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Abstract

The low velocity dynamic of a doubly periodic monopole, also
called a monopole wall or monowall for short, is described by geodesic
motion on its moduli space. This moduli space is hyperkéhler and
non-compact. We establish a relation between the Kéahler potential of
this moduli space and the volume of a region in Euclidean three-space
cut out by a plane arrangement associated with each monowall.
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1 Introduction

A monopole wall or a monowall is a BPS monopole on R x S x S1. The latter
space is endowed with coordinates (x, 6, ¢) and the product Euclidean metric
dx® + df* + dyp?* with respective circle radii ry and Ty, i.e. 0 ~ 0+ 2mrg and
© ~ ¢+ 27r,. In detail, a monowall is a Hermitian bundle £ — R x S* x S*
of rank h with a pair (A, ®) consisting of a connection A on F and a Higgs
field ®, which is an endomorphism of F, satisfying the Bogomolny equation

*DA(I) = —FA. (1)

Here F) is the curvature of the connection (so in a local trivialization the
curvature two-form is Fy = dA+ AN A where A is the connection one-form),
x is the Hodge star operator, and D4 the covariant differential.
We impose the same asymptotic condition as in [CW12|, namely that the
eigenvalues of the Higgs field grow at most linearly, having the form
o — i
2mrory,

diag(Qir + M) + O(|z[ ™), (2)

as r — +oo, and the connection one-form has the form
—i Odyp — pdb

A= 2

27T,

diag <QLi + Tgoxi’LdQ + r(;xi’bdgo) +O(|z| ™).
Here + = 1,2,...,h. See [CW12, Sec.4] for the detailed discussion of charges
Q" € Q, consistency conditions, and field asymptotics.

As argued in [CW12], it is natural to enlarge the scope of our problem
by allowing for Dirac-type monopole singularities at some points p;, ..., pf;r
and py,...,p, in R x S' x S'. At these points the Higgs field has (up to
unitary gauge transformation) a prescribed singularity

+1
— O n— —
i ( PEE IO ) +0(7 ). (3)
On—1)x1 On—1)x(n—1)

The first study of monopole walls, that we are aware of, was undertaken by
Ki-Myeong Lee in [Lee99], where the deformation theory of monopole walls
with arbitrary compact simple Lie gauge group was studied. The numeri-
cal study by Richard Ward of an SU(2) monowall appeared in [War(7] and
[Warll]. The spectral curve was used in [CWI12] to study the deformation
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theory of U(h) monowalls. Hamanaka et al [HKMI14] used monowall scat-
tering to compute the moduli space asymptotic metric for U(2) monowalls.
The interior of these moduli spaces was probed by Maldonado and Ward
in [MW14] via special geodesics. A systematic description of the asymp-
totic region of the monowall moduli space and classification of the monowall
moduli spaces of real dimension four appeared in [Cheld]. For a general
U(N) monopole, the asymptotic moduli space metric in the regime of widely
separated constituents was found in |[Crol5]. Monowalls relate to a number
of significant problems involving non-abelian Hodge theory [Mocl9], mirror
symmetry [TWZ18], Calabi-Yau moduli spaces and quantum gauge theories
in five dimensions [Chel4, [CDZS19], and integrable systems [Scil7].

1.1 Spectral Data of a Monowall

The Bogomolny equation implies the compatibility of the following linear
system

(D, +1®)V (z,0,¢) =0, 4
(Dy +1Dg)V (2,0, ¢) = 0. (4)

Here D, = D ] is the covariant derivative along the z-direction, etc. It fol-
lows that the holonomy W (s) := V(z,6,27)V (z,6,0)~! € GL(h,C) around
the p-direction has eigenvalues that are meromorphic in the complex coor-
dinate
x + 16
T

e C.

S 1= exp
This motivates introducing the holomorphic spectral curve
S, ={(s,t)|det (t — W(s)) =0} C C* x C*.

Moreover, the asymptotic conditions and prescribed Dirac singularity
conditions ensure that this spectral curve is algebraic, given by P(s,t) =
0, with the spectral polynomial

P(s,t) = Q(s)det(t = W(s)) = > Cpps™t" (5)

(m,n)eN

Here Q(s) is the lowest degree common multiple of the denominators of
the rational functions ¢;(s) appearing as coefficients of the characteristic
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polynomial det(t—W (s)) = t"+q1(s)t" 1 +qa(s)t" 2+. . .+qn(s). This defines
P(s,t) up to an overall constant nonzero factor. This ambiguity can be fixed,
if desired, by imposing the dictionary order on the vertices (m,n) € N and
requiring the coefficient C,,, »,, for the minimal vertex (mg, ng) to be one. The
Newton polygon A is the minimal convex hull of all the points (m,n) € ZxZ
for which C,,, # 0. The height of N is equal to the monopole bundle rank
h.

Note that our preferential treatment of the ¢ coordinate leading to the
definition of the spectral curve was somewhat arbitrary. One can instead
consider the modified holonomy around the 6 direction and obtain a different
spectral curve Sy, now covering the C* factor with coordinate s’ = exp(m;i).

Let Per(N') denote the set of integer perimeter points of N and let Int ()./\/’ )
denote the set of its integer interior points. As demonstrated in [CW12],
the Newton polygon is entirely determined by the charge values ()', and the
numbers of singularities vy and v_, while the perimeter coefficients C,, ,, with
(m,n) € Per(N) are determined by the constants M4 € R and x$* € [0, 27)
appearing in the asymptotic conditions (and by the s-coordinates of the Dirac
singularities p»* +ip?*). See [CW12] for details. The interior coefficients, on
the other hand, are some of the moduli (parameterizing the L? deformations)
of the monopole solution, thus producing a family By of curves (with fixed
perimeter coefficients). In fact, the total number of real moduli of a monowall
is equal to four times the number of internal points: 4 x |Int(A)| and the
moduli space is the universal Jacobian fibration of this family By .

We shall focus on the region in the moduli space with large (), , and
large differences between them (as specified in Section [2{ using the secondary
fan). The generic curve S, for a family By is a punctured Riemann surface
of genus |Int(N')| with |Per(N)| punctures. Since, for any given monowall,
S, is a curve of eigenvalues it (generically) comes equipped with a Hermitian
eigen-line bundle £ — S, with a flat connection V. The triplet (S, £, V)
is the spectral data encoding the monowall solution (A, ®), up to a gauge
transformation, with its parameters and moduli correspondence as follows:

e The holonomy of V around each puncture is valued in U(1) and is deter-
mined by the asymptotic conditions. This is how the |Per(N)| triplets
of parameters (M4, x%", x%") of the boundary conditions translate to

the spectral data [CW12, Sec. 4]: M. + ix%" determine the position of
each puncture, while x7"* determines the V holonomy around it.

e Viewing a (generic) curve S, as a sphere with |[Int(A)| handles, one
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can associate each handle to an internal point (m,n) of N" and choose a
symplectic homology basis {Ay, By/|AfNBp = dsp, AfNAp =0 = BN
By} of the compactified Riemann surface S, with each pair (A, By) =
(Amn, Bmn) associated to f = (m,n)-th handle. Thus, each internal
point f = (m,n) € N has four moduli associated to it: two real moduli
Ry and Oy in C,,,, = exp(R; +10) and two moduli &y ~ &, + 27 and
Ty ~ Ty + 2 specifying the holonomies €€/ and e/ of V around the
cycles Ay and By, respectively.

Let us emphasize an important distinction between parameters and mod-
uli. Variations of moduli correspond to L? deformations of the solution (A, ®)
of the Bogomolny equation , while variations of parameters result in de-
formations of the solution that are not square integrable. Physically, moduli
correspond to all directions in the space of (gauge equivalence classes of) so-
lutions that have finite mass, while the parameters are the remaining trans-
verse coordinates. As a result, a monowall can slowly evolve in time with
moduli changing, while all parameters will have to remain fixed, since their
time evolution would require infinite energy. In other words the space of all
monowalls with the given Newton polygon N is fibered over the parameter
space. The base is parameterized by the 3|Per(N)| parameters and the fiber
is what we call the moduli space. The coordinates on the moduli space are
the 4|Int(A)| moduli. The L? norm on the tangent space of pairs (A, ®)
induces the metric on each moduli space.

1.2 The Crystal

Given a monowall and its spectral polynomial, consider the set of planes
{(z,y,2) |2 =mz +ny +In|C,, .|} C R (6)
Let us call the convex domain above all of these planes the cut crystal:
Cout = {(x,y,2) |2 > mz +ny + In|Cpnl, Y(m,n) € N'}. (7)
Its surface is the graph of the function

M(x,y) = (n?}f)%\/{mm +ny +In|Cp,ul}- (8)

The shape of the cut crystal depends on the moduli (and parameters) and we
shall be interested in how its volume changes with the change in the moduli



Ry.n = In|C,, ,|. Since the cut crystal has infinite volume, to keep track
of these changes, let us also consider the domain above all of the perimeter
planes only:

Co={(z,y,2)| 2 > mz+ny+In|Cpnl, Y(m,n) € Per(N)}. 9)
Call it the the blocked crystal. Its surface is the graph of the function

m(z,y) (mml)lé%ﬁ(jv){mx +ny +In|Chal}
It is completely determined by the asymptotic conditions and is independent
of the moduli, and it satisfies m(z,y) < M(z,y). Thus, clearly, C.., € Co
and the planes corresponding to the interior points of N cut C.,; out of the
blocked crystal Cy.

We call the volume of the difference of the two crystals Cy and C,.,; the
cut volume

V(Ry¢) :== Vol (Cy \ Ceur) = Vol{(z,y, 2) |m(z,y) <z < M(z,y)}.  (10)

It is a function of [N variables Ry, one for each integer point of A.

Intuitively, for large moduli a monowall would split into subwalls, as
demonstrated in [Crol9]. As argued in Section [2| the subwall positions are
well approximated by the x—positions of the vertices of this cut crystal. It
was conjectured in [Cheld] that the K&hler potential of a monowall moduli
space is related to this cut volume . This paper refines this conjecture and
proves it. This is based on the asymptotic metric found in [Crol5], obtained
by analyzing subwall dynamic interactions via the Gibbons-Manton approach
IGMO95], reviewed in Sections [3| This metric approximates the metric on
the moduli space end with exponential accuracy. The Kéhler potential of
this asymptotic metric is presented in Section [} This Kéahler potential, in
turn, is the Generalized Legendre Transform (GLT) of Lindstrém and Rocek
[LR8S, HKLRST] of the function G. The main result of this paper is that
the GLT function GG encoding the asymptotic monowall metric equal the cut
volume:

G=V. (11)

The exact meaning and the proof of this relation are spelled out in Section [5]
It can be summarized as follows:

in the regime of far separated subwalls the monowall Kdahler potential is
the Generalized Legendre Transform of the cut volume.
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2 Subwall Positions and Spectral Curve Branch
Points

As monowall moduli increase, the monowall splits into subwalls. Let us
explore the dependence of these subwall positions on the moduli.

2.1 The Secondary Fan and the Monowall Spine

There is significant information about the monowall contained in the cut
crystal. Its surface consists of

1. faces (each face contained in one of the planes () and thus each has an
associated integer point f = (m,n) € N),

2. edges at which these faces meet, and
3. vertices.

The projection of the cut crystal edges and vertices on the (z,y)—plane is a
graph, that we call the spine, as illustrated in Figure [} From this description
the spine is dual to a regular subdivision [GKZ08, Chs.6 and 7] of the Newton
polygon N, in which the two integer points of A/ are connected by an edge if
and only if the corresponding faces of the cut crystal meet at a crystal edge.
Each spine edge is normal to the correspoinding edge of the subdivision of
N.

A regular subdivision is defined in the following way. Consider a real
valued function I(m,n) on the integer points of A/ and the convex hull in
R3 of the set of downward rays {(m,n,z)|(m,n) € N,z < I(m,n)}. The
part of this hull’s surface that is not vertical is a graph of a concave function
over the interior of N in R2. Let us call it the tent function. It is piecewise
linear, with corners at (some of the points) (m,n,l(m,n)). The edges of this
surface project onto N giving a regular subdivision of N'. (Note, in some of
the literature, e.g. in |[GKZ08§]| itself, such subdivisions are called coherent
subdivisions instead of regular subdivisions.) In our case, choosing I(m,n) =
R, = In|C,, 5| results in a subdivision dual to the monowall spine. Also,
note that the resulting tent function is the negative of the Legendre transform
of the cut crystal surface function M (x,y) of Eq.(g).

As a result, the space R™V! with coordinates Ry = R,,, is subdivided
into cones labelled by regular subdivisions of A/. These cones form the sec-
ondary fan F(N) of N. Moving to infinity within a given cone results in



() (d)
Figure 1: Newton polygon A with colored integer points and two examples
of its regular triangulations (a) and (b). The corresponding spines in black
and their color-coded faces (c¢) and (d), with each face corresponding to an
integer point of A in (a) and (b), respectively.

the monowall splitting into subwalls of certain types, determined by the el-
ements of that corresponding subdivision. Each polygon appearing in the
subdivision corresponds to a subwall.

The secondary fan F(N) is encoded in the secondary polytope Z(N). In
fact, the two are dual to each other: each ray of F'(N) is normal to a face of
Y (N) and the two rays are connected by a wedge if the corresponding faces
of X(N) share an edge. The i—th coordinate of the vertex of 3(N) can be
read off from its corresponding regular triangulation as the total area of the
triangles for which the i—th integer point of A is a vertex. See [GKZ08] for
many fascinating details.

There is a partial order on all regular subdivisions given by refinement.
The maximally refined subdivisions are the regular triangulations with each



Figure 2: Two examples of the tent functions (a) and (b) and their cor-
responding plane arrangements (c) and (d) for the Newton polynomial
F(s,t) =5bs+ Ast — +20t% + Bst? 4 20s*t* — 5¢° with (A4, B) = (120, 27)
(left) and (A, B) = (20,90) (right).

triangle of areaﬂ 1. This is the case we are most interested in here, as it
corresponds to the monowall maximally split into elementary subwalls.

Each regular triangulation labels a cone (of maximal dimension) in the
secondary fan (see [GKZ08, Ch.6]), with other regular subdivisions labelling
its lower-dimensional cones. According to [Cheldl, Sec.5], the secondary fan
is in the space RWI with coordinates R, », which include both moduli and
parameters). A generic direction lies in the interior of a single cone of the
secondary fan and corresponds to some regular triangulation. Fixing all pa-
rameters, gives a slice RMW)I of RWVT = RIPer)l 5 RIMAN)I - The intersection
of this slice with the secondary fan divides this slice into regions some com-
pact and some noncompact.

The ‘down-facing’ cones of the secondary fan correspond to triangulations
not involving any internal points of A/ as triangle vertices. (These form the
associahedral face of the secondary polytope, its largest face.) The maximally

1As in [GKZO08|, we normalize the area of a basic triangle with vertices (0,0), (1,0),
and (0, 1) to be one, instead of a half.



refined triangulations described above, correspond to ‘upward-facing’ cones.
It is these latter that correspond to asymptotic directions in the monowall
moduli space (the noncompact regions of the secondary cone subdivision of
an RI™W)l slice). Such, regular triangulations describe generic asymptotics
of a monowall moduli space.

To summarize, for a regular triangulation there is the following corre-
spondence illustrated in Figure [T}

1. each face f of the spineﬂ corresponds to an integer point (m,n) in the
Newton polygon N/,

2. each edge of a spine is an interface between faces f; and f; and it is
orthogonal to the edge of the triangulation connecting the two corre-
sponding integer points (mq,n;) and (mg, n2) of N, and

3. each vertex a of the spine corresponds to a triangle A, of the triangu-
lation Triang(N') of N.

Clearly, point 2. above can be stated as: the spine edge connecting vertices
a and b is orthogonal to an edge of the triangulation of the Newton polygon
that is shared by the triangles A, and A,.

2.2 Subwall Positions

Let us now explore the generic asymptotic region in the monowall moduli
space by fixing a regular maximal triangulation and moving along a ray in
the corresponding upward facing cone of the secondary fan. Each triangle of
this triangulation corresponds to a vertex of the spine. We claim that (up to
a constant, moduli independent, shift) the x—position of this vertex is the
position of the corresponding subwall into which the monowall splits. To be
exact, we understand the position of the subwall to be the point of (partial)
gauge symmetry restoration, i.e. the branch point of the spectral curve S,.

2.2.1 Spine Vertex

Consider a triangle A, of the regular maximal triangulation. Say its ver-
tices are (mq,nq), (M2, ng), and (ms, n3) ordered counterclockwise. A crystal
vertex corresponding to that triangle is positioned at the point (x4, Ya, 24)

2 A spine face is the projections of a faces of the cut crystal.
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satisfying

M1Te + MYa + le,nl = Za,
MoZ, + NaYa + ng,ng = Za (12>

mg.’ll'a + ngya + ng,’ﬂg - Za,

with solution

Tq —]_ n3—mn2 nip—ns no—mni le’"l
Ya = mo—m3 m3—mi mi—mg Rmg,ng . (13)
Za mi—m3 ma—ms3 ’

ma2n3—m3n2 m3ni—ming minz—manji
ni—mn3 mn2—ns Rva"S

Since the triangulation is maximal and the points (m;,n;) are numbered
counterclockwise, the triangle has minimal area, thus the denominator in
is +1 and the x—position of the spine vertex is x, = (n2 — ng) Ry ny +
(n3 —n1) Ry ny + (1 — N2) Ry ny- To simplify the notation, let R; = Ry,
and on;; = n;, — n; and same for other quantities, then

Ty = 5n23R1 -+ 57131R2 + (5n12R3 (14)
= —n15R23 - 7”L2(5R31 — TL35R12 (15)
= 571235R12 - (5%12(5}%23. (16)

2.2.2 Spectral Curve Branch Points

The holonomy of D, + i® breaks the U(n) gauge symmetry, and when the
gauge symmetry is maximally broken to U(1)" the Bogomolny equation for
the resulting U(1)" fields is Abelian, implying that the U(1)" Higgs field is
harmonic. Thus, at large distances the Higgs field is linear. Therefore, it is
exactly the regions where the gauge symmetry is at least partially restored
that can be viewed as the sources of electromagnetic fields. This argument
(at least in the limit of large separation of all subwalls) associates the mag-
netic charge to the regions where some eigenvalues of the holonomy coincide.
In other words, the monowall consists of subwalls positioned at the branch
points of the spectral curve. These subwalls carry magnetic U(1)" charges
and the magnetic field is constant between them.

Our immediate task is finding the locations of the branch points, in par-
ticular, their x—coordinates, with = = ryln|s|, and comparing them with
the x—locations of the spine vertices found above. As moduli become large,
so does the spectral curve. To keep the whole curve in view, we rescale the
coordinates accordingly. To begin, let s = exp(+< + i%),t = exp(%% +ia),

hry
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and C,, = exp(l’"T” + 10,,,). We consider the relevant locations a of the
branch points as A is sent to zero, which corresponds to the large moduli
region.

From the basic Puiseux expansion, each branch point is governed by three
relevant monomials of the spectral polynomial P(s,t) = >, yen Cmns™t"
(see [Crol9| for details), corresponding to the vertices of some triangle A of
the given regular triangulation of A/, therefore we can focus on

Crny g ST 4 Crig iy ™™ 4 Crg 1y 872" = 0. (17)

The other terms are exponentially small (~ e~®/" with some K > 0) in the
moduli. If needed, relabel the vertices so that ng < ny,ns. Let N = n; —ng
and M; = m; —mas, for j = 1,2. If needed, exchange the indices 1 and 2 to
N1 N2
My M,
equation reads C,, ,,, SN +Cpy 1y 8M24V2 4y g = 0. In the new variables
S = sMitN and T = sM2¢N2 Eq. becomes Cpy, ny S+ Cryno L+ Crig ng =

0, thus T' = —% (S—i—%) = A(S — a), with A = ——gml’"l and

m2,n2 my,n] m2,ng

have the counterclockwise orientation, so that = 1. Now, the above

mS,nS .
Cm17n1 . . .
In terms of S and T the original variables are

o= —

s =S NN = AN G=N2 (g )Nt (18)
t = S — AN gM2(g o)~ M1 (19)
Branching of ¢ as a function of s can only occur at the branch points of S(s),

the solution of . These occur at the roots of the discriminant of the
polynomial

Q(S) = ANM(S — o)™ — 5™, (20)

The discriminant is proportional to the resultant R(Q,Q’), which we now
compute.
Let us list some basic properties of the resultant (see e.g. [Swa62]) of a
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pair of polynomials:

R(f,9) = (~1)*=/*59R(g, ),
R(gq + 7, g) = biee9atn=der R(. ) where b is the leading coefficient of g,

) =
(f1f27 ) (fla ) (f27 )7
( ) a*®! =R (a7f>?
R(f,z —a) = f(a),
R(z" — a,a™ = ) = (=1)"(a™ — "),
where d = GCD(n,m), n = n'd and m = m/d.
Clearly,
Q'(S) = Ny ANM(S — )Mt — NypsSNe—t (21)
Q(S) = AM(S — )M — 55N
S—Oé ’ NQ—Nl N2 y—
- Ny Q(S)+s Ny (S_Nz—Nloé)SN - (22)
And the resultant is
N — 1)V1—N2— NQ—Nl 2— N2 /
RQ.Q) = (Nt (SR s - ) @)

Ny — N Na N-
N1\N1—Ns—1 2 1 N\ No—1 2 /
= (N;A™) (3—1 ) R(S,Q") R (S — —N2 N, Q, Q)

Na
= (NlANl)Nl—Nz—l (SNZ%lNl) (Q/(O))N2_1 Q' (N2N2Nl )
N2
= (NlAN1>N1—N2—1 (S;) (NIANl(_a)Nl_l)NQ—l

N Ni-1 N No—1
<N1AN1 (N2 1Nl > e (N2 2Nl ) - &)

It vanishes at

N1 N-
s =(—1)™ M ! Conion CN=N2 (24)
Ny (Ng — Np)N—=N2 Cn]% ny O

This is the position of a branch point corresponding to the triangle A. In
terms of the spatial position z = rgln|s| = a/h of this branch point of the
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spectral curve, we have

haa = a =19 ((n2 — n3)lny ny + (N3 — 11) gy + (M1 — N2) g s )

N\ 1
hrgln [ — 2
+ hry n(Nz) (N, — NN e (25)

which matches the position of the vertex of the spine (14)) up to O(R°) terms.
The 6 = ryArg(s) coordinate of the branch point is read off as the imaginary

part of :

QA =Ty ((nQ - nS)@ml,nl + (713 - nl)@mg,ng + (nl - n2)®m3,n3) . (26)

lm,n

Thus, for large values of R,,,,, = In |Cy, | = “5* the subwalls are positioned at
the r—locations of the vertices of the spine. Moreover, the x and # positions
of the wall associated to the spine vertex a (corresponding to the triangle A,
of the triangulation) are expressed via the same relation

3 3
Ty = Zcf;Rf, 0, = Zcﬁ@b (27)
f=1 f=1

where the sum is over the three spine faces containing to the vertex a. When

these three faces are numbered counterclockwise, the coefficients ¢/ are ¢! =
2 _ 3 _

ro(ng — n3),cc = re(ng —nq1), and ¢ = ro(ng — nay).

2.3 Subwall Charges and Inter-wall Fields

If the vertices of the spine indicate the subwall positions, the spine edges
approximate the eigenvalues of the Higgs field between the walls (to expo-
nential accuracy in distance to the nearest wall). Away from all subwalls the
U(n) gauge symmetry is broken to U(1)" with each U(1) factor associated
to one D, + i® holonomy eigenvalue t*. We order these eigenvalues in de-
creasing order of y* = ryIn|t'| so that y' > y? > ... > y™. Thus, each 3" is a
continuous, piecewise linear function ¢* of x with kinks at the spine vertices.
Away from the walls we have Higgs field

i

o = diag(y") + O(e™ "), (28)

27rgry,
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(1)’

u(1y

(1)’

(a)

Figure 3: Three Higgs eigenvalues of a U(3) monowall, shown as green, red
and blue lines over a range in x. Wall 8 has magnetic charges +1/2 and
—1/2 in the first two (green and red) U(1) factors and charge 0 in the third
(blue) factor. Each spine edge is orthogonal to the corresponding edge of the
triangulation.

where dy. is the distance to the closest wall and the constant A is the
characteristic wall width, computed in |Crol5, Sec.3].

Since each spine edge, orthogonal to the (mysp,npp) = (mp — mp,ng —
nys) edge of the triangulation of N, corresponds to |nss| of the ordered
eigenvalues, now all non-vertical edges of the spine are labelled by the factor
indices ¢, as illustrated in Figure [3] If we associate each index value to some
distinct color, then the spine consists of continuous lines going left to right,
each piecewise linear with kinks at the spine vertices. Each colored line is a
graph of a function y*(x). It corresponds to an (approximate) Higgs diagonal

value and the slope S, = —pe = —% of the line is the magnetic field
of the corresponding U(1) factor. The difference g* = Shy — Spg in line

slopes Ship, and Sj across the wall is the magnetic charge in that (—th
U(1) factor of the wall corresponding to this spine vertex.
Next, we interpret the resulting fields as superposition of individual sub-

wall contributions and explore the subwall dynamics.
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3 Subwall Interactions

The moduli space of a monowall is of real dimension 4|Int(AN)| with half of
the moduli being the coefficients C,,,, = eftmnt®mn_(for (m,n) € Int N)
of the spectral curve S, and the other half (®,,,, T, ) parameterizing the
Hermitian eigen-line bundle with a flat connection over S,. We view this
moduli space as a three-torus fibration over the |Int(N')|—dimensional space
R with base coordinates Ry, = In |Chypl, (m,n) € Int N and the fiber
coordinates (O, P, Tinn). The space of ’long” moduli and parameters
R, , factors as a direct product RV = RIMMI 5 RIPerWI of the space of
all ‘long’” moduli and of the space all ‘long’ parameters. As we discussed,
this space R¥! contains the secondary fan whose maximal cones are indexed
by the regular triangulations of the Newton polygon A. The space of long
moduli is obtained by fixing the values of the long parameters. This is the
base space of the moduli space fibered by tori. It traverses this fan, and the
fan subdivides it into polytopal regions, each region corresponding to a phase
of the monowall. The monowall in each phase, labelled by a triangulation
Triang(N), is well approximated (for sufficiently large moduli) by an array of
subwalls. And a-th subwall corresponds to a triangle A, € Triang(N) and it
carries h Abelian charges (g., ..., ¢") (defined by the slopes of the two sides
of the triangle A, to which the graph of y,(x) is associated). Away from any

subwall the Higgs field is essentially diagonal ® = 27”}9% diag(y") + O(e™ dea“)
with
. QL+Q- ML+ M
Yy = 5 x4+ 5 + Z

y dwa
%ALT —zal + 0> ). (29)
A€Triang(N)

Here Q4 — Q" =), gx and M* —M' =" | g4, and the subwalls’ positions
are xa = (g — N3) Ry ny + (N3 — 1) Ry iy + (1 — N2) Ring g -

Let us discuss the meaning of in detail, neglecting the exponentially
small terms from now on. A single Abelian wall positioned at (x4, 04, ©a)
produces fields ® = diag(®*) and A = diag(A*) with

i1
o = Zgllz — ), 30
= S 3l — (30)
1 : 1 (90 _ Qpa)de B (0 B Ha)d@
Al = —T4)=9: . 31
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The superposition of such fields has left-right symmetric asymptotics. To
accommodate general monowall charges, let

_ L L _ ML ML
Q' = —Q++Q_ and M = i S -, (32)
2 2
so that the total fields are
i _ _
Pt = ¢ M* o) 33
27rgr, (Q v ) " ; . ( )
—i — Bdyp — @pdb B B
A = b Ldo ‘d At 34
27rgry ( 2 T TeXod - ToX, gO) " ; ¢ (39

Now, any variation of the moduli produces some motion of the subwalls. A
moving charged wall produces Liénard-Wiechert potentials [Crol5l Eq.(16)],
instead of those of the static potentials of Eq.. In addition, each wall
has an associated electromagnetic phase. Time dependence of this phase
produces an electric charge gq,. Thus, each subwall (with varying moduli)
becomes a dyonic moving wall with magnetic charges g/, respective electric
charges ¢,g" and velocity \7& We spell out the explicit expressions for these
potentials next.

3.1 Moving Dyonic Subwalls

To avoid superficial prefactors let ®* = ZMigw @' and A" = ma‘, so that
for an Abelian monowall
xda’ = dg". (35)
An elementary static wall positioned at x = 0,60 = 0 produces
L 1 L L 1 L
#'(2) = o'l a'(e) = 39" 1r (36)
where the one-form 7z satisfies xdnz = d|z|, for example
Odp—pdf
s — —93 (,w for:v>0‘ (37)
——E52=, forx <0

The superposition of such subwalls as in produces the functions
read off from the spine with y* = ¢*.
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A BPS dyon with electric charge ¢ and magnetic charge e satisfies BPS

equations B = \/%quvq) and E = \/egTquq> [CPNSTT7], so an elementary

dyonic wall can be described by the pentuple (¢, ag, a, @y, a) consisting of
the scalar Higgs field ¢, an electro-magnetic potential consisting of the time
component function ag and a ‘vector’ component one-form a, and dual elec-
tromagnetic potentials @ag (a function) and a (a one-form). These are related
by electromagnetic duality

+da = B’ = £’ = —da, — a, (38)
dag+a=—FE =B = «da. (39)

Here E”, B® are the one-forms metric dual to the electric and magnetic vector
fields, and E”, B® are in the same relation as the electro-magnetic dual fields
E:=Band B:=-FE.

In these terms the fields of the b—th static dyonic wall with magnetic
charges g; and electric charges ¢,g; positioned at & = 7, are

L 1 L
P () = 2% 1+ gflx — x), (40)
L 1 L L 1 L
a'(r) = XL ay(r) = _Qb59b|x — x|, (41)
~L 1 L ~L 1 L
a'(r) = ~ U5 G-, ay(r) = —§gb|ﬂs — ). (42)

The Lorentz boost (accompanied by the proper time delay) produced the
Liénard-Wiechert potential produced by the moving dyonic wall. Our focus
is on the dynamics of slowly moving walls, thus, we neglect terms higher
than quadratic in the resulting Lagrangian. In particular, the typical time

delay terms of the form /2 — (& x V)2 can be safely replaced by |z|. The
resulting fields are

1 -
Bi(x) = 1+ @ 5etle — mly/1-

—

2

1, ¢ vV
= golr —ml <1+3b - 7) + oV ) (43)
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1 1 B
ay(w) = 947 — 5|7 — w|Vy + o(Vi2, 7). (44)
L 1 L 1 L T
agy(v) = —5wgslr — w] + 5 ginz-7,(Ve) + OV, a4), (45)
~ 1 L 1 L b 2 2
ab(l“) = _§Qb9b77£—fb - 591)’93 - vam) + O(Vb ’qb)a (46)
~ L 1 L 1 L 7
agy(v) = =595 — @l = Swginz-7, (V) + oV, q3)- (47)

Here 7 = (z,0, @), V’ = V¥da+V?do+V*edy, and n(V) = NV 4o VO4n,V¢
is the value of the one-form 7 on the vector V. From now on we drop the
higher order terms in V' and gq.

A dyonic wall @ moves in the background of fields (¢, a, ag, @, @ay) which
are the sum of contributions of all other walls. For example, (keeping up to
quadratic terms in V' and ¢) the Higgs field that the a-th wall experiences is

@' (2a) = Q'wy + M' + Z ®y(2a)
b

Similarly,

a'(z,) = Q' +roXpd0 + roxLde + Y ap(F.),  (49)

b
ag(za) = D ag(Ta), (50)
a'(,) = Y aj(@a), (51)
al(z,) = —Q'wg — M* + Z%b Z,). (52)
Note, that since the fields produced by any given subwall itself vanish at its
location, there are no self-interaction terms, and the sums above are extended

over all walls. The resulting relativistic Lagrangian L, governing the a-th
subwall dynamics is

I:a = Z { - g;¢b($a) V 1+ qg \/ 1- ‘7@2 + Qag;[aL($a)(‘7;) - a6($a)]
+ gola@t (wa) (V) — @ (a)},  (53)
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with the background fields given by 1 . This Lagrangian L, govern-
ing the motion of one of the subwalls should be understood as the part of
the effective Lagrangian L of the whole monowall governing the motion of
all subwalls. In particular it is the part of L that contains Z,. Note, that

the two subwall interaction is symmetric, e.g. g4\/1 + ¢24/1 — ‘_/;2@‘)(3:&) =
g/ 1+ g2 /1 — V,fq’);(:cb). Thus, combining individual subwall Lagrangians

L, into on (and keeping terms up to quadratic in velocities and electric
charges):

n 1 N N N
L= §U“”(Va Vo — Gad) + @W*(Va), (54)

with implicit summation over the repeated indices a and b and

aa - L oY) Vi 1 L
U = E g, <Q T+ M —|—§ E gb]xa—:cb]> , (55)
=1 b

W IN-
v = _§;9agblxa—$b!’ fora 70, (56)
and
aa - L —LeadQO — (’Dade V; Y 1 L
we =3 g (Q S Xedf - roXedip 5D %%—@) :
=1 b
(57)
w_ AN~
W b _ —5 ;gagbnfafw for a 7'é b. (58>

3.2 Subwall Positions and Charges
3.2.1 Positions

As we discussed, the motion of the subwalls is highly choreographed, since
the subwalls’ positions are dictated by the plane arrangement. Via Egs. :

Ty = Z cI Ry, (59)
f

V(f)2a

3Each pairwise interaction contributes once.
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where the sum is over the three faces f that have a as a their vertex and the
coefficients are ¢/ = rg(np — ngv) as in Sec. . In fact, the f-position of
the wall is determined by the same relation
b= Y cloy. (60)
f
V(f)za

As mentioned in Sec. one can consider another spectral curve Sy.
Analysis of its branch points leads to the same ¢ subwall position relation

Pa = E , Cg:q)f' (61)
f
V(f)2a

Next, we focus on understanding the relations between the electric charges
qo of the subwalls. Namely, we shall now demonstrate that they also satisfy
the same relation

=Y clQy, (62)
f
V(f)>a

for independent variables ()¢, one for each internal spine face.

3.2.2 Electric Charges

Let V' denote the set of spine vertices, E — the set of spine edges, and F' — the
set of spine faces. We shall orient the edges rightwards (and up, if vertical).
For an edge e € F let h(e) € V denote its head and let t(e) € V denote
its tail. Then the crystal vertex position (x4, Y,, 2,) is determined from the

system of equations
2o = MfTa +NysYs + Ry, (63)

satisfied for all faces f € F' for which a € V' is a vertex of f: a € V(f).
Taking the difference of adjacent faces, one gets the spine vertex position
(%4, Ys) from the equations

M. = mpe) — Mye),
Mexa + Neya + Le = 07 where Ne = nh(e) - nt(e)7 (64>
Le - Rh(e) - Rt(e)7
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for any edge e € E beginning or ending at the vertex a € V.

Note that solutions ((Z4, Ya))acy Of are in one-to-one correspondence
with solutions ((Za, Yas 2a))acv of (63). Also, Egs. describes a system
(‘/3, Eg) of

e V points [z4, Ya, 1] in RP? and
F lines {[z,y,1]|M.x + N.y + L. = 0} in the same in RP?, such that

e cach point has three lines passing through it (corresponding to three
edges e for which a is a vertex) and

each line has two points on it (corresponding to the two ends of e € F).

The reciprocal view of the dual RP? with coordinates [M, N, L] gives the
(B9, V3) system of E points [M., N, L.] and V lines {[M, N, L]|x, M +y,N +
L = 0} such that each point has two lines through it and each line has three
points on it.

Note, that the whole system is completely determined by the set of dis-
tinct points (x4, y,), since (using the first (V3, Ey) configuration) each line is
determined by two points on it.

Consider triplets (x4, Y4, w,) with w, the (coincident) eigenvalue of ay at
the wall a where this eigenvalue has a kink. As earlier, we define W, :=
Wh(e) — Wy(e) for each spine edge e. Then, comparing the electric flux change
across the subwall (LHS below) with the electric charge ¢,g, (RHS below),
one has

Xeout Xein

Xeout Xein

Weout Wein Y;out }/ein

= (a ( > . (65>
This was our very definition of the electric charge g,¢g%. This relation implies
that p, := W}¢Y is the same for any edge e beginning or ending at a.
o This implies that u, := oo + Ya@a — Wa = TpPa + Ypqa — Wy for any edge
ab € E. Which in turn is equivalent to

Pz, + Qeya - U. =0, (66>

for any a € V and any e € E beginning or ending at a.

Note, that is also a (V3, Ey) system. In fact, since it has the same
set of points (24, Ya)acy it must be the same system of projective lines and
points. Thus,

MeQe = NePea QeLe = _UeNe- (67)
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We take the last equation as determining U, = —%Qe. The first equation,
on the other hand, reads

Se = _MeQa + Nepa = —Meqp + Nepba (68)

for any edge ab € E. Since, M, = My, e — Mg, a0d Ne =mnyp o —mnyp .o
we have > 5o Se = 2o i(e)=a O = 0 and therefore the function {Sc}. on
edges is potential on the dual graph, in other words, there is a function Q¢
such that S, = Qy,,, — Qy,,,,..- Here fics; denotes the spine face to the left of
the oriented spine edge e, and f,;4,+ denotes the one to its right. Substituting
this into Eq. (68)),

mfleftqa + nfleft(_pa) + Qfleft = mfrightqa + nfright(_pa) + eright = Ta-
(69)

We conclude that the set of triples (q,, —pa, ') satisfies exactly the same
system of equations as the triples (x,, ya, w,) with the role of R played by
Q. Thus, g, are expressed via ([14):

Qo = 57123@1 + 5”31@2 + 5”12@3 = —n15Q23 - n25Q31 - n35Q12
= 0n230Q12 — 0M120Q23, (70>

and ¢, = ny(f)aa chf.

3.3 The Asymptotic Metric on the Moduli Space

Now we are ready to read off the asymptotic metric on the moduli space
within each maximal cone of the secondary fan. So far we can conclude that
~ Ry
the effective Lagrangian , expressed in terms of the moduli X = (@ f’)
@y
and independent charges @y, is

A 1 PN 5 5 /
L= §C§Uabcgj (Xf-Xp = QpQp) + Qpel W (X p)el . (71)
To lighten our notation from here on we denote by cUc = [(cUc)//'] the

matrix with entries (cUc)/f = cfU “bc,f " and similarly for cWe.
The conserved charges ()¢ should be viewed as momenta associated with
the electromagnetic phase moduli 7%. In order to express the Lagrangian in
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terms of the moduli we perform the Legendre transform in Q) :

Ty = 25 (e Qp + (W (R, (72
0Qy
. oL

L=L1-Qrpo (73)

This yields the effective Lagrangian:

1 P
L= 5(cUc)ff X Xp

—

+ %(Tf — (W) (X)) (cUe)h (Tp — (W) (X)), (74)

which describes free motion of a point on a manifold with the Pedersen-Poon
[PP88] type metric

g = (U TaX; - d%p + (dTy — (W) ) (Uo7 (aTp — (We)"). (75)

This is the asymptotic metric on the moduli space of the monowall. Its terms
are written in terms of the U and W of Egs. (55/{58)) and the coefficients ¢/
appearing in Eq. . Let us emphasize that each generic ray in the moduli
space lies in a cone labelled by a regular triangulation of the Newton polygon.
Thus, the end of the moduli space is divided into sectors, each with the
corresponding asymptotic metric (75). The triangulation determines both
the coefficients ¢/ and the order of the subwalls’ positions z,.

4 The Kahler Potential and the Generalized
Legendre Transform

Consider approaching the infinity of the moduli space within some maxi-
mal cone of the secondary fan. Such a cone is specified by a triangulation
Triang(N) of the Newton polygon A. As we now demonstrate, the Kéahler
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potential K of the asymptotic metric is encoded in a single function:
- h S
Gt =3 | Y 4 (MT%)

t=1 L a€Triang(N)
)3
+3 Z ga,gb : (76)
a>b

The relation is via the Generalized Legendre Transform of [LRS8S|, [HKLRST]
as follows.

Number the subwalls from left to right, so that z; < z9 < ... < zy, and
introduce a Laurent polynomial in the auxiliary variable ( for each subwall

9a+igpa+x _Qa—igpa

Q) 1= g e = (77)

and let

~

1 -
V(€)= (rox;, — iw%)z + M* — (rox;, + irpXs)S- (78)

Note, that thanks to f the polynomial coefficients x,, 0,, ¢, associated
to the positions of each wall are functions of the respective moduli (and
parameters) Ry, O, Oy

z, = ¢! Ry, 0, = clOy, o = LD} (79)

Consider the Generalized Legendre Transform of the following auxiliary
function

<
R;,0;,® (V )
F(Ry,©p,%f) = i C m nN
of the parameters and of three quarters of the moduli. Half of the complex
moduli are Zy := w. The contour integration above is over a counter-

clockwise oriented small circle around zero. The remaining half of the moduli
Uy are related to the above coordinates by

OF

~ Fp,. (80)
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Importantly, F' constructed this way is guaranteed to satisfy the Laplace type
system of equations (8Zf82f, + 8Rf0Rf,)F = 0.
The Kahler potential K is the Legendre transform of F' :

K(Z;Up)=F — Y Ry(Us+Tp), (81)
FEInt(N)

with R; on the right-hand side understood as functions of Z; and Uy de-
termined by . As usual for the Legendre transform Ky, = —R; and
Kz, = Fyz,. Giving KUfo, = —[FRR];;,, which is the negative inverse of the
matrix Frp = (FRfRf,). Also KUfo, = [FRR];;FRJ;ZW as well as KZfo, =
_(FRfRf, + FZfRf [FRR]}}FRJ;ZJ@,)‘ The resulting metric
gGLT — 4(KZfo/dede’+KZfo/dede’+KUfo/ dede/—f-KUfo, dede/),
is directly expressed in terms of F":
9 = —4dZFryr,dZp — 4(dUs — dZ;Fz, g, ) [Fre);p(dUp — Fr,,z, dZ5),
which in terms of the real moduli Ry, ©f, ®; and Ty := 2Im Uy reads
gGLT — _FRf,Rf/ (dede/ + d@fd@f/ + d@fd‘bf/)
— (dTy — W) [Frgl;} (dTp — W), (82)

with the one-form W/ = —idZ iF: z;R; + idZ i 7Ry The exact metric coeffi-
cients can be easily evaluated observing that

L

- | e 1 e
Gty = Z [dzbgé(VL + Q"o + 2 Z 9e(Na = 7e) — 2 Z 9e(Tla = 7c))

c,a>c c,c>a
1 Lol ~ N
— 59agsign(a = b)( — )|, (83)

and by direct calculation

N~ 5D fd
FRfRf/ - ” a“b 27_‘_1 C NaMb
/ _ — 1 1 /
== chel g. (ML + Q20 + Z §Qé|xa - x6‘> "’Z 5659261{ bl Ta— 1y,
a c a,b

(84)
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(—1) dCl
FRfo/ = Cgcg 2 1 C C Na b
a,b

L4+ = Z 1§0ac —————sign(x, — xc))

—Z f:gflc,{/ T%sign(xa—xb). (85)

= Z cfel'gt (rgxw +iryxe + QL

Using Fr, 7, = Zabcgcf o LGy = Fr,z,, one has

0.,dp, — pa.db,
2

W’ = 2Im deFZfRf = Z cf:gfl (Tgx(pdgpa + roXod0, + QL

a

1 6acd a ~ acdea .
+ 5 Z 9. L4 5 d sign(z, — x.)

1, 0udos — @apdts .
-y e "SIgn(xa—xb)), (86)
b

which exactly matches Eqgs. (55{58)).
Thus, we directly verified that the resulting GLT metric with

and exactly matches the asymptotic metric ((75)) obtained from the sub-
wall dynamics:

gt =g. (87)

5 From the GLT Function to the Cut Volume

5.1 Cut Volume

We make use of the Lawrence formula [Law91] for the volume of a simple
convex polytope P ={x € R"|@; - ¥ < b;,i=1,...,m}:
Vol(P)= > Ny, (88)
veVert(P)
which is a sum of signed volumes of simplices with
1 (¢-v+d)"

Ny= — , 89
nlyva .| det(a,, agy, - -y ag,)| (89)
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the signed volume of the simplex with its apex at v and its base in the base
plane ¢- ¥+ d = 0. Here

e U is one of the vertices of P with exactly n of the planes a;, - 7 =
biy,s...,a;, - & ="b;, passing through it,
e the corresponding simplex is cut out by these n planes and the base

plane ¢- v+ d > 0 with some fixed vector ¢ not normal to any of the
polygon planes,

e the constants vi,...,7, are the coefficients in the decomposition

Let us gain some appreciation of this formula by proving it. In
dimension n = 3, let €1, €3, €3 be the simplex edges emanating from its main
vertex ¥ and ending on its base plane ¢- 7 4+ d = 0. Let b be a point in this
base plane and let vy = 7—b be its height, i.e. Z-b+d=0and ¢ 7+d = &0,
Clearly the symplex volume is

1
VOlg = 5 det(él, gg, 53) (90)

The corresponding vectors ap,ds,ds are normal to respective simplex
faces, and thus each a; is proportional to the vector product €; x €j of the
two edges of that simplex face:

— — - - — — — — — ar 0 0
(al,ag,ag) = (62 X e3,e3 X er,e1 X 62) ( 0 a2 O ) . (91)
0 0 as
To lighten our notation let Det = det(é}, €, €3). By construction ¢ = (@, da, d3)7,
thus

>T
as! ) a7l 00 1 €
— — — —1-= _ =T —
Yo | = ((ll, as, ag) Cc = 0 a, Lo D_t €9 C, (92)
0 0 a3' et \gr
73 3
r\ —1
ey
« . . é}E . — — — — — — . =T
giving v; = 55 Noting that (€3 X €3, €3 X €7, € X €) = Det - 62T , We
e
3

have the Lawrence formula take the form

1 (@ 7+ d)3 1 (@ t)?

v = 57 — — — - JER. IR . 3
3! det(dy, do, d 3l _¢é _ce _cés | Det|
Y17273| det(dy, ay, ds)| Oqunget0(3Det|0410z2043||det(€1’é,27€3)‘

1
= igDet = +Volz. (93)
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We used ¢-1p = ¢- €, = C- € = C- €3, since € is normal to the base plane
continaining €; — €; and Uy — €;.

The signs in the Lawrence formula are chosen already so that the individ-
ual simplex volumes contribute with different signs and the polygon volume
does not depend on the choice of the base plane ¢- ¥+ d = 0.

Let us choose a high horizontal plane z = M for a very large value M.
The cut volume is the difference of the volume of the (convex) regularized
blocked crystal

Co={(z.y.2)|msz +npy+ Ry <z < M, f € Int(N)}, (94)
and the (convex) regularized cut crystal
Cout = {(x,y,2) | msz +npy+ Ry <2< M, f e N} (95)

The Lawrence formula applies to both Cy and C,,; and thus the cut volume
is

V =Vol(Co) = Vol(Cews) = > Nyg— > Ny=> Ny—> Nz  (96)
(ppp)

(ppp) (ppi) (ppi)

(ppt) (pi) (pit)
(413) (423)
(ppt)

where the first sum is over the vertices (ppp) at which three perimeter planes
(i.e. planes corresponding to the points in Per(N)) meet or (ppt) at which
two perimeter and one top plane meet. The last sum is over the vertices
(% % 7) involving an internal plane as well as the vertices (ppt) involving the
top plane. The latter (ppt) contributions cancel (as, indeed, the cut volume
does not depend on the choice of the high top plane). The remaining (ppp)
contributions are moduli independent, thus, up to a constant, the volume we
are interested in is

V= Z Ua s (97)

acV

with ¥, the apex of the cone cut out by msx + nsy — 2 < —Ry for three
internal points (mys,ny) € N forming the A, triangle of the triangulation.
In the Lawrence formula we choose ¢ = (1,0,0)T and d = 0, and have

mi1 mo ms
(afmafzuafs) = <n1 n2 n?i) . Thus7 det<af1>af27af3) = Mg31N21 — M21N31 =

—1 -1 —
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—8123, Where 893 is the area of the triangld] ((m1,n1), (M2, n2), (M3, n3)) .
And the relevant factors read off from (v1,72,7v3)" = (ay,, ay,,ar)"*(1,0,0)"
are y; = Ngg/0123, Yo = N31/0123, 73 = N12/0123. The resulting volume formula
is
R
Nyy=-Y — Yo Ta 08
Z - ZV niaNa3nz; 6 (%8)

aeV

with the triangle ((m;,n;))i=123 positively oriented.

5.2 GLT Function
The GLT function is

G = Z (Z gL (6M'a2 + 2Q"z2) + Zgagb — xb)3>

a>b

(Z 39t a2 (2M* + 2Q'x,)

—|—3Zgagbx — 22w, +SZgagb Tyl — 73)

a>b b>a

—229 220+ g = > )] (99

blb<a blb>a

In terms of the Higgs field , this reads

G= Zzgad)b xa__zzga 6a QQL-FZQZ, Zgb . 100

blb<a blb>a

For any given subwall a all U(1) factors ¢« which have a nonzero charge g/,
have the same value ¢*'(z,), while the charges themselves satisfy > g =0,
sinceﬂ nys of the U(1) factors have g} = ™2 — ™2 and ny; of the U(1) factors

n13 n23s

4Here we use our conventions of the footnote on page@ i.e. 0123 is twice the conventional
triangle area.
5We suppose for concreteness that ny > ny > ns.
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L __ Mm21 _ Mm23
have ¢!, = e s
mis ma3 may ma3
L
:I:E ga:n13<——— + N9 | — — — (101)
ni3 23 n21 23

= mq3 + Mg — ma3 = 0.

Thus, the first term in ((100]) vanishes. If we let S’ denote the magnetic flux
in the (-th U(1) factor to the right of the a-th subwall, then ¢!, = S, — S _,

and Q' = (S{+ Sy )/2, as defined in (32). Thus, the second term in (L00) is a
telescoping series: >, . g, = Sg_y — Sy and 3y, g, = Sy — S, therefore,

a

the last term becomes Y, gg% (Se+S.1) = %((83)2—(53_1)2). Sum-

2 2
ming over the U(1) factors, Y, ((S5)? — (S:_1)?) = na (m) +Ni3o (m) _

na1 n32
2 2
N3y (—m31> — (mainga—naimsa)” Ao pagylt

n31 n21M32M31

R

T 102
6 nianasnz (102)
Here 4, is twice the area of the triangle (m;,n;),i = 1,2, 3 associated with
a-th subwall.

Comparing to (98)) we conclude that the GLT function is equal to the cut
volume:

G=V. (103)

6 Outlook

The effective dynamics of a monopole wall are given by the electromagnetic
interaction of its constituents. In the low speed approximation it produces
the effective Lagrangian from which we read off the resulting asymptotic
moduli space metric. We proved that the Kahler potential of this metric is
the Generalized Legendre Transform of the regularized crystal volume cut
out by the plane arrangement. The latter volume can be easily read off from
the monopole charges, parameters, and moduli.

The remaining challenge is to find the Kahler potential for the whole
moduli space. With this goal in mind we now pose some questions and take
the liberty of making some speculations.
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There is a more refined volume function at hand that could capture some
of the Kéhler potential subleading asymptotic behavior. Consider the Ronkin
function

1 ds dt
RE,, (@) = oo f In|P(s, )| (104)
|s|=exp 7o
tl=exp

It is linear outside of the amoeba A := {(In|s|,Inlt|) : P(s,t) = 0} with
RE (x,y) = mx—i—ny—i—ém’n. Note that as moduli approach infinity Rm,n —
Rm,ny. These planes lead to a function m(z,y) = maxg, exv{mz + ny +
Rmn} The region above the graph of Rf. is the melted crystal. One can
consider the volume of the region {(z,y, z) m(z,y) <z <RE (r,y)} and
use this melted volume V), instead of the cut volume V used in this paper.
For large moduli these two volumes V,,.; and V are exponentially close to
each other and thus produce the same asymptotic.

One might seek to combine the two Ronkin functions R¥ and RY, for
example, incorporating both @ and ¢ spectral curves S and S¥ to encode the
complete Kahler potential.

The relation between the two Legendre transforms that we used can be
summarized in the following diagram:

Legendre Transform\ Cut Crystal
Surface z = M(z,y)

§ I

Kahler Potential Generalized Legendre
< AN 1
K(Zf’ Uf) Transform Cut Volume V(Rf>

Tent function over N

This leads to a question: Is there a more direct relation between the tent
function and the Kahler potential? Is there a natural physical meaning of
the Legendre transform of the Ronkin function in this context?

Let us conclude with a conjecture for the auxiliary function G for the
exact Kahler potential. To begin, we define the Twistor Spectral curve S™
[Che07] via the Hitchin scattering problem [Hit82]. The space of oriented
lines in the covering space R? of the base space R x S x S! is the minitwistor
space TP'. Each line ¢ is determined by the unit vector of its direction 7,
(which determines the point with the complex coordinate ¢ on the Riemann
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sphere P!) and the line’s displacement from the origin (which is a point in
the tangent plane at 7 with coordinate n € T;P' = CU{oo}). For each line,
consider the scattering problem (D; + @)y = 0. For some lines this problem
has an L? solutions. These lines are called the spectral lines. Each line in
R? is a point in TP! and the set of all spectral lines forms a curve S{¥ in
TP!. Since our initial problem is invariant under discrete shifts in the 6 and
¢ directions, the curve S§¥ descends to a curve S™ in the quotient space
Z = TP 2r(rgngZ ®r,n,Z), which is the space of geodesics in R x S x S™.
Let {n1(¢),...,n.({)} be the local branches of this twistor spectral curve.
We conjecture that

m Mn
G Vmelt<€,...,g> (105)
produces the exact Kéahler potential.

The challenge in using such a relation is that even for the conventional
monopoles in R? the twistor curve is notoriously difficult to find, as it should
satisfy a complicated ‘triviality condition’. In addition, for monowalls, the
curve S™ is contained in the minitwistor space Z that is non-Hausdorff,
while its cover S{% C TP is of infinite genus. Some recent approaches, such
as in [Moc19], provide promising perspectives on this problem.
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