theory of all genus. Other sur-
faces which are not included in the notion of Swiss-cheese partial dioperad only pro-
vide additional compatibility conditions. In the topological case, only two additional



T~

P

Figure 3: open strings interact with closed strings

Figure 4: Cardy condition

compatibility conditions are needed to ensure the consistency of a theory of all genus
[La][Mo1][MSeg][AN][LP]. One compatibility condition says that both of the open and
closed sectors are finite dimensional. The other condition is the famous “Cardy condi-
tion” [C1]-[C4][La][Mol][Mo2][MSeg|, which is due to two different decompositions of a
single surface as shown in Figure 4.

In open-closed conformal field theories, compatibility conditions are much more com-
plicated. Both of the open and closed sectors in any nontrivial open-closed conformal
field theories are infinite dimensional. We need require the convergence of all cor-
relation functions of all genus. This convergence condition is highly nontrivial. So
far the only known convergence results are in genus-zero [H8] and genus-one theories
[Z][DLM][Mil][Mi2][H10].

Let us recall an important Theorem by Huang [H11][H12].

Theorem 0.1. Let (V,Y,1,w) be a simple vertex operator algebra V' satisfying the fol-
lowing conditions:

1. Vi, =0 forn <0, Vigy = C1 and V' is isomorphic to V as V-module.

2. Every N-gradable weak V -module s completely reducible.
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3.V is Cy-cofinite.

Then the direct sum of all inequivalent irreducible V -modules has a natural structure of
intertwining operator algebra [H5]-[H8]. Moreover, the category of V-modules, denoted
as Cy, has a natural structure of vertex tensor category [HL1]-[HL4][H3] and modular
tensor category [T][BK2].

Assumption 0.2. In this work, we fix a vertex operator algebra V', which is assumed
to satisfy the conditions in Theorem 0.1 without further announcement.

For the intertwining operator algebra given in Theorem 0.1, Huang also proved in
[H8][H10] that the products of intertwining operators and g-traces of them have certain
nice convergence and analytic extension properties. These properties are sufficient for
the construction of genus-zero and genus-one correlation functions [HKo2|[HKo3]. Since
the modular tensor category Cy supports an action of mapping class groups of all genus,
it is reasonable to believe that the conditions on V' are also sufficient for the purpose of
constructing correlation functions of all genus.

Another compatibility condition is that all correlation functions on surfaces without
boundary (closed theory) must be invariant under the actions of mapping class groups.
Sonoda argued in [So| on a physical level of rigor that for the closed theory it is suffi-
cient to check the modular invariance of one-point correlation functions on torus. This
condition on torus was studied in [HKo3]. It was formulated algebraically as a modular
invariance condition on conformal full field algebra over V¥ @ VE. In [HKo3], we also
showed that the conformal full field algebra over V' ® V' obtained from the diagonal
construction [FFFS2|[FFRS|[HKo2|[Kol] are modular invariant.

For the whole open-closed theory, Lewellen argued in [Le| on a physical level of
rigor that the only remaining compatibility conditions one needs is the Cardy condition.
Cardy condition in open-closed conformal field theory is much more complicated than
that in topological theory and has never been fully written down by physicists. In Section
3.1, we derive a version of Cardy condition for an open-closed field algebra over V' directly
from the axioms of open-closed conformal field theory. Using results in [H10][H11], we
then show how the Cardy condition is related to the modular transformation S : 7 — —%
of a g-trace of a product of intertwining operators. This relation gives us a simple
formulation of Cardy condition in the framework of intertwining operator algebra (see
Section 3.2).

Remark 0.3. There are still more compatibility conditions which were not discussed in
[Sol[Le]. One also need to proved certain algebraic version of uniformization theorems
(see [H1][H2] [H4] for the genus-zero case). Such results for genus large than 0 are still
not available. But it seems that no additional assumption on V' is needed. Such results
should follows automatically from the properties of Virasoro algebra and intertwining
operators. The uniformization and convergence problems are not pursued in this work.

In order to construct open-closed field algebra over V satisfying the genus-one mod-
ular invariance condition and Cardy condition, we need to obtain a tensor-categorical
formulation of these conditions. This requires us to know the categorical representa-
tion of the modular transformation S. Although the action of SL(2,Z) in a modular



tensor category is explicitly known [MSei2][V][Ly][Ki][BK2], its relation to the modu-
lar transformation properties of chiral genus-one correlation functions is not completely
clear. This relation was first suggested by I. Frenkel and studied by Moore and Seiberg
in [MSei2] but only on a physical level of rigor. Using the tensor category theory of
vertex operator algebra developed by Huang and Lepowsky [HL1]-[HL4][H3], Huang’s
recent results on modular tensor category [H11][H12] and results in [HKo3], we derive a
graphical representation of S in Cy,. This result enables us to give a categorical formu-
lation of Cardy condition and that of modular invariant conformal full field algebra over
V ® V [HKo3]. We incorporate them with the categorical formulation of the axioms of
open-closed field algebra over V' equipped with nondegenerate invariant bilinear forms
into a tensor-categorical notion called Cardy Cy|Cygy-algebra. As we discussed in pre-
vious paragraphs, it is reasonable to believe that the axioms of Cardy Cy |Cy gy -algebra
is sufficient to supply an open-closed conformal field theory of all genus. However, con-
structing the high-genus theories is still a hard open problem which is not studied in
this work. In the end, we give a categorical construction of Cardy Cy|Cygy-algebra.
This construction is called Cardy case in physics literature (see for example [FFRS]).

The layout of this work is as follow: in Section 1, we introduce the notion of sphere
partial dioperad and disk partial dioperad and study algebras over them; in Section 2,
we introduce the notions of Swiss-cheese partial dioperad S and its C-extension S¢, and
show that an open-closed conformal field algebra over V' equipped with nondegenerate
invariant bilinear forms canonically gives an algebra over S¢, and study Ishibashi states
in such algebras; in Section 3, we give two algebraic formulations of Cardy condition;
in Section 4, we derive a graphic representation of the modular transformation S; in
Section 5, we give the categorical formulations of nondegenerate invariant bilinear forms,
modular invariant conformal full field algebra over V ® V and Cardy condition. Then
we introduce the notion of Cardy Cy|Cygy-algebra. In the end, we give a categorical
construction of Cardy Cy|Cygy-algebra.

Convention of notations: N, Z,Z,,R, R, C denote the set of natural numbers, inte-
gers, positive integers, real numbers, positive real numbers, complex numbers, respec-
tively. Let H = {z € C|Imz > 0} and H = {z € C|Imz < 0}. Let R, C and H be the one
point compactification of real line, complex plane and up-half plane respectively. Let
R, and C* be the multiplication groups of positive real and nonzero complex numbers
respectively. The ground field is always chosen to be C.

Throughout this work, we choose a branch cut for logarithm as follow:

log z = log | 2| 4+ iArg 2, 0 <Argz < 2m. (0.1)
We define power functions of two different types of complex variables as follow:

2% = eslos? z° = es@, Vs € R. (0.2)

Acknowledgment The results in Section 2.4 and 3.1 are included in author’s thesis.
I want to thank my advisor Yi-Zhi Huang for introducing me to this interesting field
and for his constant support and many important suggestions for improvement. I thank
C. Schweigert for telling me the meaning of boundary states from a physical point of
view. I also want to thank I. Frenkel, A. Kirillov, Jr., J. Fuchs and C. Schweigert for
some inspiring conversations on the subject of Section 4.2.
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1 Partial dioperads

In Section 1.1, we recall the definition of (partial) dioperad and algebra over it, and
introduce sphere partial dioperad K, disk partial dioperad ID and their extensions K g

f(C_R, D¢ as examples. In Section 1.2, we discuss an algebra over K< @ K from a
conformal full field algebra over VE® VE. In Section 1.3, we disucuss an algebra over
D¢ from an open-string vertex operator algebra.

1.1 Partial dioperads

Let us first recall the definition of dioperad given by Gan [G]. Let S,, be the automor-
phism group of the set {1,...,n} forn € Z,. Let m = my + --- 4+ m,, be an ordered
partition and o € S,,. The block permutation oy, . m,) € S is the permutation which
permutes n intervals of lengths my, ..., m,, in the same way as o permutes 1,...,n. Let
0; € Sy, 0 =1,..., k. We view the element (oy,...,0%) € Sy, X - -+ X Sy, naturally as
an element in S, by the canonical embedding S,,, x --- x S, — Sy,. For any 0 € 5,
and 1 <i <n, we defineamapi:{l,....n—1} = {1,...,n} by i(j) =j if j < i and
i(j) = j + 1if j >4 and an element i(0) € S,_; by

i(0)(j) =i e s 00 ()()).
Definition 1.1. A dioperad consists of a family of sets {P(m,n)}., neny With an action
of S,, x S, on P(m,n) for each pair of m,n € Z,, a distinguished element Ip» € P(1,1)
and substitution maps
P(m,n) x P(ki,ly) x -+ X Pkn, 1) Pm—n+ki-+kyli+---+1)
(P,Pl,,Pn> = V(i zn)(P7P177Pn) (11)

for m,n,ly,..., 0, € NJky,... .k, € Zy and 1 < 4; < kj,5 = 1,...,n, satisfying the
following axioms:

Y(iq,--., in)
s

.....

1. Unit properties: for P € P(m,n),

(a) left unit property. vu)(Ip; P) = P for 1 <i <'m,

(b) right unit property: va,. .1(P;Ip,...,Ip) = P.

.....

2. Associativity: for P € P(m,n), Q; € P(ki,l;),i = 1,...,n, R; € P(s;,t;),j =
1,....l=0L+---+1,, we have

fY(th ..... ql)(fy(pl ,,,,, pn)(P7 Qlu"'in);R17"'7Rl) :/7(1?1 ,,,,, pn)(P7 P17"'7Pn) (12)

3. Permutation property. For P € P(m,n), Q; € P(ki,l;),i = 1,...,n, (o,7) €
Sy X Sn, (O’Z-,TZ') S Skl X Slz.,i =1,...,n,

I in)((UaT)(P);Q1>"'aQn)

= ((lda %1(0-1)7 s 7'271(0-71))’ (7_17 cee aTn))f}/(afl(il) o',;l(in))(P; Qb ey Qn)

-----



We denote such dioperad as (P, 7p, Ip) or simply P.

Remark 1.2. We define compositions io; as follow:

P Oj Q = 7(1,...,1,]’,1,...1) (P7 ]’Pv LRI ]7)7 Qv IP, ey IP)

It is easy to see that (. ., can be reobtained from io;. In [G], the definition of
dioperad is given in terms of io; instead of v, . ;.)-

Definition 1.3. A partial dioperad has a similar definition as that of dioperad except
the map v, .5, or :0; is only partially defined and the same associativity hold whenever
both sides of (1.2) exist. A (partial) nonassociative dioperad consists of the same data
as those of (partial) dioperad satisfying all the axioms of (partial) dioperad except the
associativity.

The notion of homomorphism and isomorphism of (partial pseudo-) dioperad are
naturally defined.

Remark 1.4. In the case of partial dioperad, the definition using ... 4,) or io; may
have subtle differences in the domains on which 7y, .. 4,) or o, is defined (see appendix
C in [H3] for more details). These differences have no effect on those algebras over
partial dioperads considered in this work. So we will simply ignore these differences.

Remark 1.5. Notice that a (partial nonassociative) dioperad {P(m, n)},, nen naturally
contains a (partial nonassociative) operad {P(1,n)},en as a substructure.

Definition 1.6. A subset G of P(1,1) is called a rescaling group of P if the following
conditions are satisfied:

1. For any g,91,...,9, € G,Q € P(m,n), v;)(9; Q) and vya,. 1)(Q; 91, .,9s) are
always well-defined for 1 <7 < m.

2. Ip € G and G together with the identity element Ip and multiplication map
Yy : G x G — G is a group.

Definition 1.7. A G-rescalable partial dioperad is partial dioperad P such that for any
P € P(m,n), Q; € P(ki,l;),i = 1,...,n there exist g; € G,i = 1,...,n such that
Virin) (P5 ¥ (915 Q1) - -+ V(i) (9n; @n)) 15 well-defined.

The first example of partial dioperad in which we are interested in this work comes
from K = {K(n_,n4)}n_n en [Ko2], a natural extension of sphere partial operad K
[H4]. More precisely, K(n_,n.) is the set of the conformal equivalent classes of sphere
with n_ (n,) ordered negatively (positively) oriented punctures and local coordinate
map around each puncture. In particular, K(0,0) is an one-element set consisting of the
conformal equivalent class of a sphere with no additional structure. We simply denote
this element as C. We use

Q - ( (Z_l; a’((]_l)a A(_l))a cey (Z—n,;af((]_ni)a A(_n*)) |
(21505, AV) L (20,5 af™ ATD) ), (1.3)



where z; € @,a(()i) e C,AY eC>®fori=—n_,...,—1,1,. ..My, to denote a sphere

C with positively (negatively) oriented punctures at z; € C for i = 1,...,n, (i =
—1,...,—n_), and with local coordinate map f; around each punctures z; given by:
o (i) i d .
filw) = XA W (gD Yy if z; € C, (1.4)

(T3 AL (0

al )iy if 2 = 0. (1.5)

We introduce a useful notation @) defined as follow:

Q = ((F;a§ Y, ACD), L (5, jal ) A
<zl;aé”,m> (B 0l AT g, (1.6)

where the “overline” represents complex conjugations.
We denote the set of all such @ as Tg(n_,ny). Let Tx := {Tx(n—,n4)}n_n, en.
There is an action of SL(2,C) on Tx(n_,n) as Mobius transformations. It is clear that

K(n_,n.) = Teln_,n.)/SL(2,C). (1.7)
We denote the quotient map 7x — K as mx. The identity Ix € K(1,1) is given by
Ix = mi( (00,1,0)[(0,1,0)) (1.8)

where 0 = (0,0,...) € [[.2, C. The composition :o; is provided by the sewing operation
i00—; [H4]. In particular, for ny,ms > 1, P € K(my,ny) and Q € K(ma,ns), Pico-;Q is
the sphere with punctures obtained by sewing the i-th positively oriented puncture of
P with the j-th negatively oriented puncture of Q). The S, x S, -action on K(n_,n,)
(or T(n_,n,)) is the natural one. Moreover, the set

{((00,1,0)[(0,a,0))|ac C*} (1.9)

together with multiplication 1001 is a group which can be canonically identified with
group C*. It is clear that K is a C*-rescalable partial dioperad. We call it sphere
partial dioperad.

The C-extensions of K, such as K¢ and K¢ @ K® for c,ck c® € C, are trivial line
bundles over K with natural C*-rescalable partial dioperad structures (see Section 6.8

in [H3]). Moreover, we denote the canonical section K — K @ K" as .

The next example of partial dioperad is D = {ID(n_,n4)},_», en, which is an ex-
tension of the partial operad of disk with strips T introduced [HKol]. More precisely,
D(n_,ny) is the set of conformal equivalent classes of disks with ordered punctures on
their boundaries and local coordinate map around each puncture. In particular, (0, 0)
is an one-element set consisting of the conformal equivalent class of a disk with no
additional structure. We simply denote this element as H. We use

Q = ((rmusby ") BT, (r bV, BOY)
(Tl; b(()l)’ B(l)) e (Tn+; b(()mr)v B(mr)) )Dv (1.10>
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where r; € R,ag) € Ry, B € R™ for i = —n—,...,—1,1,...,n4, to denote a disk

H with positively (negatively) oriented punctures at r; € R for i = 1,...,n, (i =
—1,...,—n_), and with local coordinate map g; around each punctures r; given by:
oo (4) .5 Dz d .
gi(w) = e>imb xﬁlﬁ(bé)) iy if r; € R, (1.11)

= S BT ey if 7, = oo. (1.12)

r==1
w

We denote the set of all such @ as Tp(n_,n,). Let Tp := {Tp(n_,n4)}n_ s, en. The
automorphism group of H, SL(2,R), naturally acts on 7p(n_,n, ). It is clear that

D(n_,ny) =Tx(n_,ny)/SL(2,R). (1.13)
We denote the quotient map as 7p. The identity Ip € D(1, 1) is given by
I = m( (00, 1,0)[(0,1,0) ). (1.14)

The composition io0; is provided by the sewing operation ;0o-; [HKol]. In particular,
for ny,me > 1, P € D(m_,my) and @ € D(n_,ny), Pioco-;Q is the disk with strips
obtained by sewing the i-th positively oriented puncture of P with the j-th negatively
oriented puncture of Q. The S,,_ xS, -action on D(n_,ny) (or 7 (n_,n4)) is the natural
one. The set

{((00,1,0)[(0,a,0) )|a € Ry} (1.15)

together with multiplication 1001 is a group which can be canonically identified with
group R,. It is clear that DD is a R, -rescalable partial dioperad. We call it disk partial
dioperad.

D can be naturally embedded to K as a sub-dioperad. The C-extension D¢ of D for
c € Cis just the restriction of the line bundle K¢ on D. D¢ is also a R -rescalable partial
dioperad and a partial sub-dioperad of K¢. We denote the canonical section on D — D¢
as Up.

Now we discuss an example of partial nonassociative dioperad which is important
for us. Let U = @,e;U(n) be a graded vector space and J an index set. We denote the
projection U — Up, as P,. Now we consider a family of spaces of multilinear maps
Ey = {Ey(m,n) }mnen, Where

Ey(m,n) := Home (U™, U®n). (1.16)
For f € Ey(m,n), g; € Ey(k;,1;) and ug) ceU,1<p; <l;,7=1,...,n, we say that
F(il ..... m(f%gla cee >9n)(ugl) DY uz:))

= > fPaw’ e 0u))o P e ou)

I In

is well-defined if the multiple sum converges absolutely. This give arise to a partially
defined substitution map, for 1 <i; < k;,7=1,...,n,

P1yeens in - EU(m,n) ® EU(khll) ® e ® EU(kna ln) — EU(m -+ ]{; -n, l)

10



where k = ki +---+ k, and | = [y + --- +[,. In general, the compositions of three
substitution maps are not associative. The permutation groups actions on E; are the
usual one. Let I' = {I';, ;. }. It is clear that (Ey,I',idy) is a partial nonassociative
dioperad. We often denote it simply by Ey.

Definition 1.8. Let (P,~p, Ip) be a partial dioperad. A P-algebra (U, v) consists of a
graded vector space U and a morphism of partial nonassociative dioperad v : P — Ey.

When U = @®,¢c;U) is a completely reducible module for a group G, J is the set
of equivalent classes of irreducible G-modules and U, is a direct sum of irreducible
G-modules of equivalent class n € J, we denote Eyy by E.

Definition 1.9. Let (P,~vp, Ip) be a G-rescalable partial dioperad. A G-rescalable P-
algebra (U, v) is a P-algebra and the morphism v : P — E§ is so that v|g : G — End U
coincides with the given G-module structure on U.

1.2 Conformal full field algebras

Let (VL Yy, 15 wh) and (VE, Yyr, 17, wR) be two vertex operator algebras with central
charge ¢ and ¢! respectively, satisfying the conditions in Theorem 0.1. Let (Ve meg, Ler)
be a conformal full field algebra over VZ @ V. A bilinear form (-, ), on V,; is invariant
[Kol] if, for any u, w;, ws € Vy,

(wa, Yy(u; z, T)wy) g

_ (Yf(e—:cLL(l)x—2LL(0) ® e~ @LT(1) £-2L7(0) u; 67”'1,—1’ e—m'i,—l),w% w1)ar- (1.17)
or equivalently,

(Y (u; emx, e_mf)wza W)

= (wy, Y (eF M g2 0) g oL =2L50) 3y =1 7Ty . (1.18)

We showed in [Kol] that an invariant bilinear form on V is automatically symmetric.
Namely, for uy, us € V,;, we have

(ur,u2)e = (Ug, uq)er- (1.19)

V. has a countable basis. We choose it to be {e;}ien. Assume that (-, )y is also
nondegenerate, we also have the dual basis {e'};cy. Then we define a linear map A, :
C — Vy ® Vy as follow:

Ayl Zei®ei. (1.20)
i€N

The correlation functions maps mg;), n € N of V; are canonically determined by Y

and the identity 1. := 1y(1* @ 1%) [Ko2].
For @ € Tx(n_,n,) given in (1.3), we define, for A € C,

Vcl()\wK(WK(Q)))(ul K- ® un+) (121)

in the following three cases:
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1. If zp oo fork=—n_,...,—1,1,...,ny, (1.21) is given by

D S P e I L S
D] 5eees in_ €N
_ TR
B R
— ——LE(0
e~ LD -LEGED) () -rro 0
LL A(n+) LR A(7L+) (n ) LL W_LR(O)
e AT =L (AT (it ) =L O) g Un,;

21, By ey 2y Beny 1, 21, - - ->Zn+’5n+))cz @ @en (1.22)
wlr(l)gre LY (A) =370 AL () and LE(A) = 3702 A LE(j) for A= (A1, Ay, ... ) €
H_j:l C;

2. If 3k € {—n_,...,—1} such that z; = oo (recall (1.5)), (1.21) is given by the
formula obtained from (1.22) by exchanging 1, in (1.22) with
- IR
e_Lgr(A(k))_Lf(A(k))(a((]k))_LL(O)CL((]k) L (0)62215 (1.2?))

3. If 3k € {1,...,n4} such that z; = oo (recall (1.5)), (1.21) is given by the formula
obtained from (1.22) by exchanging 1, in (1.22) with

—L*(0)

e_Li(A(k))_Lﬁ(m)(a(()k)) —LE(0) (()) U (124)

The following result is proved in [Kol].
Proposition 1.10. The map vy is SL(2,C)-invariant,

Hence v, induces a map K ® KC_R — IE(C ,» which is still denoted as vy. Some
interesting special cases are listed below:

Va(Yk(C)) (1, 14)qidc,
va(Yr(mr(((00,1,0))x)) = 1a,
Ve (Yx(mi(( (00, 1,0),(0,1,0) )x)) ) (u®v) = (u,v)a,
va(Yr(me(((00,1,0),(0,1,0)[)x))) = Aa,
Ve (Y (me(( (003 1,0)[(251,0), (0;1,0) )x))) (u @ v) = Y(u;2, 2)v,

where C is the single element in K(0,0).
Definition 1.11. A K ® ﬁ—algebra (U,v) is called smooth if

1. U = @mnerUim,n) is a completely reducible C*-module, where z-u = 2™ 2"u,Vz €
C*,u € Uiy

2. dim Uy ny < 00,¥m,n € R and dim Upy, ) = 0 for m or n sufficiently small.

3. v is linear on fiber and smooth on the base space K.

The results in [Kol] on a conformal full field algebra over V* ® V' equipped with a
nondegenerate invariant bilinear form can be restated as the following theorem.

Theorem 1.12. (V,,vy) is a smooth K @ ﬁ-algebm.

12



1.3 Open-string vertex operator algebras

Let (Vop, Yop, Lop, wop) be an open-string vertex operator algebra. For r > 0 and vy, v, €
Vop, we define Y, (vy, —r)vg by

Yop(v1, —1)vg 1= e_’"L(_l)Yop(vg, )1 (1.25)

Remark 1.13. Taking the analogy between open-string vertex operator algebra and
associative algebra, Y,,(-, —r)- corresponds to the opposite product [HKol].

An invariant bilinear form on an open-string vertex operator algebra V,, is a bilinear
form (-, )., on V,, satisfying the following properties:

(v3, Yop(01,7)02)0p = (Yop(e "W r 22Oy —rNug 15),, (1.26)

(Yop(vi,7)v3,02)0p = (v, Y;p(e_TL(l)r_u(o)vl, —r_l)v2)op (1.27)
for r > 0 and vy, v, v3 € V).

Lemma 1.14.
(Ulu U2)op = (U27 Ul)op (128)

Proof. The proof is exactly same as that of Proposition 2.3 in [Kol]. |
We further assume that (-,-),, is nondegenerate. Let {f;};cr be a basis of V,, and
{f'}ier its dual basis. We define linear map A,, : C — V; ® V, as follow:

ANg 1> fid fh (1.29)
i€ER

The open-string vertex operator algebra (V,,, Yo, 1oy, wop) naturally gives a boundary

field algebra (V,,, Mop, dop, Dop) in which the correlation-function maps mE)Z’, n € N are

completely determined by Y, and 1,, [Ko2].
For any @ € Tp(n_,n,) given in (1.10). Let a be a bijective map

{—n_,...,—1,1,....n }y S {1,...,n_ +ny} (1.30)

so that si,...,5, 4n,, defined by s; := ro-1;), satisfy oo > sy > -+ > 5, 4., > 0.
Then we define, for A € C,

VoMo (3 (Q)) (01 8 -+ © v,,) (1.31)

as follow:

1. Ifrp £o00,Vk=—n_,...,—1,1,...,ny, (1.31) is given by

A Z (101“ m(()Z*"_"JF)(wl’,..,wn7+n+;81,...,Sn7+n+))opfi1 ®®fﬁn,

11,0y in_ €R

(1.32)
where wg) = e_L+(B(p))(b(()p))_L(O)fifp and wy(y) = e L (B (pNy L)y, for p =

—1,---—n_andqg=1,...,n,;
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2. f3ke{-n_,...,—1,1,...,n,} such that r, = 0o, (1.31) is given by the formula
obtained from (1.32) by exchanging the 1,, with wa).

Proposition 1.15. v,, is SL(2,R) invariant.

Proof. The proof is same as that of Proposition 1.10. |
Hence v,, induces a map D¢ — E%}, which is still denoted as v,,. Some interesting
special cases are listed explicitly below:

lopu op)opld(Ca

Vop(tn (H)) (
)) = 1017’
)

Vop(w]D)(ﬂ-D(( (OO> 1, )| ))

Vop(Yp(mp(([(20,1,0),(0,1,0)))))(u®@v) = (u;0)op,
Vop(Yn(mp(((00,1,0),(0,1,0)[)))) = Aop,
Vop(¢n(mp(( (005 1,0)[(r;1,0), (0;1,0))))) (u @ v) Yop(u, r)v.

where H is the single element in D(0,0) and r > 0.
Definition 1.16. A D¢-algebra (U, v) is called smooth if
1. U = @nerUp) is a completely reducible R,-module, where r - u = r"u,Vr €
Ry, u € Upnyny-
2. dim U, < 00,Vn € R and dim U,y = 0 for n sufficiently small.

3. v is linear on fiber and smooth on the base space D.
Theorem 1.17. (V,,, v,p) is a smooth D°-algebra.
Proof. The proof is same as that of Theorem 1.12. |

2 Swiss-cheese partial dioperad

In Section 3.1, we introduce the notion of 2-colored partial dioperad and algebra over
it. In Section 3.2, we study a special example of 2-colored partial dioperad called Swiss-
cheese partial dioperad S and its C-extension S¢. In Section 3.3, we show that an
open-closed field algebra over V' equipped with nondegenerate invariant bilinear forms
canonically gives an algebra over S¢. In Section 3.4, we define boundary states in such
algebra and show that some of the boundary states are Ishibashi states.

2.1 2-colored (partial) dioperads

Definition 2.1. A right module over a dioperad (Q,7o,lg), or a right Q-module, is a
family of sets {P(m, n)}mneny with an S, x S,-action on each set P(m,n) and substi-
tution maps:

P(m,n) x Qki, 1) X -+ x Qk, 1) Pm+ki 4 ke —n i+ +1,)
(PQu-,@Qn) = Vi) (P Q1 Qn) (2.1)

form,n,li,...,l, € NJky,... k, € Zy and 1 <14; < kj,7 =1,...,n, satisfying the right
unit property, the associativity and the permutation axioms of dioperad but with the
right action of P on itself in the definition of dioperad replaced by that of Q.

RGN in)
_
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Homomorphism and isomorphism between two right O-modules can be naturally
defined. The right module over a partial dioperad can also be defined in the usual way.

Definition 2.2. Let Q be a G-rescalable partial dloperad A right Q-module is called G-

rescalable if for any P € P(m_,m,), Q; € Q( z ,n+ ) and 1< j; <n'i=1,... my,
there exist g; € G,j = 1,...,my such that
Vrrmims) (P50 (915 Q1)5 -+ 3 Vim ) (G s Q) (2.2)

is well-defined.

Definition 2.3. A 2-colored dioperad consists of a dioperad (Q, o, Ig) and a family of
sets P(nf,nf|n’ nl) equipped with a S,z x S, B X Spt X S, r-action for n2.,nl €N, a
distinguished element Ip € P(1,1]0,0), and maps

Plm_ymln_,ng) x PR KDY 180) o PRl gl )

Pm_—my+k_kin_+1_,n+1,),
Pim_,myln_,ny) x QY pP) x - x 9"+, p{)

P(m—,myn- —ny +p-_,py) (2.3)

where ky = K& + - 4 B 1 =10 44 1™ and py = p 4+ p) | for
1 <, < k(_r),r =1,....my, 1 < jy < p(_s),s = 1,...,ny, satisfying the following
axioms:

1. The family of sets P := {P(m_, m4)}m_ m,en, Where
P(m—> m+) = Un77n+ENP(m—> m+|n—7 7’L+),

equipped with the natural S,, xS, -action on P(m_,m. ), together with identity
element Ip and the family of maps 77 := {7?1 im+)} gives an dioperad.

.....

2. The family of maps 7' = {7{; jn+)} gives each P(m_,m ) a right Q-module

------

structure for m_, m, € N.

We denote such 2-colored dioperad as (P|Q, (v?,~7)). 2-colored partial dioperad can
be naturally defined. If the associativities of vo,7?,7! do not hold, then it is called
2-colored (partial) nonassociative dioperad.

Remark 2.4. If we restrict to {P(1,m|0,n)},, nen and {Q(1, n) }ren, they simply gives
a structure of 2-colored (partial) operad [V][Kont]|[Ko2].

Now we discuss an important example of 2-colored partial nonassociative dioperad.
Let Ji,J> be two index sets. U; = @nes,(Ui)m),@ = 1,2 be two graded vector spaces.
Consider two families of sets,

EUz(m>n) = HomC(Uégm?Uégn%

Ev o, (m—, myn_,ny) = Homc(Uf?m+ ® U2®"+, U?mf ® Uf"’),

15



for m,n,m4,ny € N. We denote both of the projection operators U; — (Ul)(n) U2
(Ug) as P, forn € Jy or Jy. For f € By v, (ke kyll_, 1y), gi € Buyon (m®, mP1n® 0y, i =
.,k+, and h; € Ey, (p (_]),psr)) j=1,...,1,, we say that

FB (.f 91>---agk+)(U§l)® ®’U((k2)®vl® ®'Ul+)

(7'17 Y

= Z f(Ps1gl(U§1) 0% u( 21) X U(l) R ® Ufll()l)) ®
S1y--ySKEJL T

1
F{j1,~~,jz+)(f; hl, ey hl+)(u1 Q- Uk, ® 'LU§ ) & - ®w((lj))
3 f(m@.-.@um@&hl(wi”®~-~®w§}>>

t1,...,t1€J2

@ @P, h(we w,(f(ﬁ»)

+

for u§-i) e Uy, vﬁi),w§i) € U,, are well-defined if each multiple sum is absolutely conver-

gent. These give arise to partially defined substitution maps:
1 N (1) (@ k k k k
EU1|U2(k—7k+|l—7l+)®EU1|U2(m(—)7mE|—)‘n(—)7ns_))® ®EU1|U2( ( +) mg_+)‘n(_+),ng_+))

(z ,,,,, i )
T Evyjo, (k- — ky +m_,my|l_ +n_,n.).

EU1|U2<k_,k+|z_,z+>®EU2< W)@ @By, ("), pl)

(]1+ +i1 ) 1 1
S By (e ke — L+ 0 U p g ple)y,
where my = m(l) +-+ m( ) and ny = nS_L) +---+ n(f”. In general, Fg.l i) and
..
F{ [ do not satisfy the associativity. Let

Euvy v, = {Euvy v, (m—, my|n_,ny) by myen,

Ev, = {Eup,(n)}nen, TP = {T{, )} and T7 = {T(; . }. Tt is obvious that
(Ev, v, |Ev,, (T8, T1)) is a 2-colored partlal nonassociative operad.

Let U; be a completely reducible Gi-modules and Us a completely reducible G-
modules. Namely, Uy = @®n e, (U1)m), Uz = @nyesn(U2)mg) Where J; is the set of

equivalent classes of irreducible G;-modules and (U;)n,) is a direct sum of irreducible
G1|G2

Gi-modules of equivalent class n; for i = 1,2. In this case, we denote Ey, ¢, by EU1|U2 .

Definition 2.5. A homomorphism between two 2-colored (partial) dioperads
(Pil Qi (%B,%I)),i =1,2
consists of two (partial) dioperad homomorphisms:
vpg, - P1 — Pa, and vo, : Q1 — Qs

such that vp o, : P1 — P, where P, has a right Q;-module structure induced by
dioperad homomorphism vg,, is also a right Q;-module homomorphism.
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Definition 2.6. An algebra over a 2-colored partial dioperad (P|Q, (v2,~1)), or a P|Q-
algebra consists of two graded vector spaces Up,Us; and a 2-colored partial dioperad
homomorphism (vpg,vg) : (P|Q, (v?,7)) — (B, v, Evs, (TF,T7)). We denote this
algebra as (U1 |Us, vp|g, Vo).

Definition 2.7. If a 2-colored partial dioperad (P|Q, ) is so that P is a G-rescalable
partial operad and a Gs-rescalable right Q-module, then it is called G1|Gy-rescalable.

Definition 2.8. A G1|Gy-rescalable P|Q-algebra (Uy|Us, vpjo, vg) is a P|Q-algebra so
that vpg : P — Egﬂgj and vg : Q — Egj are dioperad homomorphisms such that
vpig : Gi — End U; coincides with the Gi-module structure on U; and vg : Gy —

End U, coincides with the Go-module structure on Us.

2.2 Swiss-cheese partial dioperads

A disk with strips and tubes of type (m_,my;n_,n;) [Ko2| is a disk consisting of m.
(m_) ordered positively (negatively) oriented punctures on the boundary of the disk,
and ny (n_) ordered positively (negatively) oriented punctures in the interior of the disk,
and local coordinate map around each puncture. Two disks are conformal equivalent if
there exists a biholomorphic map between them preserving order, orientation and local
coordinate maps. We denote the moduli space of disks with strips and tubes of type
(m_,my;n_,ny) as S(m_,my|n_,ny).
We use the following notation

[((rem 0™, B ) (o, b BEY) |
(7“1756,3(1)),...,(rm+,b6”+7B(M+))) H
((on ay™  AC™) L (e, a5t ACDY |

(zlv a(l)v A(l))7 teey (Zn+7 CLng, A(n+)) ):| (24>

S

where r; € R, bg) € R*, BS) € R and z; € H, a(()j) e C~, Al(j) € C for all © =
-m_,...,—1L,1,....omy, j=-n_,...,—1,1,....ny and k,l € Z,, to represent a disk
with strips at r; with local coordinate map f; and tubes at z; with local coordinate map
g; given as follow:

fiw) = SRBISTE GO i, e R, (2.5)
ek B (et g iy = o0, (2.6)

) .k ;
gi(w) = e G (], (2.7)

We denote the set of all such disks given in (2.4) as Zs(m_, my|n_,n,). The auto-
morphisms of the upper half plane, which is SL(2,R), change the disk (2.4) to a different
but conformal equivalent disk. It is clear that we have

S(m—7 m-l—‘n—’ n-l—) = 775(77’1_, m+|n—7 n+>/SL(27 R) (28)
Let S = {S(m_,my|n_,n4)}m_m, n_n,en. The permutation groups

(Sm_ X Sm,) X (Sn_ X Sp,)
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acts naturally on S(m_,m+|n_,n+) There are so-called boundary sewing operations
[HKo1][Ko2] on S, denoted as i00Z;, which sews the i-th positively oriented boundary
puncture of the first disk with the j-th negatively oriented boundary puncture of the
second disk. Boundary sewing operations naturally induce the following maps:

S(m_,my|n_,ny) x SED EOID MY x - s gm0 me)
S(m_ —my -+ ]{?_, ]{7+ \n_ -+ l_, ny -+ l+>,

where ky =k 4+ B =10 41 for 1<, <K =1, my. Tt
is easy to see that boundary sewing operations or 7517___72.%), together with permutation
group actions on the order of boundary punctures, provide S with a structure of partial
dioperad.

There are also so-called interior sewing operations [HKol][Ko2] on S, denoted as
ool which sew the i-th positively oriented interior puncture of a disk with the j-th
negatively oriented puncture of a sphere. The interior sewing operations define a right
action of K on S:

1 n n
S(m_,my|n_,ny) x K(p (_),pgr)) K(p(—+)apg—+))
PY(IJ'1 ~~~~~ Jng)
——— S(m_,myIn_ —ny +p_,py) (2.9)

where py = p( )+ +pi for 1<, < p( ) =1,...,n4. Such action gives S a right
K-module structure.
Let v8 = {751 i) and v = {fy(fz.l iy} The following proposition is clear.

Proposition 2.9. (S|K, (v2,47)) is a R, |C*-rescalable 2-colored partial dioperad.

We call (S|K, (v2,~1)) Swiss-cheese partial dioperad. When it is restricted on & =
{S(1,m|0, n) }m.nen, it is nothing but the so-called Swiss-cheese partial operad [HKol|[Ko2].
In [HKo1]|[Ko2], we show that the Swiss-cheese partial operad & can be naturally
embedded into the sphere partial operad K via the so-called doubling map, denoted as
0 : 6 — K. Such doubling map 4 obviously can be extended to a doubling map S — K,
still denoted as 0. In particular, the general element (2.4) maps under 0 to

(21,05 P, ATY), (2 ag ) AC),
(z_1,aS V) ACD), (2l al ) AR,
(rog, b5, BEDY, L (W), BET)Y
<zl,aé”,A<1>>, (2o, ag™) A,
(21,08, AD), ... (2, af"), ATD),
(ry, b ,B<l>), o (P B BUY N (2.10)

The following proposition is clear.
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Proposition 2.10. Let P, € S(m@,mﬁf)m@,n@),i = 1,2 and Q € K(m_,my). If

Plz-oo?ng and Pyrool,Q exists for 1 <i < m(j), 1<5< m(_z) and 1 <k < n(j), 1<i<
m_, then we have

(5(P1 iOOiBj Pg) = (5(P1) 2n$)+im7(2ng)+j) 5(P2),
5(P1 kOOL Q) = (5(P1) OO -1 Q) n(+1)+m+71+koofz Q (2.11)

By above Proposition, we can identify S as its image under ¢ in K with boundary
sewing operations replaced by ordinary sewing operations in K and interior sewing
operations replaced by double-sewing operations in K as given in (2.11).

The C-extension S¢(m_,my|n_,n.) of S(m_,m,|n_,n,) is defined to be the pull-
back bundle of Kc(Qn_ +m_,2n, +my). We denote the canonical section on S¢, which
is induced from that on K¢, as 1s. The boundary (interior) sewing operations can be
naturally extended to S¢. We denote them as oo” (50!) and corresponding substitution

maps as 77 (37). There is a natural right action of K¢ ® K¢ on S¢ defined by 7.
The following proposition is also clear.

Proposition 2.11. (SK*® ﬁ, (72, 41)) is a Ry |C*-rescalable 2-colored partial diop-
erad.

We will call the structure (SC|KC®%, (72,41)) as Swiss-cheese partial dioperad with
central charge c.

Definition 2.12. An algebra over S© viewed as a dioperad, (U,v), is called smooth if

1. U = ®nerUp) is a completely reducible Ri-module, where r - u = r"u,Vr €
R+, u € U(m,n)-

2. dim U,y < 00,¥n € R and dim Uy, = 0 for n sufficiently small.

3. v is linear on fiber and smooth on the base space S.

Definition 2.13. An S¢K° ® @—algebr& (Uh|Us, vg,
(Ul’ I/§C|

\ch;ﬁ”/u{cg)ﬁ) is smooth if both

Kq@ﬁ) and (Us, l/Kc@@) as algebras over dioperads are smooth.

2.3 Open-closed field algebras over V

Let (Vop, Yop, top) be an open-string vertex operator algebra over V and (V,Y,ty) a
conformal full field algebra over V ® V. Let

( (‘/cla Ya Lcl)> (‘/;)pa Y;Jpa Lop)> Ycl—op ) (212)

be an open-closed field algebra over V' [Ko2]. We denote the formal vertex operators
associated with Y,, and Y as Y/, and Y/ respectively. Let w* = 14(w®1), wf = 14(10w)
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and wep = top(w). We have

Y (whiz,z) = Y (W 2)= Z L(n)® 1z~ "2,

nez
V(e 1) = YWz =) 10 Lnz ">
nez
Y (Wopw) = > L(n)z™" > (2.13)

We also set LE(n) = L(n) ® 1 and Lf(n) = 1 ® L(n) for n € Z.

For u € V, we showed in [Ko2] that Y _,,(ta(u®1);2,2) and Yg_op(ta(1 @u); 2, 2)
are holomorphic and antiholomorphic respectively. So we also denote them simply by
Yei—op(ta(u® 1), 2) and Yeg_gp(ta(1 ® u), Z) respectively.

By V-invariant boundary condition [Ko2], we have

Ycl_op(wL, ) = Yop(wWop, 1) = Yd_op(wR, T). (2.14)

We assume that both V,, and V;; are equipped with nondegenerate invariant bilinear
forms (-, -)op and (-, ) respectively.

Lemma 2.14. For any u € Vg and vi,v2 € V,, and z € H, we have

(U2a Ycl—op(u; Z, Z)Ul)op
_ (Ycl_op(6_ZL(1)Z_2L(O) ® e—ZL(1)2—2L(O)u; —Z_l, —2_1)’112, 'Ul)op (215)

Proof. Using (1.26), for fixed z € H, we have,

(U2> Ycl—op(u; z, Z)Ul)op
= (U27 Ycl—op(u; <, Z)}/op(17 T>U1>0p
- (Ug, Y:)p(Ycl—op(u; 2T, zZ— T)]-a r)'Ul)OP

= (e_rflL(_l)Yop(vg, 7“‘1)e_’"L(l)r_QL(O)Yd_Op(u; z2—1,Z—1)1,01)4(2.16)

for |2| > r > |z—7| > 0. Notice that e~ LD ¢ Aut Vo), Vr € C. By taking vy = 1,,,
P P

it is easy to see that
e W =2LOY (w2 — 7,2 — 1)1 (2.17)

is a well-defined element in V,, for |2| > r > |z —r| > 0. Because of the chirality
splitting property of Y._,, (see (1.72)(1.73) in [Ko2]), it is easy to show that (2.17)
equals to

Yerop(e~ 2720 @ o= z=2L0)y p=1 _ =1 p=1_ 5-1yq (2.18)

Y Y

for r > |z —r| > 0. By the commutativity I of analytic open-closed field algebra proved
in [Ko2], we know that for fixed z € H,

e—r*IL(—l)Y;p(U%T—l)Ycl_op(e—zL(l)Z—2L(O) ® e—ZL(1)2—2L(O)u’T—1 ol el 2—1)1
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and
e—r—lL(_nYcl_op(e—zL(l)Z—2L(o) Q e—ZL(1)2—2L(0)u’T—1 N 2—1’7,—1 N 2—1))/013(2}2’ 7“_1)1
_ e—rlL(—l)Ycl_op(e—zLu)z—2L(0) ® e—zL(1)2—2L(0)u7T—1 . z_l,r_l _ 2—1)67«*%(—1)@2

(2.19)

converge in different domains for r, but are analytic continuation of each other along a
path in r € R,. Moreover, using L(—1) property of intertwining operator and chirality
splitting property of Y.;_,, again, the right hand side of (2.19) equals to

Ycl_op(e—zL(l)Z—2L(0) ® e—zL(l)Z—2L(0)u’ e _2_1>U2

for [r=! — 271 > |r~!|. Therefore, the both sides of (2.15) as constant functions of r are
analytic continuation of each other. Hence (2.15) must hold identically for all z € H. B

For wy,...,u; € Vyg,v1,...,0, € Vo, 11, ...,rp ERry > -~ >r, and z1,...,2 € H,
we define
(Ism) . o 3 5 .
M op(Uis oo U VL, ey Uns 21, 21, ooy 20, 2151, -+ -5 )
— o—rnL(=1) ) (1) . . = = .
= ¢ "l )md_op(ul, UGV e Uy 21 — Ty 21— Ty e oo s 20— Ty 20— T
T1L— ThnyvoyTne1 — Tn, 0). (2.20)

We simply extend the definition of mglﬁ))p to a domain where some of r; can be negative.

Note that such definition is compatible with L(—1)-properties of m_op.

Lemma 2.15. For uy,...,u; € Vy,v,v1,...,0, € Vg, 71, ., 7 ER iy > >1r, =0
and z1, ...,z € H,

(Iim) . ) > .
('Uv mcl_op(ub sy U UL, - Uny 215,205 - -5 R R T - - arn))op
_ (in) F Fu:v. G G .
— (Unu mcl—op( 1U1, .., ULV, G101, -0, Gp—1Up—1,
-1 -1 -1 -1, —1 -1
=21 =2 e =2 =2 50, o =) (2.21)
where
— 2 —2L(0 —Z _—2L(0 .
F, = ezzL(l)Zi ()®ez1L(1)Zi ()’ ’Lzl,...,l,
__—r;L(1),.—2L(0) ;=
G = e 0 j=1,...,n—1. (2.22)

Proof. By Lemma 2.14, (2.21) is clearly true for [ = 0,1;n = 0,1. By (1.26) and
(1.27), (2.21) is true for [ = 0,n = 2. We then prove the Lemma by induction. Assume
that (2.21)istrue for =k >0,n=m>2orl=k>1,n=m > 1.

Let [ = k and n = m + 1. It is harmless to assume that 0 < r,_1,|2;)| < rp_2,i =
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Iy +1,...,1 for some [; <[. Using the induction hypothesis, we obtain

(Ism) . R 5.
('Ua mcl_op(ub ey U ULy ey Uny 215, 21y -0 o5 2 205 Ty - arn))op
= (v,m™ D (y U3 v Unz, m~) (4 UL} Un1, Un;
- > Mhel—op Tyeeey Sy Uy e ooy Un=2,Te1_op li+1y -y Wy Un—-1,Un,
Zl1+17 le—i-l’ cey Rl Zl7 Tn—1, 0)7 21, Zl? teey Zl17 le; Ty ooy Tp—2, O))Op
_ (,,(1n=1) . .
- (mcl—op (F1u17 R Elul17 v, lelv R Gn_l'Un_17
1 1 1 1. -1 -1
_Zl P _Zl g e e ey _le 9 _le 9 07 —7’1 9. _T )’
U—lu2)( . . > 5. 0))
mcl—op ULy 41y -+« U3 Un—1, Unj 211415 Rli41y - -+ 5 2l 21 Tn—1, op
— ((—1152) . oy (l15n=1) .
- (mcl—op (E1+1ul1+17 SR Eulu mcl—op (Flul, ceey E1UZ1,
. -1 =1 -1 =1, -1 -1
v,Goy, . GV =2 =2 ., TR TR s 0, =ry ., =12 2)7
. -1 =—1 -1 -1,
Grn1Vn—1; =241, — 241>+ — 4 —zl 10, —r 1), vn)op
,1 . _
_ L (l_l172) . - L(—-1 (l llvn 1)
Z )mcl—op (E1+1ul1+1a oy Frug; Pae w2l ) Me_op (Flul,
seR
F ‘u.G G . -1 -1 >—1 -1
P 0, Guoy, - G Un1s =2 T 09, =2 T,
-1 -1 ——1 ol -1 -1 -1 -1
» TR Tyl — _'_Tn 2y Tp—2, T —I—Tn_2,...,—7‘n_3+7‘n_2,0),
— - —— -1
Gn—lvn—h _Zl1+1 + rn—la _Zl1+1 + Tn—1s
S e B |
+Tn—1> —Z +Tn—17rn—170)’vn)0p (223)

Note that the position of P, and e~"n~2L(=1) can not be exchanged in general. Because
if we exchange their position, the sum may not converge and then the associativity law
does not hold. We want to use analytic continuation to move it to a domain such that
we can freely apply associativity law. By our assumption on V', both sides of (2.23) are

restrictions of analytic function of 2, 11, (415 -+, 20, Gy Tne1 O0 (g1 = 2141, - -+, (G = 2.
Let 2z, 41, ..., 21, 71 satisfy the following conditions:
1 —1 | =1 -1 -1 -1 ,.-1
| — Zp + Tn—2|’ Tpno1 = Thoo > | — % + Tn—2|7 Tn—2,— + rn 29 (224)

foralli =1,...,0,7=1,...,.n—3 and p = l; + 1,...,l. Note that such condition
define a nonempty open subset on H' x R,. Choose a path ~, in the complement of
the diagonal in H' from initial point (z;,41,...,2) to (Z,41,...,%) and a path 75 in R
from r,_1 to 7,_1. We also denote the complex conjugate of path v, as 7, which is a
path in H'. Combine 1,71 With v2, we obtain a path v from (2,41, 21,41, - - - 205 21, Tn—1)
to (Z41, 21415+ - 215 21, Tn1). Analytically Continuating the right hand side of (2.23)
along the path 7, we obtain, by the properties of mEm [Ko2],

cl op
1 .
—i 1 L(-1),  (=11;2) (I—=l1;n—1) .
(6 n—1 mcl_op (E1+1ul1+1, .. Eul, P md op (Flul, ce Elul17
. =1 -1
v lel, cey G n—1Un—1; —Zl "‘ Tn—27 —Zy + 71, o,
-1 —1 -1 .,.-1 -1 -1 -1 -1
_le + Tn—2,— + Tn—27 Tn—27 - + Tp—2y-+y " Tp_3 + Tn—2, 0)7

Gn—lvn—l’ Zl +1 + 7ﬂn 15— l +1 + 7ﬂn 1
et 5 et el 0),0,) (2.25)
* l n—17 1 n—1"n—1 n—27 » YnJop .

22



where G,,_; = e‘F"flL(l)fﬁf(o). Using the associativity of open-closed field algebra and

L(—1)-properties of m_op, we see that (2.25) further equals to

(lin+1) . ~ S R |
(md_op (Frug, ..., Fluv,Grog, oo, GrqUn1; =21 =21 e
1 -1 =1 =1 1 -1, -1 ~—1
=2 7 E s~ A A T F 50, T =T ), Un)ops

By analytically continuating (2.26) along the path —v, which is - reversed, we obtain
the right hand side of (2.21). Hence (2.23) and the right hand side of (2.21) are analytic
continuation of each other along path (—v) o () which is a constant path. Hence (2.21)
holds for I = k,n=m + 1.

Now let [ = k+1,n = m. The proof is similar to the case | = k,n = m+ 1. We only
point out the difference. Using the smoothness of m._,,, it is enough to prove the case
when |z;| # |2;| fori,j = 1,...,l and i # j. Without losing generality, we assume that
|z1] > -+ > |z] > 0. Let ny < n be the smallest so that 0 < r; < |z]| for j > ny. Then
we have

(Iim) . ) > 5.
('Ua mcl_op(ub sy U UL,y Uny 215, 215 - -5 R, R Ty - e arn))op
_ (1-1m1) . (Ln—n1+1) .
= (U, My_gpy (Ury o U101, Uy 1, My (Up; Vpys - vy Un
2y 2 Tnyy o sTn); 215 21y e v oy Zm1y Z=13T1y « - s Tny—1))op (2.27)

We can then apply (2.21) as in (2.23) for the case | < k,n < m, which is true by our

induction hypothesis. The rest of proof is entirely same as that of the case | = k,n =

m+ 1. |
We define a map, for 2,¢ € C and 2 # (, ta_op(2,€) : Vi — V,p as

Lcl—ozo(zv C)(u) = Ycl—Op(UQ 2, () 1op.

*
cl—op

(te1-op(2, (W), w)er = (W, Ler—op(2, C) (1) )op (2.28)

for any u € V; and w € V.
Let @ be an element in Tg(n_,ny|m_,my) of form (2.4). Let a be the map (1.30) so

We denote its adjoint as ¢ (2,¢). Namely, 1, (2,() : Vop — V., is given by

that sq,...,5,_4n,, defined as s; := ro-1(;), satisfy co > sy > --- > s, 4, > 0. Then
we define

Vcl—op()\,@bS(Q))(ul XX um+ &® U1 R R 'Un+) (229)
as follow:

1. If 51 # 00, (2.29) is given by

(m—+myin_+ny) .
A E (1Op, M op (U1, ooy U ULy ey Uy
Ulyeenslm_3J15eesIn_
Wiy eoy Wn_dny; 21, Z_lyer oy Bomy Bem 5 15 21y - - “mg 2m+;
317'-'a3n,+n+)) e Qe ® I (230)

op
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where
——L*%(0)

u, = e—Lﬁ(A(P))—Lf(M)(a(()P)>—LL(0)agp) e,
LE(A@)-LEA@) . (@\-LF©) @~ O
Uy = e HHAD-LEGD (@)L,
wagy = e PO
way = e PDED) O, (2.31)
forp=—-1,....,—n_,q=1,...,n ., k=—-1,....,0—m_and [ =1,...,m,.
2. When r, = oo for some k = —m_,...,—1,1,...,my. (2.29) is given by the

formula obtain from (2.30) by exchanging 1,, with wq ).
Lemma 2.16. v._,, is SL(2,R)-invariant.

Proof. The SL(2,R) is generated by the following three transformations 1. w —
aw,Va € RT; 2. w— w—->0,Yb e R; 3. w _?1 That vy_,, is invariant under the
first two transformations simply follows from the L(0)- and L(—1)-properties of m;_op.
That v_,p is invariant under the third transformation is proved in Lemma 2.15. ]

. . R|CX . . . .
Hence v_op induces a map S¢ — EV;‘|VCZ’ which is still denoted as vg_q,. We list a
few interesting cases:

o (s ([((00, LOD|([(z: LOY])) = teon(z. 2.
vaop(Us([(1(00.1,0)[((=. LOD])) = ¢(=.2) (2:32)

and forb e Ry, BeR*, a € C*, A€ C* and v € V,,, we have

ver—op (s ([(1(00, b, B)) || (2. a, A)])]5))

= q L Og L) o= B G AL DT LA * (4 5) (e Bp=L00y) - (2.33)

Theorem 2.17. (V,,| Ve, Vei—op, Ver) is an Ry|C*-rescalable smooth SCHKC ® Ke-algebra.

Proof. The smoothness is automatic. We showed in [Ko2] that (Vo,|Ver, Vei—op, Ver)
is an R |C*-rescalable smooth &¢|K¢® K¢-algebra. The rest of the proof is similar to
that of Theorem 1.12 in [Kol]. We omit the detail here. n

2.4 Ishibashi states

As we mentioned in the introduction, an open-closed field algebra over V' equipped with
nondegenerate invariant bilinear forms for both open theory and closed theory contains
all the data needed to grow to an open-closed field field theory of all genus. Without
adding more compatibility conditions, itself is already an interesting object to study.
We show in this subsection that the famous “Ishibashi states” can be studied in the
framework of such algebra. Throughout this subsection, we fix an open-closed algebra
over V' given in (2.12) and equipped with nondegenerate invariant bilinear forms (-, )y
and (-, -)op-

For uw € V,, and 2, € H, we define the boundary state B, (u) € V., associated with
u and 2y by

By (u) = XD (55 — 20)2O @ V7 =20 (20, 20) (). (2.34)
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Proposition 2.18. Let u € V,, be a vacuum-like vector [LL], i.e. L(—1)u = 0. For
zo € H, we have the following Ishibashi identity:

(L*(n) — L®(—n))B,,(u) =0,  Vn€Z. (2.35)
Proof. For v € V,, the following two functions of z
(uu Ycl—op(va zZ+ Z(])Y(U; 20, Z(]>1op)opu
(u, Ye—op(w® 2+ 20)Y(v; 20, 20) Lop)op (2.36)

can be extended to a holomorphic function and an antiholomorphic function in {z|z +
2o € H, z # 0} respectively by our assumption on V. We denote the extended functions
by g1(w¥, ) and g (w¥, 2) respectively.

The following two limits

4
z

lim (1-— wl, 2

P ( 7o — Zo) 91( )

lim (1— _ )492(&,5) (2.37)

z+zo—T Zo — 20

exist for all r € R. Using (2.15), it is easy to see that above two limits also exist
for r = oo € R if and only if u is vacuum-like. Hence, by V-invariant (or conformal
invariant) boundary condition, we have

lim (1—_ : )4g1(wL,z): lim (1—_ z )4g2(wR,z) (2.38)

z+zo—Tr Z20 — R0 z+zo—T

for all r € R when L(—1)u = 0.
On the other hand, for |z + zp| > |20/, we have
(u, Yer—op(w”, 2 + 20) Yer—op(v; 20, Z0) Lop)op
= (u, Y- OP(Y(WL 2)V; 20, Z20) opLop)op
= (U, ta-op(20, 20) (Y(W", 2)0))op
= (11— op(20, 20) (1), Y (W, 2)v)a
— (Bay(u), "V (2 — 20) 710 © "WZ =2 OV (WE 2)v)a. (2.39)

Note that one should check the convergence property of each step in (2.39). In particular,
in the last step, the convergence and equality follow from the convergence of early steps
and the fact that (zZp — z) e 1N %o — 20 “OeL-1) ¢ Aut V. For 0 < |z] <
|Imzy|, it is easy to show that

eL(l)(Zo _ ZO)—L(O) ® eL(l)izo — —L(O)Y(wL7 2)v

—2L%(0)
e (Gl (1— - ) :

20 — R0
1
(Zo — 20) L OWE, - —)u1
0o~z l— 557
z - 1 z
= (]_ - = ) (20 - ZQ)_2Y((UL, — P )Ul (240)
Zo — 20 Zo— 201 — Zo—20



where v; = M) (z) — 20) 4O @ LMz =2, "y, Hence, for all 0 < |2| < [Imz| and
|z + 20| > |20, we obtain

(U, Ycl—op(wL> z+ ZO)YCl—op(U; 20, 20)1010)01)

— (Boy(u). (1— ) (o — 20) YW F)o)a (241)

z

20 = 20
where f is the composition of the following maps:

(w+ 20) — 20 1 w
W W+ 2g — — — = —
(w4 20) — 20 Zo—201—

20—20

which maps the domain H — z, to the unit disk. Since g;(w?, 2) is analytic and free of
singularities for z 4+ zo € H\{zo}, the right hand side of (2.41) can also be extended to
an analytic function in z € H — z,\{0}. If we view f(z) as a new variable £, then the
right hand side of (2.41) can be extended to an analytic function on {£|1 > |£| > 0},
which has a Laurent series expansion. By the uniqueness of Laurent expansion, the
right hand side of (2.41) gives exactly such Laurent expansion and thus is absolutely
convergent in {£]1 > |¢| > 0}. Moreover, lim,., ., g1 (w”, z) exists for all » € R. By the
properties of Laurent series, the right hand side of (2.41) must converge absolutely for
all f(z) € {¢||¢| = 1} to the function given by lim,,, ., g1(w”, 2),7 € R.
Similarly, for all 0 < |z] < |Imzo| and |z + 29| > |20], we have

(U, Ycl—op(va zZ+ ZO)Ycl—op(U; 20, Z(])lop)op

= (B, (w), e"W(zy — 2) M0 @ 'MWz =2 “OY(WE, 2)v)y

(1-—2)LE(1) z —2L(0) R
= (B (u), Y(e =% (1 - ) (20 — 20) " Ow g(2))v1)a

20 — 2o

—(1-2252) om0 Bl YR g (2.42)

20 = 20
where g is the composition of the following maps:

B (w+ Zo) — 20 (w+ Zo) — Zo 1 w
WH W+ 2> —————— > — — = —
(w+ Zo) — Zo (w4 2Zp) —20 20— 201 —

20—Z20

which maps the domain —H — Z; to the unit disk. Moreover, the right hand side of
(2.42), as a Laurent series of g(Z), is absolutely convergent for all g(z) € {£||¢| = 1} to
lim, ., go(wW', 2),7 € R.

Also notice that

oy 1
g(’f’—ZQ) - f(

10 < 2.4
T_ZO)G{e |0 <6< 2r} (2.43)

for all r € R. Using (2.38) and by replacing z in (2.41) by r — 2, and z in (2.42) by
r — Zy, we obtain the following identity:

(B, (u), Y(w, e®)v1)y = (Bs(u), Y(w?, e )v,)y e (2.44)
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where e = f(r — ), for all 0 < § < 27. Notice that the existence of both sides of
(2.44) follows directly from (2.38), which further follows from the condition of u being
vacuum-like. Then we obtain

Z(BZ0 (u), LL(”)U1)cl eif(—n—2) _ Z(Bzo(u),LR(—n)m)cz pi0(=1—2)

nez neZ

for all 0 < 6 < 27. Notice that v; can be arbitrary. Therefore, we must have (2.35)
when L(—1)u = 0. n

In physics, boundary states are usually obtained by solving the equation (2.35). The
solutions of such equation was first obtained by Ishibashi [I]. They are called Ishibashi
states. The definition of boundary states we gives in (2.34) is more constructive. Bound-
ary conditions are also called “D-branes” in string theory. If u is not a vacuum-like
vector, the boundary state (2.34) associated with u is also very interesting in physics
(see for example [FFFS1]). Such boundary states are associated to the geometry on
D-branes.

3 Cardy condition

In this section, we discuss the famous Cardy condition. We first derive an algebraic
formulation of Cardy condition directly from algebraic realizations of Figure 4 (see
also Figure 5). Then we reformulate Cardy condition in the framework of intertwining
operator algebra. Throughout this section, we fix an open-closed field algebra over V'
given in (2.12) equipped with nondegenerate bilinear forms (-, ),, and (-, ).

3.1 The first version

In the notion of Swiss-cheese dioperad, we exclude interior sewing operations between
two disks with strips and tubes and self-sewing operations between two oppositely ori-
ented boundary punctures on a single disk. The surface obtained after these two types
of sewing operations is a cylinder or an annulus. The axioms of open-closed conformal
field theory require that the algebraic realization of these two sewing operations must
coincide. This gives a nontrivial condition, called Cardy condition.

Although the Cardy condition is only a requirement from genus-zero surfaces, its
algebraic realization is genus-one in nature. This fact is manifest if we consider the dou-
bling map 6. A double of a cylinder is actually a torus. Hence the Cardy condition is a
condition on the equivalence of two algebraic realizations of two different decompositions
of a torus. This is nothing but a condition associated to modularity.

That an annulus can be obtained by two different sewing operations is shown in
Figure 5. In particular, the surface (A) in Figure 5 shows how an annulus is obtained
by sewing two oppositely oriented boundary punctures on the same disk with strips and
tubes in S(1,3|0,0), and surface (C) in Figure 5, viewed as a propagator of close string,
can be obtained by sewing an element in S(0, 1|1, 0) with an element in S(0, 1|0, 1) along
the interior punctures.

We only show in Figure 5 a simple case in which there are only two boundary
punctures and no interior puncture. In general, the number of boundary punctures and
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Figure 5: Cardy condition: two different sewings give same annulus.

interior punctures can be arbitrary. However, all general cases can be reduced to this
simple case by applying associativities. Notice that the two boundary punctures in this
simple case can not be reduced further by the associativities. We only focus on this case
in this work.

The conformal map f between the surface (A) and (B) and g between the surface
(C) and (B) in Figure 5 are given by

1
flw) = Q—MIng’
—T
g(w) = ﬁlogw. (3.1)

It is also useful to know their inverses f~!(w) = e*™, g~ (w) = 2"—7)*_ For any

2miz 2mi(

z€C,weset g, :=e™ and p, :=¢ ~7)%_ The radius of the outer circle of the surface
(C) in Figure 5 is |ps,| = 1 and that of inner circle is

(1
pa| = ™) = g2, (3.2)

T
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As we have argued and will show more explicitly later, Cardy condition deeply
related to modularity. In [H6], Huang introduced the so-called geometrically modified
intertwining operators, which is very convenient for the study of modularity. He was
motivated by the fact that it is much easier to study modularity in the global coordinates.
Namely, one should choose the local coordinate maps at s, se in surface (B) in Figure
5 as simple as possible. More precisely, we choose the local coordinate maps at sq, s as

W e%(w —51)

s}

w = e 2 (w— s (3.3)

respectively. Correspondingly, the local coordinate maps at punctures g, , gs, are

s’ 1 1
Joo, (W) = 67% log (1 +— x)

w1 1
quz ('UJ) = € 2 % 10g (1 + q— :13) (34)

respectively.
Notice that both local coordinate maps f,, (w) and f,,, (w) are real analytic. Hence

I8 € R, b)) € Ry i =1,2 such that

fq81 (w) _ Zoo B(l)xJJrl d (b(l ) dzx

qu2 (w) _ Zoo B(Q)wJJrl d (b(2 ) dzx (35>

T=wW—(s,

Then the algebraic realization of the surface (A) gives a map V,, ®V,, — C. We assume
1> |¢s;| > |gs,] > |g-| > 0. By the axiom of open-closed conformal field theory, this
map must be given by (recall (1.25))

V1 QU — Tl"vop (Y:ap(quth qSl)Y (qu2 Vg, ng)qTL(O)) ) (3-6)
where
T,, = e ZRBHO(p) O,
T,, = e T B0 p2)-Lo), (3.7)

We need rewrite 7, and T;, . Let A;,j € Z,, be the complex numbers defined by
log(1 + y) = eXim AV gy

It is clear that A; € R. Hence we also obtain:

1 1 i1 d )
9 log <1 + —:L') = z_xd%ezjeh Ajel (27‘(‘2)_96%1’. (3.8)
y) z
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Lemma 3.1.

Y

T, = (g5 )E0) o= 520 A L) (2704) ) = 5 L(O)

= (gs, )L(O)e— 3224 AGL(3j) (2m-)L(0) o 2miL(0) , 5 L(0) (3.9)

sy

Proof. By results in [BHL], if ezﬁlcﬂ“(j)cﬁ(o) — 2= DjL(j)déJ(O) for any C;,D; €
C,co,dy € C, we must have C; = D; and ¢y = dy. Therefore, by moving the factor
s, )*© to the right side of e~ %=1 4LU) in (3.9) and similarly moving the factor (g, )*(©
1 2
in (3.9), we see that it is enough to show
(b((]l))L(O) _ (QSI)L(O)(27r,&~)L(0)e—%iL(0)’
()10 = (gu) O (2mi) e HO U0, (3.10)

Using our conventions (0.1)(0.2), it is easy to check that above identities hold. |
Let W be a V-module. Huang introduced the following operator in [H10].

U(x) =z Ve X5 A0 (27 L0 ¢ (EndW){z).
Thus (3.6) can be rewritten as follow:

v @ vy = Ty, (Yop(U (g )01, 6oy ) Yop U (g5 ) e > V0, g5, ) g7 @) (3.11)

s’ us’
where v/ = e~ 210y, and v} = 7 L0y,

Now we consider the algebraic realization of the surface (C) in Figure 5 obtained
from an interior sewing operation between an element in S(0,1|1,0) and an element in

S(0,1/0,1).

Lemma 3.2. Vr € (0,1) C Ry, the surface C in Figure 5 is conformally equivalent to
a surface Q1 100! Qo, where

1. @1 € S(0,1]0,1) with punctures at z; € H, 00 € R and local coordinate maps:

Do\ W — 2
Foiw (71> == 21 , (3.12)
FfO i s T (_—T) logw — ; (3.13)
21 w— Z1

2. Q2 € S(0,1]1,0) with punctures at z5 € H, oo € R with local coordinate maps

—r\ w— 2z
fo iw +— <p_)w—zz’ (3.14)
52
fPrw - e (L logw_z2. (3.15)
211 W — Zo

Proof. Let us first define two disks D; and Dy. Dy is the unit disk, i.e. Dy :={z €
C||z| < 1}, which has punctures at ps,,0 and local coordinate maps:

Gps, "W e (2_—7— logw — sl) : (3.16)

w3

go:w — 1 tw. (3.17)
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D, is the disk {z € C||z| > |ps,|} which has punctures at p,,, 0o and local coordinate
maps:

% (T (3.18)
Tw o e — logw —s5 |, .
—r
Joo 1 W +—  —. (3.19)
w
It is not hard to see that the surface C' in Figure 1 can be obtained by sewing the
puncture 0 € D; with the puncture oo € D, according to the usual definition of interior
sewing operation. Then it is enough to show that D; and D, are conformally equivalent

to P and @) respectively. We define two maps h; : Q1 — D7 and hy : Q9 — D5 as follow:

w — 21
hi:w — ps =

w — 21

w — 29
h2 w = p82

w — 29

It is clear that hy and hs are both biholomorphic. We can check directly that h; and ho
map punctures to punctures and preserve local coordinate maps as well. [ |
Using (2.33), we obtain the the algebraic realization the annulus C' in Figure 1 as
follow:
v @ vy = (TF @ TV 15y (21, 20)(Tovy), (T3 @ T5) 1y, (22, %) (Tuvy))a - (3.20)
where T} IL BT, T?)L B Ty are conformal transformations determined by local coordinate
maps f.,, fég), ,3(21), éi), and (T} @ TR)* is the adjoint of T @ Tf* with respect to the

5LL(0)

bilinear form (-, )y for i = 1,3, and v} = e~ 2 Oy, and v}, = 2 2Oy,

Lemma 3.3. Recall the convention (0.2), we have

—L(0) - 7o Lo
TE = (2 - %) EO) L) (&) TR =T = Zl)L(o)eL(l) (Zﬁ) , (3.21)
r r
) 1\ L@
T, = ezlL(l)(zl _ 21)_L(0)U(1) <__) , (322)
T
L(0) . L(0)
T?)L = (Z— Z2)L(0)6_L(1) (@) 7T?f[2 = (% — Z2)L(O)€_L(1)(&> , (3.23)
r T
1\ L©
T, = e2tW(z, — 2)~ Oy (1) <__) , (3.24)
T

Proof. From (3.12) and (3.14), we obtain

d
npd _.2d (Ps; \¥da
foiw — (21— 7)) Fdme s (Tl) T

r=w-—2z1

d
_ _pd g2d (Dsy\ Fdz
foiw > (Zy— 29) Tame” ds <—2> x
r

(3.25)

T=w—29
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Then (3.21) and (3.23) is obvious. Notice that the expression (3.21) is independent of
our choice of branch cut as long as we keep the convention (0.2).
From (3.13) and (3.15), we obtain

= [e'e] j 1 —CCH e
FO () = e—zw%(zl _ gl)w%ezjzlAjﬂ“%(gm)—r% <__) e3 T (3.26)
T p==L
[e'e] j 1 xd:c s
FO () = e—zzw%@ _ Zz)%ezjzlAﬂ”%(gm)—r% <__) e~ 5 E g (3.27)
T O

Recall that féé), fg) are both real analytic. Similar to the proof of Lemma 3.1, to show
(3.22) and (3.24) is enough to show that

L(0) .
(OO = (2 — 2)LO) (277)LO) <_l) o~ B L0) (3.28)
T
MO = (7= ) Wm0 (1) e (3.29)

for some b, b € R,. Using our convention (0.1) and (0.2), it is a direct check that
(3.28) and (3.29) holds. |
The last piece of ingredients needed is from the determinant line bundle on torus. It
says that two different ways of obtain the same torus differ by a factor which depends
on the moduli associated with two sewing operations [Sel][Kr].
Combining (3.11), (3.20) and additional factor from the determinant line bundle on
torus, we obtain the following formulation of Cardy condition:

Definition 3.4. The open-closed field algebra over V' given in (2.12) and equipped with
nondegenerate bilinear forms (-,-),, and (-,-)q is said to satisfy Cardy condition if the
left hand sides of the following formula, Vz1, 2o € H, v1,v9 € Vi,

Trvop (Y;JP(U(Q&)UM %1))/er(u(QSz)e_sz(O)U2a q$2)Q£(O)_C/24)

= (@ & T gy (1, 20) (Tavn), (T @ Tf) 1y (20, 2)(Tava) ) (3:30)

C

converge absolutely when 1 > [gs,| > |¢s,| > |¢-| > 0, and the right hand side of (3.30)
converge absolutely for all si, s, € H satisfying Res; = 0,Resy = % Moreover, the
equality (3.30) holds when 1 > |gs,| > |gs,| > |g-| > 0.

Remark 3.5. The dependence of 21, z, 7 of the right hand side of (3.30) is superficial
as required by the independence of zi, 2o, 7 of the left hand side of (3.30). We will see it
more explicitly later.

Using the definition of boundary states (2.34), (3.30) can also be written as follow:

TrVop (Y;p(u(qsl )Ulv qs, )np(u(qsz)e_%”L(O)U?v qs2>q£(0)_6/24>
Ps L) Ps L) —c/24

— ( B..(1yw), (_ : ) % (__) B (Ts) | . (331)
p81 p51 T o

32




3.2 The second version

In this subsection, we rewrite the Cardy condition (3.30) in the framework of intertwining
operator algebra [H5]-[HS].

Since V' satisfies the conditions in Theorem 0.1, it has only finite number of in-
equivalent irreducible modules. Let Z be the set of equivalence classes of irreducible
V-modules. We denote the equivalence class of the adjoint module V' as e, i.e. e € T.
Let W, be a chosen representative of a € 7.

For any V-module (W, Yy ), we denote the graded dual space of W as W’ ie. W' =
®nec(Wey)*. There is a contragredient module structure on W’ [FHL] given by a vertex
operator Yy, which is defined as follow

(Y (u, 2)w', w) := (w', Vi (e7FWg=2LO00y g7 1yap) (3.32)

forue Viwe W,w' e W. (W' Y];,) (or simply W) is the only module structure on W’
we use in this work. So we can set Yy := Y];,. We denote the equivalent class of W/
as a'. It is harmless to set W/ = W,,. Moreover, W” is canonically identified with W.
Hence a” = a for a € 7.

By assumption on V', V' =2 V' ie. ¢ = e. From [FHL], there is a nondegenerate
invariant bilinear form (-,-) on V such that (1,1) = 1. This bilinear form specifies a
unique isomorphism from V to V’. In the rest of this work, we identify V'’ with V' using
this isomorphism without mentioning it explicitly.

For any triple V-modules W7, W5, W3, we have isomorphisms

Q,: me//fwz — VWM//;Wl’ Vr € Z

given as follow: '
Q. (V) (ws, 2)wy = LD Y (wy, e HI™ )y, (3.33)

for Y € VVVII,/E"% and w; € W;,i = 1,2. The following identity

Q,« o} Q—r—l = Q—r—l o QT =id (334)

is proved in [HL3].
ForY e VMM//fWZ and r € Z, a so-called r-contragredient operator A, () was introduced

in [HL3]. Here, we use two slightly different operators A,()) and A, () introduced in
[Kol] and defined as follow:

<AT(y) (wh e(2r—|—1)7ri$>wé7 w2> — <wg’ y(emL(l)x—2L(0)w17 x_l)w2>,

(A (P) (wr, ywly, wa) = (wh, V(e Va2 0wy, Bribmg=twy) - (3.35)

for Y e me;fwz and wy € Wi, wy € Wy, wy € Wj. In particular, when W; = V and
Wy = W3 = W, we have A, (Yiw) = A,(Yw) = Yy = Yipr,Vr € Z. If Y € V7, then
AD), A(Y) e V&gfwé for r € Z and

A oA (V) =A, 0 A (V)= D. (3.36)
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Let Y € V* . We define o193 := (2, 0 flr. It is easy to see that

ajaz*
<w;37 y(wal ) x)w@)

= <€_m71L(_1)0123(y) (w;:;? x_1>€_mL(1)x_2L(0)wal ) w112> (337>

for wa, € Wy, wa, € Wa,,w,, € W, . It is also clear that o123 is independent of r € Z.
It is proved in [Kol] that o3,; = idygs, . We also denote 0135 as oy39. Clearly, we have

~

0132 — Ar o Q—r—l and

<0132(y) (wl, x)wg, w2>
= (wh, e MDY (g, a7 e g 2O ) (3.38)

for wa, € Wa,, wa, € Wy, wy,, € We..
For any V-module W, we define a V-module map 6y : W — W by

w. (3.39)

‘9W CwW = e—27riL(0)

For W,, we have Oy, = e~2"aidy;, where h, € C is the lowest conformal weight of W,,.

We denote the graded dual space of V,; and V,, by V and V) respectively. Let

Qe Va — Vi and @,y 0 V,, — V), be the isomorphisms induced from (-, )y and (-, -)op
respectively. Namely, we have

(ur,u2)a = {(@alur), uz)
(V1,02)0p = (Pop(V1), v2) (3.40)

for uy,us € V; and vy, v € V.
V. as a conformal full field algebra over V ® V' can be expanded as follow:

Vi = ONAW,, 0 ® Wopgo (3.41)

where rr,rg : {1,..., Ny} — Z. For a € Z, we choose a basis {€4q}aen of W, and a
dual basis {e],.,}aen of W,. Then

{er ()0 ® rpi),ati=t,...Noa,8eN (3.42)

is a basis of V; and
{4@1(6/”(@');0[ ® €;R(i),g)}i:1 ..... Nep,o,8€N (3.43)
is its dual basis with respect to the nondegenerate bilinear form (-, -).
Let T : Cygy — Cy be the tensor bifunctor. We showed in [Ko2| that there is a
morphism ty_p, @ T(Vy) — Vo in Cy (see (3.81),(3.82) in [Ko2] for definition). We

define a morphism ¢, . : T(V}) — V,, as a composition of maps as follow:

-1
L, T(V’l) T(Socl )

cl—op : cl

T(Vy) <=2V, (3.44)

By the universal property of tensor product X ([HL1]-[HL4]), me//fwz and Homy (W7 X
Wy, W3) for any three V-modules Wy, W5, W3 are canonically isomorphic. Given a mor-
phism m € Homy (W; X Wy, W3), we denote the corresponding intertwining operator
as V. Conversely, given an intertwining operator ), we denote its corresponding mor-

phism as my. Therefore, we have two intertwining operators }, , and ychHp corre-

/

sponding to morphisms t¢—op, and ¢y,

respectively.
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Lemma 3.6. For z € H, we have

Ld_op(z’ 2)(67"L(i)7a ® 6TR(i)7ﬁ) = eZL(_l)chlfop(erL(i)vo” = Z)QTR(i)va' (345)
Proof. 1t is proved in [Ko2] that

mYclfop = mYOJ; © (LCZ—O]J IX idVop)' (346)
Using (3.46), when z € H, ¢ € H and |¢| > |z — ¢| > 0, we have

bel— Op( C)(eTL(Z) ® eTR(i),ﬁ) = YCl—Op(eTL(i),a @ €rp(i),8; % C)lop
- O‘Q(y['d op(eTL(i) ) &= C)eT’R( ) B C)]-
CL chl op (eT’L(Z) ay < g)erR(i)ﬂ- (347)

By the convergence property of the iterate of two intertwining operators, the right hand
side of (3.47) is a power series of ¢ absolutely convergent for || > |z — (| > 0 . By
the property of power series, the right hand side of (3.47) must converge absolutely for
all z € H,( € H. Because analytic extension in a simply connected domain is unique,
we obtain that the equality (3.47) holds for all z € H,¢ € H. When ¢ = z, we obtain
(3.45). |

Now we consider the both sides of Cardy condition (3.30) for an open-closed field
algebra over V. On the left hand side of (3.30), we have ¢;, < 0. Using (1.25) and
(3.33), we obtain, Yvg € V,,,

}/;p(u(q82>v27 q32)U3 = 6_‘qs2‘L(_1)np(U3v |qsz|> u(q82>v2

Qo1 (V) U(qs2) 02, €™, v (3.48)
Hence we can rewrite the left hand side of (3.30) as follow:
Ty, (Yo U (6501, 4s) Q-1 (V) U (g5, )e > O, g, g7 O ~/2") (3.49)

for qs, > |gs,| > |g-| > 0.
We have the following result for the right hand side of (3.30).

Proposition 3.7. For s;,s, € H,Res; =0,Resy =0,

((TL ® TR) cl op(zlu Z1)(75@1)7 q (TL ® TR) cl op(z27 22)(T4U2))Cl
Ng; ' 1 L(0)
= ZTI'WT-R@) 6_2ML(0) yl (u(Q—}-ﬁ) <_;) U1, q—sl)

1=1
1\ 2O .
Vs <U(q_;@) (—;) vt | a0y (3.50)

. . W, W’ .
where YV, and Yy are intertwining operators of types (V V[f},” ) and (v "L () ) respectively
op T, (8) opWVrp (i)

and are given by

Vo= 0123V, )0 (Pop ®idwy ()) (3.51)
Yo = Qolo12(Vi,,)) © (0op @idw,,))- (3.52)
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Proof. Let z3 := 21 — z; and z4 := 25 — Z5. By (2.28) and (3.45), the left hand side
of (3.50) equals to

((TL@TR) v op(21,21) (Tovy), (T3 @ T30 1%y, (22, 22) (Thv2) )t

= Z (T @ T 1 (20, 2) (Tava), €y i)0 @ Ernin )
=1 «o,8

(Spcl ( €rL(i),a ® e;“R() ) (TL ® TR) cl op(zlﬁ 21)(T2'U1)>Cl
cl
= Z Z (T4U27 Lcl—op(z% Z2>(T3L€7‘L(i),a ® TgRerR(i),,B))op
i=1 o,3

(Lcl—op(zla51)(@&1(T1L€;L() ® T, €1 (i), ))7T2U1)op

Ncl
= Z Z (T4U2, eEQL(_l)chl,op (TgLerL(i),au 2o — 52)7?67’3(%')76)0,,

=1 o,8
<€21L(_1)yucl (TlLe;“L(i),oN 21— zl)TlReidR(i)“@, TQUl)op
Ncl
= Z Z <¢OP(T4U2)7 Z2L chl op (TLeTL(Z) ) Z2 )TgReTR(Z)76>
i=1 o,0
(e aL(=1) chl op(TlLerL(z)ou 21— Zl)TlRe;R(i),ﬁ’ Pop(Tov1) )
Ncl 1 B
=33 (e 1 (D) (e O Tws), 277)
i=1 o,0
2 MO ke ) o) Ther s
(T 0 € 000V, (e 0T, 237)
23—2L(0) —z3 'L(1 )TL ;L(Z)O)
-1
= ZZ o123V, op ) (Pop(e _ZQL(I)Twz) ) JHEO) gz L(I)T?)Lem(i)w
=1 o,8
€z4 L(l)T Crpi).3 ><6 A0 (TR)* —z;lL(—l)_
—1
o128V, ) paple W Tovn), 251z 2 Ve MO e ) )

Ncl
1 B ~ L
- Z Z< Erp(i)as (T?,L)*€Z4 L(_I)Zz; 2L(O)Ao o 0123(3}@7@)(6 4 L(I)ZiL(O) .

i=1 O‘vﬁ
zZ —1
SDOP(e_ZQL(l)TzLUz) e” 24) ()T Err(i), ><6/rn(i)76> (Tlll%)*e_z3 L1
_ ot
r123(Vr_ ) (ople O Tyy), 2512 2 Ve EO kel ) ) (3.53)

We define two intertwining operators as follow:
yl(O) — 0123(3}@70 ) (‘pop ® 1dW ()>
Vi = Ag(0138(Va ) © (0op @ idduy_ ). (3.54)
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Using (3.21),(3.22),(3.23) and (3.24), we further obtain that the left hand side of (3.53)
equals to

N
Pa \ MO —2L(0
> Aenma (f) (72 — 22)@ 220

i=1 a,8

0 2L(0 1 L(O) 1
(O (2250 (5, — 2)~LO(1) (“) vz, €"'2)
T

———L(0) L(0)

Ds1\ =
eT’R(i)ﬂ><eer(i),ﬁv <—1) (Zl—zl)

r

0),_~L(0 1\ " _L(0) (Psy \ MO
O (<2) o () )

T T

—ZTer I U (=1/7) O, B E VP (U ps, ) (=1/7) "0, p,,) - (3.55)

where B = p,,(Z; — 2)2; €™ 24 and

_ - ——LO)_r0)—~_ —L _
Ey = pgg(O)(ZQ - 22)L(0)Z4 2L(0)(Z2 - Z2) pSQL(O)pS1 L(O)Zl — 21 (0)23 Ho )pS1L(O)‘

For Ey, since z; ' is obtained by operations on intertwining operator where z4 is treated
-1 —-1,—i%
formally, z;* really means |z4|~'e™*= . Therefore, we have

B, =pge? e ™MeMe? =*Mp,,. (3.56)

For Es, keep in mind (0.1) and (0.2), we have

P, 2L(0) ) £0) ar(0) L(0) — L(0) — \—L(0)
By = Dy, (22 = 22)" 22 —2) V(R —2) (a—z1) (a1—2)
S1
= MO B0 2FL0) o L0) o~ FLO - FL(O)
_ Qf(;o) o—2miL(0) (3.57)

T

Therefore, we obtain that the left hand side of (3.53) further equals to

Z Trw; Q5 4”) (u(pSQ) (—%) v Vs, p82>

L(0) —2mi 0) 1\
¢ 6—27‘(2L(O) yl L[(psl) (—;) U1, Ps; |, (358)

T

where we have used the fact that Y(-, e*™z)- = Q(Y)(-, x)- for any intertwining operator
Y. By using the property of trace, it is easy to see that (3.58) multiplying ¢ 54 is nothing
but the right hand side of (3.50). |
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Remark 3.8. It is easy to check that the absolute convergence of the left hand side of
(3.53) by our assumption easily implies the absolute convergence of each step in (3.53).
Notice that the absolute convergence of the right side of (3.50) is automatic because V'
is assumed to satisfy the conditions in Theorem 0.1. Hence, by tracing back the steps
in above proof, we see that the absolute convergence of the left hand side of (3.50) is
also automatic.

Now we recall some results in [H10][H11]. We follow the notations in [HKo03]. We
denote the unique analytic extension of

TrWal yau(l) (u(e%riz)wa’ e27riz)q£(0)_ﬁ

aal;t

in the universal covering space of 1 > |¢,| > 0 as

E(Tl"wal yal ;(1) (u(e27riz),wa’ 627riz)q£(0)—ﬁ ) .

aai;t

By [Mi2][H10], above formula is independent of z. Consider the map: for w, € W,

Uy (VDY w, — E(Trw, YD U™ )w,, e272)gr "5, (3.59)

aa;t aal;t

We denote the right hand side of (3.59) as \Ill(ya“(l))(wa; z,7). Notice that we choose

aai;t
to add z in the notation even though it is independent of z. We define an action of

SL(2,7Z) on the map (3.59) as follow:

((Z Z)(@ﬂyESUO(wwar) (3.60)

& 2mi 1\ > L(0)— £
- ai; miz' iz — 24
=E | Trw, Ve | UE™) (CT n d) W, € q, >

where 7/ = Z:IS and 2/ = ri—d’ for ( CCL Z ) € SL(Q,Z) and w, € W,. The fOHOWiIlg

Theorem is proved in [Mi2][HS].

Theorem 3.9. There exists a unique A% € C for as,as € I such that, for w, € Wy,

azas

(1) o 1L\ L(0)
ai; iz iz -
E TrWal yaalgi I/{(6 ) (CT + d) w(17 € qT’

— Z Aij E(TrWal ya2§(2) (u(627riz)wa’ e27riz)q£(0)—2%) (361)

o

aiaz aaz;j
az€l
/! __ at+b /
where 7' = 40 and 2 = 2
. . 0 1 .
In particular, the action of S = 10 )om (3.59) induces, for each a € Z, an

automorphism on @,, 7V | denoted as S(a). Namely, we have

aail?

ST (VD)) = Wy (S(a) (Vi) (3.62)

aal;t aal;t
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Combining all such S(a), we obtain an automorphism on @, q,ezV5s, . We still denote it

as S,1.e. S = @uerS(a). Then S can be further extended to a map on ©ga,ezVel, @Vs 4,
given as follow:

asz;(1 a;(2 asz;(1 a;(2
S @ ye ) = Sty @ yui) (3.63)

There is a fusing isomorphism map [H7]:

F : BoerVita @ Vo, = BrerVis @ V0, (3.64)

for ai,as,as,a4 € Z. Using the isomorphism F, we obtain a natural action of S on
@b,asvglgb ® ngaa’

It is shown in [HS8] that the following 2-points genus-one correlation function, for
ai,az,a3,a0 €L, 0 =1,... ,Ng2 ,j=1,...,Ng . and w,, € Wy, , k= 2,3,

ai; a; L0)—5;
TrW yac;(;zn(u(q22>ya27£123);j(wa27 £ Z2)wa37 QZ2>qT( : # (365>

al

is absolutely convergent when 1 > |€™2| > |¢,| > 0 and 1 > [e?™*17%2)| > () and single-
valued in the chosen branch. It can be extended uniquely to a single-valued analytic
function on the universal covering space of

‘]\412 = {(21722a7) € C3|Zl 7& ) +p7— + qavpvq € Z>7- € H}

This universal covering space is denoted by Mf We denote this single-valued analytic
function on M? as

L(0)

a1;(1 a;(2 — 5
BE(Trow, Vi D U(qe) VER) (Ways 21 — 22)Wag, @3)ar . 2).

1

We denote the space spanned by such functions on Mf by Gi.2.
For Y2 e o and Y52 e pe

i o s wpazs We now define the following linear map:

\112(375;1(1) ® ys;(a?;j) D Oy bsezWh, @ Wiy — Gyo
as follow: the map restricted on W;, @ W, is define by 0 for by # ay or bs # ag, and by
ai; a; L(0)—=X
B(Trw, Vool U(@:) Vil (e, 21 = 22wy g2)ar ), (3.66)

for all w,, € W,,,k = 2,3. The following identity was proved in [H10].

o . 1\ “® 1\ 4 1 1 1
<\D2(ya;;(j) ® yfl;fs);j) <(__) Way ® (__) Wag <__Zla — %2 __)
T T T T T
= (Va(SOLS © Vi) (s © way)) (21,22, 7). (3.67)

One can also produce 2-point genus-one correlation functions from a product of two
intertwining operators. It is proved in [H8] that Yw,, € W,k = 1,2,

aq;(1 as;(2 L(0)— 55
Tryw,, Vel (U(ge ) War s @) Ve UG Wars 42 )0 2 (3.68)
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is absolutely convergent when 1 > [g., | > |q.,| > |¢;| > 0. (3.68) has a unique extension
to the universal covering space M?, denoted as

aq;(1 as;(2 L(0)-
B(Try, Vo U (0 e, 4o ) Vo U (02, 0y, 025)ar 7). (3.69)
Such functions on Mf also span Gy,2. We define a map

\112(ya1a3 1 ® yt[zl;m ]) : EBbl,bQGIWbl ® WbQ - Gl;2 (370>

as follow: the map restrict on Wy, ® W), is defined by 0 for b; # a;, by # as, and by
(3.69) for w,, € Wa,, wa, € Wa,.

It was proved by Huang in [H8] that the fusing isomorphism (3.64) gives the following
associativity:

aq;(1 as;(2 L(0)—55
E(TrWa4 yafag 2(u(q21 )wal ) qzl)ya;agl;; (u(qzz)wazv q22>q7' # )

_ 3;(2) a;(3)
ZZF alaal 2a4j’yaja4k®y1a2l)

as€Z k,l

a; as; L(0)~o7
E(TrWa4 yagagl?zgﬁ(u(q22>ya1a(2%3 (waw <1 Z2)wl127 q22>q7( 7 )7 (371>

where F' (yalas L yjjaﬁfj, y;le R Voo ™)) is the matrix representation of F in the basis
{y;lfafl ® yssa“}”,{ 5a4 k Yo @ }a. Therefore, Yw,, € W, ,k = 1,2, we obtain

10,21
. . 1\ X 1\ X 1 1 1
a: 7(1) a,(2) .
= (\IIQ(S(yala i ® yt‘llgslz;g ]))(wm ® waz)) (Zla 22, T)' (372)

Combining (3.49), (3.50), (3.51), (3.52) and (3.72) and Remark 3.8, we obtain a
simpler version of Cardy condition.

Theorem 3.10. The Cardy condition can be rewritten as follow:

(QWT-R@ © 0123(3}4[,0 ) © (¢op ® idyy ())) ® (Q(o132(Vs,,)) © (Pop ® idWr'R(i)))
=S (V) @ (Q1(Y]) o (B, ®idy,,))) - (3.73)

4 Modular tensor categories

This section is independent of the rest of this work. The tensor product theory of
modules over a vertex operator algebra is developed by Huang and Lepowsky [HL1]-
[HL4|[H3]. In particular, the notion of vertex tensor category is introduced in [HL1].
Huang later proved in [H12] that Cy is a modular tensor category for V' satisfying
conditions in Theorem 0.1. In Section 4.1, we review some basic ingredients of modular
tensor category Cy. In Section 4.2, we show how to find in Cy a graphical representation
of the modular transformation S': 7+ —= dlscussed in Section 3.2.
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4.1 Preliminaries

We recall some ingredients of vertex tensor category Cy and those of modular tensor
category structure on Cy constructed in [H12].
There is an associativity isomorphism A

Ang(WQ@W3)—>(W1@W2)®W3

for each triple of V-modules W7, W5, W3. The relation between the fusing isomorphism
F (recall (3.64)) and the associativity isomorphism A in Cy is described by the following
commutative diagram:

@GSEIVSILIH ® Vggas i> HomV(Wa1 X (Waz X Wa3)> Wa4) (4'1)

l]—' l(Al)*

BagerVid,, @V, == Homy (W, K W,,) K W,,, W,,)

where the two horizontal maps are canonical isomorphisms induced from the universal
property of X.

We recall the braiding structure on Cy . For each pair of V-modules Wy, W5, there is
also a natural isomorphism, for z > 0, Rf(z) : Wi Rpy Wo — Wo Rp,y Wi, defined by

where 7, is a path from —z to z inside the lower half plane as shown in the following
graph

(4.3)
The inverse of Ri(z) is denoted by RI_D(Z), which is characterized by
R (w, Mpe) wi) = e"CVT,_(wy Rp(_.) ws), (4.4)
where y_ is a path in the upper half plane as shown in the following graph
—2z 0 z : (4.5)

We denote Ri(l) simply as R+. The natural isomorphisms R give Cy two different
braiding structures. We choose R as the default braiding structure on Cy,. Sometimes,
we will denote it by (Cy, R, ) to emphasis our choice of braiding isomorphisms.
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Notice that our choice of Ry follows that in [Ko2], which is different from that in
[HI][H12][Kol]. For each V-module W, (3.39) defines an automorphism 0y : W — W
called a twist. A V-module W is said to have a trivial twist if Oy = idy,. The twist 6
and braiding R satisfy the following three balancing axioms

ewlng = R+ o) 7—\),+ o} (9W1 X 9W2) (46)
9\/ = ldv .
O = (Ow)". (4.8)

for any pair of V-modules Wy, Ws.

Let {Y%} be a basis of V2 for all a € 7 such that it coincides with the vertex
operator Yy, , which defines the V-module structure on W,, i.e. Y2 = Yy,. We choose
a basis {V%} of V2 as follow:

yt[zle = Q—l(ysa>’ (49)

We also choose a basis {V¢,,} of V¢, as
Vaw = Vew = A0(Vi) = 0152(V2,). (4.10)
Notice that these choices are made for all a € Z. In particular, we have
Ve = Qa(Vi)s Via = Yaa = Ao(Vire).
The following relation was proved in [Kol].
Vi = €O (V) = 2 (V). (4.11)

For any V-modules Wy, Wy, W3 and Y € VVV{‘/?WQ’ we denote by my the morphism in
Homy (W, X Wy, W3) associated to ) under the identification of two spaces induced by
the universal property of X.

Now we recall the construction of duality maps [H12]. We will follow the convention
in [Kol]. Since Cy is semisimple, we only need to discuss irreducible modules. For a € Z,
the right duality maps e, : W/ KXW, — V and i, : V — W, XKW/ for a € T are given by

€q = Mye, , Mmye  0iq = dim a idy

where dima # 0 for a € Z (proved by Huang in [H11]). The left duality maps €/ :
WeRW! - Vand i, : V — W, KW®* are given by

/o A . .
€ = Mye mye, 01, =dima idy.

In a ribbon category, there is a powerful tool called graphic calculus. One can express
various morphisms in terms of graphs. In particular, the right duality maps i, and e,
are denoted by the following graphs:

a a’

ty = €q =
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the left duality maps are denoted by

a a

The identity (4.11) proved in [Ko2] is nothing but the following identity:

[ AR

This formula (4.12) 1s 1mphc1tly used in many graphic calculations in this work.

A basis {yjfafl}z e of Vi3, foray, az, a3 € T induces a basis {e;?,,.;} of Hom(W,, X
Ways Way). One can also denote e;?, ; as the following graph:
as
i
“ @2 (4.13)

Note that we will always use a to represent W, and a’ to represent W. in graph for
simplicity. By the universal property of Xp(), the map Qo : V3, — V3, induces a

aiaz asay

linear map € : Homy (W, X W,,, W,,) — Homy (W,, KW, ,W,,) given as follow:

as as
520 . . (g 1
i
& @2 as ap . (4.14)
Let us choose a basis { f;5 ;Vj‘l? of Homy (W,,, W,, ®W,,), denoted by
aq . a9
ala ]
fasl;J'Q -
as s (4.15)
such that
as
a a2 = 5ij
as as . (4.16)
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The following identity is proved in [Kol]

aq Qo (417)
We prove a similar identity below.
Lemma 4.1.
a3
S0 S -
dim b N
as€L 1
ay ay b (4.18)

Proof. Using the first balancing axiom (4.6), we have

P
ERrENRED

-

(4.19)
Then the Lemma follows from the following relations:
. k a4
i b = s O b
l
4 ay (4.20)
b a4 ay . (4.21)
|

Similar to Q, Ay, o123 and o135 can also be described graphically as proved in [Kol].
We recall these results below.

Proposition 4.2.

a3

AO : —
“ @2 al al . (4.22)
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as I

Qg
0123 - ; = i
a a
! 2 ay a , (4.23)
a
3 arl
0132 - i = i
a a
! 2 as |aj. (4.24)

4.2 Graphical representation of S : 7 +— —%
In [HKo03], we defined an action of «, 3 on Wy( géi(;zlz) ® ygz;(azg);q>- More precisely,

Oz(\Ifg(ygéi(;;) ® y;z;g);q)) : 69t127¢13€IVVCL2 ® Was - G1;2 (425>
6(@2(3}3;;(;;19) ® y;z;g);q)) : 69t127¢13€IVVCL2 ® Was - G1;2 (426>

are defined by

(@(Wa(VerD) & VD ) (w5 © ws)
(\112(3)3;1(11, ® y;lzf q))('w2 ® ws; 21,22 — 157T)
BV @ Vi )))(ws ® ws)
= (V(Vai) @ Vel ))(we ® ws; 21,22 + 73 7) (4.27)
it we ® wy € W,, ® W,,, and by 0 if otherwise.

We also showed in [HKo3] that a induces an automorphism on @uerVii ®@ Vg .
given as follow:

—2mihg ai;(1) b;(4)
yaalz ®ya2a33 Z Z € 3F aél(z ®ya2a3g7yazbk ®y3(all)

b,ece Ak,lp,q

F(yagb k ® Q2 (ya;gal l) yg;(f) ® ygz(a63 q)

ygél;? ® ysé(tgjs;Q‘ (4‘28)
We still denoted this automorphism and its natural extension on ®qq,e7Vge, @ Vi, o, bY
a. The following Lemma follows immediately from (4.28).
Lemma 4.3. « can also be expressed graphically as follow:
a: —
a9 as | ay (429)

For 3, we prefer to use maps Ay and Ay defined in (3.35) instead of the map Ay used
in [HKo3]. We obtain the following Lemma, which is proved in appendix.
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Lemma 4.4. (3 also induces an automorphism on @qa,e1Vas, @ Ve, given by

ys;l(i ®ya2a3] ZZZZF ;1;1(2 ®ya2a3]’ya2bk ®ya3a1l)

beZ k1 c€Z pgq

F(AoVaid) © AVl Vi, © Vilil,)

Ao(Viy) ® BVE,). (4.30)
We still denote this automorphism by (3.

Lemma 4.5. § can be expressed graphically as follow:

Q9 as | ay (45} e (431)
Proof. Using (4.30), we can see that 3 is the composition of following maps
1 a b A0®A0
@a7a1€IVCL[I1 ® Vagag - @b alezv 2b ® Va3a1 EBb algjvaza/ & V asb’ (432)
lf
b c A ®
®b7C€IVcb ® Va2a3 @b CEIV cb’ ® Vag[lg

By the commutative diagram (4.1), (4.32) can be rewritten graphically as follow:

(4.33)
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We have introduced S, cr, 3 all as isomorphisms on @ 4,7Vl @ VS They satisfy

aal azas "’

the following well-known equation [MSeil|[MSei2][H11][HKo3|:
Sa= (5. (4.34)

We proved in [HKo3] that S is determined by the identity (4.34) up to a constant S¢.
We will solve the equation (4.34) for S graphically below.

Proposition 4.6.

ai
S(a) : — g S¢ dimas @
7; as €T ’l

a e a N as (4.35)

Proof. Since we know that the equation (4.34) determine S up to an overall constant
S¢. Hence we only need to check that (4.35) gives a solution to (4.34).
Combining (4.31) with (4.35), we obtain that

e 1
— E E S¢ dim ay
baiel k

as 'ay a2( as as ‘b . (436)

ag

The diagram in the right hand side of (4.36) can be deformed as follow:

ol

(4.37)
By (4.18), we have
> Sedimay
as€l k
as / b (4.38)




On the other hand, combining (4.29) with (4.35), we obtain

a1

-1
as 'ay a9 as ‘ b . (439)

Notice the diagram on the right hand side of (4.39) is exactly a deformation of the
diagram on the right hand side of (4.38). Hence we obtain that the map defined as
(4.35) give a solution to the equation Sa = [3S. |

To determine S completely, we need determine S¢. This can be done by using other
identities satisfied by S.

ag

Proposition 4.7.

S Vi) = AV (4.40)
Proof. By the definition of S-cation on yagl o € Vs, we have

. L(0)
W, (S2(a) (VD)) (g 2, 7) = Wy (VD) <TL<0> (_1) wa;_z,7> (4.41)

T

for w, € W,. Keep in mind of our convention on branch cut for logarithm. We have

L1\ EO |
7_L(O) <_> Wy = e’”L(O)wa.
T

Hence we obtain
U (S2(a) (VD)) (wa; 2, 7) = W1 (VD) (" HOw,; —2, 7) (4.42)
By (A.62), we also have

a1;(1)\ / _miL(0 .
\Ill(yaél;i (6 ( )wa7 —% T)

)
= E(Try,, ys;i(ll) (U(e )0y, e_%iz)qL(o)—i)
= B(Trgw, y Ao(Voa ) (T OUET g, ) )
— B(Traw,,y AoV D) U Yw, 27%) g7 )
= Uy (Ag(Ver)) (was 2,7) (4.43)
Therefore, combining (4.42) and (4.43), we obtain (4.40). x

The following lemma is proved in [BK2].
Lemma 4.8. Let D> = > dim®a. Then D # 0 and we have

J )

d1ma2 dlma _
Zaez ) a - 5a1a2

a/ ﬂ a ld . (4.44)
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Proposition 4.9.

. 1
(S9)? = oE (4.45)
Proof. By (4.35), we have
aq K
S%(a) : : — Z(S )2 dim ay dim as
a ¢ ay az,a3€l
(4.46)
Apply (4.12) to the graph in the right hand side of (4.46), we obtain
as
dim CL2 dlm as _ dim ay dim ag @2 C )b
Z - Z D2 ap
a2€T a2€Z ]
a as al t as . (4.47)
By (4.44), the right hands side of (4.47) equals to
ay ay
G i
50,10,3 = 5511“3
al al a \ al : (4.48)
By (4.40) and (4.22), we obtain (4.45). n

So far, we have determined S¢ up to a sign. Now we consider the relation between
S and another generator of modular group T : 7 — 7 + 1. We define a T-action on
U1 (Vga,.i) as follow:

TV (Vayi)) (Was 2,7) = W1 (Vg o) (Wa; 2,7 + 1), (4.49)
It is clear that this action induces an action of 7" on V5! for all a,a; € Z, given by

Tz, = e*mea0 (4.50)

where h, is the lowest conformal weight of W,,.

Lemma 4.10. S and T satisfy the following relation:

(T719)? = 82 = T 1S°T. (4.51)
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Proof. Let w, € W,. We have
- a;(1) .
(T718) (W1 (Vgari ) (was 2, 7)

1\ o
= Uy (Vert) [ 4O <T> < ) Way —2,7 | (4.52)

T—1

Keeping in mind our choice of branch cut. Then it is easy to show that

By (4.42), we obtain the first equality of (4.51). The proof of the second equality (4.51)
is similar. |

Proposition 4.11. Let p, = Y, _; e*?™" dim® a. Then we have

1 o 1 ,
See — _627rzc/8 — _6—27rzc/8' (453>

b— b+

Proof. In the proof of the Theorem 3.1.16 in [BK2], Bakalov and Kirillov proved an
identity, which, in our own notation, can be written as follow:

1 . ¢ 1 . 2¢
St TS = o e H ST,

By (4.51) and the fact p_p, = D? which is proved in [BK2], we simply obtain that

See: 1627ric/8.

j

Using (4.45) and p,p_ = D?, we also obtain the second equality. |
We thus define ' '

D = p_e—2mc/8 — p+e2mc/8. (454>

Notice that this notation is compatible with the definition of D?. Then the action of
modular transformation S(a) on @4, czHomy (W, X W, , W, ) can be expressed graphi-
cally as follow:

ai
S(a): D VR
i 1
a o2 a N as . (4.55)
Proposition 4.12.
|
aq )
S7Ha) : = Ve TP @
i i
a g2 a as . (4.56)
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Proof. Composing the map (4.55) with (4.56), we obtain a map given as follow:
|

a2
dim ao dimas

= Zaz,a_gel— D2 ai
1 1
a o2 a as . (4.57)
Apply (4.44) to the graph in (4.57), it is easy to see that above map is the identity map.
|

Remark 4.13. Bakalov and Kirillov obtained the same formula (4.55) in [BK2| by
directly working with modular tensor category and solving equations obtained in the so-
called Lego-Teichmiiller game [BK1]. In our approach, we see the direct link between the
modular transformations of g-traces of the product (or iterate) of intertwining operators
and their graphic representations in a modular tensor category.

Proposition 4.14.

a ] Q9
J
* . a 1 ai dim as
(5(a))" : J = Daer "B ay
a1 | . (4.58)
a a9
S_l * a 1 ai dim ag / )
(S Ya) s NS Ty, pam .
a1

(4.59)

Proof.  We only prove (4.58). The proof of (4.59) is analogous to that of (4.58).
It is enough to show that the pairing between the image of (4.35) and that of (4.58)
still gives d;;. This can be proved as follow:

_ Z dim a; dim ag
a2z dima1 D2

Z dim ao
a2 D?

(4.60)
By (4.44), the right hand side of (4.60) equals to
a2
T a = i
|
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5 Categorical formulations and constructions

In this section, we give a categorical formulation of modular invariant conformal full
field algebra over V¥ @ VI, open-string vertex operator algebra over V equipped with
invariant bilinear form and Cardy condition. Then we introduce a notion called Cardy
Cv|Cygy-algebra. In the end, we give a categorical construction of such algebra in the
Cardy case [FFFS2].

5.1 Modular invariant Cy:gyr-algebras

We first recall the notion of coalgebra and Frobenius algebra ([F'S]) in a tensor category.

Definition 5.1. A coalgebra A in a tensor category C is an object with a coproduct
A € Mor(A, A® A) and a counit € € Mor(A4, 1¢) such that

(A®idg) o A = (idg ® A) o A, (e®idg) o A =1idy = (idy ®€) 0 A, (5.1)

which can also be expressed in term of the following graphic equations:

T

Definition 5.2. Frobenius algebra in C is an object that is both an algebra and a
coalgebra and for which the product and coproduct are related by

(idA®m)o(A®idA):Aom:(m®idA)o(idA®A), (52)

or as the following graphic equations,

AL,

A Frobenius algebra is called symmetric if the following condition is satisfied.

(5.4)

Let VI and V¥ be vertex operator algebras satisfying the conditions in Theorem 0.1.
Then the vertex operator algebra V ® V% also satisfies the conditions in Theorem 0.1
[HKo1]. Thus CyLgyr also has a structure of modular tensor category. In particular, we
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choose the braiding structure on Cygy to be R, which is defined in [Ko2]. The twist
6. _ for each VI @ VE-module is defined by

0, = e—27riLL(O) ® e27riLR(0)' (5_5)

Duality maps are naturally induced from those of Cy,z and Cy .
The following theorem is proved in [Kol].

Theorem 5.3. The category of conformal full field algebras over VI @ VE equipped
with nondegenerate invariant bilinear form is isomorphic to the category of commutative
Frobenius algebra in Cyreyr with a trivial twist.

Remark 5.4. In a ribbon category, it was proved in [FFRS] that a commutative Frobe-
nius algebra with a trivial twist is equivalent to a commutative symmetric Frobenius
algebra.

Let Z! and Z% denote the set of equivalent class of irreducible V*-modules and V-
modules respectively. We use a and a; for i € N to denote elements in Z' and we use e
to denote the equivalent class of V. We use @ and a; for i € N to denote elements in
7% and € to denote the equivalent class of V. For each a € TF (a € %), we choose a
representative W, (W5;). We denote the vector space of intertwining operators of type

Wag Wag as 3 : a3 as
(Wa1Wa2) and (Walwa) as Vg3, and Vi3, respectively, the fusion rule as Ngs,, and N7,
respectively.

A conformal full field algebra over V¥ @ V¥, denoted as F, is a direct sum of irre-
ducible modules of VI @ VE, ie.

F= @gzlwr(a) ® WF(Q)v (56>

where r : {1,...,N} — Z" and 7 : {1,..., N} — IF, for some N € Z,. Let {ef,;}
and {éél—),j} be basis for V5, and V5, and { C;Z-} and { E;j} be the dual basis respectively.
Then the vertex operator Y can also be expanded as follow:

T’ a)r(B)  gr(@)T(B)y r(v)si _7(7)sJ
Y= Z Z d T(’Y ff(v);j ) €r(a)r(B) ® €r()F(8) (5-7)

a,fByy 4.

where dlﬁ defines a bilinear map
(VT(“/) )* ® (VT(“/) )* T
r(a)r(5) ()7 (8)

for all a, 3,v=1,..., N for some N € N.
Since the trace function pick out v = 3 terms, we define Y% by

diag .__ r(a r( (o) F r(B);i _7(B);4
Yo = Z Z dy fr e €rayr(8) © Cra)r(a): (5.8)

\3

Let Y#9 := " 'Y%49_ Of course, it is obvious to see that such defined Y% is indepen-
dent of the choice of basis. We denote the representation of the modular transformation
S 7 =L on By Vo and @beIRV_ by S*(a) and ST(a) respectively.
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In [HKo3], we defined the notion of modular invariant conformal full field algebra
over VI @ VE (see [HKo3| for the precise definition). It basically means that n-point
genus-one correlation functions built out of ¢-g-traces are invariant under the action of
modular group SL(2,7Z) for all n € N. Moreover, we proved the following results in
[HKo3].

Proposition 5.5. F, a conformal full field algebra over V¥ @ VE, is modular invariant
if it satisfies ¢ — c® = 0 mod 24 and

SH(r(a)) ® (87(7 (@) 71 YE" = Yo (5.9)
foralla=1,...,N.
We first introduce an object H in Cyrgyr as follow:
H = @t gern(Wa @ Wa) B(W; @ Wy). (5.10)

For any object A in Cyrgyr, we choose an arbitrary decomposition of A. It is equivalent
to specify the following maps:

7Ta®t_l;p . A—>Wa®Wa, La®a;q . Wa®Wﬁ—>A, pP,q = 1,...,ma®a,

where m,gs denotes the multiplicity of W, ® W3 in A, such that

(I®(I,p b®l_) ab ab¥pq [[’(Léb[[’(i; G®G§P a®ayp A- ( N )
q
acZl acTR;p

It is clear that 7* and ¢} also gives a decomposition of A’. We define a morphism

a®a,p a®a;p

pa: AR A — H as follow:

MaRa

Ga = Z Z Tagap & L:@Fz;p‘ (512)

aeZl aeTR p=1

Such defined ¢4 is independent of the decomposition of A. Indeed, let f; € W,@W,, f €
W! @ W! be so that (f!, fi) = 1. Let {e;}ien be a basis of A and {e'};en be the dual
basis of A’. Then we have the pairing

Z<f17 7Ta®t‘z;p€i> <Lz®a;qei7 f1> = 5pq (513)
ieN
by (5.11). Namely, {Togap}pei” and {tigq,}pei”, as basis in Hom(A,a ® @) and

Hom(A’, a’ ®a’) respectively, are mutually dual to each other with respect to the pairing
(5.13). Hence ¢4 is independent of the decomposition of A.

Let DY in Cyr and D® in Cyr be defined same as D in Cy (recall (4.54)). There are
two morphisms S% : W, ® W, — W, ® W} in (Cyz, Ry) and SE - W, @ W — Wy @ WY
in (Cyr, R-), defined as follow

b \ v | b \ Voo (5.14)
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Let S*ch = Dy pert SE and SCVR = 69,—1,1;6135’%. By (4.55) and (4.56), it is also clear that
SR in (Cyr,R_) is exactly the map (S®)~'in (Cyr, Ry ). Since (Cyrgyr, Ry_) is also
a modular tensor category, the automorphism S’CV LgvR> which is canonically defined on
H as (5.14), is nothing but @mbeIL;[—l’BeIRgéb ® gg

If (A,va,t4) is an associative algebra in Cygy, then using duality, the map gy :
A® A — Ainduces a map A — A ® A* as follow:

A A A*

A A A . (5.15)

We denote the induced map as u%.

Definition 5.6. Let V* and V% be so that ¢ — ¢ = 0 mod 24. A modular invariant
Cyrgyr-algebra is an associative algebra (A, pa,t4) satisfying

gCVL®VR SROYRS ,UZ =¢a0 ,qu- (516)

Theorem 5.7. Let VX and VE be so that c* — ¢ = 0 mod 24. The following two
notions are equivalent:

1. Modular invariant conformal full field algebra over VI @ VE with a nondegenerate
invariant bilinear form.

2. Modular invariant commutative Frobenius algebra with a trivial twist.

Proof. The Theorem follows from Theorem 5.3 and the equivalence between (5.9)
and (5.16) immediately. |

5.2 Cardy Cy|Cygy-algebras

For an open-string vertex operator algebra V,, over V' equipped with a nondegenerate
invariant bilinear form (-,-),,, there is an isomorphism ¢,, : V,, — V,, induce from
(-, )op (recall (3.40)).

In this case, V), is a V-module and Y;J; is an intertwining operator. By comparing
(1.26) with (3.37), and (1.27) with (3.38), we see that the conditions (1.26) and (1.27)

can be rewritten as

Yo = 95 0o1z(Ya) 0 (g ®idy,,) (5.17)
= Soo_pl © 0132(3/;@) o (idop @ $op)- (5.18)

Remark 5.8. The representation theory of open-string vertex operator algebra was
briefly developed in the chapter 4 of [Kol]. In that context, o123(Y) gives V) a right
Vyp-module structure and the equation (5.17) is equivalent to the statement that ¢,
is an isomorphism between two right V,,-modules. Similarly, 0132(YOJ;) gives V, a left
Vp-module structure and the equation (5.18) is equivalent to the statement that ¢, is
an isomorphism between two left V,,,-modules.
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Theorem 5.9. The category of open-string vertex operator algebras over V equipped
with a nondegenerate invariant bilinear form is isomorphic to the category of symmetric
Frobenius algebras in Cy .

Proof. 'We have already shown in [HKo1] that an open-string vertex operator algebra
over V is equivalent to an associative algebra in Cy .

Let V,, be an open-string vertex operator algebra over V. Giving a nondegener-
ate invariant bilinear form (recall (1.26) and (1.27)) on V,, is equivalent to give an
isomorphism ¢, : Vo, — V,, satisfying the conditions (5.17) and (5.18). If we define

Vo

op op

V/

op

V:)pf V/ ‘/;)p V, ) (520)

then (5.17) and (5.18) can be rewritten as

Vi
JT \ : /i@
Vop Vop - (5.21)
Vop
Po
Pop = Y
Vop Vop Vop Vop (5.22)

Using the map ¢,, and its inverse, we can obtain a natural coalgebra structure on F
defined as follow:

(5.19)

g

Avop = SOOp
Vop

Vo . (5.23)

We showed in [Kol] that (5.21) implies that such defined Ay, and ey,, give V,, a
Frobenius algebra structure. Moreover, we also showed in [Kol] that (5.21) implies the
equality between ¢,, and the left hand side of (5.4). Similarly, using (5.22), we can
show that the right hand side of (5.4) also equals to ¢,,. Thus V,, has a structure of
symmetric Frobenius algebra.

We thus obtain a functor from the first category to the second category.

Conversely, given a symmetric Frobenius algebra in Cy. In [HKol], we showed that
it gives an open-string vertex operator algebra over V. It is shown in [FRS] that either
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side of (5.4) is an isomorphism. Take ¢,, to be either side of (5.4). Then (5.21) and
(5.22) follow automatically from the definition (5.19) and (5.20). They are nothing but
the invariance properties (recall (5.17)(5.18)) of the bilinear form associated with ¢,,.
Thus we obtain a functor from the second category to the first category.

It is routine to check that these two functors are inverse to each other. |

Now we consider an open-closed field algebra over V' given in (2.12) equipped with
nondegenerate invariant bilinear forms (-,-),, and (-,-)q. We assume that V,; and V,,
have the following decompositions:

‘/cl - @iici WTL(i) X WTR(i)a ‘/;J = @f\ﬁf WT(Z)

where rr,rp : {1,..., Ny} — Z and r : {1,...,N,,} — Z. We denote the embedding
b Wiy = Vip, the projection b)) : Vi, — W) and bl5 : W, ) B W, — T(Va)

(4)

by the following graphs:

V;)p T(Z) T(‘/cl)
Vop . () _ ; Voo _
by = Oy = b6y = Z% i
r(i) Vop 5 rr(i)l lrg(i) . (5.24)
We denote the map ty_op : T'(Va) — Vo, [Ko2] by the following graph
Vay
lel—op = %
T(Va) (5.25)

Now we can express the Cardy condition (3.73) in graphs. The left hand side of
(3.73) can be expressed by:

N,
2

Spop
Vop (5.26)
By the universal property of tensor product, for a; € Z,i = 1,...,6, we have a
canonical isomorphism:
BaeVita © Vipay, — Homy (Woy B (Wa, BW,,), We,)
Vi®Ye — my, o (idw, Kmy,). (5.27)

Under this canonical isomorphism, the Cardy condition (3.73) can be viewed as a con-
dition on two morphisms in Homy (Vo, X (Vo, X W, 5)), Wipi)). In particular, the left
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hand side of (3.73) viewed as a morphism in Homy (V,, X (V,, X W, .)), Wy, ) can be
expressed as follow:

rr(1)
i
Vi, : . (5.28)
We define a morphism ¢y, : Vo, — T'(Viy) by
T(Va)
-1
L:l—op = = Soop T(Socl )
Vip . (5.29)

*

Then using the morphism ¢y,

we can rewrite the graph in (5.28) as follow:

v,

op

rr(i). (5.30)

Using (4.55), (5.28) and (5.30), we obtain a graphic version of Cardy condition (3.73)
as follow:

TR(i)
; o
Pop <D )
— dima
ZT’R(i):a D
Vop/ Vop rr(7) Vol Vip|™ a (5.31)

Remark 5.10. (5.31) is not the most efficient way to describe Cardy condition. For
example, using Frobenius properties of V,,, one can easily obtain the following simpler
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version of Cardy condition:

Vop

, . D
i
V()Tﬂ a Vop ‘ a . (5.32)

The asymmetry between chiral and antichiral parts in (5.31)(5.32) is also superficial.
One can find some other versions of Cardy conditions in which such asymmetry disap-
pear. We will not pursue further in this direction. We leave it to the future publications.

We recall a definition in [Ko2].

Definition 5.11. An open-closed Cy |Cy gy -algebra, denoted as (Ayp| Aty tei—op), CONSists
of a commutative associative algebra with a trivial twist A, in Cygy, an associative
algebra A,, in Cy and an associative algebra morphism ¢, : T'(Vy) — V,,p, satisfying
the following condition:

Vop Vop
i | B P ——
™ ]
T(Vcl) Vop T(Vcl) Vop . (5.33)

The following Theorem is proved in [Ko2].

Theorem 5.12. The category of open-closed field algebras over V' is isomorphic to the
category of open-closed Cy |Cy gy -algebras.

Definition 5.13. A Cardy Cy|Cy gy -algebra is an open-closed Cy |Cy gy -algebra (Agp| Act, Ler—op)
such that A, is a modular invariant commutative Frobenius algebra in Cy gy with a triv-
ial twist and A,, a symmetric Frobenius algebra in Cy, and Cardy condition (5.31) hold.

Remark 5.14. As we discussed in the introduction, we believe that the axioms of Cardy
Cv|Cygy-algebra should be sufficient to supply an open-closed conformal field theory of
all genus. However, constructing the high-genus theories is still a hard open problem.

5.3 Constructions

In this section, we give a categorical construction of Cardy Cy|Cygy-algebra. This
construction is called Cardy case in physics literature [FFFS2].

Let us first recall the diagonal construction [FFRS|[HKo2|[Kol|][HKo3]. We will
follow the categorical construction given in [Kol].

Let V,; is be the object in Cygy given as follow

Vi = @aczWa @ W, (5.34)
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The decomposition of V,; as a direct sum gives a natural embedding V @ V' — V;. We
denote this embedding as ;. We define a morphism p, € Homygy (Ve XV, V) by

a
Najay

el = Z Z ‘(113122’ a1a2 alaz7 ; ® ea 1ag3? (535)

a1,a2,a3€A i,j=1

where eala2 ,; and f2192 are basis vectors given in (4.13) and (4.15) and (-, -) is a bilinear

pairing given by

dimasg

(5.36)

Notice that V, has the same decomposition as V; in (5.34). They are isomorphic
as V ® V-modules. There is, however, no canonical isomorphism. Now we choose a
particular isomorphism ¢ : Vy; — V,; given by

—27ihg

e

el = Daer idw,ew: . (5.37)

dim a

The isomorphism ¢, induces a nondegenerate invariant bilinear form on V,; viewed as
V ® V-module.

The following Theorem is a categorical version of Theorem 5.1 in [HKo3]. We give
a categorical proof here.

Theorem 5.15. (V_, e, L) together with isomorphism oo gives a modular invariant
commutative Frobenius algebra in Cygy with a trivial twist.

Proof. 1t was proved in [Kol] that (Vi fia, te) together with isomorphism ¢, gives
a commutative Frobenius algebra with a trivial twist.

It remains to show the modular invariance. The bilinear pairing (-, -) given in (5.36)
can be naturally extended to a bilinear form on @, 4, ez (Wa,, W, KW, ). We still denote
this bilinear form as (-, -). Then to prove the modular invariance of V,; amounts to show
that the bilinear form (-,-) is invariant under the action (S™')* ® S*. Clearly, when
l() # a)’,) ((S7Ha)) fars, (S(b))* flf’f’p = 0. When b = d/, we have (using (4.58), (4.59) and

4.44

dim a ’
(S™H (@) fam, (@) fty = S SEE b

az3€l

a3
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a

. 5(11 b}
dim a4

ai

Now we give an associative algebra in Cy. Let
V;)p = @a,bel' Wa X Wl: (538)

Let e : WKW, — V and i, : V — W, KW/ be the duality maps defined in [Kol].
Let VD = 31980 We define Lop as the following composition of maps:

- BqeTia
top VL Bt W R 5 Vi, (5.39)

1 a a
L”‘”'_aezzﬁ U . (5.40)

We define the multiplication morphism i, by

Fop -= Z Oaza; V D / \
a1,a2,a3,a4€7L
wlal N a (5.41)
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Vop is clearly isomorphic to V), as V-modules. We define an isomorphism ¢, : Vo, —
V,, by specify its restriction on W, ® Wy as follow:

onp|Wa&Wl§ = ida&b’ (542)
for a,b € T.

Proposition 5.16. (V,,, tiop, Lop) together with ., gives a symmetric Frobenius algebra
m Cv.

Proof. 1t is trivial to see that (V,,, top, Lop) 1S an associative algebra in Cy. It
remains to prove that its symmetric and Frobenius properties, This amounts to prove
the following two identities (recall (5.17) and (5.18))

flop = Pop ©0123(lhop) © (Pop Midys,), (5.43)
Hop = @gpl O 01392 (,uop) o (idVOp X 4P0p>- (544)

For any W = W, X W/, the duality maps can be defined as follow:

ENACRG .
Wm v Vol (5.46)

because the rigidity axioms are obviously true by above definition. Then (5.43) can be
proved as follow:

Za@c&l’ / \ = Za@cél’
a b m b / /

c cla a . (5.47)

The proof of (5.44) is similar. |
Now we define a map te—op : T'(Viy) — Vo, by

bX b\ \jb’
—  Onc
= r\

al ld a \ a . (5.48)

Lemma 5.17.

bX b/
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Proof. By (5.29) and (5.48), we have

T 1o (U]

It is easy to see that the last figure in (5.50) can be deformed to that on the right hand
side of (5.49). n

Theorem 5.18. (V, Vip, tei—op) is a Cardy Cy|Cy gy -algebra.

Proof. Recall that T'(V,;) together with multiplication morphism pip(v,y = T'(pa)op2
and morphism tpv,) = T(ta) © @o is an associative algebra. We first prove that t¢_p
is an algebra morphism. It is clear that tq_qp © t7(v,) = top. It remains to show the
following identity

bel—op © HT (V) = Hop © (Lcl—op X Lcl—op)- (551)
By the definition of @9, that of uy and (5.48), we obtain

o 1
Lel—op © IT(V)) = DapedeT Daig VDdime

Vo (5.52)

(5.53)

Using (4.17) to sum up the indices ¢; and ¢, we obtain that (5.53) further equals to

oo

Za,b,c,dGI Zj %

(5.54)



Using (4.17) again, we obtain

d\ d dK

Zabdezﬁ - \\_j VD /\ j
” ] = D apbder TS

a a’( b wb’ @

o (Lcl—op X Lcl—op)-

d/

AN
@ BTV g )

the right hand side of which is nothing but
The commutativity (5.33) follows from the following identity:

-

ey Vops Lei—op) 18 an open-closed Cy |Cy gy~

(5.56)

In summary, we have proved that the triple (V,
algebra. It remains to show that it also satisfies the Cardy condition (5.31). The left

hand side of (5.31) restricted on ¢ X ¢} C V,, and bX b) C V,, equals to
a

(5.57)

which can be simplified as follow:

a k
a
Seey Oy, dima \J’J — becy Opp, dima w
D / D /
c c b P\ b
5 58
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The right hand side of (5.31) restricted on ¢X ¢} C V,, and bX b} C V,, equals to

Ka

dima o 6ccl 6bb1 dima

"D \J - D
cX ) b X b} a c a , (5.59)

which can be simplified as follow:
a \\
5001 5bb1 dima —_—
D

c d bl a . (5.60)

The right hand side of (5.58) equals to (5.60) because of the following identities:
o9 N
a . 0
oy

o [ by (5.61)
|
One can see from (5.38), the vacuum-like states in V,, forms a |Z|-dimensional vec-

tor spaces with a natural choice of basis vectors. By Proposition 2.18, they give |Z|
fundamental D-branes in V;.

A  The Proof of Lemma 4.30

Lemma A.1. For wy € W,,,w, € Wo, and w, € (W,,)" and Y33, € V33, . we have
(woy, Y(U(2)wa, , 2)twa,)
_ (flr(y)(L[(e(z’"ﬂ)”:p_l)e_(QTH)”L(O)wal, 6(2T+1)ml’_1)wa3, ,wa2>. (A62)

Proof. Using the definition of A,, we see that the left hand side of (A.62) equals to
(A () (e ®FW=2LO1 (), , 6(2T+1)“i:v_1)wa3, Weay)- (A.63)
In [H9], the following formula

e:cL(l)x—2L(0)€(2r+1)7riL(O)u(x>e—(2r+1)m’L(O) — U(l’_l) (A64)
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is proved. Applying (A.64) to (A.63), we obtain (A.62) immediately. |
Now we are ready to give a proof of Lemma 4.4.
Proof. We have, for w,, € W,,, w,, € W,,,

((\112(yaa1 30 ® yaga;; ]))(wG«Q ® wfls))(z17 22 + T, T)
_ E<TrWa ys;i(;;)(u(e2wi(zg+r)) .

1

2miet)) L(O)—Qz)

yggfg)](wam 21— (22 + T))waga € qr

_ZZF U«flll ®ya2a3j’ya2bk ®ya3a1l)

beZ k|l

.yb;(4); (L[(e2”(22+7))wa3> e?mi(z2tT) )QTL(O)_ i) . (A.65)

Using the L(0)-conjugation formula, we can move g, from the right side of Y’ b:(4) .1 to the

left side of yjj (4 . Then using the following property of trace:
Trw,, (AB) = Try, (BA), (A.66)

forall A: W, — W,,, B : W,, — W, whenever the multiple sums in either side of (A.66)
converge absolutely, we obtain that the left hand side of (A.65) equals to

a1;(3) b;(4)
Z Z F aa1 @ ® ya2a3 90 ya;b K ® yaaal;l)
beZ k|l

c

E (Ter yg;(;);l (U( e2miz2 My, p2miz2 ) y;lzl b(l?;) (U( e2miz1 Yy 2Tz )qTL(O)— 24) .
(A.67)

Now apply (A.62) to (A.67). We then obtain that (A.67) equals to

a1;(1) 2) a b;(4)
DD FY (Vaars @ Vs i Vil ® Vo)

beZ k,l

E <Tr(Wb)’Ar (yd;é?]i)))(u(€(2r+1)7ri€—27rizl )e—(2r+1)7riL(0) Way, e(2r+1)7ri€—27rizl)

[¢5

azaq;l

A (yb;(4) )(u(e(2r+1)m'e—27rizg)e—(2r+l)7riL(0)wa3’e(2r+1)7rie—27rizz)q£(0)_gc4).

Now apply the associativity again and be careful about the branch cut as in [H9], then
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the left hand side of (A.65) further equals to

ZZZZF 3;1(5 ®ya2§12:aj;yszlbk ®yb3(;11)
beZ kil ceT pgq

F(A (yagbk ) ®A (yagall) ycb’ ®y¢§2a3 q)

E(Tr(Wb) qTL(O) (l;b/(5) (u(e(2r+1)m€—2m22) )

_yg;(fg);q(e—(27‘+1)7riL(0)wa2’ eﬂi(zl . Z2))€_(2r+1)ﬂiL(0)wa37 e(2r+1)7ri6—27riz2)) ]

_ZZZZF 3;1(3 ®ya2a3j’ya2bk ®ya3a1l)

beZ k,l cel pygq

F(A (yazbk)®A (ya;;all) ycb’ ®y§2a3q)
E<Ter Q£( )= 21 A (yb;,(g’ )(e(2r+1)m'L(0)

C

yg;%i);q(e—(27’+1)7riL(0),wa2’ 6“(2’1 _ 22))6—(2T’+1)7riL(0)wa3’ e27rizg)) (A68)

Choosing r = 0 and using Y(-, e*™'z)- = Q3(Y)(-, x)-, we obtain
((\112(yaa1 33 ® yagag j))(wCLQ ® wfls))(zlv 22 + T T)
2) . yyani(3) b;(4)
_ZZZZF aall yazglaj;ytmb(k ®y3(a1l>
beZ kil c€I pq

F(Ay(ViiDy @ Ag(Vr ), Y51 @ ye®) )

E(wabfiowi’;“ YRS ) (s 21 — 22ty 27072 )g "0 ) (A.69)

By the linear independency proved in [H11] of the last factor in each term of above sum,

it is clear that # induces a map given by (4.30). |
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