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Abstract. We establish Sakakibara’s differential equations [Sa04] in a matrix setting for the counter term

(respectively renormalized character) in Connes–Kreimer’s Birkhoff decomposition in any connected graded

Hopf algebra, thus including Feynman rules in perturbative renormalization as a key example.

Contents

1. Introduction 1

2. The general set up 3

2.1. Connected filtered Hopf algebra 3

2.2. Connes–Kreimer’s Birkhoff decomposition of Hopf algebra characters 7

2.3. The matrix representation 8

2.4. The matrix form of Connes–Kreimer’s Birkhoff decomposition 10

3. The matrix representation of the beta-function 13

3.1. The beta-function in the Hopf algebra of renormalization 13

3.2. The matrix representation of the grading derivation 17

3.3. Matrix differential equations 17

3.4. The renormalization group and the beta-function in the matrix setting 19

References 20

1. Introduction

Quantum field theory (QFT) unifies the fundamental principles of special relativity and quantum theory and

provides the appropriate physical framework to describe phenomena at the smallest length scales respectively

highest energies. Its mathematical structure is far from being as simple as that of its basic constituents.

Moreover, up to now, perturbation theory is the most successful quantitative and qualitative approach to

QFT. Although general agreement between theoretically predicted results in the perturbative regime of QFT

and those experimentally measured has reached a satisfactory status, a truly non-perturbative understanding

of the physics of quantum phenomena is mandatory, both for future advancements in terms of fundamental as

well as calculational problems.

Perturbative QFT consist of two fundamental ingredients, the gauge principle and the concept of renor-

malization. The latter consists of an arbitrary regularization prescription, which parameterizes ultraviolet

divergencies appearing in Feynman amplitudes and thereby renders them formally finite, together with a spe-

cific subtraction rule of those ill-defined expressions dictated by physical principles. Whereas both the gauge

principle and the concept of renormalization experienced a rich development in theoretical physics, the for-

mer especially came to the fore of mathematical research with rich interactions between mathematicians and

physicists. However, the latter suffered from the lack of an equally strong development of its mathematical

aspects.
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Kreimer’s recent findings [Krei98, Krei99a] mark a turning point in this context. He discovered a mathemat-

ical structure underlying renormalization in perturbative quantum field theory in terms of connected graded

commutative Hopf algebras. Feynman rules are interpreted as Hopf algebra characters which associate to each

Feynman graph its corresponding amplitude.

The concept of regularization in general introduces non-physical parameters. This process changes the nature

of Feynman rules drastically, i.e., from linear multiplicative maps into the underlying base field, to algebra

morphisms with image in a commutative unital algebra, e.g., Laurent series in dimensional regularization.

Hence we identify regularized Feynman rules with a particular subclass of such maps from the Hopf algebra of

Feynman graphs into a commutative unital algebra dictated by the regularization scheme.

Connes and Kreimer extended the results on the Hopf algebraic approach to perturbative renormalization

by establishing the Hopf algebra of Feynman graphs including the concept of the renormalization group [CK99,

CK00, CK01, CK02]. Moreover, Connes and Kreimer formulated in this picture the intricate process of per-

turbative renormalization in terms of an algebraic Birkhoff decomposition of regularized Feynman rules, using

the minimal subtraction scheme in dimensional regularization.

In [EG05, EGGV06] it was shown how to organize the combinatorics of renormalization in terms of (pro-

)nil- and unipotent triangular matrix representations with entries in a commutative Rota–Baxter algebra. A

simple factorization of such matrices was derived using explicit non-recursive equations containing the renor-

malization scheme operator. This simple matrix decomposition offers a transparent picture of the process of

renormalization in terms of the factorization of Feynman rules matrices.

In this work we would like to further develop the matrix calculus approach to perturbative renormalization

in the abstract context of connected graded Hopf algebras. Any left coideal gives rise to a representation of

the group of characters of the Hopf algebra by lower triangular unipotent matrices, the size of which being

given by the dimension of the coideal. We investigate the matrix representation of two fundamental concepts

which can be defined in this purely algebraic framework: the renormalization group and the beta-function. We

retrieve then M. Sakakibara’s differential equations involving the beta-function, giving to his approach the firm

ground of triangular matrix calculus.

Before starting we should point the reader to the following papers [CaKe82, Col06, Del04, EK05, FG05,

Krei03, Man01, tHVel73] and books [Col84, FGV01, IzZu80, Krei00, Muta87, Vas04] which are useful as intro-

ductory references, both with respect to perturbative QFT and renormalization theory, as well as its recently

discovered Hopf-algebraic structures. Also, some readers may find it stimulating to leaf through the books by

Brown [Br93] and Schweber [Schwe94] as well as the more recent one by Kaiser [Kai05] for some scientific-

historical perspectives on Feynman graphs in QFT and renormalization theory. Schwinger’s collection of

reprints [Schwi58] contains many of the original articles marking the beginning of modern perturbative QFT

and renormalization theory. Comprehensive treatments of Hopf algebras can be found in [Abe80, Sw69], see also

the paper by Bergman [Berg85]. Other useful references are [ChPr95, FGV01, Kas95, Maj95, StSh93]. Hopf

algebras in the context of combinatorics appeared in the work of Rota [Rota78], and Joni and Rota [JoRo79],

see also [FG05, NiSw82, Schm95, SpDo97].

Let us briefly outline the organization of this paper. In section 2, after reminding Connes–Kreimer’s Birkhoff

decomposition of characters in the most general context of connected filtered Hopf algebras, we define the matrix

representation associated with a left coideal, along the lines of [EG05], and write down the matrix counterpart

of the Birkhoff decomposition. In section 3, we first define the renormalization group and the beta-function in

the context of connected graded Hopf algebras, along the lines of [CK00] and [Man01], and then we describe

the matrix counterparts of these notions. The key point is that the grading biderivation Y of the Hopf algebra

can be represented by a diagonal matrix. The semidirect product of the group of characters with the associated

one-parameter group of automorphisms can then be represented by (non-unipotent) lower-triangular matrices.
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The two last subsections are devoted to a careful rewriting of some important results of M. Sakakibara ([Sa04])

in the matrix representation, yielding matrix differential equations for the beta-function.

2. The general set up

In the sequel k denotes the ground field with char(k) = 0 over which all algebraic structures are defined.

Here the term algebra always means unital associative k-algebra, denoted by the triple (A,mA, ηA), where A

is a k-vector space with a product mA : A⊗A → A and a unit map ηA : k → A. Similarly for coalgebras over

k, denoted by the triple (C,∆C , ǫC), where the coproduct map ∆C : C → C ⊗ C is coassociative and ǫC : C → k

denotes the counit map. A subspace J ⊂ C is called a left coideal if ∆C(J ) ⊂ C ⊗J . A Hopf algebra, denoted

by (H,mH, ηH,∆H, ǫH, S), is a bialgebra together with the antipode S : H → H, that is, it consists of an

algebra and coalgebra structure in a compatible way and S is a k-linear map on H satisfying the Hopf algebra

axioms [Abe80, Sw69]. In the following we omit subscripts for notational transparency if there is no danger of

confusion, and denote algebras, coalgebras and Hopf algebras simply by A, C and H, respectively.

2.1. Connected filtered Hopf algebra. Let H be a connected filtered bialgebra:

k = H(0) ⊂ H(1) ⊂ · · · ⊂ · · ·H(n) ⊂ · · · ,
⋃

n≥0

H(n) = H,

and let A be any commutative algebra. The space L(H,A) of linear maps from H to A together with the

convolution product f ⋆ g := mA ◦ (f ⊗ g) ◦ ∆, f, g ∈ L :

H
∆
−→ H⊗H

f⊗g
−−−→ A⊗A

mA−−→ A,

is an algebra with unit e := ηA ◦ ǫ. For any x ∈ H(n) we have, using a variant of Sweedler’s notation [Sw69]:

(1) ∆(x) = x⊗ 1 + 1 ⊗ x+
∑

(x)

x′ ⊗ x′′,

where the filtration degrees of x′ and x′′ are strictly smaller than n. Recall that by definition we call an element

x ∈ H primitive if:

∆̄(x) := ∆(x) − x⊗ 1 − 1 ⊗ x = 0.

The convolution product on L(H,A) writes then with Sweedler’s notation:

(2) (f ⋆ g)(x) = f(x)g(1) + f(1)g(x) +
∑

(x)

f(x′)g(x′′) ∈ A.

The filtration of H implies a decreasing filtration on L(H,A) in terms of Ln := {f ∈ L
∣∣ f |

H(n−1)
= 0} and

L(H,A) is complete with respect to the induced topology [Man01]. The subset g0 := L1 ⊂ L(H,A) of linear

maps α that send the bialgebra unit to zero, α(1) = 0, forms a Lie algebra in L(H,A). The exponential:

exp⋆(α) =
∑

k

1

k!
α⋆k

makes sense and is a bijection from g0 onto the group G0 = e + g0 of linear maps γ that send the bialgebra

unit to the algebra unit, α(1) = 1A [Man01].

An infinitesimal character with values in A is a linear map ξ ∈ L(H,A) such that for x, y ∈ H :

(3) ξ(xy) = ξ(x)e(y) + e(x)ξ(y).

We denote by gA ⊂ g0 the linear space of infinitesimal characters. We call an A-valued map ρ in L(H,A) a

character if for x, y ∈ H :

(4) ρ(xy) = ρ(x)ρ(y),

The set of such unital algebra morphisms is denoted by GA ⊂ G0.

Let us now assume that A is a commutative algebra. It is easily verified then, see for instance [Man01], that

the set GA of characters from H to A forms a group for the convolution product, in fact it is the pro-unipotent
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group1 of A-valued morphisms on the bialgebra H. And gA in g0 is the corresponding pro-nilpotent Lie algebra.

The exponential map exp⋆ restricts to a bijection between gA and GA. The neutral element e := ηA ◦ ǫ in GA

is given by e(1) = 1A and e(x) = 0 for x ∈ Ker ǫ. The inverse of ϕ ∈ GA is given by composition with the

antipode S:

(5) ϕ⋆−1 = ϕ ◦ S.

Recall that the antipode S : H → H is the inverse of the identity for the convolution product on L(H,H) :

(6) S ⋆ Id = m ◦ (S ⊗ Id) ◦ ∆ = η ◦ ǫ = Id ⋆ S.

It always exists in a connected filtered bialgebra, hence any connected filtered bialgebra is a connected filtered

Hopf algebra. The antipode is defined by:

(7) S =
∑

n≥0

(η ◦ ǫ− Id)⋆n.

Recall that ∆(0) := Id and for n > 0 ∆(n) := (∆(n−1) ⊗ Id) ◦ ∆. Equations (6) imply the following recursive

formulas for the antipode starting with S(1) = 1 and for x ∈ Ker ǫ:

S(x) = −x−
∑

(x)

S(x′)x′′,(8)

S(x) = −x−
∑

(x)

x′S(x′′).(9)

Example 1. Toy-model of decorated non-planar rooted trees: As a guiding example we will use the

Hopf algebra of non-planar rooted trees established by Kreimer [Krei99a]. It provides the role model for the

Hopf algebraic formulation of perturbative renormalization [CK99]. In fact, linear combinations of –decorated–

non-planar rooted trees naturally encode the hierarchical structure of divergencies of a Feynman graph. Each

vertex of a rooted tree represents a primitive divergence indicated by a decoration with a primitive one-particle

(1PI) irreducible Feynman graph. Edges connecting such vertices encode thereby the nesting of subdivergencies,

i.e., proper 1PI subgraphs sitting inside another 1PI graph. The root vertex is the overall divergence which

contains those subdivergencies. Linear combinations of such decorated rooted trees may represent Feynman

graphs with overlapping divergence structures [Krei99b].

By definition a rooted tree t is made out of vertices and nonintersecting oriented edges, such that all but

one vertex have exactly one incoming line. We denote the set of vertices and edges of a rooted tree by V (t),

E(t) respectively. The root is the only vertex with no incoming line. We draw the root on top of the tree. Let

T denote the set of isomorphic classes of rooted trees. The empty tree is denoted by 1T :

· · · · · ·

Let T be the k-vector space generated by T , which is graded by the number of vertices, deg(t) := |t| := |V (t)|,

t ∈ T , with the convention that deg(1T ) = 0. Let HT be the graded commutative polynomial algebra of finite

type over k generated by T , HT := k[T ] =
⊕

n≥0 kH
(n). Monomials of trees are called forests. We extend

deg(t1 . . . tn) :=
∑n

i=1 deg(ti).

We will define a coalgebra structure on T . The coproduct is defined in terms of cuts c ⊂ E(t) on a tree

t ∈ T . A primitive cut is the removal of a single edge, |c| = 1, from the tree t. The tree t decomposes into two

parts, denoted by the pruned part Pc(t) and the rooted part Rc(t), where the latter contains the original root

vertex. An admissible cut of a rooted tree t is a set of primitive cuts, |c| ≥ 1, such that along the unique path

from the root to any vertex of t one encounters at most one cut.

1It is more precisely a group scheme, i.e. a functor A 7→ GA from k-algebras to groups.
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Let Ct be the set of all admissible cuts of the rooted tree t ∈ T . We exclude the empty cut c(0): Pc(0)(t) = ∅,

Rc(0)(t) = t, and the full cut c(1): Pc(1)(t) = t, Rc(1)(t) = ∅. Also let C
(01)
t be Ct ∪ {c(0)(t), c(1)(t)}. The

coproduct is defined by:

(10) ∆(t) := t⊗ 1T + 1T ⊗ t+
∑

c∈Ct

Pc(t) ⊗Rc(t) =
∑

c∈C
(01)
t

Pc(t) ⊗Rc(t).

We shall call the rooted tree Rc(t) the cotree (or cograph) corresponding to the admissible cut c on the tree t.

One sees easily, that deg(t) = deg(Pc(t)) + deg(Rc(t)), for all admissible cuts c ∈ Ct, and therefore:

∆̄(t) =
∑

c∈Ct

Pc(t) ⊗Rc(t) ∈
∑

p+q=deg(t), p, q>0

H(p) ⊗H(q).

Furthermore, this map is extended by definition to an algebra morphism on HT :

∆
( n∏

i=1

ti
)

:=

n∏

i=1

∆(ti).

The best way to get use to this particular coproduct is to present some examples:

∆( ) = ⊗ 1T + 1T ⊗

∆
( )

= ⊗ 1T + 1T ⊗ + ⊗

∆( ) = ∆( )∆( ) = ⊗ 1T + 1T ⊗ + 2 ⊗

∆
( )

= ⊗ 1T + 1T ⊗ + 2 ⊗ + ⊗

∆
( )

= ∆
( )

= ∆( )∆
( )

= ⊗ 1T + 1T ⊗ + ⊗ + ⊗ + ⊗ + ⊗

∆
( )

= ⊗ 1T + 1T ⊗ + 3 ⊗ + 3 ⊗ + ⊗ .

One observes immediately that the vector space T defines a left coideal, that is :

T
∆
−→ HT ⊗ T .

The experienced reader will easily recognize that this coproduct efficiently stores the so-called wood W(Γ) for

the Feynman graph Γ with its hierarchy of subdivergencies represented by the tree t ∼ Γ. A wood simply

contains all spinneys2 of the graph [CaKe82, EG06]. The right-hand side of above coproduct consists of the

cograph following form the contraction of the corresponding spinney denoted on the left-hand side.

Connes and Kreimer showed that HT with coproduct (10), and counit ǫ defined by ǫ(1) := 1k and zero else

is a connected Z≥0-graded commutative, non-cocommutative bialgebra of finite type and hence a Hopf algebra,

with antipode S defined recursively by S(1T ) = 1T and:

S(t) := −t−
∑

c∈Ct

S(Pc(t))Rc(t).

Again, a couple of examples might be helpful here:

S( ) = −

S( ) = − − S( ) = − +

S
( )

= − − 2S( ) − S( ) = − + 2 −(11)

S
( )

= − − 3S( ) − 3S( ) − S( ) = − + 3 − 3 + .(12)

2A spinney is a –possibly non-connected– subgraph with one-particle irreducible components.
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We chose a simple decoration of tree vertices by tree-factorials [Krei99a, KrDe99] defined as follows. Let

t ∈ T , each primitive cut, that is, each edge c ∈ E(t), defines two rooted trees, i.e., the pruned tree tvc
:= Pc(t)

and Rc(t). The root of the former is the vertex vc ∈ V (t) which had c as its incoming edge. The root of

the cotree Rc(t) is the original root. Let w(tvc
) := |V (tvc

)|, then deg(t) = deg(w(tvc
)) + deg(Rc(t)). The

tree-factorial of t is defined by:

t! :=
∏

c∈C
(1)
t

|c|=1

w(tvc
) =

∏

v∈V (t)

w(tv).

The second equality is clear as to each vertex we can associate the unique incoming edge c ∈ E(t). As examples

we mention:

! = 1,
!
= 2,

!

= 6,
!
= 3,

!

= 8, and
!
= 4.

In the following we decorate each vertex v ∈ V (t) of a rooted tree t ∈ T by its tree-factorial, t!v. For notational

transparency we omit the decorations on the trees.

Recall the function:

∫ ∞

0

y−az(y + c)−1−bzdy = B
(
(a+ b)z, 1 − az

)
c−(a+b)z ,where B(u, v) :=

Γ(u)Γ(v)

Γ(u+ v)
,

where c > 0 and Γ(a) is the usual Euler Gamma-function [Krei00]. We define now the family of functions:

Bn := Bn(z) := B(nz, 1 − nz), n > 0.

Following [Krei99a, KrDe99] we define the following regularized toy-model character ϕ = ϕ(a, µ, z) from the

Hopf algebra of integer decorated rooted trees HT to A := C[z−1, z]][[log(a/µ)]], a/µ > 0 : ϕ(1T )(a, µ, z) := 1A,

(13) ϕ(t)(a, µ, z) :=

(
a

µ

)−z|t| ∏

v∈V (t)

Bw(tv), for t ∈ Ker ǫ.

Here, a is assumed to be a dimensional external parameter, and µ is the so-called ’t Hooft mass. The latter

is an arbitrarily chosen parameter of the same dimension as a, such that the ratio a/µ is a positive number.

The parameter µ introduces an external scale specific to dimensional regularization [Col84]. Let us give a few

examples by applying ϕ(a, µ, z) to some trees. Defining α := a
µ

we find:

ϕ( )(a, µ, z) = α−zB1 = α−zB(z, 1 − z) = α−z π

sinπz
= α−z

(1

z
+
π2

6
z +O(z2)

)

ϕ( )(a, µ, z) = α−2zB2B1 = α−2zB(2z, 1 − 2z)B(z, 1 − z),

ϕ
( )

(a, µ, z) = α−3zB3B
2
1 = α−3zB(3z, 1 − 3z)B(z, 1 − z)B(z, 1 − z),

ϕ
( )

(a, µ, z) = α−4zB4B
3
1 = α−4zB(4z, 1 − 4z)B(z, 1 − z)B(z, 1 − z)B(z, 1 − z),

ϕ
( )

(a, µ, z) = α−4zB4B2B1B1 = α−4zB(4z, 1 − 4z)B(2z, 1 − 2z)B2(z, 1 − z).

These types of models exemplify a rich structure capturing some aspects of real QFT calculations and we refer

the reader to [BK99, Krei99a, KrDe99, Krei00] for more details on such toy-models.

For latter use we parameterize ’t Hooft’s mass:

(14) µ→ µ(s) := esµ, s ∈ R,

such that α := a/µ→ α(s), and for a fixed a we define ϕ(a, µ, z) → ϕ(α(s), z) =: ϕ(s, z).
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2.2. Connes–Kreimer’s Birkhoff decomposition of Hopf algebra characters. Connes and Kreimer

extended the work by Kreimer [Krei98, Krei99a] and established the connected graded commutative non-

cocommutative Hopf algebra of Feynman graphs corresponding to a perturbative quantum field theory (pQFT).

Moreover, in the context of minimal subtraction as renormalization scheme in dimensional regularization

Connes and Kreimer [CK99, CK00] discovered a unique Birkhoff type decomposition of Hopf algebra characters

with values in the C-algebra A of meromorphic functions capturing the process of renormalization in pQFT.

Namely for any ϕ ∈ GA we have:

(15) ϕ = ϕ⋆−1
− ⋆ ϕ+,

where both ϕ− and ϕ+ belong to GA, and ϕ+(x) ∈ A+ for any x ∈ H, whereas ϕ−(x) ∈ A− for any x ∈ Ker ǫ.

Here, A− is the algebra of polynomials in (z − z0)
−1 without constant term (the ‘pole parts’), and A+ is the

algebra of meromorphic functions which are holomorphic at z0, corresponding to the splitting of the C-algebra

A = A+ ⊕A− of meromorphic functions. We denote by π : A → A− the projection onto A−.

The components ϕ− and ϕ+ are given by recursive formulas. Suppose that ϕ−(x) and ϕ+(x) are known for

x ∈ H(n−1). Define for x ∈ H(n) Bogoliubov’s preparation map:

(16) R̄ : x 7−→ ϕ− ⋆ (ϕ− e)(x) = ϕ(x) +
∑

(x)

ϕ−(x′)ϕ(x′′).

The components in the Birkhoff decomposition are then given by:

ϕ−(x) = −π
(
R̄(x)

)
,(17)

ϕ+(x) = (1A − π)
(
R̄(x)

)
.(18)

The factor ϕ+(x) is the renormalized character whereas ϕ−(x) is the sum of counter terms one must add to

R̄(x) to get ϕ+(x). In the example of minimal subtraction scheme the renormalized value of the character ϕ

at z0 ∈ C is the well-defined complex number ϕ+(z0), whereas ϕ(z0) may not exist. The fact that ϕ− and ϕ+

are still characters relies on the Rota–Baxter property for the projection π, see e.g. [EGK04, EGK05, EG06].

Moreover, Connes–Kreimer’s results do not depend on the type of regularization or subtraction scheme.

In terms of the toy-model character ϕ(s, z) = ϕ(a, esµ, z), see equation (13), with parameterized ’t Hooft

mass (14), mapping the Hopf algebra HT of non-planar integer decorated rooted trees to A := C[z−1, z]][[log(α(s))]],

α(s) := a/(esµ) > 0, which decomposes into:

A = z−1
C[z−1][[log(α(s))]] ⊕ C[z]][[log(α(s))]],

we find for the primitive tree ∈ H(1) the counter term:

ϕ−( )(s, z) = −π
(
R̄( )

)
= −π

(
ϕ( )

)

= −π(α(s)−zB1) ∈ z−1
C[z−1]

and for ∈ H(3) we find:

R̄
( )

= ϕ
( )

+ 2ϕ−( )ϕ( ) + ϕ−( )ϕ−( )

= α−3zB3B
2
1 − 2π(α−zB1)α

−2zB2B1 + π(α−2zB2
1)α−zB1,

such that the counter term is given by:

ϕ−

( )
(s, z) = −π

(
ϕ
( )

+ 2ϕ−( )ϕ( ) + ϕ−( )ϕ−( )
)
.

A detailed calculation shows that ϕ−

( )
(s, z) ∈ z−1

C[z−1]. Hence any dependence on µ has disappeared.

Feynman rule characters in dimensional regularization depend on the unit of mass µ. However, for the cor-

responding counter terms in their Birkhoff decomposition it is true in general that ϕ−(t)(s, z) ∈ z−1
C[z−1],

t ∈ HT . In terms of our toy-model character (13) with parameterized unit mass µ = µ(s) (14) this may be

summarized by saying that ∂sϕ−(t)(s, z) = 0, t ∈ HT . We will come back to this in section 3.
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The reader should compare the above counter term with the expression for S
( )

in Equation (11). Eventually,

the corresponding renormalized expression ϕ+

( )
:= (1A − π)

(
R̄

( ))
is then given by

ϕ− ⋆ ϕ
( )

= ϕ−

( )
+ ϕ

( )
+ 2ϕ−( )ϕ( ) + ϕ−( )ϕ−( ).

The reader should verify that ϕ−( ) = ϕ−( )ϕ−( ), that is, ϕ− ∈ GA, hence ϕ+ = ϕ− ⋆ ϕ ∈ GA.

2.3. The matrix representation. In this section we recall the matrix representation of L(H,A) associated

with a left coideal. The next step consists in understanding the beta-function of Connes–Kreimer [CK01] in this

matrix setting. We follow Sakakibara’s approach [Sa04], giving his clever computations the concrete support

of triangular matrices.

Let us start by retrieving some material from [EG05, EG06, EGM06]. Recall that the subalgebra Mℓ
n(A) ⊂

Mn(A) of lower triangular matrices in the algebra of n × n matrices with entries in the algebra A, and with

n finite or infinite has a decreasing filtration and is complete in the induced topology. Indeed, Mℓ
n(A)m is the

ideal of strictly lower triangular matrices with zero on the main diagonal and on the first m− 1 subdiagonals,

m > 1. We then have the decreasing filtration

Mℓ
n(A) ⊃ Mℓ

n(A)1 ⊃ · · · ⊃ Mℓ
n(A)m−1 ⊃ Mℓ

n(A)m ⊃ · · · ,m < n,

with

Mℓ
n(A)u Mℓ

n(A)v ⊂ Mℓ
n(A)u+v.

For A being commutative we denote by Mn(A) the group of lower triangular matrices with unit diagonal which

is Mn(A) = 1 + Mℓ
n(A)1. Here the n× n, n ≤ ∞, unit matrix is given by

(19) 1 := (δij1A)1≤i,j≤n.

Let H be a connected filtered Hopf algebra over k, let A be any commutative unital k-algebra, and let(
L(H,A), ⋆

)
be the algebra of k-linear maps from H to A endowed with the convolution product. Let J be

any left coideal of H (i.e. a vector subspace of H such that ∆(J) ⊂ H⊗ J).

We fix a basis X = (xi)i∈I of the left coideal J (a left subcoset in the terminology of [EG05]). We suppose

further that this basis is denumerable (hence indexed by I = N or I = {1, · · · ,m}) and filtration ordered, i.e.

such that if i ≤ j and xj ∈ H(n), then xi ∈ H(n).

Definition 1. The coproduct matrix in the basis X is the |I| × |I| matrix M with entries in H defined by :

∆(xi) =
∑

j∈I

Mij ⊗ xj .

Lemma 1. The coproduct matrix is lower-triangular with diagonal terms equal to 1.

Proof. Suppose xi ∈ H(n) and xi /∈ H(n−1). Then it is well-known that (see e.g. [FG05], [Man01]):

∆(xi) = xi ⊗ 1 + 1 ⊗ xi + terms of filtration degree ≤ n− 1.

Then clearly Mii = 1, and moreover if Mij 6= 0 and i 6= j, then xj ∈ H(n−1). If i < j this implies xi ∈ H(n−1),

which contradicts the hypothesis. Hence Mij = 0 if i < j. �

Recalling the example of rooted trees and choosing the following subset T ′ ⊂ T of rooted trees with the

displayed linear order:

(20) T ′ :=
{
t1 := 1T , t2 := , t3 := , t4 := , t5 :=

}
.
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The 5 × 5 coproduct matrix of Definition 1 is then given by:

(21) M =




1T 0 0 0 0

1T 0 0 0

1T 0 0

2 1T 0

3 3 1T




Observe that for each tree ti ∈ T ′ all cotrees in ∆̄(ti) are of degree strictly lower than deg(ti) and are contained

in T ′, hence T ′ forms a left coideal in HT .

Now define ΨJ : L(H,A) → EndA(A⊗ J) by :

(22) ΨJ [f ](xj) =
∑

i

f(Mij) ⊗ xi.

In other words, the matrix of ΨJ [f ] is given by
(
f(Mij)

)
i,j∈I

.

Proposition 2. The map ΨJ defined above is an algebra homomorphism. Its transpose does not depend on

the choice of the basis.

Proof. The second statement is straightforward: let us denote by ⊤ΨJ the transpose of ΨJ , i.e. the map defined

by:

⊤ΨJ [f ](xi) =
∑

j

f(Mij) ⊗ xj .

For any x ∈ J we have then, using Sweedler’s notation:

⊤ΨJ [f ](x) =
∑

(x)

f(x(1)) ⊗ x(2).

Hence ⊤ΨJ [f ] has an intrinsic expression as the composition of the three maps below:

A⊗ J
IdA⊗∆

−−−−−−→A⊗H⊗ J
IdA⊗f⊗IdJ

−−−−−−−−−−→A⊗A⊗ J
mA⊗IdJ−−−−−−−→A⊗ J.

We have to show for any f, g ∈ L(H,A):

(23) ΨJ [f ⋆ g] = ΨJ [f ]ΨJ [g].

It is shown in [EG05] that ⊤ΨJ is an anti-homomorphism, which proves the claim. We give here an alternative

proof: Using coassociativity (Id⊗ ∆) ◦ ∆(xi) = (∆ ⊗ Id) ◦ ∆(xi), we immediately get :

∆(Mij) =

|I|∑

k=0

Mik ⊗Mkj .

Hence,

ΨJ [f ⋆ g](xj) =
∑

i

(f ⋆ g)(Mij) ⊗ xi

=
∑

i

∑

k

f(Mik)g(Mkj) ⊗ xi

= ΨJ [f ] ◦ ΨJ [g](xj),

which proves (23). �

The Lie algebra of infinitesimal characters is mapped into a Lie subalgebra ĝA in Mℓ
|I|(A)1. This is immedi-

ately seen by applying definition (22), since elements in gA map the unit to zero due to relation (3). Whereas

characters in the group GA are mapped to the subgroup ĜA ⊂ M|I|(A).
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The toy-model character ϕ = ϕ(s, z) in equation (13) with parameterized ’t Hooft mass, applied to the

coproduct matrix (21) gives

ϕ̂(s, z) =




1A 0 0 0 0

α(s)−zB1 1A 0 0 0

α(s)−2zB2B1 α(s)−zB1 1A 0 0

α(s)−3zB3B
1

1 α(s)−2zB2

1 2α(s)−zB1 1A 0

α(s)−4zB4B
3

1 α(s)−3zB3

1 3α(s)−2zB2

1 3α(s)−zB1 1A




Recall that α = α(s) = a/µ(s), where µ(s) = esµ.

The following remarks should be useful latter. The coproduct matrix M with entries in H can be seen as

the image of the identity map under ΨJ : L(H,H) → EndH(H⊗ J), i.e. :

(24) ΨJ [Id](xj) =
∑

i

Id(Mij) ⊗ xi.

The equations (6) imply for the matrix representation of the antipode S ∈ L(H,H) :

ΨJ [S ⋆ Id](xj) = ΨJ [S] ◦ ΨJ [Id](xj)

=
∑

i

∑

k

S(Mik)Id(Mkj) ⊗ xi

= ΨJ [η ◦ ǫ](xj)

=
∑

i

η ◦ ǫ(Mij) ⊗ xi

=
∑

i

1δij ⊗ xi.

Here 1 denotes the |I| × |I| unit matrix, (δij1T )1≤i,j≤|I|. Hence, ΨJ [S] = M−1, and the inverse can be

calculated readily in terms of the geometric series:

ΨJ [S] = M−1 = 1 +
∑

k>0

(−1)k(M − 1)k.

Using the bijection exp⋆ between gA and GA we may write any ϕ ∈ GA as an exponential of the element

α = log⋆(ϕ) in gA. In terms of matrices we find log(Ψ[ϕ]) = ϕ(log(Ψ[Id])), using the fact that ϕ is a character.

Such that:

log(Ψ[Id]) = log(M) =
∑

k>0

(−1)k (M − 1)k

k

defines the matrix of the so-called normal coordinates.

2.4. The matrix form of Connes–Kreimer’s Birkhoff decomposition. Suppose that the commutative

target space algebra A in L(H,A) splits into two subalgebras:

(25) A = A− ⊕A+,

where the unit 1A belongs to A+. Let us denote by π : A → A− the projection onto A− parallel to A+. One

readily verifies that π is an idempotent Rota–Baxter operator [EG06], that is, it satisfies the relation:

(26) π
(
π(a)b+ aπ(b) − ab

)
= π(a)π(b).

Indeed, let a, b ∈ A :

π(a)b+ aπ(b) − ab = π(a)π(b) − (IdA − π)(a)(IdA − π)(b)

such that applying π on both sides gives relation (26), since it eliminates the term (IdA − π)(a)(IdA − π)(b)

without changing the term π(a)π(b), as π(IdA−π)(a) = 0 and A− = π(A), A+ = (IdA−π)(A) are subalgebras.

In fact, this is a special case of an additive decomposition theorem characterizing Rota–Baxter algebras

which was proven by Atkinson for general, not necessarily associative algebras in [Atk63].
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Theorem 3. (Atkinson, [Atk63]) Let A be a k-algebra. A k-linear operator R : A → A satisfies the Rota–

Baxter relation (26) if and only if the following two statements are true. Firstly, A+ := R(A) and A− := R̃(A)

are subalgebras in A. Secondly, for x, y, z ∈ A, R(x)R(y) = R(z) implies R̃(x)R̃(y) = −R̃(z). Here we denoted

the map R̃ := (IdA −R).

The case of an idempotent Rota–Baxter map implies A− ∩A+ = {0}. In the context of perturbative renor-

malization in QFT where the regularization prescription implies the target space algebra A, the corresponding

splitting of A into a direct sum of two subalgebras is called a renormalization scheme. For example, the min-

imal renormalization scheme in dimensional regularization corresponds to the splitting of the C-algebra A of

meromorphic functions in which A− is the algebra of polynomials in (z − z0)
−1 without constant term (the

“pole parts”), and A+ is the algebra of meromorphic functions which are holomorphic at z0.

The following theorem describes a multiplicative decomposition for associative unital Rota–Baxter algebras

and was observed by Atkinson in [Atk63], see also [EGM06].

Theorem 4. (Atkinson, [Atk63]) Let A be an associative unital Rota–Baxter algebra with Rota–Baxter map

R. Suppose A to be have a decreasing filtration and to be complete in the induced topology. Assume X and Y

in A to be solutions of the equations:

(27) X = 1A −R(X a) and Y = 1A − R̃(a Y ),

for a ∈ A(1). Then we have the following factorization

(28) X(1A + a)Y = 1A, such that 1A + a = X−1Y −1.

For an idempotent Rota–Baxter map this factorization is unique.

Proof. The Rota–Baxter relation (26) yields for any α, β ∈ A :

(29) R
(
αR̃(β)

)
+ R̃

(
R(α)β

)
= R(α)R̃(β).

We then simply calculate the product XY and use equation (29), with α = Xa and β = aY :

XY =
(
1A −R(X a)

) (
1A − R̃(a Y )

)

= 1A −R(X a) − R̃(a Y ) +R(X a)R̃(a Y )

= 1A −R
(
Xa

(
1A − R̃(a Y )

))
− R̃

((
1A −R(X a)

)
a Y

)

= 1A −R(XaY ) − R̃(XaY )

= 1A −XaY.

Hence, we obtain the factorization in (28). The uniqueness for an idempotent Rota–Baxter map is easy to

show [EGK05, EGM06]. �

Let us come back to the matrix representation of L(H,A) with a splitting A (25) via ΨJ (22). We define a

Rota–Baxter map R on ΨJ [L] ⊂ Mℓ
|I|(A) by extending the Rota–Baxter map π on A entrywise, i.e., for the

matrix τ = (τij) ∈ Mℓ
|I|(A), define:

(30) R(τ) =
(
π(τij)

)
.

Theorem 5. [EG05] Then the triple
(
Mℓ

|I|(A),R, {Mℓ
|I|(A)l}l<|I|

)
forms a non-commutative complete filtered

Rota–Baxter algebra with idempotent Rota–Baxter map R.

Atkinson’s multiplicative decomposition immediately implies a factorization of ĜA ⊂ Mℓ
|I|(A) into the

subgroups:

Ĝ−
A ⊂ 1 + R

(
Mℓ

|I|(A)1
)
⊂ Mℓ

|I|(A)

and

Ĝ+
A ⊂ 1 + R̃

(
Mℓ

|I|(A)1
)
⊂ Mℓ

|I|(A),
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that is, for each ϕ̂ := Ψ[ϕ] ∈ ĜA, ϕ ∈ GA there exist unique ϕ̂− ∈ Ĝ−
A and ϕ̂+ ∈ Ĝ+

A, such that:

(31) ϕ̂ = ϕ̂−1
− ϕ̂+.

We immediately see that ϕ̂− and ϕ̂−1
+ are unique solutions of the equations (27) in Theorem 4:

ϕ̂− = 1 − R
(
ϕ̂− (ϕ̂− 1)

)
,(32)

ϕ̂−1
+ = 1 − R̃

(
(ϕ̂− 1) ϕ̂−1

+

)
.(33)

Moreover, after some simple algebra using the factorization ϕ̂ = ϕ̂−1
− ϕ̂+ :

ϕ̂+(ϕ̂−1 − 1) = ϕ̂− − ϕ̂+ = −ϕ̂−(ϕ̂− 1)

we immediately get the recursion for ϕ̂+ [EG05]:

(34) ϕ̂+ = 1 − R̃
(
ϕ̂+ (ϕ̂−1 − 1)

)
.

and hence we see that

(35) ϕ̂+ = 1 + R̃
(
ϕ̂− (ϕ̂− 1)

)
.

The matrix entries of ϕ̂− and ϕ̂−1
+ can be calculated without recursions using σ := ϕ̂ from the equations:

(ϕ̂−)ij = −π(σij)−

j−i∑

k=2

∑

i>l1>l2>···>lk−1>j

(−1)k+1π
(
π(· · ·π(σil1)σl1l2) · · ·σlk−1j

)

(ϕ̂−1
+ )ij = −π̃((σ−1)ij)−

j−i∑

k=2

∑

i>l1>l2>···>lk−1>j

(−1)k+1π̃
(
π̃(· · · π̃((σ−1)il1)(σ

−1)l1l2) · · · (σ
−1)lk−1j

)
,

where π̃ := 1A − π. The matrix entries of ϕ̂+ follow from the first formula, i.e., the one for the entries in ϕ̂−,

by replacing π by −π̃. We may therefore define the matrix:

̂̄R[ϕ] := ϕ̂− (ϕ̂− 1)(36)

such that:

ϕ̂− = 1 − R
(̂̄R[ϕ]

)
and ϕ̂+ = 1 + R̃

(̂̄R[ϕ]
)
.(37)

In fact, equations (35) and (33) may be called Bogoliubov’s matrix formulae for the counter term and renor-

malized Feynman rules matrix, ϕ̂−, ϕ̂+, respectively. Equation (36) is the matrix form of Bogoliubov’s R̄- or

preparation map (16), e.g. see [Col84] :

(38) ̂̄R[ϕ] := ΨJ [R̄] = ΨJ [ϕ− ⋆ (ϕ− e)].

Here, ϕ− is the counter term character (17) of the algebraic Birkhoff decomposition of Connes and Kreimer

[CK99, CK00], which we mentioned in the foregoing section. To phrase it differently, the above matrix factor-

ization follows via the representation ΨJ from Connes–Kreimer’s Birkhoff factorization (15) on the group GA

of A-valued Hopf algebra characters.

Remark 6. We may apply the result from [EGK04, EGK05, EG05, EGM06], see also [Man01], to the above

matrix representation of gA respectively GA. In these references a unique non-linear map χ was established on

gA which allows to write the characters ϕ− and ϕ+ as exponentials. In the matrix picture we hence find for

Ẑ ∈ ĝA and ϕ̂ = exp(Ẑ) ∈ ĜA :

(39) ϕ̂ = exp
(
R(χ(Ẑ))

)
exp

(
R̃(χ(Ẑ))

)
.

The matrices ϕ̂− := exp
(
−R(χ(Ẑ))

)
and ϕ̂−1

+ := exp
(
− R̃(χ(Ẑ))

)
are in Ĝ−

A and Ĝ+
A, respectively, and solve

Bogoliubov’s matrix formulae in (37).
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3. The matrix representation of the beta-function

It is the goal of this section to establish a matrix representation of the beta-function as it appears in the

work of Connes and Kreimer [CK01]. Once we have achieved this we reformulate in a transparent manner

Sakakiabara’s findings [Sa04] hereby providing a firm ground for his calculations. In the next paragraph

we review the main points of the beta-function calculus in the Hopf algebra context following mainly the

paper [Man01].

3.1. The beta-function in the Hopf algebra of renormalization. From now on, k = C stands for

the complex numbers, and A will denote the algebra of meromorphic functions in one complex variable z

endowed with the minimal subtraction scheme at z0 = 0. Hence A = A− ⊕A+, where A+ is the subalgebra of

meromorphic functions which are holomorphic at 0, and A− stands for the polynomials in z−1 without constant

term. We moreover suppose that the Hopf algebra H is graded, with filtration coming from the graduation,

i.e. :

H(n) =
⊕

0≤k≤n

Hk.

The grading induces a biderivation Y defined on homogeneous elements by :

Y : Hn −→ Hn

x 7−→ nx.

Exponentiating Y we get a one-parameter group θt of automorphisms of the Hopf algebra H, defined on Hn

by :

(40) θt(x) = entx.

The map ϕ 7→ ϕ ◦ Y is a derivation of
(
L(H,A), ⋆

)
, and ϕ 7→ ϕ ◦ θt is an automorphism of

(
L(H,A), ⋆

)
for

any complex t. We will rather consider the one-parameter group ϕ 7→ ϕ ◦ θtz of automorphisms of the algebra(
L(H,A), ⋆

)
i.e. :

(41) ϕt(x)(z) := etz|x|ϕ(x)(z).

Differentiating at t = 0 we get:

(42)
d

dt |t=0
ϕt = z(ϕ ◦ Y ).

We denote by GΦ
A the set of those characters ϕ ∈ G such that the negative part of the Birkhoff decomposition

of ϕt does not depend on t, namely:

GΦ
A =

{
ϕ ∈ GA

∣∣∣ d

dt
(ϕt)− = 0

}
.

In particular the dimensional-regularized Feynman rules verify this property: in physical terms, the counter

terms do not depend on the choice of the arbitrary mass-parameter µ (’tHooft’s mass) one must introduce in

dimensional regularization in order to get dimensionless expressions (see [CK00]). We also denote by GΦ
A−

the

elements ϕ of GΦ
A such that ϕ = ϕ⋆−1

− . Recall from [Man01] that there is a bijection R̃ : GA → gA defined by:

(43) ϕ ◦ Y = ϕ ⋆ R̃(ϕ).

Since composition on the right with Y is a derivation for the convolution product, the map R̃ verifies a cocycle

property:

(44) R̃(ϕ ⋆ ψ) = R̃(ψ) + ψ⋆−1 ⋆ R̃(ϕ) ⋆ ψ.

We summarize some key results of [CK01] in the following proposition:
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Proposition 7.

(1) For any ϕ ∈ GA there is a one-parameter family ht in GA such that ϕt = ϕ ⋆ ht, and we have:

(45) ḣt :=
d

dt
ht = ht ⋆ zR̃(ht) + zR̃(ϕ) ⋆ ht.

(2) zR̃ restricts to a bijection from GΦ
A onto gA ∩ L(H,A+). Moreover it is a bijection from GΦ

A − onto

those elements of gA with values in the constants, i.e. :

gc
A = gA ∩ L(H,C).

(3) For ϕ ∈ GΦ
A, the constant term of ht, defined by:

(46) Ft(x) = lim
z→0

ht(x)(z)

is a one-parameter subgroup of GA ∩ L(H,C), the scalar-valued characters of H.

Proof. For any ϕ ∈ GA one can write:

(47) ϕt = ϕ ⋆ ht

with ht ∈ GA. From (47), (42) and (43) we immediately get:

ϕ ⋆ ḣt = ϕ ⋆ ht ⋆ zR̃(ϕ ⋆ ht).

Equation (45) then follows from the cocycle property (44). This proves the first assertion.

Now take any character ϕ ∈ GΦ
A with Birkhoff decomposition ϕ = ϕ⋆−1

− ⋆ ϕ+ and write the Birkhoff

decomposition of ϕt :

ϕt = (ϕt)⋆−1
− ⋆ (ϕt)+

= (ϕ−)⋆−1 ⋆ (ϕt)+

= (ϕ ⋆ ϕ⋆−1
+ ) ⋆ (ϕt)+

= ϕ ⋆ ht,

with ht taking values in A+. Then zR̃(ϕ) also takes values in A+, as a consequence of equation (45) at t = 0.

Conversely, suppose that zR̃(ϕ) takes values in A+. We show that ht also takes values in A+ for any t, which

immediately implies that ϕ belongs to GΦ
A.

For any γ ∈ gA, let us introduce the linear transformation Uγ of gA defined by :

Uγ(δ) := γ ⋆ δ + zδ ◦ Y.

If γ belongs to gA ∩ L(H,A+) then Uγ restricts to a linear transformation of gA ∩ L(H,A+).

Lemma 8. For any ϕ ∈ GA, n ∈ N we have :

znϕ ◦ Y n = ϕ ⋆ Un

z eR(ϕ)
(e).

Proof. Case n = 0 is obvious, n = 1 is just the definition of R̃. We check thus by induction, using again the

fact that composition on the right with Y is a derivation for the convolution product :

zn+1ϕ ◦ Y n+1 = z(znϕ ◦ Y n) ◦ Y

= z
(
ϕ ⋆ Un

z eR(ϕ)
(e)

)
◦ Y

= z(ϕ ◦ Y ) ⋆ Un

z eR(ϕ)
(e) + zϕ ⋆

(
Un

z eR(ϕ)
(e) ◦ Y

)

= ϕ ⋆
(
zR̃(ϕ) ⋆ Un

z eR(ϕ)
(e) + zUn

z eR(ϕ)
(e) ◦ Y

)

= ϕ ⋆ Un+1

z eR(ϕ)
(e).

�
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Let us go back to the proof of Proposition 7. According to Lemma 8 we have for any t, at least formally:

(48) ϕt = ϕ ⋆ exp(tU
z eR(ϕ))(e).

We still have to fix the convergence of the exponential just above in the case when zR̃(ϕ) belongs to L(H,A+).

Let us consider the following decreasing bifiltration of L(H,A+) :

Lp,q
+ = (zqL(H,A+)) ∩ Lp,

where Lp is the set of those α ∈ L(H,A) such that α(x) = 0 for any x ∈ H of degree ≤ p − 1. In particular

L1 = g0. Considering the associated filtration :

Ln
+ =

∑

p+q=n

Lp,q
+ ,

we see that for any γ ∈ g0 ∩ L(H,A+) the transformation Uγ increases the filtration by 1, i.e :

Uγ(Ln
+) ⊂ Ln+1

+ .

The algebra L(H,A+) is not complete with respect to the topology induced by this filtration, but the completion

is L(H, Â+), where Â+ = C[[z]] stands for the formal series. Hence the right-hand side of (48) is convergent

in L(H, Â+) with respect to this topology. Hence for any γ ∈ L(H,A+) and for ϕ such that zR̃(ϕ) = γ we

have ϕt = ϕ ⋆ ht with ht ∈ L(H, Â+) for any t. On the other hand we already know that ht takes values

in meromorphic functions for each t. So ht belongs to L(H,A+), which proves the first part of the second

assertion. Equation (45) at t = 0 reads:

(49) zR̃(ϕ) = ḣ(0) =
d

dt |t=0
(ϕt)+.

For ϕ ∈ GΦ
A−

we have, thanks to the property ϕ(Ker ǫ) ⊂ A−:

ht(x) = (ϕt)+(x) = (I − π)
(
ϕt(x) +

∑

(x)

ϕ⋆−1(x′)ϕt(x′′)
)

= t(I − π)
(
z|x|ϕ(x) + z

∑

(x)

ϕ⋆−1(x′)ϕ(x′′)|x′′|
)

+O(t2)

= tRes(ϕ ◦ Y ) +O(t2),

hence:

(50) ḣ(0) = Res (ϕ ◦ Y ).

From equations (42), (43) and (50) we get:

(51) zR̃(ϕ) = Res (ϕ ◦ Y )

for any ϕ ∈ GΦ
A−

, hence zR̃(ϕ) ∈ gc. Conversely let β in gc. Consider ψ = R̃−1(z−1β). This element of GA

verifies by definition, thanks to equation (43) :

zψ ◦ Y = ψ ⋆ β.

Hence for any x ∈ Ker ǫ we have :

zψ(x) =
1

|x|

(
β(x) +

∑

(x)

ψ(x′)β(x′′)
)
.

As β(x) is a constant (as a function of the complex variable z) it is easily seen by induction on |x| that the

right-hand side evaluated at z has a limit when z tends to zero. Thus ψ(x) ∈ A−, and then :

ψ = R̃−1
(1

z
β
)
∈ GΦ

A−
,

which proves assertion (2).
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Let us prove assertion (3): Equation ϕt = ϕ ⋆ ht together with (ϕt)s = ϕt+s yields:

(52) hs+t = hs ⋆ (ht)
s.

Taking values at z = 0 immediately yields the one-parameter group property:

(53) Fs+t = Fs ⋆ Ft

thanks to the fact that the evaluation at z = 0 is an algebra morphism. �

We can now give a definition of the beta-function :

Definition 2. For any ϕ ∈ GΦ
A, the beta-function of ϕ is the generator of the one-parameter group Ft defined

by equation (46) in Proposition 7. It is the element of the dual H⋆ defined by:

β(ϕ) =
d

dt |t=0
Ft(x)

for any x ∈ H.

Proposition 9. For any ϕ ∈ GΦ
A the beta-function of ϕ coincides with the one of the negative part ϕ⋆−1

− in

the Birkhoff decomposition. It is given by any of the three expressions:

β(ϕ) = Res R̃(ϕ)

= Res (ϕ⋆−1
− ◦ Y )

= −Res (ϕ− ◦ Y ).

Proof. The third equality will be derived from the second by taking residues on both sides of the equation:

0 = R̃(e) = R̃(ϕ−) + ϕ⋆−1
− ⋆ R̃(ϕ⋆−1

− ) ⋆ ϕ−,

which is a special instance of the cocycle formula (44). Suppose first ϕ ∈ GΦ
A−

, hence ϕ⋆−1
− = ϕ. Then

zR̃(ϕ) is a constant according to assertion 2 of Proposition 7. The proposition then follows from equation (50)

evaluated at z = 0, and equation (51). Suppose now ϕ ∈ GΦ
A, and consider its Birkhoff decomposition. As

both components belong to GΦ
A we apply Proposition 7 to them. In particular we have:

ϕt = ϕ ⋆ ht,

(ϕ⋆−1
− )t = ϕ⋆−1

− ⋆vt,

(ϕ+)t = ϕ+ ⋆ wt,

and equality ϕt = (ϕ⋆−1
− )t ⋆ (ϕ+)t yields:

(54) ht = (ϕ+)⋆−1 ⋆ vt ⋆ ϕ+ ⋆ wt.

We denote by Ft, Vt,Wt the one-parameter groups obtained from ht, vt, wt, respectively, by letting the complex

variable z go to zero. It is clear that ϕ+
|
z=0

= e, and similarly that Wt is the constant one-parameter group

reduced to the co-unit ε. Hence equation (54) at z = 0 reduces to:

(55) Ft = Vt,

hence the first assertion. the cocycle equation (44) applied to the Birkhoff decomposition reads:

R̃(ϕ) = R̃(ϕ+) + (ϕ+)⋆−1 ⋆ R̃(ϕ⋆−1
− ) ⋆ ϕ+.

Taking residues of both sides yields:

Res R̃(ϕ) = Res R̃(ϕ⋆−1
− ),

which ends the proof. �

Definition 3. The one-parameter group Ft = Vt above is the renormalization group of ϕ [CK01].

Remark 10. It is possible to reconstruct ϕ− from β(ϕ) using a scattering-type formula ([CK01, Co02, CM04b,

Man01]). Hence ϕ− (i.e. the divergence structure of ϕ) is uniquely determined by its residue.
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3.2. The matrix representation of the grading derivation. As in reference [CK01], denote by Z0 the

derivation of the algebra L(H,A) (which is also a derivation of the the Lie algebra gA) given by α 7→ α◦Y . Let

L̃ be the semi-direct product of L(H,A) with Z0, and let g̃A be the semi-direct product gA ×| C.Z0. Similarly

let G̃A = GA ×| C be the semi-direct product of the group GA by the one-parameter group θt = exp tZ0 of

automorphisms. Let J be any graded left coideal of H. We suppose further that the filtration-ordered basis

(xi)i∈I of J is graded. i.e. made of homogeneous elements. The degree of xi will be denoted by |xi|. We want

to extend the matrix representation ΨJ from L(H,A) to L̃. This can be done by representing Z0 by a diagonal

matrix.

Proposition 11. The correspondence ΨJ : L̃ → EndA(A ⊗ J) defined as in Paragraph 2.3 on L(H,A), and

such that:

(56) ΨJ [Z0](xi) = |xi|.xi

is an algebra morphism.

Proof. We only have to show the equality3:

(57)
[
ΨJ [f ], ΨJ [−Z0]

]
= ΨJ([f,−Z0]) = ΨJ(f ◦ Y ).

This follows by a direct computation:
[
ΨJ [f ], ΨJ [−Z0]

]
(xj) = −ΨJ [f ]ΨJ [Z0](xj) + ΨJ [Z0]ΨJ [f ](xj)

=
∑

i

(|xi| − |xj |)f(Mij) ⊗ xi,

whereas:

ΨJ [f ◦ Y ](xj) =
∑

i

(f ◦ Y )(Mij) ⊗ xi

=
∑

i

|Mij |f(Mij) ⊗ xi.

By definition of the coproduct matrix, and thanks to the fact that H is graded, the coefficients Mij are

homogeneous of degree |xi| − |xj |, which finishes the proof. �

By taking exponentials of the above diagonal matrices, we of course get a matrix representation of the

one-parameter group θt (40), namely:

(58) ΨJ [exp tZ0](xi) = et|xi|xi.

3.3. Matrix differential equations. We fix a graded coideal J of H, and we therefore introduce the following

notation:

(59) f̂ := ΨJ [f ].

Keeping the notations of Paragraph 3.1 we have then, as a consequence of Propositions 2 and 11:

(60) ϕ̂t(z) = etz
Z0 ϕ̂(z)e−tz
Z0 ,

as an equality of size |I| square matrices with coefficients in meromorphic functions of the complex variable z.

With respect to the example left coideal generated by T ′ ⊂ T in (20) we find:

(61) Ẑ0 =




0 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 4




and etz
Z0 =




1A 0 0 0 0

0 ezt 0 0 0

0 0 e2zt 0 0

0 0 0 e3zt 0

0 0 0 0 e4zt




3There is a minus sign in front of Z0 due to the fact that we have put it on the right inside of the bracket, reflecting the fact

that the action of the one-parameter group has been written on the right.
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We now change the general notations slightly and consider ϕ̂ as a function of the variable t ∈ C with values in

A⊗ J (i.e. as a matrix-valued function of both variables (t, z)). More precisely we put:

ϕ̂(t, z) = etz
Z0 ϕ̂(0, z)e−tz
Z0 ,

where ϕ̂(0, z) stands for the old ϕ̂(z). Now ϕ̂−(t) (resp. ϕ̂+(t)) will stand for the negative (resp. positive)

component of the Birkhoff decomposition of ϕ̂(t) (31), for any t ∈ C. Using the toy-model character ϕ = ϕ(s, z)

in equation (13) with parameterized ’t Hooft mass, we find explicitly:

ϕ̂t(z) = ϕ̂(t, z) =




1A 0 0 0 0

(e−tα(0))−zB1 1A 0 0 0

(e−tα(0))−2zB2B1 (e−tα(0))−zB1 1A 0 0

(e−tα(0))−3zB3B
2

1 (e−tα(0))−2zB2

1 2(e−tα(0))−zB1 1A 0

(e−tα(0))−4zB4B
3

1 (e−tα(0))−3zB3

1 3(e−tα(0))−2zB2

1 3(e−tα(0))−zB1 1A




= etz
Z0




1A 0 0 0 0

α(0)−zB1 1A 0 0 0

α(0)−2zB2B1 α(0)−zB1 1A 0 0

α(0)−3zB3B
2

1 α(0)−2zB2

1 2α(0)−zB1 1A 0

α(0)−4zB4B
3

1 α(0)−3zB3

1 3α(0)−2zB2

1 3α(0)−zB1 1A



e−tz
Z0(62)

Hence, we observe the simple transformation on ϕ̂(z) = ϕ̂(t, z), where t parameterizes ’t Hooft’s unit mass

(14), i.e., α(t) := a
etµ

= e−tα(0) > 0:

ϕ̂0(z) := ϕ̂(0, z)
Ad[etz
Z0 ]
−−−−−−→ ϕ̂t(z) = ϕ̂(t, z).

We introduce the auxiliary matrix:

(63) A := ϕ̂etz
Z0 ,

as well as its Birkhoff decomposition:

(64) A = A−1
− A+, with A− = ϕ̂− and A+ = ϕ̂+e

tz
Z0 .

From the obvious equality:

A(t) = etz
Z0Ae−tz
Z0 = etz
Z0A(0)

we get by differentiating with respect to t:

(65)
d

dt
A = Ȧ = zẐ0A.

Using the Birkhoff decomposition of A then yields:

(66) zẐ0ϕ̂
−1
− A+ = ˙ϕ̂ −1

− A+ + ϕ̂ −1
− Ȧ+.

Multiplying both sides with ϕ̂− on the left and with A−1
+ on the right we get:

(67) ϕ̂−(zẐ0)ϕ̂
−1
− = ϕ̂−

˙ϕ̂ −1
− + Ȧ+A

−1
+ .

Suppose now that ϕ(0) belongs to GΦ
A, which implies for the corresponding matrix ϕ̂(0) = ϕ̂−1

− ϕ̂+:

(68)
d

dt
ϕ̂− = ˙̂ϕ− = 0.

Then equation (67) reduces to:

(69) ϕ̂−(zẐ0)ϕ̂
−1
− = Ȧ+A

−1
+ .
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3.4. The renormalization group and the beta-function in the matrix setting. Keeping the notations

of the previous paragraph, it is clear that if ϕ(0) belongs to GΦ
A, then ϕ(t) ∈ GΦ

A for any t, and moreover

the renormalization group and the beta-function of ϕ(t) do not depend on t. We can then talk about the

renormalization group and the beta-function of ϕ without mentioning a particular value of t.

Theorem 12. The matrix representation of the beta-function reads:

(70) β̂(ϕ) = ϕ̂−(zẐ0)ϕ̂
−1
− − zẐ0.

Proof. This is a direct computation of (scalar-valued) matrices, see Eq. (55) and Definition 3:

(71) F̂t = lim
z→0

(
ϕ̂−(z)ezt
Z0 ϕ̂−1

− (z)e−zt
Z0

)
.

The limit exists by Proposition 7. The term inside the bracket on the right-hand side is holomorphic at zero

as a function of z, and so is its derivative with respect to t. The operation ∂
∂t

commutes then with evaluating

at z = 0, and we get by definition of the beta-function:

β̂(ϕ) = lim
z→0

∂

∂t

(
ϕ̂−(z)ezt
Z0 ϕ̂−1

− (z)e−zt
Z0

)
|
t=0

= lim
z→0

(
ϕ̂−(z)zẐ0ϕ̂

−1
− (z) − zẐ0

)
.

Now, subtracting zẐ0 on both sides of Equation (69) gives an expression on the left-hand side which admits

a limit when z → ∞, and a term on the right-hand side which admits a limit when z → 0. Hence the term:

ϕ̂−(z)zẐ0ϕ̂
−1
− (z) − zẐ0 = ϕ̂−(z)

[
ϕ̂−1
− (z),−zẐ0

]

is a matrix with constant coefficients, which proves the theorem. �

Coming back to Remark 6 we find immediately for the matrix beta-function the simple equation in the Lie

algebra ĝA, in accordance with results in [Man01]:

β̂(ϕ) = exp
(
R(χ(Ẑ))

)
(zẐ0) exp

(
− R(χ(Ẑ))

)
− zẐ0

= z
[
R(χ(Ẑ)), Ẑ0

]
+
z

2!

[
R(χ(Ẑ)), [R(χ(Ẑ)), Ẑ0]

]
+
z

3!

[
R(χ(Ẑ)), [R(χ(Ẑ)), [R(χ(Ẑ)), Ẑ0]]

]
+ · · ·

= z
∑

n>0

1

n!
ad

[
R(χ(Ẑ))

](n)
(Ẑ0)(72)

The following corollary is a direct consequence of Equation (69).

Corollary 13.

(73) Ȧ+A
−1
+ = β̂(ϕ) + zẐ0.

and for the renormalization matrix we get

Corollary 14.

(74) ϕ̂+(t, z) = et(bβ(ϕ)+z
Z0)ϕ̂+(z, 0)e−tz
Z0 .

Proof. From Corollary 13 we get:

A+(t) = et(bβ(ϕ)+z
Z0)A+(0),

which immediately proves the claim. Alternatively one readily observes that:

ϕ̂+(t, z) = ϕ̂−ϕ̂t = ϕ̂−e
tz
Z0 ϕ̂(0, z)e−tz
Z0

= ϕ̂−e
tz
Z0 ϕ̂−1

− ϕ̂+(0, z)e−tz
Z0

= etbϕ−(z
Z0)bϕ−1
− ϕ̂+(z, 0)e−tz
Z0

= et(bβ(ϕ)+z
Z0)ϕ̂+(z, 0)e−tz
Z0 ,

where we used the well-known fact exp(A) exp(B) exp(−A) = exp(exp(A)B exp(−A)). �
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Corollary 15. (Connes–Kreimer’s scattering-type formula [CK99])

(75) ϕ̂− = lim
t→+∞

e−t(
bβ(ϕ)

z
+
Z0)et
Z0 .

Proof. We again adapt Sakakibara’s computation ([Sa04] § 2) to our matrix setting:

e−t(
bβ(ϕ)

z
+
Z0)et
Z0 = e−t(bϕ−


Z0 bϕ−1
− )et
Z0

= ϕ̂−e
−t
Z0 ϕ̂−1

− et
Z0

= ΨJ

[
ϕ− ⋆ θ−t

(
ϕ⋆−1
−

)]
.

Now we have for any homogeneous x ∈ H of degree ≥ 1:

lim
t→+∞

(
ϕ− ⋆ θ−t(ϕ

⋆−1
− )

)
(x) = lim

t→+∞

(
ϕ−(x) + e−t|x|ϕ−1

− (x) +
∑

(x)

ϕ−(x′)e−t|x′′|ϕ−1
− (x′′)

)

= ϕ−(x).

Replacing x with the matrix coefficients Mij proves then the corollary. �

This result becomes evident on the level of matrices when going back to equation (62). Assume for a moment

z ∈ R positive. One observes by replacing t by −t that in the first equality on the right-hand side each entry

has the form (ϕ̂−t
ij)i≥j = (exp(−tz|Mij |)ϕ̂ij)i≥j with Mij being the coproduct matrix in (21). Hence, with

|Mii| = 0 we see immediately that (ϕ̂−t
ij)

t→∞
−−−→ 1.

Remark 16. Considering the Proposition 9 in the matrix setting we have an alternative matrix representation

of the beta-function:

(76) β̂(ϕ) = [Res ϕ̂−, Ẑ0].
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