Open-closed field algebras, operads and
tensor categories

Liang Kong

Abstract

We introduce the notions of open-closed field algebra and open-closed field
algebra over a vertex operator algebra V. In the case that V satisfies certain
finiteness and reductivity conditions, we show that an open-closed field algebra
over V canonically gives an algebra over a C-extension of the Swiss-cheese partial
operad. We also give a tensor categorical formulation and categorical constructions
of open-closed field algebras over V.
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Open-closed (or boundary) conformal field theories were first developed in physics by
Cardy [C1]-[C4][CL] soon after the fundamental work of Belavin, Polyakov and Zamolod-
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chikov [BPZ] on conformal field theories appeared. They describe certain critical phe-
nomena on surfaces with boundaries in condensed matter physics. They are also power-
ful tools for the study of the still mysterious objects called “D-branes” in string theory
[Pol][Po2].

By generalizing Kontsevich and Segal’s celebrated definition of conformal field theory
[S1][S2]', Huang [H7] and Hu and Kriz [HKr2] gave mathematical definitions of open-
closed conformal field theory. Roughly speaking, an open-closed conformal field theory is
a monoidal functor between two monoidal categories. The domain category has objects
being ordered sets of finitely many copies of S (a circle) and [0, 1] (an interval), and has
morphisms being conformal equivalent classes of Riemann surfaces with some oriented,
ordered and parametrized boundary components and oriented, ordered and parametrized
line segments of other boundary components. The target category is the monoidal
category of Hilbert spaces with morphisms being the projective spaces of the spaces of
multilinear continuous maps.

When the monoidal functor only depends on the topological structures (instead of
the conformal structures) of Riemann surfaces, it is called 2-dimensional open-closed

topological field theory, a study of which was carried out by Lazaroiu [La] and Moore
and Segal [Mo1][Mo2][S3|[MS]. They proved the following Theorem:

Theorem 0.1. A reduced 2-dimensional open-closed topological field theories is equiva-
lent to a finite dimensional commutative Frobenius algebra H, and a finite dimensional
Frobenius algebra H,, together with an algebra map v, : Hy — Z(H,,), where Z(H,y) is
the center of H,,, satisfying an additional condition called Cardy condition.

A systematic study of open-closed conformal field theories is much more difficult. In
[HKo1][HKo02|[Kol], Huang and the author carried out a few first steps in this direction,
based on the theory of vertex operator algebra [B1][FLM|[FHL][FB][LL], the construc-
tion of genus-zero and genus-one chiral closed conformal field theories by Huang [H1]-
[H13] and the tensor category theory from vertex operator algebras developed by Huang
and Lepowsky [HL2]-[HL6][H3][H10]. In particular, in [HKol], Huang and the author
studied the pure open-string part of genus-zero open-closed conformal field theory, in
terms of the so-called open-string vertex operator algebra. In [HKo2][Kol][HKo3], we
studied the pure closed-string part of genus-zero and genus-one open-closed conformal
field theory, in terms of conformal full field algebra.

In this work, we will study interactions between closed strings and open strings in
genus-zero open-closed conformal field theories. More precisely, we will study inter-
actions that fuse arbitrary number of in-coming open strings with arbitrary number of
in-coming closed strings into a single out-going open string, as shown in Figure 1. Other
situations in which more than one outgoing open strings and an open-string loop appear
will be studied in [Ko2].

In [V], Voronov introduced the so-called “Swiss-cheese operad” to describe the in-
teractions among open strings and closed strings depicted in Figure 1. In order to in-
corporate the full conformal symmetry which is not included in Voronov’s Swiss-cheese
operad, Huang and the author introduce a notion called Swiss-cheese partial operad in
[HKo1]. The Swiss-cheese partial operad consists of disks with strips and tubes, which

Tt is further rigorized by Hu and Kriz in [HKr1].
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Figure 1: open strings interact with closed strings

are conformal equivalent classes of disk with oriented punctures in the interior of the
disk (tubes) and on the boundary of the disk (strips), together with local coordinate
map around each puncture.

On the moduli space of disks with strips and tubes, which is denoted as &, there are
two kinds of sewing operations. One is called boundary sewing operation, which sews
two elements in & along two strips with opposite orientations. The other one is called
interior sewing operation, which sews a disk with strips and tubes with a sphere with
tubes [H4] along two oppositely oriented tubes.

Disks without interior punctures are closed under boundary sewing operations. This
closed structure is nothing but the operad of disks with strips, which is introduced and
studied in [HKol] and denoted as Y. In [HKol], Huang and the author showed that
open-string vertex operator algebras of central charge ¢ are algebras over Y¢, which is
a C-extension of T [HKol]. In an open-closed conformal field theory, an open-string
vertex operator algebra, denoted as V,,, plays a similar role as that of the associative
algebra H,, in Theorem 0.1.

The moduli space of spheres with tubes equipped with sewing operations has a
structure of partial operad, called sphere partial operad and denoted as K. It is well
understood by the works of Huang [H1|[H2|[H4]. Similar to the study of T, we can
study & in the framework of sphere partial operad K by embedding & into K via a
doubling map § [A][C1][HKol]. Then the interior sewing operations on & correspond
to a double-sewing “action” of K on the image of § (see (2.24)). As a consequence, the
closed-string theory in an open-closed conformal field theory must contain both chiral
part and anti-chiral part. Such closed theories were studied in [HKo2|[Kol][HKo3] in
terms of the so-called (conformal) full field algebra and variants of it. More precisely,
we showed in [Kol] that conformal full field algebras over VZ @ V% where V1 and
VI are vertex operator algebras of central charge ¢/ and ¢ respectively and satisfy



certain finiteness and reductivity conditions, are algebras over K " @ K<®, which is a
C-extension of K [HKol|[Kol]. In an open-closed conformal field theory, a conformal
full field algebra, denoted as V,;, plays a similar role as the commutative associative
algebra H. in Theorem 0.1.

We are interested in algebras over G¢, which is a C-extension of &. There is a natural

action of K¢ ® K< on &¢ induced by interior sewing operations [HKol]. Therefore,
it is natural to expect that an algebra over G¢ with certain natural properties should
contain a conformal full field algebra V,; and an open-string vertex operator algebra V.

Moreover, V,; should “acts” on V,, according to the action of K< ® K on &¢. This
requires certain compatibilities between V; and V,. One of the compatibility conditions
is the so-called conformal invariant boundary condition. It roughly means that the two
vertex operator algebras generated by the left and right Virasoro elements in V,; should
match in some way with that generated from the Virasoro element in V,,. In this case,
we also call it a boundary condition preserving conformal symmetry. In this work, we
only study boundary conditions that preserve an enlarged symmetry given by a vertex
operator algebra U (see for example [FS1][FS2] and references therein for symmetry-
broken situations). Such structure is formalized by a notion called open-closed field
algebra over U. We will introduce this notion in Section 2. When U satisfies conditions
in Theorem 0.2, we will show that an open-closed field algebra over U canonically gives
an algebra over G°.

Open-closed field algebras over U are difficult to study in general. The following
Theorem proved by Huang in [H8] is important for us.

Theorem 0.2. Let V' be a vertex operator algebra with central charge ¢ satisfying the
following conditions:

1. Every C-graded generalized V-module is a direct sum of C-graded irreducible V -
modules,

2. There are only finitely many inequivalent C-graded irreducible V -modules,
3. Every R-graded irreducible V -module satisfies the Cy-cofiniteness condition.

Then the direct sum of all (in-equivalent) irreducible V -modules has a natural structure
of intertwining operator algebra and the category of V-modules, denoted as Cy, has a
natural structure of vertex tensor category. In particular, Cy has natural structure of
braided tensor category.

Assumption 0.3. In this work, we fix a vertex operator algebra V', which is assumed
to satisfy the conditions in Theorem 0.2 without further announcement.

The notion of open-closed field algebra over V' can be described by very few data
and axioms in the framework of intertwining operator algebra (see Theorem 1.28 for a
precise statement). Moreover, such algebra has a very simple categorical formulation.
In Section 3, we introduce a notion called open-closed Cy |Cy gy -algebra. We show that
the category of open-closed field algebras over V' is isomorphic to the category of open-
closed Cy|Cygy-algebras. Once the categorical formulation is known, some categorical



constructions are easy to obtain. We discuss some simple categorical constructions in
Section 3.

One of recent important developments on open-closed conformal field theories is a
series of works [FFFS|[FS3][FRS1]-[FRS4] [FjFRS|[FFRS] by Felder, Frohlich, Fuchs,
Runkel, Schweigert, Fjelstad, on rational open-closed conformal field theories using
the theories of modular tensor category and 3-dimensional topological field theory
[RT1|[RT2][T][BaKi]. Assuming the existence of the structure of a modular tensor cat-
egory on the category of modules for a vertex operator algebra and the existence of
conformal blocks with monodromies compatible with the modular tensor category and
all the necessary convergence properties, they constructed conformal blocks for open-
closed conformal field theories of all genus and proved their factorization properties and
invariance properties under the actions of mapping class groups. Our approach can be
viewed as the complement of theirs. In [HKol]-[HKo3][Kol|[Ko2] and this work, based
on Huang’s fundamental works [H1]-[H13], Huang and the author replace above as-
sumptions by some easy-to-varify conditions on vertex operator algebras and construct
explicitly the genus-zero and genus-one correlation functions of open-closed conformal
field theories. We hope to combine these two approaches together in the future to give
a rather complete picture of open-closed conformal field theory.

The layout of this work is as follow. In Section 1, we review some old notions such
as open-string vertex (operator) algebra, (conformal) full field algebra and variants of
them. We also introduce the notions of open-closed field algebra and open-closed field
algebra over U, and study their basic properties. In Section 2, we gives an operadic
formulation of open-closed field algebra over V. In particular, we show that an open-
closed field algebra over V' canonically gives an algebra over G¢. In Section 3, we discuss
a categorical formulation and some categorical constructions of open-closed field algebras
over V.

Convention of notations: N,Z, Z,,R, R, , C denote the set of natural numbers, inte-
gers, positive integers, real numbers, positive real numbers, complex numbers, respec-

tively. Let H = {z € C[lmz > 0}, H = {z € C|lmz < 0}, H = HUR, H = HUR.
We use R, ]I:]I,E to denote the one point compactification of R, H, H respectively. The
following notations will also be used: Vn € Z,

A" = (1, r) €RPry > >, > 0, (0.1)
My = {(z1,...,2,) € H"|2; # 2;, fori,5=1,...,nand i # j}, (0.2)
Mg = {(z1,...,2,) €C"2z; # 25, fori,j=1,...,n and i # j}. (0.3)

The ground field is always assumed to be C.
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out many of my mistakes and misprints and for his constant support. I also want to
thank J. Lepowsky, J. Fuchs and C. Schweigert for many inspiring conversations, and I.
Runkel for kindly sending me his thesis and one of his computer programs.



1 Open-closed field algebras

In Section 1.1, we introduce the notion of boundary field algebra, and recall the definition
of open-string vertex (operator) algebra [HKol]. In Section 1.2, we recall the notion of
full field algebra [HKo02] and variants of this notion. In Section 1.3, we introduce the
notion of open-closed field algebra. In Section 1.4, we introduce the notion of analytic
open-closed field algebra and study its basic properties. In Section 1.5, we introduce the
notion of open-closed conformal field algebra over a vertex operator algebra U.

Let G be an abelian group. For any G-graded vector space F' = ®pcqF(n) and any
n € G, we shall use P, to denote the projection from F or F = [L.cc Fn) to Fiyy. We
give I and its graded dual F' = ®,,cq F, *n) the topology induced from the pairing between

Fand F'. We also give Hom(F, F) the topology induced from the linear functionals on
Hom(F, F) given by f +— (', f(v)) for f € Hom(F, F), v € F and v' € F".
For any vector space F' and any set S, F'®% = C and S° is an one-point set {x}.

1.1 Boundary field algebras and open-string vertex algebras

We first introduce a notion called boundary field algebra.

Definition 1.1. A boundary field algebra is a R-graded vector space V,, with grading
operator being d,,, together with a correlation-function map for each n € N:

mgz) : VO%" x A" — Vop
(U @ - @ Uy, (T1,...,70)) + mgz)(ul,...,un;rl,...,rn)

and an operator D,, € End V,,, satisfying the following axioms:

1. For each n € Z,, mgg)(ul, ey Upi T, ., Ty) 18 linear in wuy, ..., u, and smooth in

ST
2. Yu eV, m,%)(u; 0) =wand 1,, := mg(;,)(l) € (Vop)(0)-
3. Convergence property: Forn € Z,, k € Nandi=1,...,n,uy, ..., Uy, ugi), . ,u,(j) €
V,p, the following series®
(1) (@) (&) (4)

n k
Zm(()p)(ul,...,ui_l,PSmop(ul N T SR e
seR

ui-i-la"')un;/rla"')rn) (11)

converges absolutely, whenever rii) < |r; —r;| for all j # i, to

n+k—1 (2) (@) .
mgp Mg, ... wig, ul e U Uiy ey U

7’1,...,7”2'_1,7”2'—|—T§i),...,TZ'—FTI(:),TZ'_;_l,...,’/’n). (12)

2That the number of nonvanishing terms in the sum is countable is automatically assumed.



4. d,,-bracket property:
eadopmgz) (Upy o U3 Ty ey ) = m(()z)(e“dopul, o eory et etry). (1.3)
formeZy,ry>--->r, >0, rcRand uy...,u, € V.
5. Dgy-property: For uy, ..., uy, € Vo, 70 > --->1, > 0and r, +a >0,

e“D"”ng)(ul, U T e T) = mgz)(ul, ce U1 ay .t a). (14)

We denote such a boundary field algebra as (V,,, My, dop, Dop). Homomorphisms,
isomorphisms and subalgebras of boundary field algebras are defined in the obvious way.
Let the map Y,, : VO%@) x Ry — V,, be defined by

Yoo : (w®@v,r) = Yy, (u,r)v =mo(u,v;r,0). (1.5)
Then by the convergence property, we have

Yop(lop,7) = idp, (1.6)

}5% Y;p(ua T)lop = u,
for u € V,,. (1.7) implies that the map u — Y,,(u,r) is one-to-one. By (1.3), we have
e ory, (u,r)e o =Y, (edru, ar) (1.8)
for u e V,p,r € Ry and a € R. By (1.4), we also have
eaDop"}/:)p(u’ ,r)e—aDoP = }/Op(u’ r—4+ a) (19)
for u € V., 7 > 0,r 4+ a > 0. Moreover, using (1.7) and (1.4), we also have
Yop 0, 7) Ly = m (v37) = € Porv, (1.10)

If we assume some analytic properties on mé’;), it is possible to use Y,, to generate all

mby. This motivate us to introduce the notion of open-string vertex algebra in [HKol].

The definition given here is a refinement of that in [HKol].

Definition 1.2. An open-string vertex algebra is an R-graded vector space V,, =
®ner(Vop) ) (graded by weights) equipped with a vertex map:

Yop: (Vop @ Vop) X Ry =V,
(u@v,r) — Yy(u,r)v, (1.11)

a vacuum 1,, € V,, and an operator D,, € End V), of weight 1, satisfying the following
conditions:

1. Vertex map weight property: For si,ss € R, there exists a finite subset S(sq, $2) C
R such that the image of (Dses;+2(Vop)(s)) ® (Psesi+z(Vop)(s)) under the vertex

map Yo, is in HSGS(Sl,Sg)-l-Z(‘/op)(S)'



2. Vacuum properties:
(a) identity property: For any r € Ry, Y,(10p,7) = idy,,,
(b) creation property: Yu € V., lim, o Yo, (u, 7)1, = u.

3. Convergence properties:

For n € N, uy, ..., u,,v € Vo and v’ € V), the series

(V' Yop(ur,71) . .. Yop(tn, 70)0)
= Z <U/7 Y:Jp(ulv T1>Pm1Y:Jp(u2v T2) ce Pmnflnp(unv Tn>v>

mi,...,Mnp—1

converges absolutely when ry > --- > r, > 0 and is a restriction to the
domain {ry > --- > 1, > 0} of an (possibly multivalued) analytic function in
(C*)™ with only possible singularities at r; =r; for 1 <i,5 <nand i # j .

(a) For uy,ug,v € V,p,v" €V, the series

(V' Yop(Yop (1, 7o)z, 72)0) = Y (0", Yo (P Yo (11, 70 )12, 7))

m

converges absolutely when ry > rg > 0.

4. Associativity: For uy,us,v € V,p and v' € V),

(V' Yoplot1, 1) Yap (12, 72)0) = (0, Yop (Yap(t1, 14 = )i 72)0)
for r1, 79 € R satisfying r1 > ro > ry —ry > 0.

5. dp-bracket property: Let d,, be the grading operator on V,,. For u € V,, and
re Ry,

d
[dozn Yoz:(“u T)] = Y;p(dopu, T) + T%Y:)p(uv T)- (1-12>

6. Dop-derivative property: We still use D,, to denote the natural extension of D,
to Hom(V,p, Vop). For u € V,,, Y, (u,r) as a map from Ry to Hom(V,,, V,,) is
differentiable and

d
%Yt?p(uvr) = [Dop, Yop(u,7)] = Yop(Dopu, 7). (1.13)
Homomorphisms, isomorphisms, subalgebras of open-string vertex algebras are de-
fined in the obvious way.

We denote such algebra as (V,, Yop, Lop, dop, Dop) o1 simply V,,. For u € V,,, it was
shown in [HKo1] that there is a formal vertex operator

YOJ;(u,:E) = Zunx_"_l, (1.14)



where u,, € End V,,, so that
Yol () ey = Yop(u, 7). (1.15)

We can also replace x by complex variable z if we choose a branch cut. For any z € C*
and n € R, we define

log z :=log|z| 4+ argz, 0 < argz < 2. (1.16)

But for power functions, we distinguish two types of complex variables, z (or 21, 29, .. .)
and zy, ¢ (or z1, (1, 22, (o, - - . ). We define

Zn:zzenlogz7 2”;::enbgz Cn;::enbgc. (1.17>

)

Proposition 1.3. An open-string vertex algebra canonically gives a boundary field al-
gebra.

Proof. The proof is standard. We omit it here. |

Definition 1.4. An open-string vertex operator algebra is an open-string vertex algebra,
together with a conformal element w,,, satisfying the following conditions:

7. grading-restriction conditions: For all n € R, dim(V,,)n) < oo and (Vop)m) = 0
when n is sufficiently negative.

8. Virasoro relations: The vertex operator associated to w,, has the following expan-

sion:
—n—2
Yop(Wop, T E L(n

ne”L

where L(n) satisfying the following condition: Vm,n € Z,
c
[L(m), L(n)] = (m = n)L(m +n) = 7= (m” = m)3mino,

for some ¢ € C.

9. Commutator formula for Virasoro operators and formal vertex operators (or com-
ponent operators): For v € Vo, Y (wep, 2)v involves only finitely many negative
powers of x and

Y] (@ops 1), V(01 22)] = Resapaz ' (—

) Yf(Y (Wop, o)V, T2).

L2

10. L(0)-grading property and L(—1)-derivative property: L(0) = d,, and L(—1) =
D

op-



We shall denote the open-string vertex operator algebra defined above by

(V:)pa Y:)pa ]—opa wop)

or simply V,,. The complex number ¢ in the definition is called the central charge of the
algebra.
The meromorphic center of V), is defined as

Co(Vop) = {U € Gnez(Vop) () Yoj;(u,x) € (End Vrﬁp)[[zvl’_lﬂa
YO’;(v,x)u = exDYOJ;(u, —x)v, Y € Vop}.

It was shown in [HKo1] that the meromorphic center of a grading-restricted open-string
vertex (operator) algebra is a grading-restricted vertex (operator) algebra.

Let U be a grading-restricted vertex (operator) algebra. If there is a monomorphism
Lop : U — Cy(V,,) of grading-restricted vertex (operator) algebra, we call V,, an open-
string vertex (operator) algebra over U, and denote it by (V,,, Yoy, Lop) or simply by V.
In this case, the formal vertex operator YOJ; is an intertwining operator of type (V:;°§Op),
where V,, is a U-module.

Remark 1.5. Open-string vertex operator algebra can be viewed as a noncommutative
generalization of vertex operator algebra. Other noncommutative generalizations of
vertex operator algebra are also studied in the literature [B2|[BaKa|[L1]-[L3]. However,
many interesting examples of open-string vertex operator algebras are not covered in
other axiomatic frameworks.

1.2 Full field algebras

Definition 1.6. A R x R-graded full field algebra is an R x R-graded vector space
Ve = 1lnner(Ve)mn) (graded by left weight wt? and right weight wtf with left and
right grading operators d¥ and d?), equipped with correlation-function maps

my : Vit x Mg — Vg

(U1 @ -+ @ Uy, (21,...,2,)) + mg;)(ul,...,un;zl,Zl,...,zn,Zn),

for each n € N, and operators D* and DF of weights (1,0) and (0,1) respectively,
satisfying the following axioms:

1. Single-valuedness property: ¢™(d" =% —iq,, .

2. ForneZ,, mgl)(ul, e Uni 21, 21y« - - Zny Zn) 18 linear in uyq, . . ., u, and smooth in
the real and imaginary parts of z1,..., z,.

3. Identity properties: Yu € Vi, mi(u;0,0) = w and 1, := m(o)(l) € (Va),0)-

cl

10



(@)

4. Convergence property: For k,ly,... I € Zy and uy, ..., up,uy ;... ,ul(f) € V. and

1 =1,...,n, the series

Z mgL) (ugy ... Ui, P(pg)mgf)(vl, e Uk z%i), z{“, o z,(:), 2,(:)),

p,q€R
Uit Ly -y Un} 21,5 2Ly - - - Zny Zn)
converges absolutely to
(n+k—1) . _ _
md (ul,...,ui_l,vl,...,vk,uiﬂ,...,umzl,zl,...,zi_l,zi_l,
(i) 5 50 (i) 5 50) > >
zit+ 2, %+ 2 2t 2 2 B Zidly Zikly - -y 20y Zn)
whenever |z,(,)| <l|z—zjlforall j=1,...,n,i#jandforp=1,... k.

5. Permutation property: For n € Z, and o € S,,, we have

mgl)(ul,...,un;zl,Zl,...,zn,Zn)
_ () ) _ ~
= mcl (uo'(l)7 SN 7uo'(n); Zo'(l), 20(1)7 ey Zo-(n)’ ZO'(n))
for uy,...,u, € Vg and (21,...,2,) € Mg.

6. d* and df property: For u,,...,u, € V,; and a € C,

ad? _adf__(n) X _ _
e e my (U, U 2, 2 ey 2y Zn)

_ (n)/ _adl ad® adl ad® a a= a a=
=myg (e € uy, ..., e e uy,, €2, €%, ..., e%%,,e2,).

7. DY and DT property. [DY, D¥] = 0 and for uy,...,u, € Vy and a € C,

aD™ _aD®__(n) ) B B
€ € mg (u17"'7un;21731,...,2n,zn)
_m(n)(u Uy, 21 +a, 21 +a 2p +a, zZ, + a)
— Mo 10y Un, <1 , 21 oy Zn ) Zn .

We denote the R x R-graded full field algebra defined above by
(‘/;la Mer, dLa dRa DL> DR)

or simply by V. B
Let Y : V52 x C* — V be so that

Y:(u®wv, z)— Y(u; 2z, 2)v :=mo(u®v; 2, 2,0,0).
Then by the convergence property, it is easy to see that

Y(]-cl;zaz) = ichl’
1in(1)Y(u;z,2)1cl = u, Vu € V.

Moreover, it is also not hard to show the following two properties of Y:

11
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1. The d'- and df*-bracket properties:

[d", Y(u;2,2)] = Z%Y(u; 2, 2) + Y(d*u; 2, 2), (1.26)
(A", Y(u;2,2)] = Z%Y(u; 2, 2) + Y(d%u; z, 7). (1.27)

2. The D¥- and D%-derivative property:

[D*,Y(u; 2,2)] = Y(D"u; 2,2) = %Y(u 2, Z), (1.28)
[D*,Y(u; 2, 2)] = Y(D"u; 2, 2) = %Y(u z,Z). (1.29)

It was shown in [HKo2] that we have the following expansion:

Y (u; 2, 2) Z Y ( ( I=1)logzg(~r—1) logz (1.30)

r,s€R

where Y ,.(u) € End F with wt"Y;,(u) = wtfu — [ — 1 and wt®Y, . (u) = wtfu —r — 1.
Moreover, the expansion above is unique. Let x and z be independent and commuting
formal variables. We define the formal full vertez operator Y associated to u € V; by

Yi(uiz,z) =Y Yi(u)z™ "'z (1.31)

These formal full vertex operators give a formal full vertex operator map
Yy Vy®@Vy— Vy{z, z}.

For nonzero complex numbers z and (, we can substitute ¢"'°8* and e*!°8¢ for 2" and
z°, respectively, in Y (u;z, Z) to obtain a map

Vau(u32,0) Vi x (€)= Vg
called analytic full vertex operator map.

Definition 1.7. An R x R-graded full field algebra (V,;, m.,dr, d®, D¥ DR) is called
grading-restricted if it satisfies the following grading-restriction conditions:

1. There exists M € R such that (V). = 0if n < M or m < M.
2. dim(Vy)m,n) < oo for m,n € R.
We say that V; is lower-truncated if V,; satisfies the first grading restriction condition.

In this case, for u € V,; and k € R, we have

> Yi.(u) € End Vy
I+r=k

12



with total weight wt v — &k — 2. We denote >, Y;.(u) by Yi_i(u). Then we have
the expansion
(u;z, ) ZY"C Yok (1.32)
keR
where wt Yi(u) = wt u—k — 1. For given u,v € vy, we have Yy (u)w = 0 for sufficiently
large k.

Let (VI YL 1L wk) and (VB YE 12 wE) be vertex operator algebras. Let 1 be
an injective homomorphism from the full field algebra V¥ ® V¥ to V,;. Then we have
]-cl = Lcl(]_L (%9 ]_R), dL O lg = U © (LL(O) (%9 IVR), dR O lgg = Ug © ([VL (%9 LR(O))),
DY oty =140 (L*¥(=1)® Iyr) and DF o1y = 14 0 (Iyr @ LE(—1)). Moreover, V,; has
a left conformal element 1y(wr @ 17) and an right conformal element 14(1F @ w®). We
have the following operators on V,:

L*(0) = Res,Res;7 'Y (ta(w” ® 1%); 2, 7),
LR(0) = Res,Reszz 'Y (1g(1F @ wh); 2, 7),
LY(—-1) = Res,Reszz7 'Y (1q(w” @ 1%); 2, 7),
LR(=1) = Res,Resz2 7Y (1a(1F @ wh); 2, 7).

Since these operators are operators on V, it should be easy to distinguish them from
those operators with the same notation but acting on V¥ or V£,

Definition 1.8. Let (VZ YL 1% wF) and (VE, Y 1% W) be vertex operator algebras.
A full field algebra over VI @ V is a grading-restricted R x R-graded full field algebra
(Vg me, dE, df, DY DE) equipped with an injective homomorphism ¢ from the full
field algebra VI ® V% to V,; such that d¥ = L¥(0), d = L(0), D* = L*(—1) and
D® = LE(—1). A full field algebra over VZ® VE equipped with left and right conformal
elements ¢ (wr®@1%) and 14 (17 @w™) is called conformal full field algebra over VI @ VE,

We shall denote the (conformal) full field algebra over VI @ V% defined above by
(Vig, mer, L) or simply by V. From now on, we will not distinguish VI with VI @ 17
and 14(VE @ 1), Similarly for V# with 1* @ V£ and 14(1* @ V#). For u* € V&,
Yan(u®; 2, ¢) is independent of . So we simply denote it as Y, (ul, 2). Similarly, we
denote Y, (u'; 2, () as Y, (uf?, ) for uf* € VE,

1.3 Open-closed field algebras
Definition 1.9. An open-closed field algebra consists of a full field algebra
(‘/ch Mmeg, d d D Dfli)

cly Helry Held

and a R-graded vector space V,, with the grading operator d,, and an additional operator
D,, € End V,,, together with a map for each pair of n,l € N:
mgll "Op VP e VO%" x My x A» — V,,
(U@ QU VI @ Un, (215, 2571, -+, )

(Ln)

mcl_op(ul, UGV e Uy 215 21 e e 21 21 T -+ 3 ),

satisfying the following axioms:

13



(Ln) . _ _ . is 1 . d th ;
cmg o (U VR 21, 21, 21, 25T, -, ) B8 linear inwg, ... v, and smooth in

1y ooy Thny 21y -+, 2]
Identity properties: m"™") (v;0) = v, Vo € Vop and 1,, := m% (1) € (Vo) (0)-

cl—op cl—op

Convergence properties:

(a) For uy,...,up, @y, ... 0, € Vo, U1, ..., U, 01, ..., 0 € Vopand @ = 1,...,n,
the following series

mi", (u U v v, Poom®™ (@ Uy
cl Op 1y W UL, .. i—1s Ly Mgy _op\ UL, - oy Uk,
n1€R
~ ~ (@) (Z) () 6. ) i)y.
,Ul Um7zl . Zk Zk 7T1 ""’T7(7'L))7
vi+1,...vn;zl,Zl,...,zl,zl;rl,...,rn) (1.33)

converges absolutely when |z; —7;], |1y —r;| > |z},i)|,r¢(f) >0foralls=1,...,1,
t=1,...,n,t#i,p=1,...,kandg=1,...,m to

(I4+k;n+m—1) ~ ~ ~ ~
ol op (Upy ooy Uy Uy e ey Ugy ULy e ey Vi1, U1y e - vy Uy
o 3 5 L0 @) @ ().
Vitly -5 UnjR1, R1s -+ Rl R R 3R 525 R 5 R s

Tla"'ari—lari+T§i)>"'>ri+T7(727,)7Ti+17"'arn)' (1.34)

(b) For uy,...,up, g, ... 4 € Vi, v1,...,0, € Vopandi = 1,...,n, the following

series
(i) (k) ~ (i) ) (OO
E Mg (Ut ooy Wity Ploy ngyMigy (s ooy ks 2075205y 2505 2 ),
ni,n2€R
Wit Ty ey ULy ULy e e U 215 21y e o vy 21y 215 1y« o o5 T (1.35)

converges absolutely, when |z, — 2, |ry — z;| > |zl(,i)| foralls=1,...,1, s #1,
t=1,....n,p=1,...,k, to

(I+k—1:n) . . . :
cl—op (Ul, ey Ui, ULy e e ey Uy Uit 1y o« o5 U3 ULy - o2 Upj
> > () ()
21y 2y ey i1, Zim1,% T 21 , 2 205,

Zi + z,ii), Z; + z,ii), Zidly Zidly s 2 25Ty -5 Tn). (1.36)

4. Permutation axiom: For uy,...,u; € Vg, v1,...,v, € V,, and 0 € S,

(in) . . > > .
md_op(ul, U VT e U 21y By e e ey 20 25Ty e o5 )
_ () ( .
mc[ op Ug(1)s »++ s Ua(l)s ULy -+« -5 Unj
Zo(1), Zcr(l)u sy Ra(l) ZO’(l); Tisee ey TTL)‘ (137>
. dop—, d5— and dB-property: For uy,...,u; € Vo, v1,...,v, € Vyp and a € R,
ad (Ism) . . > > . .
e Opmcl_op(ul, UG UL e Uy 21y 2Ly e ey 21 21 Ty e o T
_ (Ism) ad di+d ad ad .
=mgy_,,(€ (deitddyy, . eddatddly,: gtdoryy  edory, -

_ — . a a
ez1,€%Zy, ..., €%, ez etry, ety (1.38)
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6. D,,-property: For uy,...,u; € Vg, v1,...,0, € Vo and 7, +a > 0,

aD (Im) . . > 5 .
€ Opmcl_op(ula sy U UL, - Un BT, 20 -5 R AT - - 7rn)
_ () . .
= md_op(ul, UG UL, e, Ups
nta,z1+a,...,q+a,z+ar+a,. ..+ a). (1.39)

We denote such algebra by (Vi Vip, Me—op) for simplicity. Homomorphisms, isomor-
phisms, subalgebras of open-closed field algebras are defined in the obvious way.

Remark 1.10. From above definition, it is clear that an open-closed field algebra in-
cludes a boundary field algebra as a substructure.

We discuss a few results which follow immediately from the definition. By the identity
properties and (1.39), we have, for a > 0,

mg?;_lgp(v; a) = e“D“ngl);_lgp(v; 0) = ePory, (1.40)

By (1.40) and convergence property, for i = 1,...,n and a € R, we obtain

(in) . aD .
mcl_op(ul,...,uhvl,...,vi_l,e OPUZ',UZ‘+1,...,U7L,
217217'"azlazl;rlw"arn)
_ o (n) . (0;1) .
- mcl_op(uh sy UL Uty e Vi1, mcl_op(vi7 CL),
Ui—i—la"'avn;zlazlw"azlazl;rlw"arn)
_ o (n) . . 5 5
—md_op(ul,...,uhvl,...,vn,zl,zl,...,zl,zl
Tl ooy Tic1, T+ Ay Tig1, ooy Th) (1.41)
when |r; — 4|, |2 — 15| > |a| for j # i and k= 1,...,1. By (1.22) and the convergence

property, we also have, for j =1,...,l and b € C,

(BD) echLl—H_JDR

mcl_op(u17"'auj—la UG, Uj1s - o, U3 VL, - - -y Unj
Zlazla"'7Zlazl;rla"'7rn)
(in) O op 7 .
mcl_op(ul,...,uj_l,mcl (Uj,b, b),uj+1,...,ul,
ULy ooy Upy 215 21y v oy 20 21T 1y -+« )
_ o (n) . . 5 >
—mcl_op(ulv"'7ul7U17"’7vn7Z17Z17"'72j—172j—17
Zj+b,Zj +b,zj+1,2j+1,...,zl,il;rl,...,rn) (142)
when |z, — 2|, |t — 25| > [b| fori=1,...,[,i#jand k=1,...,n.

Let mf,z) = mﬁ??_”jp. The definition of open-closed field algebra immediately implies

that (Vop, Mep, dop, Dop) is a boundary field algebra. In particular, we have the map Y,,
defined in (1.5) satisfying (1.6), (1.7), (1.8) and (1.9).

We also have the map Y defined in (1.23) satisfying (1.24), (1.25), (1.26), (1.27),
(1.28), (1.29), (1.30) and (1.31).
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In an open-closed field algebra (V,;, Vi, mea—op), there is an additional vertex operator
map:

Ycl—op . (‘/cl X V;)p) xH — Vop

(u®w,(2,2) — Ya—op(u;z, 2)v,

defined b
canec by Y e BNy e LD
c—op(U; 2, 2)v :=my " (u;v; 2, Z;0). (1.43)

cl—op
By the convergence property, we have the following identity property:

(1;1)
cl—op

0;1
= m{?) (v;0)

= . (1.44)

(m (1);v; 2, 2, 0)

Ycl—op(]-cl;za Z)U = m cl

Proposition 1.11. For u € V;, we have
[d0p> Ycl—OP(“Q z,Z)] = Ycl—OP((chl + dg)“? 2, %)

o _0 o
+ <z$ + Z&) Yer—op(u; 2, 2). (1.45)

Proof. Applying 2 |,—o to the both sides of (1.38) when n =1,l =1 and r, =0, we
obtain (1.45) immediately. n

Proposition 1.12. For u € V;, we have

[Dop, Yer-op(ti3 2, 2)] = Ya—op((Dii + Dii)u; 2, %), (1.46)

Yei—op(Dhu; 2, 2) = achl_op(u;z,Z), (1.47)
z

Yeiop(Dhu; 2,2) = chl_op(u;z,Z). (1.48)
Z

Proof. Applying %|b:0 (%h,:o) to the both sides of (1.42) when n = 1,/ = 1 and
r1 = 0, we obtain (1.47) and (1.48).

Applying Z|,—o to the both sides of (1.39) when n = 1,I =1 and r; = 0 and using
(1.47) and (1.48) we obtain the first identity in (1.46) immediately. |

1.4 Analytic open-closed field algebras

The notion of open-closed field algebra introduced in the last subsection is very gen-
eral. There are not much to say about open-closed field algebras in such generality. In
this subsection, we study those open-closed field algebras satisfying some nice analytic
properties. In these cases, the whole structures can be reconstructed from some simple
ingredients.

Definition 1.13. An open-closed field algebra (V, Vi, ma—op) is called analytic if it
satisfies the following conditions:
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1. Y¢_op can be extended to a map V@V, xHxH — Vop such that for z € H, ¢ € H
Yeimop(u; 2, 2) = Yea_op(u; 2, C)|c=z (1.49)
2. Forn e Ny vy, -+ ,vp41 € Vi, v' € (Vo) and wy, - -+, u, € Vg, the series

<'U,> Ycl—op(ub 21, Cl)Y;)p('Ula Tl) e Ycl—op(una Zny Cn)Y;)p('Una Tn)vn-‘rl)

is absolutely convergent when |z|,|¢1| > r1 > -+ > |24, [Cu] > 7 > 0 and can be
extended to a (possibly multivalued) analytic function on

{(317 ClyT1s -5 Zns Gns Tn) S Mén}

3. Forn €N, v, uy,...,Uups1 €V, the series

<U/7 Yan(ul; 21, Cl) s Yan(un; Zn gn)un+1>

is absolutely convergent when |z;| > -+ > |z,| > 0 and |(4| > -+ > [(,] > 0 and
can be extended to an analytic function on MZ".

4. Forv' e V!

opr U1, V2 € Vop, u € Vo, the series

<U/7 }/;p(Ycl—Op(u; Z, g)vlu T)U2>
is absolutely convergent when r > |z|, || > 0.

5. For v e V!

o U € Vop, 1, ug € Vg, the series

<U/7 Ycl—op(Yan(Ul; 21, Cl)ul; 29, §2)U>7

converges absolutely when |z| > |21 > 0, |G| > |(1] > 0 and |z1|+ |G| < |22 — G-
(k)

cl—op
on the complement of this dense

Gn) 7 neN

cl—op? ™

By the convergence properties of open-closed field algebra, m can be expressed

(Ln)

as products of Y;_,,, Yo, on a dense subdomain. My o

subdomain is completely determined by analytic extension. Therefore, m
are completely determined by 1,,, Y,, and Y._,,. Similarly, mﬁ?, n € N is completely
determined by 1, and Y,,. Therefore, we also denote an analytic open-closed conformal
field algebra as

((‘/cla Ya ]—cl)a (‘/opa Y;pa ]—op)> Ycl—op)'

or (Ve, Viop, Yei—op) for simplicity.
Two immediate consequences of the definition of analytic open-closed field algebra
are given in the following two Lemmas.

Lemma 1.14. D,,-bracket properties: v € V,;, we have

[Dop, Yar-op(t3 2,¢)] = Ya—op((Di + Dii)u; 2,C),

0
Ycl—op(Dfiu; Z, <) = &Ycl—op(u; Z, g)v
0
V(D 2,0) = Se¥atoli,0) (1.50)
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Proof. By (1.46),(1.47) and (1.48), for any fixed z € H, all three identities holds
when ¢ = Z. Replacing u by ( BYru for any k € N in (1.46), (1.47) and (1.48), w
obtained that all derivatives (& ) |¢ =, Vk € N of the both sides of above three 1dent1tles

equal respectively. By the property of analytic function and the fact that H is a simply
connected domain, we obtain that the both sides of above three identities, viewed as
analytic functions for a fixed z € H and any ¢ € H, must equal respectively. |

Lemma 1.15. d,,-bracket properties : u € V,, we have

[dothcl—op(U; Z, O] = Ycl—t)p((dL "‘d )U'z C)
0
+ (z— + CﬁC) c—op(U; 2, C). (1.51)

Proof. The proof is the same as that of Lemma 1.14. |
An analytic open-closed field algebra (Vy;, Vo, Y._op) satisfies two associativities and
two commutativities. These properties are very important for later formulations.

Proposition 1.16 (Associativity I). Foru € Vo, vi,vs € Vop,v' € V) and z € H, ¢ € H,
we have

<U Ycl op(u z C) Op(Ul,T)U2> = <U/7}/;p(Ycl op( -, C )Ulu )U2> (152>
when |z|,|C| >7r >0 andr > |r—z|,|r — (| > 0.
Proof. We abbreviate the “left (right) hand side” as “LHS (RHS)” . For z € H,

LHS of (1.52) > = m$ " (u; m{2 (v, va;7,0); 2, 7 0)

cl—op

U2 (us v, 252, %7, 0) (1.53)

M _ op

when |z| > r > 0, and

RHS of (1.52) e = m? (mU™M) (u;0y;2 —r, 2 = 1:0), 097, 0)

cl—op cl—op
= mgagp(u V1,95 2, 257, 0) (1.54)

when r > |r—z| > 0. Therefore (1.52) holds when ( = z and |z| > r > |[r—z| > 0,z € H.
Now replace u in (1.52) by (D%)*u, k € N, we obtain:

ok ok
5| LHS of (1.52) = 5|

RHS of (152) (1.55)
ack|._

when z € H and |z| > r > |r — 2| > 0. Then by the properties of analytic function, it is
clear that (1.52) holds for all z € H, ¢ € H and |z|, [(| > > 0and r > |r—z|, |r—(| > 0.
|

Proposition 1.17 (Associativity II). For uy,us € Vg, v1,va € Vop,v" € V) and 21,23 €
H, (1, ¢ € H, we have

<w/a Ycl—op(ul; 21, Cl)Ycl—op(u% 29, C2)U2>
= (U, Ya—op(Y(ur; 21 — 22, (1 — (o) uz; 22, (2)va) (1.56)

when |z1|, |G| > |2a|, |G| and |za| > |21 — 22| > 0,|C| > |G — Gof > 0 and |z — G| >
|21 — 2| + |G — G-
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Proof. The proof is similar to that of (1.52). So we will only sketch the difference
here. First, it is easy to show that (1.56) is true for z; € H, (; = z;, i = 1,2 in a proper
domain. Then replacing uy, us by (DE)Puy, (DE)9uy for p,q € N and using (1.29) and
(1.50), we obtain that

P I LuSof (156) = 2 2| RHS of (1.56) (1.57)
—_— O . = —= O . .
aCf acg Ci=z%; agf acg Ci=2%;

in a proper domain. By the property of analytic function again, the analytic extension
of both sides of (1.56) to the following simply connected domain

Do = {(#1, (1,22, (2) |z € H, ; € E? |21], [Cu] > [22], [Cal}

must be identical. Moreover, the additional restrictions of domain in the statement of
Associativity II guarantee the absolute convergence of both sides of (1.56). |

For an analytic open-closed field algebra, the map Y._,, can be uniquely extended
to Va ® V,, X R where

R:={(2¢)eCzcHUR,,(c HUR,, 2z # (}.
Proposition 1.18 (Commutativity I). For u € Vg, vy, v €V, and v’ € V),
(v, Yerop(t; 2, Q) Yop(v1, 7)v2), (1.58)
which is absolutely convergent when z > ¢ >r > 0, and

<U,v Yop(v1, 7)Y er—op(u; 2, Q)va), (1.59)

which is absolutely convergent when r > z > ( > 0, are analytic continuation of each
other along the following path 3.

(1.60)

Proof. When z € H, ¢( = z and |z| > r > 0, (1.58) is absolutely convergent to
(1;2)

mcl—op

(u;v1,v9; 2, Z;7,0). Hence, if we analytic extend the analytic function (1.58) to

Dy ={(z,{)zeH,( = z,|z| =}

(1;2)

then its value on D; must equal to m")

continuity of mgllfgp.

Similarly the unique extension of (1.59) from r > |z|,|¢| > 0 to D; also equal to
(1;2)

cl—op

(u;v1,v9; 2, 2;7,0) when z € H, |z| = r by the

m (u;v1,v9; 2,2;7,0) when z € H, |z| = r.

30ur extended domain is simply connected for fixed r > 0, all possible paths of analytic continuation
are homotopically equivalent.
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Both (1.58) and (1.59) can be uniquely extended to two analytic functions on H x H.
By the discussion above, these two extended analytic functions of (z, () take same value
on D; which is of lower dimension.

Now we replace u by (DE)™(DH)"u, m,n € N and repeat the arguments in the proof
of Proposition 1.16, we obtain that all the derivatives of the two extended analytic
functions also match on D;. By the properties of analytic functions, these two extended
functions are identical on H x H. Then their extensions to (z,() € R are also identical.
Thus we have proved the first commutativity. |

Proposition 1.19 (Commutativity IT). For uy,uy € Vo, v € Vo, and v' € V),

<U/, Ycl—op(ul; 21, Cl)Ycl—op(u% 22, <2)U>’ (161)

which 1s absolutely convergent when z1 > (1 > 2z > (o > 0, and

<U/, Ycl—op(u% 22, C2)Ycl—op(ul; 21, Cl)v>’ (162)

which is absolutely convergent when zo > (5 > 21 > (1 > 0, are analytic continuation of
each other along the following paths.

0 ; } :: (124
(1.63)

Proof. Commutativity II follows directly from the Associativity II (1.56) and the
skew-symmetry of the full field algebra V,; [HKo2]. Here, we give a more direct proof
which is similar to that of Proposition 1.18. The unique extension of (1.61) from
|21, [G1] > |22l [¢2| > 0 to

Dy := {(217C17Z27C2)|21722 S M]I?Hv ‘zl‘ = |Z2|7Ci = Zj, 1 = 172}

(2:1) (uy, ug;v; 21, 21, 22, 22; 0), the unique extension of (1.62) from |z, |G| >

cl—op

|z1], |¢1] > 0 to Ds also match with mg;_l())p(ul, Us; V; 21, 21, 22, 22; 0). By the similar argu-
ment as the proof of the first commutativity, we see that (1.61) in |21/, (1| > |22], (2| > 0
and (1.61) in |29, |C2| > |z1], [¢1] > 0 are analytic continuation of each other along the

following paths.

o .. e 22 21
"2 4 -

0
\'_<2/° “ /J.C?'Cl (1.64)

equal to m

O

Then it is obvious to see that the unique extension of both (1.61) and (1.62) to the
subdomain of {(z1, (1, 22, (2) € RL}, where 21, (1, 22, (» have distinct values, are analytic
extension of each other along the paths (1.63). |
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1.5 Open-closed field algebras over U

Now we gradually add more structures on an analytic open-closed field algebra such
that this process eventually leads us to a notion called open-closed field algebra over a
vertex operator algebra U. Let (VX Yy, 1) and (VE, Yy r, 17) be two vertex algebras.
We now consider an analytic open-closed field algebra (Ve Vo, Yo—0p) such that Vi is
a full field algebra over VI ® V. For such full field algebra V,;, we will not distinguish
VE with V@ 1% c V; and VT with 1 @ VE C V.

Lemma 1.20. For ut € V¥ and uf* € VE, Yy _,p(ul;2,¢) is independent of ¢ and
Yer—op(ult; 2, C) is independent of z.

Proof. For u* € VI w e V,, w' € (V,,), using the associativity (1.56), we have

<w 7Y01—0p(u 2 C)w> = <w 7Y01—0p(u ) %5 C)YOl—OID(lCl; 21, Cl)w>
<’UJ/, Ycl—op(Yan(uL; Z = 21, C - Cl)lcl; 21, Cl)w> (165>

when |z1| > [z — 21| > 0, |G| > | =G| > 0and |z — 2| + [¢ — (| < |z1 — Gl The
right hand side of (1.65) is independent of ¢ and the left hand side of (1.65) is analytic
in ¢. Hence Y._op(ul; 2, () is independent of ¢ for all z € H. Similarly, Y., (u’; 2, ()
is independent of z for all ¢ € H and vt € V. |
In order to emphasis these (- or z-independence properties, we denote them simply
as Yo _op(u®, 2) and Yq_o,(uf, €) for ul € VI and u®* € V' respectively.
Replace u in (1.51) by u* € VI and uf € VI respectively, we obtain

[dopa Ycl op(uLa Z)] = Ycl—op(dfluLa Z) + Z%Ycl—op(ull> Z)a
0
[dopa Ycl op(uR> C)] = Ycl op(dclu >C) + Cﬁ_CYcl—op(uRa C) (166)
As a consequence, we have
Yoo opu z) ZuL -t
neR
Ycl—op aC ZURC " 1 (167)
neR

where ul, u? € End V,, and wt uZ = wt” v —n — 1 and wt u? = wt® uf* —n — 1, and

ny “'n
o= 6nlogz and Cn — nlogC.

Moreover, we have

0
[Dop, Yer Op(u 2)] = Yd_op(DéuL,z) = @Yel—OP(ULaZ% (1.68)
0
[DOID’ YCl—OID(uR7 C)] = YCl—Op(DguRv C) = a_gYCl—Op(uRv C)v
which further implies that
eaDopYCl_op(uL’Z)e—aDop — Ycl—Op(UL, 2+ a)
ePorY (i, O)e P = Yo o(uf, ¢+ a) (1.69)

for |z| > |a|, 2 +a € H and |¢| > |a|,{ + a € H respectively.
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Lemma 1.21. For any u* € VI @ 1% and uf* € 1¥ © V&, the following two limits:
hII(l) Ycl—op(uLa Z)]-op> IHI(I] Ycl—op(uR> C)]-op

extst in V.

Proof. By the associativity and the creation property of open-string vertex algebra,
we have

Yo op(u? 2z +1)10 = Y op(u”, 2+ 7)Y, (10p, )10y
= Y;p(Ycl—OP(uLv z)lopv T>10P

ePorY o op(tt, 2) 1oy (1.70)
when |z 4+ r| > 7 > |z]| > 0. For fixed z € H, the left hand side of (1.70) is an analytic
function valued in V,, on the domain {r € C|z+r # 0}. The right hand side of (1.70), as
a power series of r, is absolutely convergent when |r| > |z| > 0. By the general property
of power series, the right hand side of (1.70) is absolutely convergent for all r» € C to
a singlevalued analytic function. Because both sides of (1.70) are analytic functions,
the equality (1.70) must hold for all » € C. In particular, lim,_,_, Yy ,,(u”, 2 + 1)1,
exists. Equivalently, lim, .o Yy_,(u”, 2)1,, exists. By the expansion (1.67), we must

have ul1,, = 0 for all n > —1. Moreover, it is also easy to see that ul1,, = 0 for any
n ¢ —Z, by (1.68) (see the proof of Proposition 1.8 in [HKol]). Therefore, we have

- L L
ll_)r% Yeop(u™, 2)1pp = u” 1,, € V.

The proof of the existence of the second limit is entirely same. |
By the Lemma above, we can define two maps h% : VF — V,, and hft : VE -V, as
follow: for all u* € VF and uft € V£,

L., L ‘ L
h™ :u HLILI(I]YCI_OP(U . 2) Lop,

RE }in% Yerop(u®, () 10p. (1.71)

Notice also that h%, h® preserve the weights. Namely
wt hE(uh) = wt (u*1,,) = wt” ul,
wt B (u®) = wt (uf)1,,) = wt® u”.
Therefore both h* and h* can be naturally extended to maps VE — V,, and VE — V.
We still denote the extended maps as h” and hf respectively.
Lemma 1.22. For u* € V' uf € VE, we have
Yo op(u®, 2)1,, = ePorht(ub),
Ycl—ojn(uRa C)lop = €<Doth(uR)' (172>
Proof.  Since we have shown that (1.70) holds for all » € C, z € H and both sides of
(1.70) are analytic for all v,z € C, if we take the limit lim, ., on both sides of (1.70),

the equality should still holds. Thus we obtain the first identity in (1.72).
The proof of the second identity is entirely same. |
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Proposition 1.23. b and h'* are homomorphisms from VI and VE respectively to
their images, viewed as graded vertex algebras.

Proof. We have shown that h', h® preserve gradings. By the identity property of
open-closed field algebra, we have

A (1) = 1,

Next, for v € VI and r > 0, we define

L

Ycl_op(uL,r)w = lim Yy_pp(u”, 2)w

zZ—T

= lim Yy_op(u”, 2)Yop(1op, 7w (1.73)

zZ—T

where the limit is taken along a path from a fixed initial point in H to » > 0. Since
Yer—op(ul, 2)w is analytic in C*, the limit is independent of the path we choose. So we
choose a path in the domain {z € H||z| > r > |z —r| > 0}. In this domain, we can
apply the associativity (1.52) to the right hand side of (1.73). We obtain

Yd_op(uL, ryw = lim Yop(Yd_op(uL, 2 —1)1yp, r)w

zZ—T

= Y, (h" ("), r)w.
For |z| > r > 0, by (1.72), we have,
Vet op (Y (57, 7)0%, )1,y = ePoRE(Y (a7, 7)o", (1.74)

the right hand side of which is absolutely convergent for all z € C. And both sides are

analytic in 2. Therefore Y., (Y(u®;r, r)ol, 2)1,, is absolutely convergent for all z € C

and (1.74) holds for all z € C. By the associativity, we have
Ycl_op(Y(uL; vk, 2)1,p = Ycl_op(uL, r+ Z)Ycl_op(vL, 2)1,p (1.75)

for |r + z| > |z| > r > 0. Again both sides of (1.75) are analytic in z. Hence the left
hand side of (1.75) defined for all z € C is the analytic extension of the right hand side
of (1.75), which is defined on {|r + z| > |z|}. Since the extension is free of singulairity
on entire C, the right hand side of (1.75) must be well-defined on entire C. Therefore,
we must have

1iII(1) Yerop(Y(u®, 7)o", 2)1,, = lirré Yerop(uh, 7+ 2) Yo _op(vh, 2)1,,. (1.76)
Combining above results, we have

hL(Y(uL,T)UL) = hr% eZDOPhL(Y(uL, T)UL)
= lliI(l] Yd_op(Y(uL, T’)UL, 2)1,p
= l{% Ycl—op(uLa r+ Z)Ycl—op(vL> Z)]-op
= Vg (a, PhEY)
= Y, (h*(u"),r)h"(0").
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Thus h” is a vertex algebra homomorphism. The proof for h® is entirely same. |
Let (U,Y,1,w) be a vertex operator algebra with central charge ¢. U and U ® U
naturally give an analytic open-closed field algebra, in which Y. _,,(+; 2, ()- is given by

Yo puovzQuw = Y)Y (,Qw, |2 > ¢ >0,
= Y(0,OY(w 2w, K> ]2l >0 (L.77)

for u,v,w € U. In this case, h* : u® 1 — v and h® : 1 ® u — u. We denote this
open-closed field algebra as (U ® U, U).

In general, let pt, p® € Aut(U) where Aut(U) is the set of automorphisms of U as
vertex operator algebra. We can obtain a new action of U ® U on U by composing
(1.77) with the automorphism pf @ p®: U @ U — U ® U. Namely, there exists another
open-closed field algebra structure on U and U ® U, in which Y,_,,(u ® v; z, Q)w, for
u,v,w € U, is given by

Y (p"(u), 2)Y (p"(v), Qw, for |z] > [¢] > 0,
Y (p"(v), Q)Y (p"(u), 2)w, for [C| > [2] > 0. (1.78)

In this case, h' : u® 1 — p¥(u) and A : 1 @ u — p®(u). We denote such open-closed
field algebra as (U @ U, U, p*, p®). In particular, (U @ U, U, idy,idy) is just (U @ U, U).

Remark 1.24. (UQU, U, p~, p?) for general automorphisms p~ and p* is very interesting
in physics. But it adds some technical subtleties in later formulations. So we postpone
its study to future publications. In this work, we focus on (U ® U, U).

Definition 1.25. Let (U,Y,1,w) be a vertex operator algebra. An open-closed field
algebra over U is an analytic open-closed field algebra

((V;h Mer, Lcl)a (V;JIM YZJP» LOP)? YCl—Op)a

where (V, me, te) is a conformal full field algebra over U ® U and (V,p, Yop, top) is an
open-string vertex operator algebra over U, satisfying the following conditions:

1. U-invariant boundary condition: h* = h® =,

2. Chirality splitting property: Yu € Vy, u = u* @ uf* € Wt @ W C V, for some
U-modules W% W, There exist U-modules W;, W5 and intertwining operators

YW Y@ e YW of type (W‘f’;’vl), (W‘;V%/Op), (W‘g""j[@), (WVLVf/op) respectively?, such
that

(W', Yer-op(u, 2, Qw) = (w', YO (u", 2) Y (u, ) (1.79)
when |z| > |¢| > 0 (recall the convention (1.16) and (1.17)), and

(W', Yo_op(t, 2, Ow) = (w', YO (u?, YW (ub, 2)w) (1.80)

when |¢| > |z| > 0 for all u € V,w € V,,, w' € V,,.

1t was proved in [HKol] that V,, is a U-modules, and in [HKo2] that V,; is a U ® U-modules.
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In the case, U is generated by w, i.e. U = (w). The (w)-invariant boundary condition
is simply called conformal invariant boundary condition. We also call open-closed field
algebra over (w) in this case simply as open-closed conformal field algebra.

Remark 1.26. The U-invariant boundary condition actually says that the open-closed
field algebra over U contains (U ® U,U) as a subalgebra. If we only want to construct
algebras over Swiss-cheese partial operad, the U-invariant boundary condition in Defi-
nition 1.25 can be weaken to the conformal invariant boundary condition:

Wl = W) = toplew)- (1.81)

These situations appear in physics in the study of the so-called symmetry breaking
boundary conditions (see for example [FS1][FS2] and references therein). All examples
studied in this work and [Ko2| satisfy the U-invariant boundary condition. We leave
the study of general symmetry-broken situations to the future.

Remark 1.27. The chirality splitting property is a very natural condition because the
interior sewing operation of S¢ is defined by a double sewing operation as given in (2.26).
Unfortunately, we do not know whether this chirality splitting property is necessary for
general constructions of algebras over &¢.

For an open-closed field algebra over V, there are three Virasoro elements, w,, :=
Lop(w) and W' = 14(w ® 1) and W := 14(1 ® w), and we have

Yop(wop, 1) = Z L(n)yr—=2,

nez

Y(wk, 2) = ZLL(H)Z_TL_2,
nez

YW ¢) = Y L)
nez

where LY (n) = L(n) ® 1 and L%(n) = 1 ® L(n) for n € Z.

When U =V a vertex operator algebra satisfying the conditions in Theorem 0.2, we
have a very simple description of open-closed field algebra over V' given in the following
Theorem.

Theorem 1.28. An open-closed field algebra over V' is equivalent to the following struc-
ture: (Vop, Yop, Lop) an open-string vertex operator algebra over V- and (Vy, me, ta) a
conformal full field algebra over V@V, together with a vertex map Y —op(+; 2, () given
by intertwining operators Y@ i = 1,2,3,4 as in (1.79) and (1.80), satisfying the unit
property:

Yoi—op(Le; 2, 2)v = v, Yu €V, (1.82)

the associativity (1.52) and (1.56) and the commutativity given in Proposition 1.18.

Proof. 1t is clear that an open-closed field algebra over V' gives the data and prop-
erties included in the statement of the Theorem. We only need to show that such data is
sufficient to reconstruct an open-closed field algebra over V. Moreover, such open-closed
field algebra over V' with the given data is unique.
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Since V satisfies the condition in Theorem 0.2, the conditions listed in the Definition
1.13 are all automatically satisfied. In particular, for v; € V,,,u; € Vy,e=1,...,n and

v' € V,,, the following series:

<U/a Ycl—op(ub 21, Cl)Y:)p(Ula Tl) e Ycl—op(una Zns Cn)y;p(vna Tn)]-op>- (183)

is absolutely convergent when z; > (¢ > ry > -+ > z, > (, > r, > 0, and can
be extended by analytic continuation to a multi-valued analytic function for variables
2, G € C*i =1,...,n with possible singularities only when two of z;, (;, 7, are equal.
Using this property of (1.83), we can define a non-analytic but single-valued smooth
function in A" x My as follow.

Let (r1,...,mn) € A" and (&1,...,&,) € Mjj, n € Z,. Let 71 be a smooth path from
(3n,3(n—1),...,1) to (&, ...,&,) such that ~1((0,1)) C M. Let v : [0,1] — R7} be
so that

Yo(t) = (1 —=t)(3n—1)+t3n,..., (1 — )2+ t3).

Clearly, 7o is the straight line from (3n —1,3(n—1) —1,...,2) to (3n,3(n —1),...,3)
in R?. Then we define a path v, : [0,1] € (H U R,)" to be the composition v, =
~1 © 7o where 7 is the complex conjugation of v;. It is clear that 7, is a path from
(Bn—1,3(n—1)—1,...,2) to (&,...,&). Let 73 : [0,1] — R be so that

()= (1 —t)Bn—2) +try,..., (1 —t)1 +tr,).

So 73 is the straight line from (3n —2,3(n —1) —2,...,1) to (r,...,7,) € A"

Combining 71, 72, 73, we obtain a path ~ in C3" from the initial point (3n,3n—1,3n—
2,...,3,2,1) € R to the final point (£1,&1, 71, ..., &, &y ) In the obvious way.

Then we define

(W, mﬁ?j’;;(ul, Uy ULy U EL €L Eny T )

to be the value obtained from the value of (1.83) at the initial point (3n,3n — 1,3n —
2,...,3,2,1) by analytic continuation along the path 7. Following a similar argument
as in the proof of Theorem 2.11 in [HKo2], it is easy to show, that such defined

(n;n)

mcl_op(ula sy Un; Uy e avn;glagla .- 'agnagnarla s 7rn)a (184)

is independent of the choice of 7, and its initial points. Moreover, such defined (1.84)
is single-valued and smooth in H x H.
For n > [ > 0, we define

l; = .
milfip(ul, e UGV U €1, 8, ST, ),
= m&?ﬁ;(ub e Ul ]-cla SRR ]—cl;'U1> s avn;gbgb s a§n>€n;rla .. 'arn)>

and for [ > n > 0, we define

b . s ;.
m&lf?)p(vb s U W, - >wna€1>€1> s >€la§lvr1> s arn)a

;1 — _
= mgl_)op(ula sy U VL, - e Up,, 1Opa SRR 1op;§la§la S >€l7€l;rla S >Tl)7 (185)
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and for n = 1 = 0, we define m'®*") (1) =1,y € V.

cl—op

Immediately following from the construction of mEm

Cl op» We have, for all v € V5,

mg) lop(v O) = mill;—lgp(lcl; v; 2, 0)
= Yeop(la; 2, 2)v
= . (1.86)
Now we show the permutation axiom for mg ())p This is enough to just consider
adjacent permutations (ii + 1),s = 1,...,] — 1 because they generate the whole permu-
tation group. We can just consider (12) because all the other cases are exactly same.
This is amount to show that

2 . . e & e
mglnip(vla'l}% e, U W, e >wn7€17€17§27§27 s 7€l7€larla cee 7rn)a

mgll gp(v%vl, VLW, W o, E €0, 6 6L E T, ). (1.8T)

By our construction, the only difference of the two sides of (1.87) is that they are
obtained by analytic continuation along paths with different initial points. The initial
points of the path for the left hand side of (1.87)is 21 > (3 > 11 > 29 > (o > 13 > ...,
that for the right hand side of (1.87) is 29 > (3 > 11 > 23 > (1 > ry > .... But by the
commutativity, the value of (1.83) at these two initial points are analytic continuation
of each other along the paths given in the commutativity axiom of open-closed field
algebra. Hence the equality (1.87) follows.

((1.38) and (1.39)) can be proved by first proving similar properties of (1.83), which
is obvious by the properties of intertwining operators. Then those properties (1.38) and

(1.39) of md op
Since Y®, i = 1,2, 3,4 are intertwining operators of V', we have, for u € V,

follow from analytic continuations.

ht(u) = limYCl_op(u,z)lo

= hII(l) hmoy Y (u, 1)1, 2) VP (1, 2)10p(1)
z—0 21—
= hII(l) hm Yo, (u, 2+ 20) Y (1, 2) VP (1, 2)16p(1)

= lim hm Yv, (u, 2 4+ 21)Yo_op(1 @ 1; 2, 2) 10p(1)

z—021—0 P

)
o
(
= lim lim Yvop(u Z+ 21)Lop(1)

z—021—0

= lim hm0 Lop(Y (u, 2+ 21)1)

z—0z

= Lop(u). (1.88)

Similarly, one can show that hf(u) = t,,(u),Yu € V. Thus we have proved the V-
invariant boundary condition h* = b = ,,.
It remains to show the convergence properties of open-closed field algebra. For the

first convergence property ((1.33) and (1.34)), one first consider cases when z( 2 r,(f), j=

1,...,k,p=1,...,min (1.33) have distinct absolute values and z;,7,,j =1,...,l,p =
1,...,nin (L 33) have distinct absolute values. In these cases, one can express mg ())p
and mcl 72; as products of Y_,, and Y,,. Then by using the associativity (1.52) and
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that of open-string vertex operator algebra, it is easy to show that (1.33) converges
absolutely to (1.34) in the required domain.
The rest cases can all be reduced to above cases by using (1.39) (see the proof of

Theorem 2.11 in [HKo2] for reference). More precisely, for zy), o z,(f), 21,...,2 € H;

rgi) > >l >0, r >--->1, > 0% there always exists a € R, small enough so

that both of the following sets
{z%i) —i—a,...,z,(f) +a,r§i) +a,. ..,7",(:) + a},
{z1—a,....z1—a,r1 —a,...,r, —a}
are sets whose elements have distinct absolute values. Then (1.33) equals to the following
iterate series:

() ) —aD (mik) ¢~ ~
E E My (U, s v, -V, Poye” TP By my U (T s

no N1
- NG 5 i 5 i ;
vl,...,vm;zy—I—a,zl)—l—a,...,zli)—I—a,z,(f)+a;r1)+a,...,r,(7?+a),
. _ = ni, n
Vit ds e Uny 215 21y e vy 21 25Ty« + 5 T ) QY G2 (1.89)

when a; = as = 1. Hence we first switch the order of above iterate sum. Then using
(1.41) and the analytic extension properties of (1.83), we can easily show that the iterate
series (1.89) with opposite summing order is absolutely convergent when 1 > |a4], |az|.
Then we can switch the order of iterate sum in (1.89) freely without changing the value
of the double sum (1.89). By (1.41), we have reduced all the remaining cases to the
previous cases.

The proof of the second convergence property ((1.35) and (1.36)) is entirely same
except that one use the associativity (1.56) and (1.42). We omit the details.

It is also clear that such open-closed field algebra over V' is unique because products
of Ye_op and Y,, determine a dense subset of the set of all cases. The rest cases are
uniquely determined by continuity. |

2 Operadic formulation

In this section, we first review the notion of 2-colored partial operad and algebra over it.
Then we recall the notion of Swiss-cheese partial operad &, its relation to sphere partial
operad K and its C-extension &¢ [HKol]. In the end, we prove that an open-closed field
algebra over V' canonically gives an algebra over G¢.

2.1 2-colored partial operads

We recall the notion of 2-colored (partial) operad [V][Kont| and algebras over it. The
2-colored operad is called relative operad by Voronov in [V].

We first recall some basic notions from [H4]. The notion of (partial) operad can
be defined in any symmetric monoidal category [MSS]. In this work, we only work in

°If 7, = 0, we can further introduce another small real variable b, using (1.39) to move r, = 0 to
some 7, > 0. We omit the detail.
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the category of small sets. We will use the definition of (partial) operad given in [H4].
We denote a (partial) operad as a triple (P, Ip,yp), where P = {P(n)}nen is a family
of sets, Ip the identity element and vp the substitution map. Note that the definition
of (partial) operad in [H4] is slightly different from that in [MSS] for the appearance
of P(0) which is very important for the study of conformal field theory. If a triple
(P, Ip,vp) satisfies all the axioms of a (partial) operad except the associativity of 7p,
then it is called (partial) nonassociative operad.

We consider an important example of partial nonassociative operad. Let U =
®nesUm) be a vector space graded by an index set J and Ey = {Ey(n)}nen a fam-
ily of vector spaces, where

EU(H) = HOIIl(c(U®n, U)

For k,ny,...,ny € N, f € Ey(k),9; € Ey(ny),i=1,....,kandv; € U,j=1,...,n; +
..._I_/n,k’

Yeu (fig1, -5 1) (V1 @ -+ @ Unyqgmy,)
= Y fPag (0@ @v) ®-

51,..,8KEJ

®P8kgk(vn1+m+nkf1+1 Q- ® 'Un1+~~+nk)) (21)

is well-defined if the sum is countable and absolutely convergent. g, is not associative
in general because an iterate series may converge in both order but may not converge
to the same value. It is clear that (Ey,idy,vg,) is a partial nonassociative operad. We
sometimes denote it simply as Ey. If J is the set of equivalent classes of irreducible
modules over a group G and Uy, is a direct sum of irreducible G-modules of equivalent
class n € J, we denote this partial nonassociative operad as ES.

Definition 2.1. An algebra over a partial operad (P, Ip,~yp), or simply a P-algebra, is
a graded vector space U, together with a partial nonassociative operad homomorphism
v:P— Ey.

Definition 2.2. Given a partial operad (P, Ip,vp), a subset G of P(1) is called rescaling
group for P if

1. For any n € N, P, € G,i = 0,...,n and P € P(n), vp(P;P,...,P,) and
vp(Po; P) are well-defined.

2. Ip € G and G together with the identity Ip and multiplication map G x G 22
is a group.

Definition 2.3. A partial operad (P, Ip,yp) is called G-rescalable, if for P; € P(n;),i =
1,...,k and Py € P(k), then there exists g; € G,i = 1,...,k such that

’YP(’YP(PO;Qh . "7gk);P17 . "7Pk)
is well-defined.
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Definition 2.4. An algebra over a G-rescalable partial operad (P,Ip,~vp), or a G-
rescalable P-algebra, consists of a completely reducible G-modules U = @®,,¢;U(y), where
J is the set of equivalent classes of irreducible G-modules and Uy, is a direct sum of
irreducible G-modules of equivalent class n, and a partial nonassociative operad homo-
morphism v : P — Ef such that v : G — End Uy, coincides with G-module structure
on U (n)-

We denote such algebra as (U, v).

For m € Z,, let m = my + --- + m, be an ordered partition and ¢ € S,,. The
block permutation o(m,, . m,) € Sy is the permutation acts on {1,...,m} by permuting
n intervals of lengths my,...,m, in the same way that o permute 1,...,n. Let g; €
Syt = 1,...,n, we view the element (01,...,0,) € Sy, X -+ X S, naturally as an
element in S, by the canonical embedding S,,, X -+ X Sy, — Sp.

Definition 2.5. Let (Q, Ig,7¢) be an operad. A right module over Q, or a right O-
module, is a family of sets P = {P(n)},en with actions of permutation groups, equipped
with maps:

P(k) X Q(n1) X oo X Q(nl) 2 P(nl I +nk)
such that

1. For ¢ € P(k), we have
’)/(C;[Q,...,]Q):C. (22)

2. 7 is associative. Namely, for ¢ € P(k), d; € Q(pi),i = 1,...,k, ¢; € Q(g;),] =
1,...,p1 + -+ pg, we have

VA€, d)ier, s pppin) = 1 Fro o fo), (2.3)

where
fs = 'VQ(dS; Cpi+-tps—1+1y -+ ep1+-~+ps)'

3. For ce P(k;l), di € Q(pi),i=1,....l,0€ Sand7; €5,,,j=1,...,1,

V(U(C); d1> s adl) = O(p1,..y pz)('y(a dla ceey dl))> (24)
v(e;mi(dy),...,n(dy) = (m,...,7)(v(c;dq, ... dy)). (2.5)

Homomorphisms and isomorphisms between right Q-modules are naturally defined.
The right module over a partial operad can be similarly defined.

Definition 2.6. A right module P over a partial operad Q, or a right Q-module, is
called G-rescalable if Q is G-rescalable and for any ¢ € P(k), d; € Q(n;),i = 1,... .k,
there exist g; € G, i = 1,...,k such that

Y(v(e g gk)idys - di)

is well-defined.

30



Definition 2.7. A 2-colored operad consists of an operad (Q,Ig,7g), a family of
sets P(m;n) equipped with an S, x S,-action for m,n € N, a distinguished element
Ip € P(1,1) and substitution maps 71,7y, given as follow:

P(k;1) x P(my;ny) X -+ x P(my;ng)
Py + . A mysl+ny + . ),
Pk;1) x Q(p1) x -+ x Qpr) > Plkspr + -+ 1), (2.6)

satisfying the following axioms:

1. The family of sets P := {UpenP(m; n) }men equipped with the natural S,,-action
on P(m) = U,enP(m; n), together with identity element I and substitution maps
~1 is an operad.

2. 7y gives each P(k) a right Q-module structure for £ € N.
We denote it as (P|Q, (11,72)) or P for simplicity.

Remark 2.8. The substitution map 1,72 can be combined into a single substitution
map v = (71, 72):

P(k;l) x P(my;ng) X ... x P(mg;ng) x Q(pr) x -+ x Q(p)
LPmy+ oA mgsng b ). (2.7)

For this reason, we also denote (P|Q, (71,72)) as (P|Q,~). For some examples we
encounter later, 71, v, are often defined all together in terms of ~.

Definition 2.9. 2-colored partial operad is defined similarly as that of 2-colored operad
except that ;1,9 are only partially defined and Q, P are partial operads and (2.3) holds
whenever both sides exist. If only the associativities of g, 1,72 do not hold, then it is
called 2-colored nonassociative (partial) operad.

We give an important example of 2-colored partial nonassociative operad. Let Jy, Jo
be two index sets. Uy = @nes, (Ur)m)s Uz = @nesn(Usz)m) be two graded vector spaces.
Consider two families of vector spaces,

Ey,(n) = Home(US™, Us),
EU1|U2(7TL;7Z) = HOI’Il((:(U?m@US@n,Ul) (28)
We denote both of the projection operators Uy — (Uy) ), Uz — (Uz)m) as P, forn € J;

or Jy. For any f € Eyu,(k;l), i € Ey,ju,(misng),i = 1,... k, and h; € Ey,(p;),
7 =1,...,1, we say that

C(fi91,- - Gniha,y . ) =
Z f(PSlgl(ugl),...,u%i,vg),...,v&)),

81,8k EJ15t1,.. 1 €S2

..,Pskgk(ugk),... ulk) vgk),... v(k));

) mk7 ) Nk

Pohy (M, wD) P w®)Y)

» gy n
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where ugi) e Uy, vj(»i) € U,, is well-defined if the multiple sum is absolutely convergent.

This gives arise to a partially defined substitution map I':

By, (k3 1) X By, (masng) X -+ X By o, (mg; ne) X By, (pr) X -+ X By, (pr)
T
= By, (ma+ -+ my,m+ g+ pr o+ o).

I' does not satisfy the associativity in general. Let Ey v, = {Eu,v,(m;n)}mnen and
Ey, = {Eu,(n)}nen. It is obvious that (Ey,u,|Ey,,I") is a 2-colored nonassociative
partial operad.

Let U; be a completely reducible Gi-modules and Us a completely reducible G-
modules. Namely, Uy = @®n e, (U1)m), Uz = @nyesn(U2)mg) Where J; is the set of

equivalent classes of irreducible G;-modules and (U;)n,) is a direct sum of irreducible
G1|G2

Gi-modules of equivalent class n; for i = 1,2. In this case, we denote Ey, |y, by EU1|U2 .

Definition 2.10. A homomorphism between two 2-colored (partial) operads (P;|Q;,v:), 1 =
1,2 consists of two (partial) operad homomorphisms:

vpg, - P1 — Pa, and vo, : Q1 — Qs

such that vp o, : P1 — P2, where P, is a right Q;-module by vg,, is also a right
Q;-module homomorphism.

Definition 2.11. An algebra over a 2-colored partial operad (P|Q, ), or a P|Q-algebra
consists of two graded vector spaces Uy, Us and a homomorphism (vp|o, Vo) from (P|Q, )
to (Ey,|u,|Ev,,I'). We denote this algebra as (Uy|Us, vpjo, Vo).

Definition 2.12. If a 2-colored partial operad (P|Q,~) is so that P is a Gy-rescalable
partial operad and a Gs-rescalable right Q-module, then it is called G1|Gy-rescalable.

Definition 2.13. A G4|Gs-rescalable P|Q-algebra (U, |Us, vp|g, vo) is a P|Q-algebra so
that vpg : P — ng"UGQz and vg : Q@ — Eg;7 moreover, vpjo : Gi — End U; coincides
with the Gi-module structure on U; and vg : Gy — End U, coincides with the G-

module structure on Us,.

2.2 Swiss-cheese partial operad &

A disk with strips and tubes of type (m_,my;n_,ny) (m_,my,n_,n, € N)is a disk S
with the following additional data:

L. m_ + my distinct ordered punctures p? ..., p%,pf,... . pJ (called boundary
punctures) on dS (the boundary of S), where pP, ... pB, are negatively oriented
and p7, ..., p}, are positively oriented, together with local coordinates:

(U]—Bm,v Sofgm,% R ( ]—317 905;1); (U1B>Q01B)> ] (U£+7¢£L+)7

where UP is a neighborhood of p? and ¢? : UP — H is an analytic map which
vanishes at p? and maps UP NdS to R, foreach i =—m_,...,—1,1,...,m,.
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2. n_ + n, distinct ordered points p!, ... pl,, pl, ... ,p{z+ (called interior punc-
tures) in the interior of S, where p’, ..., p’, are negatively oriented and pf, ..., p}
are positively oriented, together with local coordinates:

U, et ) UL N (UL e, (UL, ),

where U JI is a local neighborhood of pjl- and <p]1- U JI — C is an analytic map which
vanishes at p! for each j = —n_ ..., —1,1,...,n,.

Two disks with strips and tubes are conformal equivalent if there exists between
them a biholomorphic map which maps punctures to punctures and preserves the order
of punctures and the germs of local coordinate maps. We denote the moduli space of the
conformal equivalence classes of disks with strips and tubes of type (m_,m ;n_,n,) as
S(m_,my|n_,ny). The structure on S(m_,m|n_,n;) will be discussed in [Ko2]. In
this work, we are only interested in disks with strips and tubes of types (1,my;0,ny)
for n,l € N. For simplicity, we denote S(1,m,|0,n,) by Y(my;n,). For such disks, we
label the only negatively oriented boundary puncture as the 0-th boundary puncture.

We can choose a canonical representative for each conformal equivalence class in
T(m4;ny) just as we did for disks with strips [HKol] and sphere with tubes [H4]. More
precisely, for a disk with strips and tubes of type (1,m;0,n,) where m, > 0, we first
use a conformal map f to map the disk to H. Then we use an automorphism of H to
move the only negatively oriented puncture (the O-th puncture) to co and the smallest
. to 0, and fix the local coordinate map fy at 0o to be so that lim, .. wfo(w) = —1.
As a consequence, the canonical representative of a generic conformal equivalent class
of disk with strips and tubes Q € Y(m,;n,) is a disk H, together with a negatively
oriented boundary puncture at co € H and local coordinate map given by

PP w) = —eSiaBwr L

w

Y

where B](-O) € R, and positively oriented boundary punctures at r1,...7,, € Ry U{0}
(rr = 0) and local coordinate maps given by

fB( )_ezoo B()x1+1d(b(2) d:r:L’ 77;:1’__,’m+’

7
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where B](-i) € R, b(()i) € R, and positively oriented interior punctures at 2y,...,z,, € H
with local coordinate maps given by

oo

() .4 i
fH(w) = eXiz1 A5 wﬁld%(ag))x%x Ji=1,...,n4.

where Ay) € C and ag) e C~.
Let Ig (Il¢) be the set of sequences of real numbers (complex numbers) {C;}%2,

such that eXi>0C*" 'z as a power series converges in some neighborhood of 0. We
define )
A" = {(7“1, R ,Tn)| do € Sn, Tol) > = > Ton) = 0}.

Using the data on the canonical representative of @), we denote () € Y (m,;n,) as follow

[Tl’ o ’Tm+_1; B(O)’ (bél)> B(l))a IO (b(()va)’ B(m+))|
Ry Rngs (a(()l), A(l)), e (aén+)7 A(”+))]7 (29)

where (ry,...,7,,) € A" and b(()i) € ]RJr,aéj) € C*, and BO = {B}i) 22, € Ilg and
AP = {Agp) 2y €llcforalli=1,....myp=1,...,ny.

Using notations (0.1) and (0.2), for my > 0 and n, € N, we can express the moduli
space of disks with strips and tubes of type (1,m,;0,n,) as follow:

T(my;ng) = A1 x Tl x (Ry x IIg)™ x Mg+ x (C* x IIg)".
For my = 0,ny € N, we used automorphism of H to fix Bfo) = 0. Hence, we have
Y(0;n,) = {B® el | BY =0} x (C* x Ig)".

Note that Y(m;0) is nothing but Y (m,) introduced and studied in [HKol]. T :=
{T(n)}nen is a partial operad of disks with strips [HKol]|. The identity [y is an element
of T(1;0). Also, for my,ny € N, S, acts on Y(my;ny) in the obvious way. Let
S(m) = Up, enT(my;ng) for m € N, and 6 = Uy,en&(m).

There are two kinds of sewing operations on &, The first kind is called boundary
sewing operation which sews the a positively oriented boundary puncture in the first
disk with a negatively oriented boundary puncture in the second disk. The second is
called interior sewing operation which sews a positively oriented interior puncture in
a disk with a negatively oriented puncture in a sphere with tubes. We describe these
sewing operations more precisely. Let us consider P € T(my;n,) and @ € T (py;qs)
(Q € K(py)) for boundary sewing operations (for interior sewing operations). Let B”
(B") denote the open (closed) ball in C center at 0 with radius r, ¢; the germs of local
coordinate map at i-th boundary (interior) puncture p of P, and v the germs of local
coordinate map at O-th puncture ¢ of ). Then we say that the i-th strip of P can be
sewn with the O-th strip (tube) of @ if there is a r € R, such that p and ¢ are the only
punctures in ¢; *(B") and v, ' (BY") respectively. A new disk with strips and tubes in
Y(my+pr—1,np+qi) (T(my,ny +py—1)), denoted as P.ooPQ (P.ool@Q), is obtained
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by cutting out ¢, 1(BT’_) and 1, (B 1{ ") from P and @ respectively, and then identifying
the boundary of o; *(B") and v, *(B"") via the map

P! o Jy 0w

where Jg 1w — —%.
The boundary sewing operations and interior sewing operations induce the following
partially defined substitution maps

T(k;l) x T(my;ng) X ..o x T(mg; ng)
B
T (my gl g+ ),
I
T(k;1) x K(pr) x -+ x K(p) == Y(kspy + - + 1), (2.10)

or equivalently

T(k;l) x T(my;ng) X ... x T(mg;ng) X K(pr) x - x K(py)
LYy 4. Amgn A p ). (2.11)

The following Proposition is clear.
Proposition 2.14. (G|K, (v?,~7)) is a R, |C*-rescalable 2-colored partial operad.

This R, |C*-rescalable 2-colored partial operad (S| K, (v#,~7)) is a generalization of
Voronov’s Swiss-cheese operad [V]. So we will call it Swiss-cheese partial operad and
sometimes denote it by & for simplicity. The relation between Swiss-cheese operad and
Swiss-cheese partial operad is an analogue of that between little disk operad and sphere
partial operad ([H4]).

2.3 Sewing equations and the doubling map §

We are interested in finding the canonical representative of disk with strips and tubes
obtained from sewing of two such disks or sewing of a disk and a sphere. In the case
of sphere partial operad K, such canonical representatives were obtained by Huang
[H1][H2][H4] by solving the so-called sewing equation. Similarly, the canonical represen-
tatives of disks with strips and tubes obtained by two types of sewing operations can
also be determined by solving two types of sewing equations.

We start with the boundary sewing operations. For () € &, we denoted the canonical
representative of @ as Xg. Let P € T(m;n) and @ € Y(p;q). Let go be the local
coordinate map at co € Xy and f; be that at z; € Xp,1 < ¢ < m. We assume that
PiooP Q) exists. Then the canonical disk Piooi CAI be obtained by solving the following

rw =78 (' (7727 )) (2.12)

where F(% is a conformal map from an open neighborhood of co € ¥p to an open

sewing equation:

neighborhood of co € ¥p, 0B Qs and F g) is a conformal map from an open neighborhood
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of 0 € ¥q to an open neighborhood of 0 € Xp, 54, with the following normalization
conditions:

F(%(OO) = o0,

F5(0) = 0,

FB (w
i FOW) (2.13)
wW—00 w

It is easy to see that the solution of (2.12) and (2.13) is unique. Notice that F}), F{5,
fo and f; in (2.12) are all real analytic.

Similarly, let P € YT(m;n) and Q € K(p). We denote the canonical sphere with
tubes of @) as Xg. Let go be the local coordinate map at oo € ) and f; be that at
2z € P11 < i < n. We assume that P.ool(Q exists. Then ZPiOOéQ can be obtained by

solving the following sewing equation:

Fyw =7 (5 (727 )) (2.14)

where F(Il) is a conformal map from an open neighborhood of R in Yp to an open

neighborhood of Rin ¥ Piocl Qs and F(Iz) is a conformal map from an open neighborhood
of 0in Xig to an open subset of H C Xp, 1, with the following normalization conditions:

Fiy(0) = 0

FIo(w
i FOW) (2.15)
wW—00 w

It is easy to see that the solution of (2.14) and (2.15) is unique as well.
Notice that F(Il) is real analytic because it maps R to R. Hence, F(Il) is also the
unique solution for the following equation

Fly(w) = Fy (E <#;)>) (2.16)

with the same normalization condition (2.15).
In the sphere partial operad, we define a complex conjugation map Conj : K — K
as follow

Conj : (21, ..., 2n_1; A9, (aél), AWy (a(()"), AM))
— (21, 2 AQ @, Ay, @l A™)Y). (2.17)

For simplicity, we denote Conj(Q) as Q for Q € K.

Proposition 2.15. Conj is an partial operad automorphism of K.
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Proof. 1t is clear that Conj((0,(1,0))) = (0,(1,0)) and Conj is equivariant with
respect to the action of permutation group. Moreover, Conj is obviously bijective. It
only remains to show that, for 1 <7 < m,

Pioco@ = Pioco (2.18)

for any pair P € K(m),Q € K(n) such that P.coo( exists.

Let f; be the local coordinate map at ¢-th puncture in P and gy be that at co in
Q. Then the local coordinate map at i-th puncture in P is f; and that at oo in Q is
Jo- Also notice that the sewing equation and normalization equation for sphere partial

operad ([H4]) are the same as the equation (2.12) and (2.13). Let FO F®  be the

sphere’ * sphere
solution of (2.12) and (2.13) for the sphere with tubes , then FY F®  also satisty

sphere’ sphere
the same normalization condition and the following sewing equation

~(1 2 1 _1
Fs(pf)zere( ) Fs(p})Lere (g() ! (fz(w))) )

which is the sewing equation for P.oco@. Using the explicit formula ((A.6.1)-(A.6.5)

in [H4]) of the moduli Pioco@ in terms of Fsp})wre, Fs(i,)me, fi, Go, one can easily see that
(2.18) is true. |
There is a canonical doubling map 0 : & — K defined as follow. Let Q € Y (n;l)

with form

Q = [r,...,rn; BO @V, BDY, . (b0, B™)|
2,z (@l ADY (@, A
Then
8(Q) = (21, 2 2y A (af ), AW (af), AD),
(al”, AD), ... (af) , AD); BO (o7, BW), ... (6§, B™)).  (2.19)
Proposition 2.16. Let P € Y(m;n) and Q € Y(p;q). Assume that PiocoBQ exists. We
have
(BOOO Q) = 5( )2n+iOOO(S(Q). (2.20)

Proof. Since F(%, Fg), go " and f; in (2.12) are all real analytic, every solution of
(2.12) and (2.13) for disk with strips and tubes can be extended to a solution of the
same sewing equation for sphere with tubes by Schwarz’s reflection principle. Then the
Proposition follows immediately from this fact. [

Given a canonical disk with strips and tubes ¢ corresponding to moduli ) € &,

we consider its complex conjugation, denoted as Y. g is the lower half plane H
together with the same boundary punctures and local coordinate maps as those in g,
and interior punctures which are the complex conjugation of the interior punctures in
Yo with local coordinate maps being the complex conjugation of those in Xy. We can
denote it as

[Tl’ o Tmy =15 B(0)7 (b((]l)v B(l))v ) (b(()m+) B(m+))|
21, Cee Zmr; (a(()l)’ A(l))’ (agu)’ A("+))] (2‘21)

where 21,..., 2, €H.
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Lemma 2.17. Let P € T(m;n) and Q € K(p). Assume that PioolQ exists for1 <i <
m. Then Ypicol@ also exists and

Ypoctq = Xp 100 Q. (2.22)

Proof. We can choose a canonical representative of Yp ool ) as a lower half plane

H with two punctures at oo and 0 and the local coordinate map go at oo being so that
lim,, o wgo(w) = —1. We denote such representative of X p 0ol Q (a lower half plane)
as Xp. 21 can be obtained by solving the sewing equation

Gly(w) = Gy (ﬁ <%)) , (2.23)

where G{l) is a conformal map from a neighborhood of RcCIptoa neighborhood of
R C %, and G{z) is a conformal map from a neighborhood of 0 € g to an open subset
of H C ¥;, with the normalization equation (2.15). By comparing (2.23) with (2.16),
we see that the unique solution F; (11) (real analytic) and % of (2.16) and (2.15) exactly
gives the unique solution G{l) and G{z)of (2.23) and (2.15). Hence we have ¥; = m.

|
Proposition 2.18. Let P € T(n;1),Q € K(m) and P.oolQ exists for 1 <i <. Then
5(PzOO£Q) = (6(P)iOOOQ)l+m71+iOOOQ (2.24)

Proof. Now we first consider the right hand side of (2.24). We denote the canonical
representative of any R € K(I) as ¥ . Then X5p) can be viewed as a union of the closure
of upper half plane, denoted as U, , and the closure of lower half plane, denoted as U_.
Let X, be the Riemann surface obtained by sewing U, with @, and ¥_ the Riemann
surface obtained by sewing U_ with Q. By identifying the real line in U, C ¥, with
the real line in U_ C X_ using identity map, we obtain the surface >, #3_ which is
isomorphic to the canonical sphere with tubes X 5p). 000 )14 14:0000-

Both ¥, and ¥_ are disks with strips and tubes. Since U, = ¥ p, there is a unique
biholomorphic map f from ¥, to the canonical disk with strips and tubes Einé p-

Similarily, because U_ = X p, by Lemma 2.17, there is a unique biholomorphic map g
from >._ to the canonical disk with strips and tubes X Piool Q- The restriction of f on the

neighborhood of R = OU, is nothing but the unique real analytic map F(Il) satisfying

(2.14) and (2.15). Meanwhile, the restriction of g on a neighborhood of R = U_ is
nothing but the same F(Il) satisfying (2.16) and (2.15). So we must have f|z = g|z, which
further implies that f~!|z = g~ ![z. Hence, f~! can be extended to a biholomorphic map
from E(S(PlooéQ) to 2+#2_.

Therefore X p, sol @) Must be biholomorphic to X5p) w000+ Since they are

§000Q)14m—1+i
both canonical representatives of sphere with tubes, we must have the equality (2.24).

Remark 2.19. Proposition 2.18 gives a geometric interpretation of the doubling trick
used in physics literature [A][C1]. It also implies that the bulk theories must contain
both chiral parts and anti-chiral parts.
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Corollary 2.20. For P € §(Y(n,l)) C K(n+2l) as in (2.19) and Q € K(m), the
sewing operation, for 1 <11 <1,

(PiOOOQ)l+m—1+iOOOQ S 5(T(n, [4+m — 1))
and it defines an action of the diagonal {(P,P) € K x K} of K x K on §(&).

From now on, we will identify & with 6(&) without referring to the doubling map §
unless we want to emphasis the difference.

2.4 The C-extensions of ©

In order to study open-closed conformal field theories with nontrivial central charges,
we need study the C-extensions of the Swiss-cheese partial operad &.

For ¢ € C, let K¢ be the 5-th power of determinant line bundle over K [H4]. We
denote the pullback line bundle over & through the doubling map ¢ as S¢. 4 can
certainly be extended to a map on S°. We still denote it as 6. For any n € N, the
restrictions of the sections 9,49 of K¢(n + 21) for I € N to Y(n;l) gives a section of
S¢(n) and we shall use ¢S to denote this section. It is clear that T¢, the C-extension
of the partial operad of disks with strips, is the pullback bundle of the inclusion map
T — 6.

The boundary sewing operations in S° are naturally induced from the sewing opera-
tions of K¢. We denote the boundary sewing operations in S° as 008 More explicitly,
let P € YT(n;l) and Q € Y(m;k) be so that P.oofQ exists. Let P, Q be elements in the

fiber over P and () respectively. We define
PolQ = 671(6(Q)2+0Q), (2.25)
where 6! is defined on the image of 4.

We would also like to lift an interior sewing operation 0ol to a sewing operation

between an element in ¢ and an element in K¢ ® K¢. We still call it interior sewing
operation and denote it as :0ot. Let P € Y(n;1),Q € K(m) such that P.oolQ exists.
Let P,(Q be elements in the fibers over P and Q respectively. Let v, ® 1, be the

canonical section on fg’c ® ﬁ(m) Then we have Q = A\, ® 1 (Q) for some \ € C.
Then we define P.ooi@ by

Pl = 5_1(((5(?)1‘860)\Q/Jm(Q))lerflﬂ'aéoi/Jm(Q)) (2.26)
The following Lemma shows that the interior sewing operations are associative.

Lemma 2.21. Let P € T(n;l), Q1 € K(my),Q2 € K(mz) and P,Q1,Q, be elements

in fibers of line bundles ¢ and K¢ ® K¢ over the base points P, Q1, Qs respectively. Let
1<i<landl1<j<my. Then we have

(pi%gél)iﬂ‘*la‘%c% = 15855(@1 1650@2) (2:27)

assuming that the sewing operations appeared in (2.27) are all well-defined.

6Since we always work with a fixed ¢ € C, it is convenient to make the dependence on ¢ implicit in
some notations.
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Proof. Let \; € C,i = 1,2 be such that Q; = \tbm, ® ¥, (Qi),i = 1,2. Let
(a(()z), A®) be the local coordinate map at j-th puncture of @, and Let B(® be the local
coordinate map at co in Q3. By (2.26), the § image of the left hand side of (2.27) equals
to

(((8(P): 500 At (@1))rem -1+:00%m, (Q1)) .
i+j71660 )‘27vbm2 (Qg))l+m1+m2+i+j73860wm2 (Q2)

By the associativity of the partial operad K¢, the above formula equals to

(0(P):000 (A1thm, (Q1)1000 Aathin, (Q2)))
le7"1+’”2*2“'6\0/0 (¢m1 (Ql)jgéo,lvbmz (Q2))
= (5(}3)1-660(AlAger(A(i)’B(O)’“‘()Z))Cwmﬁmz—l(Ql 1000Q2)))
— A6) BO) @ -
I+my +mg—2+i 000 €F(A( $BOaq )Cwml +ma—1 (Q1 J 000622)
= 5(éaég()\l)aerm(i)’B(O)’agi))cer(m’m’@)c
¢m1+m2—1 ® im1+m2—1(Q1 joooQQ)))
5(36\65()\1¢m1 ® @Em1(Ql)j6\60)\2¢m2 ® 'J}mz (QQ)))
= §(P.3%4(Q1 1500 Q2)),
which is nothing but the right hand side of (2.27). n

Boundary sewing operations and interior sewing operations induce the following
partially defined substitution maps 7:

Tc(n; l) x Tc(ml;kl) X oo X Tc(mn;kn) X f(c(nl) X oo X f(c(nl)

The following Proposition is clear.
Proposition 2.22. (6°|K¢® ﬁ, 3) is a Ry |C*-rescalable 2-colored partial operad.

We will call (&°|K* ®ﬁ, ) Swiss-cheese partial operad with central charge c. Note
that &€ restricted on T is just T¢ which was introduced in [HKol].

2.5 Smooth &°|K°® ﬁ—algebras

Let VO = EB%RV(%, where V(% has a structure of irreducible R;-module given by
r o r"idv(% for r € R,. Let V¢ = @(mJL)eRXRV%’n), where V(%m has a structure of
irreducible C*-module given by z — 2™z" idV(fn,n) for z € C* (recall (1.16) and (1.17))
for all m,n. This is also implies that V¢ = =0 for all m —n ¢ Z. Let

(m.n)
o5/ C
VIV Ve el Viceo ee)

be a R |C*-rescalable 6¢|K°¢ ® ﬁ—algebra.
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Definition 2.23. The R |C*-rescalable GC\KC®KC algebra (VO|VC, v
is called smooth if it satisfies the following two conditions:

? GCIKC®KC7 KC®KC)

1.dimV(?)<oof0rs€R,V( —Oforn<<0andd1mV <ooformn€Z
V(rcn’n) form<<00rn<<0

2. Forwe (VOY, v1,...,0m € VO uy,...,u, € VC, and P € T¢(m;n), the following
map ) )
P — (w, Véc|kc®ﬁ(P)(Ul R QU QUL Q- @ Uy))

is linear on fiber and smooth on the base space Y(m;n).

By [H4], a vertex operator algebra U canonically gives a K¢-algebra. Using the
doubling map ¢, this K“algebra naturally gives a smooth éc|f( C®E algebra, in which
VO =Uand VC = U®U. It is also easy to see that this GC|K ¢® K¢-algebra canonically
gives an analytic open-closed field algebra which is nothing but (U ® U, U, idy,idy) or
simply (U®U, U) discussed in Section 1. We still denote this smooth G¢| K C®E—algebra
as (U ® U,U). A smooth 6°|K¢® ﬁ—algebra containing (U ® U, U) as a subalgebra is
called a smooth 6¢| K¢ ® E-algebm over U.

Let (Ve Vop, Mei—op) be an open-closed field algebra over V. By definition, V,; is a
conformal full field algebra over V' ® V. By the results in [Kol|, V,; has a structure of
smooth K¢ ® E—algebra structure, we denote it as (Ve vz, 72)-

Let Q € T(n [) of form (2.9) such that ry > ... > 7,1 > 1, = 0. We define a map
Vel eaRe | S° — Eiﬁ,‘\v as follow:

GC|KC®K6()\,¢}6(Q))( ®-..®’l}n®ul®...®ul)
= e E- Bl (=L (A) (4 (V) =10) o~ L+(AD) (@)_L(O)u

cl—op 1,

_6_L+(A(l>)(aél))—L(o) ® e_L+(W) (agl))—L(O)ul

e—L+(B(1))(b(()1))—L(O)U1’ .

I

e—L+(B<”>) (b(()"))_L(O)v

M) ny

Zlazla"'azlazl;rla"'arn)a (228)

where Ly(A) = Y377, L(+j)A; for any A = {A;,Ay,... },A; € C, for uy,...,u €
Ver, v1, ..., v, € V. Let e be the identity element of S;. Vo € S,,, we define

Ve eaiie (0. ) MS(Q))) = vy i (WS(Q)). (2.20)

We have finished the definition of Ve koo T in all cases. By results in [HKol], the

restriction of Ve eaize Ol T¢ clearly gives a morphism of partial nonassociative operad

from T¢ to EE*.
op

Theorem 2.24. (V,,|V. is a smooth &¢|K°¢ ® E-algebm.

b Ve kepRer ViceoRe)
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Proof. By the permutation property of open-closed field algebra and (2.29), it is
clear that Vel regieelS equivariant with the actions of permutation groups.
The conditions in Definition 2.23 are automatically satisfied. It remains to show that

Véc‘[('c@ﬁ ] ’3/ =To (Véc‘[{'c(@ﬁ? ceey Vécu}'c(g)ﬁ’ V[E'C®ﬁ’ ceey VK'C@)E) (230)
as a map
Te(n;l) x Yo(my; ki) X -+ X T(mn; kn) x K(ny) x - x K¢(ny)
N Hom(‘/"c(l@kl+“'+k‘n+n1+“'+nl ® ‘/*O%TL—l—ml-i-m-i-mn,V—Op)' (231)

Thanks to the doubling map § and (2.27), G¢ can be viewed as a partial suboperad of
K¢ with single-sewing operations for the punctures in R, and double-sewing operations
for mirror pairs of punctures in upper and lower half planes. Then using the V-invariant
boundary condition, the chirality splitting property and the convergence and extension
properties of any products and iterates of intertwining operators proved by Huang for
any V satisfying the condition in Theorem 0.2, we can easily generalize the proof of
Huang’s fundamental result Proposition 5.4.1 in [H4] and results in [H5][H6] to shows
that (2.30) holds.

Because the convergence properties of open-closed field algebra is quite strong, the
proof can be shorten along the following lines.

It is enough to show that (2.30) is true when both sides of (2.30) act on the following
two types of elements.

(P.Lger oo Loy Qu Tger oo Ty T s D 20),
(P, ITC’ .. "ITC’IKC®E’ ceey Ik(‘®ﬁ’ Q2, Ik(‘®ﬁ’ . .,Ikc®ﬁ), (2.32)

where P € Y¢(I;n), Q1 € T¢(m;k) and Q, € K°® K%m). In other words, we only
need consider the pairwise sewing operations of form P.cof @, and P;o0t@Q, for some
t1=1,....,nand j=1,...,L

First, we consider the following three cases: 1. P = T¢(1;0), 2. Q; = T¢(1;0),
3. Qy = K°® K1), which will be all referred to as type I. In all three type I cases,
only the relation between Virasoro algebra and Y, _,p, Y, is our concern. By the chiral
splitting property and results in [HKol], we know that both Y@ i = 1,2,3,4, Y., are
all intertwining operators with respect to V. This fact is enough to prove these three
cases. The proof is exactly same as that of Proposition 5.4.1. in [H4].

Secondly, we consider the cases when two oppositely oriented punctures on P, (), or
P, ()2, involved in the sewing operation both have standard local coordinate maps. We
refer to these cases as type II cases. The convergence properties for type II cases are
nothing but the convergence properties of open-closed field algebra.

Now we consider cases other than type I and type II. On the geometric partial operad
side, for general P, 1, ()2, the sewing operation between P and () (or ()) can always be
decomposed into several sewing operations either of type I or type II. On the algebraic
side, these sewing operations become multiple sums in a given iterate order. By our
assumptions on V, it is easy to show that this multiple sums is absolutely convergent.
As a consequence, we can freely switch the order of the iterate sums without changing
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the value of the sum. Then by choosing a proper order of the iterate sum, these general
cases can be reduced to several cases of type I and type II.
That (V ® V, V) is a subalgebra is obvious. n

Remark 2.25. We are not able to give an isomorphism theorem here because it is

unclear to the author whether the axioms of smooth éﬂk ‘@K c-algebra over V imply
the chirality splitting property in the definition of open-closed field algebra over V.

3 Categorical formulation and constructions

In this section, we study open-closed field algebras over V' from a tensor-categorical point
of view. We first recall some basic ingredients of the vertex tensor categories. Then we
reformulate the notion of open-closed field algebra over V' categorically as open-closed
Cv|Cygy-algebra. In the end, we briefly discuss some categorical constructions.

3.1 Vertex tensor categories

The theory of tensor products for modules over a vertex operator algebra was developed
by Huang and Lepowsky [HL2]-[HL6][H3]. By Theorem 0.2 and our assumption on V/,
the category of V-modules, denoted as Cy, have a structure of vertex tensor category
[HL2|[HL6], In particular, it has a structure of semisimple braided tensor category.

We review some of the ingredients of vertex tensor category Cy and set our notations
along the way.

There is a tensor product bifunctor Mp() : Cy x Cy — Cy for each P(z),z € C* in
sphere partial operad K, where P(z) is the conformal equivalent class of sphere with
three punctures 0, z,00 and standard local coordinates [H4]. We denote Mp(;) simply
as . For any pair of V-modules W;, W5, the module W; Xp(,) W5 is spanned by the
homogeneous components of w; Mp(,,) wy € Wy & Wy, Vw, € Wi, wy € W,

For each V-module W, there is a left unit isomorphism ly : VX W — W defined by

lw(vX®w) =Yy (v, 1w, YoeViweW, (3.1)

where Iy is the unique extension of lyy on V X W and Yy is the vertex operator which
defines the module structure on W, and a right unit isomorphism ry : WKV — W
defined by

w(w R v) = VY (v, —1)w, YVoeV,weW. (3.2)

Remark 3.1. We have used “overline” for the extensions of maps, algebraic completions
of graded vector spaces and complex conjugations of complex variables. One shall not
confuse them because they acts on different things.

Let W7 and W5 be V-modules. For a given path v € C* from a point z; to 29, there
is a parallel isomorphism associated to this path

Ty e gP(zl) Wy — W) ®P(22) W.
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Let Y be the intertwining operator corresponding to the intertwining map Mp.,) and
[(z1) the value of the logarithm of z; determined by log z; and analytic continuation
along the path v. For wy € Wy, wy € Wy, T, is defined by

?’Y(wl &P(m) w2) = y(wl’ 61(21))1“”2’

where 7, is the natural extension of 7,. Moreover, the parallel isomorphism depends
only on the homotopy class of 7.

For z; > 25 > 2z — z3 > 0 and each triple of V-modules W7, W5, W3, there is an
associativity isomorphism:

P(z1—22),P(z
APEzi),Pz()zz)( )W, Xpy) (Wa Wp(ay) Wa) — (W1 Wp(zy—zp) Wa) Mpey) W,

which is characterized by

P(z1—22),P(z
APEzi),PQ()zQ)( D (way Bp(ey) (W) Bp() 03)) = (Way Bpey—s) W) By we  (3.3)

for wgy € Wi, i = 1,2,3. The associativity isomorphism A of the braided tensor category
is characterized by the following commutative diagram:

Tﬁl"(id“ﬁ Mp(zy) 7o)

Wi Wp(zyy (Wo Bpay) Wa) Wy W (Wy X Ws) (3.4)
A | | |4
Tyy0(Thg @p(22)1dw3)

(W1 Mp(zy—z) Wa) Mp(ay) Wa (W R W,) X W3,

where 1, y2,v3 are paths in R, from 21, 25, 21 — 25 to 1, respectively.
There is also a braiding isomorphism, for z > 0, Rf(z) Wi lpy Wo — Wollp) Wi
for each pair of V-modules W7, W5, defined as

where 7, is a path from —z to z inside the lower half plane as shown in the following
graph

(3.6)
The inverse of Rf(z) is denoted by R]_D(Z), which is characterized by
R (wy Rpey wy) = VT, (wy Bp(_s) ws), (3.7)
where v_ is a path in the upper half plane as shown in the following graph
—z 0 z (3.8)

We denote Ri(l) simply as R4.
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Remark 3.2. Notice that our choice of braiding isomorphism is the opposite of that
in [HKo1][H11|[Kol]. Accordingly, the twist § must be chosen to be the inverse of the
twist in [H11][Kol] (see (3.11) and (3.14).

For z1,25 € R, the naturalness of 7 implies the commutativity of the following
diagram:
T,

Wi Kp(.,) Ws

Ri(zl)l

Wi kp,) Wa
where v is a path in R, from z; to z;.

Let me//fwz denotes the space of intertwining operators of type (Wvlv‘j"’vz) There is

a canonical isomorphism between VVV“,/E"WQ and Homy (W, W Wy, W3) induced from the

W1 Np(.,) Wa (3.9)
lRi’(ZQ)

7-
! Wl IXP(ZQ) W2 )

universal property of tensor product. Let ) € VVV[ZfWQ. We denote the corresponding
morphism in Homy (W; X Wy, W3) as my. For r € Z, Q, : me//fwz — VWM//;Wl is an
isomorphism defined as follow:

O (V) (wg, )wy = Y(wy, eI 2),
for all wy € Wy, we € Wy, Then it is easy to see ([Kol]) that
my = mayy) © Ry = ma_,») o R_. (3.10)
We also define an isomorphism, called twist, 6y, € Homy (W, W) by
Oy = e~ 2L (3.11)

for any V-module W.

The tensor product V ® V is also a vertex operator algebra [FHL]. Moreover, it was
shown in [HKo2] that V ® V also satisfies the conditions in Theorem 0.2. Therefore,
Cvgv, the category of V ® V-modules, also has a structure of semisimple braided tensor
category. For z,( € C*, let Mp(,)p() be the tensor product bifunctor in Cygy defined
by

(A® B) Bpi)pi) (C®@ D) = (ANp:) B) @ (CBp D),
where A, B,C,D are V-modules. We denote the tensor product bifunctor Mp)p()
simply as X.

We showed in [Kol] that there are a few different braiding structures on Cygy. The
one that is interesting to us is R, _, which is defined as follow. Consider two objects
A, B in Cygy with the following decomposition:

A=]J4afeAf, B=]]BI® B} (3.12)
=1

j=1
Then we define R, : AX B — BX A by the following commutative diagram:

o

112, 11 (AP R BE) ® (AR R BE) AR B (3.13)
R+®Rl El' Ri—

[12, 115 (B RAF) ® (Bf R AT)

R

Y
BKX A,
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where the two horizontal maps are canonical morphisms due to the universal property
of tensor product. Such defined R, _ is independent of the decomposition of A and B.
From now on, we assume that Cy gy is equipped with the braiding structure R, _.

For any object A € Cygy, we also define an isomorphism 64 : A — A, called twist,
as follow

0,4 = e—27riLL(0) ® e27riLR(0). (3.14>

An object A is said to have a trivial twist if 0, = id4.

Now we recall the definition of (commutative) associative algebra in a braided tensor
category C with tensor product ®, unit object 1¢, left unit isomorphism [y and right
unit isomorphism ry for any object W, the associativity A and the braiding R.

Definition 3.3. An associative algebra in C (or associative C-algebra) is an object A
in C along with ug : A® A — A and an monomorphism ¢4 : 1¢ — A such that the
following conditions holds:

1. Associativity: pao (pa ®ida) = pao (ida ® pia).
2. Unit properties: g0 (1a ®ida) o lZl =pa0 (ta®idy)o r;xl = 1d4.

An associative C-algebra is called commutative if an additional condition: g = paoR
is satisfied.

The following Theorem is proved in [HKol].

Theorem 3.4. The category of open-string vertex operator algebras over V is isomor-
phism to the category of associative Cy -algebras.

The following Theorem is proved in [Kol].

Theorem 3.5. The category of conformal full field algebras over V& V' is isomorphic
to the category of commutative associative algebras in Cy gy with a trivial twist.

We are interested in studying the relation between above two algebras as ingredients
of an open-closed field algebra over V. Notice that these two algebras live in different
categories. So we will first discuss the relation between these two categories.

Recall a functor T'p(.) : Cygy — Cv [HL4]. In particular, for Wi, W, being V-module,
Tpey (Wi @ Wa) = Wi Kp(,) Wa. We will simply write Tp1y as T. Let (Cq, 1¢,, ®) and
(Co, 1c,,®) be any two monoidal categories. Recall that a functor F' : C; — Cy is
called a monoidal functor (or tensor functor) [Ka] if there is an isomorphism morphism
¢o : 1e, — F(1¢,) and a natural isomorphism ¢y between the following two functors

ClXClMCQXCQ&CQ,

axa e Lo, (3.15)
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satisfying three natural axioms expressed in terms of the following three commutative
diagrams

F(A)® (F(B) ® F(C)) -2~ (F(4) ® F(B)) ® F(C) (3.16)
J{idF(A)(XJgoz l@Q@idF(C)
FA)@ F(B® () F(A® B)® F(C)
F(A® (B2 C) — Y p((A9 B)® 0)
lra)

1o, ® F(A) F(A) (3.17)
l@o@idF(A) F(lA)T
F(le,) ® F(A) 2~ F(1¢, ® A)

TF(A)

F(A)® 1, F(A) (3.18)
lidF(A)®S00 F(TA)T
In our case, T' is a functor from Cy gy to Cy. Let
po =1l = VVRV=TVaV). (3.19)
For each four V-modules WL, Wi i = 1,2, notice that

TWEQWHRTWEo W) = (WERWH X WERWH, (3.20)
T(WEeWHRWEeWS) = WERWHR(WERWE). (3.21)

We define o : (WERWE R (WERWE) — (WER WL K (WEK W) by
@y = Ao (idy, ®A™) o (idy, R R_ Ridy,) o (idy, X.A)o A~ (3.22)

The above definition of ¢, can be naturally extended to a morphism 7'(A) X T'(B) —
T(AX B) for each pair of objects A and B in Cygy. We still denote the extended
morphism as @s.

Proposition 3.6. T : Cygy — Cy with ¢y and s defined in (3.19) and (3.22) is a
tensor functor.

Proof. Tt is a direct check of axioms. We omit the detail. |

Proposition 3.7. Let (A, pa,ta) be an associative algebra in tensor category Cy and
F:Cy — Cy be a monoidal functor. If we define

pray = F(upa) o g, (3.23)
tray = F(ea) oo, (3.24)

then (F'(A), preay, treay) s an associative algebra in Cs.
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Proof. 'This result is so standard that it must has been proven somewhere. But the
author is not aware of where such proof is available. So we include the proof here.
We have the following commutative diagram:

A 1 @A 4o A (3.25)
F(A) —" F1g, @ )" e 4) D ()

-
16, ® F(A) 28% 1. ) & pAS %% 1) & pa)

where the commutativity of the left lower subdiagram is due to (3.17) and that of right
lower subdiagram is due to the naturalness of o, the commutativity of the remain-
ing subdiagrams follow from the functorial properties of F. The left unit property of
associative algebra follows from the fact that two paths from 1¢, ® F(A) to F(A) are
commutative. The proof of the right unit property is similar.

The associativity of F/(A) follows from the following commutative diagram:

F(A) @ (F(A) @ F(A22 Fa) o P4 B75“Y pa) o FA)

@9 ©2

FA® (Ao AR pag a)
F(pa)

4 o FA)

Fpa)

F(pa®id) FlA® A)

F((A® A)® A)

(F(A) ® F(A) © FAFEL pae 4) e POAY22 SR04y & Fa)

in which the commutativity of the left subdiagram is due to (3.16), those of the right
upper subdiagram and the right lower subdiagram are due to the naturalness of s,
and that of the right middle subdiagram is due to the functorial property of I’ and the
associativity of A. |

For any four objects W;,i = 1,2,3,4 in Cy, we define a morphism ¢ in Hom((WW; X
Wo) R (W3 K Wy), (W3 K W,) K (W, K Ws,)) according to the following graph:

Wi 2/4 Wi W
\ /
N
Wi Wy W W, (3.26)

Clearly, for any A € Cygy, o can be extended to an automorphism on T(A) X T'(A),
denoted as 04.
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Proposition 3.8. Let (A, j1a,t4) be a commutative algebra in Cygy. (T(A), piray, trea))
1s not only an associative algebra in Cy but also satisfies the following commutativity:

,UT(A) = ,UT(A) C04. (327)

Proof. Let us assume that A take the simple form A = W; ® Wy with Wy, W, being
V-modules (the proof for general A is the same). Consider the following diagram:

(Wi R W) ) (W B W) —2 (W, R B (We WL S Wy W, (3.28)

: o

(Wi K Wa) R (Wy & Wa) —2 (W, )WL) ) (W B Wy e W, )W,

The left subdiagram is commutative because two paths corresponding to the same braid-
ing; the right subdiagram is commutative because of the commutativity of A. Hence
the above diagram is commutative. (3.27) follows from the commutativity of (3.28). R

3.2 Open-closed Cy|Cygy-algebras

Let (Ve mers tet)s (Vops Yops top), Yei—op) be an open-closed field algebra over V' throughout
this subsection.

By Theorem 3.5, (V, me;, L), a conformal full field algebra over V ® V' is equivalent
to a commutative associative algebra in Cy gy equipped with braiding R, _, satisfying
the condition 6y,, = idy,,. We denoted this algebra in Cy gy as a triple

(‘/cla,ucla Lcl)a

where py : Vg RV, — V, is the multiplication morphism induced from the formal
intertwining operator Y (recall (1.31)), i.e. pg = my,.

By Proposition 3.7 and 3.8, (T'(Vy), vr(v,). tr(v,)) (recall the notation in Proposition
3.7) is an associative algebra in Cy. The property of algebra T'(V,;) can be expressed in
the following graphic equations:

A Al
A9

By Theorem 3.4, (V,,, Yop, top), an open-string vertex operator algebra over V is
equivalent to an associative Cy-algebra, denoted as a triple

(3.29)

(‘/Opv :u’opa Lop)7
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where fi,, : Vo, XV, — V,, is the multiplication morphism canonically induced from
the formal intertwining operator Y,/ (recall (1.14) and (1.15)), i.e. jiop = My .

The defining properties of (V,,, ftop; top) can be expressed in the following graphic
equations:

e AL,

Now we are ready to study the categorical formulation of the only remaining data
Ye—op. By the chirality splitting properties and the associativity of intertwining operator
algebra [H7], there exist intertwining operators Y©®) Y6 such that

<U/> Ycl—op(u & 'a> z, C)'U> = <U/a y(5) (y(G) (uL> z = C)uRa C)'U> (332)
for v € V!

ops U € Vop,uL®uR € Vyand ¢ > z—( > 0. For v ® u® € V,;, we have
uRp.—oyul € Tp(.—¢)(Viy). Using the universal property of tensor product [HL2]-[HL5],
it is easy to see that there is a unique V-module map

P(z—()P
:ucl(—opC) © : TP(Z—C)(‘/CI) &P(C) V;)p - V;)p (333)

for z > ( > 2z — ( > 0, such that, for u” @ uf* € V; and v € V,,

Hereo (0" Bp(o—g) u) By v) = YOO (b, 2 = Qul, v, (3.34)
where ,LLZ(_Z(;OP(C) is the unique extension of uZ(_ZO;C)P(O to the algebraic completion of

Tra—¢)(Va) Bp) Vop. Let y1 be a path in Ry from 1 to z — ¢ and v, a path in R, from
1 to ¢. Then we define a map fig—op : T'(Vey) KV, — V,, as follow:

flel—op = MZ&ZO;OP@ o T, o (T, Ridy,,). (3.35)

Since 7, depends on path only homotopically, it is clear that above definition of fiy_op
is independent of z,{ in R, and paths 77,7 in R,. In particular, one can choose ~;
and v, to be the straight line between 1 and z — (, ¢ respectively.

By Theorem 1.28, it is enough to study the categorical formulations of the unit prop-
erty (1.82), the associativity I (1.52), the associativity II (1.56) and the commutativity
I in Proposition 1.18.

We first consider the property (1.82).

Proposition 3.9. The condition (1.82) is equivalent to the following condition:

fiei—op © (T'(1v,,) 0 o) Widy,,) o Iy} = idy,,, (3.36)

which can also be expressed by the following graphic equation:

OO

(3.37)
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Proof. First, (1.82) is equivalent to the following condition:
Yer—op(la; 2,¢) = idy,,, for z > (> 0. (3.38)

Recall that 1., = ty,(1 ® 1). Replacing u* ® uff by 1, in (3.32), one can see that both
sides of equation (3.32) are independent of z and ¢. Hence (3.38) holds for all z,( € R,..
Using (3.32) and (3.34), we obtain

:ucl( op ) ( )(TP(Z )(101) IXP(C) ,U) = (339)
for v € V,, and z,¢ € R;. Therefore, we have, for v € V,,,

P(z—CO)P :
ucz(_mf) 9o Tr—o(tv,) Bp) idv,, (1 Rp_¢) 1) Bp) v)

P(z
= 11, N Ty (1) Bpie) v)

=, (3.40)
which can be further expressed equivalently as

idy,, = " o (Tpe—g)(tv,) 0 Toy) Bp(e idy,,) 0 T, 0 (Iy Bidy,, ) o 1)
= g "0 o (T, Rpg idy,,) 0 T, 0 (T(1yy,) 0 o) Ridy,,) o I}
MZ(_ZO;C)P(OoT o (T,, Bidy,,) o ((T(wy;,) © o) Midy,,) o Iy}

= :ucl—opo((T(LVl ° o) ldVop)OlVop (3.41)

where v, and 5 are paths in R, from 1 to z — ( and ( respectively.
Conversely, from (3.39), (3.40) and (3.41), it is clear that (3.36) or (3.37) also implies
(1.82). n
Now we consider the associativity II (recall Proposition 1.17).

Proposition 3.10. The associativity II is equivalent to the following condition:

Hel—op © (1dT(VCl) X ,ucl—op) = Mel—op © ((T(,Ucl) o S02) X idVop) o A> (342)

which can also be expressed by the following graphic equation

/ \ _ ﬁ . (3.43)

Proof. Using the convergence property of products and iterates of intertwining op-
erators of V', it is not hard to show that, in the domain

{(21,C1, 20, ) |21 > G > 20 > (0 > 0,200 > 29,2¢ > 21 + 22}, (3.44)
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we have

Yo_ Op(ul ®u1,Z1,C1) cl— op(ul ®u1,Z17<1)
- y(5 (y (ul y 21 — Cl)ul >C1) (y(G (’Ué/, 22 — CQ)ué%a C?)U (345)

for ut @ uf!, ul @ ult € V; and v € V,,. By the universal property of tensor product,
there is a unique morphism

P(z1—C1)P : Z
/J“cl(—;p WP, (1dTP(z17C1)(Vcl) &P(Cl) :ucl( ;p @ (Cz)) (3'46)

in Hom(Tp(zl_Cl)(Vcl) @p(gl) (TP(zg—Cg)(Vcl) @p(@) Vop), ‘/;p) such that

}/;l op(ul ®u1 7Z17gl) cl— op(ul ®u17zlugl)

- 'ud(_;p R O (ldTP(z1*41)(Vcl) &P(Cl) :ucl( ip 2P 2))(
IL Xp(z—ci) U{%) Xp(er) ((Ug XNp(z—co) Up ) Xp(cy) U)) (3.47)
(u

for (z1, (1, 22, (2) in the domain (3.44).
On the other hand of (1.56), it is proved in [HKo02] that Y can be expanded as follow:

N
Yon(ul ®@ ufs 2, Qub @ uff =Y VE(uf, 2)uf @ YF(uf, )uf (3.48)

i=1
for some N € Z,. There is unique morphism

P(z1—22)P(C1—(2)
cl

€ Home, ., (Vo Mp(zy—20)P(c1—c2) Vi, Var)

such that, for u,v € V,

P(z1—22)P(¢1—
[ (z1—22)P(C1 Cz)(

cl

Uiy ) pci—c) V) = Y(u; 21 — 22, G — Co)v.

By the convergence property of intertwining operator algebra, it not hard to see that,
in the domain

{(21,C, 22, o) |21 > 20 > (1 > G0 > 0,20 > 21,220 > 21 + (1}, (3.49)

we have
Yo op(Y(UlL ® utt; 21 — 29, (1 — Co)uy @ us'; 29, (2)v

= Z Yaoop(V (ur, 21 — 2zo)uy @ Yfi(u', G — G)ug's 20, G

= Zy(5 yL ul,Z1 )u2722 g2)yR(u1 7C1 C2)u§7 g2)v‘

(3.50)
By the universal property of tensor product, there is a unique morphism
P(z2—C(2)P P(z1—22)P((1— .
ooy 2T 0 (Tp(ey oy (747 Bp(g,) iy, ) (3.51)
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in Hom(T'p(zy—co) (Ve (P21 —20) Pc1— o) Ver) WP (cz) Vop, Vop) such that

Ycl—op(Y(uf ® u{za 21 — 22, gl - C2)u§ ® u2R7 22, gQ)U

P(z2—C(2)P P(z1—22)P((1— .
= p1gy G2 T o (T, (™ O™ D) Bpie,) idys, ) (
((ulL XIP(Zl—ZQ) ué) @P(ZQ—@) (U{Z &P(Cl—Cz) ug)) ®P(C2) U) (3’52>

for (z1, (1, 22, (2) in the domain (3.49).
Notice that the domains (3.44) and (3.49) are disjoint. Now we fix a point (21, (1, 22, (2)
in the domain

{(21,C1, 22, Ga) |21 > C1 > 29> (2 > 0,2C0 > 21,2(; > 21 + 29,220 > (1 + G}, (3.53)

which is a subdomain of (3.44). Let Z, = (;,(; = 2. Then the quadruple (21, (i, %2, (o)
is in the domain (3.49).

Both sides of associativity (1.56) can be extended to the domain RY N Mg,. It is
easy to see that

YCl—OP(U‘f ® U{%, 21, C1>Y01—0p(u£ ® U§7 22, C2)U7
and 5
Yermop(Y(uf @ uf; 21 — 22, (1 — G)us @ uffs 2o, (o)v,

can be obtained from each other by analytic continuation along the following path

/

Z9 ! \ 22 21

(2 i //' G
) (3.54)

Meanwhile, if we start from the element

(uf Bpey—c) ut) Bpy) (45 Bpiy—c,) 1) Kpc,) v)

in Tp(z—cy(Var) Wpey) (Tp(za—co)(Var) Mp(c,) Vop) and apply associativity isomorphisms
repeatedly and braiding isomorphism on it, we obtain

P(z1—C¢1)P(C1)\—1
(AP(Z1)P(C1) )

uy Mp(ayy (uff Bpey) (ug Bpy—c,) u) Bpey) v)),

Ap L FR )
sy Bpey) ((uff Bp—¢o) (U Rp(y—cy) 45) Bpey) v),

AP(lezz)P(ZQ*Q)
P(¢1—C2)P(22—¢2)

ulL IXP(ZI) (((U{% gp(Cl—zz) u2L) &P(zz—Cz) u?) &P(Cz) U)a

rECL7=2) L(—1
B (.

7:/7 (u% gp(—CH—zg) uf) ®P(22—Cz) u?) &p(@) U)? (3’55>

where we have ignored the obvious identity maps. Now we analytic continuate the last
line of (3.55) along the path (3.54), we obtain

u% XIP(Zl) (((u% XIP(Cl—Z?) u{%) ®P(Z2—§2) uf) ®P(C2) U)v (3’56>
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which is nothing but the third line of (3.55) except uf* and uf being exchanged. Note
that the last line of (3.55) and (3.56) are elements in the algebraic completion of the
same V-module. We denote this V-module as W. Now we further apply associativity
morphisms on (3.56) and use zo = (; and (; = Z;. We then obtain

( P(22752)P(51*CQ)),1
P(23—(2)

uy Wpey) (U3 Mp,-c) (0] Bpe, ) u5) Rpe) v),
1P

ApChrtn 2L < L. . R, X

(ul P(z1—(2) (u2 P(z2—(2) (ul P(C1—C) W2 ))) P() Y,

P(21722)P(227C2)

P(z1—¢2)P(22—C2) L L
((ul &P(ﬂ—iz) u2) gP(iz ¢2) Us

(' ®pe, g 43) Bp(ea) v (3.57)
Let m be the morphism W — V,, such that

(346) =mo le(Cl—zz) o AP(Cl_ZZ)PE?—Cz) °

P(C1—C2)P(z2—(2)
P(CG1=C2)P(C2) P(z1—C1)P(C1)\—1
AP(Cl)P(Cz) © ('AP(zi)P(lgl) ) (3.58)

If we apply m on both the last line of (3.55) and (3.56), the two images of 7 are clearly
the analytic continuation of each other along the path (3.54). On the other hand,
combining this fact with (3.52) and (3.57), we obtain that

21 Z2)P(22—(2) P(21—(2)P(¢2) P(22—02)P(&1—C2)\—1
= (351) 0 Ay e PGa—to) O APpi) O bz ) (3.59)

because the extensions of both sides of (3.59), applied on (3.56), give the same element
in V,,. Therefore, we further obtain from (3.58) and (3.59) the following identity:
_ P(21=2)P(22=C2) | 4 P(21=C2)P(C2) P(22—(2) P(G1—C2)y -1
(3-46) = (351 0 Ap(;,_t)p(s—co) @ APGpc) © ApG-cy )

(C1—22) P(C1—22)P(22—(2) P(¢1—¢2)P(¢2) P(z1—¢1)P(¢1)\—1
oR” © Apts_toypza—ta) © Aripica)  © Apinpc) )

(3.60)

Using the commutative diagram (3.4)(3.9) and the definition of ¢y (recall (3.22)), it
is easy to see that (3.60) implies the commutativity of the following diagram:

Tr(z1—c) (Ver) Bpy) (Te(zs—co) (Ver) Bpca) Vop) (3.61)
I
T(Va) R (T (V) B V)
(T(Va) T (Vi) BV,
paRidy,,
T(Va B Ve) WV, 35D,z 12,
g1

Tr(zs—co) (Ve Wp oy 2,0 p(éy— o) Vet) Bp(ca) Vop
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where

fi= idT(Vcl) X (7;4 X idHop) © ,IY2 X 7;3 © ,IY1 (362)

g1 = TP(ZQ_CZ)(Z{7 ® 7;8) &P(Cz) idHop o (7:76 ®P(C2) idVop) o 7:75 (363>

in which ~;,7 = 1,...,4 are paths in R, from (3, 21 — (1, (2, 22 — (2 to 1 respectively and
vi,t =5,...,8 are paths in R, from 1 to (s, 20 — (s, 21 — 29, (1 — (o respectively.
Using (3.35), it is easy to see that

Hel—op © (idT(ch) X :Ucl—ozi) = (3.46)0 f1_1>
Hel—op © (T(,LLCI) X idVop) = (351) 0 Jg. (364)

(3.64) together with the commutative diagram (3.61) implies (3.42), which is nothing
but the commutativity of the subdiagram in the middle of (3.61).

Conversely, (3.42) implies the commutativity of the diagram (3.61). It is easy to see
that above arguments can be reserved. Therefore, we can also obtain the associativity
IT (1.56) from (3.42). |

We now study the categorical formulations of the rest conditions needed in Theorem
1.28. The proof of them are essentially same as that of Proposition 3.10. So we will
only sketch the proofs below.

Proposition 3.11. The associativity I (recall Proposition 1.16) is equivalent to the
following condition:

Ncl—op(idT(ch) X t10p) = pop(Hei—op X idVop) oA (3.65)

which can also be expressed in the following graph:

/ . (3.66)

Proof.  The left hand side of (1.52) gives arise to a morphism

P(z—Q)P . r
p = O o (idgy,. ) Bre 1h™) (3.67)

in Hom(Tpe.—¢)(Var) Mpcy (Vop Wy Vop), Vop). The right hand side of (1.52) gives arise
to a morphism
pb) o (MZ(_ZO_I,C)P(C_T) Xp—r idy,,) (3.68)
in Hom((Tp(z_C)(Vcl) @p(g) Vop) IEP(T’) Vopa Vz)p)’
For z,(,r in a proper subdomain of z > ( > r > 0, using similar arguments as in
Proposition 3.10, we obtain that the associativity (1.52), for some z, {,r, 7 € R, implies
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the following commutative diagram:

Tra—o)(Va) Mpey (Vop Mp(ry Vop) (3.69)
; (3.67)
2

T (Vi) B (Vo B V) oo 2 Vo
(T'(Vg) X
g2

(Tp—o)(Var) Wpc—n) Vop) Wy Vop)

where

f2 = (7:72 X 7:{3) © 7;17 (370>
92 = Tys Mp(¢) idy,,) Kpg) idy,, o (T5, Kpg) idy,,) © T, (3.71)

where 7;,7 = 1,2, 3 are paths in R, from ¢, z—( and r to 1 respectively and v;,7 = 4,5,6
are paths in R, from 1 to r,{ —r and z — ( respectively. The commutativity of outside
loop in (3.69) implies immediately the commutativity of the subdiagram in the middle
of (3.69), which is nothing but the identity (3.65) or (3.66).

Conversely, using (3.69) and reversing above arguments, it is clear that (3.65) or
(3.66) also implies the associativity (1.52). |

Proposition 3.12. The commutativity I (recall Proposition 1.18) is equivalent to the
following identity:

Phei—op(idr(vyy B piop) = piop(idy,, B ficr—op) © Alos0A, (3.72)

or the following graphic identities:

/ o/ -

Proof. There is a morphism
P(z—(¢)P . r
ooy 0 (i vy By ™) (3.74)
in Hom(T'pe.—¢)(Va)Xpey (Vop™py Vop) ) associated to (1.58). There is another morphism
Mopf) o (idy,, Mp() MZEZO_I,OP(O) (3.75)
in Hom(V,, X (T'(V,) K V,,)) associated to (1.59). We introduce a map

o1 € HOHI(T(‘/C[) X ‘/;p, ‘/;p X T(‘/cl))

o6



Let W; @ W; be an direct summand in V,;, then the restriction of oy on T'(W; @ W;) KV,
is defined as
oy = (R4 Widw,) o Ao (idy, RR_) 0 A7 (3.76)

This completely determines o;.

For z,(,r,r1 in a proper subdomain of r; > z > ( > r > 0, using similar argu-
ments as in Proposition 3.10, we obtain that the commutativity I, implies the following
commutative diagram:

Tra—o)(Va) Mpey (Vop Mp(ry Vop) (3.77)

where

f4 = (7:/2 X %3) © 7:{17 (378>
gy = (idvop X (7:,5 X Tyﬁ) oT,, (3.79)

in which v;,7 = 1,2, 3 are paths in R, from (, z — ( and r respectively to 1 and v;,7 =
4,5,6 are path in R, from 1 to ry, 2—( and ( respectively. Above commutative diagram
immediately implies that the subdiagram in the middle of (3.77) is commutative. This
is nothing but the commutativity (3.72) or the first formula in (3.73). Moreover, it also
easy to see that the two formula in (3.73) are actually equivalent.

Conversely, using commutative diagram (3.77) and reversing above arguments, it is
clear that (3.73) implies the commutativity of rational &¢. n

Commutativity II (recall Proposition 1.19) is not needed in Theorem 1.28 because it
automatically follows from associativity Il and skew symmetry of V,;. It also has a very
nice categorical formulation as given in the following proposition, which follows from
(3.30) and (3.43) immediately.

Proposition 3.13. For an open-closed field algebra over V', we have

Hel—op © 1dT(Vcl) X Hel—op = Hel—op © idT(Vcl) X Mel—op © A_l oo A>
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c— A
/\\ ((\ _ ﬁ (3.80)

In summary, we have already completely reformulated the all the data and conditions
in Theorem 1.28 in the language of tensor category as (3.35), (3.36), (3.42), (3.65) and
(3.72) or equivalently as graphic identities (3.37), (3.43), (3.66) and (3.73).

We define a morphism ¢.;_, : T'(V) — Vi, as the composition of the following maps:

T(Vcl) ld‘x Vop

T(Vag) = T(Va) B L, —— T(Va) BV, =5V, (3.81)

or in the following graphic formula:

- ﬁ f% (3.82)

Lemma 3.14. ty_,, is an algebra morphism from T'(Vy) to V.

Proof. That ty_,p, maps identity to identity is proved as follow:

e

The homomorphism property fio, © (tei—op X tei—op) = tei—op © Mo is proven as follow:

- - Al A

Definition 3.15. An open-closed Cy |Cygy -algebra, denoted as

(3.83)

( (Aopa Hop, Lop)|(Acl> Hels Lcl)> Lel—op )

or simply (Aop|Aers tei—op), consists of an associative algebra (Aop, fop: top) i Cy, & com-
mutative associative algebra with a trivial twist (A, e, ter) in Cygy and an associative
algebra homomorphism ¢, : T(Ay) — Aop, satistying the following commutativity:

Hhop © (Lei—op X idvop) = MHop © (idVop X te1—op) © 01, (3.85)
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or equivalently,

N . (3.86)

Theorem 3.16. The following two notions
1. open-closed field algebra over V.,
2. open-closed Cy|Cy gy -algebra,
are equivalent in the sense that the categories of above two notions are isomorphic.

Proof. Given an open-closed field algebra over V', we have shown that it gives a
triple (Vei, Vop, flei—op), in which V,; is a commutative associative algebra in Cygy with
a trivial twist, and V,, is an algebra in Cy, and i, satisfies (3.37),(3.43), (3.66) and
(3.73). Moreover, we have shown that ty_,, defined by (3.82) gives an morphism of
associative algebra. Now we prove (3.86) as follow:

G-l )

Hence (V,,|Vei, tei—op) is an open-closed Cy|Cy gy -algebra.

Hence we have obtain a functor from the category of open-closed field algebras over
V to that of open-closed Cy|Cygy-algebras.

Conversely, given an open—closed Cv|Cvgv-algebra, (Vo,|Ve, tei—op), we define a mor-
phism fi—op € Hom(T' (V) BV, Vo) as

(3.87)

Since te—op is an algebra homomorphism, it maps unit to unit (recall (3.83)). Thus the
identity property of fi_op holds. Then the identity property of Y_,, follows.
Furthermore, we have

e
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which gives the associativity II (3.43). The associativity I (3.66) follows from

By using (3.2), we can prove the commutativity (3.73) as follow:

N /N

Note that the other half of (3.73) is equivalent to the first half. Notice also that the
commutativity (3.80) simply follows from (3.27) and the fact that ty_,, is an algebra
homomorphism. We don’t need this fact.

Therefore we obtain a functor from the category of open-closed Cy |Cy 1 -algebras to
that of open-closed field algebras over V.

The isomorphism of category follows from (3.82) and (3.87) easily. |

Remark 3.17. The condition (3.86) is equivalent to the following condition:

el

Remark 3.18. Comparing the categorical formulation of open-closed conformal field
algebra over V with the result of 2-dimensional open-closed topological field theories
[La][Mo1][Mo2][MS], one can see that genus-zero open-closed conformal field theories
are still very similar to topological theories.

3.3 Categorical constructions

In this section, we discuss some simple categorical constructions of open-closed Cy |Cy gy -
algebras. We leave more thorough study of categorical constructions for the future.
An open-closed Cy|Cygy-algebra is very easy to construct. For example, let A be
an associative algebra in Cygy and Cj(A) the left center of A [O][FFRS] [RFFS] and
t: Ci(A) — A the natural embedding. Let Ay be any subalgebra of C;(A). Then it
is clear that (Ag|T(A),T(¢)) gives an open-closed Cy|Cygy-algebra, which further gives
an open-closed field algebra over V and a smooth S¢-algebra over V. If we express the
examples of such algebras given in [HKol] in terms of open-closed Cy|Cygy-algebras,
they are of the form (A,p|V ® V,14,,), where A,, is an associative algebra in Cy. In
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general, (Ag|T'(A),T(¢)) is a nontrivial generalization of the construction given in [HKol]
in the sense that Ay C Cj(A) is a nontrivial extension of V' ® V. The existence of such
nontrivial extensions can be seen from the following fact. Let (C,®, 1¢) be an abelian
braided tensor category with braiding natural transformation R. Let (A, pa,t4) be an
associative algebra in C and (B, up,tp) a commutative associative algebra in C. Then
A ® B has a natural structure of associative algebra with magp given by

(a @ pp)o (ida @ Rap ®idp) (3.88)

and tagp = ta @ tp [FFRS]. Then it is easy to see that Cj(A) ® B is in the left center
of the associative algebra A ® B and is clearly nontrivial.

In above paragraph, we construct open-closed Cy|Cygy-algebras from associative
algebras A in Cy. We can also first start from a given commutative associative algebra
in Cygy with a trivial twist, and ask which associative algebra in Cy can make it into
an open-closed Cy|Cygy-algebra. This dual point of view is associated to the so-called
open-closed duality in string theory. Now we present such point of view of constructions
below. The resulting open-closed Cy|Cygy-algebras are special cases of constructions
discussed in the last paragraph. More interesting examples will be discussed in [Ko2].

Because ¢y is an algebra map from T'(A.) to A,,, Ay has a natural structure of
T(Ag)-module. Moreover, A,, is a certain “algebraic” object in the category of T'(Ay)-
modules, although we should be careful since the category of T'(A.;)-modules may not be
monoidal. Due to the work of Kirillov and Ostrik ([KOs]), the category of modules for
a commutative associative algebra in braided tensor category is itself monoidal. T'(A.)
is not commutative, but A, is. So we can first look at the category of A,-modules.

Let us recall some results from [KOs|. Let C be an abelian braided tensor category
over C with tensor product bifunctor ®, unit object 1¢, left unit morphism Iy, and right
unit morphism 7y for any object W, associativity A, braiding R, and antibraiding R _.
Let (A, pta, t4) be a commutative associative algebra in C. A A-module is a pair (W, uw)
where W is an object in C and puy € Mor(A ® W, W) satisfying natural axioms. We
denote the category of A-modules as RepA. A subcategory Rep’A ([KOs][Pa]) of RepA
consists of all objects W in RepA such that

pw o RY 4 o REW = s,

where the subscripts W4 and 4" on R indicate that the domains of these two braiding

isomorphisms are W ® A and A ® W respectively. The following Theorem is due to
Kirillov and Ostrik ([KOs]).

Theorem 3.19. RepA is a monoidal category with unit object A and tensor product ® 4
defined as, for Wi, Wy € RepA,

W1 ®A W2 = Coker(,ul — ,ug), (389)
where iy, o : AQ W, @ Wy — W1 ® Wy are defined by

H1 = :uW1®idW2’
py = (idw, ® pw,) o R (3.90)

Rep® A has a structure of braided monoidal category.
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We briefly recall some basic structures in RepA and Rep’A. Let us denote the
natural projection W, @ Wy — W1 ®4 Wy as ow, w,. The left unit morphism l{,‘v and the
right unit morphism 71}, for a given A-module W is given in the following commutative

diagram:
RAW

AW AW o we A LW e, A, (3.91)

A :U'Wl A
3, 3 rd

w

where the existence and the uniqueness of I}, and 77}, follow from the universal properties
of cokernels. Similarly, the associativity isomorphisms A4 in RepA are induced from A
canonically in the following commutative diagrams:

Wy @ (W @ Ws) A Wy @ Wa) @ Wi (3.92)
6W2,W3\L l5W1,W2
Wy @ (Wy @4 W3) (Wy @4 W) @ Wy
6W17W2®AW3\L l6W1®AW2»W3
3 AA
W1 ®A (W2 ®A Wg) (Wl ®A WQ) ®A W3

for any A-modules Wi, Wy, W5. And the (anti)braiding isomorphisms R4 in A are
induced from R4 canonically in the following commutative diagram:

R+

Wy, @ Wy Wy ® Wy (3.93)
5W1»W2l léWZ’Wl
A RY
Wi @4 Wo Wy @4 W4

for any pair of A-modules W7, Ws.
We need the following Lemma for our construction.

Lemma 3.20. Let (B, u3, 1) be an associative algebra in Rep” A and two morphisms
up:B®B — B and g :V — B given by up = ,ujgoéBB and g := LgOLA. The triple
(B, g, tp) is an associative C-algebra and 15 : A — B is a C-algebra homomorphism.
Moreover, the following diagram:

s id
A9B—2" _poptip (3.94)
Ril d lldB
o
Bo A% _pop b p

18 commutative.
Proof. To prove the left unit property, we consider the following diagram:

LAl 5 4
k@Bl@§%®B—iiA®AB—JLB (3.95)

Lé@idBl L‘é@AidBl
B,B

s
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The square in the middle of diagram (3.95) is exactly how 14 ®4idp is constructed from
1A ®idp so that ®4 becomes a bifunctor Rep’ A x Rep’A — Rep’A. In other words, the
square is commutative. The triangle in the right part of diagram (3.95) is commutative
because of the unit property of B as an associative algebra in Rep’A. Therefore we have

ppo(tp®idp) = pmodppo (ip®idg)o (1a ®idg)
= I%odspo(ta®@idp). (3.96)

Using the construction of 4 in (3.91) and the unit property of B as A-module, we
further obtain that

ppo (tp ®idp) = pup o (ta ®idg) = I,

which is nothing but the left unit property of (B, pupg,tp) in Cygy. The right unit
property can be proved similarly.

The associativity of (B, up, tp) follows immediately from that of (B, u4,t4) and the
commutative diagram (3.92).

Hence (B, jip,tp) is an associative C-algebra. That 14 is a C-algebra homomorphism
follows immediately if the following diagram:

A A4 4 (3.97)

LA

id,mgnﬁ,l B
5a.B 14

AR B—=A®4B——1B
L‘%@idgl L§®AidBl/
B,B

g

is commutative. It is clear that the lower two subdiagrams of (3.97) is commutative.
Notice that (4 0 545 = pp by (3.91). The commutativity of the upper subdiagram
of (3.97) simply follows from the fact that 5 is a A-module map. Hence (3.97) is
commutative.

The commutativity (3.94) also follows easily from the commutative diagram (3.93),
the identity 14 = r4 o R4 [Ka] and the unit properties of (B, jus, t4). |

Proposition 3.21. Let (A, pa,ta) be a commutative associative algebra in Cygy with

a trivial twist and (B, s, 1) an associative algebra in Rep® A. Let up = ppodp p and

Lg = Lg ots. Then

((A, pa, ea) (T (B), T () © 02, T(t5) 0 p0), T(t33))

is an open-closed Cy |Cy gy -algebra.

Proof. By Lemma 3.20 and Proposition 3.7, the triple

(T'(B), T(up) o @2, T(tp) © o)

is an associative algebra in Cy .
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T(3) : T(A) — T(B) clearly maps unit to unit. Hence to show that T(:4) is
an algebra homomorphism, we only need to prove the commutativity of the following
diagram:

T(A) R T(A) L T(AR A P (3.98)
T(Lg)lZ’T(Lg) T(L‘g&’Lg) T(Lg)
)

X T(B) £~ T(BR B) “2 T(B).

The commutativity of the left subdiagram in (3.98) follows from the naturalness of
¢ and that of the right subdiagram in (3.98) is obvious. Hence T'(:4) is an algebra
homomorphism.

The commutativity (3.86) follows from the commutativity of the diagram (3.94) and

a similar diagram as (3.28) immediately. n
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