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ABSTRACT. As an explicit example of an A-structure associated to geometry, we construct an
Ao-structure for a Fukaya category of finitely many lines (Lagrangians) in R?, i.e., we define also
non-transversal As-products. This construction is motivated by homological mirror symmetry
of (two-)tori, where R? is the covering space of a two-torus. The strategy is based on an algebraic
reformulation of Morse homotopy theory through homological perturbation theory (HPT) as
discussed by Kontsevich and Soibelman in [21], where we introduce a special DG category which
is a key idea of our construction.
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For a graded vector space A, a strong homotopy associative structure (or an A..-structure)
on A is a family of multilinear maps my, : A%¥ — A for k > 1 satisfying certain constraints,
first introduced by Jim Stasheff [26, 27] in the study of H-spaces such as based loop spaces. In
particular, m; = d forms a differential on A, mgy is a product which is associative up to homotopy,
where mg3 defines the homotopy and my4, ms, ... define higher homotopies. An A, .-algebra with
higher products ms,my, ... all zero is a differential graded (DG) algebra, which appears as the
structure DeRham complexes have in general. A category version of an Ay-algebra (A, {mg}x>1)
is called an A,-category introduced by Fukaya [2] to formulate Morse homotopy theory and Floer
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theory of Lagrangian submanifolds (shortly, Lagrangians) in a symplectic manifold. In particular,
a category for the latter theory, called a Fukaya category, can give an interesting example of Ayo-
structures associated to geometry. In this paper, we shall construct an A,.-structure for a Fukaya
category Fuk(R?) consisting of lines in R?. For each two lines L,, L which intersect with each
other at one point vy, € R?, the space of morphisms Hom(a, b) is a one-dimensional vector space
(over R) spanned by a base [vg] associated to the intersection point vgy. Then, the (higher)
Aso-product my : Hom(a1,a2) ® - -+ ® Hom(ag, ag4+1) — Hom(a1,ax41), a1,---,ak11 € Ob(C), is
defined by polygons surrounded by lines in R?

mk([“m@]a Tt ['Uakak+1]) = :te—A'rea(ﬁ) [valak+1]

if the sequence 7' := (Vg, 4y, - - - - Vagapi1> Vagr1a1 )s Vagy1a1 = Vajagy,> Of the intersection points forms
a clockwise convex (CC-) polygon (Figure 1). From the viewpoint of Lagrangian intersection Floer

FIGURE 1. A clockwise convex polygon (CC-polygon) defined by lines Lg,, ..., Lq,,, -
theory, these lines are thought of as special Lagrangian submanifolds in a symplectic manifold
R? ~ T*R, the cotangent bundle over R. We in particular construct such an A.-category
Fuk(R?) with finitely many objects, in which Da,peob(Fuk(r?))Hom(a, b) is an example of an
Axo-algebra.

Although the definition of an A -structure of a Fukaya category is clear for the multilinear
maps my on morphisms Hom(a,b) with L, and L, transversal to each other, even in this R?
case, it is technically not easy to define multilinear maps my on morphisms including Hom(a, a)
for some line L, because of non-transversality of Lagrangians. (See FOOO [6] for the problem
of transversality in a more general setup, where, I have heard, another way of resolution is
discussed.) However, we can not define an A..-category without defining all those non-transversal
multilinear maps. The aim of this paper is to define explicitly all the A-products of the Fukaya
category Fuk(R?) including these non-transversal ones. To derive those As-products, the rough
direction of our strategy is first to define a DG category Cpr with the same objects, and then to
apply to Cpg homological perturbation theory (HPT) developed by Gugenheim, Lambe, Stasheff,
Huebschmann, Kadeishvili, etc., [10, 8, 9, 12] (see also the decomposition theorem in [18, 19]).
For a DG algebra or an Ay-algebra A, HPT starts with what is called strong deformation retract
(SDR) data

(B == A,h),
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where B is a complex, ¢ and 7 are chain maps so that 7o, = Idp and h : A — A is the contracting
homotopy defined by
dah+ hdg =1dy4 — P, P:=.o0m,

together with some additional conditions. By definition, P will be an idempotent in A. Given a
contracting homotopy h, one obtains SDR data as above, and then the HPT machinery gives a
way to produce an A,-structure on B which is homotopy equivalent to the original A,.-algebra
A. In particular, the induced Ay-structure on B can be described in terms of planar rooted trees
(Feynman graphs). The HPT for Ay-algebras is extended straightforwardly to As-categories
[21]. Since the A-structure is manifest on Cpr as its DG-category structure and there are
not subtleties about transversality there, one can expect that HPT yields an A, -structure on
Fuk(R?) if we can find a suitable contracting homotopy h.

Physically, this DG category Cpg is related to a kind of Chern-Simons field theory (on
one-dimensional space R). Applying HPT to Cpg then corresponds to considering perturbation
theory of the Chern-Simons theory at tree level. This kind of Chern-Simons theory is thought
of as a topological open string field theory (SFT) [29], where the choice of a homotopy operator
in applying HPT corresponds to the choice of a gauge fixing for the open SFT (see [13, 18] for
open SFT and [22, 1] for topological open SFT ). From such a physical viewpoint, it is interesting
that the result of this paper indicates the (disk) instantons, which are nonperturbative effects in
string theory, are also derived by perturbation theory of string field theory.

The homotopy equivalence Fuk(R?) ~ Cpg obtained via the HPT plays the key role in
discussing homological mirror symmetry [20], since the DG category Cpr is related to a category
of holomorphic vector bundles on a complex manifold. Since R? is the covering space of a
two-torus, the arguments in this paper are directly applied to homological mirror symmetry for
two-tori, and higher dimensional generalization of the torus analog of the DG-category Cpr is also
straightforward (for instance see [17]). Homological mirror symmetry is discussed positively for
two-tori [25, 23], for abelian varieties [3], and for (complex) noncommutative tori [14, 24, 15, 16,
17]; in particular, for two tori, transversal A,-products are defined explicitly and the homological
mirror is also shown for the transversal A.-products by Polishchuk [23]. However, the reason
why such equivalence holds has still been unclear even for the transversal A,.-products.

Kontsevich-Soibelman [21] then proposed a strategy to show the homological mirror sym-
metry based on the viewpoint of Strominger-Yau-Zaslow torus fibrations (see also [4] for a related
approach). The strategy is to reformulate Fukaya-Oh Morse homotopy theory [2, 5] algebraically
in terms of a DG category DR(M) consisting of DeRham complexes and to apply HPT to DR(M)
together with Harvey-Lawson’s Morse theory [11]. For a compact manifold M with a given metric
(which is used to define the gradient grad, see below), the objects of the category Ms(M) ! of
Fukaya-Oh Morse homotopy [2, 5] are smooth functions f € C*°(M) on M. If the difference
fab = fa — fp of two functions f,, f € C°°(M) is a Morse function, the space Hom pzs(ar)(a,b) of
morphisms is defined as the vector space spanned by bases [p,p] associated to the critical points pgp
of fap. The Ax-structure on Ms(M) is defined by trivalent planar trees so that each edge is asso-
ciated to the gradient flow of the difference of the corresponding two functions (see Figure 2 (a)).
The equivalence of the Morse A -category Ms(M) with the Fukaya A -category Fuk(T*M) on
T*M is discussed in [5], where an object of Fuk(T*M) is a Lagrangian L, C T*M defined by the
graph of df € T'(T*M) of a Morse function f, (Figure 2 (b)), and the space Hom g7+ p1)(a, b) of
morphisms from L, to L is spanned by the bases [v4] associated to the intersection points vgp
of L, with L, whose images by the projection z : T*M — M are the critical points pg, = (vgp)
of fap = fo — f»- Kontsevich-Soibelman [21] discussed obtaining the Morse A-category Ms(M)
by applying HPT to the DG-category DR(M). The key idea there is to identify the contracting
homotopy of the SDR in HPT with Harvey-Lawson’s chain homotopy in [11], which will allow us
to identify the planar trees in HPT with the trees of gradient flows defining the A,.-structure of

IThis category Ms(M) is denoted by M(Y) in [21] where Y is the compact smooth manifold M here.
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FIGURE 2. (a): A tree of gradient flows in M, where fq3 := fo, — fp, while pgp is
a critical point of fq; and [pe] the associated base of Hom ppr)(a,b). An Aso-
product m3([pas], [Poc), [Ped]) is defined by counting all such trees of gradient flows.
(b): The Lagrangians in T*M defined by df,,dfs, df.,dfq corresponding to the
Morse functions fq, fs, fc, f4- By definition, the dimension of the Lagrangians is
the same as the dimension of M. By the projection z : T*M — M, an intersection
point vy, of L, with Ly corresponds to a critical point pgy = (vgp)-

Ms(M). Let ¢ : M — M, t € [0,00) be the flow generated by the gradient grad(f) of a given
Morse function f. Harvey-Lawson [11] showed the existence of the limit P := lim; ,o ¢} of the
pullback ¢} together with the chain homotopy

leh-l-thR:I—P, (].].)

where I: ((M),dpr) — (D'(M),dpr) is the inclusion of smooth differential forms on M to the
space D'(M) of distribution forms and P : (Q(M),dpg) — (D'(M),dp:) turns out to be a linear
map such that P(Q(M)) C D'(M) forms a subcomplex spanned by DeRham currents [Up] with
support the unstable manifolds U, of critical points p of f. In [21], the SDR data for the complex
Hompp(ar(a,b) := Q(M) was identified with the Harvey-Lawson’s chain homotopy (1.1) with
f = fab := fo — fo- All these tools for T*M were then extended to torus fibrations over M to
discuss homological mirror symmetry for torus fibrations.

Strongly motivated by this story, we define a DG-category Cpg which is similar to DR(M)
in [21] with M = R Here, for two Morse functions f,, fy € C*®°(R), we set the differential
dap : Home,, (@, b) — Home, , (a,b) as the twisted differential

dap = d — d(fap)N = efev de™far

of Witten’s Morse complex [28]. This leads to the correct structure constant of the transversal
Ao-products, i.e., the area of the corresponding CC-polygons, via the HPT. Though the case
M = R looks too simple, because R is noncompact, this case can include more nontrivial phe-
nomena than the traditional setting where M is a compact smooth manifold. We consider a set
S~ = {fa, fo,---} = {a,b,...} of N lines, and denote by Cpr(Fn) the DG-category Cpr with
Ob(Cpgr) = §n. As mentioned above, this theorem is motivated by the case where R? ~ T*R
is replaced by a two-torus and its higher dimensional generalizations. Our choice of this DG
category Cpr(Fn) then comes from the DG category of holomorphic vector bundles on a non-
commutative torus with the noncommutativity set to be zero, which gives (an equivalent but)
different description from the usual commutative torus setting (cf. [25, 23]). For our purposes,
this noncommutative tori setting fits better even in discussing commutative tori. In particular,
we identify Q(M), M = R, with the space of rapidly decreasing smooth differential forms; for
instance, Q°(R) is the space S(R) of Schwartz functions instead of C*®(M).
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The main theorem (Theorem 3.2) of this paper is to show the existence of an Ay-structure
on the category Fuk(R?,Fy) of lines in R? whose transversal A,-products are those associated
with CC-polygons as in Figure 1 and which is homotopy equivalent to the DG-category Cpr(Fn)-
We also present explicitly one such Ay-category, which we denote C(Fn). As stated previously,
the rough idea to obtain C(Fx) is to apply HPT to Cpr(Fn). In order to reproduce the area of
the CC-polygon as a structure constant of an Ay-product of C(Fx), the contracting homotopy
h of SDR in HPT should be of the type in the identity (1.1). However, unfortunately, the h in
the identity (1.1) is the chain homotopy between I and P, which map Q(M) to not Q(M) itself
but to D'(M), since the DeRham currents [Up] are not smooth differential forms. Thus, we need
some modification of the story. One natural way may be to modify h as h. with a parameter e
such that dprhe + hedpr = Id — P holds on Q(M) if € # 0 and lim¢_,o he = h. Then, we may
apply HPT with contracting homotopy h, € # 0, construct the induced A,-products, and finally
take the limit € — 0.

One such modification h. is discussed in [21], but the strategy in the present paper is instead
to define a suitable subcomplex of D'(R). Though D'(R) can not be equipped with a product
structure, we can introduce a product structure ? in the subcomplex and apply HPT directly
to the subcomplex. More precisely, we introduce a DG-category Cp,z($n) as the smallest DG-
category with the same objects Ob(Cl, (Fn)) = Ob(Cpr(Fn)) = Fn so that, for any a # b € Fn,
HomC:DR(SN y(a,b) includes [Uy,,] C D'(R) for any critical point pgp = Z(vap) of fap = fa— fo and is
closed with respect to the operation h. Note that the latter requirement enables us to apply HPT
directly to Cl,g(Fn). This Cjhx(Fn) is in fact homotopy equivalent to the original DG-category
Cpr(Fn) as shown in subsetion 5.1.

In our case, M = R and the graph df, of f, is a line L, in R? ~ T*R for any a € . Thus,
for any a # b € §n, the intersection point v,y of L, and Ly is only one and so is the critical point
Pab = T(vap) of fap. Then, [U, ] will be the gaussian efar € QO(R) C D’ %(R) whose support is
R itself (but multiplied by efeb due to our choice of the differential dg;) if the Hessian of — fgp is
positive and the delta function one-form §,,, € D’ Y(R) with support pgp if the Hessian of — f, is
negative. In order for C),(Fn) to be closed with respect to the composition of morphisms, for
any a # b € §n we need to include d,,, € Hom%R(%N)(a, b) for any ¢ # d € §n. The operation of
h on d,,, will then produce step functions 4, ,. Consequently, it turns out that the DG category
CHr(Fn) is generated by step functions and delta function one forms. The contracting homotopy
hap of the type in (1.1) gives a desirable idempotent Py : Home: (zy(a,b) — Homer  (51(a,b)
such that PyyHomer (z.)(a,0) =R - [Up,,] = R [va] for a # b € §n. Here, the corresponding
SDR gives a Hodge decomposition of Homc:DR(%N)(a, b). However, as we will mention also in the
final section, there is no natural choice of the Hodge decomposition, i.e., contracting homotopy
hay if @ = b. Therefore, we set h,, = 0. Consequently, the space HomC(SN)(a,a) will be a
commutative DG algebra (denoted by Ag(R)) which is also generated by the step functions and
the delta function one-forms.

This paper is organized as follows. After recalling terminologies for A..-categories and HPT
in section 2, we present the main theorem (Theorem 3.2) in subsection 3.1. Before proving it
in section 5, we present the A.-category C(Fn) explicitly in subsection 3.3. To define the A-
category C(§n), we introduce the commutative DG algebra Ag(R), which is prepared in subsection
3.2. Section 4 is devoted to presenting geometric interpretations of some basic properties of the
transversal part of the Fukaya A.-category C(§n) in some examples. Thus, the contents in
section 4 may essentially be known to experts. In subsection 4.1, we observe that a transversal
Aso-product can be nonzero if and only if the corresponding lines form a CC-polygon as in
Figure 1. In subsection 4.2, we see an A-constraint for transversal A..-products consists of
only two terms which correspond to the ways to divide a clockwise polygon with one nonconvex

2The product structure we shall introduce is also motivated by one such modification h. which is however
different from the one discussed in [21]. We hope to discuss the limit e — 0 in this approach elswhere.
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vertex into two. We also include a reason why we can not avoid non-transversal A.,-products
in subsection 4.3. Then, in section 5 we prove the main theorem (Theorem 3.2). In subsection
5.1, we introduce the DG-category C,r(§n) and prove Theorem 3.2 assuming a proposition
(Proposition 5.4). Then, in subsection 5.2 we prove Proposition 5.4, where we derive the Ay-
category C(§n) by applying HPT to Cpz(8n). Several examples of the explicit calculations of
the derived Ayo-products are also given there. Since we consider the case M = R, the trees of
gradient flows in M in the sense of Ms(M) are degenerate to be intervals and points on them.
On the other hand, the HPT suggests the use of planar trees which are useful to determine the
signs of the A, -products, too. Thus, in those calculations, we introduce planar trees associated
to CC-polygons which are lifts of the trees of gradient flows in M = R to T*R. Finally, we end
with mentioning applications of the main theorem to the case of tori, etc., in section 6.
Throughout this paper, by (graded) vector spaces we indicate those over fields k = R.
Though motivated strongly by the background stated above, the body of this paper can be read
independently.
Acknowledgments : First of all, I would like to thank Jim Stasheff for his continuous encourage-
ment and valuable discussions. I remember communications with him started when I discussed
some application of HPT to open string field theory; the present work is thought of a topological
string analog. As for discussions related to the background of this work, I would also like to
thank M. Akaho, T. Kondo and Y. Terashima. K. Saito and A. Takahashi pointed out many
faults in the formulation of an earlier stage, which helped to arrive at the present formulation.
I am grateful to K. Fukaya who called my attention to various issues about transversality. It is
needless to say that the present work is motivated greatly by what I have learnt from him. This
work was completed during my visit in IHES where the environment for research is excellent and
I would like to thank all researchers and staff there.

2. A,-CATEGORIES AND THEIR HOMOTOPICAL PROPERTIES
2.1. Ax-algebras.

Definition 2.1 (As-algebra (strong homotopy associative algebra) [26, 27]). An Ay-algebra
(V,m) consists of a Z-graded vector space V with a collection of multilinear maps m := {m,, :
VO — V}p>1 of degree (2 —n) satisfying

k-1
0= > (=17 mp(wr, ..., wj,my(wji1, ..., W), Witie1s--- W), n>1 (21)
k+i=n-+1j=0

for homogeneous elements w; € V, i = 1,...,n, with degree |w;| € Z, where 0 = (j + 1)(1 + 1) +
lwi] + - -+ fwj).

That the multilinear map my has degree (2 — k) indicates the degree of my (w1, ..., wg) is
ol 4+ 4 g + (2 ).
For m1 = d, my = -, the first three relations of the above A.,-condition are:
=0,

d(w-w') = d(w) - w' + (=1)®lw . d(w') ,
(w-w') - w" —w- (v w") = d(ms)(w,w',w"),
d(ms) :=dms+m3(d®1®1+10dR1+1Q1®d)

for homogeneous elements w, w', w” € V. The first identity implies that (V. d) defines a complex.
The second identity implies that the differential d satisfies the Leibniz rule with respect to the
product -.

The third identity implies that the product - is associative up to homotopy. In particular,
the product - is strictly associative if m3=0.
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Definition 2.2. An A-algebra (V,m) with vanishing higher products msz = m4 = --- = 0 is
called a differential graded algebra (DGA).

There exists a different definition of A-algebras via a shift in degree.

Definition 2.3. An A-algebra (#,m) consists of a Z-graded vector space H with a collection
of degree one multilinear maps m := {my, : H®" — H},>; satisfying

k-1
— o1[+---+|0j
0= Z Z(—l)' 1] loj] mk(ol,...,Oj,ml(0j+1,... ’0j+l)30j+l+la---30n) .
k+l=n+17=0

These two definitions of A.-algebras are in fact equivalent. They are related by a degree
shifting operator
s: VI (VAT = H
called the suspension. The direct relation between multilinear maps in these two definitions is
given [7] by

n—1

myt = (1) 2= D s ((s71) )

or more explicitly:

m (o1, ... 0n) = (=1)2i=1 =loil gV (5=L(01), ..., 57 (o)), (2.2)

where we denoted the multilinear maps of (V,m) and that of (H,m) by m" and m*, respectively.

The original definition in Definition 2.1 is natural in the sense that the differential m; has
degree one, the product my preserves the degree and then m,, n > 3, are the higher homotopies.
However, one can see that Definition 2.3 is simpler in sign.

Definition 2.4 (Ay-morphism). Given two Ax-algebras (H,m) and (H',m’), a collection of
degree preserving (= degree zero) multilinear maps G := {gx : H®* — H’ }k>1, is called an
Aso-morphism G : (H,m) — (H',m’) if and only if the following relations hold:

YooY milgn® @)= Y, Y a(1®eme1%) (2.3)

i kitetkn=n i+1+j=Fk i+l+j=n
forn=1,2,....

The above relation for n = 1 implies that g; : H — H' forms a chain map g; : (H,m;) —
(H',m}).

Definition 2.5. An A, -morphism G : (H,m) — (H',m') is called an A -quasi-isomorphism if
and only if g1 : (H,m1) — (H',m!) induces an isomorphism between the cohomologies of these
two complexes. In this situation, we say (H,m) is homotopy equivalent to (H',m’) and call the
Axo-quasi-isomorphism G : (H,m) — (H',m’) homotopy equivalence.

It is known that there exists an inverse Aso-quasi-isomorphism G’ : (H',m') — (H,m) for a
given Ay-quasi-isomorphism G : (H, m) — (H',m’) and the notion of A,-quasi-isomorphisms in
fact defines a homotopy equivalence relation between A-algebras (see [18] and reference therein).

2.2. Homological perturbation theory for A,-structures. A version of homological per-
turbation theory we shall employ is as follows.

Theorem 2.6. For an Ao-algebra (H,m), suppose given linear maps h : H™ — H™™! and
P:H" — H" satisfying
dh+hd =1dy — P, P>=P, d:=m (2.4)

on H. Then, there exists a canonical way to construct an Aeo-structure m' on PH such that
(PH,m') is homotopy equivalent to the original A -algebra (H,m).
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Note that if dP = 0, then eq.(2.4) gives a Hodge decomposition of the complex (H,d),
where P(H) = H(H) gives the cohomology.

Proof. Let ¢ : H' — H be the embedding and 7 : H — H' the projection, respectively, such that
wot=1Idy and . o™ = P. Namely, ¢ is the embedding H' ~ P(#H) C H. A collection of degree
zero maps G = {g; : (H')® — H},>1 is defined recursively with respect to k as

9k = —hz Z Mi(Gky ® Ghy—ky @+ ® Gh—k;_4) (2.5)
i>2 1<ki <kg-<ki=k

with g1 := ¢ : H' — H the inclusion. Then, m’ = {m} : (H')®* — H};>1 is given recursively by

mp=mY > Gk ® Gray @ ® Ghoki,) - (2.6)
122 1<k1<ka--<k;=k

Note that (m1)? = modoromodor = modoPodor = 0 since d commutes with P due to the condition
(2.4). One can check that these actually give an A,-structure and an A..-quasi-isomorphism
(see [18]). O

Equivalently, m’ are described in terms of rooted planar trees as follows.

A planar tree (a simply connected planar graph without loops) consists of vertices, internal
edges and external edges. An internal edge has two distinct vertices at its ends. An external edge
has one end on a vertex and another end is free. The number of incident edges at a vertex is greater
than two. The term ‘planar’ means the cyclic order of edges at each vertex is distinguished. A
rooted planar tree is a planar tree graph with one of its external edges distinguished from others
as a root edge. The remaining external edges are called the leqves. Each edge of a planar rooted
tree has a unique orientation so that the orientations form a flow from the leaves to the root
edge. We sometimes describe the orientation as an arrow. We call a vertex at which the number
of incident edges is (k + 1) a k-vertez.

We call a rooted planar tree having k leaves a k-tree. The set of (the isomorphism classes
of) k-trees is denoted by Gg, k > 2.

For any element T';, € Gy, n > 2, let us define my, : (H')®" — H' by attaching ¢ : H' — H
to each leaf, my, : H®* — H to each k-vertex, —h : H — H to each internal edge, m : H — H' to
the root edge and then composing them. For example,

iy (01 0 ) - V
L s —hma(u(c)), e(0h))s (b))

for o}, 05,05 € H'. Then, {m},},>1 is given by m| = 7 om; o+ and
my, = Z mr., (2.7)
T'neGn
for n > 2. Thus, m/, is described as the sum of the value m'Fn over all the n-trees I';, € G,,.
Similarly, {gn }n>1 is given by g1 = ¢ and g, = Y p g, gr, for n > 2, where gr,, : (H')®" — H is
obtained by replacing m by —h in the definition of mfn

Remark 2.7. The data ( PH <—L>_ H ,h) used in the proof above is often called a strong

deformation retract (SDR) of the complex (H,d), the starting point of the traditional HPT (for
instance [10, 8, 9, 12]). There, it is discussed that the A, -quasi-isomorphism (2.5) induces
homotopy equivalence of the induced Ay-products (2.6) with the original one m, mainly in the
case (H,m) is a DGA. The extension to the case when (#,m) is a general A,.-algebra is not
difficult. The present form of HPT (Theorem 2.6) is due to [21], where the above planar tree
expression of the recursive formula eq.(2.5) and (2.6) is also presented.
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2.3. A -categories. We need the categorical version of these terminologies.

Definition 2.8 (As-category [2]). An Ay -category C consists of the set of objects Ob(C) =
{a,b,...}, Z-graded vector space Vg := Hom¢(a,b) for each two objects a,b € Ob(C) and a
collection of multilinear maps

m:= {mn : ‘/111(12 Q- Vanan+1 — Valan+1 }nZl
of degree (2 — n) defining the A.o-structure, that is, m satisfies the Aoo-relations (2.1).
In particular, an Ay,-category C with vanishing higher products mg = my = --- = 0 is
called a DG category.

The suspension s(C) of an A-category C is defined by the shift
s : Hom¢(a, b) — s(Home (a, b)) =: Homyy(a, b)
for any a,b € Ob(C) = Ob(s(C)), where the degree |m,| of the Ay -products becomes one for

all n > 1 as in the case of Ay -algebras. We sometimes denote Homs(c)(a,b) = Hqp as we do
Home(a,b) = Vgp.

Definition 2.9 (A-functor). Given two A.-categories C, C', G :={g,91,92,-.. } : s(C) — s(C’)
is called an A, -functor if and only if g : Ob(s(C)) — Ob(s(C’)) is a map of object and

g : Homgcy(a1,a2) ® - -+ ® Homy(c)(ak, ak+1) = Homyery(9(a1), g(ak+1)), k=1
are degree preserving multilinear maps satisfying the defining relations of an A,,-morphism (2.3).
In particular, if g : Ob(s(C)) — Ob(s(C')) and g1 : Homy)(a,b) — Homycr)(f(a), f(b))
induces an isomorphism between the cohomologies for any a,b € Ob(s(C)), we call the A-functor
homotopy equivalence.

The generalization of HPT for Ay -algebras to A-categories is straightforward [21].

Theorem 2.10. For an As-category C, suppose given linear maps hqp : Hy, — H;gl and
Py - Hyy — M7, satisfying

daphab + hapdap = 1day,, — Pap,  (Pap)? = Pup, dap :=m1 : Hap = Hap (2.8)

on Hap for any a,b € Ob(C). Then, there exists a canonical way to construct an Aso-category
C' which is homotopy equivalent to the original As-category C and in particular the space of
morphisms is defined by Hom,cry(a,b) = M.y = PapHap-

Proof. Let tqp : M., — Hap be the embedding and mgp : Hep — H., the projection such
that map 0 tap = Idgy, and tgp 0 mep = Pop. Then, for ay,...,an41 € Ob(C"), the Ay-product
My Heay @ - @ Hy oo = Maya,,, 18 given by mj, = Y5 o mr , where my,  is defined
in the same way as the one for an Ay-algebra, but we attach i4;q,,, : ’Hf”aiﬂ — Hasaipr
i =1,...,n, for each leaf (instead of ¢), my to each k-vertex, hqp to each internal edge, where
a,b € {ai,...,a,41} is uniquely determined by the graph I';,, and finally 7,4, , to the root edge
of T';, (instead of m). The construction of homotopy equivalence is also parallel to the case of

Ao-algebras, though we do not use it in the present paper. O

3. Ay-CATEGORY OF LINES IN A PLANE

3.1. The main theorem. For a fixed integer N > 2, let {f1,..., fn} be a set of polynomial
functions on R of degree equal or less than two. For each a € {1,...,N}, y = df,/dz is a line L,
in R? with coordinates (z,y) described as
Lo :y =12+ 34, ta,8a € R
Let us consider such a collection {f1,..., fx} satisfying the following two conditions:
(i) For any a #b=1,..., N, the slopes of the lines L, and L; are not the same: t, # t.
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(ii) More than two lines do not intersect at the same point in R?.

We identify the set {f, |a = 1,..., N} with the label set {ala = 1,...,N}. Then, denote by
§nv :={ala=1,...,N} such a set satisfying the above conditions (i) and (ii).

We shall construct a Fukaya A..-category C(Fn) with Ob(C(Fn)) = Fn from another Ay-
category, in particular, a DG category Cpr(Fn). Let Q(R) = Q°(R) @ Q'(R) be the graded
vector space defined by Q°(R) := S(R), the space of Schwartz functions, and Q! (R) := S(R) - dz,
where dz is the base of one-form on R.

Definition 3.1 (Cpr(Fn)). The DG category Cpr(F ) consists of the set of objects Ob(Cpr(R)) =
§n and the space of morphisms Qg := Homg,, ,(5y)(a,b) = Q(R) for each a,b € Fn, where we
set
e the differential dgp : ng — Q}lb by dgp := d — df s\, where d = dz - (d/dx) is the exterior
derivative and fgp := fo — fp;
e the product m : Q%" ® Qb — Qlab*"e by the usual wedge product.

It is clear that Cpgr(F) forms a DG category.
The following is the main theorem of this paper.

Theorem 3.2. There erists an A -category C(Fn) with Ob(Fn) = Fn such that

(i) For two objects a # b € Fn, the space Homeg,(a,b) =: Vyp of morphisms is the following
graded vector space of degrees zero and one:

Va% =R- ['Uab]a Vlb = 0, tq < tp,

a

Vo =0, VLI=R-[va], ta>t.

Here, [vg] are the bases of the vector spaces attached to the intersection points vap(= vpg)
of Ly and Ly.

(ii) Let ai,...,ap+1 € N, k > 1, be objects such that a; # aj for any i #j € {1,...,k+1}
and ¥ := (Vay, - - -, Vagaps1> Vagprar)- Lhen, for k =1, the differential m1 : Voo, — Vayay
is zero, m1 = 0. For k > 2, the structure constant c(v) € R for the higher As-product

mk([valaz]a SRR [vakak+1]) = c(ﬁ) : [Ualak+1]
is zero if U does mot form a clockwise convex polygon (see also Definition 3.6 for the
definition of clockwise convex polygon), and if ¥ forms a clockwise convex polygon, it is
given by c(7) = +e=A7¢D) with an appropriate sign £, where Area (%) is the area of the
clockwise convex polygon.
(iii) C(Fn) is homotopy equivalent to Cpr(FN).

Conditions (i) and (ii) are the ones for C(Fy) to be a Fukaya category. We call a multilinear
map mg, k > 2, of the type in Condition (ii) a transversal (higher) Aso-product. Multilinear maps
my, of the other type are then called non-transversal Aqo-products. Condition (iii) is motivated by
homological mirror symmetry (HMS)[20] of (non)commutative complex tori. As discussed in [21],
this homotopy equivalence should be the key idea of HMS for tori or more general cases, where
both C(Fn) and Cpr(Fn) are A-categories associated to a symplectic structure, but Cpr(Fn)
is canonically isomorphic to a DG category associated to the mirror dual complex structure. In
fact, the relation of this DG category Cpr(§n) with the DG category of holomorphic vector
bundles on a noncommutative complex torus [24, 15] with noncommutativity set to be zero is
clear. For the precise relation of the noncommutative complex torus description and the usual
complex torus description, for instance see [17].

3.2. Commutative DG algebra Ag(F'). We shall give a sketch of the proof of Theorem 3.2 in
section 5. Before that, we present an A..-category, which hereafter we denote by C(Fx), shown
to satisfy Conditions (i), (ii) and (iii) in the next subsection.
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In order to construct an Ay-structure including non-transversal A-products, we introduce
a (commutative) DG algebra Ag(F') over k = R. This notion is motivated by an extension of a
subalgebra F' of the commutative DG algebra of smooth differential forms on R by including step
functions and delta-function one forms.

Definition 3.3 (Commutative DG algebra Ag(F)). Let F = F* @ F! be a commutative DG
subalgebra of the commutative DG algebra of smooth differential forms on R, and S be a finite
set with a map z : S — R For each v € S, we introduce degree zero base 9, and degree one
base &, := d(¥,) with (deg~ree zero) unit 1: 1-9, =9, -1 =19,, 16, = 6y -1 = §,. Consider
the commutative algebra Ag(F) := F ® (1,9,,0, | v € S) of degrees zero and one, and relations
defined as follows:
Dy = Gy, Gy =0
for any v,v’' € S such that z(v) < z(v'),
Uy = '1911’7 0y = Oy
for any v,v’ € S such that z(v) = z(v'),
a0y = a(z(v)) - by, alz(v)) € k=R,
for any v € S,
a-9,=0, B-9,=0, acF° BeF!

for any v € S if a(z) = 0 or S(x)=0 for any =z > z(v),

a-(1-79,)=0, B-(1-19,) =0, aecF° BeF!
foranvaSifa(a:):00rﬂ(:z;)=Oforanyx§a:('u),Flléq,:OforanyvESandév-(SUf =0
for any v,v' € S. More explicitly, the graded vector space AG(F), r =0,1, is

AYF):=F'@ (1,0,jve S), ALF):=F'®(1,0,jv€8) ® BpesAL(F) ® b,.

By the commutativity and the relations above, any element is described as

n 0
a=aoy+ E Qy.n (1911) s Qp, Qyp € F
vES,NEL>o

for « € AY(F) and
B =B+ Z ,Bv,n(ﬁv)n + Z Cv,n(ﬁv)n_l * Oy, Bo, ﬂv,n € Fla Cyn € k=R

vES,NEL>o VES,NEL >
for B € AL(F). The differential d : A%(F) — AL(F) is defined by extending the differential
d: F° — F! with d(9,) = 6,, v € S, so that they satisfy the Leibniz rule with respect to the
commutative product.
In this paper, we shall consider the two cases F = Q(R) and F = FY = R. For F = Q(R),
we set Ag(Q(R)) := Ag(Q(R)). For F = R (note that the differential on F is trivial), we set
Ag(R) as a commutative DG subalgebra of Ag(F) as follows:

AR =gt D aa(d)" € As(®)| ap=0, Y au=0p,

vES,NEL>o vES,NEL>q

A,IS(R) = A,IS(R) = Z Cv,n("gv)n_l ' 6117 Cyn € k=R
VESNEZ >0
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By the map z : S — R, S is identified with the set of finitely many points on R. Then,
dy can be regarded as the delta function on R with support at z(v) and ¥, is the step function
whose value is zero at £ — —o0, one at £ — oo and which is discontinuous at z(v). In the case
F = R, taking the subspace A%(R) C flg(R) implies that we concentrate on constant functions
a which are discontinuous at some points in z(S) and further « = 0 at £ — +o00. Note that we
do not impose the relation (9,)? = 9,. Thus, for any element in A%(R), any discontinuous point
z(v) is associated with Zo-valued weight corresponding to the power of 9,. The commutative
DGA Ag(R) is useful in the sense that it is defined only in terms of finitely many points on R,
though Ag(R) is infinite dimensional as a vector space.

For the construction of the Ay -category C(Fn) we need only Ag(R). The cohomology of
As(R) is H°(Ag(R)) = 0 and H'(As(R)) ~ R (one dimensional); a base of H' is §, for an
element v € S, but one has d,, — §, = d(J,y — ;) for v,v' € S.

At a first look the reader can skip the following lemma, which shall be employed as a key
step of the proof of Theorem 3.2 in subsection 5.1.

Lemma 3.4. There exist inclusions
1 As(R) = As(QR)), ¢ QR) = As(Q(R)),
both of which induce homotopy equivalences as A -algebras.

Proof. The existence of the inclusions ¢ is clear. Also, for each case, the ¢ forms a chain map
with respect to the differentials on both sides, and also defines an algebra homomorphism. Then,
for each case, by setting g1 :=rand go = g3 =--- =0, G := {g1,92, ... } forms an A,,-morphism.

For Ag(R), Q(R) and Ag(Q(R)), their cohomologies are isomorphic to each other: H® = 0
and H' = R. In order to show that g, := ¢ induces isomorphism on the cohomologies, we need
only see that the image of a representative of H' of Ag(R) or Q(R) is not exact in Ag(Q(R)). It
is clear that the image of §, € Ag(R) and the image of 8y € Q!(R) such that ffooo Bo # 0 are not
exact. 0

3.3. The A, -category C(Fn). Let us define the A-category C(Fn). First of all, for each
a € Fn the graded vector space V,, = V. @ V. is set to be
VaTa = Ag'a (R)a r= O, ]-a

on which we set the differential m; = d : Vaoa — V;lla and the product ms : Vg ® Voo — Vi as
those in Ag, (R).

For a # b € Fn, the graded vector space V,; is taken to be the one given in Theorem 3.2
(i), on which the differential m; : Vg — Vg is set to be zero. Then, next, let us define multilinear
maps

M 2 Varar @+ @ Vayapyy = Varagys

of degree (2 — k) for k > 2. By degree counting, the following holds.

Lemma 3.5. Any multilinear maps my (w1, ..., wy) can be nonzero only if there exists a nonzero
element wyi1 € Vg, 1a, such that the number of degree zero elements in {w1, ..., wgq1} is two. O
We first define multilinear maps my(ws,...,wy) on Vi, where Vi = Vi for a £ b € Fn

and Vaa = Asa (R) for @ € Fny. The multilinear maps on the Z-graded vector spaces Vi, given
below are closed in the Z-graded subvector spaces Vi, and thus the restriction of them onto Vi,
gives the multilinear maps on V.. B

We determine those multilinear maps on V; separately in each case f(9) := {1 < i <
klw; € VO, a € Fn} is two, one, or zero.

e The case {§(J) = 2: By degree counting (Lemma 3.5), the multilinear map my (w1, ..., wy)
can be nonzero only if w; € V,, for all i = 1,...,k with some a € Fy. We set my(w1,...,wg) is
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nonzero only if it is of the form mq (w1, ws), wi,wy € Vaoa, for some a € §y. This is the product
my in Ag, (R).

e The case f(¢¥) = 1: By degree counting (Lemma 3.5), all such A-products to be nonzero
are only of the following types: for any a # b € §n,

A mys (Vo) @ Van ® (Vo) ¥ @ Vi, ® (V) ¥ — Vapr

B m.: (VL) eVhe (Vi) e 13, ® (Vi)®ks — v

Ci mu: (VL)PR @V ® (V)% @ V9 @ (V)2 @ Vi @ (V,,)®k — VI,

Co mu: (V) @ Vi @ (VL)% @ V), ® (Vih)®2 @ V2 @ (V)% — V0

aa’
Co ma: (VL) 0 VS @ (Vi) @ Vi © (V)™ @ VS, @ (VL) — 73,
where #’s are the appropriate numbers. We set the A, .-products of the following types to be
zero; type A with r =0 if ky # 0, type A with r = 1 if kg # 0, type B with r = 0 if k3 #£ 0, type
B with r = 1 if ky # 0, type C; with r = 0 if k3 # 0, type C; with » = 1 if ko # 0, type Cy and

type Cg if k)g 7é 0.
We set the multilinear maps which do not include degree one elements in V., for any a € Fn

as follows.

For type A, the product mo : Va% QV, —=Vi,a#b r=01,is given by

[vas] z(va) < z(vgp)
1
n 2_n[Uab] Va = Vaby ta <tp 3.1
m2(('l9ya) a['Uab]) %_H['Uab] Vg = VUgh, ta > tb ( . )
0 -’I»'('Uab) < ‘T(Ua)

for n > 1, where recall that the degree of [vgp] is zero for t, < t, and one for ¢, > t;. In the same
way, for type B, the product V, ® V;)b — Vi, a#b,r=0,1, is given by

[Va) z(vp) < T(vap)
Llv Vp = Ugp, tg <t
b )= 70 DT S @
n+1LYa — Yab»
0 Z(vap) < z(vp)

for n > 1. In addition, we set ma(1a,[vas]) = [vap] and mo([vas], 1) = [vas] for the identities
1, € V2 and 1, € V3.
For type Cy, Ca, Cs, a # b € Fn such that t, < t,

([l (D)™ o) = — s (1 = (90,)") € i

(00" [l [an]) = 00 (1= (90,)") € T,
([ (90, )" o)) = =y (1= (90,)") € Vi

4 o, [tal, (90,)") = =700, (1 = (0,)") € V2,

for n > 1 if vy, = vgp Or vy = vgp, and they are equal to zero if v, # vap O Vy # Vgp- In addition, we
set m3([Vba); Las [Vab]) = m3(1s, [Vba)s [Vap]) = 0 and m3([vas), 1s, [Vsa)) = M3 ([Vab)s [Vbal, 1a) = 0.

e The case (1) = 0: We first prepare some terminology for polygons.

Definition 3.6 (CC-polygon, Degree of points, Sign of the CC-polygon). Let ¥ be a sequence of
points vgp, a,b € Fn, in R? with coordinates (x,4). Any ¥ is described in the form

U= (V1 y V1,02, ey V2yenen.. s Uny ey Un)s
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where {v1,...,v,}, n € Zs, are points in R? such that v; # v;41 for i = 1,...,n — 1. In this
expression, we call ¥ a point if n = 1. On the other hand, we call ¥ a clockwise convex polygon
(CC-polygon) if and only if 0 < Angle(v;—1v;v;+1) < w for any i € Z, where, we identify v; = vy,
if v1 # vp, and v; = vy (1) if v1 = v,. By definition n > 3 if ¥ is a CC-polygon.

For a CC-polygon ¥ = (V1,...,01,02, ., V2,. ... 2, Uny---,Upn), we attach a degree |v;| for
each point v;, i = 1,...,n, as follows. Consider the map z : {v1,...,v,} = R, where the image
z(v;) is the z-coordinate of the point v;. Let {zy < --- < zr} C R be the ordered subset
consisting of the image z({vy,...,v,}), where z, and zg indicate the left/right extrema. We fix
i #j € {1,...,n} such that z(v;) = z1, and z(v;) = zr and assign the degree as |v;| = |v;| = 0.
The degree of the remaining points is set to be one. The choice of such i, j is not unique only if
v1 = v, and further z(v1) = z(v,) = zr or z(v1) = z(v,) = zg. Hereafter, by a CC-polygon 7,
we mean that with a degree attached in the sense above. The sign o(¥) of the CC-polygon o is

then defined by
1 i<
o(7) = { L
+1 j7<i.

(See Figure 3.)

ry, TR Ty, TR

(a) (b)

F1GURE 3. CC-polygons ¥ with (a): o(7) = —1 and (b): o(¥) = +1.

For k > 2, let us define degree (2 — k) multilinear maps my : Vay0, ® - @ Vayaprr = Varagsrs

mk(wa1a2> o 7wakak+1) € Valak+1
which do not include degree one element in V,, for any a € Fxn. Namely, we consider the case
a; # a;y1 for any 4 = 1,...,k, which implies that wg,q,,,, 4+ = 1,...,k, is spanned by the base
[Va;a:41])- Thus, it is enough to determine the multilinear maps
mk([vala2]""’[Uakak+1:|)' (3'3)
In the case a1 # apy1 (K > 2): Let us set ¥ := (Vajaz: - - - > Vagagsss Vagyia1 ), Where ve, q; 7#

Vaja;q, fOT ANy i € Z, a; = a;1 (p41)- By degree counting (Lemma 3.5), the multilinear maps (3.3)
can be nonzero only if ¥ forms a CC-polygon (we shall check this fact in subsection 4.1), where
the degree for the points is attached uniquely as [v;a,,1| = [[Vajai41]ls T € Z; @i = iy (g41)- We
set the structure constant cg,...q,,, € R of

mk([UGIGQ]’ T [vakak+1]) = cal"'uk+1[valak+1]

by

—

Cayapyy = (0(7))F ¢Areal®), (3.4)
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where Area(?) is the area of the CC-polygon .

In the case a1 = agy1 =: a (k > 2): Let us set 7 := (Vajay, - - - Vaagy,)- BY degree counting
(Lemma 3.5), the multilinear maps (3.3) can be nonzero only if ¢ forms a CC-polygon or a point.
If ¥ forms a CC-polygon, with the degree attached uniquely as |vq;a; 1| = |[Vajaii])], ¢ = 1,-- -, K,
we set

_ . 19—0(17)190(17) Vo
mk([vam]’ sty [Uaka]) - CG,G,Q"'aka Vaay Vapa € aa (3 5)
Cay-apyr = (G(ﬁ))k e—Area('D’)’

where 9! denotes

It =9, O =1-49,
If ¥ forms a point, the corresponding multilinear maps (3.3) become bilinear one my : V3 @ Vyq —
Ve for some a # b € §n, which we set as

ma([vab], [Vsa]) = Gu,y, € Via- (3.6)
Theorem 3.7. These multilinear maps my define a unique Ay -structure in C(Fn)-

Proof. The multilinear maps my, given above (those which do not include elements in V., for
some a € §y) is in fact compatible with the Ay-constraint (2.1); this fact can be checked directly.
On the other hand, for any a € §y, elements in V1 = Vala is mi-exact in V,, and then all the Aq-
products including those are determined uniquely by the A-constraint (2.1). The Ayo-structure
on V,, obtained so is in fact closed in V..

Alternatively, all the compatibility, existence, and the uniqueness of the A-structure stated
above can also be obtained as a corollary of the proof of Proposition (5.4) in subsection 5.2 where
the Aso-structure on C(§x) is derived in the framework of HPT. O

Note that the Ay -product (3.4) is just the transversal A-product in Condition (ii) in
Theorem 3.2. This definition of transversal A,-products (3.4) agrees in the sign with that given
by Polishchuk [23] in the two-tori case.

As for the Ay -products of #§(¢#) = 1, as a consequence, the A,-products can be nonzero
only if ky = ko = k3 = 0 for type A and B, k1 = k3 = 0 for type C; with » = 0 and type Cs, and
ko = k4 = 0 for type C; with r = 1 and type Cs.

For applications in the future, it should be worth giving the formula for the A -products
mg : Vajay @ <-- ® Vayapy = Vajagy, Which do not include elements in VY for any a and which
may include degree one elements in V.. for any a of the form 6,, € V., only. Namely, for the
Aso-products

Mg (Wayays - - - ,wakak+1) € Varapirs Cay-aryr € R, (k > 2), (3.7)
we let Waza41 = ['Uaiai+1] € Vaoiaprl if 24, < laip1y Wazazy = [Uaiai+1] € ValiaHl if 4, > laii
and wWg;q;,, = 51,%, € Valiai+1 for some v,; € S, if a; = a;41, where ¢ = 1,...,k. Recall
that, in this case, any wg,q,,, is associated with a point in R?. If a; # a;y1, the associ-
ated point is vg,q,,,. If a; = a;y1, we denote the associated point again by vg;q;,,, where
Vajaipn € Sa;- Then, for the case a1 # aq,,,, we set ¥ = (fualaz,...,vvakak+1,uak+la1), the
points associated to elements (Wayqy;-- - Wagapiss [Vagiia:))- FOr the case a1 = aq,,,, we set
7= (Vayays - - - ’U”akak+1)’ the points associated to elements (wa,a,,- - -, Wayay,,)- 10 both cases,
the Aoo-product my(Wayays - - -, Wagas,;) N €9-(3.7) can be zero only if & forms a CC-polygon or

a point. Let us describe ¥ as the form
U= (V1. ey V1,02 ey V2eennn. Uy« ey Un)-

Suppose that ¢ is a CC-polygon, where the degree for each point is given as follows. For any
i=1,...,n, if v;,...,v; includes the point associated to a degree zero element, we set |v;| = 0
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and denote the copy of v; by
di_ di,
(vg) 2= ti) o= G0, 0 T oy
where we attach o to the point associated to the degree zero element. We put d; := d;  +d;,.
If v;, ..., v; does not include the point associated to a degree zero element, we set |v;| = 1 and
denote the d; copy of v; by
d;
(v:)®% =T, . ;.
For any point v; of degree zero or one, we call the integer d; the multiplicity of v;. For any
i1=1,...,n, we define
Dy {2di(di>!<dz~+)! [oi] =0
(d:)! vi| = 1.
In the setting above, the A-products (3.7) is determined as follows.
In the case a1 # agy1 (k > 2): The Ay-product (3.7) is nonzero only if ¥ forms a CC-
polygon (i.e., is zero if ¥ is a point). Then, the structure constant cg,..q,,, € R of

ME(Wayags - - - ’wakak+1) = Cay---ap41 [Ua1ak+1]
is given by
N\ \k
ag\v _ =
Cayapyr = 71)(1 ( ))D e—Area(?) (3.8)
n

In the case a1 = ag41 =: a (k > 3): The A-product (3.7) can be nonzero only if ¢ forms
a CC-polygon or a point. If ¥ forms a CC-polygon, it is given by

mg ('waaza ce. awaka) = Caaz---apa ° al(ﬁ)an(ﬁ) € Vaoa

@@ _Area(s
Cayapqy P= ﬂ e Area(’u)’

where a1 (%), a, (¥) € V)9, are defined by

(3.9)

a(@) = {2 @200 = 3N [l =0,
(Fos )dl |’Ul‘ =1,
o {020, — 5™ Joal =0,
an (V) =4 oo(@)
(o)™ |vn| = 1.
If ¢ forms a point, nonzero A,,-products are only the followings:
d- d+ 1 d_+d;
P ol b o) = E ) T
m2+d—+d+( Vapr -+ + 3 Ovgps [Vabls ugys - - - 5 Ougy [Vba]) = (d_)!(dy)! vy € Vaas
d- d+ d_+d
1_ 9 +
s s (5] Fomre s ) B ) = @ §i‘fc)z+). 80y, € Vi

for any a,b € §n such that t, <, and d_,d; € Z>o.

Theorem 3.8. For any given §n and §'y, the two Ax-categories C(Fn) and C'(F'y) are homotopy
equivalent.

We shall prove this after the proof of the main theorem (Theorem 3.2) in subsection 5.1.
This result seems reasonable from the viewpoint of symplectic geometry, since the second coho-
mology of R? is trivial, that is, any symplectic form on R? is exact. Extending this construction
of an A,.-structure to tori, the A -categories with different configurations of lines are not homo-
topy equivalent in general even if the number of the lines (objects) is the same. For instance, for
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a two-torus case, a geodesic cycle in a torus T2 is described by a Z-copy of lines in the covering
space R? and the dimension of the space Hom gy (r2)(a,b) of morphisms for two transversal ge-
odesic cycles a and b in T? is the number of the intersection points of a and b in T2, which will
change if we change the slops of a and b even if we keep the ordering (cf. [25, 14, 24, 15]).

4. INTERPRETATIONS AND EXAMPLES

In this section, we explain more on the relation of polygons and the A,,-products in the
Fukaya Asc-category C(Fn) mainly for the transversal part. The relation between polygons and
the degrees of the the intersection points is explained in subsection 4.1. The realization of the
Aso-constraints in terms of polygons is given in subsection 4.2. Also, the necessity of nontrivial
non-transversal products is observed in an example in subsection 4.3.

4.1. CC-polygon and the degree. In the previous subsection we stated that by degree counting
(Lemma 3.5) the transversal Ao-products my([Va,as);-- - [Vananii]) in €q. (3.4) can be nonzero
only if the corresponding sequence ¥ = (Vajazs- - - »Vanans,) Of points forms a CC-polygon. Let
us check this fact. If we go around the CC (n + 1)-gon ¥ in the clockwise direction and count

1

FIGURE 4. A CC-polygon ¥ with degree (0 or 1) of the intersection points.

the degree r (zero or one) of each point v4q,,,, we always have two points of degree zero and
(n + 1) — 2 points of degree one as in Figure 4. Thus, we have

n+1 n+1
Z |Uaiai+1| = Z |[vaiai+1]| =(n+1) -2 (4.1)
i=1 i=1

for the CC (n + 1)-gon @, where va, 4,45 = Vani1a;- One can also see that the equation above
holds true only if ' forms a CC-polygon.

On the other hand, for the transversal Aq-product my,([va,as);-- -5 [Vanansi])), Lemma 3.5
implies that one has only two elements of degree zero in {[vg,a,];-- -, [Vanani1]s [Vansiar)}- This
exactly implies the identity (4.1) since the degree of the remaining elements is one.

To make sure, let us check Lemma 3.5 in this transversal situation. Let us assume that
|[Vani1a:]| = 7, where 7 is equal to zero or one. Then, one has

Imn([Vayas]s - - - ['Uanan+1])| = Z |[U(1iai+1]| —r+(2-n)
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since the degree of m,, is (2 —n). Here, ¥ is a CC-polygon if and only if the identity (4.1) holds,
where the right hand side of the equation above turns out to be (n+1)—2+(2—n)—r=1—r =
[va1an]-

Thus, one can indeed define nonzero transversal A,.-product m,, only when the correspond-
ing ¥ forms a CC (n+1)-gon. This fact was obtained by counting the degrees of the corresponding
points, which are related to their Maslov indices (see [2]. )

4.2. Ax-constraint and polygons. In the rest of this section, we denote v,y 1= [v4p] since it
does not cause any confusion.

The Aso-constraints for transversal A-products has a geometric interpretation in terms
of a clockwise polygon which has one nonconvex point (=vertex of the polygon). There exist two
ways to divide the polygon into two convex polygons. The corresponding terms then appear with
opposite signs and cancel each other in the A, -constraint. For example, in Figure 5, we have the

Vde

(%7

FIGURE 5. A clockwise polygon which has one nonconvex point.

following (intersection) points with their degrees assigned:

Vab VUbc Ved Vde Vef VUfg Ugh Uhg
1 0 1 1 0 1 0 1

Corresponding to the way of dividing the area X +Y + Z into (i) X + (Y + Z) or (ii) (X +Y)+ Z,
we have the following composition of transversal A..-products:

(1) £ (Vab (VbcVedVdeVe f )V fgVUghVhi),

(i) £ (VabVbcVedVde (Ve sV pgUgh)Vni),
where (VpcVcqVdeVes) indicates m4(vpe, Ved, Vde, Ver) and so on. There does not exist any other com-

position of A-products since a transversal Aso-product can be nonzero only if the corresponding
polygon forms a CC-polygon. According to the definition, one obtains

m4(vbcavcdavde,vef) = e_XUbf s

M5 (Vabs Vofs Vg, Ughs Uhi) = —e 8y,
M3 (Ve 1g,Vgh) = —€Veh

™me ('Uaba Vbcsy Veds Vdes Vehs th') = 67(X+Y)’Um' .
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Combining the first two equations leads to

~X—(Y+Z
m5(’l)ab, m4(”bca Veds Vdes Uef)a Ufga vgha Iuhi) = —¢€ ( + )'Uai ’
and combining the last two gives

_ —(X+Y)-Z
mG(Uaba'UbCa'UcdaUdeam3(ve sy Ufg, U h)avhi) = —¢€ ( ) Vas -
g9 "9

Thus, we obtain

0 = ms5(Vah, Ma(Vbe, Veds Vde» Vef)s Vfgr Vghs Vhi) — M6 (Vabs Vbes Veds Vdes M3(Vefs Vfgr Vgh)s Vhi)

which is just the As-constraints (2.1) on (Vab, Vbe, Veds Vdes Ve >V gy Vghs Vhi)-

4.3. Why can we not avoid non-transversal products ? Using Figure 5, we show that
we can not avoid non-transversal As.-products, i.e., we can not define an As.-structure for the
Fukaya category such that all non-transversal A.-products are zero.

Consider the sequence (vVqp, Vs f, VU fe; Vef, Vg, Vghs Vi) Of elements and the corresponding Aq-
products. There exists a composition ms(vap, Vr, Ve, M3(Vef, Vg, Vgh), Vhi) = e~ (Y+2)y: of two
transversal Ao-products. The A, -constraint (2.1) then implies that this composition cancels
with other terms. However, there does not exist any more composition of two non-zero transversal
Aso-products on the sequence (vgp, Vb, Vfe, Vef, Vg, Ugh, Vhi). This shows the necessity of nonzero
non-transversal A,-products. For the case of the A-category C(Fn), one has ma(vye,vef) =

Oy, € Vflf and the A,.-constraint on the sequence (vgp, Vbf, Ve, Vef, Vfgs Ugh, Upi) 18

0 = m5(Vab, Vo, Ve, M3(Vefs Vg Vgh), Vhi) — M6(Vab, Vb, M2(Vfe, Vef), Vgs Ughs Vhi)s

(Y+2)

where me(vap, Vb, M2(V e, Vef) Vgs Vghs Vhi) = M6(Vabs Ubfs Ovse s Vg, Vghs Vni) = €7 Vai-

5. PROOF OF THEOREM 3.2

5.1. The outline of the proof. We define two DG categories C,p(§n) and éDR(SN), which
are DG-categorical extensions of DG-algebras Ag(R) and Ag(©2(R)), respectively.

Let Sy be the set of all intersection points vy for all @ # b € §ny equipped with a map
z : Sy — R Here, note that vey = vpg € Sail; Vap = Vae if and only if b = ¢ € §n, and in general
z(v) = z(v") possibly holds for v # v' € Syy-

Definition 5.1 (Cpr(Fn)). The set of objects is taken to be the same as that of Cpr(Fn):
Ob(Cpr(Zn)) := Ob(Cpr(FN)) = Fn-

For any a,b € §n, we set the space of morphisms by

HoméDR(sN)(a’ b) = Qqp := Asall (Q(R))

as a graded vector space of degree zero and one. For a,b, ¢ € §, the composition m : Qgp ® Qpe —
Qqc is defined as the product in As,,(Q(R)). For a,b € §n, the differential dgp : Qup — Qup is
given by

dab =d~— dfab/\a
where d : Ag,,,(Q2(R)) — As,,(Q(R)) is the differential of Ag, ,(2(R)), and A is the graded
commutative product in Ag_, (Q(R)).
Definition 5.2 (C});(§~)). The set of objects is the same as that of Cpr(Fn):

Ob(Cpr(EN)) = Fn-
For any a,b € §n, we set the space of morphisms by
Homer - (3,)(a,0) = Qpp := {e/* - a € A5, (AR)) | @ € Ag,, (R)}
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as a graded vector space of degree zero and one. For a,b,c € §, the composition m : Q, ® . —
. is defined as the product in Ag,,(Q(R)). For a,b € Fn, the differential dgp : Q) — Q! is the

same as that in Cpr(Fn) or C~DR(§N):
dop =d —dfop N .

Clearly, (fDR(SN) forms a DG category, and the DG subcategory Cpp(§n) C éDR(S"N) is
well-defined.
The following can be showed just in the same way as Lemma 3.4:

Lemma 5.3. The inclusions
v: Chr(En) — Cor(Sn), v: Cpr(Zn) — Cor(FN),

induce homotopy equivalences Cpr(§n) =~ Cpr(Fn) and Chr(Bn) ~ Cor(ZN) as Ag-categories.
O

On the other hand, one has the following:

Proposition 5.4. There exists an As-functor G : C(Fn) — Cphr(Sn) which induces a homotopy
equivalence

C(FN) = Cpr(Fn)-

We shall show this in the next subsection, where HPT is applied to derive the A, -structure

Of C(SN)

Then, we obtain the following homotopy equivalences

CEn) 5 Chp(En) 4 CorEn) & Cor(En),
which give a proof of Theorem 3.2. O

Proof. of Theorem 3.8. By Theorem 3.2 C(Fn) =~ Cpr(Fn) and C(F'y) =~ Cpr(Fy). Also, by
Lemma 5.3 we obtained the equivalence Cpr(Fn) ~ Cphr(Fn) and Cpr(Fly) = Chr(Fy)-

Thus, one may show the homotopy equivalence C7, 5 (Fn) = Cp r(Fy). These two categories
are in fact isomorphic to each other. Let us denote the objects by §n = {a,b,...} and Fy =
{d',V/,...}, where we can assume t, < tp--- and ty < ty--- without lose of generality. The
functor between the objects is given by a + a’ for any a € §n, and the functor between the space
of morphisms is given by

Homch(gN)(a, b) — HomC’DR(S’N)(aIa bl)
w — efary ~fabyy
for any a,b € Fn. O

5.2. Deriving the A,-category C(Fy). Now, we shall show Proposition 5.4 stating the homo-
topy equivalence C(Fn) ~ Cpp(§n). We apply HPT (Theorem 2.10) to C,z(Fn)- In order to do
so, for any a,b € §n, we first define homotopy hgy : Q’éb — 9'2,,, Qp = HomC/DR(sN)(a,b), SO
that Py : Q0 — Q0. r = 0,1, defined by the dgphap + hapdap = Idg — Py gives a projection
on Qlab.

For any a € §n, we set hqe = 0 and then P,, = Id.

For all a # b € v, define the homotopy hap : V'L, — Q'Y and the projection Py : Q7 —

Q'", as follows. For the base d(d,)" € V%,
hap(d(0,)™) 1= efar—Tae@@) (9 )" — () (5.1)

for the case t, < tp, where ¢ = 0 if 2(ve) < z(v), ¢ = 1/2" if z(vg) = z(v), and ¢ = 1 if
z(v) < z(vgp). On the other hand, if t, > t,

has(d(8,)") = e~ EO (9,7 ~ ) (52)
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for any n > 1 and v € Sy;.

For t, < tp, the projection P, : Q’gb — 0

ab 18
efab z(v) < 2(vgp)
Pap(efer - (9,)") = § e m(v) = z(vap)
0 z(vgp) < z(v)

for any n > 1 and v € Sqy, Pay(efat) = efar, and P,y = 0 for P,y Q’(llb — Q’}lb.

For t, > tp, the projection P, : Q'(llb — Ql(lzb is

Pop(d(94)"™) = 0u,,

for any n > 1 and v € Sy and Py, = 0 for Py : Q’gb — Q’gb.
Then, for any a,b € ¥, one has the identity

daphap + hopdey = Id — Py (53)

on ©,. We denote the base of Py, by e := efav—fabr(z(vab)) for r = 0 and e,y 1= Oy, for
r=1

Now, applying HPT (Theorem 2.10) to Cpz(§n) with the identity (5.3) leads to an A-
category C'(Fn) with homotopy equivalence C'(Fn) = Cp,z(Fn). Here, the set of the objects is
Ob(C'(Fn)) = §n. The space of morphisms is defined so that

Lab - Homcz(%-N)(a, b) — HOII’ICIDR(&N)(G, b) (54)

gives the embedding to PabHomchR(&N)(a, b) C Hom%R(sN)(a, b) for any a,b € §n, which turns
out to be Homer(z,)(a,b) = Homeg,y(a,b) = Vg for any a # b € Fy but Homer(z,)(a,a) =
Hom¢, (zy)(a,a) O Home(zy)(a,a) = Voo for any a € §n. For a # b € Fy, we identify the
base e, € PabHomchR(&N)(a, b) with the base [v4] € Homer(g,y(a,b) = Vg by the embedding
tap in €q.(5.4) as € = tap[vap]- Then, the Ay-structure on C'(Fn) is closed in the subspace
Homg(z,)(a,b) € Home:(5,)(a,b), which gives the Ax-structure on C(Fy). Clearly, the inclusion
C(En) = C'(Fn) gives an Ao-functor, and in fact gives homotopy equivalence since the inclusion
is a quasi-isomorphism of chain complexes Home(z )(a, b) — HOmCI(S‘N)(a, b). O

Lastly, we end with deriving some examples of the A,.-products (3.8) (3.9) of C(Fn) asso-
ciated with CC-polygons.

Consider an Ay,-product

Mg (Wayay, - - - 7wakak+1)

which is associated with a CC-polygon ¥ in the sense in eq.(3.7) and the descriptions below. We
describe the CC-polygon as

7= ((01)®%, (09)®%, ..., (0)F =) L (07)W= ) L (n,) B

with the map z : {v1,...,v,} = R together. As above, we attach o on degree zero points v; and
v; to distinguish them from other points. If d = 1 for (v)®?, we simply denote it as (v)®! = v.
Similarly, if (d_,dy) = (0,0) for (v)®(@-4+), we denote it as (9)®(%0) = 4. We shall derive these
Aso-products by applying HPT (Theorem 2.10) to the DG category Cp,(§n). We denote the
product in C,,(Fn) by m. To simplify the formula, in these examples, we identify [ve] € Vg
with eqp € Pypd, for a # b € §n, and then the surjection mqy : Q) — Vop with Py,

Let us start from deriving a transversal Ao.-product with an example. One can see how
the area of the corresponding CC-polygon appears, where the correspondence of the CC-polygon
and a planar tree (a Feynman graph) is a key point. The way of determining the sign shall be
explained in the end of this subsection. Therefore, in the examples below, we do not care about
the sign and denote it simply by =+.
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Example 1. ¥ = (gab,vbc,gcd,vda), Z(vap) < (Vpe) < T(V4q) < Z(veg). The HPT implies
€45 €pc €. €45 €pe €4

m3(eaba €pe, ecd) =

On the other hand, one can associate a planar tree graph to the CC-polygon 7 as follows. First,
connect two points vgp, veq of U of degree zero with an interval. For each point of ¥ of degree one,
draw an interval (external edge = leaf), perpendicular to the z-axis, starting from the point and
ending on the interval (vgpv.q). Choosing the interval starting from the point v, as the root edge,
one obtains a planar rooted tree as in Figure 6. One can see that the resulting planar rooted

Vbe

T Vda

(Vap) 2 (Vpe) 2(Vga) (Veq) x

F1GURE 6. CC-polygon ¥ = (5ab,vbc,5cd,vda)-

tree corresponds to the one in the first term of the right hand side of eq.(5.5). We shall show
that the second term of the right hand side of eq.(5.5) in fact vanishes and the first term derives
the area Area(?¥). Let us calculate the first term. As in Figure 6, we divide the CC-polygon
¥ into three by the lines through vy, and vy, both of which are perpendicular to the z-axis.
The areas between z(vyp) and x(vpe), (vpe) and z(vg,), 2(v4e) and z(veq) are denoted X, Y, Z,
respectively. First, one gets m(eqp, €p.) = £e X dy,,. We know hgcdy,, = +efac—fac(z(vse)) - Dy
Then, Pygm(—hacly,,,€cd) is €44 times the value of the product of —hg.dy,, and e.4 at the point
z(v4e) € R:

Padm(_hac(svbcaecd) = 4+ (e.fac(w(vda))*fac(CL'('ch)) . efcd(w(vda))ffcd(m('ucd))) “€4d

==+ (e e%) - eu
where note that foc(z(vec)) — fac(z(v4e)) =Y and feg(x(veq)) — fea(z(v4e)) = Z. Combining all
these together, we obtain the first term in the right hand side of eq.(5.5): +eX-(Y+2)e .
In a similar way, one can see that the second term vanishes. The product m(ep.,e.q) is

proportional to d,, , and its image by hsyq is proportional to efed—f ba (#(vse)) -19;;, whose value at the

Vpe ?
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point z(vg,) € R is equal to zero. Therefore, P,gm(eqp, —hpqdy,,) vanishes due to the projection
P,,.

This example shows how the transversal A, products are derived in general; the HPT
machinery defines a higher product my in terms of the sum of values associated to planar rooted
k-trees over all the k-trees, but only the one compatible with the k-tree associated to the corre-
sponding CC-polygon survives and produces the area of the CC-polygon. This phenomenon can
be found in the original Morse homotopy theory [2, 5], and also its extension [21] where the area
of the polygon is taken into account as above.

The following is the first example of non-transversal products (3.5).

Example 2. ¥ = (vab,gbc,gcd,vda), Z(Vpe) < T(vgp) < T(V4q) < T(veq)- Let us calculate the non-
transversal Aqo-product ma4(€gp, €pe; €cd, €da)- This is again described as the sum of the values
associated to trivalent planar rooted 4-trees in the framework of HPT. In a similar way as in
the transversal case above, the 4-tree giving nonzero value is again the one corresponding to the
CC-polygon only. Here, the 4-tree corresponding to the CC-polygon ¥ is obtained as follows.
Connect the two degree zero points vp. and v.q with an interval. For each degree one point (in
this case vgp and v4,), draw an interval, perpendicular to the z-axis, starting from the point and
ending on the interval (vj.v.q). Then, we need a root edge; we add an edge, perpendicular to the
z-axis, starting from a point on the interval (vpcveq) between z(vg4p) and z(vg4,) and ending on the
interval (v4pv4,) (Figure 7). One can check that only the multilinear map corresponding to this

z(vp) 2 (vgp) z(v4,) 2 (Veq) z

Fi1GUuRrE 7. CC-polygon ¥ = (Uaba'lo)bc;"c;cdavda)-

Ugb ﬁvda)'

Example 3. 7 = (Vab, Vpcs Veds Vda), T(Vap) < T(vhe) < T(vga) < @(veq). Consider the non-
transversal Ay-product m4(€qp, €pc, €cds €4a)- In this case, there exist two choices of the 4-trees
corresponding to the CC-polygon ¥. As in the previous example, we need to add an appropriate
root edge. Ome can see that there exist two choices (i) and (ii) of the root edge as in Figure
8. Actually, for the multilinear maps associated to 4-trees by HPT, only those corresponding to
these two 4-trees give nonzero contribution. Recall that Py, = Idg, and one has

4-tree is nonzero and it turns out to be e~ (X+Y+2)(y

my (eaba €phc; €cd) eda) == m(eaba _hbam(eba _hcam(ecda eda)))

=+ m(_hacm(eaba ebc)a _hcam(ecda eda)))a
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Ube

z(vap) x(vp.) z(v4q) z(veq) T

FIGURE 8. CC-polygon 7 = (5ab,vbc,§cd,vda) with two choices of the associated
4-trees for the non-transversal A.o-product m4(€qp, €pc, €cd, €da)-

where the first (resp. second) term of the right hand side of the equation above corresponds to
the 4-tree with the root edge (i) (resp. (ii)). These two terms turn out to be

m(eaba _hbam(ebca _hcam(ecda eda))) = iei(X+(Y+Z))(ﬁvab - "9111,0)7

m(_hacm(eaba ebc)a _hcam(ecda eda))) = iei(X+Y+Z) ('19
where the signs + actually agree with each other and the result is

my (eaba €phcy €cds eda) = e~ (XY +2) (ﬁvab - '&vda)'

Upe ﬂ”da)’

Example 4. 7 = ('Baba ('ch)®da"c;cda'uda)a T(vab) < T(Vhe) < T(vda) < T(vea). Consider the non-
transversal Aq.-product

d

.

d o 7 Y
mit+d+1 (eaba (ebc)® ) ecd) - m1+d+1(eab7 5’!}1107 e 6’1}1]0 »€be; 6’1}507 e 6’1}50 ) eCd)'

In fact, the result is independent of the order of d,,,’s and ey, though &, ’s in the left (resp. right)
hand side of e, are elements in V,} (resp. V.%). The corresponding CC-polygon is ¢. Then, the
situation is the same as Example 1 for a transversal A, -product except that we have d elements
associated to the point vp.. One obtains
ml—l—d—l—l(eaba (ebc)®da ecd) = iPadm(_hac(w)a ecd)a
where hg.(w) € V2, is given by
ihacm(' Tt hacm(_hacm(_habm(' Tt habm(eaba 51)(,0); ) 5ch)7 ebc)a 6vbc)a ) évbc)-

Since the final result is independent of the order of d,,, and ey, let us try to calculate this w in
the case all d,, is in the left hand side of the element ep.. Then,

w ==k _h'acm(_h'abm(' Tt habm(eab7 (5111]0)5 ey 51)(,0)7 ebc)
d—1

N

= 4™ - haem((hapduy, - - (habOuy, - (PabBuy,)) -+ )» €be)

x 1
::I:e Xa(’l?vbc)d,
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where, in the second line we omit denoting the product m : Q"% ® Q4 — Q'L In the third
equality, recall that §,,, = d¥,,, and hgpdep(9y,,)¥ = (94, )%, and then we used the formula
oy, + (9 )¥71 = (1/k) d(Dy,, )k for k = 1,2,.... The remaining calculation is the same as
Example 1 and we obtain mi_ 411 (€4, (€5c)%%, €cq) = £(1/d!) e~ XY +2)e .

Example 5. 7 = (("3ab)®(d_ ’d+)a")bca'gcda'0da)a z(vap) < T(vhe) < Z(vda) < T(veq). Consider the
non-transversal Ay,-product
d— dy

®(d—,d L “ N - - ~
md+1+1((eab) ( +)7 €pe, ecd) = md+1+1(6vaba ey 6vabaeaba 6’Uaba cee aé’uaba €pc, ecd)a

where d :=d_ +d,. By HPT, there exist d!/((d_)!(d+)!) number of (d + 1+ 1)-trees which give
nonzero contribution to the corresponding (d + 1 + 1)-linear maps. The number d!/((d-)!(d;+)!)
comes from the number of the orders that one acts —hgpm(dy,,, *) t0 €qp d— times and —hgpm(*, dy,,)
t0 eqp dy times. In fact, the result does not depend on the order and one can describe

ma141((€an)* M), (en), €a) = ﬁ('djt)'

Padm(_hacm(w7 ebc)7 ecd)7

where w € Va% is given by

+ (_h’abm(é'uab’ *))d_ 0 (_habm(*’ 6'Uab))d+ €ab
d

A

Ve

= = (hapbu,, - - (habBuny - (Rabugy)) -+ -)

1 1\
— :l:a (ﬁvab - 5) .

Here, in a similar way as in the previous example (Example 4), in the second line we omit denoting
the product m : Q'L @ Q% — 'L, or m : O, @OV}, — O'L,. The difference of the situation here
from that in the previous example is that here hgé,,, = ¥, — (1/2) and we have the formula
hapOu,, (F,, — (1/2))F = (1/(k + 1))(9y,, — (1/2))*¥+1, which is used in the third equality of the
equation above. The remaining calculations are similar to those in Example 1; we finally obtain
Pagm(—hoem(w, €pc),€ca) = i(l/(Qdd!))ei(X—'—Y—'—Z)ead and then

1

md+1+1((eab)®(d_’d+)a €pc; €cd) = Wead.

Example 6. 7 = ((045)®%), vy, veq, (v40) %), 2(vhe) < 2(vap) < T(veq) < T(vgq). Consider
the non-transversal Aqo-product

®(d-,d+) ®d')_

Md+1+1+d ((€ap) » €bes €cds (€da)
This can be calculated by combining the arguments in Examples 3, 4, and 5. As in Example 3,

the Ay -product is given as the sum

Mas1+1+a ((€as) 2@ %), epe, €0, (€40) %) (5.6)

= +m(w, —hgpm(€pe, w')) £ m(—hoem(w, ep),w’),

where w is just the w in the previous example (Example 5), and w' is given in a similar way as
in Example 4:
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Here recall that 19;(; :=1—173,,,. Then, the two terms in the second line of eq.(5.6) turn out to
be

1
_ Ny — 4+ —(X+Y+2) +1\d , (9—1
m(wa habm(ebcaw )) (d_)'(d+)'(dl)'e (1911&1,) (1911(,0)3
1 _ _ '
(om0, ) = T D g, ) (0 L),

(d-)1(d4)(d")
The signs in fact agree with each other so that (19%,])‘1-(19;;)—!—(19%6)-(19;;)“ = ((9y,,)? — (9y,,))+
((ﬂvbc) - (1 — (9, )d’)) = (0y,,)% (9,1)%, and we finally obtain

Vda Vda

y 1 RN
Mai1s1+a ((€an) 29 M), €4, €cq, (€4a) %) = imwj‘}b)d )"

One can also check the case that vy, has multiplicity d”, (vbc)@’d”, where, after using the following

identity 3°¢_, Chyd—k (P, ) * (9,0)F = (D, + 95,1 ) = 1, we finally obtain just (1/(d”)!) times
the result above.

e The sign The sign is determined precisely as follows. In order to simplify the sign in HPT,
one may first consider the suspension s(Cp, z(Fn)) of Cp, r(Fn). Then, apply HPT to s(Cx(3n))
and obtain the A-products of s(C(Fx)). Finally, as the desuspension of s(C(Fy)) one obtains
the Ao-products of C(Fn)-

To see how the sign is determined, it is enough to demonstrate the calculations in the
examples of transversal A,-products below. As we saw in eq.(5.5), a transversal A,-product
Mn, 7 > 2, is described in terms of trivalent planar tree graphs, where the number of m and
—hgp for some a # b € Fy are (n — 1) and (n — 2), respectively. Since the sign problem for my is
obvious, let us consider the case n > 3. We obtain the sign from the following three parts.

o For any product m(w,w') in a tree graph, the degree (|wl|,|w'|) in CHx(Fn) is (0,1) or

(1,0). The suspension s : Chp(Fn) — s(Chhr(Fn)) leads to sign (—1)! for I the number
of the products m(w, w') with degree of type (0,1) (see eq.(2.2)).

o Associated to each internal edge, we have —hg;(6,) for some a # b € Fny and v € Syy.
The arrow of the internal edge is oriented from the left to the right or from the right to
the left. Then, we have sign (—1)7 where J is the number of the internal edges oriented
from the left to the right. (Compare this argument with eq.(5.1) and eq.(5.2) withn = 1.
)

o In the process of the desuspension s(C(Fn)) — C(Fn), an Ao-product my,(wy, ..., wy,)
gets sign (—1)% with K = n —i if w;, for some 1 < i < n, is the only degree zero element,
and K = (n—1) + (n —j) if w; and w;, for some 1 <14 < j < n, are the only degree zero
elements (see eq.(2.2)). Note that by degree counting (Lemma 3.5) there are not more

than two degree zero elements in {wy, ..., wy,}.
Thus, (—1)/+/+K is the sign we finally obtain.
Let us consider the examples of the transversal A.-products m,(wi,...,w,) with two

degree zero elements w; and w; for some 1 < 4 < 5 < n. The corresponding tree graph is

described as in Figure 9 (a) and (b) when the corresponding CC-polygon ¢ has o(v) = —1 and

o(v) = —1, respectively. Here, note that n = k+k'+1+1'+2. (i=k'+1and j =k +1+k+1+1

for case (a),and i =1+ 1and j =14+ 141"+ k' + 1 for case (b). ) For the case (a), one obtains
I=k+1'+1, J=k+k, K=U'+k+1+1+10)

I+J+K _ (_1)k+k’+l+l’+2 — (_1)

and hence the sign is (—1) . For the case (b), one obtains

I=k+1+1, J=k+FK, K=k+({"+K+1+k)
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FIGURE 9. The tree graphs corresponding to CC-polygons ¥ with (a): o(7) = —1
and (b): o(?) = +1.
and hence the sign is (—1)/*/*K = 1. One can see that in both cases the results agree with
the definition of the transversal A..-products in eq.(3.4). The calculation for the transversal
Axo-product my, (w1, ..., w,) with only one degree zero element in {w,...,wy,} is similar.

6. CONCLUDING REMARKS

We can apply the arguments in the present paper to two-tori directly. Then, we can discuss
the homological mirror symmetry for two-tori including non-transversal A,-products. In this
case, note that we can include the identity morphism in the two-torus analog of the graded vector
space Vg, and further the DG category has a canonical nondegenerate inner product (canonical
pairing of the Serre functor) defining cyclicity (see [24, 15] in noncommutative tori setting). Then,
the dual of the identity morphism will be a natural representative of the cohomology of V... Thus,
if we start from finitely many objects, we can obtain an example of finite dimensional minimal
Aso-algebras by applying HPT again to the two-torus analog of the graded vector space Vg, of the
Axo-category C(Fn). From this viewpoint, the Ay-category C(Fn) we constructed in this paper
is an intermediate step. In particular, in R? case, the Ay-structure is not equipped with cyclicity
in the sense as in [15]; though cyclicity for an Ay-structure is defined by a non-degenerate inner
product, the inner product defined naturally in this case becomes degenerate on V.

The generalization of the story of the present paper (R case) to R" case is also an important
issue, where, though the generalization of the DG-category Cpr(Fn) is straightforward (see [16,
17]), we need to define a higher dimensional analog of the DG-category Cp,z(Fn) so that HPT
can be applied to it. The construction of the higher dimensional analogue of C/,,(Fn) is not
straightforward, 3 but it seems not still impossible. This higher dimensional generalization also
enables us to consider nontrivial noncommutative deformation of the A-categories (see [16, 17]).

The reader might notice that elements in V,. played a special role in the present paper. In
fact, the elements in V.. is related to open string background, i.e., the solutions of the Maurer-
Cartan equation of the Ano-structure (see [6, 18]). In R? case, the Maurer-Cartan equation will be
trivial, which implies that all elements in V.., can be the solution of the Maurer-Cartan equation.
Then, nontrivial deformation of lines to curves in R? can also be taken into account in this
framework.

3For instance, even if we consider affine Lagrangians only, the orbits of the gradient flow are not affine. Since
the action of the homotopy operator h,p is defined by the orbits, those non-affine orbits cause various subtleties as
pointed out by K. Fukaya to the author. Another approach to construct an A-structure of a Fukaya category on
a torus fibration is discussed in [4] where we can avoid this kind of subtleties.
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Finally, instead of the application to tori, we hope to apply the arguments of this paper

to more general manifolds since the A,-categories in this R? case and their higher dimensional
generalization, if it could be done, might be thought of a local construction of the A,,-categories
which should be defined on the whole manifolds.
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