Construire des noyaux de la fonctorialité?

Définition générale,
cas de l'identité de GL_2 et construction générale conjecturale
de leurs coefficients de Fourier

par Laurent Lafforgue

Introduction

Ce texte fait suite à l'article [Lafforgue, 2008] qui construisait des noyaux de la fonctorialité dans le cas de l'induction automorphe sans ramification de GL_1 à GL_2 via une extension quadratique d'un corps de fonctions.

Cette fois, nous considérons le transfert automorphe général d'un groupe réductif G vers un groupe linéaire GL_r , induit par un homomorphisme ρ qui va du L-groupe de G vers le dual $GL_r(\mathbb{C})$ de GL_r .

Comme dans l'article précédent, nous nous cantonnons au cas des corps de fonctions; le cas des corps de nombres demanderait un travail supplémentaire aux places infinies.

Dans cet article, nous proposons d'abord une notion générale de "noyaux de la fonctorialité". En notant \mathbb{A} l'anneau des adèles du corps de fonctions F sur lequel on travaille, ce sont des fonctions sur $G(\mathbb{A}) \times G(\mathbb{A}) \times GL_r(\mathbb{A})$ qui sont invariantes à gauche par le sous-groupe discret $G(F) \times G(F) \times GL_r(F)$ et qui vérifient en toute place sans ramification une certaine condition de compatibilité avec les homomorphismes entre algèbres de Hecke sphériques locales induits par ρ .

Nous proposons également une construction générale conjecturale de tels "noyaux de la fonctorialité", ou plutôt de leurs coefficients de Fourier définis par intégration sur le radical unipotent N_r du sous-groupe de Borel B_r de GL_r constitué des matrices triangulaires supérieures. Comme dans l'article précédent consacré à l'induction automorphe de GL_1 à GL_2 , nous nous cantonnons au cas du transfert sans ramification en aucune place. Tous les coefficients de Fourier des noyaux recherchés sont d'abord construits localement, place par place; leurs expressions globales sont obtenues en faisant le produit sur toutes les places des fonctions définies localement et en sommant les fonctions produits ainsi obtenues sur des groupes discrets de points rationnels.

Les "fonctions noyaux" que nous proposons vérifient par construction même la condition locale de compatibilité avec les homomorphismes entre algèbres de Hecke sphériques induits par ρ , ainsi que la condition globale d'invariance à gauche par $G(F) \times G(F)$. Toute la difficulté du problème du transfert automorphe de Langlands se trouve concentrée dans la propriété d'invariance à gauche par $GL_r(F)$ qu'il s'agit de vérifier.

C'est une situation semblable à celle rencontrée dans les classiques "théorèmes réciproques" de Hecke, Weil, Piatetski-Shapiro et autres. Cela n'a rien d'étonnant puisque la construction que nous proposons en termes de coefficients de Fourier est calquée sur celle employée dans la preuve de ces "théorèmes réciproques", à commencer par le recours aux fonctions de Whittaker. La différence avec cette approche classique réside en ceci que nous ne proposons pas une construction pour chaque représentation automorphe considérée isolément mais une construction "en famille" qui prend en compte simultanément toutes les formes automorphes; dans cette approche, on n'a plus besoin de décomposer spectralement l'espace des formes automorphes et on ne recourt jamais à la notion de représentation automorphe.

On peut dire aussi qu'il s'agit de démontrer que certaines fonctions sur $G(\mathbb{A}) \times G(\mathbb{A}) \times GL_r(\mathbb{A})$ construites explicitement sont automorphes. Comme toutes ces fonctions se déduisent de l'une d'elle par simple convolution par des éléments de l'algèbre de Hecke, on est même réduit à prouver qu'une fonction bien précise, donnée par une formule explicite, est automorphe.

Nous le vérifions dans le cas (non trivial) où $G = \operatorname{GL}_2$ et ρ est la représentation standard de $\operatorname{GL}_2(\mathbb{C})$. Comme dans le cas de l'induction automorphe de GL_1 à GL_2 , le résultat cherché est conséquence de la formule de Poisson, et l'essentiel du travail se fait localement, place par place : il consiste à vérifier que certaines fonctions sont transformées de Fourier les unes des autres et à calculer leurs limites aux bords. Cette fois, la formule de Poisson qui s'applique est celle relative au sous-groupe discret $M_2(F)$ du groupe adélique $M_2(\mathbb{A})$ des matrices carrées de rang 2 à coefficients dans \mathbb{A} , et les termes de bord qui donnent naissance aux coefficients de Fourier complémentaires proviennent des matrices de M_2 qui ne sont pas inversibles.

Voici le contenu des différents chapitres :

Le chapitre I est exclusivement constitué de rappels sur les groupes réductifs, considérés d'abord sur un corps séparablement clos puis sur un corps arbitraire. Le quatrième et dernier paragraphe rappelle la construction, un peu moins universellement connue, des "complétions" des groupes réductifs due à De Concini, Procesi

et Vinberg. Cette construction servira au chapitre VII pour définir les coefficients de Fourier complémentaires que nous proposons pour les "noyaux du transfert" cherchés.

La plus grande partie du chapitre II est également constituée de rappels : groupe dual de Langlands et L-groupes, double formulation des isomorphismes de Satake, homomorphismes de transfert et homomorphismes induits entre algèbres de Hecke sphériques, conjecture de fonctorialité de Langlands. Le seul élément nouveau de ce chapitre est la définition générale de la notion de "noyau du transfert". Une fois cette définition donnée, on explique rapidement pourquoi l'existence d'une famille "complète" de tels noyaux entraîne la conjecture de transfert automorphe de Langlands.

Comme nous nous proposons d'essayer de construire des "noyaux du transfert" par leurs coefficients de Fourier, nous avons besoin de résultats généraux sur les coefficients de Fourier, calculés le long de N_r , des fonctions sur $\mathrm{GL}_r(\mathbb{A})$ invariantes à gauche par certains sous-groupes discrets contenant $N_r(F)$. C'est l'objet du chapitre III. Son premier paragraphe définit les coefficients de Fourier calculés contre des caractères ψ_r de $N_r(F)\backslash N_r(\mathbb{A})$ associés aux différentes partitions \underline{r} de l'entier r. Le paragraphe 2 démontre un théorème d'isomorphisme entre l'espace des fonctions sur $\mathrm{GL}_r(\mathbb{A})$ invariantes à gauche par le sous-groupe "mirabolique" $Q_r(F)$ et un certain espace de coefficients de Fourier indexés par les partitions \underline{r} de l'entier r. Ce théorème généralise le "théorème d'inversion" de Shalika qui traitait le cas où le coefficient de Fourier "régulier" associé à la partition triviale de r, notée r, notée r, figure seul : tous les autres étaient supposés nuls.

Enfin, les deux derniers paragraphes de ce chapitre traitent des fonctions locales qui composent nécessairement les coefficients de Fourier envisagés : ce sont les fonctions de Whittaker, dont les principales propriétés sont rappelées, et les "fonctions de Whittaker intermédiaires" qui s'en déduisent après le choix d'une partition non triviale r de l'entier r.

Le chapitre IV propose une construction pour les coefficients de Fourier à la fois les plus importants et les plus faciles des "noyaux du transfert" cherchés : les coefficients de Fourier "réguliers" associés à la partition triviale (r) de l'entier r.

Afin de les définir, on doit d'abord exhiber en chaque place un homomorphisme entre tores maximaux du dual \hat{G} de G et de $GL_r(\mathbb{C})$ qui relève l'homomorphisme entre algèbres de Hecke sphériques locales induit par ρ . C'est immédiat si le groupe de Galois Γ_F de F agit trivialement mais demande un petit travail dans le cas contraire. Ceci fait l'objet du paragraphe 1.

Le paragraphe 2 construit des "noyaux locaux du transfert non ramifié", par simple intégration sur le tore maximal de \hat{G} vu comme une sorte de graphe du transfert local grâce à l'homomorphisme entre tores introduit au paragraphe 1. On intègre les produits des fonctions de Whittaker sur GL_r et des fonctions sphériques propres de même valeur propre sur G obtenues en décomposant spectralement l'espace des fonctions sphériques globales.

Le paragraphe 3 construit des coefficients de Fourier réguliers des "noyaux globaux du transfert" cherchés en formant le produit sur toutes les places des "noyaux locaux du transfert" construits au paragraphe 2.

Puisque le transfert dans GL_r d'une représentation automorphe de G n'est pas nécessairement cuspidal, les "noyaux du transfert" que nous cherchons à construire ont nécessairement des coefficients de Fourier non réguliers, c'est-à-dire associés aux partitions non triviales de l'entier r.

Ces coefficients de Fourier complémentaires sont déterminés en grande partie par les coefficients de Fourier réguliers déjà construits, mais ils sont nécessairement plus subtils.

Afin d'obtenir des indications sur leur forme, il est tout indiqué de traiter d'abord le cas où $G = GL_2$ et $\rho = Id$, en plus du cas déjà étudié de l'induction automorphe de GL_1 à GL_2 .

Ce cas fait l'objet du chapitre V.

On commence aux paragraphes 1 et 2 par des rappels sur la transformation de Fourier sur $M_2(\mathbb{A})$ et la formule de Poisson pour $M_2(F)$.

Les paragraphes 3 et 4 rassemblent des résultats préparatoires pour le théorème d'échange par transformation de Fourier locale qui occupe le paragraphe 5. Ce théorème repose sur le théorème d'équation fonctionnelle locale pour les fonctions L locales de paires sur $\operatorname{GL}_2 \times \operatorname{GL}_1$, sur le théorème d'équation fonctionnelle locale pour les fonctions L locales simples sur GL_2 et sur le fait remarquable que les fonctions L locales de paires de $\operatorname{GL}_2 \times \operatorname{GL}_1$ et les fonctions L locales simples de GL_2 s'identifient.

Le paragraphe 6 calcule localement les termes de bord c'est-à-dire les valeurs limites en les matrices de rang 1 et en la matrice 0. Le fait que l'espace des matrices de rang 1 n'est pas une orbite sous l'action d'un seul GL_2 mais du produit $GL_2 \times GL_2$ est responsable de l'apparition d'un nouveau facteur GL_2 . C'est pourquoi nous cherchons des "noyaux du transfert" définis sur $G(\mathbb{A}) \times G(\mathbb{A}) \times GL_r(\mathbb{A})$ et non pas sur $G(\mathbb{A}) \times GL_r(\mathbb{A})$ comme on aurait d'abord pu penser.

Le paragraphe 7 construit des "noyaux globaux du transfert" sur $GL_2(\mathbb{A}) \times GL_2(\mathbb{A}) \times GL_2(\mathbb{A})$. Leur propriété d'invariance à gauche par $GL_2(F) \times GL_2(F) \times GL_2(F)$ découle de la formule de Poisson pour $M_2(F)$ plongé dans $M_2(\mathbb{A})$, une fois établis les résultats locaux des paragraphes 5 et 6.

Le chapitre VI est un simple addendum au chapitre V. Il consiste à exhiber des "noyaux du transfert" dans des situations où ils se déduisent de ceux construits au chapitre V : le transfert automorphe de PGL_2 vers GL_2 via la représentation standard de $\operatorname{SL}_2(\mathbb{C})$ et, plus généralement, le transfert automorphe d'un groupe réductif G de rang semi-simple égal à 1 vers GL_2 via une représentation de degré 2 du groupe dual \widehat{G} .

Les formules explicites pour les "noyaux du transfert" de tels groupes réductifs G vers GL_2 fournissent d'autres indications susceptibles d'aider à énoncer une conjecture générale pour la construction des coefficients de Fourier complémentaires des "noyaux du transfert" vers un groupe linéaire de rang r.

Le chapitre VII a précisément pour objet de proposer une telle conjecture. Par souci de prudence, il la formule seulement sous l'hypothèse que l'homomorphisme de transfert ρ est "minimal" en un sens défini au paragraphe 1.

Les homomorphismes de transfert "minimaux" sont, si l'on veut, ceux qui sont les plus éloignés des transferts "représentation par représentation", autrement dit ceux qui correspondent le mieux à l'idée de "transfert en famille". Ils sont cependant assez riches puisque tout homomorphisme de transfert s'écrit comme le quotient de deux représentations dont chacune est un composé d'homomorphismes de transfert minimaux.

Après avoir défini les homomorphismes de transfert "minimaux", le paragraphe 1 étudie leur forme dans le cas où le groupe de Galois Γ_F de F n'agit pas.

Comme les coefficients de Fourier réguliers, nous voulons construire les coefficients de Fourier complémentaires des "noyaux du transfert" d'abord localement par intégration sur un tore de certaines fonctions.

Les fonctions à intégrer sont toutes trouvées : ce sont les produits de fonctions de Whittaker intermédiaires sur GL_r et de fonctions sphériques propres de même valeur propre sur G ou sur un sous-groupe parabolique P de G.

Mais les tores sur lesquels intégrer peuvent être des sous-tores stricts du tore maximal de G, comme on le voit déjà dans le cas de GL_2 , de SL_2 ou de l'induction automorphe de GL_1 à GL_2 . On est donc amené à formuler une conjecture sur le type de sous-tores susceptibles d'apparaître comme domaine d'intégration. Ils sont associés à des données combinatoires introduites au paragraphe 2 sous le nom de "paires admissibles".

Ces paires admissibles permettent de définir non seulement des tores complexes mais aussi des variétés toriques affines complexes et leurs variétés toriques duales sur F ou sur les localisations de F. Ceci fait l'objet des paragraphes 2 et 3 puis, pour la construction de variétés toriques affines globales sur F, d'une partie du paragraphe 5.

Les variétés toriques locales associées aux "paires admissibles", combinées avec les complétions de groupes réductifs rappelées au paragraphe I.4, permettent de définir les fonctions locales voulues par un procédé de passage aux résidus sur les bords. C'est le contenu du paragraphe 4.

Le paragraphe 5 et dernier forme le produit sur toutes les places des fonctions locales définies au paragraphe 4, explicite leurs propriétés de symétrie, et effectue une sommation sur des groupes de points rationnels pour obtenir une expression conjecturale des coefficients de Fourier complémentaires des "noyaux du transfert" recherchés.

La conjecture proposée est une simple conjecture de travail, susceptible d'être corrigée.

Pour la confirmer ou la modifier, le premier travail qui se présente à nous est d'essayer de construire des noyaux du transfert identique de GL_r , c'est-à-dire de généraliser en rang r arbitraire le résultat établi au chapitre V dans le cas r=2.

L'essentiel du chapitre I (moins le paragraphe 4), du chapitre II et du chapitre IV a fait l'objet d'un cours dispensé en mai 2009 à l'Institut Isaac Newton de Cambridge, dans le cadre du programme "Algebraic Lie theory". Je remercie les organisateurs de ce programme, Meinholf Geck, Alexander Kleshchev et Gerhard Röhrle, ainsi que le directeur de l'Institut Newton, Sir David Wallace, pour leur invitation.

L'essentiel du chapitre III avait été exposé à l'IHES dans un séminaire oral de juin 2008 et rendu disponible dans un texte posté sur le site de l'auteur en septembre 2008.

Enfin, l'essentiel des chapitres IV, V et VII a fait l'objet de trois exposés donnés à l'IHES en juin 2009. Je suis heureux de remercier chaleureusement les auditeurs de ces différents exposés.

J'exprime encore une fois toute ma reconnaissance envers Cécile Gourgues qui a assuré la frappe de tous les manuscrits avec perfection.

Sommaire

Chapitre I : Rappels sur les groupes algébriques réductifs

- 1. Groupes algébriques réductifs et données radicielles
- 2. Structures rationnelles
- 3. Sous-groupes paraboliques rationnels
- 4. Complétion d'un groupe réductif connexe (d'après De Concini, Procesi et Vinberg)

Chapitre II : Transfert automorphe de Langlands et notion de "noyaux du transfert"

- 1. Choix d'un corps global de base et notations associées
- 2. Le groupe dual de Langlands
- 3. Algèbres de Hecke sphériques et isomorphismes de Satake
- 4. Reformulation de l'isomorphisme de Satake en les termes du groupe dual de Langlands
- 5. Représentations automorphes et transfert de Langlands vers un groupe linéaire
- 6. Une notion de "noyaux du transfert"

Chapitre III : Développement de Fourier sur GL_r et fonctions de Whittaker

- 1. Définition des coefficients de Fourier sur GL_r
- 2. La formule d'inversion de Shalika revisitée
- 3. Modèles et fonctions de Whittaker
- 4. Fonctions de Whittaker intermédiaires

Chapitre IV: Termes principaux pour la construction de noyaux du transfert

- 1. Relèvement des homomorphismes de transfert entre algèbres de Hecke sphériques locales
- 2. Construction de noyaux locaux du transfert non ramifié
- 3. Construction explicite de termes principaux pour les noyaux globaux du transfert non ramifié

Chapitre V : Noyaux du transfert automorphe par l'identité de $GL_2(\mathbb{C})$

- 1. Transformation de Fourier sur les $M_2(F_x)$
- 2. Formule de Poisson
- 3. Décomposition spectrale des fonctions sphériques sur $M_2(F_x)$
- 4. Construction de noyaux locaux
- 5. Échange par transformation de Fourier
- 6. Calcul des termes de bord
- 7. Construction de novaux globaux

Chapitre VI : Noyaux du transfert automorphe par la représentation standard de $SL_2(\mathbb{C})$

- 1. Fonctions sur les groupes locaux $PGL_2(F_x)$, $GL_2(F_x)$ et $SL_2(F_x)$
- 2. Noyaux locaux du transfert et termes de bord
- 3. Noyaux globaux du transfert non ramifié par la représentation standard de $\mathrm{SL}_2(\mathbb{C})$

4. Généralisation aux représentations standard de groupes réductifs dont le rang semi-simple est égal à 1

Chapitre VII : Termes complémentaires pour la construction de noyaux du transfert

- 1. Homomorphismes de transfert minimaux
- 2. Paires admissibles et variétés toriques affines complexes associées
- 3. Variétés toriques affines locales et leurs duales
- 4. Résidus aux bords pour les noyaux locaux du transfert
- 5. Termes complémentaires pour la construction de noyaux globaux du transfert automorphe

Bibliographie

Chapitre I:

Rappels sur les groupes algébriques réductifs

1 Groupes algébriques réductifs et données radicielles

Considérons un groupe algébrique réductif connexe G sur un corps séparablement clos k_s .

Si T est un sous-tore de G, on note X_T le réseau des caractères

$$\chi: T \to \mathbb{G}_m$$

et X_T^{\vee} celui des cocaractères

$$\mu: \mathbb{G}_m \to T$$
.

On dispose de la forme bilinéaire

$$\begin{array}{cccc} \langle \bullet, \bullet \rangle & : & X_T \times X_T^{\vee} & \to & \mathbb{Z} \\ & (\chi, \mu) & \mapsto & \langle \chi, \mu \rangle \end{array}$$

où $\langle \chi, \mu \rangle$ désigne l'unique entier tel que le caractère composé $\chi \circ \mu : \mathbb{G}_m \to T \to \mathbb{G}_m$ soit égal à $\lambda \mapsto \lambda^{\langle \chi, \mu \rangle}$. Cette forme linéaire $\langle \bullet, \bullet \rangle$ rend les deux réseaux X_T et X_T^\vee duaux l'un de l'autre.

On note encore Φ_T le sous-ensemble fini de $X_T - \{0\}$ constitué des "racines" de T dans G, c'est-à-dire des caractères non triviaux de T qui apparaissent dans l'action par conjugaison de T sur Lie (G) considéré comme un espace vectoriel.

On note enfin \mathfrak{S}_T le quotient du normalisateur $N_G T$ du tore T dans G par le centralisateur $Z_G T$ de T dans G, qui est un groupe réductif connexe. C'est un groupe fini, appelé le groupe de Weyl de T dans G. Il agit sur les réseaux X_T et X_T^{\vee} en respectant la forme bilinéaire $\langle \bullet, \bullet \rangle$ ainsi que l'ensemble Φ_T des racines de T dans G.

Un sous-groupe de Borel B de G est un sous-groupe parabolique minimal. Il contient des tores T qui sont maximaux dans G. Une paire de Borel de G est une paire (T,B) constituée d'un sous-tore maximal T de G et d'un sous-groupe de Borel B de G contenant T.

Si (T, B) est une paire de Borel de G, on note Φ_B le sous-ensemble de Φ_T constitué des caractères non triviaux qui apparaissent dans l'action par conjugaison de T sur le sous-espace Lie (B) de Lie (G).

On montre que l'ensemble Φ_T est la réunion disjointe de Φ_B et $-\Phi_B$.

On note Δ_B le sous-ensemble de Φ_B constitué des éléments qui ne peuvent s'écrire comme la somme de deux éléments de Φ_B ; tout élément de Φ_B s'écrit de manière unique comme une somme d'éléments de Δ_B .

Les éléments de Φ_B sont appelés "racines positives" et ceux de Δ_B "racines simples".

Soit $\alpha: T \to \mathbb{G}_m$ une racine, élément de Φ_T , du tore maximal T. Soit T_α la composante neutre du noyau de α , qui est un sous-tore de T de codimension 1. Le centralisateur G_α de T_α dans G est un sous-groupe réductif connexe de G qui admet T comme sous-tore maximal.

Le groupe fini $N_{G_{\alpha}}T/Z_{G_{\alpha}}T$ agit non trivialement sur $T/T_{\alpha} \cong \mathbb{G}_m$ donc il compte exactement deux éléments. On note σ_{α} l'image dans $\mathfrak{S}_T = N_G T/Z_G T$ de son unique élément non trivial.

Le groupe dérivé G_{α}^{der} de G_{α} (c'est-à-dire la composante neutre de l'intersection des noyaux de tous les caractères de G_{α}) est un groupe semi-simple de rang 1, donc isomorphe à SL_2 ou PGL_2 . Il existe un unique homomorphisme

$$\overset{\vee}{\alpha}:\mathbb{G}_m\to G^{\mathrm{der}}_{\alpha}$$

tel que

$$\begin{cases} \operatorname{Im} \overset{\vee}{\alpha} \subset T \,, \\ T = T_{\alpha} \cdot \left(\operatorname{Im} \overset{\vee}{\alpha} \right) \,, \\ \langle \alpha, \overset{\vee}{\alpha} \rangle = 2 \,. \end{cases}$$

Lemme I.1. – Si T est un sous-tore maximal de G comme ci-dessus, on a pour toute racine $\alpha \in \Phi_T$

$$\sigma_{\alpha}(\chi) = \chi - \langle \chi, \overset{\vee}{\alpha} \rangle \cdot \alpha \,, \quad \forall \, \chi \in X_T \,,$$

$$\sigma_{\alpha}(\mu) = \mu - \langle \alpha, \mu \rangle \cdot \overset{\vee}{\alpha}, \quad \forall \, \mu \in X_T^{\vee}.$$

Si T est un sous-tore maximal [resp. Si (T, B) est une paire de Borel de G], l'ensemble des éléments $\overset{\vee}{\alpha} \in X_T^{\vee}$ associés aux racines $\alpha \in \Phi_T$ [resp. Φ_B^{\vee} , resp. Δ_B^{\vee}] est appelé l'ensemble des coracines [resp. coracines positives, resp. coracines simples].

Le groupe de Weyl \mathfrak{S}_T , que l'on peut voir comme un groupe fini d'automorphismes de X_T ou X_T^{\vee} , est engendré par les réflexions σ_{α} , $\alpha \in \Phi_T$ (ou même : $\alpha \in \Delta_B$).

Étant données deux paires de Borel (T_1, B_1) et (T_2, B_2) de G, il existe un élément $g \in G(k_s)$ tel que

$$T_2 = g T_1 g^{-1}, \quad B_2 = g B_1 g^{-1}.$$

Les isomorphismes ou bijections induits

$$X_{T_1} \stackrel{\sim}{\longrightarrow} X_{T_2} ,$$
 $X_{T_1}^{\vee} \stackrel{\sim}{\longrightarrow} X_{T_2}^{\vee} ,$
 $\Phi_{T_1} \stackrel{\sim}{\longrightarrow} \Phi_{T_2} ,$
 $\Phi_{B_1} \stackrel{\sim}{\longrightarrow} \Phi_{B_2} ,$
 $\Delta_{B_1} \stackrel{\sim}{\longrightarrow} \Delta_{B_2} ,$
 $\mathfrak{S}_{T_1} \stackrel{\sim}{\longrightarrow} \mathfrak{S}_{T_2}$

respectent toutes les structures et ne dépendent pas de l'élément g choisi. Cela permet de noter $(X_G, \Phi_G, X_G^{\vee}, \Phi_G^{\vee})$, \mathfrak{S}_G et $(\Phi_G^+, \Delta_G, \Phi_G^{+\vee}, \Delta_G^{\vee})$ au lieu de $(X_T, \Phi_T, X_T^{\vee}, \Phi_T^{\vee})$, \mathfrak{S}_T et $(\Phi_B, \Delta_B, \Phi_B^{\vee}, \Delta_B^{\vee})$.

Définition I.2. -

- (i) On appelle "donnée radicielle" tout quadruplet $(X, \Phi, X^{\vee}, \Phi^{\vee})$ constitué de
 - un réseau X (isomorphe à une puissance finie de \mathbb{Z}),
 - son réseau dual X^{\vee} ,

- deux sous-ensembles finis Φ et Φ^{\vee} de X et X^{\vee} reliés par une bijection

$$\Phi \xrightarrow{\sim} \Phi^{\vee} ,$$
$$\alpha \mapsto \overset{\vee}{\alpha} .$$

tel que tout élément $\alpha \in \Phi$ satisfait les deux axiomes suivants :

- $\langle \alpha, \overset{\vee}{\alpha} \rangle = 2$,
- les involutions de X et X^{\vee} définies par

$$\chi \mapsto \sigma_{\alpha}(\chi) = \chi - \langle \chi, \overset{\vee}{\alpha} \rangle \cdot \alpha$$

$$\mu \mapsto \sigma_{\alpha}(\mu) = \mu - \langle \alpha, \mu \rangle \cdot \overset{\vee}{\alpha},$$

stabilisent les ensembles finis Φ et Φ^{\vee} .

(ii) Une donnée radicielle $(X, \Phi, X^{\vee}, \Phi^{\vee})$ est dite "réduite" si, pour tout élément $\alpha \in \Phi$, les seuls multiples de α [resp. $\overset{\vee}{\alpha}$] contenus dans Φ [resp. Φ^{\vee}] sont $\pm \alpha$ [resp. $\pm \overset{\vee}{\alpha}$].

Cette définition étant posée, on a :

Théorème I.3. -

- (i) Pour tout groupe algébrique réductif connexe G sur un corps séparablement clos k_s , le quadruplet associé $(X_G, \Phi_G, X_G^{\vee}, \Phi_G^{\vee})$ est une donnée radicielle réduite.
- (ii) Réciproquement, pour toute donnée radicielle réduite $(X, \Phi, X^{\vee}, \Phi^{\vee})$ et pour tout corps séparablement clos k_s , il existe un groupe algébrique réductif connexe G sur k_s , unique à isomorphisme près, tel que $(X_G, \Phi_G, X_G^{\vee}, \Phi_G^{\vee})$ soit isomorphe à $(X, \Phi, X^{\vee}, \Phi^{\vee})$.
- (iii) Pour tout groupe réductif connexe G sur un corps séparablement clos k_s , on a un homomorphisme canonique entre groupes d'automorphismes :

$$\operatorname{Aut}(G) \to \operatorname{Aut}(X_G, \Delta_G, X_G^{\vee}, \Phi_G^{\vee})$$

Il s'inscrit dans une suite exacte

$$1 \to \operatorname{Int}(G) \to \operatorname{Aut}(G) \to \operatorname{Aut}(X_G, \Phi_G, X_G^{\vee}, \Phi_G^{\vee}) \to 1$$

où Int(G) désigne le sous-groupe des automorphismes intérieurs de G.

Si G est un groupe réductif connexe sur un corps séparablement clos k_s , T un tore maximal de G et $\alpha \in \Phi_T = \Phi_G$ une racine, le sous-espace $\text{Lie}(G)_{\alpha}$ de Lie(G) sur lequel le tore T agit par le caractère α est nécessairement de dimension 1.

Définition I.4. – On appelle "épinglage" d'un groupe réductif connexe G sur un corps séparablement clos k_s tout triplet $(T, B, (u_\alpha)_{\alpha \in \Delta_G})$ constitué d'une paire de Borel (T, B) et d'une famille de vecteurs non nuls $u_\alpha \in \text{Lie}(G)_\alpha \subset \text{Lie}(B), \ \alpha \in \Delta_G = \Delta_B$.

Avec cette définition, on a :

Proposition I.5. – Soit G un groupe réductif connexe sur un corps séparablement clos k_s . Alors :

- (i) Deux épinglages de G sont transformés l'un dans l'autre par un unique automorphisme intérieur de G.
- (ii) Tout épinglage définit un scindage de la suite exacte :

$$1 \to \operatorname{Int}(G) \to \operatorname{Aut}(G) \to \operatorname{Aut}(X_G, \Phi_G, X_G^{\vee}, \Phi_G^{\vee}) \to 1$$

2 Structures rationnelles

Considérons maintenant un corps arbitraire k et une clôture séparable k_s de k. Le groupe de Galois Γ_k de k est défini comme le groupe des automorphismes de k_s sur k.

Un groupe algébrique connexe G sur k est dit réductif si $G_{k_s} = G \times_{\operatorname{Spec}(k)} \operatorname{Spec}(k_s)$ est un groupe algébrique réductif (connexe) sur k_s .

Deux groupes réductifs connexes G et G' sur k sont appelés des "k-formes" l'un de l'autre s'il existe un isomorphisme $c: G_{k_s} \xrightarrow{\sim} G'_{k_s}$.

Dans ce cas, l'application

$$\Gamma_k \to \operatorname{Aut}(G_{k_s})$$
 $\gamma \mapsto c^{-1} \circ \gamma(c) = c_{\gamma}$

est continue et elle satisfait la condition

$$c_{\gamma\gamma'} = c_{\gamma} \circ \gamma(c_{\gamma'}), \quad \forall \gamma, \gamma' \in \Gamma_k.$$

Réciproquement, si G est un groupe réductif connexe sur k, toute application continue

$$\Gamma_k \to \operatorname{Aut}(G_{k_s}), \quad \gamma \mapsto c_{\gamma}$$

qui satisfait la relation ci-dessus définit une "k-forme" de G. Cette k-forme est k-isomorphe à G si et seulement si il existe un automorphisme $c \in \text{Aut}(G_{k_s})$ tel que

$$c_{\gamma} = c^{-1} \circ \gamma(c), \quad \forall \gamma \in \Gamma_k.$$

Deux groupes réductifs connexes G et G' sur k sont appelés des "k-formes intérieures" l'un de l'autre s'il existe un isomorphisme $c: G_{k_s} \to G'_{k_s}$ tel que

$$c^{-1} \circ \gamma(c) = c_{\gamma} \in \operatorname{Int}(G_{k_s}), \quad \forall \gamma \in \Gamma_k.$$

Pour tout groupe réductif connexe G sur k, on notera simplement $(X_G, \Phi_G, X_G^{\vee}, \Phi_G^{\vee})$, \mathfrak{S}_G et $(\Phi_G^+, \Delta_G, \Phi_G^{+\vee}, \Delta_G^{\vee})$ la donnée radicielle, le groupe de Weyl et les ensembles de racines et coracines positives ou simples qui sont associés à G_{k_s} .

Si (T, B) est une paire de Borel de G_{k_s} et γ est un élément de Γ_k , la transformée $(\gamma(T), \gamma(B))$ de (T, B) par γ est une autre paire de Borel et on a un isomorphisme induit par γ

$$(X_T,\Delta_B,X_T^\vee,\Delta_B^\vee) \stackrel{\sim}{\longrightarrow} (X_{\gamma(T)},\Delta_{\gamma(B)},X_{\gamma(T)}^\vee,\Delta_{\gamma(B)}^\vee)\,.$$

Cet isomorphisme induit par γ peut être vu comme un automorphisme de $(X_G, \Delta_G, X_G^{\vee}, \Delta_G^{\vee})$; comme tel, il ne dépend pas du choix de la paire de Borel (T, B). On a donc une application canonique

$$\Gamma_k \to \operatorname{Aut}(X_G, \Delta_G, X_G^{\vee}, \Delta_G^{\vee})$$
.

C'est un homomorphisme de groupes. Son noyau est un sous-groupe ouvert (d'indice fini), ce qui signifie qu'il est continu.

Ainsi, le réseau X_G et son dual X_G^{\vee} sont canoniquement munis d'une action continue du groupe de Galois Γ_k qui préserve les ensembles finis $\Delta_G, \Delta_G^{\vee}, \Phi_G, \Phi_G^{\vee}, \Phi_G^+, \Phi_G^{+}, \Phi_G^{+}^{+}$ et induit une action sur le groupe de Weyl \mathfrak{S}_G .

Définition I.6. -

- (i) Un groupe réductif connexe G sur k est dit "quasi-déployé" s'il possède un épinglage $(T, B, (u_{\alpha})_{\alpha \in \Delta_G})$ défini sur k.
- (ii) Il est dit "déployé" si, de plus, le tore T d'un tel épinglage est déployé, c'est-à-dire isomorphe sur k à une puissance de \mathbb{G}_m .

On déduit du théorème I.3 et de la proposition I.5 :

Corollaire I.7. -

(i) Deux groupes réductifs connexes G et G' sur k sont des "k-formes" l'un de l'autre si et seulement si leurs données radicielles $(X_G, \Phi_G, X_G^{\vee}, \Phi_G^{\vee})$ et $(X_{G'}, \Phi_{G'}, X_{G'}^{\vee}, \Phi_{G'}^{\vee})$ sont isomorphes.

De plus, ce sont des "k-formes intérieures" l'un de l'autre si et seulement si leurs données radicielles munies des actions naturelles du groupe de Galois Γ_k sont isomorphes.

- (ii) Toute donnée radicielle $(X, \Phi, X^{\vee}, \Phi^{\vee})$ munie d'une action continue de Γ_k préservant une base (Δ, Δ^{\vee}) définit un groupe réductif connexe quasi-déployé sur k. Celui-ci est unique à unique k-isomorphisme près préservant les épinglages.
- (iii) Tout groupe réductif connexe sur k possède une forme intérieure quasi-déployée. Celle-ci est unique à unique k-isomorphisme près préservant les épinglages.
- (iv) Un groupe réductif connexe G, supposé quasi-déployé sur k, est déployé sur k si et seulement si l'action induite de Γ_k sur $(X_G, \Delta_G, X_G^{\vee}, \Delta_G^{\vee})$ est triviale.

3 Sous-groupes paraboliques rationnels

Dans ce paragraphe, on considère un groupe réductif connexe G sur un corps k arbitraire.

On montre que les sous-tores de G qui sont définis sur k, déployés sur k et maximaux pour ces propriétés sont conjugués les uns des autres par des éléments de G(k).

Soit T_k l'un de ces sous-tores déployés maximaux.

On note X_{T_k} le réseau des caractères $T_k \to \mathbb{G}_m$ de T_k et $X_{T_k}^{\vee}$ le réseau dual de ses cocaractères $\mathbb{G}_m \to X_{T_k}$.

On note Φ_{T_k} l'ensemble fini des racines de T_k dans G: c'est le sous-ensemble de X_{T_k} composé des caractères non triviaux de T_k qui apparaissent dans l'action par conjugaison de T_k sur Lie (G).

Soient $Z_G(T_k)$ et $N_G(T_k)$ le centralisateur et le normalisateur de T_k dans G. Ce sont des sous-groupes algébriques de G rationnels sur k. Le premier, $Z_G(T_k)$, est réductif et connexe. Le quotient $\mathfrak{S}_{T_k} = N_G(T_k)/Z_G(T_k)$ est un groupe fini dont les éléments peuvent être représentés par des éléments de $N_G(T_k)$ rationnels sur k. Ce groupe fini opère naturellement sur les réseaux X_{T_k} et $X_{T_k}^{\vee}$; il préserve la forme bilinéaire naturelle qui les relie ainsi que l'ensemble Φ_{T_k} des racines.

Lemme I.8. – Munissons l'espace vectoriel réel $X_{T_k} \otimes_{\mathbb{Z}} \mathbb{R}$ d'un produit scalaire euclidien (\bullet, \bullet) invariant par l'action du groupe fini \mathfrak{S}_{T_k} .

Alors, pour toute racine $\alpha \in \Phi_{T_k} \subset X_{T_k}$, l'image $\overset{\vee}{\alpha}$ de $\frac{2}{(\alpha,\alpha)} \cdot \alpha$ par l'isomorphisme $X_{T_k} \otimes_{\mathbb{Z}} \mathbb{R} \xrightarrow{\sim} X_{T_k}^{\vee} \otimes_{\mathbb{Z}} \mathbb{R}$ induit par (\bullet, \bullet) appartient au réseau $X_{T_k}^{\vee}$. De plus, cette image $\overset{\vee}{\alpha}$ ne dépend pas du produit scalaire euclidien invariant (\bullet, \bullet) choisi.

On note $\Phi_{T_k}^{\vee} \subset X_{T_k}^{\vee}$ l'ensemble fini des $\overset{\vee}{\alpha}$, appelées "coracines", associées aux racines $\alpha \in \Phi_{T_k}$.

Lemme I.9. – Dans la situation et avec les notations ci-dessus, le quadruplet $(X_{T_k}, \Phi_{T_k}, X_{T_k}^{\vee}, \Phi_{T_k}^{\vee})$ est une "donnée radicielle" (pas nécessairement réduite) au sens de la définition I.2.

Le groupe fini $\mathfrak{S}_{T_k} = N_G(T_k)/Z_G(T_k)$ s'identifie à son groupe de Weyl.

Soit Lie $(G)_0$ le sous-espace vectoriel de Lie (G) constitué des vecteurs fixés par l'action de T_k . Et, pour toute racine $\alpha \in \Phi_{T_k}$, soit Lie $(G)_{\alpha}$ le sous-espace des vecteurs sur lesquels le tore déployé T_k agit par le caractère α .

On a la décomposition en somme directe canoniquement associée au tore T_k

$$\operatorname{Lie}\left(G\right)=\operatorname{Lie}\left(G\right)_{0}\oplus\bigoplus_{\alpha\in\Phi_{T_{k}}}\operatorname{Lie}\left(G\right)_{\alpha}.$$

Dans le cas général où le groupe réductif G n'est pas nécessairement déployé, les sous-espaces Lie $(G)_{\alpha}$ peuvent avoir une dimension plus grande que 1. Mais il existe toujours, pour toute racine $\alpha \in \Phi_{T_k}$, un unique sous-groupe algébrique U_{α} de G, rationnel sur k, unipotent, normalisé par T_k et dont l'algèbre de Lie est Lie $(G)_{\alpha}$.

Intéressons-nous maintenant aux sous-groupes paraboliques de G qui sont rationnels sur k.

Considérons d'abord les sous-groupes paraboliques rationnels sur k et minimaux pour cette propriété. On montre qu'ils sont conjugués les uns des autres par des éléments de G(k). On peut en choisir un, P_k , qui contienne le tore déployé maximal T_k . Alors on a la décomposition

$$P_k = Z_G(T_k) \cdot R_u(P_k)$$

où $Z_G(T_k)$ est un sous-groupe de Levi de P_k et $R_u(P_k)$ désigne le radical unipotent de P_k .

Les racines $\alpha \in \Phi_{T_k}$ telles que U_{α} est contenu dans $R_u(P_k)$ sont appelées les racines positives de Φ_{T_k} . On note Φ_{P_k} leur ensemble et $\Phi_{P_k}^{\vee}$ le sous-ensemble correspondant de $\Phi_{T_k}^{\vee}$. Puis on note Δ_{P_k} et $\Delta_{P_k}^{\vee}$ les sous-ensembles associés de racines simples et de coracines simples : ce sont les éléments de Φ_{P_k} et $\Phi_{P_k}^{\vee}$ qui ne peuvent s'écrire comme des sommes non triviales d'éléments de Φ_{P_k} et $\Phi_{P_k}^{\vee}$.

Le groupe de Weyl \mathfrak{S}_{T_k} agit simplement transitivement sur l'ensemble des sous-groupes paraboliques rationnels sur k et minimaux qui contiennent T_k .

Pour tout sous-ensemble θ de Δ_{P_k} , notons P_{θ} le sous-groupe algébrique de G engendré par $Z_G(T_k)$ et par les U_{α} , où α décrit le sous-ensemble de Φ_{T_k} composé des racines qui s'écrivent comme des combinaisons linéaires

$$\alpha = \sum_{\beta \in \Delta_{P_k}} m_\beta \cdot \beta$$

où $m_{\beta} \in \mathbb{Z}, \forall \beta \in \Delta_{P_k}$, et $m_{\beta} \geq 0, \forall \beta \notin \theta$.

Ainsi, on a

$$\begin{aligned} P_{\theta} &= G & \text{si} & \theta &= \Delta_{P_k} \,, \\ P_{\theta} &= P_k & \text{si} & \theta &= \emptyset \,, \\ P_{\theta} &\subseteq P_{\theta'} & \text{si} & \theta &\subseteq \theta' \subseteq \Delta_{P_k} \,. \end{aligned}$$

Tout sous-groupe parabolique de G qui est rationnel sur k et contient P_k est de la forme P_{θ} . Une fois le choix de P_k arrêté, les P_{θ} sont appelés les sous-groupes paraboliques standard de G.

Lemme I.10. – Dans la situation et avec les notations ci-dessus, tout sous-groupe parabolique de G rationnel sur k est conjugué, par des éléments de G(k), à un unique sous-groupe parabolique standard P_{θ} .

Pour toute partie θ de Δ_{P_k} , la composante neutre T_{θ} de l'intersection $\bigcap_{\alpha \in \theta} \operatorname{Ker}(\alpha : T_k \to \mathbb{G}_m)$ est un sous-tore de T_k et donc un sous-tore de G rationnel sur k et déployé. On a la décomposition en sous-groupe de Levi et radical unipotent

$$P_{\theta} = Z_G(T_{\theta}) \cdot R_u(P_{\theta}) \,.$$

Le centralisateur $Z_G(T_\theta) = M_\theta$ de T_θ dans G est appelé le sous-groupe de Levi standard de P_θ . Le radical unipotent $R_u(P_\theta)$ de P_θ est engendré par les U_α , où α décrit le sous-ensemble de Φ_{P_k} composé des racines positives qui s'écrivent comme des combinaisons linéaires

$$\alpha = \sum_{\beta \in \Delta_{P_h}} m_\beta \cdot \beta$$

telles que

$$\forall \beta \in \Delta_{P_k}, \quad m_\beta \in \mathbb{N},$$

et

$$\exists \beta_0 \notin \theta, \quad m_{\beta_0} \geq 1.$$

Dans le groupe réductif connexe $M_{\theta} = Z_G(T_{\theta})$, le tore T_k est un sous-tore déployé sur k et maximal pour cette propriété.

Le groupe de Weyl \mathfrak{S}_{θ} de T_k dans M_{θ} s'identifie au sous-groupe de \mathfrak{S}_{T_k} engendré par les réflexions associées aux racines $\alpha \in \theta$.

On dispose encore de la décomposition de Bruhat :

Proposition I.11. -

(i) Si P_k désigne comme ci-dessus un sous-groupe parabolique de G, rationnel sur k, minimal pour cette propriété, et contenant le tore rationnel déployé maximal T_k , l'application naturelle

$$\mathfrak{S}_{T_k} \to P_k(k) \backslash G(k) / P_k(k)$$

est une bijection.

(ii) Plus généralement, si θ et θ' sont deux parties de Δ_{P_k} , l'application naturelle

$$\mathfrak{S}_{\theta} \backslash \mathfrak{S}_{T_{k}} / \mathfrak{S}_{\theta'} \to P_{\theta}(k) \backslash G(k) / P_{\theta'}(k)$$

est une bijection.

Terminons ce paragraphe en examinant le cas particulier où le groupe réductif G est quasi-déployé c'est-à-dire possède un épinglage $(T, B, (u_{\alpha})_{\alpha \in \Delta_B})$ défini sur k.

On a alors pu prendre pour T_k le plus grand tore déployé contenu dans le tore rationnel T.

Le centralisateur $Z_G(T_k)$ de T_k dans G est égal à T.

Une fois choisie une clôture séparable k_s de k, le réseau $X_{T_k}^{\vee}$ s'identifie au sous-réseau de X_T^{\vee} composé des cocaractères de T fixés par le groupe de Galois $\Gamma_k = \operatorname{Aut}_k(k_s)$ de k. Son réseau dual X_{T_k} est le plus grand sous-quotient de X_T sur lequel Γ_k agit trivialement.

Comme $Z_G(T_k) = T$, les images dans X_{T_k} des racines $\alpha \in \Phi_T$ sont toutes non triviales. Leur ensemble est Φ_{T_k} . Deux éléments de Φ_T ont la même image dans Φ_{T_k} si et seulement s'ils sont transformés l'un dans l'autre par l'action d'éléments de Γ_k . Autrement dit, Φ_{T_k} s'identifie au quotient de Φ_T par l'action de Γ_k .

Le groupe de Weyl k-rationnel \mathfrak{S}_{T_k} s'identifie au sous-groupe du groupe de Weyl absolu \mathfrak{S}_T constitué des éléments fixés par l'action de Γ_k .

Le sous-groupe de Borel B, vu comme sous-groupe de G rationnel sur k, est évidemment minimal parmi les sous-groupes paraboliques de G rationnels sur k. On a donc pu prendre $P_k = B_k = B$.

L'ensemble Φ_{B_k} des racines k-rationnelles positives s'identifie au quotient par Γ_k de l'ensemble Φ_B des racines positives, et l'ensemble Δ_{B_k} des racines k-rationnelles simples s'identifie au quotient par Γ_k de l'ensemble Δ_B des racines simples.

Se donner un sous-groupe parabolique rationnel standard P_{θ} de G équivant à se donner une partie θ de Δ_B stable par l'action de Γ_k .

4 Complétion d'un groupe réductif connexe (d'après De Concini, Procesi et Vinberg)

Considérons dans un premier temps un groupe réductif connexe G sur un corps séparablement clos k_s , dont le groupe dérivé G^{der} soit simplement connexe.

Soit (T, B) une paire de Borel de G.

Il lui est associé un ensemble $\Delta_B = \{\alpha_1, \dots, \alpha_\ell\} \subset X_T$ de racines simples. L'ensemble $\{-\alpha_1, \dots, -\alpha_\ell\}$ des racines opposées définit un autre sous-groupe de Borel, B^{op} , appelé l'opposé de B. Les sous-groupes paraboliques de G qui contiennent B sont appelés les sous-groupes paraboliques standard. Ils sont naturellement indexés par les parties θ de Δ_B et notés P_{θ} . Tout sous-groupe parabolique standard P_{θ} admet un unique sous-groupe de Levi qui contienne T; c'est $M_{\theta} = Z_G(T_{\theta})$ où T_{θ} désigne le sous-tore de T défini comme la composante neutre de $\bigcap_{\alpha \in \theta} \mathrm{Ker}(\alpha : T \to \mathbb{G}_m)$. Le composé $P_{\theta}^{\mathrm{op}} = M_{\theta} \cdot B^{\mathrm{op}}$ est appelé le sous-groupe

parabolique opposé de P_{θ} . On note N_{θ} et N_{θ}^{op} les radicaux unipotents de P_{θ} et P_{θ}^{op} . On a les décompositions canoniques

$$P_{\theta} = N_{\theta} \rtimes M_{\theta} , \quad P_{\theta}^{\text{op}} = N_{\theta}^{\text{op}} \rtimes M_{\theta} .$$

Enfin, on sait que tout sous-groupe parabolique de G est conjugué à un unique sous-groupe parabolique standard.

Choisissons une base $\omega'_1, \ldots, \omega'_{\ell'}$ du réseau des caractères

$$\chi: T \to \mathbb{G}_m$$

tels que

$$\langle \chi, \overset{\vee}{\alpha} \rangle = 0, \quad \forall \, \alpha \in \Delta_B = \{\alpha_1, \dots, \alpha_\ell\}.$$

Chaque $\omega'_{i'}: T \to \mathbb{G}_m$, $1 \leq i' \leq \ell'$, se prolonge de manière unique en un caractère

$$\omega'_{i'}:G\to\mathbb{G}_m$$
.

On appelle "poids dominant" tout caractère

$$\chi: T \to \mathbb{G}_m$$

tel que

$$\langle \chi, \overset{\vee}{\alpha} \rangle \ge 0, \quad \forall \alpha \in \Delta_B = \{\alpha_1, \dots, \alpha_\ell\}.$$

L'ensemble des poids dominants est stable par translation par les éléments du réseau $\mathbb{Z}\,\omega_1' + \cdots + \mathbb{Z}\,\omega_{\ell'}'$. Son quotient par ce réseau est un cône saturé et non dégénéré de $X_T/(\mathbb{Z}\,\omega_1' + \cdots + \mathbb{Z}\,\omega_{\ell'}')$ qui est engendré par les ℓ éléments $\bar{\omega}_1, \ldots, \bar{\omega}_\ell$ de la base duale de $\alpha_1, \ldots, \alpha_\ell$. Notons $\omega_1, \ldots, \omega_\ell$ une famille de caractères

$$T \to \mathbb{G}_m$$

qui relèvent ces ℓ éléments $\bar{\omega}_1, \ldots, \bar{\omega}_\ell$ du quotient $X_T/(\mathbb{Z}\,\omega_1' + \cdots + \mathbb{Z}\,\omega_{\ell'}')$.

Ainsi, les poids dominants sont les caractères $\chi:T\to\mathbb{G}_m$ qui s'écrivent, de manière nécessairement unique, sous la forme

$$\chi = \sum_{1 \le i' \le \ell'} n'_{i'} \cdot \omega'_{i'} + \sum_{1 \le i \le \ell} n_i \cdot \omega_i$$

avec $n'_{i'} \in \mathbb{Z}, \forall i', \text{ et } n_i \in \mathbb{N}, \forall i.$

Pour tout indice $i, 1 \leq i \leq \ell$, notons $(\rho_{\omega_i}, V_{\omega_i})$ la représentation irréductible de G de poids dominant ω_i .

Et, pour tout indice i', $1 \le i' \le \ell'$, notons par commodité $V_{\omega'_{i'}}$ un espace vectoriel de dimension 1 sur lequel G agit par le caractère $\omega'_{i'}: G \to \mathbb{G}_m$.

Notons $(T \times G)/Z_G$ le quotient de $T \times G$ par le centre Z_G de G plongé par $\lambda \mapsto (\lambda^{-1}, \lambda)$. On dispose de l'immersion fermée

$$(T \times G)/Z_G \hookrightarrow \prod_{1 \le i \le \ell} \operatorname{Aut}(V_{\omega_i}) \times \prod_{1 \le i' \le \ell'} \operatorname{Aut}(V_{\omega'_{i'}}) \times \prod_{1 \le i \le \ell} \mathbb{G}_m$$

$$(\lambda,g) \mapsto \left((\omega_i(\lambda) \cdot \rho_{\omega_i}(g))_{1 \le i \le \ell}, \ (\omega'_{i'}(\lambda g))_{1 \le i' \le \ell'}, \ (\alpha_i^{-1}(\lambda))_{1 \le i \le \ell} \right).$$

Or, pour tout indice $i \in \{1, \dots, \ell\}$, le facteur $\operatorname{Aut}(V_{\omega_i})$ s'identifie à un ouvert de $\operatorname{End}(V_{\omega_i})$ et le facteur \mathbb{G}_m image de α_i^{-1} s'identifie à un ouvert d'une droite affine \mathbb{A}^1 .

On a:

Théorème I.12. – Soit Ω_G l'adhérence schématique de

$$(T \times G)/Z_G$$

dans le produit

$$\prod_{1 \leq i \leq \ell} (\operatorname{End}\left(V_{\omega_i}\right) - \{0\}) \times \prod_{1 \leq i' \leq \ell'} \operatorname{Aut}\left(V_{\omega'_{i'}}\right) \times \prod_{1 \leq i \leq \ell} \mathbb{A}^1 \,.$$

Alors:

(i) L'action à droite de $T \times G \times G$ sur $(T \times G)/Z_G$ définie par

$$(\lambda_0, g_0) \cdot (\lambda, g_1, g_2) = (\lambda_0 \lambda, g_1^{-1} g_0 g_2)$$

se prolonge en une action de $T \times G \times G$ sur Ω_G tout entier.

(ii) Si l'on fait agir T sur $\prod_{1 \le i \le \ell} \mathbb{A}^1$ par les caractères α_i^{-1} , $1 \le i \le \ell$, et $G \times G$ par l'action triviale, la projection

$$\Omega_G \to \mathbb{A}_G = \prod_{1 \le i \le \ell} \mathbb{A}^1$$

est équivariante.

(iii) Ce morphisme équivariant de structure

$$\Omega_G \to \mathbb{A}_G = \prod_{1 \le i \le \ell} \mathbb{A}^1$$

est lisse.

(iv) Si θ est une partie de $\Delta_B = \{\alpha_1, \ldots, \alpha_\ell\}$, la fibre du morphisme de structure

$$\Omega_G \to \mathbb{A}_G = \prod_{1 \le i \le \ell} \mathbb{A}^1$$

au-dessus du point base 1_{θ} dont les coordonnées d'indices $i, 1 \leq i \leq \ell$, valent

$$\begin{cases} 1 & si & \alpha_i \in \theta, \\ 0 & si & \alpha_i \notin \theta, \end{cases}$$

s'identifie à

$$G_{\theta} = M_{\theta} \cdot (N_{\theta} \times N_{\theta}^{\text{op}}) \backslash (G \times G)$$

(où M_{θ} est plongé diagonalement dans $G \times G$).

Considérons maintenant un groupe réductif connexe G sur un corps k arbitraire, dont le groupe dérivé G^{der} est simplement connexe.

Supposons que G est quasi-déployé sur k.

Par définition, G admet un épinglage $(T, B, (u_{\alpha})_{\alpha \in \Delta_G})$ défini sur k. Le tore maximal T n'est pas nécessairement déployé sur k mais il le devient sur une clôture séparable k_s de k.

Le groupe de Galois $\Gamma_k = \operatorname{Aut}_k(k_s)$ agit sur le réseau X_T , en respectant l'ensemble fini $\Delta_G = \Delta_B$ sur lequel il agit donc par permutation.

L'action de Γ_k respecte le sous-réseau $\mathbb{Z}\,\omega_1'+\dots+\mathbb{Z}\,\omega_{\ell'}'$ de X_T et permute les éléments $\bar{\omega}_1,\dots,\bar{\omega}_\ell$ de la base de $X_T/(\mathbb{Z}\,\omega_1'+\dots+\mathbb{Z}\,\omega_{\ell'}')$ duale de $\alpha_1,\dots,\alpha_\ell$. Dans la construction de la variété $\Omega_{G_{k_s}}$ de complétion du groupe réductif G_{k_s} sur k_s interviennent des éléments $\omega_1,\dots,\omega_\ell$ de X_T qui relèvent les éléments $\bar{\omega}_1,\dots,\bar{\omega}_\ell$. On voit que Γ_k agit naturellement sur le produit $\prod_{1\leq i\leq \ell}\operatorname{End}(V_{\omega_i})\times\prod_{1\leq i'\leq \ell'}\operatorname{End}(V_{\omega_{i'}})$ ainsi que sur $\mathbb{A}_{G_{k_s}}=\prod_{1\leq i\leq \ell}\mathbb{A}^1$, de telle façon que l'immersion

$$(T_{k_s} \times G_{k_s})/Z_{G_{k_s}} \hookrightarrow \prod_{1 \leq i \leq \ell} \operatorname{Aut}\left(V_{\omega_i}\right) \times \prod_{1 \leq i' \leq \ell'} \operatorname{Aut}\left(V_{\omega'_{i'}}\right) \times \prod_{1 \leq i \leq \ell} \mathbb{G}_m$$

est respectée par l'action de Γ_k .

Le schéma $\Omega_{G_{k_s}} = \Omega_G$ sur k_s se trouve muni d'une action de Γ_k qui prolonge celles sur G_{k_s} et T_{k_s} . On peut donc le considérer comme un schéma sur k, de même que $\mathbb{A}_{G_{k_s}} = \mathbb{A}_G$. Le morphisme de structure $\Omega_G \to \mathbb{A}_G$ et l'action à droite de $T \times G \times G$ sur Ω_G sont rationnelles sur k.

Soit T_k le plus grand sous-tore déployé contenu dans T. L'ensemble Δ_{G_k} de ses racines simples s'identifie au quotient de Δ_G par l'action de Γ_k .

On note \mathbb{A}_{G_k} le schéma $\prod_{\alpha \in \Delta_{G_k}} \mathbb{A}^1$ muni de l'action de T_k définie par les caractères $\alpha^{-1} \in \Delta_{G_k}$.

Le plongement $T_k \hookrightarrow T$ induit une immersion fermée équivariante $\mathbb{A}_{G_k} \hookrightarrow \mathbb{A}_G$.

On déduit du théorème précédent :

Corollaire I.13. – Soit G un groupe réductif connexe et quasi-déployé sur un corps k, dont le groupe dérivé G^{der} est simplement connexe.

Alors le schéma sur k défini comme le produit fibré

$$\Omega_{G_k} = \Omega_G \times_{\mathbb{A}_G} \mathbb{A}_{G_k}$$

vérifie les propriétés suivantes :

(i) Il contient comme ouvert dense

$$(T_k \times G)/(T_k \cap Z_G)$$
,

et l'action à droite sur cet ouvert de $T_k \times G \times G$ définie par

$$(\lambda_0, g_0) \cdot (\lambda, g_1, g_2) = (\lambda_0 \lambda, g_1^{-1} g_0 g_2)$$

se prolonge en une action de $T_k \times G \times G$ sur Ω_{G_k} tout entier.

(ii) Le morphisme de structure

$$\Omega_{G_k} \to \mathbb{A}_{G_k}$$

est équivariant et lisse.

(iii) Si θ est une partie de $\Delta_{G_k} = \Delta_G/\Gamma_k$, la fibre du morphisme de structure

$$\Omega_{G_k} \to \mathbb{A}_{G_k} = \prod_{\alpha \in \Delta_{G_k}} \mathbb{A}^1$$

au-dessus du point base 1_{θ} dont les coordonnées d'indices les $\alpha \in \Delta_{G_k}$ valent

$$\begin{cases} 1 & si & \alpha \in \theta, \\ 0 & si & \alpha \notin \theta, \end{cases}$$

s'identifie à

$$G_{\theta} = M_{\theta} \cdot (N_{\theta} \times N_{\theta}^{\text{op}}) \setminus (G \times G).$$

Puis considérons un groupe réductif connexe G sur un corps k arbitraire, dont le groupe dérivé G^{der} est simplement connexe mais qui n'est pas nécessairement quasi-déployé.

On sait que G possède une unique forme intérieure G' quasi-déployée sur k. On dispose donc du schéma $\Omega_{G'}$ sur k muni d'une action à droite de $T_{G'} \times G' \times G'$ et d'un morphisme de structure $\Omega_{G'} \to \mathbb{A}_{G'} = \prod_{\alpha \in \Delta_{G'} = \Delta_G} \mathbb{A}^1$.

Comme forme intérieure de G', le groupe réductif G sur k est défini par une application continue

$$\Gamma_k \to \operatorname{Int}(G'_{k_s})
\gamma \mapsto c_{\gamma}$$

telle que, pour tous éléments $\gamma, \gamma' \in \Gamma_k$, on ait

$$c_{\gamma\gamma'} = c_{\gamma} \circ \gamma(c_{\gamma'})$$
.

Les automorphismes intérieurs $c_{\gamma} \in \operatorname{Int}(G'_{k_s})$ se prolongent de manière unique en des automorphismes de $\Omega_{G'_{k_s}}$ qui respectent le morphisme de structure $\Omega_{G'_{k_s}} \to \mathbb{A}_{G'_{k_s}}$. Ils définissent une nouvelle structure k-rationnelle sur $\Omega_{G'_{k_s}}$, que l'on note Ω_G . La variété Ω_G sur k est munie d'une action à droite de $T_{G'} \times G \times G$ et d'un morphisme de structure équivariant et lisse

$$\Omega_G \to \mathbb{A}_G = \mathbb{A}_{G'}$$

vers la variété torique $\mathbb{A}_G = \mathbb{A}_{G'}$ de tore $T_{G'}/Z_{G'}$.

Soit un tore déployé maximal T_k du groupe réductif connexe G, et soit P_k un sous-groupe parabolique de G défini sur k, minimal pour ces propriétés et qui contient T_k . On dispose de l'ensemble $\Delta_{P_k} \subset X_{T_k}$ des racines simples déterminé par le choix de P_k .

La variété torique $\mathbb{A}_{G_k} = \prod_{\alpha \in \Delta_{P_k}} \mathbb{A}^1$ de tore $T_k/(T_k \cap Z_G)$ est munie d'une immersion fermée équivariante rationnelle sur k canonique

$$\mathbb{A}_{G_h} \hookrightarrow \mathbb{A}_G = \mathbb{A}_{G'}$$
.

Le produit fibré

$$\Omega_{G_k} = \Omega_G \times_{\mathbb{A}_G} \mathbb{A}_{G_k}$$

est muni d'une action à droite du groupe $T_k \times G \times G$ et d'un morphisme de structure équivariant et lisse

$$\Omega_{G_k} \to \mathbb{A}_{G_k}$$
.

Pour toute partie θ de Δ_{P_k} , la fibre de ce morphisme au-dessus du point base 1_{θ} dont les coordonnées d'indices les $\alpha \in \Delta_{P_k}$ valent

$$\begin{cases} 1 & \text{si} \quad \alpha \in \theta \,, \\ 0 & \text{si} \quad \alpha \notin \theta \,, \end{cases}$$

s'identifie à

$$G_{\theta} = M_{\theta} \cdot (N_{\theta} \times N_{\theta}^{\text{op}}) \setminus (G \times G)$$
.

Finalement on a:

Théorème I.14. – Soit G un groupe réductif connexe sur un corps k. Alors :

- (i) On peut associer à G un schéma Ω_G sur k muni de :
 - un ouvert dense qui s'identifie à $(T_{G'} \times G)/(T_{G'} \cap Z_G)$ où G' désigne l'unique forme intérieure quasidéployée de G et $T_{G'}$ un tore maximal de G',
 - une action à droite de $T_{G'} \times G \times G$ qui prolonge l'action sur $(T_{G'} \times G)/(T_{G'} \cap Z_G)$ définie par

$$(\lambda_0, g_0) \cdot (\lambda, g_1, g_2) = (\lambda_0 \lambda, g_1^{-1} g_0 g_2),$$

• un morphisme de structure équivariant et lisse

$$\Omega_G \to \mathbb{A}_G$$

vers la variété torique $\mathbb{A}_G = \mathbb{A}_{G'} = \prod_{\alpha \in \Delta_G = \Delta_{G'}} \mathbb{A}^1$ sur laquelle le tore $T_{G'}$ agit par les caractères α^{-1} , $\alpha \in \Delta_G = \Delta_{G'}$.

(ii) Si T_k est un sous-tore déployé maximal de G et P_k un sous-groupe parabolique de G défini sur k, minimal et qui contient T_k , le produit fibré

$$\Omega_{G_k} = \Omega_G \times_{\mathbb{A}_G} \mathbb{A}_{G_k}$$

avec la variété torique $\mathbb{A}_{G_k} = \prod_{\alpha \in \Delta_{P_k}} \mathbb{A}^1$ sur laquelle T_k agit par les caractères α^{-1} , $\alpha \in \Delta_{P_k}$, est munie de :

- un ouvert dense identifié à $(T_k \times G)/(T_k \cap Z_G)$,
- une action à droite de $T_k \times G \times G$,
- un morphisme de structure équivariant et lisse

$$\Omega_{G_k} \to \mathbb{A}_{G_k}$$
.

(iii) La fibre de ce morphisme de structure

$$\Omega_{G_h} \to \mathbb{A}_{G_h}$$

au-dessus du point base 1_{θ} associé à une partie θ de Δ_{P_k} s'identifie à

$$G_{\theta} = M_{\theta} \cdot (N_{\theta} \times N_{\theta}^{\text{op}}) \backslash (G \times G)$$
.

Démonstration. Les constructions sont déjà faites si le groupe dérivé G^{der} de G est simplement connexe.

Sinon, il existe un groupe réductif connexe \tilde{G} sur k (par exemple le produit du revêtement simplement connexe de G^{der} et de la composante neutre du centre Z_G de G) et un groupe fini $Z \subset Z_{\tilde{G}}$ tel que

- le groupe dérivé \tilde{G}^{der} de \tilde{G} est simplement connexe,
- le groupe réductif G s'identifie au quotient \tilde{G}/Z de \tilde{G} par le groupe fini central Z.

Il suffit alors de poser $\Omega_G = \Omega_{\tilde{G}}/Z$.

Chapitre II:

Transfert automorphe de Langlands et notion de "noyaux du transfert"

1 Choix d'un corps global de base et notations associées

À partir de maintenant, on se placera toujours sur le corps des fonctions F d'une courbe X_F projective, lisse et géométriquement connexe sur un corps fini \mathbb{F}_q à q éléments.

On note |F| l'ensemble infini dénombrable des places de F, identifiées aux points fermés de la courbe X_F .

Pour toute place $x \in |F|$, on note :

- $\deg(x)$ la dimension sur \mathbb{F}_q du corps de définition $\kappa(x)$ de x considérée comme un point fermé de la courbe X_F ,
- $q_x = q^{\deg(x)}$ le cardinal du corps fini $\kappa(x)$,
- $v_x: F^{\times} \to \mathbb{Z}$ la valuation définie comme l'ordre d'annulation en le point fermé x de X_F des fonctions rationnelles non nulles, et $|\bullet|_x = q_x^{-v_x(\bullet)}: F \to q_x^{\mathbb{Z}} \cup \{0\}$ la norme ultra-métrique associée,
- F_x le corps local complété de F pour la norme $|\bullet|_x$,
- $O_x = \{a_x \in F_x \mid v_x(a_x) \geq 0\}$ l'anneau des entiers de F_x , et $m_x = \{a_x \in F_x \mid v_x(a_x) \geq 1\}$ son idéal maximal, avec donc $O_x/m_x = \kappa(x)$.

On rappelle que l'expression "pour presque toute place x" signifie "pour toutes les places $x \in |F|$ sauf un nombre fini".

On dispose de l'anneau topologique des adèles de F

$$\mathbb{A} = \mathbb{A}_F = \left\{ (a_x)_{x \in |F|} \in \prod_{x \in |F|} F_x \mid a_x \in O_x \text{ pour presque toute place } x \right\}$$

et de son sous-anneau ouvert compact des entiers adéliques

$$O_{\mathbb{A}} = O_{\mathbb{A}_F} = \prod_{x \in |F|} O_x \,.$$

Le choix d'une clôture séparable F_s de F permet de définir le groupe de Galois de F comme $\Gamma_F = \operatorname{Aut}_F(F_s)$.

De même, pour toute place $x \in |F|$, le choix d'une clôture séparable $F_{x,s}$ de F_x permet de définir le groupe de Galois de F_x comme $\Gamma_{F_x} = \operatorname{Aut}_{F_x}(F_{x,s})$.

Le choix d'une immersion

$$F_s \hookrightarrow F_{x,s}$$

induit un homomorphisme injectif

$$\Gamma_{F_x} \hookrightarrow \Gamma_F$$
.

On appelle groupe de Galois non ramifié de F_x le groupe $\Gamma_{F_x}^{\text{nr}} = \text{Aut}_{F_x}(F_{x,s}^{\text{nr}})$ des automorphismes de la plus grande extension non ramifiée $F_{x,s}^{\text{nr}}$ de F_x contenue dans $F_{x,s}$. L'inclusion

$$F_{x,s}^{\rm nr} \hookrightarrow F_{x,s}$$

induit un homomorphisme surjectif canonique

$$\Gamma_{F_r} \to \Gamma_F^{\rm nr}$$
.

Le quotient de l'anneau des entiers algébriques $O_{x,s}$ de $F_{x,s}^{\rm nr}$ par son idéal maximal est une clôture algébrique $\overline{\kappa(x)}$ du corps fini $\kappa(x)$. Définissant le groupe de Galois de $\kappa(x)$ comme $\Gamma_{\kappa(x)} = {\rm Aut}_{\kappa(x)}(\overline{\kappa(x)})$, l'homomorphisme de réduction

$$O_{x,s} \to \overline{\kappa(x)}$$

induit un isomorphisme canonique

$$\Gamma_{\kappa(x)} \xrightarrow{\sim} \Gamma_{F_x}^{\mathrm{nr}}$$
.

Le groupe de Galois $\Gamma_{\kappa(x)}$ de $\kappa(x)$ admet pour générateur topologique l'élément de Frobenius σ_x défini comme l'automorphisme

$$\sigma_x : \overline{\kappa(x)} \xrightarrow{\sim} \overline{\kappa(x)},$$

$$a \mapsto a^{q_x}.$$

Plus précisément, l'homomorphisme

$$\begin{array}{ccc}
\mathbb{Z} & \to & \Gamma_{\kappa(x)} \\
n & \mapsto & \sigma_x^n
\end{array}$$

induit un isomorphisme de groupes topologiques

$$\hat{\mathbb{Z}} = \varprojlim_{n \geq 1} \, \mathbb{Z}/n \, \mathbb{Z} \stackrel{\sim}{\longrightarrow} \Gamma_{\kappa(x)} \, .$$

Via l'isomorphisme $\Gamma_{\kappa(x)} \xrightarrow{\sim} \Gamma_{F_x}^{\text{nr}}$, l'élément de Frobenius σ_x peut aussi être vu comme un générateur topologique de $\Gamma_{F_x}^{\text{nr}}$.

Notons F_s^{nr} [resp. $F_s^{\text{nr},S}$ si $S \subset |F|$ est un ensemble fini de places] la plus grande extension de F contenue dans F_s qui soit partout non ramifiée [resp. non ramifiée en dehors des places de S].

Le groupe $\Gamma_F^{\rm nr}$ [resp. $\Gamma_F^{{\rm nr},S}$] des automorphismes de $F_s^{\rm nr}$ [resp. $F_s^{{\rm nr},S}$] est un quotient du groupe de Galois Γ_F . On l'appelle le groupe de Galois non ramifié [resp. non ramifié en dehors de S] de F.

Pour toute place $x \in |F|$ [resp. $x \in |F| - S$], le plongement choisi

$$F_s \hookrightarrow F_{x,s}$$

induit un plongement

$$F_s^{\operatorname{nr}} \hookrightarrow F_{x,s}^{\operatorname{nr}} \quad [\text{resp. } F_s^{\operatorname{nr},S} \hookrightarrow F_{x,s}^{\operatorname{nr}}]$$

puis un homomorphisme injectif

$$\Gamma^{\mathrm{nr}}_{F_x} \hookrightarrow \Gamma^{\mathrm{nr}}_F \quad [\text{resp. } \Gamma^{\mathrm{nr}}_{F_x} \hookrightarrow F^{\mathrm{nr},S}_F]$$

qui permet de considérer σ_x comme un élément de $\Gamma_F^{\rm nr}$ [resp. $\Gamma_F^{{\rm nr},S}].$

Enfin, si E est une extension finie galoisienne de F contenue dans F_s et $S \subset |F|$ un ensemble fini de places en dehors duquel E est non ramifiée, le groupe de Galois $\Gamma_{E/F} = \operatorname{Aut}_F(E)$ s'identifie à un quotient de Γ_F et même de $\Gamma_F^{\operatorname{nr},S}$. Pour toute place $x \in |F| - S$, σ_x induit un élément du groupe fini $\Gamma_{E/F}$ que l'on note toujours σ_x .

2 Le groupe dual de Langlands

Considérons un groupe réductif connexe G sur notre corps de fonctions F.

Un quadruplet $(X, \Phi, X^{\vee}, \Phi^{\vee})$ est une donnée radicielle (réduite) au sens de la définition I.2 si et seulement si $(X^{\vee}, \Phi^{\vee}, X, \Phi)$ est une donnée radicielle (réduite). De plus, (Δ, Δ^{\vee}) est une base de racines et coracines simples de $(X, \Phi, X^{\vee}, \Phi^{\vee})$ si et seulement si (Δ^{\vee}, Δ) est une base de $(X^{\vee}, \Phi^{\vee}, X, \Phi)$.

Cette remarque, combinée avec le théorème I.3 et la proposition I.5, permet de poser la définition suivante :

Définition II.1. (Langlands) – Le dual \hat{G} d'un groupe réductif connexe G sur F est le groupe réductif connexe sur \mathbb{C} , muni d'un épinglage, qui est associé à la donnée radicielle $(X_G^{\vee}, \Phi_G^{\vee}, X_G, \Phi_G)$ munie de la base $(\Delta_G^{\vee}, \Delta_G)$.

Il est unique à unique isomorphisme près préservant les épinglages.

Il est canoniquement muni d'une action du groupe de Galois Γ_F de F qui se factorise à travers le groupe de Galois $\Gamma_{E/F}$ d'une extension finie galoisienne E de F.

Rappelons les exemples de passage au groupe dual de Langlands à partir des groupes classiques déployés :

$$\begin{array}{lll} G = \operatorname{GL}_r & \Longrightarrow & \hat{G} = \operatorname{GL}_r(\mathbb{C}) \\ G = \operatorname{PGL}_r & \Longrightarrow & \hat{G} = \operatorname{SL}_r(\mathbb{C}) \\ G = \operatorname{SL}_r & \Longrightarrow & \hat{G} = \operatorname{PGL}_r(\mathbb{C}) \\ G = \operatorname{SO}_{2r} & \Longrightarrow & \hat{G} = \operatorname{SO}_{2r}(\mathbb{C}) \\ G = \operatorname{SO}_{2r+1} & \Longrightarrow & \hat{G} = \operatorname{Sp}_{2r}(\mathbb{C}) \\ G = \operatorname{Sp}_{2r} & \Longrightarrow & \hat{G} = \operatorname{SO}_{2r+1} \end{array}$$

Si E est une extension finie séparable de F et H un groupe algébrique sur E, on appelle "groupe déduit de H par restriction des scalaires à la Weil de E à F" et on note

$$G = \operatorname{Res}_{E/F} H$$

le groupe algébrique sur F qui représente le foncteur sur la catégorie des F-algèbres

$$A \mapsto G(A) = H(A \otimes_F E)$$
.

On a en particulier

$$G(F) = H(E), \quad G(\mathbb{A}_F) = H(\mathbb{A}_E).$$

Si H est un groupe réductif connexe sur E, $G = \operatorname{Res}_{E/F} H$ est un groupe réductif connexe sur F. Leurs groupes duaux de Langlands sont reliés par l'identification

$$\hat{G} = \prod_{\iota: E \hookrightarrow F_s} \hat{H}_{\iota}$$

où ι décrit l'ensemble des plongements de E dans la clôture séparable F_s de F et, pour tout tel plongement ι , H_ι désigne le groupe réductif connexe H vu comme groupe algébrique sur F_s via le plongement ι .

La définition du groupe dual \hat{G} de G se complète de la manière suivante :

Définition II.2. (Langlands) – Pour tout groupe réductif connexe G sur F, on appelle "L-groupe" de G le produit semi-direct

$$^{L}G = \hat{G} \rtimes \Gamma_{F}$$
.

Il existe des extensions finies galoisiennes E de F telles que l'action de Γ_F sur \hat{G} se factorise à travers le groupe fini $\Gamma_{E/F}$. Il arrivera que l'on préfère définir le L-groupe de G comme le produit semi-direct

$$^{L}G = \hat{G} \rtimes \Gamma_{E/F}$$

pour le choix d'une telle extension E.

Définition II.3. – Un groupe réductif connexe G sur F est dit "non ramifié" [resp. "non ramifié" en dehors d'un sous-ensemble fini S de |F|] si, pour toute place $x \in |F|$ [resp. $x \in |F| - S$], le groupe G_{F_x} est quasi-déployé sur F_x et devient déployé sur une extension finie non ramifiée de F_x .

On montre que tout groupe réductif connexe G sur F est non ramifié en dehors d'un ensemble fini S de places de F.

Si G est non ramifié [resp. non ramifié en dehors de S], l'action de Γ_F sur \hat{G} se factorise à travers le quotient $\Gamma_F^{\rm nr}$ [resp. $\Gamma_F^{\rm nr,S}$]. On peut alors préférer définir le L-groupe de G comme le produit semi-direct

$$^{L}G = \hat{G} \rtimes \Gamma_{F}^{\text{nr}}$$

[resp.
$${}^LG = \hat{G} \rtimes \Gamma_F^{\text{nr},S}$$
]

ou même

$$^LG = \hat{G} \rtimes \Gamma_{E/F}$$

pour le choix d'une extension finie galoisienne E de F contenue dans F_s^{nr} [resp. $F_s^{\text{nr},S}$] et telle que l'action de Γ_F sur \hat{G} se factorise à travers $\Gamma_{E/F}$.

3 Algèbres de Hecke sphériques et isomorphismes de Satake

On considère toujours un groupe réductif connexe G sur le corps de fonctions F.

Pour toute place $x \in |F|$, le groupe topologique $G(F_x)$ est localement compact et totalement discontinu : son élément unité possède un système fondamental de voisinages constitués de sous-groupes ouverts compacts. Il possède des mesures de Haar invariantes à la fois à droite et à gauche ; elles sont toutes proportionnelles. On en choisit une, notée dg_x .

On note $\mathcal{H}_x^G = C_c^{\infty}(G(F_x))$, et on appelle "algèbre de Hecke locale de G en x", l'algèbre de convolution des fonctions localement constantes à support compact sur $G(F_x)$.

Pour tout sous-groupe ouvert compact K de $G(F_x)$, on note $\mathcal{H}_{x,K}^G$ la sous-algèbre de \mathcal{H}_x^G composée des fonctions invariantes à droite et à gauche par K. Ainsi, l'algèbre de Hecke \mathcal{H}_x^G est la réunion filtrante de ses sous-algèbres $\mathcal{H}_{x,K}^G$. Elle ne possède pas d'élément unité mais chaque sous-algèbre $\mathcal{H}_{x,K}^G$ admet pour unité le quotient

$$\frac{1}{\operatorname{vol}(K)} \cdot 1\!\!1_K$$

de la fonction caractéristique \mathbb{I}_K de K par le volume de K pour la mesure dg_x .

Une représentation de $G(F_x)$ [resp. \mathcal{H}_x^G] est dite lisse lorsque chacun de ses vecteurs est fixé par un sous-groupe ouvert compact [resp. par un élément de \mathcal{H}_x^G]. Toute représentation lisse de $G(F_x)$ peut être vue comme une représentation lisse de \mathcal{H}_x^G , et réciproquement.

Une représentation lisse (π_x, V_{π_x}) de $G(F_x)$ ou \mathcal{H}_x^G est dite admissible si, pour tout sous-groupe ouvert compact K de $G(F_x)$, le sous-espace $V_{\pi_x}^K$ de ses vecteurs fixés par K – ou, ce qui revient au même, par l'unité $\frac{1}{\operatorname{vol}(K)} \cdot \mathbb{I}_K$ de $\mathcal{H}_{x,K}^G$ – est de dimension finie. Ce sous-espace $V_{\pi_x}^K$ est naturellement muni d'une action de l'algèbre $\mathcal{H}_{x,K}^G$.

Si (π_x, V_{π_x}) est une représentation lisse admissible irréductible de $G(F_x)$ et si K est un sous-groupe ouvert compact de $G(F_x)$ tel que $V_{\pi_x}^K \neq 0$, alors $V_{\pi_x}^K$ muni de l'action naturelle de $\mathcal{H}_{x,K}^G$ est une représentation irréductible. Réciproquement, si V^K est une représentation de dimension finie et irréductible de l'algèbre $\mathcal{H}_{x,K}^G$, il existe une représentation lisse admissible irréductible (π_x, V_{π_x}) de $G(F_x)$, unique à unique isomorphisme près, telle que $V_{\pi_x}^K \cong V^K$.

Supposons maintenant que, en la place x, le groupe réductif connexe G_{F_x} est non ramifié sur F_x . Cela signifie que G_{F_x} possède un épinglage $(T_x, B_x, (u_\alpha)_{\alpha \in \Delta_G})$ défini sur F_x et que l'action du groupe de Galois local Γ_{F_x} sur $(X_G, \Phi_G, X_G^{\vee}, \Phi_G^{\vee})$ se factorise à travers son quotient le groupe de Galois local non ramifié $\Gamma_{F_x}^{\rm nr} \cong \hat{\mathbb{Z}}$.

Notons T_x^d le plus grand sous-tore déployé de T_x .

Notons Λ_x le réseau des caractères de T_x^d ; il s'identifie au réseau quotient de $X_G = X_{T_x}$ par l'action de $\Gamma_{F_x}^{\text{nr}}$ ou, ce qui revient au même, de l'élément de Frobenius σ_x .

Notons Λ_x^{\vee} le réseau des cocaractères de T_x^d , qui est aussi le réseau dual de Λ_x ; c'est le sous-réseau de $X_G^{\vee} = X_{T_x}^{\vee}$ constitué des cocaractères fixés par l'action de σ_x .

On note encore Φ_G^x et $\Phi_G^{x\vee}$ les sous-ensembles finis de Λ_x et Λ_x^{\vee} , constitués des racines et coracines F_x rationnelles, tels qu'ils sont définis dans le paragraphe I.3. Comme G_{F_x} est non ramifié sur F_x , l'ensemble Φ_G^x s'identifie au quotient de Φ_G par l'action de σ_x .

D'après le lemme I.9, le quadruplet $(\Lambda_x, \Phi_G^x, \Lambda_x^\vee, \Phi_G^{x\vee})$ est une donnée radicielle (pas nécessairement réduite) au sens de la définition I.2. Son groupe de Weyl \mathfrak{S}_G^x s'identifie au quotient $N_G(T_x^d)/T_x$ du normalisateur de T_x^d dans G par son centralisateur $Z_G(T_x^d) = T_x$.

Lemme II.4. – Le groupe réductif connexe non ramifié G_{F_x} sur F_x , muni de son épinglage $(T_x, B_x, (u_\alpha)_{\alpha \in \Delta_G})$, se prolonge canoniquement en un schéma en groupes lisse G_{O_x} sur l'anneau O_x des entiers de F_x , dont la fibre sur le corps résiduel $\kappa(x)$ est un groupe réductif connexe et quasi-déployé de donnée radicielle $(X_G, \Phi_G, X_G^\vee, \Phi_G^\vee)$.

Démonstration. Par hypothèse, le groupe réductif G_{F_x} sur F_x est non ramifié. Il existe donc une extension finie non ramifiée F'_x de F_x telle que le groupe $G_{F'_x}$ soit déployé sur F'_x . Avec son épinglage déduit de $(T_x, B_x, (u_\alpha)_{\alpha \in \Delta_G})$ par changement de base, $G_{F'_x}$ s'identifie au groupe $G'_{F'_x}$ déduit du groupe réductif connexe déployé G' sur le corps fini de base \mathbb{F}_q dont la donnée radicielle est $(X_G, \Phi_G, X_G^\vee, \Phi_G^\vee)$. Avec son épinglage, $G_{F'_x} \cong G'_{F'_x}$ se prolonge donc en un schéma en groupes lisse "constant" $G_{O'_x}$ sur l'anneau O'_x des entiers de F'_x .

Or Spec (O'_x) est un revêtement fini étale galoisien de Spec (O_x) dont le groupe de Galois est engendré par l'élément de Frobenius σ_x . Grâce à l'épinglage, l'action de σ_x sur $(X_G, \Phi_G, X_G^{\vee}, \Phi_G^{\vee})$ se relève en une action de σ_x sur le schéma en groupes $G_{O'_x}$ sur Spec (O'_x) .

Cette action de σ_x constitue une "donnée de descente" sur $G_{O'_x}$ et permet de définir un schéma en groupes lisse G_{O_x} sur $\operatorname{Spec}(O_x)$, muni d'un épinglage, et dont $G_{O'_x}$ se déduit par changement de base. Ce schéma en groupes G_{O_x} sur $\operatorname{Spec}(O_x)$ répond à la question posée.

Pour simplifier, le schéma en groupes lisse G_{O_x} sur $\operatorname{Spec}(O_x)$ et son épinglage seront encore notés G_{F_x} et $(T_x, B_x, (u_\alpha)_{\alpha \in \Delta_G})$.

On dispose maintenant du sous-groupe

$$K_x = G_{F_x}(O_x)$$
 de $G(F_x)$

ainsi que de

$$T_x(O_x) \subset T_x(F_x)$$
, $B_x(O_x) \subset B_x(F_x)$, $N_{B_x}(O_x) \subset N_{B_x}(F_x)$ (où N_{B_x} désigne le radical unipotent de B_x).

Lemme II.5. – En une place $x \in |F|$ où le groupe G_{F_x} est non ramifié sur F_x , le sous-groupe $K_x = G_{F_x}(O_x)$ de $G(F_x)$ vérifie les propriétés suivantes :

- (i) C'est un sous-groupe compact ouvert maximal de $G(F_x)$.
- (ii) (Décomposition d'Iwasawa) Tout élément $g_x \in G(F_x)$ s'écrit sous la forme

$$g_x = b_x k_x$$
 avec $b_x \in B_x(F_x)$, $k_x \in K_x$,

ou, ce qui revient au même,

$$g_x = \mu_x n_x k_x$$
 avec $\mu_x \in T_x(F_x), n_x \in N_{B_x}(F_x), k_x \in K_x$.

De plus, on a

$$K_x \cap B_x(F_x) = B_x(O_x) = T_x(O_x) \cdot N_{B_x}(O_x).$$

(iii) L'intersection $K_x \cap T_x(F_x) = T_x(O_x)$ est le plus grand sous-groupe ouvert compact de $T_x(F_x)$. C'est aussi l'intersection de tous les homomorphismes

$$T_x(F_x) \xrightarrow{\chi} F_x^{\times} \xrightarrow{v_x} \mathbb{Z}$$

définis en composant les caractères $\chi: T_x \to \mathbb{G}_m$ rationnels sur F_x et la valuation $v_x: F_x^\times \to \mathbb{Z}$.

(iv) Le sous-groupe $K_x \subset G(F_x)$ contient des représentants de tous les éléments du groupe de Weyl F_x rationnel $\mathfrak{S}_G^x = N_G(T_x^d)/T_x$.

Si le groupe G_{F_x} est non ramifié sur F_x , on choisit pour mesure de Haar dg_x sur $G(F_x)$ celle qui attribue le volume 1 au sous-groupe ouvert compact maximal K_x . De même, on munit $T_x(F_x)$ de la mesure de Haar $d\mu_x$ qui attribue le volume 1 au plus grand sous-groupe ouvert compact $T_x(O_x)$, et $N_{B_x}(F_x)$ de la mesure de Haar dn_x qui attribue le volume 1 au sous-groupe ouvert compact $N_{B_x}(O_x)$.

Lemme II.6. – Avec les choix de mesures de Haar opérés ci-dessus, on dispose, pour toute fonction φ localement constante à support compact sur $G(F_x)$, de la formule d'intégration

$$\int_{G(F_x)} dg_x \cdot \varphi(g_x) = \int_{T_x(F_x)} d\mu_x \cdot \int_{N_{B_x}(F_x)} dn_x \cdot \int_{K_x} dk_x \cdot \varphi(\mu_x \, n_x \, k_x) \,.$$

Notons Λ'_x le réseau des caractères

$$T_x \xrightarrow{\chi} \mathbb{G}_m$$

qui sont rationnels sur F_x , et $\Lambda_x^{\prime\vee}$ le réseau dual de Λ_x^{\prime} . Ainsi, Λ_x^{\prime} est naturellement plongé dans $\Lambda_x = X_{T_x^d}$ comme sous-réseau d'indice fini, et le dual $\Lambda_x^{\vee} = X_{T_x^d}^{\vee}$ de Λ_x est naturellement plongé dans $\Lambda_x^{\prime\vee}$ comme sous-réseau d'indice fini.

Lemme II.7. – Supposons toujours que, en la place $x \in |F|$, le groupe réductif connexe G_{F_x} soit non ramifié sur F_x . Alors :

(i) Il existe un unique homomorphisme

$$\operatorname{ord}_x: T_x(F_x) \to \Lambda_x^{\prime \vee}$$

tel que, pour tout caractère $\chi: T_x \to \mathbb{G}_m$ rationnel sur F_x et pour tout élément $\mu_x \in T_x(F_x)$, on ait

$$\langle \operatorname{ord}_{x}(\mu_{x}), \chi \rangle = v_{x}(\chi(\mu_{x})).$$

24

- (ii) L'image de l'homomorphisme ord_x est le sous-réseau d'indice fini Λ_x^{\vee} de Λ_x^{\vee} .
- (iii) On a une suite exacte canonique:

$$1 \longrightarrow T_x(O_x) \longrightarrow T_x(F_x) \stackrel{\operatorname{ord}_x}{\longrightarrow} \Lambda_x^{\vee} \longrightarrow 0$$

Le normalisateur $N_G(T_x^d)$ de T_x^d dans G_{F_x} normalise aussi son centralisateur T_x . Le quotient fini $N_G(T_x^d)/T_x = \mathfrak{S}_G^x$ agit par conjugaison sur T_x ainsi que sur T_x^d , Λ_x , Λ_x^{\vee} , Λ_x^{\vee} et Λ_x^{\vee} . La suite exacte du lemme II.7(iii) ci-dessus est respectée par l'action de \mathfrak{S}_G^x .

On notera $\mathbb{C}[\Lambda_x^{\vee}]$ l'algèbre de groupe du réseau Λ_x^{\vee} . Elle s'identifie à l'algèbre de convolution des fonctions à support compact sur $T_x(F_x)$ qui sont invariantes par $T_x(O_x)$. Elle est munie d'une action de \mathfrak{S}_G^x .

On note $\mathcal{H}_{x,\emptyset}^G = \mathcal{H}_{x,K_x}^G$, et on appelle "algèbre de Hecke sphérique (locale) de G en la place x", la sousalgèbre de \mathcal{H}_x^G constituée des fonctions à support compact invariantes à droite et à gauche par $K_x = G_{F_x}(O_x)$. Son élément unité est la fonction caractéristique $\mathbb{1}_{K_x} = \mathbb{1}_x$ de K_x .

Afin de définir l'isomorphisme de Satake, on a encore besoin d'introduire le caractère modulaire

$$\rho_{B_x}: B_x(F_x) \to q_x^{\mathbb{Z}}.$$

Il est caractérisé par la propriété que, pour toute fonction φ localement constante à support compact sur $N_{B_x}(F_x)$ et tout élément $b_x \in B_x(F_x)$, on a

$$\int_{N_{B_x}(F_x)} dn_x \cdot \varphi(b_x^{-1} n_x b_x) = \rho_{B_x}(b_x) \cdot \int_{N_{B_x}(F_x)} dn_x \cdot \varphi(n_x).$$

Son noyau contient le radical unipotent $N_{B_x}(F_x)$.

Théorème II.8. (Satake) – Si le groupe réductif connexe G_{F_x} est non ramifié sur F_x , l'application linéaire

$$h_x \mapsto S_x^G(h_x) = \left(T_x(F_x) \ni \mu_x \mapsto \rho_{B_x}^{1/2}(\mu_x) \cdot \int_{N_{B_x}(F_x)} dn_x \cdot h_x(\mu_x \, n_x) \right)$$

définit un isomorphisme

$$S_x^G:\mathcal{H}_{x,\emptyset}^G\to\mathbb{C}\left[\Lambda_x^\vee\right]^{\mathfrak{S}_G^x}$$

de l'algèbre de Hecke sphérique locale $\mathcal{H}_{x,\emptyset}^G$ vers la sous-algèbre $\mathbb{C}\left[\Lambda_x^\vee\right]^{\mathfrak{S}_G^x}$ de $\mathbb{C}\left[\Lambda_x^\vee\right]$ constituée des éléments invariants par l'action du groupe fini \mathfrak{S}_G^x .

Remarque. On note en particulier que l'algèbre de Hecke sphérique $\mathcal{H}_{x,\emptyset}^G$ est commutative. Ses représentations irréductibles sont de dimension 1; ce sont des caractères.

Posons encore:

Définition II.9. – Si le groupe réductif G_{F_x} est non ramifié sur F_x , une représentation lisse admissible (π_x, V_{π_x}) de $G(F_x)$ ou \mathcal{H}_x^G est dite "non ramifiée" si

$$\dim V_{\pi_x}^{K_x} = 1 \,.$$

Dans ce cas, l'algèbre de Hecke sphérique $\mathcal{H}_{x,\emptyset}^G \cong \mathbb{C}\left[\Lambda_x^\vee\right]^{\mathfrak{S}_G^x}$ agit sur l'espace $V_{\pi_x}^{K_x}$ par un caractère que l'on notera

$$\lambda(\pi_x): \mathbb{C}\left[\Lambda_x^{\vee}\right]^{\mathfrak{S}_G^x} \to \mathbb{C}$$
.

Si la représentation (π_x, V_{π_x}) est à la fois non ramifiée et irréductible, elle est entièrement déterminée par la connaissance du caractère associé $\lambda(\pi_x)$ de $\mathbb{C}\left[\Lambda_x^{\vee}\right]^{\mathfrak{S}_G^x}$.

Réciproquement, pour tout caractère

$$\lambda: \mathbb{C}\left[\Lambda_x^{\vee}\right]^{\mathfrak{S}_G^x} \to \mathbb{C}$$
,

il existe une représentation lisse admissible (π_x, V_{π_x}) de \mathcal{H}_x^G , non ramifiée et irréductible, unique à isomorphisme près, telle que

$$\lambda(\pi_r) = \lambda$$
.

Précisons d'autre part la forme des caractères

$$\mathbb{C}\left[\Lambda_x^{\vee}\right]^{\mathfrak{S}_G^x} \to \mathbb{C}$$
.

Rappelons pour cela que l'algèbre $\mathbb{C}\left[\Lambda_x^{\vee}\right]$ s'identifie à l'algèbre de convolution $\mathcal{H}_{x,\emptyset}^{T_x}$ des fonctions à support compact sur $T_x(F_x)$ invariantes par $T_x(O_x)$.

Si

$$\lambda: T_x(F_x) \stackrel{\operatorname{ord}_x}{\longrightarrow} \Lambda_x^{\vee} \longrightarrow \mathbb{C}^{\times}$$

est un caractère non ramifié de $T_x(F_x)$, l'homomorphisme

$$\begin{array}{ccc} \mathcal{H}_{x,\emptyset}^{T_x} & \to & \mathbb{C} \\ \varphi & \mapsto & \int_{T_x(F_x)} d\mu_x \cdot \lambda(\mu_x) \cdot \varphi(\mu_x) \end{array}$$

définit un caractère de l'algèbre $\mathcal{H}_{x,\emptyset}^{T_x} \stackrel{\sim}{\longrightarrow} \mathbb{C}\left[\Lambda_x^{\vee}\right]$ et aussi, par restriction, de la sous-algèbre $\mathbb{C}\left[\Lambda_x^{\vee}\right]^{\mathfrak{S}_G^x}$.

De plus, tout caractère de $\mathbb{C}\left[\Lambda_x^\vee\right]^{\mathfrak{S}_G^x}$ s'obtient de cette façon, et deux caractères non ramifiés du tore $T_x(F_x)$ induisent le même caractère de l'algèbre $\mathbb{C}\left[\Lambda_x^\vee\right]^{\mathfrak{S}_G^x}$ si et seulement s'ils sont images l'un de l'autre par un élément du groupe de Weyl F_x -rationnel \mathfrak{S}_G^x .

En résumé:

Corollaire II.10. – Supposons toujours que le groupe réductif G_{F_x} est non ramifié sur F_x .

Alors, se donner une représentation lisse admissible, non ramifiée et irréductible (π_x, V_{π_x}) de \mathcal{H}_x^G ou $G(F_x)$ équivaut à se donner un caractère de l'algèbre commutative $\mathbb{C}\left[\Lambda_x^\vee\right]^{\mathfrak{S}_G^x}$ ou, ce qui revient au même, un caractère non ramifié du tore $T_x(F_x)$, modulo l'action du groupe de Weyl F_x -rationnel \mathfrak{S}_G^x .

Pour toute telle représentation (π_x, V_{π_x}) , la notation $\lambda(\pi_x)$ pourra désigner le caractère

$$\mathbb{C}\left[\Lambda_x^\vee\right]^{\mathfrak{S}_G^x} \to \mathbb{C}$$

ou bien un caractère non ramifié

$$T_x(F_x)/T_x(O_x) \to \mathbb{C}$$

(bien déterminé à action près de \mathfrak{S}_G^x) qui lui correspondent.

4 Reformulation de l'isomorphisme de Satake en les termes du groupe dual de Langlands

On considère toujours un groupe réductif connexe G sur le corps global F.

Son dual de Langlands, noté \hat{G} , est un groupe réductif connexe sur \mathbb{C} . Il est muni d'un épinglage qui comprend un tore maximal \hat{T} et un sous-groupe de Borel \hat{B} contenant \hat{T} . Son groupe de Weyl s'identifie à celui de G, noté \mathfrak{S}_G .

Il existe un sous-ensemble fini S de |F| tel que, pour toute place $x \in |F| - S$, le groupe G_{F_x} est non ramifié sur F_x . L'action sur \hat{G} du groupe de Galois Γ_F se factorise à travers son quotient $\Gamma_F^{nr,S}$ et on peut définir le L-groupe de G comme le produit semi-direct

$${}^LG = \hat{G} \rtimes \Gamma_{\scriptscriptstyle E}^{{\rm nr},S}$$
.

En toute place $x \in |F| - S$, on a choisi une paire de Borel (T_x, B_x) du groupe réductif G_{F_x} quasi-déployé sur F_x . On a noté T_x^d le plus grand sous-tore déployé de T_x , Λ_x le réseau des caractères de T_x^d et Λ_x^\vee le réseau dual de ses cocaractères. L'action sur \hat{G} du groupe de Galois local Γ_{F_x} se factorise à travers son quotient $\Gamma_{F_x}^{\text{nr}} \cong \Gamma_{\kappa(x)} \cong \hat{\mathbb{Z}}$ qui admet pour générateur topologique l'élément de Frobenius σ_x . On a encore noté $\Phi_G^x = \Phi_G/\sigma_x$ l'ensemble des racines de T_x^d et $\Phi_G^{x\vee}$ l'ensemble de ses coracines. Le groupe de Weyl F_x -rationnel associé \mathfrak{S}_G^x s'identifie au sous-groupe de \mathfrak{S}_G constitué des éléments fixés par σ_x .

Définition II.11. – Pour toute place $x \in |F|$ telle que le groupe réductif connexe G sur F devienne non ramifié sur F_x , on appelle "groupe dual de Langlands local de G en x" le produit semi-direct

$$^{L}G_{x} = \hat{G} \rtimes \Gamma_{F_{x}}^{\mathrm{nr}}$$
.

On note \hat{G}_x sa fibre au-dessus de l'élément de Frobenius σ_x , munie de l'action par conjugaison de \hat{G} . \square

On a le résultat suivant qui permet de réinterpréter en les termes du groupe dual de Langlands l'isomorphisme de Satake

$$S_x^G: \mathcal{H}_{x,\emptyset}^G \stackrel{\sim}{\longrightarrow} \mathbb{C} \left[\Lambda_x^{\vee}\right]^{\mathfrak{S}_G^x}.$$

Proposition II.12. – En toute place $x \in |F|$ où le groupe G_{F_x} est non ramifié sur F_x , il existe un isomorphisme canonique

$$\mathbb{C}\left[\Lambda_x^{\vee}\right]^{\mathfrak{S}_G^x} \stackrel{\sim}{\longrightarrow} \mathbb{C}\left[\hat{G}_x\right]^{\hat{G}}$$

où:

- $\mathbb{C}[\hat{G}_x]$ désigne l'algèbre des fonctions polynomiales sur \hat{G}_x vu comme schéma affine sur \mathbb{C} ,
- $\mathbb{C}[\hat{G}_x]^{\hat{G}}$ désigne sa sous-algèbre des fonctions polynomiales invariantes par conjugaison par les éléments de \hat{G} .

Remarque. Lorsque le groupe réductif G_{F_x} est déployé sur F_x , $\Gamma_{F_x}^{\text{nr}}$ agit trivialement sur \hat{G} , LG_x est le simple produit direct $\hat{G} \times \Gamma_{F_x}^{\text{nr}}$ et $\mathbb{C}[\hat{G}_x]^{\hat{G}}$ est l'algèbre des polynômes invariants sur \hat{G} . Elle est isomorphe à $\mathbb{C}[\hat{T}]^{\mathfrak{S}_G}$.

Démonstration. Par définition, Λ_x^{\vee} est le réseau des cocaractères $\mathbb{G}_m \to T_x^d$; il s'identifie au sous-réseau de $X_{T_x}^{\vee} = X_G^{\vee}$ constitué des cocaractères $\mathbb{G}_m \to T_x$ fixés par l'élément de Frobenius σ_x .

Comme on a, par construction du groupe dual \hat{G} ,

$$X_G^{\vee} = X_{\hat{T}}$$
,

 Λ_x^{\vee} s'identifie encore au sous-réseau de $X_{\hat{T}}$ constitué des caractères $\hat{T} \to \mathbb{C}^{\times}$ fixés par l'action de σ_x . C'est aussi le réseau des caractères complexes du tore \hat{T}_x^d défini comme le conoyau de l'homomorphisme

$$\hat{T} \rightarrow \hat{T},$$
 $\lambda \mapsto \sigma_x(\lambda) \cdot \lambda^{-1}.$

On a donc un isomorphisme canonique

$$\mathbb{C}\left[\Lambda_x^\vee\right] \overset{\sim}{\longrightarrow} \mathbb{C}\left[\hat{T}_x^d\right] \overset{\sim}{\longrightarrow} \mathbb{C}\left[\hat{T}_x\right]^{\hat{T}}$$

où:

- $\mathbb{C}[\hat{T}_x^d]$ désigne l'algèbre des fonctions polynomiales sur le tore complexe \hat{T}_x^d ,
- $\mathbb{C}[\hat{T}_x]$ désigne l'algèbre des fonctions polynomiales sur la fibre \hat{T}_x de ${}^LT_x = \hat{T} \rtimes \Gamma^{nr}_{F_x}$ au-dessus de l'élément de Frobenius σ_x ,
- $\mathbb{C} [\hat{T}_x]^{\hat{T}}$ désigne sa sous-algèbre des fonctions polynomiales invariantes par conjugaison par les éléments de \hat{T} , vu comme la fibre de LT_x au-dessus de l'élément unité de $\Gamma^{\mathrm{nr}}_{F_x}$.

Soit $N_{\hat{G}}(\hat{T})$ le normalisateur de \hat{T} dans \hat{G} .

Soit $N_{\hat{G}}^x(\hat{T})$ le sous-groupe de $N_{\hat{G}}(\hat{T})$ défini comme l'image réciproque de \mathfrak{S}_G^x (identifié au sous-groupe de \mathfrak{S}_G constitué des éléments fixés par σ_x) dans la suite exacte

$$1 \to \hat{T} \to N_{\hat{G}}(\hat{T}) \to \mathfrak{S}_G \to 1$$
.

L'homomorphisme naturel de restriction

$$\mathbb{C}\left[\hat{G}_x\right]^{\hat{G}} \to \mathbb{C}\left[\hat{T}_x\right]^{N_{\hat{G}}^x(\hat{T})}$$

est un isomorphisme d'algèbres. En effet, il est injectif parce que le morphisme

$$\begin{array}{ccc}
\hat{G} \times \hat{T} & \to & \hat{G} \\
(g, \lambda) & \mapsto & g^{-1} \lambda \, \sigma_x(g)
\end{array}$$

a une image dense. Il est surjectif parce que les fibres de ce morphisme au-dessus d'un ouvert dense de \hat{G} sont isomorphes à $N_{\hat{G}}^x(\hat{T})$.

Pour conclure, il suffit de composer les isomorphismes

$$\mathbb{C}\left[\Lambda_x^\vee\right]^{\mathfrak{S}_G^x} \stackrel{\sim}{\longrightarrow} (\mathbb{C}\left[\hat{T}_x\right]^{\hat{T}})^{\mathfrak{S}_G^x} = \mathbb{C}\left[\hat{T}_x\right]^{N_{\hat{G}}^x(\hat{T})} \stackrel{\sim}{\longrightarrow} \mathbb{C}\left[\hat{G}_x\right]^{\hat{G}}.$$

5 Représentations automorphes et transfert de Langlands vers un groupe linéaire

On considère toujours un groupe réductif connexe G sur le corps global F.

Comme dans le paragraphe précédent, S désigne un sous-ensemble fini de |F| tel que, pour toute place $x \in |F| - S$, le groupe G_{F_x} soit non ramifié sur F_x .

En toute place $x \in |F|$, on a muni $G(F_x)$ d'une mesure de Haar dg_x . Si $x \notin S$, dg_x est la mesure de Haar qui attribue le volume 1 au sous-groupe ouvert compact maximal $K_x = G_{F_x}(O_x)$.

Le groupe adélique

$$G(\mathbb{A}) = \left\{ (g_x)_{x \in |F|} \in \prod_{x \in |F|} G(F_x) \mid g_x \in K_x \text{ en presque toute place } x \in |F| - S \right\}$$

est muni de la topologie produit, pour laquelle il est localement compact, et de la mesure de Haar produit $dg = \bigotimes_{x \in |F|} dg_x$.

On note $\mathcal{H}^G = C^\infty_x(G(\mathbb{A}))$, et on appelle "algèbre de Hecke globale de G", l'algèbre de convolution des fonctions localement constantes à support compact sur $G(\mathbb{A})$. Elle s'écrit naturellement comme le produit tensoriel $\mathcal{H}^G = \bigotimes_{x \in |F|} \mathcal{H}^G_x$ des algèbres de Hecke locales de G.

Une représentation de $G(\mathbb{A})$ [resp. \mathcal{H}^G] est dite lisse quand chacun de ses vecteurs est fixé par un sousgroupe ouvert compact [resp. par un élément de l'algèbre]. Une représentation lisse de $G(\mathbb{A})$ peut être vue comme une représentation lisse de \mathcal{H}^G , et réciproquement.

Une représentation lisse (π, V_{π}) de $G(\mathbb{A})$ ou \mathcal{H}^G est dite admissible si, pour tout sous-groupe ouvert compact K de $G(\mathbb{A})$, le sous-espace V_{π}^K de ses vecteurs fixés par K est de dimension finie. Ce sous-espace V_{π}^K est naturellement muni d'une action de la sous-algèbre \mathcal{H}_K^G de \mathcal{H}^G constituée des fonctions invariantes à droite et à gauche par K.

On appelle représentations lisses admissibles factorisables de \mathcal{H}^G celles de la forme

$$\pi \cong \bigotimes_{x \in |F|} \pi_x$$

où les π_x sont des représentations lisses admissibles des algèbres locales \mathcal{H}_x^G , non ramifiées en presque toute place $x \in |F| - S$.

Les représentations lisses admissibles irréductibles de \mathcal{H}^G sont les représentations lisses admissibles factorisables dont tous les facteurs locaux π_x sont des représentations lisses admissibles irréductibles.

Connaître une représentation lisse admissible irréductible π de \mathcal{H}^G revient à connaître tous ses facteurs locaux π_x , $x \in |F|$. Or, en toute place $x \in |F| - S$ où π_x est non ramifié, connaître π_x revient à connaître $\lambda(\pi_x)$ comme caractère

$$\mathbb{C}\left[\Lambda_x^\vee\right]^{\mathfrak{S}_G^x} \to \mathbb{C}$$

ou, ce qui revient au même, comme élément du quotient par \mathfrak{S}_G^x de l'ensemble des caractères complexes de $\Lambda_x^\vee \cong T_x(F_x)/T_x(O_x)$.

Lorsque $G = \operatorname{GL}_r$, T_x s'identifie en toute place $x \in |F|$ au tore maximal $T_r = \mathbb{G}_m^r$, $T_x(F_x)$ s'identifie à $(F_x^{\times})^r$, $T_x(F_x)/T_x(O_x)$ s'identifie par la valuation v_x à \mathbb{Z}^r et l'ensemble de ses caractères, c'est-àdire des caractères non ramifiés de $T_x(F_x)$, s'identifie à $(\mathbb{C}^{\times})^r$. En outre, $\mathfrak{S}_G^x = \mathfrak{S}_G$ s'identifie au groupe symétrique \mathfrak{S}_r agissant sur $(\mathbb{C}^{\times})^r$ par permutation des coordonnées. Se donner une représentation lisse admissible irréductible et non ramifiée π_x de $\operatorname{GL}_r(F_x)$ équivaut donc à se donner une famille $\lambda(\pi_x) = (\lambda_1(\pi_x), \ldots, \lambda_r(\pi_x))$ de r nombres complexes non nuls, à l'ordre près de ses composantes.

Revenons au cas général où G est un groupe réductif connexe sur F arbitraire.

Proposition II.13. – Quel que soit le groupe réductif connexe G sur le corps global F, le sous-groupe G(F) du groupe topologique localement compact $G(\mathbb{A})$ est discret.

Pour tout sous-groupe ouvert compact K de $G(\mathbb{A})$, l'espace $\mathcal{C}_K(G(F)\backslash G(\mathbb{A}))$ des fonctions

$$G(\mathbb{A}) \to \mathbb{C}$$

invariantes à gauche par le sous-groupe discret G(F) et invariantes à droite par K est muni d'une action de l'algèbre \mathcal{H}_K^G par convolution à droite.

Alors la réunion filtrante $\mathcal{C}_{\infty}(G(F)\backslash G(\mathbb{A}))$ de ces espaces $\mathcal{C}_K(G(F)\backslash G(\mathbb{A}))$ est une représentation lisse de \mathcal{H}^G ou $G(\mathbb{A})$. Les éléments de $\mathbb{C}_{\infty}(G(F)\backslash G(\mathbb{A}))$, c'est-à-dire les fonctions

$$G(F)\backslash G(\mathbb{A})\to \mathbb{C}$$

invariantes à droite par un sous-groupe ouvert compact de $G(\mathbb{A})$, sont appelées les "formes automorphes de G".

Définition II.14. – Une représentation lisse admissible irréductible π de $G(\mathbb{A})$ est dite "automorphe" s'il est possible de la réaliser dans l'espace des formes automorphes de G, c'est-à-dire si l'espace

$$\operatorname{Hom}_{\mathcal{H}^G}(\pi, \mathcal{C}_{\infty}(G(F)\backslash G(\mathbb{A})))$$

 $est\ non\ nul.$

Lorsque $G = GL_r$, on dispose du théorème suivant de Piatetski-Shapiro :

Théorème II.15. -

(i) (Multiplicité 1) $Si \pi$ est une représentation automorphe de $GL_r(\mathbb{A})$, l'espace des homomorphismes

$$\pi \to \mathcal{C}_{\infty}(\mathrm{GL}_r(F)\backslash \mathrm{GL}_r(\mathbb{A}))$$

équivariants relativement aux actions de $\mathcal{H}^r = \mathcal{H}^{GL_r}$ est de dimension 1.

(ii) (Rigidité) Soient π et π' deux représentations automorphes de $GL_r(\mathbb{A})$ telles que, en presque toute place $x \in |F|$ où π_x et π'_x sont non ramifiés, on ait

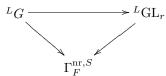
$$\lambda(\pi_x) = \lambda(\pi'_x)$$
.

Alors π et π' sont isomorphes.

Considérons maintenant un homomorphisme continu de groupes

$$\rho: \ ^LG = \hat{G} \rtimes \Gamma_F^{\mathrm{nr},S} \to \mathrm{GL}_r(\mathbb{C}).$$

En notant ${}^L\mathrm{GL}_r=\mathrm{GL}_r(\mathbb{C})\times\Gamma_F^{\mathrm{nr},S}$, on peut tout aussi bien voir ρ comme un homomorphisme qui s'inscrit dans un triangle commutatif :



Un tel homomorphisme $\rho: {}^LG \to \mathrm{GL}_r(\mathbb{C})$ est appelé "homomorphisme de transfert". Comme il est continu, son noyau contient un sous-groupe ouvert d'indice fini de $\Gamma_F^{\mathrm{nr},S}$. Autrement dit, il existe une extension finie galoisienne E de F, non ramifiée en dehors de S et contenue dans $F_s^{\mathrm{nr},S}$, telle que ρ se factorise en

$$\hat{G} \rtimes \Gamma_{E/F} \to \mathrm{GL}_r(\mathbb{C})$$
.

En toute place $x \in |F| - S$, ρ induit un homomorphisme de groupes

$$\rho_x: {}^L G_x = \hat{G} \rtimes \Gamma^{\mathrm{nr}}_{F_x} \to \mathrm{GL}_r(\mathbb{C})$$

et donc un homomorphisme d'algèbres

$$\rho_x^* : \mathbb{C}\left[\mathrm{GL}_r(\mathbb{C})\right]^{\mathrm{GL}_r(\mathbb{C})} \to \mathbb{C}\left[\hat{G}_x\right]^{\hat{G}}.$$

Définition II.16. – Étant donnés un homomorphisme de transfert

$$\rho: \hat{G} \rtimes \Gamma_F^{\mathrm{nr},S} \to \mathrm{GL}_r(\mathbb{C})$$

et un place sans ramification $x \in |F| - S$, on note encore

$$\rho_x^*: \mathcal{H}_{x,\emptyset}^r \to \mathcal{H}_{x,\emptyset}^G$$

l'homomorphisme de l'algèbre de Hecke sphérique locale $\mathcal{H}_{x,\emptyset}^r = \mathcal{H}_{x,\phi}^{\mathrm{GL}_r}$ de $\mathrm{GL}_r(F_x)$ vers celle de $G(F_x)$ qui s'obtient en combinant

• l'homomorphisme d'algèbres

$$\rho_x^* : \mathbb{C}\left[\operatorname{GL}_r(\mathbb{C})\right]^{\operatorname{GL}_r(\mathbb{C})} \to \mathbb{C}\left[\hat{G}_x\right]^{\hat{G}}$$

induit par l'homomorphisme de groupes

$$\rho_x : \hat{G} \rtimes \Gamma_{F_x}^{\mathrm{nr}} \to \mathrm{GL}_r(\mathbb{C}),$$

- les isomorphismes de Satake du théorème II.8,
- et les isomorphismes de la proposition II.12.

Par simple composition, l'homomorphisme d'algèbres $\rho_x^*: \mathcal{H}_{x,\emptyset}^r \to \mathcal{H}_{x,\emptyset}^G$ induit une application

$$(\rho_x)_*: \{\text{caractères de } \mathcal{H}_{x,\emptyset}^G\} \to \{\text{caractères de } \mathcal{H}_{x,\emptyset}^r\}.$$

Le principe de fonctorialité de Langlands pour un tel homomorphisme de transfert

$$\rho: \ ^LG = \hat{G} \rtimes \Gamma_F^{\mathrm{nr},S} \to \mathrm{GL}_r(\mathbb{C})$$

s'exprime de la manière suivante :

Conjecture II.17. – Soit $\rho: {}^LG = \hat{G} \rtimes \Gamma_F^{\mathrm{nr},S} \to \mathrm{GL}_r(\mathbb{C})$ un homomorphisme de transfert.

Alors, pour toute représentation automorphe π de $G(\mathbb{A})$, il existe une représentation automorphe π' de $GL_r(\mathbb{A})$ telle que, en toute place $x \in |F| - S$ où π est non ramifiée, π' est également non ramifiée et

$$\lambda(\pi'_x) = (\rho_x)_*(\lambda(\pi_x)).$$

Remarque. D'après le théorème II.15(ii) de rigidité de Piatetski-Shapiro, π' est unique à isomorphisme près, si elle existe. Et d'après le théorème II.15(i) de multiplicité 1, π' se réalise de manière unique comme une sous-représentation de $\mathcal{C}_{\infty}(\mathrm{GL}_r(F)\backslash\mathrm{GL}_r(\mathbb{A}))$. On note $\rho_*(\pi)$ cette sous-représentation de l'espace des formes automorphes de GL_r ; on l'appelle le transfert de π par ρ .

Comme F est un corps de fonctions, la conjecture est connue dès que G est un groupe linéaire de la forme

$$G = \prod_{\iota} \operatorname{Res}_{E_{\iota}/F} \operatorname{GL}_{r_{\iota}}$$

où ι décrit un ensemble fini d'indices, les r_{ι} sont des rangs ≥ 1 et les E_{ι} sont des extensions finies de F non ramifiées en dehors de S.

6 Une notion de "noyaux du transfert"

On considère toujours un groupe réductif connexe G sur F et un sous-ensemble fini S de |F| tel que, en toute place $x \in |F| - S$, le groupe G_{F_x} est non ramifié sur le corps local F_x .

En toute place $x \in |F|$, $G(F_x)$ est muni d'une mesure de Haar dg_x qui définit le produit de convolution de l'algèbre de Hecke locale \mathcal{H}_x^G . Si $x \notin S$, dg_x est la mesure de Haar qui attribue le volume 1 au sous-groupe ouvert compact maximal $K_x = G_{F_x}(O_x)$ et \mathcal{H}_x^G contient la sous-algèbre de Hecke sphérique $\mathcal{H}_{x,\emptyset}^G$ constituée des fonctions invariantes à droite et à gauche par K_x .

On considère encore un homomorphisme de transfert

$$\rho: {}^LG = \hat{G} \rtimes \Gamma_F^{\mathrm{nr},S} \to \mathrm{GL}_r(\mathbb{C}).$$

Il existe une extension finie galoisienne E de F, contenue dans $F_s^{\text{nr},S}$ donc non ramifiée en toute place $x \in |F| - S$, telle que l'homomorphisme ρ se factorise en

$$\hat{G} \rtimes \Gamma_{E/F} \to \mathrm{GL}_r(\mathbb{C})$$
.

Dans la définition II.16, nous avons défini en chaque place sans ramification $x \in |F| - S$ un homomorphisme d'algèbres induit par ρ

$$\rho_x^*: \mathcal{H}_{x,\emptyset}^r \to \mathcal{H}_{x,\emptyset}^G.$$

Nous proposons la définition suivante :

Définition II.18. – Soit G un groupe réductif connexe sur F, non ramifié en dehors d'une partie finie S de |F|, et

$$\rho: \ ^LG = \hat{G} \rtimes \Gamma_F^{\mathrm{nr},S} \to \mathrm{GL}_r(\mathbb{C})$$

un homomorphisme de transfert.

Si $K = \prod_{x \in |F|} K_x$ est un sous-groupe ouvert compact de $G(\mathbb{A})$ tel que $K_x = G_{F_x}(O_x)$, $\forall x \in |F| - S$, on appelle "K-noyau du transfert par ρ " toute fonction

$$K^{G,\rho}: G(\mathbb{A}) \times G(\mathbb{A}) \times \mathrm{GL}_r(\mathbb{A}) \to \mathbb{C}$$

qui vérifie les propriétés suivantes :

(0) En les deux premières variables, $K^{G,\rho}$ est invariante à droite par K et, en la troisième variable, elle est invariante à droite par un sous-groupe ouvert compact $K' = \prod_{x \in |F|} K'_x$ de $\operatorname{GL}_r(\mathbb{A})$ tel que $K'_x = K^r_x = \operatorname{GL}_r(O_x)$,

$$\forall x \in |F| - S$$
.

(1) En toute place $x \in |F| - S$, on a

$$K^{G,\rho} *_3 \varphi_x' = K^{G,\rho} *_2 \rho_x^*(\varphi_x') \,, \quad \forall \, \varphi_x' \in \mathcal{H}_{x,\emptyset}^r \,,$$

$$K^{G,\rho} *_2 \varphi_x = K^{G,\rho} *_1 \varphi_x^{\vee}, \quad \forall \varphi_x \in \mathcal{H}_{x,\emptyset}^G,$$

où:

- les signes $*_1$ et $*_2$ désignent le produit de convolution sur $G(F_x)$ par rapport aux deux premières variables de $K^{G,\rho}(\bullet,\bullet,\bullet)$,
- le signe $*_3$ désigne le produit de convolution sur $GL_r(F_x)$ par rapport à la troisième variable de $K^{G,\rho}(\bullet,\bullet,\bullet)$,
- pour toute fonction φ_x sur $G(F_x)$, la notation φ_x^{\vee} désigne la fonction déduite de φ_x par le changement de variable $g_x \mapsto g_x^{-1}$.

(2) En les deux premières variables, la fonction $K^{G,\rho}$ est invariante à gauche par

$$G(F) \times G(F)$$
.

(3) En la troisième variable, la fonction $K^{G,\rho}$ est invariante à gauche par

$$GL_r(F)$$
.

Remarques.

- Les propriétés (0) et (1) sont locales tandis que les propriétés (2) et (3) sont globales.
- Dans nos tentatives pour construire des "K-noyaux du transfert par ρ ", la propriété (2) sera automatiquement vérifiée par construction.
- En revanche, toute la difficulté du problème de transfert se trouvera concentrée dans la propriété cruciale (3) qu'il s'agira d'essayer de démontrer.

Nous complétons la définition des "noyaux du transfert" de la manière suivante :

Définition II.19. – Dans la situation et avec les notations de la définition précédente, une famille $\{K^{G,\rho}\}$ de "K-noyaux du transfert par ρ " est dite "complète" si elle vérifie la propriété suivante :

(4) Pour toute fonction à support compact

$$h: G(\mathbb{A})/K \to \mathbb{C}$$

telle que la fonction

$$\begin{array}{ccc} G(\mathbb{A}) & \to & \mathbb{C} \\ g & \mapsto & \displaystyle\sum_{\gamma \in G(F)} h(\gamma \, g) \end{array}$$

ne soit pas nulle, il existe un élément $K^{G,\rho}$ de la famille $\{K^{G,\rho}\}$ tel que la fonction intégrale

$$G(\mathbb{A}) \times \mathrm{GL}_r(\mathbb{A}) \to \mathbb{C}$$

 $(g_2, g') \mapsto \int_{G(\mathbb{A})} dg \cdot h(g) K^{G,\rho}(g, g_2, g')$

ne soit pas nulle.

On a:

Proposition II.20. – Dans la situation des deux définitions précédentes, l'existence d'une famille "complète" $\{K^{G,\rho}\}$ de "K-noyaux du tranfert par $\rho: \hat{G} \rtimes \Gamma_F^{\operatorname{nr},S} \to \operatorname{GL}_r(\mathbb{C})$ " implique que toute représentation automorphe (π, V_π) de $G(\mathbb{A})$ telle que $V_\pi^K \neq 0$ admet un transfert automorphe $\rho_*(\pi)$, c'est-à-dire une représentation lisse admissible irréductible $\pi' = \bigotimes_{x \in |X|} \pi'_x$ de $\operatorname{GL}_r(\mathbb{A})$, réalisée comme sous-représentation de l'espace des fonctions

$$\mathrm{GL}_r(F)\backslash\mathrm{GL}_r(\mathbb{A})\to\mathbb{C}$$

et telle que

$$\lambda_{\pi'_x} = (\rho_x)_* (\lambda_{\pi_x}), \quad \forall x \in |F| - S.$$

Démonstration sous des hypothèses légèrement plus fortes. Supposons que la famille $\{K^{G,\rho}\}$ vérifie les deux propriétés supplémentaires suivantes, dont la seconde renforce légèrement la propriété (4) de la définition II.19 :

• Pour tout élément $K^{G,\rho}$ de $\{K^{G,\rho}\}$ et tous éléments $g_2 \in G(\mathbb{A}), g' \in GL_r(\mathbb{A}), \text{ la fonction}$

$$\begin{array}{ccc} G(F)\backslash G(\mathbb{A}) & \to & \mathbb{C} \\ g & \mapsto & K^{G,\rho}(g,g_2,g') \end{array}$$

a un support compact.

• Pour toute forme automorphe

$$h: G(F)\backslash G(\mathbb{A}) \to \mathbb{C}$$

invariante à droite par K, il existe un élément $K^{G,\rho}$ de la famille $\{K^{G,\rho}\}$ tel que la fonction intégrale

$$(g_2, g') \mapsto \int_{G(F)\backslash G(\mathbb{A})} dg \cdot h(g) \cdot K^{G,\rho}(g, g_2, g')$$

ne soit pas uniformément nulle.

Sous ces hypothèses, considérons une représentation automorphe (π, V_{π}) de $G(\mathbb{A})$ dont l'espace V_{π} contienne une forme automorphe non nulle

$$h_{\pi}: G(F)\backslash G(\mathbb{A}) \to \mathbb{C}$$

invariante à droite par K.

En toute place $x \in |F| - S$, l'algèbre de Hecke sphérique $\mathcal{H}_{x,\emptyset}^G$ agit par convolution sur h_{π} par le caractère $\lambda(\pi_x)$. Cela signifie

$$h_{\pi} * \varphi_x = S_x^G(\varphi_x)(\lambda(\pi_x)) \cdot h_{\pi}, \quad \forall \varphi_x \in \mathcal{H}_{x,\emptyset}^G$$

Choisissons un élément $K^{G,\rho}$ de la famille $\{K^{G,\rho}\}$ et un élément $g_2 \in G(\mathbb{A})$ tels que la fonction

$$h'_{\pi}: \mathrm{GL}_{r}(F)\backslash \mathrm{GL}_{r}(\mathbb{A}) \to \mathbb{C}$$

 $g' \mapsto \int_{G(F)\backslash G(\mathbb{A})} dg \cdot h_{\pi}(g) \cdot K^{G,\rho}(g,g_{2},g')$

ne soit pas nulle

D'après la propriété (0) de la définition II.18, cette fonction h'_{π} est invariante à droite par un sous-groupe $K' = \prod_{x \in |F|} K'_x$ de $\operatorname{GL}_r(\mathbb{A})$ tel que, en toute place $x \in |F| - S$, $K'_x = K^r_x = \operatorname{GL}_r(O_x)$.

D'après la propriété (1) et le choix de h_{π} , l'algèbre de Hecke sphérique $\mathcal{H}_{x,\phi}^r$ de $\mathrm{GL}_r(F_x)$ en toute place $x \in |F| - S$ agit par convolution sur h'_{π} par le caractère $(\rho_x)_* (\lambda(\pi_x))$ composé de $\mathcal{H}_{x,\emptyset}^r \xrightarrow{\rho_x^*} \mathcal{H}_{x,\emptyset}^G$ et $\lambda(\pi_x) : \mathcal{H}_{x,\emptyset}^G \to \mathbb{C}$. Cela signifie

$$h'_{\pi} * \varphi'_{x} = S_{x}^{r}(\varphi'_{x})((\rho_{x})_{*} (\lambda(\pi_{x})) \cdot h'_{\pi}, \quad \forall \varphi'_{x} \in \mathcal{H}_{x,\emptyset}^{r}.$$

D'après le théorème II.15 de multiplicité 1 et de rigidité de Piatetski-Shapiro, la forme automorphe

$$h'_{\pi}: \mathrm{GL}_r(F)\backslash \mathrm{GL}_r(\mathbb{A})/K' \to \mathbb{C}$$

engendre une représentation de l'algèbre de Hecke \mathcal{H}^r de $GL_r(\mathbb{A})$ qui est nécessairement irréductible. C'est le transfert automorphe $\rho_*(\pi)$ de π par ρ .

Dans le cas général, la démonstration de la proposition repose sur la classification de Langlands des représentations automorphes de $G(\mathbb{A})$ et sur son théorème de décomposition spectrale de l'espace des formes automorphes.

Chapitre III:

Développement de Fourier sur GL_r et fonctions de Whittaker

1 Définition des coefficients de Fourier sur GL_r

Choisissons un caractère continu non trivial

$$\psi: F \backslash \mathbb{A} \to \mathbb{C}^{\times}$$

du quotient compact $F \setminus A$ du groupe adélique additif A par son sous-groupe discret F.

Pour toute place $x \in |F|$, notons

$$\psi_r: F_r \to \mathbb{C}^{\times}$$

le caractère continu non trivial de F_x qui se déduit de ψ par l'immersion $F_x \hookrightarrow \mathbb{A}$. Le conducteur de ψ_x est l'unique entier $N_{\psi_x} \in \mathbb{Z}$ tel que la restriction de ψ_x au sous-groupe additif $\{a_x \in F_x \mid v_x(a_x) \geq N_{\psi_x}\}$ soit triviale et que sa restriction au sous-groupe $\{a_x \in F_x \mid v_x(a_x) \geq N_{\psi_x} - 1\}$ soit non triviale. On sait que le caractère ψ_x est "régulier", c'est-à-dire vérifie $N_{\psi_x} = 0$, en presque toute place $x \in |F|$.

En toute place $x \in |F|$, on munit F_x de la mesure additive da_x qui est "autoduale" relativement au caractère ψ_x : c'est l'unique mesure invariante qui attribue au sous-groupe ouvert compact O_x de F_x le volume $q_x^{N_{\psi_x}/2}$.

Puis on munit \mathbb{A} de la mesure produit $da = \bigotimes_{x \in |F|} da_x$. On sait que, pour ce choix de mesure, le volume du quotient compact $F \setminus \mathbb{A}$ est égal à 1.

On note N_r le radical unipotent du sous-groupe de Borel B_r de GL_r constitué des matrices triangulaires supérieures. Le groupe algébrique N_r admet une filtration dont tous les sous-quotients successifs sont isomorphes au groupe additif \mathbb{G}_a .

En toute place $x \in |F|$, $N_r(F_x)$ admet une filtration induite dont tous les sous-quotients successifs s'identifient à F_x . Par conséquent, la mesure da_x de F_x induit une mesure du_x de $N_r(F_x)$: c'est l'unique mesure invariante qui attribue au sous-groupe ouvert compact $N_r(O_x)$ de $N_r(F_x)$ le volume $q_x^{\frac{N_{\psi_x}}{2} \cdot \frac{r(r-1)}{2}}$.

Puis on munit le groupe adélique $N_r(\mathbb{A})$ de la mesure produit $du = \bigotimes_{x \in |F|} du_x$. Pour ce choix de mesure, le volume du quotient compact $N_r(F) \setminus N_r(\mathbb{A})$ est égal à 1.

Le caractère $\psi: F \setminus \mathbb{A} \to \mathbb{C}^{\times}$ induit sur le radical unipotent $N_r(\mathbb{A})$ le caractère

$$\psi_{(r)}:N_r(\mathbb{A})\to\mathbb{C}^\times$$

$$u = \begin{pmatrix} 1 & u_{1,2} & \dots & u_{1,r} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & u_{r-1,r} \\ 0 & \dots & 0 & 1 \end{pmatrix} \mapsto \psi_{(r)}(u) = \psi \left(\sum_{1 \le s < r} u_{s,s+1} \right).$$

Ce caractère $\psi_{(r)}$ est invariant par le sous-groupe discret $N_r(F)$.

Plus généralement, on introduit :

Définition III.1. – Si $r = r_1 + \cdots + r_k$ est une partition de l'entier r, désignée par le sous-ensemble $\underline{r} = \{r_1, r_1 + r_2, \dots, r_1 + \cdots + r_{k-1}, r_1 + \cdots + r_k = r\}$ de l'ensemble $\{1, 2, \dots, r\}$, on lui associe le caractère invariant par le sous-groupe $N_r(F)$ des points rationnels

$$\psi_r:N_r(\mathbb{A})\to\mathbb{C}^\times$$

$$u = \begin{pmatrix} 1 & u_{1,2} & \dots & u_{1,r} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & u_{r-1,r} \\ 0 & \dots & 0 & 1 \end{pmatrix} \mapsto \psi_{\underline{r}}(u) = \psi \left(\sum_{\substack{1 \leq s < r \\ s \notin \underline{r}}} u_{s,s+1} \right).$$

On note $Z_r = \mathbb{G}_m$ le centre de GL_r et $T_r = \mathbb{G}_m^r$ son tore maximal constitué des matrices diagonales.

Pour toute partition $\underline{r}=\{r_1,r_1+r_2,\ldots,r_1+\cdots+r_k=r\}$ de l'entier r, on note $Z_{\underline{r}}$ le sous-tore de $T_r=\mathbb{G}_m^r$ défini par les équations

$$\mu_s = \mu_{s+1}, \quad \forall s \in \{1, 2, \dots, r\} - r.$$

C'est aussi le centre du sous-groupe de Levi standard $M_{\underline{r}} = \operatorname{GL}_{r_1} \times \operatorname{GL}_{r_2} \times \cdots \times \operatorname{GL}_{r_k}$ de GL_r qui est associé à la partition r.

Si l'on fait agir $T_r(\mathbb{A})$ sur l'ensemble des caractères continus

$$\theta: N_r(\mathbb{A}) \to \mathbb{C}^{\times}$$

par conjugaison

$$(\mu, \theta) \mapsto \theta^{\mu} = (N_r(\mathbb{A}) \ni u \mapsto \theta(\mu u \mu^{-1})),$$

on remarque que le fixateur du caractère $\psi_{(r)}$ est $Z_r(\mathbb{A})$ et que, plus généralement, le fixateur de chaque caractère ψ_r est $Z_r(\mathbb{A})$.

Nous pouvons maintenant définir les ψ -coefficients de Fourier d'une fonction sur $N_r(F)\backslash \mathrm{GL}_r(\mathbb{A})$:

Définition III.2. – Pour toute fonction

$$h: N_r(F)\backslash \mathrm{GL}_r(\mathbb{A}) \to \mathbb{C}$$

invariante à droite par un sous-groupe ouvert K de $K^r = GL_r(O_{\mathbb{A}})$, on appelle " ψ -coefficient de Fourier régulier de h", et on note $W_{(r)}h$, la fonction

$$N_r(F)\backslash \mathrm{GL}_r(\mathbb{A})/K\to \mathbb{C}$$

$$g \mapsto W_{(r)} h(g) = \int_{N_r(F) \setminus N_r(\mathbb{A})} du \cdot \psi_{(r)}(u) \cdot h(ug).$$

Plus généralement, si \underline{r} est une partition de l'entier r, on appelle " $\psi_{\underline{r}}$ -coefficient de Fourier de h" (ou " ψ -coefficient de Fourier de type \underline{r} de h"), et on note $W_r h$, la fonction

$$N_r(F)\backslash \mathrm{GL}_r(\mathbb{A})/K\to \mathbb{C}$$

$$g\mapsto W_{\underline{r}}\,h\left(g\right)=\int_{N_{r}(F)\backslash N_{r}(\mathbb{A})}du\cdot\psi_{\underline{r}}(u)\cdot h(ug)\,.$$

Les ψ -coefficients de Fourier d'une fonction

$$h: N_r(F)\backslash \mathrm{GL}_r(\mathbb{A}) \to \mathbb{C}$$

satisfont les règles de transformation suivantes par le sous-groupe $N_r(\mathbb{A})$

$$W_r h(ug) = \psi_r(u)^{-1} \cdot W_r h(g), \quad \forall u \in N_r(\mathbb{A}), \quad \forall g \in GL_r(\mathbb{A}).$$

Si $h: \mathrm{GL}_r(\mathbb{A}) \to \mathbb{C}$ est une fonction invariante à droite par un sous-groupe ouvert K et invariante à gauche par le groupe Q(F) des points F-rationnels d'un sous-groupe algébrique Q de GL_r qui contient N_r , on peut parler des ψ -coefficients de Fourier de h.

Le coefficient de Fourier régulier $W_{(r)}$ h est invariant à gauche par $N_r(F) \cdot (Q \cap Z_r)(F)$ et, plus généralement, chaque W_r h est invariant à gauche par $N_r(F) \cdot (Q \cap Z_r)(F)$.

2 La formule d'inversion de Shalika revisitée

On notera

$$Q'_r = \left\{ \begin{pmatrix} * & \dots & * & * \\ \vdots & & \vdots & \vdots \\ * & \dots & * & * \\ 0 & \dots & 0 & * \end{pmatrix} \right\}$$

le sous-groupe parabolique standard de GL_r associé à la partition r = (r - 1) + 1, et

$$Q_r = \left\{ \begin{pmatrix} * & \dots & * & * \\ \vdots & & \vdots & \vdots \\ * & \dots & * & * \\ 0 & \dots & 0 & 1 \end{pmatrix} \right\}$$

son sous-groupe "mirabolique" défini en imposant la valeur 1 au dernier coefficient diagonal.

Une fonction

$$h: Q_r(F)\backslash \mathrm{GL}_r(\mathbb{A}) \to \mathbb{C}$$
,

invariante à droite par un sous-groupe ouvert K de $\mathrm{GL}_r(O_{\mathbb{A}})$, est dite "cuspidale" si elle vérifie

$$W_r h = 0$$

pour toute partition non triviale $\underline{r} \neq (r)$ de l'entier r.

Rappelons l'énoncé du théorème d'inversion de Shalika :

Théorème III.3. – Pour tout sous-groupe ouvert K de $GL_r(O_{\mathbb{A}})$, on a:

(i) Toute fonction

$$h: Q_r(F)\backslash \mathrm{GL}_r(\mathbb{A})/K \to \mathbb{C}$$

qui est cuspidale se déduit de son coefficient de Fourier régulier $W_{(r)}$ h par la formule

$$h(g) = \sum_{\delta \in N_r(F) \backslash Q_r(F)} W_{(r)} \, h\left(\delta g\right).$$

(ii) Réciproquement, pour toute fonction

$$h_{(r)}: N_r(F)\backslash \mathrm{GL}_r(\mathbb{A})/K \to \mathbb{C}$$

qui satisfait la règle de transformation

$$h_{(r)}(ug) = \psi_{(r)}(u)^{-1} \cdot h_{(r)}(g), \quad \forall u \in N_r(\mathbb{A}), \quad \forall g \in GL_r(\mathbb{A}),$$

la somme

$$g \mapsto h(g) = \sum_{\delta \in N_r(F) \backslash Q_r(F)} h_{(r)}\left(\delta g\right)$$

est localement finie et définit une fonction

$$h: Q_r(F)\backslash \mathrm{GL}_r(\mathbb{A})/K \to \mathbb{C}$$

qui est cuspidale et dont le coefficient de Fourier régulier est

$$W_{(r)} h = h_{(r)}.$$

La formule de (i) s'applique en particulier aux formes automorphes $GL_r(F)\backslash GL_r(\mathbb{A}) \to \mathbb{C}$ qui sont cuspidales, mais elle ne s'applique pas aux séries d'Eisenstein.

Le but du présent paragraphe est de généraliser la formule de (i) – ainsi que sa réciproque (ii) – à toutes les fonctions

$$h: Q_r(F)\backslash \mathrm{GL}_r(\mathbb{A}) \to \mathbb{C}$$

invariantes à droite par un sous-groupe ouvert.

Commençons par poser la définition suivante :

Définition III.4. – On considère une famille de fonctions

$$h_r: N_r(F) \cdot (Q_r \cap Z_r)(F) \backslash \mathrm{GL}_r(\mathbb{A}) \to \mathbb{C}$$

indexées par les partitions \underline{r} de l'entier r. On suppose qu'elles sont invariantes à droite par un sous-groupe ouvert K de $\mathrm{GL}_r(O_{\mathbb{A}})$ et satisfont les règles de transformation

$$h_r(ug) = \psi_r(u)^{-1} \cdot h_r(g), \quad \forall u \in N_r(\mathbb{A}), \quad \forall g \in GL_r(\mathbb{A}).$$

Une telle famille sera dite "sommable sur $Q_r(F)$ " si, pour tout rang $r'=1,2,\ldots,r-1$, elle satisfait la condition suivante :

 $(*)_{r'}$ Pour toute partition de l'intervalle [r',r] notée comme une partie \underline{r}' de l'ensemble $\{r'+1,r'+2,\ldots,r\}$, la somme localement finie

$$\operatorname{Ps}_{r',\underline{r'}}(h_{\bullet})(g) = \left[\sum_{\delta \in Q_{r'}(F) \backslash \operatorname{GL}_{r'}(F)} \operatorname{Ps}_{r'-1,\underline{r'}}(h_{\bullet})(\delta g) \right] + \operatorname{Ps}_{r'-1,\{r'\} \cup \underline{r'}}(h_{\bullet})(g)$$

(en notant $\operatorname{Ps}_{0,\underline{r'}}(h_{\bullet})(g) = h_{\underline{r'}}(g)$, $\forall g, \forall \underline{r'}, si \ r' - 1 = 0$) est invariante à gauche par $\operatorname{GL}_{r'}(F)$ et donc par $Q_{r'+1}(F)$.

Remarques.

• Dans cet énoncé, tous les groupes linéaires $GL_{r'}$, $1 \le r' < r$, sont naturellement plongés dans GL_r par

$$g' \mapsto \begin{pmatrix} g' & 0 \\ 0 & I_{r-r'} \end{pmatrix}$$
.

• Pour tout $r' \geq 2$, les sommes introduites dans l'énoncé de la condition $(*)_{r'}$ sont bien définies dès lors que les conditions $(*)_1, (*)_2, \dots, (*)_{r'-1}$ sont déjà satisfaites.

Lorsque r' = r - 1 et, nécessairement, $\underline{r}' = (r)$, on écrira simplement

$$\operatorname{Ps}_{r-1,(r)}(h_{\bullet}) = \operatorname{Ps}_{r-1}(h_{\bullet}).$$

Si une famille h_{\bullet} comme ci-dessus est "sommable sur $Q_r(F)$ ", la fonction $\operatorname{Ps}_{r-1}(h_{\bullet})$ est bien définie et invariante à gauche par $Q_r(F)$.

Le théorème III.3 de Shalika se généralise de la manière suivante :

Théorème III.5. – Soit K un sous-groupe ouvert de $GL_r(O_{\mathbb{A}})$.

(i) Pour toute fonction

$$h: Q_r(F)\backslash \mathrm{GL}_r(\mathbb{A})/K \to \mathbb{C}$$
,

la famille W_{\bullet} h de ses ψ -coefficients de Fourier

$$W_{\underline{r}} h : g \mapsto \int_{N_{\underline{r}}(F) \backslash N_{\underline{r}}(\mathbb{A})} du \cdot \psi_{\underline{r}}(u) \cdot h(ug)$$

indexés par les partitions \underline{r} de l'entier r, est "sommable sur $Q_r(F)$ " au sens de la définition précédente. De plus, la fonction h s'exprime à partir de ses ψ -coefficients de Fourier par la formule

$$h = \operatorname{Ps}_{r-1}(W_{\bullet} h)$$
.

(ii) Réciproquement, considérons une famille h_• de fonctions

$$h_r: N_r(F) \cdot (Q_r \cap Z_r)(F) \backslash \mathrm{GL}_r(\mathbb{A}) / K \to \mathbb{C}$$

telles que

$$h_r(ug) = \psi_r(u)^{-1} \cdot h_r(g), \quad \forall \underline{r}, \quad \forall u \in N_r(\mathbb{A}), \quad \forall g \in GL_r(\mathbb{A}).$$

Supposons de plus que la famille h_{\bullet} est "sommable sur $Q_r(F)$ " au sens de la définition précédente.

Alors la somme

$$\operatorname{Ps}_{r-1}(h_{\bullet}) = h$$

définit une fonction

$$h: Q_r(F)\backslash \mathrm{GL}_r(\mathbb{A})/K \to \mathbb{C}$$

telle que, pour toute partition \underline{r} de l'entier r, on ait

$$W_r h = h_r$$
.

Remarque. La partie (i) du théorème signifie en particulier que toute fonction $h: Q_r(F)\backslash \mathrm{GL}_r(F)/K \to \mathbb{C}$ est entièrement déterminée par ses ψ -coefficients de Fourier $W_r h$.

Démonstration.

(i) Si r = 1, il n'y a rien à démontrer.

Raisonnant par récurrence, supposons donc que $r \geq 2$ et que l'assertion soit déjà connue en rang r-1. On note

$$V_r = \left\{ \begin{pmatrix} 1 & 0 & \dots & 0 & * \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & * \\ \vdots & & \ddots & 1 & * \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix} \right\}$$

le radical unipotent du sous-groupe parabolique Q'_r . C'est un groupe additif isomorphe à \mathbb{G}_a^{r-1} .

Les caractères périodiques du groupe adélique $V_r(\mathbb{A})$ sont donnés par le lemme suivant :

Lemme III.6. – La correspondance

$$\delta \mapsto (v \mapsto \psi_{(r)}(\delta v \delta^{-1}))$$

définit une bijection de $Q_{r-1}(F)\backslash \mathrm{GL}_{r-1}(F)$ sur l'ensemble des caractères non triviaux de $V_r(F)\backslash V_r(\mathbb{A})$.

Démonstration du lemme. Il résulte de ce que la correspondance

$$\gamma \mapsto (a \mapsto \psi(\gamma a))$$

définit une bijection de F sur l'ensemble des caractères de $F \setminus A$.

Suite de la démonstration du théorème III.5. La fonction sur $GL_r(\mathbb{A})$

$$g \mapsto h(g)$$

est invariante à gauche par $Q_r(F)$ et, a fortiori, par $V_r(F)$.

Munissant le groupe adélique $V_r(\mathbb{A})$ de la mesure additive dv qui attribue le volume 1 au quotient compact $V_r(F)\backslash V_r(\mathbb{A})$, la formule de Poisson relative au sous-groupe discret $V_r(F)$ de $V_r(\mathbb{A})$ et le lemme III.6 ci-dessus impliquent le développement en somme localement finie

$$h(g) = \left[\sum_{\delta \in Q_{r-1}(F) \backslash \operatorname{GL}_{r-1}(F)} \int_{V_r(F) \backslash V_r(\mathbb{A})} dv \cdot \psi_{(r)}(\delta \, v \, \delta^{-1}) \cdot h(vg) \right] + \int_{V_r(F) \backslash V_r(\mathbb{A})} dv \cdot h(vg) \,.$$

Or on a, pour tout élément $\delta \in Q_{r-1}(F)\backslash \mathrm{GL}_{r-1}(F)$,

$$\int_{V_r(F)\backslash V_r(\mathbb{A})} dv \cdot \psi_{(r)}(\delta \, v \, \delta^{-1}) \cdot h(vg) = \int_{V_r(F)\backslash V_r(\mathbb{A})} dv \cdot \psi_{(r)}(v) \cdot h(\delta^{-1} v \, \delta \, g)
= \int_{V_r(F)\backslash V_r(\mathbb{A})} dv \cdot \psi_{(r)}(v) \cdot h(v \, \delta \, g).$$

Cela implique en particulier que, pour tout élément $g \in GL_r(\mathbb{A})$ et tout $\delta \in Q_{r-1}(F)\backslash GL_{r-1}(F)$, la fonction

$$\begin{array}{cccc} h_{g,\delta} & : & \mathrm{GL}_{r-1}(\mathbb{A}) & \to & \mathbb{C} \\ & g' & \mapsto & h_{g,\delta}(g') = \int_{V_r(F) \setminus V_r(\mathbb{A})} dv \cdot \psi_{(r)}(v) \cdot h(v \,\delta\, g'g) \end{array}$$

est invariante à gauche par $\delta^{-1} \cdot Q_{r-1}(F) \cdot \delta$.

D'autre part, la fonction

$$h_{g,0}$$
: $\operatorname{GL}_{r-1}(\mathbb{A}) \to \mathbb{C}$
 $g' \mapsto h_{g,0}(g') = \int_{V_r(F) \setminus V_r(\mathbb{A})} dv \cdot h(v g'g)$

est invariante à gauche par $GL_{r-1}(F)$, et on a

$$h(g'g) = \left[\sum_{\delta \in Q_{r-1}(F) \backslash \operatorname{GL}_{r-1}(F)} h_{g,\delta}(g')\right] + h_{g,0}(g').$$

En appliquant l'hypothèse de récurrence aux fonctions

$$g' \mapsto h_{g,\delta}(g'), \quad \delta \in Q_{r-1}(F) \backslash \mathrm{GL}_{r-1}(F),$$

et $g' \mapsto h_{g,0}(g')$

de la variable $g' \in GL_{r-1}(\mathbb{A})$, on obtient

$$h_{g,\delta}(g') = \operatorname{Ps}_{r-2,(r-1)}(W_{\bullet} h_{g,\delta}(\delta \bullet))(g')$$

=
$$\operatorname{Ps}_{r-2,(r)}(W_{\bullet} h)(\delta g'g)$$

et

$$h_{g,0}(g') = \operatorname{Ps}_{r-2,(r-1)}(W_{\bullet} h_{g,0})(g')$$

= $\operatorname{Ps}_{r-2,(r-1,r)}(W_{\bullet} h)(g'g)$.

Le développement annoncé en rang r résulte alors de la formule de définition

$$\operatorname{Ps}_{r-1}(W_{\bullet} h)(g) = \operatorname{Ps}_{r-1,(r)}(W_{\bullet} h)(g)$$

$$= \left[\sum_{\delta \in Q_{r-1}(F) \backslash \operatorname{GL}_{r-1}(F)} \operatorname{Ps}_{r-2,(r)}(W_{\bullet} h)(\delta g) \right] + \operatorname{Ps}_{r-2,(r-1,r)}(W_{\bullet} h)(g).$$

(ii) Ayant défini la fonction h comme

$$g \mapsto h(g) = \operatorname{Ps}_{r-1}(h_{\bullet})(g)$$
,

nous devons prouver que, pour toute partition \underline{r} de l'entier r, on a

$$W_r h = h_r$$
.

Une fois encore, nous raisonnons par récurrence et supposons le résultat déjà connu en rang r-1. Pour toute partition \underline{r} de l'entier r et tout élément $\delta \in \mathrm{GL}_{r-1}(F)$, on a d'après le lemme III.6

$$\int_{V_r(F)\backslash V_r(\mathbb{A})} dv \cdot \psi_{(r)}(v) \cdot h_{\underline{r}}(\delta \, v \, g) = \begin{cases} h_{\underline{r}}(\delta \, g) & \text{si} \quad r-1 \not \in \underline{r} \quad \text{et} \quad \delta \in Q_{r-1}(F) \,, \\ 0 & \text{si} \quad r-1 \in \underline{r} \quad \text{ou} \quad \delta \not \in Q_{r-1}(F) \,, \end{cases}$$

et

$$\int_{V_r(F)\backslash V_r(\mathbb{A})} dv \cdot h_{\underline{r}}(\delta\, v\, g) = \begin{cases} 0 & \text{si} \quad r-1 \not\in \underline{r}\,, \\ h_{\underline{r}}(\delta\, g) & \text{si} \quad r-1 \in \underline{r}\,. \end{cases}$$

Comme

$$\begin{split} h(g) &=& \operatorname{Ps}_{r-1,(r)}(h_{\bullet})(g) \\ &=& \left[\sum_{\delta \in Q_{r-1}(F) \backslash \operatorname{GL}_{r-1}(F)} \operatorname{Ps}_{r-2,(r)}(h_{\bullet})(\delta \, g) \right] + \operatorname{Ps}_{r-2,(r-1,r)}(h_{\bullet})(g) \,, \end{split}$$

on obtient

$$\int_{V_r(F)\backslash V_r(\mathbb{A})} dv \cdot \psi_{(r)}(v) \cdot h(vg) = \mathrm{Ps}_{r-2,(r)}(h_\bullet)(g)$$

et

$$\int_{V_r(F)\backslash V_r(\mathbb{A})} dv \cdot h(vg) = \operatorname{Ps}_{r-2,(r-1,r)}(h_{\bullet})(g).$$

On conclut en appliquant le résultat en rang r-1, déjà connu par hypothèse de récurrence, aux fonctions sur $GL_{r-1}(\mathbb{A})$

$$g' \mapsto \operatorname{Ps}_{r-2,(r)}(h_{\bullet})(g'g),$$

 $g' \mapsto \operatorname{Ps}_{r-2,(r-1,r)}(h_{\bullet})(g'g).$

On a fini de démontrer le théorème III.5.

3 Modèles et fonctions de Whittaker

Dans ce paragraphe, nous nous intéressons aux représentations lisses admissibles (π_x, V_{π_x}) de $GL_r(F_x)$ ou, ce qui revient au même, de l'algèbre de Hecke locale \mathcal{H}_x^r de GL_r en une place $x \in |F|$.

Rappelons qu'une telle représentation (π_x, V_{π_x}) est dite "non ramifiée" si le sous-espace $V_{\pi_x}^{K_x^r}$ des vecteurs de l'espace V_{π_x} invariants par $K_x^r = \operatorname{GL}_r(O_x)$ est de dimension 1.

Si (π_x, V_{π_x}) est une représentation lisse admissible irréductible de \mathcal{H}^r_x telle que le sous-espace $V^{K^r_x}_{\pi^x}$ ne soit pas nul, ce sous-espace muni de l'action de l'algèbre de Hecke sphérique $\mathcal{H}^r_{x,\emptyset}$ est irréductible; comme $\mathcal{H}^r_{x,\emptyset}$ est commutative, il est de dimension 1 et la représentation (π_x, V_{π_x}) est non ramifiée. Enfin, la classe d'isomorphie de la représentation irréductible (π_x, V_{π_x}) est entièrement déterminée par le caractère de l'algèbre sphérique $\mathcal{H}^r_{x,\emptyset}$ qui agit sur la droite $V^{K^r_x}_{\pi^x}$.

Rappelons encore que le choix d'un caractère continu non trivial

$$\psi: F \backslash \mathbb{A} \to \mathbb{C}^{\times}$$

a permis de définir le caractère "régulier"

$$\psi_{(r)}: N_r(F)\backslash N_r(\mathbb{A}) \to \mathbb{C}^{\times}$$
.

On dispose de ses facteurs locaux

$$\psi_{(r)}: N_r(F_x) \to \mathbb{C}^{\times}$$
,

$$u = \begin{pmatrix} 1 & u_{1,2} & \dots & u_{1,r} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & u_{r-1,r} \\ 0 & \dots & 0 & 1 \end{pmatrix} \mapsto \psi_{(r)}(u) = \psi_x \left(\sum_{1 \le s < r} u_{s,s+1} \right) .$$

Si (π_x, V_{π_x}) est une représentation lisse admissible de $\operatorname{GL}_r(F_x)$, on note $V_{\pi_x}^{*\psi_{(r)}}$ l'espace des "fonctionnelles de Whittaker" sur V_{π_x} c'est-à-dire des fonctionnelles linéaires

$$\lambda_x:V_{\pi_x}\to\mathbb{C}$$

telles que

$$\lambda_x(\pi_x(u) \cdot \xi) = \psi_{(r)}^{-1}(u) \cdot \lambda_x(\xi), \quad \forall u \in N_r(F_x), \quad \forall \xi \in V_{\pi_x}.$$

On connaît le résultat suivant :

Théorème III.7. – Pour toute représentation lisse admissible (π_x, V_{π_x}) , l'espace $V_{\pi_x}^{*\psi_{(r)}}$ de ses fonctionnelles de Whittaker est de dimension finie.

Si
$$\pi_x$$
 est irréductible, il est de dimension 0 ou 1.

Puis on a la définition :

Définition III.8. – Une représentation lisse admissible (π_x, V_{π_x}) de $GL_r(F_x)$ est dite "de type de Whittaker" si

$$\dim (V_{\pi_x}^{*\psi_{(r)}}) = 1.$$

Dans ce cas, on appelle "modèle de Whittaker" de π_x l'image

$$W_{\pi_x}^{\psi_{(r)}} = \{W_{\xi_x}(\bullet) \mid \xi_x \in V_{\pi_x}\}$$

de l'homomorphisme équivariant associé à n'importe quelle fonctionnelle de Whittaker $\lambda_x \in V_{\pi_x}^{*\psi_{(r)}}$

$$V_{\pi_x} \to \operatorname{ind}_{N_r(F_x)}^{\operatorname{GL}_r(F_x)}(\psi_{(r)}^{-1})$$

$$\xi_x \mapsto W_{\xi_r}$$

$$où W_{\xi_x}(g) = \lambda_x(\pi_x(g) \cdot \xi_x), \forall g \in GL_r(F_x).$$

Une représentation lisse admissible de $\mathrm{GL}_r(F_x)$ qui est à la fois irréductible et "de type de Whittaker" est appelée "générique". Elle est alors isomorphe à son modèle de Whittaker.

Présentons une manière particulière de construire des représentations de type de Whittaker : c'est par induction unitaire de $B_r(F_x)$ à $GL_r(B_x)$ d'un caractère de $B_r(F_x)$.

Afin de définir l'induction unitaire, nous avons besoin du caractère modulaire

$$\rho_{B_r}: B_r(F_x) \to B_r(F_x)/N_r(F_x) = (F_x^{\times})^r \to q_x^{\mathbb{Z}}$$
$$(\mu_1, \dots, \mu_r) \mapsto \prod_{1 \le i < j \le r} \left| \frac{\mu_i}{\mu_j} \right|_x.$$

Définition III.9. – $Si \chi : B_r(F_x) \to \mathbb{C}^{\times}$ est un caractère continu, nécessairement de la forme

$$\chi: B_r(F_x) \to B_r(F_x)/N_r(F_x) = (F_x^{\times})^r \to q_x^{\mathbb{Z}},$$
$$(\mu_1, \dots, \mu_r) \mapsto \prod_{1 \le i \le r} \chi_i(\mu_i),$$

on appelle "induite unitaire" de $\chi = \bigotimes_{1 \leq i \leq r} \chi_i$ à $\operatorname{GL}_r(F_x)$ et on note

$$\operatorname{Ind}_{B_r(F_x)}^{\operatorname{GL}_r(F_x)} \left(\bigotimes_{1 \le i \le r} \chi_i \right)$$

l'espace des fonctions

$$h: \mathrm{GL}_r(F_x) \to \mathbb{C}$$

telles que

 $\begin{cases} \bullet & h \text{ est invariante à droite par un sous-groupe ouvert de } K_x^r = \operatorname{GL}_r(O_x), \\ \bullet & h(b_x g_x) = \rho_{B_x}^{1/2}(b_x) \cdot \chi(b_x) \cdot h(g_x), \quad \forall b_x \in B_r(F_x), \quad \forall g_x \in \operatorname{GL}_r(F_x), \end{cases}$

$$\bullet \quad h(b_x g_x) = \rho_{B_x}^{1/2}(b_x) \cdot \chi(b_x) \cdot h(g_x), \quad \forall b_x \in B_r(F_x), \quad \forall g_x \in GL_r(F_x)$$

muni de l'action de \mathcal{H}_x^r [ou de $\mathrm{GL}_r(F_x)$] par convolution [resp. translation] à droite.

Un caractère continu $\chi = \bigotimes_{1 \le i \le r} \chi_i : B_r(F_x) \to \mathbb{C}^\times$ est non ramifié, c'est-à-dire trivial sur $B_r(O_x)$, si et seulement si ses composantes $\chi_i : F_x^{\times} \to \mathbb{C}^{\times}$, $1 \leq i \leq r$, sont non ramifiées, c'est-à-dire de la forme

$$\chi_i: \mu \mapsto \lambda_i^{v_x(\mu)}$$

pour une unique famille $\lambda = (\lambda_1, \dots, \lambda_r) \in (\mathbb{C}^{\times})^r$.

On peut alors noter
$$\chi = \chi_{\lambda} = \bigotimes_{1 \leq i \leq r} \chi_{\lambda_i}$$
.

On a:

Théorème III.10. –

(i) Pour tout caractère continu $\chi = \bigotimes_{1 \leq i \leq r} \chi_i : B_r(F_x) \to \mathbb{C}^{\times}$, l'induite unitaire

$$\pi_x = \operatorname{Ind}_{B_r(F_x)}^{\operatorname{GL}_r(F_x)}(\chi)$$

est une représentation lisse admissible de type de Whittaker de \mathcal{H}_x^r ou $GL_r(F_x)$.

Elle n'est pas nécessairement irréductible mais admet pour caractère central

$$\omega_{\pi_x}$$
 : $Z_r(F_x) = F_x^{\times} \to \mathbb{C}$
 $\mu \mapsto \prod_{1 \leq i \leq r} \chi_i(\mu)$.

(ii) Une telle induite unitaire $\pi_x = \operatorname{Ind}_{B_r(F_x)}^{\operatorname{GL}_r(F_x)}(\chi)$ est non ramifiée si et seulement si le caractère χ est non ramifié, c'est-à-dire de la forme $\chi = \chi_{\lambda}$ pour une famille $\lambda = (\lambda_1, \dots, \lambda_r) \in (\mathbb{C}^{\times})^r = \hat{T}_r$.

Dans ce cas, la représentation π_x admet un unique sous-quotient irréductible non ramifié : c'est la sousreprésentation engendrée par la fonction sphérique

$$V_{r,\lambda}^r: N_r(F_x)\backslash \mathrm{GL}_r(F_x)/\mathrm{GL}_r(O_x) \to \mathbb{C}$$

dont la restriction à $T_r(F_x) = (F_x^{\times})^r$ est

$$\mu = (\mu_1, \dots, \mu_r) \mapsto \rho_{B_r}^{1/2}(\mu) \cdot \lambda_1^{v_x(\mu_1)} \dots \lambda_r^{v_x(\mu_r)}.$$

Enfin, l'algèbre de Hecke sphérique $\mathcal{H}^r_{x,\emptyset} \stackrel{S^r_x}{\xrightarrow{\sim}} \mathbb{C}[\hat{T}_r]^{\mathfrak{S}_r}$ agit sur le vecteur $V^r_{x,\lambda}$ par le caractère

$$\begin{array}{ccc}
\mathcal{H}^r_{x,\emptyset} & \to & \mathbb{C}, \\
\varphi_x & \mapsto & S^r_x(\varphi_x)(\lambda_1, \dots, \lambda_r).
\end{array}$$

(iii) Si $\chi = \chi_{\lambda} : B_r(F_x) \to \mathbb{C}^{\times}$ est le caractère non ramifié associé à une famille $\lambda = (\lambda_1, \dots, \lambda_r) \in (\mathbb{C}^{\times})^r = \hat{T}_r$, l'induite unitaire $\pi_x = \operatorname{Ind}_{B_r(F_x)}^{\operatorname{GL}_r(F_x)}(\chi)$ est irréductible si et seulement si sa sous-représentation engendrée par le vecteur sphérique $V_{x,\lambda}^r: G\dot{L}_r(F_x) \to \mathbb{C}$ est de type de Whittaker.

C'est le cas en particulier si $|\lambda_1| = \cdots = |\lambda_r|$.

(iv) Réciproquement, toute représentation lisse admissible irréductible et non ramifiée π_x de $GL_r(F_x)$ est isomorphe à la représentation engendrée par le vecteur sphérique

$$V_{x,\lambda}^r: \mathrm{GL}_r(F_x) \to \mathbb{C}$$

associé à une certaine famille $\lambda = (\lambda_1, \dots, \lambda_r) \in (\mathbb{C}^{\times})^r = \hat{T}_r$.

Cette famille λ est déterminée par π_x à l'ordre près de ses composantes $\lambda_1, \ldots, \lambda_r$.

La partie (i) du théorème ci-dessus dit en particulier que si $\lambda = (\lambda_1, \dots, \lambda_r) \in (\mathbb{C}^\times)^r = \hat{T}_r$ est une famille de r nombres complexes non nuls, l'induite unitaire $\operatorname{Ind}_{B_r(F_x)}^{\operatorname{GL}_r(F_x)}(\chi_\lambda)$ est de type de Whittaker. Elle admet donc un modèle de Whittaker, lequel consiste en une représentation irréductible de $\operatorname{GL}_r(F_x)$ composée de fonctions $\operatorname{GL}_r(F_x) \to \mathbb{C}$.

Nous allons maintenant définir des fonctions particulières $\mathrm{GL}_r(F_x) \to \mathbb{C}$, les "fonctions de Whittaker", qui engendrent les modèles de Whittaker des induites unitaires $\mathrm{Ind}_{B_r(F_x)}^{\mathrm{GL}_r(F_x)}(\chi_\lambda)$:

Définition III.11. – Soit $\lambda = (\lambda_1, \dots, \lambda_r) \in (\mathbb{C}^{\times})^r = \hat{T}_r$ une famille de r nombres complexes non nuls. On appelle "fonction de Whittaker associée à λ et au caractère non trivial $\psi_x : F_x \to \mathbb{C}^{\times}$ " la fonction

$$W_{r,\lambda}^{r,\psi_x} = \mathrm{GL}_r(F_x)/\mathrm{GL}_r(O_x) \to \mathbb{C}$$

définie de la manière suivante :

(i) Si le caractère ψ_x est régulier et si un élément

$$g \in \mathrm{GL}_r(F_x)$$

est écrit sous la forme d'Iwasawa

$$g = u \,\mu\, k$$

avec

$$\begin{array}{rcl} \mu & = & (\mu_1, \dots, \mu_r) \in (F_x^{\times})^r = T_r(F_x) \,, \\ u & \in & N_r(F_x) \,, \\ k & \in & K_x^r = \operatorname{GL}_r(O_x) \,, \end{array}$$

on pose

$$W_{x,\lambda}^{r,\psi_x}(g) = \begin{cases} & & \left| \lambda_1^{v_x(\mu_1)+r-1} & \dots & \lambda_r^{v_x(\mu_1)+r-1} \\ \vdots & & \vdots \\ \psi_{(r)}^{-1}(u) \cdot q_x^{\left(\sum\limits_{1 \leq i \leq r} \frac{2i-1-r}{2} \cdot v_x(\mu_i)\right)} & \cdot & \frac{\lambda_1^{v_x(\mu_1)+r-1} & \dots & \lambda_r^{v_x(\mu_r)+r-1} \\ \vdots & & & \vdots \\ \lambda_1^{v_x(\mu_{r-1})+1} & \dots & \lambda_r^{v_x(\mu_{r-1})+1} \\ \lambda_1^{v_x(\mu_r)} & \dots & \lambda_r^{v_x(\mu_r)} \end{cases}$$
 si $v_x(\mu_1) \geq v_x(\mu_2) \geq \dots \geq v_x(\mu_r)$,

(ii) Si le caractère ψ_x n'est pas nécessairement régulier, on l'écrit sous la forme

$$\psi_x(a_x) = \psi_x'(\gamma_x^{-1} a_x), \quad \forall a_x \in F_x,$$

où γ_x est n'importe quel élément de F_x^{\times} de valuation $v_x(\gamma_x) = N_{\psi_x}$ et $\psi_x': F_x \to \mathbb{C}^{\times}$ est donc un caractère régulier, et on pose pour tout élément $g \in GL_r(F_x)$

$$W_{x,\lambda}^{r,\psi_x}(g) = W_{x,\lambda}^{r,\psi_x'} \begin{pmatrix} \gamma_x^{-r+1} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \gamma_x^{-1} & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix} \cdot g$$

$$= W_{x,\lambda}^{r,\psi_x'} \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \gamma_x & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \gamma_x^{r-1} \end{pmatrix} \cdot g \cdot (\lambda_1 \dots \lambda_r)^{-(r-1)N_{\psi_x}}.$$

Remarque. La fonction de Whittaker $W_{x,\lambda}^{r,\psi_x}$ ne dépend pas de l'ordre des composantes $\lambda_1,\ldots,\lambda_r$ de la famille λ .

Maintenant, on a:

Proposition III.12. – Soit $\lambda = (\lambda_1, \dots, \lambda_r) \in (\mathbb{C}^{\times})^r = \hat{T}_r$.

(i) Le sous-espace des fonctions

$$W: \mathrm{GL}_r(F_x) \to \mathbb{C}$$

telles que

- $\begin{cases} \bullet & W \ est \ invariante \ \grave{a} \ droite \ par \ K_x^r = \operatorname{GL}_r(O_x), \\ \bullet & W(ug) = \psi_{(r)}^{-1}(u) \cdot W(g) \,, \quad \forall \, u \in N_r(F_x) \,, \quad \forall \, g \in \operatorname{GL}_r(F_x) \,, \\ \bullet & en \ not ant * \ le \ produit \ de \ convolution \ des \ fonctions \ sur \ \operatorname{GL}_r(F_x) \ et \ S_x^r : \mathcal{H}_{x,\emptyset}^r \stackrel{\sim}{\longrightarrow} \mathbb{C}[\hat{T}_r]^{\mathfrak{S}_r} \\ l'isomorphisme \ de \ Satake, \ on \ a \end{cases}$

$$W * \varphi_x = S_x^r(\varphi_x)(\lambda) \cdot W, \quad \forall \varphi_x \in \mathcal{H}_{x,\emptyset}^r,$$

est de dimension 1.

(ii) Ce sous-espace est engendré par la fonction de Whittaker

$$W_{r,\lambda}^{r,\psi_x}: \mathrm{GL}_r(F_x) \to \mathbb{C}$$
.

Plus précisément, cette fonction est l'unique élément de ce sous-espace tel que

$$W_{x,\lambda}^{r,\psi_x} \begin{pmatrix} \begin{pmatrix} \gamma_x^{r-1} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \gamma_x & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix} \end{pmatrix} = 1$$

pour n'importe quel élément $\gamma_x \in F_x^{\times}$ de valuation $v_x(\gamma_x) = N_{\psi_x}$.

(iii) Les transformées de la fonction de Whittaker $W^{r,\psi_x}_{x,\lambda}$ sous l'action de \mathcal{H}^r_x [ou $\mathrm{GL}_r(F_x)$] par convolution [resp. translation] à droite composent le modèle de Whittaker de l'induite unitaire $\operatorname{Ind}_{B_r(F_x)}^{\operatorname{GL}_r(F_x)}(\chi_{\lambda})$.

Considérons un instant une fonction globale

$$h: Q_r(F)\backslash \mathrm{GL}_r(\mathbb{A}) \to \mathbb{C}$$

invariante à droite par un sous-groupe ouvert K de $\mathrm{GL}_r(O_{\mathbb{A}})$ et telle que, en une certaine place $x \in |F|$, on ait

 $\begin{cases} \bullet & h \text{ est invariante à droite par } K_x^r = \operatorname{GL}_r(O_x), \\ \bullet & h * \varphi_x = S_x^r(\varphi_x)(\lambda) \cdot h, \quad \forall \, \varphi_x \in \mathcal{H}_{x,\emptyset}^r, \end{cases}$

pour une certaine famille $\lambda = (\lambda_1, \dots, \lambda_r) \in (\mathbb{C}^{\times})^r = \hat{T}_r$.

Alors, d'après la proposition III.12 ci-dessus, les composantes locales en x du ψ -coefficient de Fourier régulier $W_{(r)}$ h sont toutes des multiples de la fonction de Whittaker $W_{x,\lambda}^{r,\psi_x}$.

4 Fonctions de Whittaker intermédiaires

Dans ce paragraphe, considérons une partition $\underline{r} = \{r_1, r_1 + r_2, \dots, r_1 + \dots + r_k = r\}$ de l'entier r.

Elle induit un sous-groupe parabolique standard $P_{\underline{r}}$ de GL_r , son radical unipotent $N_{\underline{r}}$ et son sous-groupe de Levi standard $M_{\underline{r}} = \operatorname{GL}_{r_1} \times \cdots \times \operatorname{GL}_{r_k}$.

On note encore $\mathfrak{S}_{\underline{r}}$ le sous-groupe du groupe symétrique \mathfrak{S}_r constitué des permutations de $\{1,\ldots,r\}$ qui respectent la partition en intervalles

$$\{1,\ldots,r\} = \coprod_{1 \le i \le k} \{r_1 + \cdots + r_{i-1} + 1,\ldots,r_1 + \cdots + r_i\}.$$

Travaillant en une place $x \in |F|$, on dispose encore du caractère modulaire de $P_r(F_x)$

$$\rho_{\underline{r}}: P_{\underline{r}}(F_x)/N_{\underline{r}}(F_x) \cong M_{\underline{r}}(F_x) = \operatorname{GL}_{r_1}(F_x) \times \cdots \times \operatorname{GL}_{r_k}(F_x) \to q_x^{\mathbb{Z}},$$
$$(g_1, \dots, g_k) \mapsto \prod_{1 \leq i < j \leq k} \frac{|\det(g_i)|_x^{r_j}}{|\det(g_j)|_x^{r_i}}.$$

Posons:

Définition III.13. – Considérons une famille $\lambda = (\lambda_1, \dots, \lambda_r) \in (\mathbb{C}^{\times})^r = \hat{T}_r$ de r nombres complexes non nuls et ses sous-familles $\lambda^i = (\lambda_{r_1 + \dots + r_{i-1} + 1}, \dots, \lambda_{r_1 + \dots + r_i})$, $1 \leq i \leq k$, induites par la partition \underline{r} de l'entier r.

On appelle "fonction de Whittaker de type \underline{r} associée à λ et ψ_x " la fonction

$$W_{x,\lambda}^{\underline{r},\psi_x}: N_{\underline{r}}(F_x)\backslash \mathrm{GL}_r(F_x)/\mathrm{GL}_r(O_x) \to \mathbb{C}$$

définie de la manière suivante :

(i) Si le caractère ψ_x est régulier et si un élément

$$g \in \operatorname{GL}_r(F_x)$$

est écrit sous la forme d'Iwasawa

$$g = u g_r k$$

avec

$$g_{\underline{r}} = (g_1, \dots, g_k) \in M_{\underline{r}}(F_x) = \operatorname{GL}_{r_1}(F_x) \times \dots \times \operatorname{GL}_{r_k}(F_x),$$

$$u \in N_{\underline{r}}(F_x),$$

$$k \in \operatorname{GL}_r(O_x),$$

on pose

$$W^{\underline{r},\psi_x}_{x,\lambda}(g) = \rho^{1/2}_{\underline{r}}(g_{\underline{r}}) \cdot \prod_{1 \leq i \leq k} W^{r_i,\psi_x}_{x,\lambda^i}(g_i) \,.$$

(ii) Si le caractère ψ_x n'est pas nécessairement régulier, on l'écrit sous la forme

$$\psi_x(a_x) = \psi_x'(\gamma_x^{-1}a_x), \quad \forall a_x \in F_x,$$

où γ_x est n'importe quel élément de F_x^{\times} de valuation $v_x(\gamma_x) = N_{\psi_x}$ et $\psi_x': F_x \to \mathbb{C}^{\times}$ est donc un caractère régulier, et on pose pour tout élément $g \in \mathrm{GL}_r(F_x)$

$$W_{x,\lambda}^{r,\psi_x}(g) = W_{x,\lambda}^{r,\psi_x'} \begin{pmatrix} \begin{pmatrix} \gamma_x^{-r+1} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \gamma_x^{-1} & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix} \cdot g$$

$$= W_{x,\lambda}^{\underline{r},\psi_x'} \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \gamma_x & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \gamma_x^{r-1} \end{pmatrix} \cdot g \cdot (\lambda_1 \dots \lambda_r)^{-(r-1)N_{\psi_x}}.$$

Remarques.

- Deux fonctions de Whittaker de type \underline{r} , $W_{x,\lambda}^{\underline{r},\psi_x}$ et $W_{x,\lambda'}^{\underline{r},\psi_x}$, associées à deux familles $\lambda=(\lambda_1,\ldots,\lambda_r)$ et $\lambda'=(\lambda'_1,\ldots,\lambda'_r)$ de r nombres complexes non nuls, sont égales si et seulement si ces deux familles ne diffèrent que par une permutation de leurs composantes qui respecte la partition \underline{r} de l'entier r, c'est-à-dire par un élément de \mathfrak{S}_r .
- Si \underline{r} est la partition la plus fine $\{1, 2, \dots, r\}$ de l'entier r, avec donc k = r et $r_1 = r_2 = \dots = r_k = 1$, et si le caractère ψ_x est régulier, la fonction

$$W_{x,\lambda}^{\underline{r},\psi_x}:N_{\underline{r}}(F_x)\backslash \mathrm{GL}_r(F_x)/\mathrm{GL}_r(O_x)\to \mathbb{C}$$

se confond avec la fonction

$$V_{r,\lambda}^r: N_r(F_x)\backslash \mathrm{GL}_r(F_x)/\mathrm{GL}_r(O_x) \to \mathbb{C}$$

déjà introduite dans l'énoncé du théorème III.10(ii).

• Quelles que soient la partition \underline{r} et la famille λ , on a

$$W_{x,\lambda}^{r,\psi_x} \begin{pmatrix} \begin{pmatrix} \gamma_x^{r-1} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \gamma_x & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix} \end{pmatrix} = 1$$

pour n'importe quel élément $\gamma_x \in F_x^{\times}$ de valuation $v_x(\gamma_x) = N_{\psi_x}$.

On a maintenant la généralisation partielle suivante de la proposition III.12 :

Proposition III.14. – Soit
$$\lambda = (\lambda_1, \dots, \lambda_r) \in (\mathbb{C}^{\times})^r = \hat{T}_r$$
.

(i) Le sous-espace des fonctions

$$W: \mathrm{GL}_r(F_x) \to \mathbb{C}$$

telles que

$$\begin{cases} \bullet & W \ est \ invariante \ \grave{a} \ droite \ par \ \mathrm{GL}_r(O_x) \ , \\ \bullet & W(ug) = \psi_{\underline{r}}^{-1}(u) \cdot W(g) \ , \quad \forall \, u \in N_r(F_x) \ , \quad \forall \, g \in \mathrm{GL}_r(F_x) \ , \\ \bullet & W * \varphi_x = S_x^r(\varphi_x)(\lambda) \cdot W \ , \quad \forall \, \varphi_x \in \mathcal{H}_{x,\emptyset}^r \ , \end{cases}$$

est de dimension finie.

(ii) Ce sous-espace est engendré par les fonctions de Whittaker de type r

$$W_{x,\sigma(\lambda)}^{\underline{r},\psi_x}: \mathrm{GL}_r(F_x) \to \mathbb{C}$$

associées aux familles $\sigma(\lambda) = (\lambda_{\sigma(1)}, \dots, \lambda_{\sigma(r)})$ déduites de $\lambda = (\lambda_1, \dots, \lambda_r)$ par les classes de permutations $\sigma \in \mathfrak{S}_r/\mathfrak{S}_r$.

Considérons un instant une fonction globale

$$h: Q_r(F)\backslash \mathrm{GL}_r(\mathbb{A}) \to \mathbb{C}$$

invariante à droite par un sous-groupe ouvert de $\mathrm{GL}_r(O_{\mathbb{A}})$ et telle que, en une certaine place $x \in |F|$, on ait

$$\begin{cases}
\bullet & h \text{ est invariante à droite par } GL_r(O_x), \\
\bullet & h * \varphi_x = S_x^r(\varphi_x)(\lambda) \cdot h, \quad \forall \varphi_x \in \mathcal{H}_{x,\emptyset}^r,
\end{cases}$$

pour une certaine famille $\lambda = (\lambda_1, \dots, \lambda_r) \in (\mathbb{C}^{\times})^r = \hat{T}_r$.

Alors les composantes locales en x du ψ -coefficient de Fourier $W_{\underline{r}}h$ de type \underline{r} de h sont des éléments du sous-espace introduit dans la proposition III.14 ci-dessus. Autrement dit, ce sont des combinaisons linéaires des fonctions de Whittaker de type \underline{r}

$$W_{x,\sigma(\lambda)}^{\underline{r},\psi_x}: \mathrm{GL}_r(F_x) \to \mathbb{C}$$

indexées par les classes $\sigma \in \mathfrak{S}_r/\mathfrak{S}_r$.

Chapitre IV:

Termes principaux pour la construction de noyaux du transfert

1 Relèvement des homomorphismes de transfert entre algèbres de Hecke sphériques locales

Nous revenons à la situation et aux notations du chapitre II.

Nous considérons donc un groupe réductif connexe G sur le corps de fonctions F, non ramifié en dehors d'un sous-ensemble fini S de |F|, et un homomorphisme de transfert

$$\rho: \hat{G} \rtimes \Gamma_F^{\mathrm{nr},S} \to \mathrm{GL}_r(\mathbb{C}).$$

Il existe une extension finie galoisienne E de F, contenue dans $F_s^{\mathrm{nr},S}$ donc non ramifiée en dehors de S, telle que l'action de $\Gamma_F^{\mathrm{nr},S}$ sur la donnée radicielle $(X_G,\Phi_G,X_G^\vee,\Phi_G^\vee)$, le groupe de Weyl \mathfrak{S}_G et le dual de Langlands \hat{G} de G se factorise à travers son quotient fini $\Gamma_{E/F}$ et que l'homomorphisme de transfert $\rho:\hat{G}\rtimes\Gamma_F^{\mathrm{nr},S}\to\mathrm{GL}_r(\mathbb{C})$ se factorise en

$$\hat{G} \rtimes \Gamma_{E/F} \to \mathrm{GL}_r(\mathbb{C})$$
.

Pour toute place $x \in |F| - S$, σ_x désigne l'image dans le groupe fini $\Gamma_{E/F}$ de l'élément de Frobenius en x, générateur topologique de $\Gamma_{F_x}^{\rm nr} \cong \Gamma_{\kappa(x)} \cong \hat{\mathbb{Z}}$.

On notera e_x l'ordre de l'élément σ_x dans le groupe fini $\Gamma_{E/F}$.

On rappelle que le groupe de Weyl F_x -rationnel \mathfrak{S}_G^x s'identifie au sous-groupe de \mathfrak{S}_G constitué des éléments fixés par σ_x .

L'isomorphisme de Satake pour l'algèbre de Hecke sphérique $\mathcal{H}_{x,\emptyset}^G$ de G en la place $x \in |F| - S$ s'écrit

$$S_x^G: \mathcal{H}_{x,\emptyset}^G \xrightarrow{\sim} \mathbb{C}[\Lambda_x^{\vee}]^{\mathfrak{S}_G^x},$$

où Λ_x^{\vee} s'identifie au réseau des caractères complexes

$$\hat{T} \to \mathbb{C}^{\times}$$

qui sont fixés par l'action de σ_x sur \hat{T} , c'est-à-dire au réseau des caractères complexes du tore \hat{T}_x^d , conoyau de l'homomorphisme

$$\hat{T} \rightarrow \hat{T},$$

 $\lambda \mapsto \sigma_x(\lambda) \cdot \lambda^{-1}.$

Tout caractère de l'algèbre $\mathbb{C}[\Lambda_x^{\vee}]^{\mathfrak{S}_G^x}$ est défini par l'évaluation en un élément de \hat{T}_x^d , bien déterminé à action près du groupe fini \mathfrak{S}_G^x .

De même, l'isomorphisme de Satake pour l'algèbre de Hecke sphérique $\mathcal{H}^r_{x,\emptyset}$ de $\mathrm{GL}_r(F_x)$ s'écrit

$$\mathcal{H}_{x,\emptyset}^r \stackrel{\sim}{\longrightarrow} \mathbb{C}[\Lambda_r^{\vee}]^{\mathfrak{S}_r}$$
,

où Λ_r^{\vee} s'identifie au réseau des caractères complexes $\hat{T}_r \to \mathbb{C}^{\times}$ du tore $\hat{T}_r = (\mathbb{C}^{\times})^r$.

Tout caractère de l'algèbre $\mathbb{C}[\Lambda_r^{\vee}]^{\mathfrak{S}_r}$ est défini par l'évaluation en un élément de $\hat{T}_r = (\mathbb{C}^{\times})^r$, bien déterminé à action près du groupe symétrique \mathfrak{S}_r .

Rappelons encore qu'en toute place $x \in |F| - S$, \hat{G}_x désigne la fibre de $\hat{G} \rtimes \Gamma_{E/F}$ au-dessus de l'élément de Frobenius σ_x .

L'homomorphisme de transfert entre algèbres de Hecke sphériques locales

$$\rho_x^*:\mathcal{H}_{x,\emptyset}^r\to\mathcal{H}_{x,\emptyset}^G$$

induit par $\rho:\hat{G}\rtimes\Gamma_{E/F}\to \mathrm{GL}_r(\mathbb{C})$ est défini par le diagramme commutatif :

$$\mathcal{H}^{r}_{x,\emptyset} \xrightarrow{\rho_{x}^{*}} \mathcal{H}^{G}_{x,\emptyset}$$

$$\downarrow^{\wr} \qquad \qquad \downarrow^{\wr}$$

$$\mathbb{C}[\Lambda^{\vee}_{r}]^{\mathfrak{S}_{r}} \qquad \mathbb{C}[\Lambda^{\vee}_{x}]^{\mathfrak{S}_{G}^{x}}$$

$$\downarrow^{\wr} \qquad \qquad \downarrow^{\wr}$$

$$\mathbb{C}[\mathrm{GL}_{r}(\mathbb{C})]^{\mathrm{GL}_{r}(\mathbb{C})} \longrightarrow \mathbb{C}[\hat{G}_{x}]^{\hat{G}}$$

Les homomorphismes ρ_x^* , $x \in |F| - S$, ne changent pas si l'on remplace ρ par son conjugué par un élément de $\mathrm{GL}_r(\mathbb{C})$. On peut donc supposer que ρ envoie le tore maximal \hat{T} de \hat{G} dans le tore maximal $\hat{T}_r = (\mathbb{C}^\times)^r$ de $\mathrm{GL}_r(\mathbb{C})$. On note

$$\rho_T: \hat{T} \to \hat{T}_r = (\mathbb{C}^\times)^r$$

l'homomorphisme induit entre ces tores complexes.

En toute place $x \in |F| - S$, on note encore \hat{T}_x la fibre de $\hat{T} \times \Gamma_{E/F}$ au-dessus de l'élément σ_x de $\Gamma_{E/F}$. Les éléments de \hat{T}_x sont de la forme (λ, σ_x) avec $\lambda \in \hat{T}$. Deux éléments λ et λ' du tore \hat{T} ont même image dans le tore quotient \hat{T}_x^d si et seulement si les éléments (λ, σ_x) et (λ', σ_x) de \hat{T}_x se déduisent l'un de l'autre par conjugaison par un élément de \hat{T} .

Lemme IV.1. – En toute place $x \in |F| - S$, il existe un unique homomorphisme de tores

$$\rho_{T,x}: \hat{T}_x^d \to \hat{T}_r = (\mathbb{C}^\times)^r$$

tel que, pour tout élément $\lambda \in \hat{T}$ d'image $\bar{\lambda}$ dans \hat{T}_x^d , on ait

$$\rho(\lambda, \sigma_x)^{e_x} = \rho_{T,x}(\bar{\lambda})$$
.

Tout comme le tore quotient \hat{T}_x^d , cet homomorphisme $\rho_{T,x}$ ne dépend de la place $x \in |F| - S$ qu'à travers l'élément σ_x du groupe fini $\Gamma_{E/F}$.

Démonstration. Comme $\sigma_x^{e_x}=1$, $(\lambda,\sigma_x)^{e_x}$ appartient à la fibre \hat{T} de $\hat{T}\rtimes\Gamma_{E/F}$ au-dessus de l'unité de $\Gamma_{E/F}$ et vaut

$$\lambda \cdot \sigma_x(\lambda) \cdot \sigma_x^2(\lambda) \dots \sigma_x^{e_x-1}(\lambda)$$
.

Comme ρ envoie \hat{T} dans \hat{T}_r , $\lambda \mapsto \rho(\lambda, \sigma_x)^{e_x}$ définit un homomorphisme de tores

$$\hat{T} \rightarrow \hat{T}_r$$
.

Il se factorise à travers le quotient \hat{T}_x^d de \hat{T} puisque, si (λ, σ_x) et (λ', σ_x) sont conjugués par un élément de \hat{T} , il en est de même de $(\lambda, \sigma_x)^{e_x}$ et $(\lambda', \sigma_x)^{e_x}$ qui sont alors égaux.

Via les isomorphismes de Satake, les homomorphismes induits par ρ entre algèbres de Hecke sphériques locales

$$\rho_x^*: \mathcal{H}_{x,\emptyset}^r \to \mathcal{H}_{x,\emptyset}^G$$

s'identifient à des homomorphismes

$$\rho_r^*: \mathbb{C}[\hat{T}_r]^{\mathfrak{S}_r} \to \mathbb{C}[\hat{T}_r^d]^{\mathfrak{S}_G^x}$$
.

Proposition IV.2. – En toute place $x \in |F| - S$, il existe un élément $\varepsilon_x = (\varepsilon_x^1, \dots, \varepsilon_x^r) \in \hat{T}_r = (\mathbb{C}^{\times})^r$ tel que

- $\varepsilon_x^{e_x} = 1$ (c'est-à-dire $(\varepsilon_x^1)^{e_x} = \cdots = (\varepsilon_x^r)^{e_x} = 1$),
- pour tout polynôme symétrique $p \in \mathbb{C}[\hat{T}_r]^{\mathfrak{S}_r}$ et pour tout élément $\lambda \in \hat{T}_x^d$, on a

$$\rho_x^*(p)(\lambda^{e_x}) = p(\varepsilon_x \cdot \rho_{T,x}(\lambda)).$$

Cet élément ε_x peut être choisi de façon à ne dépendre de la place x qu'à travers l'élément σ_x du groupe fini $\Gamma_{E/F}$.

Démonstration. Le polynôme symétrique p peut aussi être vu comme une fonction invariante sur $GL_r(\mathbb{C})$: on associe à toute matrice inversible la valeur prise par le polynôme p en la famille de ses r valeurs propres.

Prenons pour λ le point générique du tore \hat{T}_x^d .

Par définition de l'homomorphisme ρ_x^* , $\rho_x^*(p)(\lambda^{e_x})$ est la valeur prise par p en la matrice $\rho(\lambda^{e_x}, \sigma_x)$, élément de $GL_r(\mathbb{C})$. Or on a

$$\rho(\lambda^{e_x}, \sigma_x)^{e_x} = \rho_{T,x}(\lambda^{e_x}) = (\rho_{T,x}(\lambda))^{e_x}.$$

La matrice $\rho(\lambda^{e_x}, \sigma_x)$ est donc annulée par un polynôme scindé. Elle est triangulable et la famille de ses valeurs propres est de la forme

$$\varepsilon_x \cdot \rho_{T,x}(\lambda)$$

pour un certain élément $\varepsilon_x = (\varepsilon_x^1, \dots, \varepsilon_x^r) \in \hat{T}_r = (\mathbb{C}^\times)^r$ tel que $\varepsilon_x^{e_x} = 1$.

À titre d'exemple, considérons le cas de l'induction automorphe de GL_1 à GL_r .

Dans ce cas, $G = \operatorname{Res}_{E_0/F} \operatorname{GL}_1$ est le groupe réductif déduit de GL_1 par restriction des scalaires à la Weil d'une extension E_0 de F de degré r, non ramifiée en dehors d'une partie finie S de |F|.

Si E désigne une extension finie galoisienne de F, non ramifiée en dehors de S et dans laquelle E_0 se plonge, le groupe dual \hat{G} de G s'écrit

$$\hat{G} = \prod_{\iota: E_0 \hookrightarrow E} \mathbb{C}^{\times}$$

où ι décrit l'ensemble à r éléments des plongements possibles $E_0 \hookrightarrow E$.

L'homomorphisme de transfert

$$\rho: \hat{G} \rtimes \Gamma_{E/F} \to \mathrm{GL}_r(\mathbb{C})$$

est le composé de l'immersion naturelle

$$(\mathbb{C}^{\times})^r \hookrightarrow \mathrm{GL}_r(\mathbb{C})$$

et de l'homomorphisme

$$\Gamma_{E/F} \to \mathrm{GL}_r(\mathbb{C})$$

qui consiste à associer à tout automorphisme de E sur F la matrice de permutation correspondante de l'ensemble à r éléments $\{\iota: E_0 \hookrightarrow E\}$.

Alors, pour toute place $x \in |F| - S$, l'élément $\varepsilon_x \in \hat{T}_r = (\mathbb{C}^\times)^r$ consiste en la famille des r valeurs propres de la matrice de permutation obtenue comme image de l'élément $\sigma_x \in \Gamma_{E/F}$ d'ordre e_x .

2 Construction de noyaux locaux du transfert non ramifié

Considérons une place $x \in |F| - S$.

Le groupe réductif connexe G_{F_x} est non ramifié sur F_x et on dispose de l'algèbre de Hecke sphérique locale $\mathcal{H}_{x,\emptyset}^G$ constituée des fonctions à support compact sur $G(F_x)$ qui sont invariantes à droite et à gauche par $K_x = G_{F_x}(O_x)$.

Nous voulons d'abord rappeler l'énoncé du théorème de décomposition spectrale pour cette algèbre.

L'isomorphisme de Satake

$$S_x^G: \mathcal{H}_{x,\emptyset}^G \xrightarrow{\sim} \mathbb{C}[\Lambda_x^{\vee}]^{\mathfrak{S}_G^x}$$

implique que se donner un caractère de l'algèbre commutative $\mathcal{H}_{x,\emptyset}^G$ équivaut à se donner un caractère du réseau Λ_x^{\vee} modulo l'action du groupe de Weyl F_x -rationnel \mathfrak{S}_G^x .

Or le groupe des caractères complexes du réseau Λ_x^{\vee} s'identifie au tore complexe \hat{T}_x^d .

On note $\operatorname{Im} \hat{T}_x^d$ le sous-groupe de \hat{T}_x^d constitué des caractères unitaires de Λ_x^{\vee} . C'est le plus grand sous-groupe compact de \hat{T}_x^d . Il est isomorphe à un produit de copies du cercle unité de \mathbb{C}^{\times} .

Ainsi, se donner un caractère [resp. un caractère unitaire] de l'algèbre sphérique $\mathcal{H}_{x,\emptyset}^G$ équivaut à se donner un élément de \hat{T}_x^d [resp. Im \hat{T}_x^d] modulo l'action du groupe fini \mathfrak{S}_G^x .

L'isomorphisme de Satake s'écrit encore

$$S_x^G: \mathcal{H}_{x,\emptyset}^G \xrightarrow{\sim} \mathbb{C}[\hat{T}_x^d]^{\mathfrak{S}_G^x}.$$

Nous pouvons maintenant énoncer le théorème de décomposition spectrale des algèbres de Hecke sphériques locales en les places sans ramification :

Théorème IV.3. – Soit $x \in |F| - S$ une place sans ramification.

(i) Pour tout élément $\lambda \in \hat{T}^d_x$, il existe une unique fonction sphérique

$$\varphi_{x,\lambda}^G: K_x \backslash G(F_x)/K_x \to \mathbb{C}$$

telle que

- $\varphi_{x,\lambda}^G * \varphi_x = \varphi_x * \varphi_{x,\lambda}^G = S_x^G(\varphi_x)(\lambda) \cdot \varphi_{x,\lambda}^G, \forall \varphi_x \in \mathcal{H}_{x,\emptyset}^G$
- $\bullet \varphi_{x_{\lambda}}^{G}(1) = 1.$
- (ii) Pour tout élément $g \in G(F_x)$, la fonction

$$\begin{array}{ccc}
\hat{T}_x^d & \to & \mathbb{C} \\
\lambda & \mapsto & \varphi_{x,\lambda}^G(g)
\end{array}$$

est une fonction polynomiale invariante par \mathfrak{S}_G^x .

(iii) Il existe sur le tore réel compact $\operatorname{Im} \hat{T}^d_x$ une unique mesure $d\lambda$ invariante par \mathfrak{S}^x_G et telle que, pour toute fonction $\varphi_x \in \mathcal{H}^G_{x,\emptyset}$, on ait

$$\varphi_x(g) = \int_{\operatorname{Im} \hat{T}_x^d} d\lambda \cdot S_x^G(\varphi_x)(\lambda) \cdot \varphi_{x,\lambda}^G(g) \,, \quad \forall \, g \in G(F_x) \,.$$

On l'appelle la mesure de Plancherel.

Considérons maintenant un homomorphisme de transfert

$$\rho: \hat{G} \rtimes \Gamma_F^{\mathrm{nr},S} \to \mathrm{GL}_r(\mathbb{C}).$$

Comme dans le paragraphe précédent, on choisit une extension finie galoisienne E de F, non ramifiée en dehors de S, telle que ρ se factorise en

$$\hat{G} \rtimes \Gamma_{E/F} \to \mathrm{GL}_r(\mathbb{C})$$
.

Pour toute place $x \in |F| - S$, σ_x désigne l'image dans $\Gamma_{E/F}$ de l'élément de Frobenius en x, et e_x son ordre comme élément du groupe fini $\Gamma_{E/F}$.

En toute telle place, on dispose de l'homomorphisme ρ_x^* entre algèbres de Hecke sphériques locales induit par ρ . On peut aussi le voir comme un homomorphisme entre deux algèbres de polynômes symétriques :

$$\begin{array}{ccc} \mathcal{H}^r_{x,\emptyset} & \xrightarrow{\rho^*_x} & \mathcal{H}^G_{x,\emptyset} \\ S^r_x \middle| & & S^G_x \middle| & \\ \mathbb{C}[\hat{T}_r]^{\mathfrak{S}_r} & \xrightarrow{\rho^*_x} & \mathbb{C}[\hat{T}^d_x]^{\mathfrak{S}^x_G} \end{array}$$

Quitte à remplacer ρ par son conjugé par un élément de $GL_r(\mathbb{C})$, on a pu supposer que ρ envoie le tore maximal \hat{T} de \hat{G} dans le tore maximal $\hat{T}_r = (\mathbb{C}^{\times})^r$ de $GL_r(\mathbb{C})$ et induit ainsi un homomorphisme de tores

$$\rho_T: \hat{T} \to \hat{T}_r$$
.

Le lemme IV.1 et la proposition IV.2 ont alors permis de définir, en chaque place $x \in |F| - S$,

$$\begin{cases} \bullet \text{ un homomorphisme canonique } \rho_{T,x}: \hat{T}^d_x \to \hat{T}_r, \\ \bullet \text{ un élément } \varepsilon_x \in \hat{T}_r = (\mathbb{C}^\times)^r \text{ vérifiant } \varepsilon^{e_x}_x = 1, \end{cases}$$

tels que

$$\rho_x^*(p)(\lambda^{e_x}) = p(\varepsilon_x \cdot \rho_{T,x}(\lambda)) \,, \quad \forall \, p \in \mathbb{C}[\hat{T}_r]^{\mathfrak{S}_r} \,, \quad \forall \, \lambda \in \hat{T}_x^d \,.$$

La paire $(\rho_{T,x}, \varepsilon_x)$ ne dépend de la place $x \in |F| - S$ qu'à travers l'élément $\sigma_x \in \Gamma_{E/F}$.

Choisissons maintenant un caractère additif continu non trivial

$$\psi: F \backslash \mathbb{A} \to \mathbb{C}$$

comme dans le chapitre III. Ses composantes en les différentes places $x \in |F|$ sont notées

$$\psi_x: F_x \to \mathbb{C}^{\times}$$
.

Dans la définition III.11, nous avons rappelé la formation explicite, pour tout paramètre $\lambda' \in (\mathbb{C}^{\times})^r = \hat{T}_r$, de la fonction de Whittaker

$$W_{x,\lambda'}^{r,\psi_x}: \mathrm{GL}_r(F_x) \to \mathbb{C}$$
.

Les fonctions de Whittaker $W^{r,\psi_x}_{x,\lambda'}$, $\lambda' \in (\mathbb{C}^{\times})^r = \hat{T}_r$, vérifient les propriétés suivantes :

- Elles sont invariantes à droite par $K_x^r = GL_r(O_x)$.
- $W_{x,\lambda'}^{r,\psi_x}(ug) = \psi_{(r)}^{-1}(u) \cdot W_{x,\lambda'}^{r,\psi_x}(g), \forall u \in N_r(F_x), \forall g \in GL_r(F_x), \forall \lambda'.$
- $W_{x,\lambda'}^{r,\psi_x} * \varphi_x' = S_x^r(\varphi_x')(\lambda') \cdot W_{x,\lambda'}^{r,\psi_x}, \forall \varphi_x' \in \mathcal{H}_{x,\emptyset}^r, \forall \lambda'.$
- Pour tout élément $g \in GL_r(F_x)$, la fonction

$$(\mathbb{C}^{\times})^r = \hat{T}_r \quad \to \quad \mathbb{C}$$

$$\lambda' \quad \mapsto \quad W^{r,\psi_x}_{x,\lambda'}(g)$$

est un polynôme symétrique, c'est-à-dire invariant par l'action de \mathfrak{S}_r .

Notons $d\lambda^{e_x}$ la mesure sur $\operatorname{Im} \hat{T}^d_x$ qui se déduit de la mesure de Plancherel $d\lambda$ par l'homomorphisme

$$\operatorname{Im} \hat{T}_x^d \to \operatorname{Im} \hat{T}_x^d,
\lambda \mapsto \lambda^{e_x}.$$

Ainsi, on a pour toute fonction continue p sur $\operatorname{Im} \hat{T}_x^d$ la formule d'intégration

$$\int_{\operatorname{Im}\hat{T}_x^d} d\lambda^{e_x} \cdot p(\lambda) = \int_{\operatorname{Im}\hat{T}_x^d} d\lambda \cdot p_{e_x}(\lambda)$$

οù

$$p_{e_x}(\lambda) = \frac{1}{\#\{\lambda_1 \in \operatorname{Im} \hat{T}_x^d \mid \lambda_1^{e_x} = 1\}} \cdot \sum_{\substack{\lambda_1 \in \operatorname{Im} \hat{T}_x^d \\ \lambda_1^{e_x} = \lambda}} p(\lambda_1).$$

Tout comme la mesure de Plancherel $d\lambda$, la mesure $d\lambda^{e_x}$ est invariante par l'action du groupe fini \mathfrak{S}_G^x .

Nous pouvons maintenant construire des fonctions que nous appellerons "noyaux locaux du transfert non ramifié" en une place x:

Définition IV.4. – Soit $x \in |F| - S$ une place sans ramification.

Pour tout polynôme symétrique $p_x \in \mathbb{C}[\hat{T}_x^d]^{\mathfrak{S}_G^x}$, on note

$$K_{x,p_x}^{G,\rho,\psi_x}: K_x \backslash G(F_x)/K_x \times \mathrm{GL}_r(F_x)/\mathrm{GL}_r(O_x) \to \mathbb{C}$$

la fonction définie par la formule intégrale

$$(g,g') \mapsto \int_{\operatorname{Im} \hat{T}_x^d} d\lambda^{e_x} \cdot p_x(\lambda^{e_x}) \cdot \varphi_{x,\lambda^{e_x}}^G(g) \cdot W_{x,\varepsilon_x \cdot \rho_{T,x}(\lambda)}^{r,\psi_x}(g').$$

Énoncons les principales propriétés de ces fonctions :

Proposition IV.5. – Soit $x \in |F| - S$ une place sans ramification.

(i) Pour tout polynôme symétrique $p_x \in \mathbb{C}[\hat{T}_x^d]^{\mathfrak{S}_G^x}$, la fonction

$$K_{x,p_x}^{G,\rho,\psi_x}(\bullet,\bullet):G(F_x)\times \mathrm{GL}_r(F_x)\to \mathbb{C}$$

possède les propriétés suivantes :

(0) En la première variable, elle est invariante à droite et à gauche par $K_x = G_{F_x}(O_x)$ et, en la seconde variable, elle est invariante à droite par $K_x^r = GL_r(O_x)$.

56

(1) On a

$$K_{x,p_x}^{G,\rho,\psi_x} *_2 \varphi_x' = K_{x,p_x}^{G,\rho,\psi_x} *_1 \rho_x^*(\varphi_x'), \quad \forall \varphi_x' \in \mathcal{H}_{x,\emptyset}^r.$$

(2) Pour tout élément $g' \in GL_r(F_x)$, la fonction

$$\begin{array}{ccc} G(F_x) & \to & \mathbb{C} \\ g & \mapsto & K_{x,p_x}^{G,\rho,\psi_x}(g,g') \end{array}$$

est à support compact (dépendant de g').

(3) Pour tous éléments $g \in G(F_x)$, $g' \in GL_r(F_x)$ et $u \in N_r(F_x)$, on a

$$K_{x,p_x}^{G,\rho,\psi_x}(g,ug') = \psi_{(r)}^{-1}(u) \cdot K_{x,p_x}^{G,\rho,\psi_x}(g,g')$$
.

(ii) Réciproquement, toute fonction

$$G(F_x) \times \operatorname{GL}_r(F_x) \to \mathbb{C}$$

qui possède les propriétés (0), (1), (2) et (3) ci-dessus est de la forme

$$K_{x,p_x}^{G,\rho,\psi_x}$$

pour un certain polynôme symétrique $p_x \in \mathbb{C}[\hat{T}_x^d]^{\mathfrak{S}_G^x}$.

Remarques.

- C'est à cause de cette proposition, et tout particulièrement de la propriété (1), que les fonctions $K_{x,p_x}^{G,\rho,\psi_x}$ sont appelées des "noyaux locaux du tranfert non ramifié par ρ " en la place $x \in |F| S$.
- Dans une large mesure, les propriétés de cette proposition sont des analogues locales des propriétés de la définition II.18, c'est-à-dire des propriétés qui définissent la notion de "noyaux globaux du transfert par ρ ".

3 Construction explicite de termes principaux pour les noyaux globaux du transfert non ramifié

Dans ce paragraphe, on suppose $S = \emptyset$.

Ainsi, le groupe réductif connexe G sur F est non ramifié sur F_x en toute place $x \in |F|$. On dispose donc en toute place x du sous-groupe ouvert compact maximal $K_x = G_{F_x}(O_x)$ et de l'algèbre de Hecke sphérique locale $\mathcal{H}_{x,\emptyset}^G$.

Globalement, on dispose du sous-groupe ouvert compact maximal $K^G = \prod_{x \in |F|} K_x$ de $G(\mathbb{A})$ et de l'algèbre de Hecke sphérique globale

$$\mathcal{H}_{\emptyset}^{G} = \bigotimes_{x \in |F|} \mathcal{H}_{x,\emptyset}^{G}$$
.

Elle est constituée des fonctions à support compact sur $G(\mathbb{A})$ qui sont invariantes à droite et à gauche par K^G .

Une représentation lisse admissible irréductible de $G(\mathbb{A})$ ou, plus généralement, une représentation lisse admissible factorisable $(\pi, V_{\pi}) \cong \bigotimes_{x \in |F|} (\pi_x, V_{\pi_x})$ de $G(\mathbb{A})$ est dite non ramifiée si

$$\dim V_{\pi}^{K^G} = 1$$

ou, ce qui est équivalent, si

$$\dim V_{\pi_x}^{K_x} = 1\,, \qquad \forall \, x \in |F|\,.$$

On considère un homomorphisme de transfert ρ qui est lui-même partout non ramifié. Cela signifie qu'il s'écrit

$$\rho: \hat{G} \rtimes \Gamma_F^{\mathrm{nr}} \to \mathrm{GL}_r(\mathbb{C})$$
.

On peut choisir une extension finie galoisienne E de F, contenue dans $F_x^{\rm nr}$ donc partout non ramifiée, telle que ρ se factorise en un homomorphisme

$$\hat{G} \rtimes \Gamma_{E/F} \to \mathrm{GL}_r(\mathbb{C})$$
.

Notre but serait de réaliser le transfert par ρ des représentations automorphes partout non ramifiées de $G(\mathbb{A})$.

Pour cela, nous cherchons à construire des "noyaux globaux du transfert non ramifié par ρ " au sens de la définition II.18. Au paragraphe précédent, nous avons déjà construit en chaque place $x \in |F|$ des fonctions

$$K_{x,p_x}^{G,\rho,\psi_x}:G(F_x)\times \mathrm{GL}_r(F_x)\to\mathbb{C}$$

qui sont des "noyaux locaux du transfert non ramifié par ρ ".

Avant d'aller plus loin, rappelons quelques notations du chapitre III relatives à certains sous-groupes de GL_r .

Pour tout entier r' < r, on considère $GL_{r'}$ comme plongé dans GL_r par

$$g' \mapsto \begin{pmatrix} g' & 0 \\ 0 & I_{r-r'} \end{pmatrix}$$
.

Tout sous-groupe d'un $GL_{r'}$, r' < r, peut être considéré comme un sous-groupe de GL_r via ce plongement.

On a noté Q'_r le sous-groupe parabolique standard de GL_r associé à la partition r=(r-1)+1, et Q_r son sous-groupe "mirabolique".

On a

$$Q_r = N_r \cdot \operatorname{GL}_{r-1}$$
 et $N_r \cap \operatorname{GL}_{r-1} = N_{r-1}$,

si bien que le quotient $N_r \backslash Q_r$ s'identifie au quotient $N_{r-1} \backslash GL_{r-1}$.

Ayant noté $Z_r = \mathbb{G}_m$ le centre de GL_r , on a aussi

$$Q_r' = Z_r \cdot Q_r$$
.

Ces notations étant rappelées, choisissons une famille $p=(p_x)_{x\in |F|}$ de polynômes symétriques $p_x\in \mathbb{C}[\hat{T}_x^d]^{\mathfrak{S}_G^x}$, soumise à la seule condition que $p_x=1$ en presque toute place x.

On dispose alors de la fonction

$$K_{p,(r)}^{G,\rho,\psi}: G(\mathbb{A}) \times \operatorname{GL}_r(\mathbb{A}) \to \mathbb{C}$$

$$(g = (g_x)_{x \in |F|}, g' = (g'_x)_{x \in |F|}) \mapsto \prod_{x \in |F|} K_{x,p_x}^{G,\rho,\psi_x}(g_x, g'_x).$$

Cette fonction possède en particulier la propriété de variance

$$K_{p,(r)}^{G,\rho,\psi}(g,ug') = \psi_{(r)}^{-1}(u) \cdot K_{p,(r)}^{G,\rho,\psi}(g,g'), \quad \forall g \in G(\mathbb{A}), \quad \forall g' \in GL_r(\mathbb{A}), \quad \forall u \in N_r(\mathbb{A}).$$

Comme le caractère régulier

$$\psi_{(r)}:N_r(\mathbb{A})\to\mathbb{C}^\times$$

est trivial sur $N_r(F)$, la fonction $K_{p,(r)}^{G,\rho,\psi}$ est invariante à gauche par $N_r(F)$ en la deuxième variable $g' \in \mathrm{GL}_r(\mathbb{A})$.

On a maintenant:

Lemme IV.6. – Considérons comme ci-dessus une famille $p = (p_x)_{x \in |F|}$ de polynômes invariants $p_x \in \mathbb{C}[\hat{T}_x^d]^{\mathfrak{S}_G^x}$ presque tous éqaux à 1.

Pour tous éléments $g_1, g_2 \in G(\mathbb{A})$ et $g' \in GL_r(\mathbb{A})$, introduisons la somme

$$K_{p,(r)}^{G,\rho}(g_1,g_2,g') = \sum_{\gamma \in G(F)} \sum_{\delta \in N_r(F) \backslash Q_r(F)} K_{p,(r)}^{G,\rho,\psi}(g_1^{-1}\gamma g_2,\delta g').$$

Alors

- (i) Cette somme est localement finie sur $G(\mathbb{A}) \times G(\mathbb{A}) \times GL_r(\mathbb{A})$.
- (ii) Elle définit une fonction

$$K_{p,(r)}^{G,\rho}:G(\mathbb{A})\times G(\mathbb{A})\times \mathrm{GL}_r(\mathbb{A})\to \mathbb{C}$$

qui possède les propriétés (0), (1) et (2) de la définition II.18 (avec $S=\emptyset$ et donc

$$K = K^G = \prod_{x \in |F|} K_x$$
, $K' = \operatorname{GL}_r(O_{\mathbb{A}}) = \prod_{x \in |F|} \operatorname{GL}_r(O_x)$.

- (iii) En la troisième variable $g' \in GL_r(\mathbb{A})$, cette fonction $K_{p,(r)}^{G,\rho}$ est invariante à gauche par $Q_r(F)$ et même par $Q'_r(F)$.
- (iv) En chacune des deux premières variables g_1, g_2 , la fonction $K_{p,(r)}^{G,\rho}$ est à supports compacts (dépendant des deux autres variables) dans $G(F)\backslash G(\mathbb{A})$.

Ainsi, les fonctions $K_{p,(r)}^{G,\rho}$ possèdent toutes les propriétés de définition des "noyaux globaux du transfert non ramifié par ρ ", sauf la propriété difficile (3) d'invariance à gauche par $GL_r(F)$ en la troisième variable, qui est remplacée par la propriété plus faible d'invariance à gauche par $Q'_r(F)$.

Par construction et d'après le théorème III.3 d'inversion de Shalika, on a :

Lemme IV.7. – Pour toute famille de polynômes $p = (p_x)_x \in |F|$ comme dans le lemme précédent, et pour tous éléments $g_1, g_2 \in G(\mathbb{A})$, la fonction

$$Q'_r(F)\backslash \mathrm{GL}_r(\mathbb{A})\to \mathbb{C}$$

$$g' \mapsto K_{p,(r)}^{G,\rho}(g_1,g_2,g')$$

 $est\ cuspidale.$

De plus, son coefficient de Fourier régulier

$$g' \mapsto \int_{N_r(F) \setminus N_r(\mathbb{A})} du \cdot \psi_{(r)}(u) \cdot K_{p,(r)}^{G,\rho}(g_1, g_2, ug')$$

est égal à la somme

$$g' \mapsto \sum_{\gamma \in G(F)} K_{p,(r)}^{G,\rho,\psi}(g_1^{-1}\gamma g_2, g').$$

Le principe de fonctorialité de Langlands dit en particulier que toute représentation automorphe non ramifiée π de $G(\mathbb{A})$ se transfère par ρ en une représentation automorphe $\rho_*(\pi)$ de $\mathrm{GL}_r(\mathbb{A})$. Mais les représentations $\rho_*(\pi)$ ainsi obtenues par transfert ne sont pas nécessairement cuspidales. Ce qui signifie que les formes automorphes non ramifiées

$$h: \mathrm{GL}_r(F)\backslash \mathrm{GL}_r(\mathbb{A})/\mathrm{GL}_r(O_{\mathbb{A}}) \to \mathbb{C}$$

qui engendrent ces représentations ne sont pas nécessairement cuspidales : leurs ψ -coefficients de Fourier

$$g' \mapsto W_{\underline{r}} h(g') = \int_{N_r(F) \setminus N_r(\mathbb{A})} du \cdot \psi_{\underline{r}}(u) \cdot h(ug')$$

peuvent ne pas être nuls, même lorsque $\underline{r} \neq (r)$ est une partition non triviale de l'entier r.

Cette remarque rend impossible que les fonctions

$$K_{p,(r)}^{G,\rho}:G(\mathbb{A})\times G(\mathbb{A})\times \mathrm{GL}_r(\mathbb{A})\to \mathbb{C}$$

possèdent en général la propriété (3), d'invariance à gauche par $GL_r(F)$ en la troisième variable, qui leur manque pour être des "noyaux globaux du transfert non ramifié par ρ " au sens de la définition II.18.

En revanche, on a:

Proposition IV.8. – La validité du principe de fonctorialité de Langlands pour le transfert par

$$\rho: \hat{G} \rtimes \Gamma_F^{\mathrm{nr}} \to \mathrm{GL}_r(\mathbb{C})$$

des représentations automorphes partout non ramifiées de $G(\mathbb{A})$, équivaut à l'existence, pour toute famille $p = (p_x)_{x \in |F|}$ de polynômes symétriques $p_x \in \mathbb{C}[\hat{T}_x^d]^{\mathfrak{S}_G^x}$ presque tous égaux à 1, d'une fonction complémentaire

$$K_{p,\mathrm{cpl}}^{G,\rho}: G(\mathbb{A}) \times G(\mathbb{A}) \times \mathrm{GL}_r(\mathbb{A}) \to \mathbb{C}$$

telle que

- (i) Tout comme $K_{p,(r)}^{G,\rho}$, la fonction $K_{p,\mathrm{cpl}}^{G,\rho}$ possède les propriétés (0), (1) et (2) de la définition II.18 (avec $S=\emptyset$ et donc $K=\prod_{x\in |F|}K_x$, $K'=\prod_{x\in |F|}\mathrm{GL}_r(O_{\mathbb{A}})$).
- (ii) Son coefficient de Fourier régulier

$$(g_1, g_2, g') \mapsto W_{(r)} K_{p, \text{cpl}}^{G, \rho}(g_1, g_2, g') = \int_{N_r(F) \setminus N_r(\mathbb{A})} du \cdot \psi_{(r)}(u) \cdot K_{p, \text{cpl}}^{G, \rho}(g_1, g_2, ug')$$

est identiquement nul.

(iii) La somme

$$K_p^{G,\rho}:G(\mathbb{A})\times G(\mathbb{A})\times \mathrm{GL}_r(\mathbb{A})\to \mathbb{C}$$

$$(g_1, g_2, g') \mapsto K_p^{G, \rho}(g_1, g_2, g') = K_{p, (r)}^{G, \rho}(g_1, g_2, g') + K_{p, \text{cpl}}^{G, \rho}(g_1, g_2, g')$$

est, en sa troisième variable $g' \in GL_r(\mathbb{A})$, invariante à gauche par $GL_r(F)$ tout entier.

Remarques.

- Il résulte des propriétés (i) et (iii) ci-dessus que les sommes $K_p^{G,\rho}$ sont des "noyaux globaux du transfert non ramifié par ρ " au sens de la définition II.18.
- La propriété (ii) ci-dessus et le lemme IV.7 garantissent que toute simplification entre $K_{p,(r)}^{G,\rho}$ et $K_{p,\mathrm{cpl}}^{G,\rho}$ est impossible. En particulier, on a pour tous éléments $g_1,g_2\in G(\mathbb{A})$ et $g'\in \mathrm{GL}_r(\mathbb{A})$

$$W_{(r)} K_p^{G,\rho}(g_1,g_2,g') = W_{(r)} K_{p,(r)}^{G,\rho}(g_1,g_2,g') = \sum_{\gamma \in G(F)} K_{p,(r)}^{G,\rho,\psi}(g_1^{-1}\gamma g_2,g').$$

Cela permet d'assurer que, $p=(p_x)_{x\in |F|}$ décrivant l'ensemble des familles de polynômes symétriques $p_x\in \mathbb{C}[\hat{T}_x^d]^{\mathfrak{S}_G^x}$ presque tous égaux à 1, l'ensemble des "noyaux globaux du transfert non ramifié par ρ " associés $K_p^{G,\rho}$ est "complet" au sens de la définition II.19.

• La fonction complémentaire

$$K_{p,\mathrm{cpl}}^{G,\rho}:G(F)\backslash G(\mathbb{A})\times G(F)\backslash G(\mathbb{A})\times \mathrm{GL}_r(\mathbb{A})\to \mathbb{C}$$

n'est pas uniquement déterminée par les propriétés (i), (ii) et (iii) de la proposition.

Elle n'est uniquement déterminée que sur la partie du spectre automorphe de $G(\mathbb{A})$ composée des représentations automorphes partout non ramifiées π telles que, pour toute forme automorphe

$$h: \mathrm{GL}_r(F)\backslash \mathrm{GL}_r(\mathbb{A})/\mathrm{GL}_r(O_{\mathbb{A}}) \to \mathbb{C}$$

qui est un vecteur de la représentation $\rho_*(\pi)$, on ait l'implication

$$h \neq 0 \Rightarrow W_{(r)}h \neq 0$$
.

Au chapitre VII, nous proposerons des formules conjecturales pour la construction de fonctions complémentaires explicites

$$K_{p,\mathrm{cpl}}^{G,\rho}:G(F)\backslash G(\mathbb{A})\times G(F)\backslash G(\mathbb{A})\times \mathrm{GL}_r(\mathbb{A})\to \mathbb{C}$$

vérifiant les propriétés de la proposition ci-dessus, pour toute famille $p=(p_x)_{x\in |F|}$ de polynômes symétriques $p_x\in \mathbb{C}[\hat{T}_x^d]^{\mathfrak{S}_x^x}$ presque tous égaux à 1.

Chapitre V:

Noyaux du transfert automorphe par l'identité de $GL_2(\mathbb{C})$

1 Transformation de Fourier sur les $M_2(F_x)$

Au début du chapitre III, nous avons choisi un caractère additif continu non trivial

$$\psi: F \backslash \mathbb{A} \to \mathbb{C}^{\times}$$
.

Sa composante en chaque place $x \in |F|$ est un caractère continu non trivial

$$\psi_x: F_x \to \mathbb{C}^{\times}$$
.

Les conducteurs

$$N_{\psi_x} = \min\{N \in \mathbb{Z} \mid \psi_x \text{ est trivial sur } \{a_x \in F_x \mid v_x(a_x) \geq N\}\}$$

des composantes locales ψ_x valent 0 en presque toutes les places $x \in |F|$.

Le groupe additif F_x est muni de la mesure invariante "autoduale" da_x qui attribue au sous-groupe ouvert compact O_x de F_x le volume $q_x^{\frac{N_{\psi_x}}{2}}$. Comme groupe additif, l'algèbre matricielle $M_2(F_x)$ s'identifie à F_x^4 et se trouve munie de la mesure invariante "autoduale" induite dm_x qui attribue à $M_2(O_x)$ le volume $q_x^{4\cdot\frac{N_{\psi_x}}{2}}$.

La ψ_x -transformation de Fourier sur $M_2(F_x)$ est définie de la manière suivante :

Définition V.1. – Pour toute fonction localement constante à support compact f sur $M_2(F_x)$, la fonction

$$\hat{f}: m_x' \mapsto \hat{f}(m_x') = \int_{M_2(F_x)} dm_x \cdot \psi_x \circ \operatorname{Tr}({}^t m_x' \cdot m_x) \cdot f(m_x)$$

est elle-même localement constante à support compact sur $M_2(F_x)$.

On l'appelle la ψ_x -transformée de Fourier de f.

Rappelons les principales propriétés de la ψ_x -transformation de Fourier :

Proposition V.2. –

(i) La ψ_x -transformation de Fourier

$$f \mapsto \hat{f}$$

définit un automorphisme de l'espace des fonctions localement constantes à support compact sur $M_2(F_x)$. Son automorphisme réciproque n'est autre que la $\bar{\psi}_x$ -transformation de Fourier. (ii) Si f est une telle fonction sur $M_2(F_x)$ et g_x est un élément de $\operatorname{GL}_2(F_x)$, la ψ_x -transformée de Fourier de la fonction

$$m_x \mapsto f(g_x \cdot m_x)$$
 [resp. $m_x \mapsto f(m_x \cdot g_x)$]

est égale à

$$m'_x \mapsto \hat{f}({}^tg_x^{-1} \cdot m'_x) \cdot |\det(g_x)|_x^{-2} \qquad [resp. \ m'_x \mapsto \hat{f}(m'_x \cdot {}^tg_x^{-1}) \cdot |\det(g_x)|_x^{-2}].$$

En particulier, si f est invariante à gauche ou à droite par un sous-groupe ouvert compact de $GL_2(F_x)$, \hat{f} est invariante par le même sous-groupe.

(iii) (Formule de Plancherel)

Pour toutes fonctions f et f' localement constantes à support compact sur $M_2(F_x)$, leur produit hermitien

$$\langle f, f' \rangle = \int_{M_2(F_x)} dm_x \cdot f(m_x) \cdot \overline{f'(m_x)}$$

est égal à celui, $\langle \hat{f}, \hat{f}' \rangle$, de leurs transformées de Fourier.

Si \mathcal{F} est une distribution sur $M_2(F_x)$, c'est-à-dire une forme linéaire sur l'espace des fonctions localement constantes à support compact $f: M_2(F_x) \to \mathbb{C}$, on définit sa ψ_x -transformée de Fourier $\hat{\mathcal{F}}$ par la formule

$$\hat{\mathcal{F}}(\hat{f}) = \mathcal{F}(f), \quad \forall f.$$

Il résulte de la formule de Plancherel que la ψ_x -transformation de Fourier des distributions prolonge celle des fonctions.

Considérons maintenant une représentation lisse admissible (π_x, V_{π_x}) du groupe $GL_2(F_x)$.

Par définition, l'espace $V_{\stackrel{\vee}{\pi}_x}$ de sa représentation contragrédiente $\stackrel{\vee}{\pi}_x$ est constitué des formes linéaires

$$\ell_x:V_{\pi_x}\to\mathbb{C}$$

qui sont invariantes par un sous-groupe ouvert compact de $GL_2(F_x)$.

La forme bilinéaire

$$\begin{array}{ccc} V_{\stackrel{\vee}{\pi}_x} \times V_{\pi_x} & \to & \mathbb{C} \\ (\ell_x, v_x) & \mapsto & \ell_x(v_x) \end{array}$$

est invariante par l'action du groupe $GL_2(F_x)$.

On appelle "coefficients matriciels" de π_x les fonctions sur $\mathrm{GL}_2(F_x)$ qui sont de la forme

$$g_x \mapsto \ell_x(g_x \cdot v_x) = (g_x^{-1} \cdot \ell_x)(v_x)$$

pour un choix d'éléments $v_x \in V_{\pi_x}$ et $\ell_x \in V_{\overset{\smile}{\pi}_x}$.

On rappelle les propriétés suivantes :

Lemme V.3. – Soit π_x une représentation lisse admissible de $GL_2(F_x)$. Alors :

- (i) La représentation contragrédiente de $\overset{\vee}{\pi}_x$ s'identifie à π_x .
- (ii) La représentation π_x est irréductible si et seulement s'il en est de même de $\overset{\vee}{\pi}_x$.
- (iii) Si $\varphi_x = \operatorname{GL}_2(F_x) \to \mathbb{C}$ est un coefficient matriciel de la représentation π_x , alors la fonction

$$\operatorname{GL}_2(F_x) \ni g_x \mapsto \varphi_x({}^t g_x^{-1})$$

est un coefficient matriciel de la représentation contragrédiente $\overset{\vee}{\pi}_x$.

Si π_x est une représentation lisse admissible irréductible de $\mathrm{GL}_2(F_x)$, on sait lui associer

 \bullet un facteur L local

$$\mathbb{C} \ni s \mapsto L_x(\pi_x, q_x^{-s})$$

(qui est l'inverse d'un polynôme en $q_x^{-s} = q^{-s \cdot \deg(x)}$ dont le coefficient constant est égal à 1 et le degré inférieur ou égal à 2),

• un facteur multiplicatif local

$$\mathbb{C} \ni s \mapsto \varepsilon_x(\pi_x, \psi_x, q_x^{-s})$$

(qui est un monôme en q_x^{-s}).

On a le résultat fondamental suivant pour le calcul des transformées de Fourier :

Théorème V.4. – Soit π_x une représentation lisse admissible irréductible et unitaire de $GL_2(F_x)$. Alors, pour tout coefficient matriciel φ_x de π_x , la distribution sur $M_2(F_x)$ définie par la fonction

$$m_x \mapsto |\det(m_x)|_x^{-1} \cdot \varphi_x(m_x)$$

admet pour ψ_x -transformée de Fourier le produit de la distribution définie par la fonction

$$m_x' \mapsto |\det(m_x')|_x^{-1} \cdot \varphi_x({}^t m_x'^{-1})$$

et de la constante

$$\varepsilon_x(\pi_x, \psi_x, q_x^{-1/2}) \cdot \frac{L_x(\pi_x, q_x^{-1/2})}{L_x(\overset{\vee}{\pi}_x, q_x^{-1/2})}.$$

2 Formule de Poisson

Rappelons maintenant la définition de la ψ -transformation de Fourier globale sur le groupe adélique $M_2(\mathbb{A})$ muni de la mesure additive $dm = \bigotimes_{x \in |F|} dm_x$.

Définition V.5. – Pour toute fonction localement constante à support compact f sur $M_2(\mathbb{A})$, la fonction

$$\hat{f}: m' \mapsto \hat{f}(m') = \int_{M_2(\mathbb{A})} dm \cdot \psi \circ \operatorname{Tr}({}^t m' \cdot m) \cdot f(m)$$

est elle-même localement constante à support compact sur $M_2(\mathbb{A})$.

On l'appelle la ψ -transformée de Fourier de f.

Si f est une fonction sur $M_2(\mathbb{A})$ de la forme

$$f = \bigotimes_{x \in |F|} f_x$$

où chaque f_x est une fonction localement constante à support compact sur $M_2(F_x)$ et presque toutes les f_x sont égales aux fonctions caractéristiques $\mathbb{I}_{M_2(O_x)}$ des $M_2(O_x)$, on a

$$\hat{f} = \bigotimes_{x \in |F|} \hat{f}_x \,.$$

Autrement dit, la ψ -transformation de Fourier globale sur $M_2(\mathbb{A})$ est le produit tensoriel, sur toutes les places $x \in |F|$, des ψ_x -transformations de Fourier locales sur les $M_2(F_x)$.

Il en résulte que la ψ -transformation de Fourier vérifie les analogues globales des propriétés de la proposition V.2 :

- Elle définit un automorphisme de l'espace des fonctions localement constantes à support compact sur $M_2(\mathbb{A})$, et son automorphisme réciproque n'est autre que la $\bar{\psi}$ -transformation de Fourier.
- Elle transforme la translation à gauche [resp. à droite] par un élément $g = (g_x)_{x \in |F|} \in GL_2(\mathbb{A})$ en la translation à gauche [resp. à droite] par tg^{-1} combinée avec la multiplication par la constante $|\det(g)|^{-2} = \prod_{x \in |F|} |\det(g_x)|_x^{-2}$.
 - Elle respecte le produit hermitien

$$(f, f') \mapsto \langle f, f' \rangle = \int_{M_2(\mathbb{A})} dm \cdot f(m) \cdot \overline{f'(m)}.$$

Le groupe additif $M_2(F)$ est un sous-groupe discret du groupe topologique localement compact $M_2(\mathbb{A})$. Le quotient $M_2(\mathbb{A})/M_2(F)$ est compact et son volume pour la mesure autoduale dm est égal à 1.

On dispose de la formule de Poisson :

Théorème V.6. – Pour toute fonction localement constante à support compact f sur $M_2(\mathbb{A})$, on a

$$\sum_{\gamma \in M_2(F)} f(\gamma) = \sum_{\gamma \in M_2(F)} \hat{f}(\gamma)$$

et, plus généralement, pour tout élément $g \in GL_2(\mathbb{A})$,

$$\sum_{\gamma \in M_2(F)} f(g \cdot \gamma) = |\det(g)|^{-2} \cdot \sum_{\gamma \in M_2(F)} \hat{f}({}^tg^{-1} \cdot \gamma)$$

et

$$\sum_{\gamma \in M_2(F)} f(\gamma \cdot g) = |\det(g)|^{-2} \cdot \sum_{\gamma \in M_2(F)} \hat{f}(\gamma \cdot {}^t g^{-1}).$$

3 Décomposition spectrale des fonctions sphériques sur $M_2(F_x)$

Dans ce paragraphe on travaille en une place $x \in |F|$.

Commençons par rappeler la décomposition spectrale de l'espace des fonctions sphériques sur $GL_2(F_x)$.

On note dg_x la mesure de Haar sur $GL_2(F_x)$ qui attribue le volume 1 au sous-groupe ouvert compact maximal $K_x^2 = GL_2(O_x)$, et dk_x la restriction de dg_x à ce sous-groupe.

L'algèbre de Hecke sphérique $\mathcal{H}^2_{x,\phi}$ de $\mathrm{GL}_2(F_x)$ est constituée des fonctions à support compact invariantes à droite et à gauche par K^2_x ; la multiplication dans cette algèbre est définie par le produit de convolution relativement à la mesure dg_x .

On note $T_2 = \mathbb{G}_m \times \mathbb{G}_m$ le tore diagonal de GL_2 , B_2 le sous-groupe de Borel des matrices triangulaires supérieures et N_2 le radical unipotent de B_2 . On munit $T_2(F_x)$ de la mesure de Haar $d\mu_x$ qui attribue le volume 1 au sous-groupe ouvert compact maximal $T_2(O_x)$, et $N_2(F_x)$ de la mesure de Haar dn_x qui attribue le volume 1 au sous-groupe ouvert compact $N_2(O_x)$.

On dispose du caractère modulaire

$$\rho_{B_2}: B_2(F_x) \to T_2(F_x) \to q_x^{\mathbb{Z}}, \qquad \mu_x = (\mu_1, \mu_2) \mapsto \left| \frac{\mu_1}{\mu_2} \right|_x = q_x^{v_x(\mu_2) - v_x(\mu_1)}.$$

L'isomorphisme de Satake

$$S_x^2: \mathcal{H}_{x,\emptyset}^2 \xrightarrow{\sim} \mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$$

associe à toute fonction sphérique $h_x \in \mathcal{H}^2_{x,\emptyset}$ le polynôme symétrique $S^2_x(h_x)$ en les variables $X_1^{\pm 1}$ et $X_2^{\pm 1}$ défini par la formule

$$S_x^2(h_x) = \int_{\mu_x = (\mu_1, \mu_2)} d\mu_x \cdot X_1^{-v_x(\mu_1)} \cdot X_2^{-v_x(\mu_2)} \cdot \rho_{B_2}^{1/2}(\mu_x) \cdot \int_{N_2(F_x)} dn_x \cdot h_x(\mu_x n_x).$$

On note $\hat{T}_2 = \mathbb{C}^{\times} \times \mathbb{C}^{\times}$ le tore complexe dual de T_2 .

Pour tout élément $\lambda = (\lambda_1, \lambda_2)$ de \hat{T}_2 , on note

$$V_{x,\lambda}^2: \mathrm{GL}_2(F_x) \to \mathbb{C}$$

l'unique fonction

- invariante à droite par $K_x^2 = GL_2(O_x)$,
- invariante à gauche par $N_2(F_x)$,
- telle que, pour tout élément $\mu_x = (\mu_1, \mu_2) \in T_2(F_x)$, on ait

$$V_{x,\lambda}^{2}(\mu_{x}) = \rho_{B_{2}}^{1/2}(\mu_{x}) \cdot \lambda_{1}^{v_{x}(\mu_{1})} \cdot \lambda_{2}^{v_{x}(\mu_{2})}$$
.

Enfin, on note

$$\varphi_{x,\lambda}^2: \mathrm{GL}_2(F_x) \to \mathbb{C}$$

la fonction invariante à droite et à gauche par $K_x^2 = \mathrm{GL}_2(O_x)$ définie par la formule

$$\varphi_{x,\lambda}^2(g_x) = \int_{K_x^2} dk_x \cdot V_{x,\lambda}^2(k_x \cdot g_x), \quad \forall g_x \in GL_2(F_x).$$

Les fonctions $V_{x,\lambda}^2$ et $\varphi_{x,\lambda}^2$ vérifient les propriétés suivantes, qui justifient leur construction :

Théorème V.7. -

(i) Pour tout élément $\lambda = (\lambda_1, \lambda_2) \in \hat{T}_2 = \mathbb{C}^{\times} \times \mathbb{C}^{\times}$, on a

$$V_{x,\lambda}^2 * \varphi_x = S_x^2(\varphi_x)(\lambda) \cdot V_{x,\lambda}^2, \quad \forall \, \varphi_x \in \mathcal{H}_{x,\emptyset}^2.$$

(ii) Pour tout élément $\lambda=(\lambda_1,\lambda_2)\in \hat{T}_2,\ \varphi^2_{x,\lambda}$ est l'unique fonction

$$K_x^2 \backslash \mathrm{GL}_2(F_x) / K_x^2 \to \mathbb{C}$$

 $telle \; que$

- $\varphi_{x,\lambda}^2 * \varphi_x = \varphi_x * \varphi_{x,\lambda}^2 = S_x^2(\varphi_x)(\lambda) \cdot \varphi_{x,\lambda}^2$, $\forall \varphi_x \in \mathcal{H}_{x,\emptyset}^2$,
- $\varphi_{r,\lambda}^2(1) = 1$.

(iii) Pour tout élément $g_x \in GL_2(F_x)$, la fonction

$$\begin{array}{cccc} \hat{T}_2 = \mathbb{C}^{\times} \times \mathbb{C}^{\times} & \to & \mathbb{C} \\ \lambda = (\lambda_1, \lambda_2) & \mapsto & \varphi_{x, \lambda}^2(g_x) \end{array}$$

est une fonction polynomiale symétrique de $\lambda_1^{\pm 1}$ et $\lambda_2^{\pm 1}$.

(iv) Munissons le tore réel compact

$$\operatorname{Im} \hat{T}_2 = U(1) \times U(1) \subset \mathbb{C}^{\times} \times \mathbb{C}^{\times} = \hat{T}_2$$

de la mesure symétrique de Plancherel

$$d\lambda = \frac{1}{2} \cdot \left[\frac{1 - \frac{\lambda_1}{\lambda_2}}{1 - \frac{\lambda_1}{q_x \lambda_2}} + \frac{1 - \frac{\lambda_2}{\lambda_1}}{1 - \frac{\lambda_2}{q_x \lambda_1}} \right] \cdot d\lambda_1 \cdot d\lambda_2$$

$$= \frac{1 + \frac{1}{q_x}}{2} \cdot \frac{\left(1 - \frac{\lambda_1}{\lambda_2}\right) \left(1 - \frac{\lambda_2}{\lambda_1}\right)}{\left(1 - \frac{\lambda_1}{q_x \lambda_2}\right) \left(1 - \frac{\lambda_2}{q_x \lambda_1}\right)} \cdot d\lambda_1 \cdot d\lambda_2$$

(où $d\lambda_1$ et $d\lambda_2$ désignent la mesure invariante de volume 1 sur le cercle unité $U(1) \subset \mathbb{C}^{\times}$). Alors on a pour toute function sphérique $\varphi_x \in \mathcal{H}^2_x$

$$\varphi_x(g_x) = \int_{\operatorname{Im} \hat{T}_2} d\lambda \cdot S_x^2(\varphi_x)(\lambda) \cdot \varphi_{x,\lambda}^2(g_x) , \quad \forall g_x \in \operatorname{GL}_2(F_x) .$$

Remarque. Les parties (ii), (iii) et (iv) de ce théorème sont le cas particulier du théorème IV.3 qui correspond à $G = GL_2$. Elles apportent dans ce cas deux précisions supplémentaires : la construction explicite des fonctions propres $\varphi_{x,\lambda}^2$ à partir des fonctions $V_{x,\lambda}^2$, et la forme explicite de la mesure de Plancherel $d\lambda$ sur $\operatorname{Im} T_2$.

Passons maintenant aux fonctions sur $GL_2(F_x)$ qui sont invariantes à droite et à gauche par K_x^2 et se prolongent en des fonctions localement constantes à support compact sur $M_2(F_x)$.

On a:

Théorème V.8. -

(i) Les fonctions

$$GL_2(F_x) \to \mathbb{C}$$

qui

 $\begin{cases} \bullet & sont \ invariantes \ \grave{a} \ droite \ et \ \grave{a} \ gauche \ par \ K_x^2 = \operatorname{GL}_2(O_x), \\ \bullet & se \ prolongent \ par \ continuit\'{e} \ en \ uma \ for still \end{cases}$

se prolongent par continuité en une fonction localement constante à support compact sur $M_2(F_x)$,

sont exactement les fonctions de la forme

$$g_x \mapsto \varphi_{x,p}^2(g_x) = |\det(g_x)|_x^{-1} \cdot \int_{\lambda = (\lambda_1, \lambda_2) \in \operatorname{Im} \hat{T}_2} d\lambda \cdot \frac{p(\lambda_1, \lambda_2)}{(1 - \lambda_1^{-1} q_x^{-1/2})(1 - \lambda_2^{-1} q_x^{-1/2})} \cdot \varphi_{x,\lambda}^2(g_x)$$

associées aux polynômes symétriques $p \in \mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$.

(ii) La fonction $1_{M_2(O_x)}$ caractéristique de $M_2(O_x)$ n'est autre que la fonction $\varphi_{x,1}^2$ associée au polynôme p = 1.

(iii) Si $p \in \mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$ est un polynôme symétrique et $\varphi_x \in \mathcal{H}^2_{x,\emptyset}$ est une fonction sphérique à support compact sur $\mathrm{GL}_2(F_x)$ dont la transformée de Satake $S^2_x(\varphi_x) \in \mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$ est écrite sous la forme

$$S_x^2(\varphi_x) = p_0(q_x^{-1}X_1, q_x^{-1}X_2),$$

on a

$$\varphi_{x,n}^2 * \varphi_x = \varphi_x * \varphi_{x,n}^2 = \varphi_{x,nn_0}^2$$

On déduit des propriétés (ii) et (iii) de ce théorème :

Corollaire V.9. – Soit un polynôme symétrique $p \in \mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$.

Si $\varphi_x \in \mathcal{H}^2_{x,\emptyset}$ est la fonction sphérique à support compact sur $\mathrm{GL}_2(F_x)$ telle que

$$S_x^2(\varphi_x) = p(q_x^{-1}X_1, q_x^{-1}X_2),$$

on a pour toute matrice $m_x \in M_2(F_x)$ la formule

$$\varphi_{x,p}^2(m_x) = \int_{\mathrm{GL}_2(F_x)} dg_x \cdot \varphi_x(g_x) \cdot \mathbb{I}_{M_2(O_x)} \left(g_x^{-1} \cdot m_x \right).$$

En particulier, on a

$$\varphi_{x,p}^2(0) = \int_{\mathrm{GL}_2(F_x)} dg_x \cdot \varphi_x(g_x) = p(q_x^{-1/2}, q_x^{-3/2}).$$

Si π_x est la représentation sphérique irréductible unitaire qui correspond à un élément $\lambda=(\lambda_1,\lambda_2)$ de ${\rm Im}\,\hat T_2=U(1)\times U(1),$ on a

$$L_x(\pi_x, q_x^{-1/2}) = \frac{1}{(1 - \lambda_1 q_x^{-1/2})(1 - \lambda_2 q_x^{-1/2})},$$

$$L_x(\overset{\vee}{\pi}_x, q_x^{-1/2}) = \frac{1}{(1 - \lambda_1^{-1} q_x^{-1/2})(1 - \lambda_2^{-1} q_x^{-1/2})},$$

$$\varepsilon_x(\pi_x, \psi_x, q_x^{-1/2}) = (\lambda_1 \, \lambda_2)^{N_{\psi_x}} .$$

De plus, la fonction $\varphi_{x,\lambda}^2: \mathrm{GL}_2(F_x) \to \mathbb{C}$ est un "coefficient matriciel" de la représentation π_x et la fonction $g_x \mapsto \varphi_{x,\lambda}^2({}^tg_x^{-1})$ n'est autre que $\varphi_{x,\lambda^{-1}}^2$.

On déduit donc du théorème V.4 :

Lemme V.10. – Pour tout élément $\lambda = (\lambda_1, \lambda_2) \in \operatorname{Im} \hat{T}_2 = U(1) \times U(1)$, la distribution sur $M_2(F_x)$ définie par la fonction

$$m_x \mapsto |\det(m_x)|_x^{-1} \cdot \varphi_{x,\lambda}^2(m_x)$$

admet pour ψ_x -transformée de Fourier le produit de la distribution définie par la fonction

$$m'_x \mapsto |\det(m'_x)|_x^{-1} \cdot \varphi_{x,\lambda^{-1}}^2(m'_x)$$

et de la constante

$$(\lambda_1 \, \lambda_2)^{N_{\psi_x}} \cdot \frac{(1 - \lambda_1^{-1} \, q_x^{-1/2})(1 - \lambda_2^{-1} \, q_x^{-1/2})}{(1 - \lambda_1 \, q_x^{-1/2})(1 - \lambda_2 \, q_x^{-1/2})}$$

On déduit de ce lemme :

Corollaire V.11. – Soit un polynôme symétrique $p \in \mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$.

Alors la fonction localement constante à support compact sur $M_2(F_x)$

$$\varphi_{x,p}^2$$

admet pour ψ_x -transformée de Fourier la fonction

$$\varphi_{x,p'}^2$$

associée au polynôme symétrique

$$p'(X_1, X_2) = (X_1 X_2)^{-N_{\psi_x}} \cdot p(X_1^{-1}, X_2^{-1}).$$

4 Construction de noyaux locaux

Commençons par rappeler la définition des fonctions de Whittaker. Leur construction générale sur $GL_r(F_x)$ a été donnée dans la définition III.11 mais elle peut être rendue plus explicite encore sur $GL_2(F_x)$.

Supposons d'abord que le caractère local $\psi_x: F_x \to \mathbb{C}^\times$ est régulier c'est-à-dire a pour conducteur $N_{\psi_x}=0$.

Si $\lambda=(\lambda_1,\lambda_2)$ est un élément de $\operatorname{Im}\hat{T}_2=U(1)\times U(1),$ la fonction de Whittaker

$$W_{x,\lambda}^{2,\psi_x}: \mathrm{GL}_2(F_x) \to \mathbb{C}$$

associe à tout élment $g_x \in \mathrm{GL}_2(F_x)$, écrit sous la forme d'Iwasawa

$$g_x = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mu_1 & 0 \\ 0 & \mu_2 \end{pmatrix} \cdot k_x ,$$

l'expression

$$\psi_x(u)^{-1} \cdot \rho_{B_2}^{1/2} \left(\frac{\mu_1}{\mu_2}\right) \cdot \sum_{\substack{n_1 + n_2 = v_x(\mu_1 \, \mu_2) \\ v_x(\mu_1) \ge n_1, n_2 \ge v_x(\mu_2)}} \lambda_1^{n_1} \, \lambda_2^{n_2} \, .$$

Si le caractère ψ_x n'est pas régulier, on l'écrit sous la forme

$$\psi_x(a_x) = \psi_x'(\gamma_x^{-1} a_x), \quad a_x \in F_x,$$

où $\gamma_x \in F_x^{\times}$ est un élément de valuation $v_x(\gamma_x) = N_{\psi_x}$ si bien que $\psi_x' : F_x \to \mathbb{C}$ est un caractère additif régulier, et on définit la fonction de Whittaker

$$W_{x,\lambda}^{2,\psi_x}: \mathrm{GL}_2(F_x) \to \mathbb{C}$$

par la formule

$$W_{x,\lambda}^{2,\psi_x}(g_x) = W_{x,\lambda}^{2,\psi_x'}\left(\begin{pmatrix} \gamma_x^{-1} & 0 \\ 0 & 1 \end{pmatrix} \cdot g_x\right) = W_{x,\lambda}^{2,\psi_x'}\left(\begin{pmatrix} 1 & 0 \\ 0 & \gamma_x \end{pmatrix} \cdot g_x\right) \cdot (\lambda_1 \, \lambda_2)^{-N_{\psi_x}} \,.$$

Cette définition ne dépend pas du choix de l'élément $\gamma_x \in F_x^{\times}$ de valuation N_{ψ_x} .

Les fonctions de Whittaker $W_{x,\lambda}^{2,\psi_x}$ ne dépendent pas de l'ordre des deux composantes de $\lambda=(\lambda_1,\lambda_2)$. Comme cas particulier de la proposition III.12, elles vérifient les propriétés suivantes, qui les caractérisent :

- Elles sont invariantes à droite par $K_x^2 = GL_2(O_x)$.
- Pour tout élément φ_x de l'algèbre de Hecke sphérique $\mathcal{H}^2_{x,\emptyset}$, on a

$$W_{x,\lambda}^{2,\psi_x} * \varphi_x = S_x^2(\varphi_x)(\lambda) \cdot W_{x,\lambda}^{2,\psi_x}.$$

• Pour tous éléments $u \in F_x$ et $g_x \in GL_2(F_x)$, on a

$$W_{x,\lambda}^{2,\psi_x} \left(\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \cdot g_x \right) = \psi_x(u)^{-1} \cdot W_{x,\lambda}^{2,\psi_x}(g_x).$$

• Pour tout élément $\gamma_x \in F_x^{\times}$ de valuation $v_x(\gamma_x) = N_{\psi_x}$, on a

$$W_{x,\lambda}^{2,\psi_x}\left(\begin{pmatrix}\gamma_x & 0\\ 0 & 1\end{pmatrix}\right)=1\,.$$

Notons

$$\rho_2 = \mathrm{GL}_2(\mathbb{C}) \to \mathrm{GL}_2(\mathbb{C})$$

la représentation "standard" de $GL_2(\mathbb{C})$, c'est-à-dire son automorphisme identique.

Dans ce cas particulier, la construction générale des noyaux locaux du transfert non ramifié – donnée dans la définition IV.4 – devient :

Définition V.12. – On appelle "noyaux locaux du transfert par ρ_2 " les fonctions

$$K_{x,p_x}^{\rho_2,\psi_x}: \mathrm{GL}_2(F_x) \times \mathrm{GL}_2(F_x) \to \mathbb{C}$$

définies par des intégrales de la forme

$$K_{x,p_x}^{\rho_2,\psi_x}(g,g') = \int_{\operatorname{Im}\hat{T}_2} d\lambda \cdot p_x(\lambda) \cdot \varphi_{x,\lambda}^2(g) \cdot W_{x,\lambda}^{2,\psi_x}(g')$$

pour un polynôme symétrique $p_x \in \mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$.

Pour tout polynôme symétrique $p_x \in \mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$, la fonction $K_{x, p_x}^{\rho_2, \psi_x}$ est invariante à droite par $\mathrm{GL}_2(O_x) \times \mathrm{GL}_2(O_x)$.

Si φ_x est un élément de l'algèbre de Hecke sphérique $\mathcal{H}^2_{x,\emptyset}$, on a

$$\rho_2^*(\varphi_x) = \varphi_x$$

et, en notant $S_x^2(\varphi_x) = p$,

$$K_{x,p_x}^{\rho_2,\psi_x} *_1 \varphi_x = K_{x,p_x}^{\rho_2,\psi_x} *_2 \varphi_x = K_{x,p_xp}^{\rho_2,\psi_x}.$$

Enfin, comme $d\lambda$ est la mesure de Plancherel sur $\operatorname{Im} \hat{T}_2$, on a pour tout élément λ de $\operatorname{Im} \hat{T}_2$

$$\int_{\mathrm{GL}_2(F_x)} dg_x \cdot \overline{\varphi_{x,\lambda}^2(g_x)} \cdot K_{x,p_x}^{\rho_2,\psi_x}(g_x,g') = p_x(\lambda) \cdot W_{x,\lambda}^{2,\psi_x}(g'), \quad \forall g' \in \mathrm{GL}_2(F_x).$$

5 Échange par transformation de Fourier

Nous allons démontrer le théorème suivant :

Théorème V.13. – En une place $x \in |F|$, considérons un polynôme symétrique

$$p_x \in \mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2},$$

un caractère multiplicatif unitaire (éventuellement ramifié)

$$\omega: F_x^{\times} \to \mathbb{C}^{\times}$$

et trois éléments

$$g_1, g_2, g' \in GL_2(F_x)$$
.

Alors:

(i) Les deux fonctions sur $GL_2(F_x)$

$$m_x \mapsto f(m_x) = \omega(\det(m_x))^{-1} \cdot |\det(m_x)|_x^{-1} \cdot \int_{F_x^\times} d\mu \cdot \omega(\mu) \cdot K_{x,p_x}^{\rho_2,\psi_x} \left(g_1^{-1} \cdot {}^t m_x^{-1} \cdot g_2, \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right)$$

$$m_x' \mapsto f'(m_x') = \omega(\det(m_x')) \cdot |\det(m_x')|_x^{-1} \cdot \int_{F_x^\times} d\mu \cdot \omega(\mu) \cdot K_{x,p_x}^{\rho_2,\bar{\psi}_x} \left(g_1^{-1} \cdot m_x' \cdot g_2, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right)$$

se prolongent par continuité en des fonctions localement constantes à support compact sur $M_2(F_x)$.

- (ii) La fonction $m'_x \mapsto f'(m'_x)$ est la ψ_x -transformée de Fourier de la fonction $m_x \mapsto f(m_x)$.
- (iii) Lorsque le caractère additif ψ_x est régulier, que le caractère multiplicatif ω est non ramifié, que $p_x = 1$ et que les trois éléments g_1, g_2, g' sont dans $\operatorname{GL}_2(O_x)$, les fonctions f et f' sont toutes deux égales à la fonction caractéristique $\mathbb{I}_{M_2(O_x)}$.

Démonstration. D'après la propriété de variance des transformées de Fourier de la proposition V.2(ii), il suffit de prouver le théorème lorsque $g_1 = g_2 = 1$, ce que nous supposerons.

La démonstration repose sur le cas particulier des rangs 1 et 2 du théorème d'équation fonctionnelle locale des fonctions L de paires :

Théorème V.14. (Jacquet, Langlands) – Pour tout élément $g' \in GL_2(F_x)$ et tout caractère multiplicatif unitaire $\omega : F_x^{\times} \to \mathbb{C}^{\times}$, on a :

(i) L'intégrale

$$\operatorname{Im} \hat{T}_{2} \to \mathbb{C}$$

$$\lambda = (\lambda_{1}, \lambda_{2}) \mapsto \int_{F_{x}^{\times}} d\mu \cdot \omega(\mu) \cdot W_{x, \lambda}^{2, \psi_{x}} \left(\begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right)$$

est partout bien définie et de la forme

$$\begin{cases} p_{\omega,g'}(\lambda_1,\lambda_2) & \text{si } \omega \text{ est ramifi\'e}, \\ \\ \frac{p_{\omega,g'}(\lambda_1,\lambda_2)}{(1-z_\omega\,\lambda_1\,q_x^{-1/2})(1-z_\omega\,\lambda_2\,q_x^{-1/2})} & \text{si } \omega \text{ est non ramifi\'e et } z_\omega \text{ d\'esigne sa valeur propre}, \end{cases}$$

où $p_{\omega,g'}$ est un polynôme symétrique, élément de $\mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$.

(ii) De même, l'intégrale

$$\operatorname{Im} \hat{T}_{2} \to \mathbb{C}$$

$$\lambda = (\lambda_{1}, \lambda_{2}) \mapsto \int_{F^{\times}} d\mu \cdot \omega(\mu) \cdot W_{x, \lambda}^{2, \bar{\psi}_{x}} \left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right)$$

est partout bien définie et de la forme

$$\begin{cases} p'_{\omega,g'}(\lambda_1,\lambda_2) & \text{si } \omega \text{ est ramifi\'e}, \\ \\ \frac{p'_{\omega,g'}(\lambda_1,\lambda_2)}{(1-z_\omega^{-1}\lambda_1^{-1}q_x^{-1/2})(1-z_\omega^{-1}\lambda_2^{-1}q_x^{-1/2})} & \text{si } \omega \text{ est non ramifi\'e}, \end{cases}$$

où $p'_{\omega,q'}$ est un polynôme symétrique, élément de $\mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$.

(iii) Les polynômes $p_{\omega,g'}$ et $p'_{\omega,g'}$ sont liés par la relation suivante, dite "équation fonctionnelle locale",

$$p'_{\omega,q'}(X_1, X_2) = p_{\omega,q'}(X_1, X_2) \cdot \varepsilon(\omega, \bar{\psi}_x, X_1 \, q_x^{-1/2})^{-1} \cdot \varepsilon(\omega, \bar{\psi}_x, X_2 \, q_x^{-1/2})^{-1}$$

où $\varepsilon(\omega, \bar{\psi}_x, Xq_x^{-1/2})$ est un monôme en X, égal à

$$(z_{\omega} X)^{N_{\psi_x}}$$

si le caractère ω est non ramifié.

(iv) Lorsque le caractère ψ_x est régulier, que le caractère ω est non ramifié et que g' est élément de $\mathrm{GL}_2(O_x)$, les deux polynômes $p_{\omega,g'}$ et $p'_{\omega,g'}$ sont égaux à 1.

Suite de la démonstration du théorème V.13. Traitons d'abord le cas où le caractère unitaire

$$\omega: F_x^{\times} \to \mathbb{C}^{\times}$$

est non ramifié.

Avec les notations des énoncés des théorèmes V.13 et V.14, on a :

$$f(m_{x}) = \omega(\det(m_{x}))^{-1} \cdot |\det(m_{x})|_{x}^{-1}$$

$$\cdot \int_{\lambda = (\lambda_{1}, \lambda_{2}) \in \operatorname{Im}\hat{T}_{2}} d\lambda \cdot p_{x}(\lambda) \cdot \varphi_{x, \lambda}^{2}({}^{t}m_{x}^{-1}) \cdot \frac{p_{\omega, g'}(\lambda_{1}, \lambda_{2})}{(1 - z_{\omega} \lambda_{1} q_{x}^{-1/2})(1 - z_{\omega} \lambda_{2} q_{x}^{-1/2})}$$

$$= |\det(m_{x})|_{x}^{-1} \cdot \int_{\lambda = (\lambda_{1}, \lambda_{2}) \in \operatorname{Im}\hat{T}_{2}} d\lambda \cdot \varphi_{x, (\lambda_{1}^{-1} z_{\omega}^{-1}, \lambda_{2}^{-1} z_{\omega}^{-1})}^{2}(m_{x}) \cdot \frac{(p_{x} \cdot p_{\omega, g'})(\lambda_{1}, \lambda_{2})}{(1 - z_{\omega} \lambda_{1} q_{x}^{-1/2})(1 - z_{\omega} \lambda_{2} q_{x}^{-1/2})}$$

Comme la mesure de Plancherel $d\lambda$ sur $\text{Im } \hat{T}_2 = U(1) \times U(1)$ est invariante par l'action diagonale du groupe U(1) ainsi que par l'involution de passage à l'inverse, on obtient encore :

$$f(m_x) = |\det(m_x)|_x^{-1} \cdot \int_{\lambda = (\lambda_1, \lambda_2) \in \operatorname{Im}\hat{T}_2} d\lambda \cdot \frac{(p_x \cdot p_{\omega, g'})(z_\omega^{-1} \lambda_1^{-1}, z_\omega^{-1} \lambda_2^{-1})}{(1 - \lambda_1^{-1} q_x^{-1/2})(1 - \lambda_2^{-1} q_x^{-1/2})} \cdot \varphi_{x, \lambda}^2(m_x)$$

De même, on a :

$$f'(m'_{x}) = \omega(\det(m'_{x})) \cdot |\det(m'_{x})|_{x}^{-1}$$

$$\cdot \int_{\lambda = (\lambda_{1}, \lambda_{2}) \in \operatorname{Im}\hat{T}_{2}} d\lambda \cdot p_{x}(\lambda) \cdot \varphi_{x, \lambda}^{2}(m'_{x}) \cdot \frac{p'_{\omega, g'}(\lambda_{1}, \lambda_{2})}{(1 - z_{\omega}^{-1} \lambda_{1}^{-1} q_{x}^{-1/2})(1 - z_{\omega}^{-1} \lambda_{2}^{-1} q_{x}^{-1/2})}$$

$$= |\det(m'_{x})|_{x}^{-1} \cdot \int_{\lambda = (\lambda_{1}, \lambda_{2}) \in \operatorname{Im}\hat{T}_{2}} d\lambda \cdot \varphi_{x, (\lambda_{1} z_{\omega}, \lambda_{2} z_{\omega})}^{2}(m'_{x}) \cdot \frac{(p_{x} \cdot p'_{\omega, g'})(\lambda_{1}, \lambda_{2})}{(1 - z_{\omega}^{-1} \lambda_{1}^{-1} q_{x}^{-1/2})(1 - z_{\omega}^{-1} \lambda_{2}^{-1} q_{x}^{-1/2})}$$

$$= |\det(m'_{x})|_{x}^{-1} \cdot \int_{\lambda = (\lambda_{1}, \lambda_{2}) \in \operatorname{Im}\hat{T}_{2}} d\lambda \cdot \frac{(p_{x} \cdot p'_{\omega, g'})(z_{\omega}^{-1} \lambda_{1}, z_{\omega}^{-1} \lambda_{2})}{(1 - \lambda_{1}^{-1} q_{x}^{-1/2})(1 - \lambda_{2}^{-1} q_{x}^{-1/2})} \cdot \varphi_{x, \lambda}^{2}(m'_{x})$$

Or, d'après l'équation fonctionnelle locale du théorème V.14(iii), on a la relation

$$p'_{\omega,g'}(z_{\omega}^{-1}\lambda_1, z_{\omega}^{-1}\lambda_2) = p_{\omega,g'}(z_{\omega}^{-1}\lambda_1, z_{\omega}^{-1}\lambda_2) \cdot (\lambda_1\lambda_2)^{-N_{\psi_x}}.$$

Le théorème V.8(i) implique que les fonctions f et f' sont localement constantes à support compact sur $M_2(F_x)$, et le corollaire V.11 implique que f' est la ψ_x -transformée de Fourier de la fonction f.

Si ω est non ramifié comme ci-dessus, ψ_x est régulier, g' est élément de $\mathrm{GL}_2(O_x)$ et $p_x=1$, on a

$$p_x \cdot p_{\omega,g'} = 1$$

et

$$p_x \cdot p'_{\omega,q'} = 1$$

si bien que, d'après le théorème V.8(ii), les fonctions f et f' sont égales à la fonction caractéristique $\mathbbm{1}_{M_2(O_x)}$ de $M_2(O_x)$ dans $M_2(F_x)$.

Il reste à traiter le cas où le caractère unitaire ω est ramifié.

Dans ce cas, on peut écrire :

$$\begin{split} f(m_x) &= \omega(\det(m_x))^{-1} \cdot |\det(m_x)|_x^{-1} \cdot \int_{\lambda = (\lambda_1, \lambda_2) \in \operatorname{Im} \hat{T}_2} d\lambda \cdot p_x(\lambda) \cdot \varphi_{x, \lambda}^2({}^tm_x^{-1}) \cdot p_{\omega, g'}(\lambda) \\ &= \omega(\det(m_x))^{-1} \cdot |\det(m_x)|_x^{-1} \cdot \int_{\lambda = (\lambda_1, \lambda_2) \in \operatorname{Im} \hat{T}_2} d\lambda \cdot (p_x \, p_{\omega, g'})(\lambda) \cdot \varphi_{x, (\lambda_1^{-1}, \lambda_2^{-1})}^2(m_x) \\ &= \omega(\det(m_x))^{-1} \cdot |\det(m_x)|_x^{-1} \cdot \int_{\lambda = (\lambda_1, \lambda_2) \in \operatorname{Im} \hat{T}_2} d\lambda \cdot (p_x \, p_{\omega, g'})(\lambda_1^{-1}, \lambda_2^{-1}) \cdot \varphi_{x, \lambda}^2(m_x) \end{split}$$

De même, on peut écrire :

$$f'(m'_x) = \omega(\det(m'_x)) \cdot |\det(m'_x)|_x^{-1} \cdot \int_{\lambda = (\lambda_1, \lambda_2) \in \operatorname{Im}\hat{T}_2} d\lambda \cdot p_x(\lambda) \cdot \varphi_{x, \lambda}^2(m'_x) \cdot p'_{\omega, g'}(\lambda)$$

$$= \omega(\det(m'_x)) \cdot |\det(m'_x)|_x^{-1} \cdot \int_{\lambda = (\lambda_1, \lambda_2) \in \operatorname{Im}\hat{T}_2} d\lambda \cdot (p_x \, p_{\omega, g'})(\lambda)$$

$$\cdot \varepsilon(\omega, \bar{\psi}_x, \lambda_1 \, q_x^{-1/2})^{-1} \cdot \varepsilon(\omega, \bar{\psi}_x, \lambda_2 \, q_x^{-1/2})^{-1} \cdot \varphi_{x, \lambda}^2(m'_x)$$

Ainsi, f et f' sont des fonctions localement constantes à support compact sur $GL_2(F_x)$ et, a fortiori, sur $M_2(F_x)$.

Pour tout élément $\lambda=(\lambda_1,\lambda_2)$ de $\operatorname{Im}\hat{T}_2=U(1)\times U(1),$ la fonction

$$m_x \mapsto \varphi_{x,\lambda}^2(m_x)$$

est un "coefficient matriciel" de la représentation sphérique irréductible unitaire π_x de $\mathrm{GL}_2(F_x)$ qui correspond au caractère λ de l'algèbre $\mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2} \cong \mathcal{H}^2_{x,\emptyset}$. Donc la fonction

$$m_x \mapsto \varphi_{x,\lambda}^2({}^t m_x^{-1}) = \varphi_{x,\lambda^{-1}}^2(m_x)$$

est un coefficient matriciel de la représentation contragrédiente $\overset{\vee}{\pi}_x$, et la fonction

$$m_x \mapsto \omega(\det(m_x))^{-1} \cdot \varphi_{x,\lambda^{-1}}(m_x)$$

est un coefficient matriciel de la représentation ramifiée $\overset{\vee}{\pi}_x \otimes \omega(\det(\bullet))^{-1}$.

Or on a

$$L_x(\overset{\vee}{\pi}_x \otimes \omega(\det(\bullet))^{-1}, q_x^{-1/2}) = 1,$$

$$L_x(\pi_x \otimes \omega(\det(\bullet)), q_x^{-1/2}) = 1,$$

et

$$\varepsilon_{x}(\overset{\vee}{\pi}_{x}\otimes\omega(\det(\bullet))^{-1},\psi_{x},q_{x}^{-1/2}) = \varepsilon_{x}(\omega^{-1},\psi_{x},\lambda_{1}^{-1}q_{x}^{-1/2}) \cdot \varepsilon_{x}(\omega^{-1},\psi_{x},\lambda_{2}^{-1}q_{x}^{-1/2})$$

$$= \varepsilon_{x}(\omega,\bar{\psi}_{x},\lambda_{1}q_{x}^{-1/2})^{-1} \cdot \varepsilon_{x}(\omega,\bar{\psi}_{x},\lambda_{2}q_{x}^{-1/2})^{-1}.$$

D'après le théorème V.4, la distribution sur $M_2(F_x)$ définie par la fonction

$$m_x \mapsto |\det(m_x)|_x^{-1} \cdot \omega(\det(m_x))^{-1} \cdot \varphi_{x,\lambda^{-1}}^2(m_x)$$

admet pour ψ_x -transformée de Fourier la distribution définie par la fonction

$$m_x' \mapsto |\det(m_x')|_x^{-1} \cdot \omega(\det(m_x')) \cdot \varphi_{x,\lambda}^2(m_x') \cdot \varepsilon(\omega, \bar{\psi}_x, \lambda_1 \, q_x^{-1/2})^{-1} \cdot \varepsilon(\omega, \bar{\psi}_x, \lambda_2 \, q_x^{-1/2})^{-1}.$$

Il en résulte comme annoncé que f' est la ψ_x -transformée de Fourier de la fonction f.

Cela termine la démonstration du théorème V.13.

6 Calcul des termes de bord

Rappelons que pour tout élément $\lambda = (\lambda_1, \lambda_2)$ de \hat{T}_2 , nous avons noté

$$V_{x,\lambda}^2: \mathrm{GL}_2(F_x) \to \mathbb{C}$$

l'unique fonction invariante à droite par $K_x^2 = \mathrm{GL}_2(O_x)$ et invariante à gauche par $N_2(F_x)$ telle que

$$V_{x,\lambda}^2(\mu_x) = \rho_{B_2}^{1/2}(\mu_x) \cdot \lambda_1^{v_x(\mu_1)} \cdot \lambda_2^{v_x(\mu_2)}, \quad \forall \, \mu_x = (\mu_1, \mu_2) \in T_2(F_x) = F_x^{\times} \times F_x^{\times}.$$

On note aussi

$$W_{x,\lambda}^{2,0}: \mathrm{GL}_2(F_x) \to \mathbb{C}$$

la fonction définie par la formule

$$W_{x,\lambda}^{2,0}(g_x) = V_{x,\lambda}^2 \left(\begin{pmatrix} \gamma_x^{-1} & 0 \\ 0 & 1 \end{pmatrix} \cdot g_x \right) = V_{x,\lambda}^2 \left(\begin{pmatrix} 1 & 0 \\ 0 & \gamma_x \end{pmatrix} \cdot g_x \right) \cdot (\lambda_1 \, \lambda_2)^{-N_{\psi_x}}$$

où γ_x désigne n'importe quel élément de F_x^{\times} de valuation $v_x(\gamma_x) = N_{\psi_x}$. Comme $V_{x,\lambda}^2$, $W_{x,\lambda}^{2,0}$ est invariante à droite par $\mathrm{GL}_2(O_x)$ et invariante à gauche par $N_2(F_x)$. Elle coïncide avec $V_{x,\lambda}^2$ si ψ_x est régulier et en diffère par une translation à gauche si $N_{\psi_x} \neq 0$.

D'autre part, notons

$$B_2^{\text{op}} = \left\{ \begin{pmatrix} \mu_1 & 0 \\ u & \mu_2 \end{pmatrix} \right\}$$

le sous-groupe de Borel opposé de B_2 ,

$$N_2^{\text{op}} = \left\{ \begin{pmatrix} 1 & 0 \\ u & 0 \end{pmatrix} \right\}$$

son radical unipotent et

$$\rho_{B_2^{\mathrm{op}}}: B_2^{\mathrm{op}}(F_x) \to q_x^{\mathbb{Z}}$$

le caractère modulaire associé. Les caractères $\rho_{B_2^{\mathrm{op}}}$ et $\rho_{B_2}^{-1}$ coïncident sur le tore diagonal $T_2(F_x) = F_x^{\times} \times F_x^{\times}$.

Pour tout élément $\lambda = (\lambda_1, \lambda_2)$ de $\hat{T}_2 = \mathbb{C}^{\times} \times \mathbb{C}^{\times}$, soit

$$V_{x,\lambda}^{2,\mathrm{op}}:\mathrm{GL}_2(F_x)\to\mathbb{C}$$

l'unique fonction invariante à droite par $K_x^2 = \mathrm{GL}_2(O_x)$ et invariante à gauche par $N_2^{\mathrm{op}}(F_x)$ telle que

$$V_{x,\lambda}^{2,\text{op}}(\mu_x) = \rho_{B_2^{\text{op}}}^{1/2}(\mu_x) \cdot \lambda_1^{v_x(\mu_1)} \cdot \lambda_2^{v_x(\mu_2)}, \quad \forall \, \mu_x = (\mu_1, \mu_2) \in T_2(F_x) \,.$$

On a

$$V_{x,\lambda}^{2,\text{op}}(g_x) = V_{x,\lambda^{-1}}^2({}^tg_x^{-1}), \quad \forall g_x \in \text{GL}_2(F_x).$$

Nous pouvons maintenant introduire de nouveaux noyaux locaux, qui s'avèreront des formes de dégénérescences des noyaux locaux $K_{x,p_x}^{\rho_2,\psi_x}$ de la définition V.12 :

Définition V.15. – Soit $p_x \in \mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$ un polynôme symétrique.

(i) On note

$$K_{x,p_x}^{\rho_2,0}: \mathrm{GL}_2(F_x) \times \mathrm{GL}_2(F_x) \times \mathrm{GL}_2(F_x) \to \mathbb{C}$$

la fonction définie par la formule intégrale

$$K_{x,p_x}^{\rho_2,0}(g_1,g_2,g') = \int_{\lambda = (\lambda_1,\lambda_2) \in \operatorname{Im}\hat{T}_2 = U(1) \times U(1)} \frac{d\lambda_1 \cdot d\lambda_2}{1 - q_x^{-1} \cdot \frac{\lambda_1}{\lambda_2}} \cdot p_x(\lambda) \cdot V_{x,\lambda^{-1}}^2(g_1) \cdot V_{x,\lambda}^{2,\operatorname{op}}(g_2) \cdot W_{x,\lambda}^{2,0}(g')$$

où $d\lambda_1$ et $d\lambda_2$ désignent la mesure invariante de volume 1 sur le cercle unité U(1).

(ii) On note

$$K_{x,p_x}^{\rho_2,00}: \mathrm{GL}_2(F_x) \times \mathrm{GL}_2(F_x) \to \mathbb{C}$$

la fonction définie par la formule intégrale

$$K_{x,p_x}^{\rho_2,00}(g,g') = \int_{U(1)} d\lambda_1 \cdot p_x(\lambda_1 q_x^{1/2}, \lambda_1 q_x^{-1/2}) \cdot \lambda_1^{v_x(\det(g))} \cdot W_{x,(\lambda_1 q_x^{-1/2}, \lambda_1 q_x^{1/2})}^{2,0}(g').$$

Remarque. Toutes les fonctions $g'\mapsto W^{2,0}_{x,(\lambda_1q_x^{1/2},\lambda_1q_x^{-1/2})}(g')$ se factorisent à travers l'homomorphisme $g'\mapsto v_x(\det(g'))$ mais ce n'est pas le cas des fonctions $g'\mapsto W^{2,0}_{x,(\lambda_1q_x^{-1/2},\lambda_1q_x^{1/2})}(g')$ qui apparaissent dans la formule intégrale de définition des noyaux $K^{\rho_2,00}_{x,p_x}$.

Les fonctions $K_{x,p_x}^{\rho_2,0}$ sont invariantes à droite par $\mathrm{GL}_2(O_x) \times \mathrm{GL}_2(O_x) \times \mathrm{GL}_2(O_x)$. Elles sont invariantes à gauche par

$$N_2(F_x) \times N_2^{\mathrm{op}}(F_x) \times N_2(F_x)$$

ainsi que par le noyau de l'homomorphisme

$$T_2(F_x) \times T_2(F_x) \times T_2(F_x) \rightarrow T_2(F_x)$$

$$(\mu_1, \mu_2, \mu') \mapsto \mu_1^{-1} \mu_2 \mu'$$
.

Enfin, on a pour toute fonction sphérique $\varphi_x \in \mathcal{H}^2_x$

$$K_{x,p_x}^{\rho_2,0} *_3 \varphi_x = K_{x,p_x}^{\rho_2,0} *_2 \varphi_x = K_{x,p_x}^{\rho_2,0} *_1 \varphi_x^\vee \,,$$

ce qui justifie de considérer aussi les $K_{x,p_x}^{\rho_2,0}$ comme des noyaux locaux du transfert non ramifié par ρ_2 .

Pour tout $\lambda_1 \in \mathbb{C}^{\times}$, la fonction

$$q \mapsto \lambda_1^{v_x(\det(g))}$$

n'est autre que

$$\varphi^2_{x,(\lambda_1q_x^{-1/2},\lambda_1q_x^{1/2})} = \varphi^2_{x,(\lambda_1q_x^{1/2},\lambda_1q_x^{-1/2})} = V^2_{x,(\lambda_1q_x^{1/2},\lambda_1q_x^{-1/2})} \,.$$

Les fonctions

$$K_{x,p_x}^{\rho_2,00}: \mathrm{GL}_2(F_x) \times \mathrm{GL}_2(F_x) \to \mathbb{C}$$

sont invariantes à droite par

$$\operatorname{GL}_2(O_x) \times \operatorname{GL}_2(O_x)$$

et invariantes à gauche par

$$SL_2(F_x) \times N_2(F_x)$$
.

Leurs restrictions à

$$GL_2(F_x) \times T_2(F_x)$$

s'écrivent

$$\left(g, \begin{pmatrix} \mu_1 & 0 \\ 0 & \mu_2 \end{pmatrix}\right) \mapsto \int_{U(1)} d\lambda_1 \cdot p_x(\lambda_1 \, q_x^{1/2}, \lambda_1 \, q_x^{-1/2}) \cdot \lambda_1^{v_x(\det(g_1))} \cdot (\lambda_1 \, q_x^{-1})^{v_x(\mu_1)} \cdot (\lambda_1 \, q_x)^{v_x(\mu_2)} \,.$$

Enfin, on a pour toute fonction sphérique $\varphi_x \in \mathcal{H}^2_{x,\emptyset}$

$$K_{x,p_x}^{\rho_2,00} *_2 \varphi_x = K_{x,p_x}^{\rho_2,00} *_1 \varphi_x$$

ce qui justifie de considérer aussi les $K_{x,p_x}^{\rho_2,00}$ comme des noyaux locaux du transfert non ramifié par ρ_2 . Nous pouvons maintenant compléter l'énoncé du théorème V.13 par le calcul suivant des termes de bord :

Théorème V.16. – En une place $x \in |F|$, considérons un polynôme symétrique

$$p_x \in \mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2},$$

un caractère multiplicatif unitaire

$$\omega: F_r^{\times} \to \mathbb{C}^{\times}$$

et trois éléments $g_1, g_2, g' \in GL_2(F_x)$.

Soient f et f' les deux fonctions localement constantes à support compact sur $M_2(F_x)$ définies sur $\operatorname{GL}_2(F_x)$ par les formules intégrales du théorème V.13

$$f(m_x) = \omega(\det(m_x))^{-1} \cdot |\det(m_x)|_x^{-1} \cdot \int_{F_x^{\times}} d\mu \cdot \omega(\mu) \cdot K_{x,p_x}^{\rho_2,\psi_x} \left(g_1^{-1} \cdot {}^t m_x^{-1} \cdot g_2, \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right) ,$$

$$f'(m'_x) = \omega(\det(m'_x)) \cdot |\det(m'_x)|_x^{-1} \cdot \int_{F_x^{\times}} d\mu \cdot \omega(\mu) \cdot K_{x,p_x}^{\rho_2,\bar{\psi}_x} \left(g_1^{-1} \cdot m'_x \cdot g_2, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right).$$

Alors:

- (i) Si le caractère ω est ramifié, les fonctions f et f' s'annulent en les matrices de $M_2(F_x)$ qui ne sont pas inversibles.
- (ii) Si le caractère ω est non ramifié et m_x est une matrice de rang 1 de $M_2(F_x)$, écrite sous la forme

$$m_x = {}^t \gamma_1 \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \cdot {}^t \gamma_2^{-1}, \quad avec \quad \gamma_1, \gamma_2 \in \operatorname{GL}_2(F_x),$$

on a

$$f(m_x) = \omega(\det(\gamma_1^{-1}\gamma_2)) \cdot |\det(\gamma_1^{-1}\gamma_2)|_x \cdot \int_{F_x^{\times}} d\mu \cdot \omega(\mu) \cdot K_{x,p_x}^{\rho_2,0} \left(\gamma_1 g_1, \gamma_2 g_2, \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g'\right).$$

De même, si m'_x est une matrice de rang 1 de $M_2(F_x)$, écrite sous la forme

$$m'_x = \gamma_1'^{-1} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \gamma'_2 \quad avec \quad \gamma'_1, \gamma'_2 \in \operatorname{GL}_2(F_x),$$

on a

$$f'(m'_x) = \omega(\det(\gamma_1'^{-1}\gamma_2')) \cdot |\det(\gamma_1'^{-1}\gamma_2')|_x^{-1} \cdot \int_{F_x^\times} d\mu \cdot \omega(\mu) \cdot K_{x,p_x}^{\rho_2,0} \left(\gamma_1' g_1, \gamma_2' g_2, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right).$$

(iii) Si le caractère ω est non ramifié, on a

$$f(0) = \int_{F_{\infty}^{\times}} d\mu \cdot \omega(\mu) \cdot K_{x,p_x}^{\rho_2,00} \left(g_1^{-1} g_2, \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right)$$

et

$$f'(0) = \int_{F_x^{\times}} d\mu \cdot \omega(\mu) \cdot K_{x,p_x}^{\rho_2,00} \left(g_1^{-1} g_2, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right).$$

Démonstration.

(i) Si le caractère ω est ramifié, il résulte des théorèmes V.14(i)(ii) et V.7(iv) que les fonctions f et f' sont supportées par des parties compactes de l'ouvert $GL_2(F_x)$ de $M_2(F_x)$.

Pour (ii) et (iii), examinons d'abord la dépendance par rapport au caractère local ψ_x de la fonction f [resp. f'] et des expressions proposées dans l'énoncé du théorème pour ses valeurs en les matrices de rang 1 ou 0.

Si on écrit le caractère ψ_x sous la forme

$$\psi_x(a_x) = \psi_x'(\gamma_x^{-1}a_x), \quad a_x \in F_x,$$

où γ_x est un élément de F_x^{\times} de valuation $v_x(\gamma_x) = N_{\psi_x}$ et ψ_x' est un caractère régulier, remplacer ψ_x par ψ_x' équivaut à remplacer partout l'élément g' par $\begin{pmatrix} \gamma_x & 0 \\ 0 & 1 \end{pmatrix} \cdot g'$ [resp. par $\begin{pmatrix} 1 & 0 \\ 0 & \gamma_x \end{pmatrix} \cdot g'$].

On peut donc supposer que ψ_x est régulier.

Nous avons besoin du lemme suivant :

Lemme V.17. – Soient $\omega: F_x^{\times} \to \mathbb{C}^{\times}$ un caractère unitaire, g' un élément de $\operatorname{GL}_2(F_x)$ et u un élément de F_x .

(i) Comme fonction de $\lambda = (\lambda_1, \lambda_2) \in \operatorname{Im} \hat{T}_2$, la différence des deux intégrales

$$\int_{F_{\star}^{\times}} d\mu \cdot \omega(\mu) \cdot W_{x,\lambda}^{2,\psi_{x}} \left(\begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \cdot g' \right) - \int_{F_{\star}^{\times}} d\mu \cdot \omega(\mu) \cdot W_{x,\lambda}^{2,\psi_{x}} \left(\begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right)$$

est un polynôme élément de $\mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$.

(ii) Pour tous éléments $g_1, g_2 \in GL_2(F_x)$, la différence

$$\begin{split} \int_{F_x^\times} d\mu \cdot \omega(\mu) \cdot K_{x,p_x}^{\rho_2,\psi_x} \left(g_1^{-1} \cdot {}^t m_x^{-1} \cdot g_2, \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \cdot g' \right) \\ - \int_{F_x^\times} d\mu \cdot \omega(\mu) \cdot K_{x,p_x}^{\rho_2,\psi_x} \left(g_1^{-1} \cdot {}^t m_x^{-1} \cdot g_2, \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right) \\ [resp. & \int_{F_x^\times} d\mu \cdot \omega(\mu) \cdot K_{x,p_x}^{\rho_2,\bar{\psi}_x} \left(g_1^{-1} \cdot m_x' \cdot g_2, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ u & 1 \end{pmatrix} \cdot g' \right) \\ - \int_{F_x^\times} d\mu \cdot \omega(\mu) \cdot K_{x,p_x}^{\rho_2,\bar{\psi}_x} \left(g_1^{-1} \cdot m_x' \cdot g_2, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right)] \end{split}$$

est une fonction de m_x [resp. m_x'] à support compact dans $\mathrm{GL}_2(F_x)$.

Démonstration du lemme.

(i) Cette différence est égale à

$$\int_{F_x^{\times}} d\mu \cdot \omega(\mu) \cdot [\psi_x(\mu \, u) - 1] \cdot W_{x,\lambda}^{2,\psi_x} \begin{pmatrix} \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \end{pmatrix}$$
[resp.
$$\int_{F_x^{\times}} d\mu \cdot \omega(\mu) \cdot [\bar{\psi}_x(\mu^{-1} \, u) - 1] \cdot W_{x,\lambda}^{2,\bar{\psi}_x} \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \end{pmatrix}].$$

Or on a

$$\psi_x(\mu u) = 1$$
 si $v_x(\mu u) \ge N_{\psi_x}$
[resp. $\bar{\psi}_x(\mu^{-1} u) = 1$ si $v_x(\mu^{-1} u) \ge N_{\psi_x}$].

D'autre part, la fonction de Whittaker

$$W_{x,\lambda}^{2,\psi_x} \left(\begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right) \qquad [\text{resp.} \quad W_{x,\lambda}^{2,\bar{\psi}_x} \left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right)]$$

s'annule si $v_x(\mu)$ est assez petit [resp. assez grand] en fonction de l'élément fixé g'.

Ne contribuent donc aux intégrales ci-dessus qu'un nombre fini de valuations possibles de μ . D'où le résultat de (i).

(ii) est conséquence de (i) d'après la définition des fonctions noyaux $K_{x,p_x}^{\rho_2,\psi_x}$ et $K_{x,p_x}^{\rho_2,\bar{\psi}_x}$ et le théorème V.7(iv).

Suite de la démonstration du théorème V.16(ii)(iii). Examinons la dépendance par rapport à $g' \in GL_2(F_x)$ des valeurs de f [resp. f'] en les matrices de $M_2(F_x)$ de rang 1 ou 0 et des expressions proposées pour ces valeurs dans les parties (ii) et (iii) du théorème.

Toutes sont invariantes à droite par $GL_2(O_x) = K_x^2$.

D'après le lemme V.17 ci-dessus, elles sont également invariantes à gauche par $N_2(F_x) = \left\{ \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \middle| u \in F_x \right\}$

$$[\text{resp. par} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot N_2(F_x) \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \left\{ \begin{pmatrix} 1 & 0 \\ u & 1 \end{pmatrix} \middle| u \in F_x \right\} = N_2^{\text{op}}(F_x)].$$

Voyons comment sont modifiées les fonctions f et f' sur $M_2(F_x)$ lorsque g' est remplacé par

$$\begin{pmatrix} \mu_1 & 0 \\ 0 & \mu_2 \end{pmatrix} \cdot g' \quad \text{avec} \quad \mu_1, \mu_2 \in F_x^{\times} .$$

Cela revient à remplacer le polynôme $p_x(X_1, X_2)$ par

$$p_x(X_1, X_2) \cdot (X_1 X_2)^{v_x(\mu_2)}$$

et à multiplier les fonctions obtenues par la constante

$$\omega^{-1}\left(\frac{\mu_1}{\mu_2}\right) = \omega\left(\frac{\mu_2}{\mu_1}\right) .$$

Il résulte des définitions des fonctions $K_{x,p_x}^{\rho_2,0}$ et $K_{x,p_x}^{\rho_2,00}$ que les différentes expressions proposées dans les parties (ii) et (iii) du théorème se transforment de la même façon quand on remplace g' par $\begin{pmatrix} \mu_1 & 0 \\ 0 & \mu_2 \end{pmatrix} \cdot g'$.

On peut donc supposer que g'=1, ce que nous ferons désormais.

Examinons maintenant la dépendance par rapport au polynôme $p_x \in \mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$ et aux éléments $g_1, g_2 \in \mathrm{GL}_2(F_x)$ des fonctions f et f' ainsi que des différentes expressions de (ii) et (iii).

Si $\varphi_x \in \mathcal{H}^2_{x,\emptyset}$ est une fonction sphérique à support compact sur $\mathrm{GL}_2(F_x)$ dont la transformée de Satake est un polynôme $S^2_x(\varphi_x) = p \in \mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$, la convolution à droite par φ_x en la variable g_2 équivaut au remplacement du polynôme p_x par $p_x p$.

On peut donc supposer que $p_x = 1$.

Comme le caractère ψ_x est régulier, que le caractère ω est non ramifié, que $p_x=1$ et que g'=1, on obtient, d'après le théorème V.13(iii), les expressions suivantes pour les fonctions f et f':

$$f(m_x) = \omega(\det(g_1g_2^{-1})) \cdot |\det(g_1g_2^{-1})|_x \cdot \mathbb{I}_{M_2(O_x)}({}^tg_1 \cdot m_x \cdot {}^tg_2^{-1})$$
$$f'(m_x') = \omega(\det(g_1g_2^{-1})) \cdot |\det(g_1^{-1}g_2)|_x \cdot \mathbb{I}_{M_2(O_x)}(g_1^{-1} \cdot m_x' \cdot g_2)$$

D'autre part, on a

$$\begin{split} \int_{F_x^\times} d\mu \cdot \omega(\mu) \cdot K_{x,p_x}^{\rho_2,00} \left(g_1^{-1} g_2, \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right) &=& \int_{F_x^\times} d\mu \cdot \omega(\mu) \cdot \int_{U(1)} d\lambda_1 \cdot \lambda_1^{v_x(\det(g_1^{-1} g_2)) + v_x(\mu)} \cdot q_x^{-v_x(\mu)} \\ &=& \omega(\det(g_1 g_2^{-1})) \cdot |\det(g_1 g_2^{-1})|_x \end{split}$$

et de même

$$\int_{F^{\times}} d\mu \cdot \omega(\mu) \cdot K_{x,p_x}^{\rho_2,00} \left(g_1^{-1} g_2, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right) = \omega(\det(g_1 g_2^{-1})) \cdot |\det(g_1^{-1} g_2)|_x.$$

Cela achève la preuve de (iii).

Reste à terminer la preuve de (ii).

Supposons que m_x [resp. m'_x] est écrit sous la forme

$$m_x = {}^t\gamma_1 \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \cdot {}^t\gamma_2^{-1}$$
 [resp. $m_x' = \gamma_1'^{-1} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \gamma_2'$].

Examinons la dépendance par rapport aux variables

$$g_1, g_2, \gamma_1 g_1, \gamma_2 g_2$$
 [resp. $g_1, g_2, \gamma'_1 g_1, \gamma'_2 g_2$]

de $f(m_x)$ [resp. $f'(m'_x)$] et de l'expression proposée pour cette valeur dans la partie (ii) du théorème.

Comme

$$\det(\gamma_1^{-1} \gamma_2) = \det(g_1 g_2^{-1}) \cdot \det((\gamma_1 g_1)^{-1} \cdot (\gamma_2 g_2))$$
[resp.
$$\det(\gamma_1'^{-1} \gamma_2') = \det(g_1 g_2^{-1}) \cdot \det((\gamma_1' g_1)^{-1} \cdot (\gamma_2' g_2))$$
],

la dépendance par rapport aux variables g_1 et g_2 existe uniquement à travers $\det(g_1^{-1}g_2)$.

Par rapport aux variables $\gamma_1 g_1$ et $\gamma_2 g_2$ [resp. $\gamma_1' g_1$ et $\gamma_2' g_2$], les deux côtés de l'égalité à démontrer sont invariants à droite par $\operatorname{GL}_2(O_x) \times \operatorname{GL}_2(O_x)$ et invariants à gauche par $N_2(F_x) \times N_2^{\operatorname{op}}(F_x)$.

On peut donc supposer que

$$\begin{split} \gamma_1 \, g_1 &= \begin{pmatrix} \mu_1 & 0 \\ 0 & \nu_1 \end{pmatrix} \quad \text{et} \quad \gamma_2 \, g_2 = \begin{pmatrix} \mu_2 & 0 \\ 0 & \nu_2 \end{pmatrix} \\ [\text{resp.} \quad \gamma_1' \, g_1 &= \begin{pmatrix} \mu_1 & 0 \\ 0 & \nu_1 \end{pmatrix} \quad \text{et} \quad \gamma_2' \, g_2 = \begin{pmatrix} \mu_2 & 0 \\ 0 & \nu_2 \end{pmatrix}]. \end{split}$$

Dans cette situation, la fonction caractéristique

$$\mathbb{I}_{M_2(O_x)} \begin{pmatrix} t g_1 t \gamma_1 \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \cdot t \gamma_2^{-1} t g_2^{-1} \end{pmatrix}$$
[resp.
$$\mathbb{I}_{M_2(O_x)} \begin{pmatrix} g_1^{-1} \gamma_1'^{-1} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \gamma_2' g_2 \end{pmatrix}]$$

s'écrit simplement

$$\mathbb{I}\left(v_x\left(\frac{\nu_1}{\nu_2}\right) \ge 0\right) \qquad [\text{resp.} \quad \mathbb{I}\left(v_x\left(\frac{\mu_2}{\mu_1}\right) \ge 0\right)].$$

Pour conclure, il reste seulement à vérifier la formule suivante

$$\begin{split} & \int_{F_x^\times} d\mu \cdot \omega(\mu) \cdot \int_{\lambda = (\lambda_1, \lambda_2) \in U(1) \times U(1)} \frac{d\lambda_1 \cdot d\lambda_2}{1 - q_x^{-1} \cdot \frac{\lambda_2}{\lambda_1}} \cdot V_{x, \lambda^{-1}}^2 \begin{pmatrix} \mu_1 & 0 \\ 0 & \nu_1 \end{pmatrix} \cdot V_{x, \lambda}^{2, \text{op}} \begin{pmatrix} \mu_2 & 0 \\ 0 & \nu_2 \end{pmatrix} \cdot V_{x, \lambda}^2 \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \\ & = & |\mu_1 \nu_1 \, \mu_2^{-1} \nu_2^{-1}|_x \cdot \omega(\mu_1 \nu_1 \, \mu_2^{-1} \nu_2^{-1}) \cdot \mathbb{I} \left(v_x \left(\frac{\nu_1}{\nu_2} \right) \ge 0 \right) \end{split}$$

$$[\text{resp.} \qquad \int_{F_x^{\times}} d\mu \cdot \omega(\mu) \cdot \int_{\lambda = (\lambda_1, \lambda_2) \in U(1) \times U(1)} \frac{d\lambda_1 \cdot d\lambda_2}{1 - q_x^{-1} \cdot \frac{\lambda_2}{\lambda_1}}$$

$$\cdot \quad V_{x, \lambda^{-1}}^2 \begin{pmatrix} \mu_1 & 0 \\ 0 & \nu_1 \end{pmatrix} \cdot V_{x, \lambda}^{2, \text{op}} \begin{pmatrix} \mu_2 & 0 \\ 0 & \nu_2 \end{pmatrix} \cdot V_{x, \lambda}^2 \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$$

$$= \quad |\mu_1 \nu_1 \, \mu_2^{-1} \nu_2^{-1}|_x^{-1} \cdot \omega(\mu_1 \nu_1 \, \mu_2^{-1} \nu_2^{-1}) \cdot \mathbb{I} \left(v_x \left(\frac{\mu_2}{\mu_1} \right) \ge 0 \right)].$$

Or on a

$$\begin{split} V_{x,\lambda^{-1}}^2 \begin{pmatrix} \mu_1 & 0 \\ 0 & \nu_1 \end{pmatrix} &= (q_x^{-1/2} \, \lambda_1^{-1})^{v_x(\mu_1)} \cdot (q_x^{1/2} \, \lambda_2^{-1})^{v_x(\nu_1)} \,, \\ V_{x,\lambda}^{2,\text{op}} \begin{pmatrix} \mu_2 & 0 \\ 0 & \nu_2 \end{pmatrix} &= (q_x^{-1/2} \cdot \lambda_1^{-1})^{-v_x(\mu_2)} \cdot (q_x^{1/2} \, \lambda_2^{-1})^{-v_x(\nu_2)} \,, \end{split}$$

et

$$V_{x,\lambda}^2 \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} = (q_x^{-1/2} \lambda_1)^{v_x(\mu)}$$

[resp.
$$V_{x,\lambda}^2 \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} = (q_x^{1/2} \lambda_2)^{v_x(\mu)}$$
].

Le produit de ces trois termes est égal à

$$\begin{split} & (q_x^{1/2}\lambda_1)^{-v_x(\mu_1)+v_x(\mu_2)+v_x(\mu)} \cdot (q_x^{-1/2}\lambda_2)^{-v_x(\nu_1)+v_x(\nu_2)} \cdot (q_x^{-1})^{v_x(\mu)} \\ & [\text{resp.} \quad (q_x^{1/2}\lambda_1)^{-v_x(\mu_1)+v_x(\mu_2)} \cdot (q_x^{-1/2}\lambda_2)^{-v_x(\nu_1)+v_x(\nu_2)+v_x(\mu)} \cdot q_x^{v_x(\mu)} \]. \end{split}$$

En intégrant par la mesure

$$\frac{d\lambda_1 \cdot d\lambda_2}{1 - q_x^{-1} \cdot \frac{\lambda_2}{\lambda_1}} \quad \text{sur} \quad U(1) \times U(1) \,,$$

on obtient la fonction de μ qui vaut

0 si
$$v_x(\nu_1) < v_x(\nu_2)$$
 [resp. $v_x(\mu_1) > v_x(\mu_2)$]

et sinon

$$q_x^{-v_x(\mu)} \cdot \mathbb{I}(v_x(\mu) = v_x(\mu_1 \nu_1 \, \mu_2^{-1} \nu_2^{-1}))$$
 [resp. $q_x^{v_x(\mu)} \cdot \mathbb{I}(v_x(\mu) = v_x(\mu_1 \nu_1 \, \mu_2^{-1} \nu_2^{-1}))$].

En intégrant par la mesure

$$d\mu \cdot \omega(\mu)$$
 sur F_x^{\times} ,

on obtient

$$\mathbb{I}\left(v_x\left(\frac{\nu_1}{\nu_2}\right) \ge 0\right) \cdot |\mu_1\nu_1\,\mu_2^{-1}\nu_2^{-1}|_x \cdot \omega(\mu_1\nu_1\,\mu_2^{-1}\nu_2^{-1})$$
[resp.
$$\mathbb{I}\left(v_x\left(\frac{\mu_2}{\mu_1}\right) \ge 0\right) \cdot |\mu_1\nu_1\,\mu_2^{-1}\nu_2^{-1}|_x^{-1} \cdot \omega(\mu_1\nu_1\,\mu_2^{-1}\nu_2^{-1})].$$

C'est ce que l'on voulait.

7 Construction de noyaux globaux

Considérons une famille $p=(p_x)_{x\in |F|}$ de polynômes symétriques $p_x\in \mathbb{C}[X_1^{\pm 1},X_2^{\pm 1}]^{\mathfrak{S}_2}$, telle que $p_x=1$ en presque toute place.

En chaque place $x \in |F|$, nous avons introduit le noyau local

$$\begin{array}{cccc} K_{x,p_x}^{\rho_2,\psi_x}: & \operatorname{GL}_2(F_x) \times \operatorname{GL}_2(F_x) & \to & \mathbb{C} \\ & (g,g') & \mapsto & \int_{\operatorname{Im}\hat{T}_2} d\lambda \cdot p_x(\lambda) \cdot \varphi_{x,\lambda}^2(g) \cdot W_{x,\lambda}^{2,\psi_x}(g') \,. \end{array}$$

Nous avons également introduit les noyaux locaux de bord

$$K_{x,p_x}^{\rho_2,0}: \operatorname{GL}_2(F_x) \times \operatorname{GL}_2(F_x) \to \mathbb{C}$$

$$(g_1, g_2, g') \mapsto \int_{\stackrel{\lambda=(\lambda_1, \lambda_2)}{\in \operatorname{Im} \hat{T}_2 = U(1) \times U(1)}} \frac{d\lambda_1 \cdot d\lambda_2}{1 - q_x^{-1} \cdot \frac{\lambda_2}{\lambda_1}}$$

$$\cdot p_x(\lambda) \cdot V_{x,\lambda^{-1}}^2(g_1) \cdot V_{x,\lambda}^{2,\operatorname{op}}(g_2) \cdot W_{x,\lambda}^{2,0}(g')$$

et

En faisant le produit sur toutes les places $x \in |F|$, on peut définir des fonctions globales

$$K_p^{\rho_2,\psi}: \operatorname{GL}_2(\mathbb{A}) \times \operatorname{GL}_2(\mathbb{A}) \to \mathbb{C}$$

$$(g,g') \mapsto \prod_{x \in |F|} K_{x,p_x}^{\rho_2,\psi_x}(g,g')$$

ainsi que

$$K_p^{\rho_2,0}: \operatorname{GL}_2(\mathbb{A}) \times \operatorname{GL}_2(\mathbb{A}) \times \operatorname{GL}_2(\mathbb{A}) \to \mathbb{C}$$

$$(g_1, g_2, g') \mapsto \prod_{x \in |F|} K_{x, p_x}^{\rho_2, 0}(g_1, g_2, g')$$

et

$$K_p^{
ho_2,00}: \operatorname{GL}_2(\mathbb{A}) imes\operatorname{GL}_2(\mathbb{A})
ightarrow \mathbb{C} \ (g,g') \mapsto \prod_{x\in |F|} K_x^{
ho_2,00}(g,g') \,.$$

On déduit des théorèmes V.13 et V.16 combinés avec la formule de Poisson pour le réseau $M_2(F)$ de $M_2(\mathbb{A})$:

Théorème V.18. – Soit $p=(p_x)_{x\in |F|}$ une famille de polynômes symétriques $p_x\in \mathbb{C}[X_1^{\pm 1},X_2^{\pm 1}]^{\mathfrak{S}_2}$, telle que $p_x=1$ en presque toute place.

(i) Pour tous éléments $g_1, g_2, g' \in GL_2(\mathbb{A})$, la somme

$$K_{p}^{\rho_{2}}(g_{1}, g_{2}, g') = \sum_{\gamma \in GL_{2}(F)} \sum_{\delta \in F^{\times}} K_{p}^{\rho_{2}, \psi} \left(g_{1}^{-1} \gamma g_{2}, \begin{pmatrix} \delta & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right)$$

$$+ \sum_{\gamma_{1} \in B_{2}(F) \backslash GL_{2}(F)} \sum_{\gamma_{2} \in N_{2}^{\text{op}}(F) \backslash GL_{2}(F)} K_{p}^{\rho_{2}, 0}(\gamma_{1} g_{1}, \gamma_{2} g_{2}, g')$$

$$+ \sum_{\gamma \in SL_{2}(F) \backslash GL_{2}(F)} K_{p}^{\rho_{2}, 00}(g_{1}^{-1} \gamma g_{2}, g')$$

est égale à la somme

$$\sum_{\gamma \in \operatorname{GL}_{2}(F)} \sum_{\delta \in F^{\times}} K_{p}^{\rho_{2}, \bar{\psi}} \left(g_{1}^{-1} \gamma g_{2}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \delta & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right)$$

$$+ \sum_{\gamma_{1} \in B_{2}(F) \backslash \operatorname{GL}_{2}(F)} \sum_{\gamma_{2} \in N_{2}^{\operatorname{op}}(F) \backslash \operatorname{GL}_{2}(F)} K_{p}^{\rho_{2}, 0} \left(\gamma_{1} g_{1}, \gamma_{2} g_{2}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot g' \right)$$

$$+ \sum_{\gamma \in \operatorname{SL}_{2}(F) \backslash \operatorname{GL}_{2}(F)} K_{p}^{\rho_{2}, 00} \left(g_{1}^{-1} \gamma g_{2}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot g' \right).$$

(ii) La fonction

$$K_p^{\rho_2}: \operatorname{GL}_2(\mathbb{A}) \times \operatorname{GL}_2(\mathbb{A}) \times \operatorname{GL}_2(\mathbb{A}) \to \mathbb{C}$$

 $(g_1, g_2, g') \mapsto K_p^{\rho_2}(g_1, g_2, g')$

est un noyau global du transfert non ramifié par l'automorphisme identité

$$\rho_2: \mathrm{GL}_2(\mathbb{C}) \to \mathrm{GL}_2(\mathbb{C})$$
,

au sens de la définition II.18.

En particulier, elle est invariante à gauche par

$$\operatorname{GL}_2(F) \times \operatorname{GL}_2(F) \times \operatorname{GL}_2(F)$$
.

Ce théorème est complété par la proposition suivante :

Proposition V.19. – Lorsque $p=(p_x)_{x\in |F|}$ décrit l'ensemble des familles de polynômes symétriques $p_x\in \mathbb{C}[X_1^{\pm 1},X_2^{\pm 1}]^{\mathfrak{S}_2}$ égaux à 1 en presque toute place $x\in |F|$, les fonctions

$$K_p^{\rho_2}: \mathrm{GL}_2(\mathbb{A}) \times \mathrm{GL}_2(\mathbb{A}) \times \mathrm{GL}_2(\mathbb{A}) \to \mathbb{C}$$

constituent un ensemble complet de noyaux globaux du transfert non ramifié par ρ_2 , au sens de la définition II.19.

Chapitre VI:

Noyaux du transfert automorphe par la représentation standard de $SL_2(\mathbb{C})$

1 Fonctions sur les groupes locaux $PGL_2(F_x)$, $GL_2(F_x)$ et $SL_2(F_x)$

Dans ce paragraphe, on travaille en une place $x \in |F|$.

On munit $GL_2(F_x)$, $PGL_2(F_x)$ et $SL_2(F_x)$ des mesures de Haar, toutes notées dg_x , qui attribuent le volume 1 aux sous-groupes ouverts compacts maximaux $GL_2(O_x)$, $PGL_2(O_x)$ et $SL_2(O_x)$.

On dispose des suites exactes

$$1 \to F_x^{\times} \to \operatorname{GL}_2(F_x) \to \operatorname{PGL}_2(F_x) \to 1$$
,

$$1 \to \{\pm 1\} \to \operatorname{SL}_2(F_x) \to \operatorname{PGL}_2(F_x) \to 1$$
,

si bien que l'on peut identifier les fonctions sur $\operatorname{PGL}_2(F_x)$ aux fonctions sur $\operatorname{GL}_2(F_x)$ qui sont invariantes par son centre F_x^{\times} , ou encore aux fonctions sur $\operatorname{SL}_2(F_x)$ qui sont invariantes par son centre $\{\pm 1\}$.

On note \mathcal{H}_x^2 et $\mathcal{H}_x^{\tilde{2}}$ les algèbres de Hecke de $\mathrm{GL}_2(F_x)$ et $\mathrm{PGL}_2(F_x)$, puis $\mathcal{H}_{x,\emptyset}^2$ et $\mathcal{H}_{x,\emptyset}^{\tilde{2}}$ les sous-algèbres de Hecke sphériques des fonctions invariantes à droite et à gauche par $\mathrm{GL}_2(O_x)$.

L'intégration sur le centre F_x^{\times} de $\operatorname{GL}_2(F_x)$

$$h_x \mapsto \tilde{h}_x = \left(g \mapsto \int_{F_x^\times} d\mu \cdot h_x(\mu g)\right)$$

définit un homomorphisme d'algèbres

$$\rho_{\tilde{2}}^*:\mathcal{H}_x^2\to\mathcal{H}_x^{\tilde{2}}$$

qui envoie $\mathcal{H}^2_{x,\emptyset}$ dans $\mathcal{H}^{\tilde{2}}_{x,\emptyset}$.

La restriction

$$\rho_{\tilde{2}}^*: \mathcal{H}_{x,\emptyset}^2 \to \mathcal{H}_{x,\emptyset}^{\tilde{2}}$$

n'est autre que l'homomorphisme induit par le plongement standard

$$\rho_{\tilde{2}}: \mathrm{SL}_2(\mathbb{C}) \hookrightarrow \mathrm{GL}_2(\mathbb{C})$$

du dual $\widehat{PGL}_2=\operatorname{SL}_2(\mathbb{C})$ de PGL_2 dans le dual $\widehat{\operatorname{GL}}_2=\operatorname{GL}_2(\mathbb{C})$ de $\operatorname{GL}_2.$

Rappelons que nous avons noté $T_2 = \mathbb{G}_m \times \mathbb{G}_m$ le tore maximal de GL_2 , B_2 et B_2^{op} ses sous-groupes de Borel constitués des matrices triangulaires supérieures et inférieures, N_2 et N_2^{op} les radicaux unipotents de B_2 et B_2^{op} .

On note $T_{\tilde{2}} = \mathbb{G}_m \backslash T_2$ le tore maximal de PGL₂, $B_{\tilde{2}}$ et $B_{\tilde{2}}^{\text{op}}$ ses sous-groupes de Borel $\mathbb{G}_m \backslash B_2$ et $\mathbb{G}_m \backslash B_2^{\text{op}}$, $N_{\tilde{2}} = N_2$ et $N_{\tilde{2}}^{\text{op}} = N_2^{\text{op}}$ leurs radicaux unipotents.

On dispose des caractères modulaires

$$\rho_{B_2} = \rho_{B_{\tilde{2}}} : B_2(F_x) \to B_{\tilde{2}}(F_x) \to q_x^{\mathbb{Z}}$$

et

$$\rho_{B_2^{\text{op}}} = \rho_{B_{\bar{2}}^{\text{op}}} : B_2^{\text{op}}(F_x) \to B_{\bar{2}}^{\text{op}}(F_x) \to q_x^{\mathbb{Z}} \,,$$

puis des isomorphismes de Satake

$$S_x^{\tilde{2}}: \mathcal{H}_{x,\emptyset}^{\tilde{2}} \stackrel{\sim}{\longrightarrow} \mathbb{C}[X,X^{-1}]^{\mathfrak{S}_2}$$

$$\tilde{h}_x \mapsto \int_{\mu_x=(\mu_1,\mu_2)\in F_x^\times\backslash T_2(F_x)} d\mu_x \cdot X^{-v_x(\mu_1)+v_x(\mu_2)} \rho_{B_2}^{1/2}(\mu_x) \cdot \int_{N_2(F_x)} dn_x \cdot \tilde{h}_x(\mu_x \, n_x) \,.$$
 Is isomorphismes de Satake, l'homomorphisme

Via les isomorphismes de Satake, l'homomorphisme

$$\rho_{\tilde{2}}^*: \mathcal{H}^2_{x,\emptyset} \to \mathcal{H}^{\tilde{2}}_{x,\emptyset}$$

s'écrit simplement

$$\mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2} \to \mathbb{C}[X, X^{-1}]^{\mathfrak{S}_2}$$

 $p_x(X_1, X_2) \mapsto p_x(X, X^{-1}).$

Rappelons que nous avons noté $\hat{T}_2 = \mathbb{C}^{\times} \times \mathbb{C}^{\times}$ le tore complexe dual de T_2 . Soit encore

$$\hat{T}_{\tilde{2}} = \{(\lambda_1, \lambda_2) \in \mathbb{C}^{\times} \times \mathbb{C}^{\times} \mid \lambda_1 \lambda_2 = 1\}$$

le tore dual de $T_{\tilde{2}} = \mathbb{G}_m \setminus (\mathbb{G}_m \times \mathbb{G}_m)$ identifié à un sous-tore de \hat{T}_2 .

Pour tout élément $\lambda = (\lambda_1, \lambda_2)$ de \hat{T}_2 , les fonctions associées définies au paragraphe V.3

$$V_{x,\lambda}^2: N_2(F_x)\backslash \mathrm{GL}_2(F_x)/\mathrm{GL}_2(O_x) \to \mathbb{C}$$

$$\varphi_{x\lambda}^2 : \mathrm{GL}_2(O_x) \backslash \mathrm{GL}_2(F_x) / \mathrm{GL}_2(O_x) \to \mathbb{C}$$
,

sont invariantes par le centre F_x^{\times} de $\mathrm{GL}_2(F_x)$ si et seulement si λ est élément du sous-tore $\hat{T}_{\tilde{2}}$.

Si λ est un élément de $\hat{T}_{\hat{2}}$ et $\tilde{\varphi}_x \in \mathcal{H}_{x,\emptyset}^{\tilde{2}}$ une fonction sphérique à support compact sur $\operatorname{PGL}_2(F_x) =$ $F_x^{\times}\backslash \mathrm{GL}_2(F_x)$, on a

$$V_{x,\lambda}^2 * \tilde{\varphi}_x = S_x^{\tilde{2}}(\tilde{\varphi}_x)(\lambda) \cdot V_{x,\lambda}^2$$

et

$$\varphi_{x,\lambda}^2 * \tilde{\varphi}_x = \tilde{\varphi}_x * \varphi_{x,\lambda}^2 = S_x^{\tilde{2}}(\tilde{\varphi}_x)(\lambda) \cdot \varphi_{x,\lambda}^2 .$$

Nous avons rappelé dans le théorème V.7(iv) que toute fonction sphérique $\varphi_x \in \mathcal{H}^2_{x,\emptyset}$ admet la représentation intégrale

$$\varphi_x(\bullet) = \int_{\underset{\text{Im } \hat{T}_2 = U(1) \times U(1)}{\lambda = (\lambda_1, \lambda_2) \in}} d\lambda_1 \cdot d\lambda_2 \cdot \frac{1 + \frac{1}{q_x}}{2} \cdot \frac{\left(1 - \frac{\lambda_1}{\lambda_2}\right) \left(1 - \frac{\lambda_2}{\lambda_1}\right)}{\left(1 - \frac{\lambda_1}{q_x \lambda_2}\right) \left(1 - \frac{\lambda_2}{q_x \lambda_1}\right)} \cdot S_x^2(\varphi_x)(\lambda) \cdot \varphi_{x,\lambda}^2(\bullet).$$

En notant $\operatorname{Im} \hat{T}_{\tilde{2}} = \{\lambda = (\lambda_1, \lambda_2) \in \operatorname{Im} \hat{T}_2 = U(1) \times U(1) \mid \lambda_1 \lambda_2 = 1\}$, on en déduit que toute fonction sphérique $\tilde{\varphi}_x \in \mathcal{H}^{\tilde{2}}_{x,\emptyset}$ admet la représentation intégrale

$$\tilde{\varphi}_x(\bullet) = \int_{\lambda = (\lambda_1, \lambda_1^{-1}) \in \operatorname{Im} \hat{T}_{\tilde{2}}} d\lambda_1 \cdot \frac{1 + \frac{1}{q_x}}{2} \cdot \frac{(1 - \lambda_1^2)(1 - \lambda_1^{-2})}{\left(1 - \frac{\lambda_1^2}{q_x}\right) \left(1 - \frac{\lambda_1^{-2}}{q_x}\right)} \cdot S_x^{\tilde{2}}(\tilde{\varphi}_x)(\lambda) \cdot \varphi_{x,\lambda}^2(\bullet).$$

Pour tout élément $\lambda=(\lambda_1,\lambda_2)$ de $\hat{T}_2=\mathbb{C}^\times\times\mathbb{C}^\times$, le centre F_x^\times de $\mathrm{GL}_2(F_x)$ agit sur la fonction de Whittaker du paragraphe V.4

$$W_{x,\lambda}^{2,\psi_x}: \mathrm{GL}_2(F_x) \to \mathbb{C}$$

par le caractère $\mu \mapsto (\lambda_1 \lambda_2)^{v_x(\mu)}$. Ce caractère central est trivial si et seulement si λ est élément du sous-tore \hat{T}_2 de \hat{T}_2 .

Il en est exactement de même des fonctions introduites au paragraphe V.6

$$W_{x,\lambda}^{2,0}: N_2(F_x)\backslash \mathrm{GL}_2(F_x)/\mathrm{GL}_2(O_x) \to \mathbb{C}$$

et

$$V_{x,\lambda}^{2,\mathrm{op}}: N_2^{\mathrm{op}}(F_x)\backslash \mathrm{GL}_2(F_x)/\mathrm{GL}_2(O_x) \to \mathbb{C}$$
.

2 Noyaux locaux du transfert et termes de bord

Comme au paragraphe précédent dont nous allons utiliser les notations et les rappels, nous travaillons en une place $x \in |F|$.

Posons:

Définition VI.1. – On appelle noyaux locaux du transfert non ramifié par $\rho_{\tilde{2}}$ les fonctions

$$K_{x,\tilde{p}_x}^{\tilde{
ho}_2,\psi_x}: \mathrm{PGL}_2(F_x) imes \mathrm{GL}_2(F_x) o \mathbb{C}$$

définies par des intégrales de la forme

$$K_{x,\tilde{p}_{x}}^{\tilde{\rho}_{2},\psi_{x}}(g,g') = \int_{\lambda = (\lambda_{1},\lambda_{2} = \lambda_{1}^{-1}) \in \operatorname{Im}\hat{T}_{2}^{-}} d\lambda_{1} \cdot \frac{1 + \frac{1}{q_{x}}}{2} \cdot \frac{(1 - \lambda_{1}^{2})(1 - \lambda_{1}^{-2})}{\left(1 - \frac{\lambda_{1}^{2}}{q_{x}}\right)\left(1 - \frac{\lambda_{1}^{-2}}{q_{x}}\right)} \cdot \tilde{p}_{x}(\lambda) \cdot \varphi_{x,\lambda}^{2}(g) \cdot W_{x,\lambda}^{2,\psi_{x}}(g')$$

pour un polynôme symétrique $\tilde{p}_x \in \mathbb{C}[X, X^{-1}]^{\mathfrak{S}_2}$.

Le lemme suivant explicite le lien entre les noyaux locaux du transfert non ramifié par ρ_2 et par $\rho_{\tilde{2}}$:

Lemme VI.2. – Soit p_x un polynôme symétrique élément de $\mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$.

(i) Si \tilde{p}_x désigne le polynôme induit $p_x(X, X^{-1}) \in \mathbb{C}[X, X^{-1}]^{\mathfrak{S}_2}$, on a pour tous éléments g, g' de $\mathrm{GL}_2(F_x)$

$$K_{x,\tilde{p}_{x}}^{\rho_{\tilde{2}},\psi_{x}}(g,g') = \int_{F^{\times}} d\mu \cdot K_{x,p_{x}}^{\rho_{2},\psi_{x}}(\mu g,g') \,.$$

(ii) Plus généralement, pour tout caractère unitaire non ramifié

$$\omega: F_x^{\times} \to \mathbb{C}^{\times}, \quad \mu \mapsto (z_{\omega})^{v_x(\mu)},$$

et pour tous éléments g, g' de $GL_2(F_x)$, l'intégrale

$$K_{x,p_x,\omega}^{\rho_2,\psi_x}(g,g') = \int_{F_x^{\times}} d\mu \cdot \omega^{-1}(\mu) \cdot K_{x,p_x}^{\rho_2,\psi_x}(\mu g,g')$$

est égale à

$$\int_{\lambda = (\lambda_1, \lambda_2 = \lambda_1^{-1}) \in \operatorname{Im} \hat{T}_{\bar{2}}} d\lambda_1 \cdot \frac{1 + \frac{1}{q_x}}{2} \cdot \frac{(1 - \lambda_1^2)(1 - \lambda_1^{-2})}{\left(1 - \frac{\lambda_1^2}{q_x}\right)\left(1 - \frac{\lambda_1^{-2}}{q_x}\right)} \cdot p_x(\lambda z_\omega) \cdot \varphi_{x, \lambda z_\omega}^2(g) \cdot W_{x, \lambda z_\omega}^{2, \psi_x}(g').$$

Passons maintenant aux termes de bord :

Dans la définition V.15 du paragraphe V.6, nous avons introduit pour tout polynôme symétrique $p_x \in \mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$ les fonctions

$$K_{x,p_x}^{\rho_2,0}: \mathrm{GL}_2(F_x) \times \mathrm{GL}_2(F_x) \times \mathrm{GL}_2(F_x) \to \mathbb{C}$$
,

$$(g_1, g_2, g') \mapsto \int_{\lambda = (\lambda_1, \lambda_2) \in \operatorname{Im} \hat{T}_2 = U(1) \times U(1)} \frac{d\lambda_1 \cdot d\lambda_2}{1 - q_x^{-1} \cdot \frac{\lambda_2}{\lambda_2}} \cdot p_x(\lambda) \cdot V_{x, \lambda^{-1}}^2(g_1) \cdot V_{x, \lambda}^{2, \operatorname{op}}(g_2) \cdot W_{x, \lambda}^{2, 0}(g')$$

et

$$K_{x,p_x}^{\rho_2,00}: \mathrm{GL}_2(F_x) \times \mathrm{GL}_2(F_x) \to \mathbb{C}$$

$$(g,g') \mapsto \int_{U(1)} d\lambda_1 \cdot p_x(q_x^{1/2}\lambda_1, q_x^{-1/2}\lambda_1) \cdot \lambda_1^{v_x(\det(g))} \cdot W_{x,(q_x^{-1/2}\lambda_1, q_x^{1/2}\lambda_1)}^{2,0}(g').$$

Pour tout polynôme symétrique $\tilde{p}_x \in \mathbb{C}[X, X^{-1}]^{\mathfrak{S}_2}$, introduisons maintenant les deux nouvelles fonctions

$$K_{x,\tilde{p}_x}^{\tilde{\rho}_2,0}: \mathrm{PGL}_2(F_x) \times \mathrm{PGL}_2(F_x) \times \mathrm{GL}_2(F_x) \to \mathbb{C}$$

$$(g_1, g_2, g') \mapsto \int_{\lambda = (\lambda_1, \lambda_2 = \lambda_1^{-1}) \in \operatorname{Im} \hat{T}_{\bar{2}}} d\lambda_1 \cdot \frac{1}{1 - q_x^{-1} \lambda_1^{-2}} \cdot \tilde{p}_x(\lambda) \cdot V_{x, \lambda^{-1}}^2(g_1) \cdot V_{x, \lambda}^{2, \operatorname{op}}(g_2) \cdot W_{x, \lambda}^{2, 0}(g')$$

et

$$K_{x,\tilde{p}_x}^{\rho_{\tilde{z}},00}:\operatorname{PGL}_2(F_x)\times\operatorname{GL}_2(F_x)\to\mathbb{C}$$

$$(g,g') \mapsto \frac{1}{2} \cdot \left[\tilde{p}_x(q_x^{1/2},q_x^{-1/2}) \cdot W_{x,(q_x^{-1/2},q_x^{1/2})}^{2,0}(g') + \tilde{p}_x(-q_x^{1/2},-q_x^{-1/2}) \cdot (-1)^{v_x(\det(g))} \cdot W_{x,(-q_x^{-1/2},-q_x^{1/2})}^{2,0}(g') \right].$$

Le lemme suivant explicite le lien entre ces nouvelles fonctions et les précédentes :

Lemme VI.3. – Soit p_x un polynôme symétrique élément de $\mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$.

(i) Si \tilde{p}_x désigne le polynôme induit $p_x(X, X^{-1}) \in \mathbb{C}[X, X^{-1}]^{\mathfrak{S}_2}$, on a pour tous éléments g_1, g_2, g' de $\mathrm{GL}_2(F_x)$

$$K_{x,\tilde{p}_x}^{\rho_{\bar{z}},0}(g_1,g_2,g') = \int_{F_x^{\times}} d\mu \cdot K_{x,p_x}^{\rho_2,0}(g_1,\mu g_2,g') = \int_{F_x^{\times}} d\mu \cdot K_{x,p_x}^{\rho_2,0}(\mu g_1,g_2,g')$$

et pour tous éléments g, g' de $GL_2(F_x)$

$$K_{x,\tilde{p}_x}^{\rho_{\tilde{2}},00}(g,g') = \int_{F_x^{\times}} d\mu \cdot K_{x,p_x}^{\rho_2,00}(\mu g,g').$$

(ii) Plus généralement, pour tout caractère multiplicatif unitaire non ramifié

$$\omega: F_x^{\times} \to \mathbb{C}^{\times}, \quad \mu \mapsto (z_{\omega})^{v_x(\mu)},$$

et pour tous éléments g_1,g_2,g,g' de $\mathrm{GL}_2(F_x)$, l'intégrale

$$K_{x,p_{x},\omega}^{\rho_{2},0}(g_{1},g_{2},g') = \int_{F_{x}^{\times}} d\mu \cdot \omega^{-1}(\mu) \cdot K_{x,p_{x}}^{\rho_{2},0}(g_{1},\mu g_{2},g')$$
$$= \int_{F_{x}^{\times}} d\mu \cdot \omega(\mu) \cdot K_{x,p_{x}}^{\rho_{2},0}(\mu g_{1},g_{2},g')$$

est égale à

$$\int_{\lambda = (\lambda_1, \lambda_2 = \lambda_1^{-1}) \in \operatorname{Im} \hat{T}_{\bar{2}}} d\lambda_1 \cdot \frac{1}{1 - q_x^{-1} \lambda_1^{-2}} \cdot p_x(\lambda z_\omega) \cdot V_{x, \lambda^{-1} z_\omega^{-1}}^2(g) \cdot V_{x, \lambda z_\omega}^{2, \text{op}}(g_2) \cdot W_{x, \lambda z_\omega}^{2, 0}(g'),$$

et l'intégrale

$$K_{x,p_x,\omega}^{\rho_2,00}(g,g') = \int_{F_x^{\times}} d\mu \cdot \omega^{-1}(\mu) \cdot K_{x,p_x}^{\rho_2,00}(\mu g,g')$$

est égale à

$$\frac{1}{2} \cdot \left[p_x(q_x^{1/2}z'_{\omega}, q_x^{-1/2}z'_{\omega}) \cdot (z'_{\omega})^{v_x(\det(g))} \cdot W_{x,(q_x^{-1/2}z'_{\omega}, q_x^{1/2}z'_{\omega})}^{2,0}(g') \right. \\ + \left. p_x(-q_x^{1/2}z'_{\omega}, -q_x^{-1/2}z'_{\omega}) \cdot (-z'_{\omega})^{v_x(\det(g))} \cdot W_{x,(-q_x^{-1/2}z'_{\omega}, -q_x^{1/2}z'_{\omega})}^{2,0}(g') \right]$$

où z'_{ω} désigne une racine carrée de z_{ω} .

3 Noyaux globaux du transfert non ramifié par la représentation standard de $SL_2(\mathbb{C})$

Considérons une famille $\tilde{p} = (\tilde{p}_x)_{x \in |F|}$ de polynômes symétriques $\tilde{p}_x \in \mathbb{C}[X, X^{-1}]^{\mathfrak{S}_2}$, presque tous égaux à 1.

En formant le produit sur toutes les places $x \in |F|$ des noyaux locaux introduits au paragraphe précédent, on définit une fonction

$$K_{\tilde{p}}^{\rho_{\tilde{2}},\psi}: \operatorname{PGL}_{2}(\mathbb{A}) \times \operatorname{GL}_{2}(\mathbb{A}) \to \mathbb{C}$$

$$(g,g') \mapsto \prod_{x \in |F|} K_{x,p_{x}}^{\rho_{\tilde{2}},\psi_{x}}(g,g')$$

ainsi que

$$K_{\tilde{p}}^{\rho_{\tilde{2}},0}: \operatorname{PGL}_{2}(\mathbb{A}) \times \operatorname{PGL}_{2}(\mathbb{A}) \times \operatorname{GL}_{2}(\mathbb{A}) \longrightarrow \mathbb{C}$$

$$(g_{1},g_{2},g') \longmapsto \prod_{x \in |F|} K_{x,\tilde{p}_{x}}^{\rho_{\tilde{2}},0}(g_{1},g_{2},g')$$

et

$$K_{x,\tilde{p}}^{\rho_{\tilde{2}},00}: \operatorname{PGL}_{2}(\mathbb{A}) \times \operatorname{GL}_{2}(\mathbb{A}) \to \mathbb{C}$$

$$(g,g') \mapsto \prod_{x \in |F|} K_{x,\tilde{p}_{x}}^{\rho_{\tilde{2}},00}(g,g').$$

On déduit du théorème V.18 :

Théorème VI.4. – Soit $\tilde{p} = (\tilde{p}_x)_{x \in |F|}$ une famille de polynômes symétriques $\tilde{p}_x \in \mathbb{C}[X, X^{-1}]^{\mathfrak{S}_2}$, presque tous égaux à 1.

Alors:

(i) Pour tous éléments $g_1, g_2 \in \operatorname{PGL}_2(\mathbb{A})$ et $g' \in \operatorname{GL}_2(\mathbb{A})$, la somme

$$K_{\tilde{p}}^{\rho_{\tilde{2}}}(g_{1}, g_{2}, g') = \sum_{\gamma \in PGL_{2}(F)} \sum_{\delta \in F^{\times}} K_{\tilde{p}}^{\rho_{\tilde{2}}, \psi} \left(g_{1}^{-1} \gamma g_{2}, \begin{pmatrix} \delta & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right)$$

$$+ \sum_{\gamma_{1} \in B_{\tilde{2}}(F) \backslash PGL_{2}(F)} \sum_{\gamma_{2} \in N_{\tilde{2}}^{\text{op}}(F) \backslash PGL_{2}(F)} K_{\tilde{p}}^{\rho_{\tilde{2}}, 0}(\gamma_{1} g_{1}, \gamma_{2} g_{2}, g')$$

$$+ \frac{1}{2} \sum_{\gamma \in (\{\pm 1\} \backslash SL_{2}(F)) \backslash PGL_{2}(F)} K_{\tilde{p}}^{\rho_{\tilde{2}}, 00}(g_{1}^{-1} \gamma g_{2}, g')$$

est égale à la somme

$$\sum_{\gamma \in PGL_{2}(F)} \sum_{\delta \in F^{\times}} K_{\tilde{p}}^{\rho_{\tilde{2}}, \tilde{\psi}} \left(g_{1}^{-1} \gamma g_{2}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \delta & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right)$$

$$+ \sum_{\gamma_{1} \in B_{\tilde{2}}(F) \backslash PGL_{2}(F)} \sum_{\gamma_{2} \in N_{\tilde{2}}(F) \backslash PGL_{2}(F)} K_{\tilde{p}}^{\rho_{\tilde{2}}, 0} \left(\gamma_{1} g_{1}, \gamma_{2} g_{2}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot g' \right)$$

$$+ \frac{1}{2} \sum_{\gamma \in (\{\pm 1\} \backslash SL_{2}(F)) \backslash PGL_{2}(F)} K_{\tilde{p}}^{\rho_{\tilde{2}}, 00} \left(g_{1}^{-1} \gamma g_{2}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot g' \right).$$

(ii) La fonction

$$\begin{array}{cccc} K_{\tilde{p}}^{\rho_{\tilde{2}}}: & \operatorname{PGL}_{2}(\mathbb{A}) \times \operatorname{PGL}_{2}(\mathbb{A}) \times \operatorname{GL}_{2}(\mathbb{A}) & \to & \mathbb{C} \\ & (g_{1}, g_{2}, g') & \mapsto & K_{\tilde{p}}^{\rho_{\tilde{2}}}(g_{1}, g_{2}, g') \end{array}$$

est un noyau global du transfert non ramifié par la représentation standard

$$\rho_{\tilde{2}}: \mathrm{SL}_2(\mathbb{C}) \hookrightarrow \mathrm{GL}_2(\mathbb{C}),$$

au sens de la définition II.18.

En particulier, elle est invariante à gauche par

$$\operatorname{PGL}_2(F) \times \operatorname{PGL}_2(F) \times \operatorname{GL}_2(F)$$
.

Lorsque $\tilde{p} = (\tilde{p}_x)_{x \in |F|}$ décrit l'ensemble des familles de polynômes symétriques $\tilde{p}_x \in \mathbb{C}[X, X^{-1}]^{\mathfrak{S}_2}$, telles que $\tilde{p}_x = 1$ en presque toute place $x \in |F|$, les fonctions

$$K_{\tilde{p}}^{\rho_{\tilde{2}}} = \operatorname{PGL}_2(\mathbb{A}) \times \operatorname{PGL}_2(\mathbb{A}) \times \operatorname{GL}_2(\mathbb{A}) \to \mathbb{C}$$

constituent un ensemble complet de noyaux globaux du transfert non ramifié par $\rho_{\tilde{2}}$, au sens de la définition II.19.

Plus généralement, considérons un caractère multiplicatif unitaire partout non ramifié

$$\omega: F^{\times} \backslash \mathbb{A}^{\times} \to \mathbb{C}^{\times}$$
.

Sa composante locale en chaque place $x \in |F|$ est notée

$$\omega_x: F_x^{\times} \to \mathbb{C}^{\times}, \quad \mu_x \mapsto (z_{\omega_x})^{v_x(\mu_x)}.$$

Si $p = (p_x)_{x \in |F|}$ est une famille de polynômes symétriques $p_x \in \mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$, presque tous égaux à 1, on peut former le produit sur toutes les places $x \in |F|$ des fonctions introduites dans les lemmes VI.2(ii) et VI.3(ii). On définit ainsi une fonction

$$K_{p,\omega}^{\rho_2,\psi}: \operatorname{GL}_2(\mathbb{A}) \times \operatorname{GL}_2(\mathbb{A}) \to \mathbb{C}$$

$$(g,g') \mapsto \prod_{x \in |F|} K_{x,p_x,\omega_x}^{\rho_2,\psi_x}(g,g')$$

ainsi que

$$K_{p,\omega}^{\rho_2,0}: \operatorname{GL}_2(\mathbb{A}) \times \operatorname{GL}_2(\mathbb{A}) \times \operatorname{GL}_2(\mathbb{A}) \longrightarrow \mathbb{C}$$

$$(g_1, g_2, g') \longmapsto \prod_{x \in |F|} K_{x, p_x, \omega_x}^{\rho_2,0}(g_1, g_2, g')$$

et

$$K_{p,\omega}^{\rho_2,00}: \operatorname{GL}_2(\mathbb{A}) \times \operatorname{GL}_2(\mathbb{A}) \to \mathbb{C}$$

$$(g,g') \mapsto \prod_{x \in |F|} K_{x,p_x,\omega_x}^{\rho_2,00}(g,g').$$

On déduit encore du théorème V.18 combiné avec les lemmes VI.2(ii) et VI.3(ii) :

Corollaire VI.5. – Considérons une famille $p = (p_x)_{x \in |F|}$ de polynômes symétriques $p_x \in \mathbb{C}[X_1^{\pm 1}, X_2^{\pm 1}]^{\mathfrak{S}_2}$, presque tous égaux à 1, et un caractère multiplicatif unitaire partout non ramifié

$$\omega: F^{\times} \backslash \mathbb{A}^{\times} \to \mathbb{C}^{\times}$$
.

Alors, pour tous éléments g_1, g_2, g' de $GL_2(\mathbb{A})$, la somme

$$K_{p,\omega}^{\rho_{2}}(g_{1},g_{2},g') = \sum_{\gamma \in PGL_{2}(F)} \sum_{\delta \in F^{\times}} K_{p,\omega}^{\rho_{2},\psi} \left(g_{1}^{-1}\gamma g_{2}, \begin{pmatrix} \delta & 0 \\ 0 & 1 \end{pmatrix} \cdot g'\right)$$

$$+ \sum_{\gamma_{1} \in B_{2}(F) \backslash PGL_{2}(F)} \sum_{\gamma_{2} \in N_{2}^{\text{op}}(F) \backslash PGL_{2}(F)} K_{p,\omega}^{\rho_{2},0}(\gamma_{1}g_{1},\gamma_{2}g_{2},g')$$

$$+ \frac{1}{2} \cdot \sum_{\gamma \in (\{\pm 1\} \backslash SL_{2}(F)) \backslash PGL_{2}(F)} K_{p,\omega}^{\rho_{2},00}(g_{1}^{-1}\gamma g_{2},g')$$

est égale à la somme

$$\sum_{\gamma \in \mathrm{PGL}_{2}(F)} \sum_{\delta \in F^{\times}} K_{p,\omega}^{\rho_{2},\overline{\psi}} \left(g_{1}^{-1} \gamma g_{2}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \delta & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right)$$

$$+ \sum_{\gamma_{1} \in B_{\overline{2}}(F) \backslash \mathrm{PGL}_{2}(F)} \sum_{\gamma_{2} \in N_{\overline{2}}^{\mathrm{op}}(F) \backslash \mathrm{PGL}_{2}(F)} K_{p,\omega}^{\rho_{2},0} \left(\gamma_{1} g_{1}, \gamma_{2} g_{2}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot g' \right)$$

$$+ \frac{1}{2} \cdot \sum_{\gamma \in (\{\pm 1\} \backslash \mathrm{SL}_{2}(F)) \backslash \mathrm{PGL}_{2}(F)} K_{p,\omega}^{\rho_{2},00} \left(g_{1}^{-1} \gamma g_{2}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot g' \right).$$

En particulier, la fonction

$$\begin{array}{cccc} K_{p,\omega}^{\rho_2}: & \operatorname{GL}_2(\mathbb{A}) \times \operatorname{GL}_2(\mathbb{A}) \times \operatorname{GL}_2(\mathbb{A}) & \to & \mathbb{C} \\ & (g_1,g_2,g') & \mapsto & K_{p,\omega}^{\rho_2}(g_1,g_2,g') \end{array}$$

est invariante à gauche par

$$\operatorname{GL}_2(F) \times \operatorname{GL}_2(F) \times \operatorname{GL}_2(F)$$
.

4 Généralisation aux représentations standard de groupes réductifs dont le rang semi-simple est égal à 1

Dans ce paragraphe, nous considérons un groupe réductif connexe et déployé G sur F tel que

- le quotient G/Z_G de G par son centre Z_G est isomorphe à PGL_2
- le groupe dérivé \hat{G}^{der} du dual de Langlands \hat{G} de G est isomorphe à $\mathrm{SL}_2(\mathbb{C})$.

L'image réciproque par la projection $G \to G/Z_G \cong \operatorname{PGL}_2$ du tore maximal $T_{\tilde{2}} = \mathbb{G}_m \backslash T_2$ de $\operatorname{PGL}_2 = \mathbb{G}_m \backslash \operatorname{GL}_2$ est un tore maximal T de G. De même, les images réciproques des sous-groupes de Borel $B_{\tilde{2}} = \mathbb{G}_m \backslash B_2$ et $B_{\tilde{2}}^{\operatorname{op}} = \mathbb{G}_m \backslash B_2^{\operatorname{op}}$ de PGL_2 sont des sous-groupes de Borel de G, que l'on notera B et B^{op} . Leurs radicaux unipotents N_B et N_B^{op} se projettent isomorphiquement sur $N_{\tilde{2}}$ et $N_{\tilde{2}}^{\operatorname{op}}$.

On note \hat{T} le tore maximal de \hat{G} dont l'intersection avec $\hat{G}^{\text{der}} \cong \operatorname{SL}_2(\mathbb{C})$ est égale au tore maximal $\hat{T}_{\tilde{2}} = \left\{ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \middle| \lambda \in \mathbb{C}^{\times} \right\}$ de $\operatorname{SL}_2(\mathbb{C})$.

Le groupe de Weyl $\mathfrak{S}_G = \mathfrak{S}_{\hat{G}}$ compte deux éléments. On notera ici σ_G son unique élément non trivial.

On considère enfin un homomorphisme de transfert

$$\rho: \hat{G} \to \mathrm{GL}_2(\mathbb{C})$$

dont la restriction à $\hat{G}^{der} \cong \mathrm{SL}_2(\mathbb{C})$ est égale à la représentation standard

$$\rho_{\tilde{2}}: \mathrm{SL}_2(\mathbb{C}) \hookrightarrow \mathrm{GL}_2(\mathbb{C}).$$

Ainsi, ρ est irréductible et envoie le tore maximal \hat{T} de \hat{G} dans le tore maximal $\hat{T}_2 = \mathbb{C}^{\times} \times \mathbb{C}^{\times}$ de $\mathrm{GL}_2(\mathbb{C})$. Les composantes

$$\rho_1, \rho_2: \hat{T} \to \mathbb{C}^{\times}$$

de l'homomorphisme induit $\rho_T: \hat{T} \to \hat{T}_2$ sont deux caractères distincts de \hat{T} . Ils sont échangés par l'action de l'élément $\sigma_G \in \mathfrak{S}_G$.

En toute place $x \in |F|$, on note

$$\rho_B: B(F_x) \to q_x^{\mathbb{Z}}$$

le caractère modulaire associé au sous-groupe de Borel B de G, et

$$\operatorname{ord}_x: T(F_x) \to X_T^{\vee} = X_{\hat{T}}$$

l'unique homomorphisme tel que, pour tout caractère $\chi: T \to \mathbb{G}_m$, on ait

$$\langle \operatorname{ord}_x(\mu_x), \chi \rangle = v_x(\chi(\mu_x)), \quad \forall \, \mu_x \in T(F_x).$$

L'isomorphisme de Satake pour l'algèbre de Hecke sphérique $\mathcal{H}_{x,\emptyset}^G$ de G en la place x s'écrit

$$S_x^G: \mathcal{H}_{x,\emptyset}^G \overset{\sim}{\longrightarrow} \mathbb{C}[\hat{T}]^{\sigma_G},$$

$$h_x \mapsto \left(\hat{T} \ni \lambda \mapsto \int_{T(F_x)} d\mu_x \cdot \operatorname{ord}_x(\mu_x)(\lambda) \cdot \rho_B^{1/2}(\mu_x) \cdot \int_{N_B(F_x)} dn_x \cdot h_x(\mu_x \, n_x)\right).$$

Pour tout élément $\lambda \in \hat{T}$, il existe une unique fonction sphérique

$$\varphi_{x,\lambda}^G: G_{F_x}(O_x)\backslash G(F_x)/G_{F_x}(O_x)\to \mathbb{C}$$

telle que

$$\bullet \ \varphi_{x,\lambda}^G * \varphi_x = \varphi_x * \varphi_{x,\lambda}^G = S_x^G(\varphi_x)(\lambda) \cdot \varphi_{x,\lambda}^G, \, \forall \, \varphi_x \in \mathcal{H}_{x,\emptyset}^G,$$

•
$$\varphi_{x,\lambda}^G(1) = 1$$
.

Pour tout $g_x \in G(F_x)$, la fonction

$$\begin{array}{ccc}
\hat{T} & \to & \mathbb{C} \\
\lambda & \mapsto & \varphi_{x,\lambda}^G(g_x)
\end{array}$$

est un polynôme symétrique élément de $\mathbb{C}[\hat{T}]^{\sigma_G}$.

On note $d\lambda$ la mesure de Plancherel du tore réel compact $\operatorname{Im} \hat{T}$ relative à G. Elle est caractérisée par la propriété que, pour toute fonction $\varphi_x \in \mathcal{H}_{x,\emptyset}^G$, on a

$$\varphi_x(g_x) = \int_{\operatorname{Im} \hat{T}} d\lambda \cdot S_x^G(\varphi_x)(\lambda) \cdot \varphi_{x,\lambda}^G(g_x), \quad \forall \, g_x \in G(F_x) \,.$$

Construisons maintenant des noyaux locaux pour le transfert de G vers GL_2 par l'homomorphisme

$$\rho: \hat{G} \to \mathrm{GL}_2(\mathbb{C})$$
.

En toute place $x \in |F|$ et pour tout polynôme symétrique $p_x \in \mathbb{C}[\hat{T}]^{\sigma_G}$, on note

$$K_{x,p_x}^{G,\rho,\psi_x}:G_{F_x}(O_x)\backslash G(F_x)/G_{F_x}(O_x)\times \mathrm{GL}_2(F_x)/\mathrm{GL}_2(O_x)\to \mathbb{C}$$

la fonction

$$(g,g') \mapsto \int_{\operatorname{Im} \hat{T}} d\lambda \cdot p_x(\lambda) \cdot \varphi_{x,\lambda}^G(g) \cdot W_{x,\rho_T(\lambda)}^{2,\psi_x}(g') \,.$$

Pour tout élément $\lambda \in \hat{T}$, on introduit encore la fonction

$$V_{x,\lambda}^G: N_B(F_x)\backslash G(F_x)/G_{F_x}(O_x) \to \mathbb{C}$$

[resp.
$$V_{x,\lambda}^{G,\text{op}}: N_B^{\text{op}}(F_x)\backslash G(F_x)/G_{F_x}(O_x) \to \mathbb{C}$$
]

telle que, pour tout élément $\mu_x \in T(F_x)$,

$$V_{x,\lambda}^G(\mu_x) = \rho_B^{1/2}(\mu_x) \cdot \operatorname{ord}_x(\mu_x)(\lambda)$$

[resp.
$$V_{x,\lambda}^{G,\text{op}}(\mu_x) = \rho_B^{-1/2}(\mu_x) \cdot \text{ord}_x(\mu_x)(\lambda)$$
].

On peut alors associer à tout polynôme symétrique $p_x \in \mathbb{C}[\hat{T}]^{\sigma_G}$ la fonction

$$K_{x,p_x}^{G,\rho,0}:G(F_x)/G_{F_x}(O_x)\times G(F_x)/G_{F_x}(O_x)\times \mathrm{GL}_2(F_x)/\mathrm{GL}_2(O_x)\to \mathbb{C}$$

$$(g_1, g_2, g') \mapsto \int_{\operatorname{Im} \hat{T}} d_0 \lambda \cdot \frac{1}{1 - q_x^{-1} \cdot \frac{\rho_2(\lambda)}{\rho_1(\lambda)}} \cdot p_x(\lambda) \cdot V_{x, \lambda^{-1}}^G(g_1) \cdot V_{x, \lambda}^{G, \text{op}}(g_2) \cdot W_{x, \rho_T(\lambda)}^{2, 0}(g')$$

où $d_0 \lambda$ désigne la mesure invariante de volume 1 sur le tore réel compact $\operatorname{Im} \hat{T}$.

Enfin, notons

$$K^{G,\rho,00}_{x,p_x}:G(F_x)/G_{F_x}(O_x)\times \mathrm{GL}_2(F_x)/\mathrm{GL}_2(O_x)\to \mathbb{C}$$

la fonction

$$(g,g') \mapsto \int_{\operatorname{Im} Z_{\hat{G}}} d_{00} \lambda \cdot p_{x}(\lambda \cdot \operatorname{det}_{x}) \cdot V_{x,\lambda \cdot \operatorname{det}_{x}}^{G}(g) \cdot W_{x,(\rho_{1}(\lambda)q_{x}^{-1/2},\rho_{2}(\lambda)q_{x}^{1/2})}^{2,0}(g')$$

où:

• $Z_{\hat{G}}$ désigne le centre de \hat{G} , c'est-à-dire le sous-tore de \hat{T} défini par l'équation $\rho_1=\rho_2$,

• $d_{00} \lambda$ désigne ici la mesure invariante de volume 1 sur le groupe réel commutatif compact Im $Z_{\hat{G}}$ composé des éléments $\lambda \in Z_{\hat{G}}$ tels que

$$|\chi(\lambda)| = 1, \quad \forall \, \chi \in X_{Z_{\hat{G}}} = \operatorname{Hom}(Z_{\hat{G}}, \mathbb{C}^{\times}),$$

• \det_x désigne l'élément $\begin{pmatrix} q_x^{1/2} & 0 \\ 0 & q_x^{-1/2} \end{pmatrix}$ de $\mathrm{SL}_2(\mathbb{C}) \cong \hat{G}^{\mathrm{der}}$, vu comme un élément de \hat{T} .

En faisant le produit sur toutes les places $x \in |F|$, on peut maintenant définir des fonctions globales associées aux familles $p = (p_x)_{x \in |F|}$ de polynômes symétriques $p_x \in \mathbb{C}[\hat{T}]^{\sigma_G}$ presque tous égaux à 1.

On introduit donc la fonction globale

$$K_p^{G,\rho,\psi}: G(\mathbb{A}) \times \mathrm{GL}_2(\mathbb{A}) \to \mathbb{C}$$

$$(g,g') \mapsto \prod_{x \in |F|} K_{x,p_x}^{G,\rho,\psi_x}(g,g')$$

ainsi que

$$K_p^{G,\rho,0}: G(\mathbb{A}) \times G(\mathbb{A}) \times \operatorname{GL}_2(\mathbb{A}) \to \mathbb{C}$$

$$(g_1,g_2,g') \mapsto \prod_{x \in |F|} K_{x,p_x}^{G,\rho,0}(g_1,g_2,g')$$

et

$$K_p^{G,\rho,00}: G(\mathbb{A}) \times \mathrm{GL}_2(\mathbb{A}) \to \mathbb{C}$$

$$(g,g') \mapsto \prod_{x \in |F|} K_{x,p_x}^{G,\rho,00}(g,g').$$

En intégrant contre tous les caractères automorphes partout non ramifiés et unitaires

$$\omega: Z_G(F)\backslash Z_G(\mathbb{A}) \to \mathbb{C}^{\times}$$
,

appliquant le corollaire VI.5 et sommant sur tous les ω , on obtient :

Théorème VI.6. – Comme ci-dessus, soit G un groupe réductif connexe et déployé sur F tel que

- le quotient G/Z_G de G par son centre Z_G est isomorphe à PGL_2 ,
- le groupe dérivé \hat{G}^{der} du dual de Langlands \hat{G} de G est isomorphe à $SL_2(\mathbb{C})$.

Soit aussi un homomorphisme de transfert

$$\rho: \hat{G} \to \mathrm{GL}_2(\mathbb{C})$$

dont la restriction à $\hat{G}^{der} \cong SL_2(\mathbb{C})$ est égale à la représentation standard

$$\rho_{\tilde{2}}: \mathrm{SL}_2(\mathbb{C}) \hookrightarrow \mathrm{GL}_2(\mathbb{C}).$$

Soit enfin $p = (p_x)_{x \in |F|}$ une famille de polynômes symétriques $p_x \in \mathbb{C}[\hat{T}]^{\sigma_G}$, telle que $p_x = 1$ en presque toute place $x \in |F|$.

Alors:

(i) Pour tous éléments $g_1, g_2 \in G(\mathbb{A})$ et $g' \in GL_2(\mathbb{A})$, la somme

$$K_{p}^{G,\rho}(g_{1},g_{2},g') = \sum_{\gamma \in G(F)} \sum_{\delta \in F^{\times}} K_{p}^{G,\rho,\psi} \left(g_{1}^{-1} \gamma g_{2}, \begin{pmatrix} \delta & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right)$$

$$+ \sum_{\gamma_{1} \in B(F) \backslash G(F)} \sum_{\gamma_{2} \in N_{B}^{\text{op}}(F) \backslash G(F)} K_{p}^{G,\rho,0}(\gamma_{1} g_{1}, \gamma_{2} g_{2}, g')$$

$$+ \frac{1}{\# \operatorname{Ker} \left(\operatorname{SL}_{2}(F) \to G(F) \right)} \cdot \sum_{\gamma \in \operatorname{Coker}(\operatorname{SL}_{2}(F) \to G(F))} K_{p}^{G,\rho,00}(g_{1}^{-1} \gamma g_{2}, g')$$

est égale à

$$\sum_{\gamma \in G(F)} \sum_{\delta \in F^{\times}} K_{p}^{G,\rho,\bar{\psi}} \left(g_{1}^{-1} \gamma g_{2}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \delta & 0 \\ 0 & 1 \end{pmatrix} \cdot g' \right)$$

$$+ \sum_{\gamma_{1} \in B(F) \backslash G(F)} \sum_{\gamma_{2} \in N_{B}^{\text{op}}(F) \backslash G(F)} K_{p}^{G,\rho,0} \left(\gamma_{1} g_{1}, \gamma_{2} g_{2}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot g' \right)$$

$$+ \frac{1}{\# \operatorname{Ker} \left(\operatorname{SL}_{2}(F) \to G(F) \right)} \cdot \sum_{\gamma \in \operatorname{Coker}(\operatorname{SL}_{2}(F) \to G(F))} K_{p}^{G,\rho,00} \left(g_{1}^{-1} \gamma g_{2}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot g' \right) .$$

(ii) La fonction

$$\begin{array}{cccc} K_p^{G,\rho}: & G(\mathbb{A})\times G(\mathbb{A})\times \operatorname{GL}_2(\mathbb{A}) & \to & \mathbb{C} \\ & (g_1,g_2,g') & \mapsto & K_p^{G,\rho}(g_1,g_2,g') \end{array}$$

est un noyau global du transfert non ramifié par l'homomorphisme

$$\rho: \hat{G} \to \mathrm{GL}_2(\mathbb{C}),$$

au sens de la définition II.18.

En particulier, elle est invariante à gauche par

$$G(F) \times G(F) \times \operatorname{GL}_2(F)$$
.

Remarque. Lorsque $p = (p_x)_{x \in |F|}$ décrit l'ensemble des familles de polynômes symétriques $p_x \in \mathbb{C}[\hat{T}]^{\sigma_G}$ presque tous égaux à 1, les fonctions $K_p^{G,\rho}$ constituent un ensemble complet de noyaux globaux du transfert non ramifié par ρ , au sens de la définition II.19.

Chapitre VII:

Termes complémentaires pour la construction de noyaux du transfert

1 Homomorphismes de transfert minimaux

Si G est un groupe réductif connexe sur F et ρ un homomorphisme de transfert

$$\hat{G} \rtimes \Gamma_F \to \mathrm{GL}_r(\mathbb{C})$$
,

on notera $\Phi_{\rho} \subset X_{\hat{T}} = X_G^{\vee}$ l'ensemble fini des caractères du tore maximal \hat{T} de \hat{G} qui apparaissent dans l'action de \hat{T} sur l'espace $V = \mathbb{C}^r$.

Posons la définition suivante :

Définition VII.1. – Soit G un groupe réductif connexe sur F.

On suppose que G est quasi-déployé sur F.

Un homomorphisme de transfert

$$\rho: \hat{G} \rtimes \Gamma_F \to \mathrm{GL}_r(\mathbb{C})$$

est dit "minimal" s'il satisfait les deux conditions suivantes :

- Pour tout caractère du tore maximal \hat{T} de \hat{G} qui est élément de Φ_{ρ} , le sous-espace propre de $V = \mathbb{C}^r$ qui lui est associé est de dimension 1.
- Le produit

$$\mathfrak{S}_{G_F} \times \Gamma_F$$

du groupe de Weyl F-rationnel de G (égal au sous-groupe du groupe de Weyl absolu \mathfrak{S}_G composé des éléments fixés par l'action de Γ_F) et du groupe de Galois Γ_F de F agit transitivement sur l'ensemble fini Φ_ρ .

Remarques.

- Tout homomorphisme de transfert minimal $\rho: \hat{G} \rtimes \Gamma_F \to GL_r(\mathbb{C})$ est irréductible.
- Lorsque ρ est un homomorphisme de transfert "minimal", le cardinal de l'ensemble fini Φ_{ρ} est égal au rang r de ρ . Remplacer ρ par une représentation conjuguée qui envoie \hat{T} dans le tore maximal $\hat{T}_r = (\mathbb{C}^{\times})^r$ de $\mathrm{GL}_r(\mathbb{C})$ équivaut à numéroter les éléments de Φ_{ρ}

$$\Phi_{\rho} = \{\rho_1, \rho_2, \dots, \rho_r\}$$

et à choisir un vecteur de base dans chaque sous-espace propre V_{ρ_i} de $V = \mathbb{C}^r$ associé à un ρ_i , $1 \leq i \leq r$. \square

Voici des exemples d'homomorphismes de transfert minimaux :

• Si $G = GL_r$, la représentation standard

$$\rho_r = \mathrm{Id} : \mathrm{GL}_r(\mathbb{C}) \to \mathrm{GL}_r(\mathbb{C})$$

et ses puissances extérieures $\Lambda^s \rho_r$, $1 \le s \le r$, sont "minimales".

• Si $G = GL_{r_1} \times \cdots \times GL_{r_k}$, le produit tensoriel

$$\mathrm{GL}_{r_1}(\mathbb{C}) \times \cdots \times \mathrm{GL}_{r_k}(\mathbb{C}) \to \mathrm{GL}_{r_1 \dots r_k}(\mathbb{C})$$

est "minimal".

• Si $G = \operatorname{Res}_{E/F} \operatorname{GL}_r$ est le groupe déduit d'un groupe linéaire GL_r par restriction des scalaires à la Weil d'une extension séparable E de F de degré d, l'homomorphisme d'induction automorphe

$$\hat{G} \rtimes \Gamma_F \to \mathrm{GL}_{rd}(\mathbb{C})$$

est "minimal".

• Si G est déployé et semi-simple de type adjoint sur F, si bien que \hat{G} est semi-simple et simplement connexe, toute représentation

$$\rho: \hat{G} \to \mathrm{GL}_r(\mathbb{C})$$

dont le plus haut poids est indécomposable (c'est-à-dire ne s'écrit pas comme une somme non triviale de poids dominants) est minimale.

Bien que cela ne soit pas nécessaire pour la suite de ce chapitre, étudions le cas où le groupe réductif connexe G est déployé sur F et où ρ est une simple représentation de \hat{G} sans partie galoisienne

$$\rho: \hat{G} \to \mathrm{GL}_r(\mathbb{C})$$
.

Dans ce cas, dire que ρ est "minimal" signifie que Φ_{ρ} compte r éléments distincts sur lesquels le groupe de Weyl $\mathfrak{S}_G = \mathfrak{S}_{\hat{G}}$ agit transitivement.

Par définition, toute racine $\alpha \in \Phi_G$ est un caractère

$$\alpha: T \to \mathbb{G}_m$$

et il lui correspond un caractère du tore dual

$$\overset{\vee}{\alpha}: \hat{T} \to \mathbb{C}^{\times}$$
.

On note T_{α} et \hat{T}_{α} les composantes neutres des noyaux des caractères α et $\overset{\vee}{\alpha}$. Ce sont des sous-tores de T et \hat{T} de codimension 1.

On note encore G_{α} et \hat{G}_{α} les centralisateurs de T_{α} et \hat{T}_{α} dans G et \hat{G} . Ce sont des sous-groupes de Levi de G et \hat{G} (et donc des groupes réductifs connexes) qui contiennent les tores maximaux T et \hat{T} .

Les groupes dérivés G_{α}^{der} et $\hat{G}_{\alpha}^{\text{der}}$ de G_{α} et \hat{G}_{α} sont des groupes semi-simples de rang 1, donc isomorphes à SL_2 ou PGL_2 .

En tant qu'élément de $X_G^{\vee}=X_{\hat{G}}$ [resp. de $X_{\hat{G}}^{\vee}=X_G$], la coracine $\overset{\vee}{\alpha}$ [resp. α] est l'unique homomorphisme

$$\overset{\vee}{\alpha}:\mathbb{G}_m\to G_{\alpha}^{\mathrm{der}}$$

[resp.
$$\alpha: \mathbb{C}^{\times} \to \hat{G}_{\alpha}^{\mathrm{der}}$$
]

tel que

$$T = T_{\alpha} \cdot (\operatorname{Im} \overset{\vee}{\alpha}) \quad \text{et} \quad \langle \alpha, \overset{\vee}{\alpha} \rangle = 2$$

[resp.
$$\hat{T} = \hat{T}_{\alpha} \cdot (\operatorname{Im} \alpha)$$
 et $\langle \alpha, \alpha \rangle = 2$].

Enfin, les groupes finis $\mathfrak{S}_{G_{\alpha}} = N_{G_{\alpha}}(T)/Z_{G_{\alpha}}(T)$ et $\mathfrak{S}_{\hat{G}_{\alpha}} = N_{\hat{G}_{\alpha}}(\hat{T})/Z_{\hat{G}_{\alpha}}(\hat{T})$ agissent de manière non triviale sur $T/T_{\alpha} \cong \mathbb{G}_m$ et $\hat{T}/\hat{T}_{\alpha} \cong \mathbb{C}^{\times}$. La réflexion

$$\sigma_{\alpha} = \sigma_{\stackrel{\vee}{\alpha}} \in \mathfrak{S}_G = \mathfrak{S}_{\hat{G}}$$

est définie comme l'image dans $\mathfrak{S}_G = \mathfrak{S}_{\hat{G}}$ de l'unique élément non trivial de $\mathfrak{S}_{G_{\alpha}}$ ou $\mathfrak{S}_{\hat{G}_{\alpha}}$.

On sait que

$$\sigma_{\alpha}(\chi) = \chi - \langle \chi, \overset{\lor}{\alpha} \rangle \cdot \alpha, \quad \forall \, \chi \in X_T = X_{\hat{T}}^{\lor},$$

$$\sigma_{\overset{\vee}{\alpha}}(\mu) = \mu - \langle \alpha, \mu \rangle \cdot \overset{\vee}{\alpha} \,, \quad \forall \mu \in X_{\hat{T}} = X_T^{\vee} \,.$$

Nous allons démontrer le résultat suivant :

Proposition VII.2. – Soit G un groupe réductif connexe et déployé sur F.

Soit $\rho: \hat{G} \to GL_r(\mathbb{C})$ un homomorphisme de transfert sans partie galoisienne, que l'on suppose "minimal" au sens de la définition précédente.

Soient une racine $\alpha \in \Phi_G$ et deux caractères distincts $\rho_1, \rho_2 : \hat{T} \to \mathbb{C}^{\times}$, éléments de Φ_{ρ} , qui sont échangés par la réflexion $\sigma_{\alpha} = \sigma_{\times}$.

Alors:

- (i) Le caractère quotient $\rho_1/\rho_2: \hat{T} \to \mathbb{C}^{\times}$ est égal à la coracine $\overset{\vee}{\alpha}: \hat{T} \to \mathbb{C}^{\times}$ ou à son inverse.
- (ii) Le groupe quotient G_{α}/T_{α} est isomorphe à PGL₂, si bien que T_{α} est le centre de G_{α} .
- (iii) Le groupe dérivé $\hat{G}_{\alpha}^{\mathrm{der}}$ est isomorphe à $\mathrm{SL}_2(\mathbb{C})$.
- (iv) L'action du sous-groupe \hat{G}_{α} de \hat{G} stabilise le sous-espace V_{ρ_1,ρ_2} de $V=\mathbb{C}^r$ qui est la somme directe des deux espaces propres V_{ρ_1} et V_{ρ_2} associés aux deux éléments ρ_1 et ρ_2 de Φ_{ρ} .

Et l'action de $\hat{G}_{\alpha}^{\mathrm{der}} \cong \mathrm{SL}_2(\mathbb{C})$ sur V_{ρ_1,ρ_2} est isomorphe à la représentation standard $\rho_{\tilde{2}}: \mathrm{SL}_2(\mathbb{C}) \hookrightarrow \mathrm{GL}_2(\mathbb{C})$.

Remarque. Comme \hat{G}_{α} s'identifie au dual de Langlands du groupe réductif connexe déployé G_{α} , on peut appliquer à G_{α} et à l'homomorphisme induit par ρ

$$\rho_{\alpha}: \hat{G}_{\alpha} \to \operatorname{Aut}(V_{\rho_1,\rho_2}) \cong \operatorname{GL}_2(\mathbb{C})$$

les constructions du théorème VI.6.

Pour toute racine $\alpha \in \Phi_G$ et toute paire d'éléments distincts $\rho_1, \rho_2 \in \Phi_\rho$ échangés par la réflexion σ_α , on dispose ainsi de noyaux globaux du transfert automorphe sans ramification de G_α à GL₂ via l'homomorphisme ρ_α induit par ρ .

Mais ce n'est pas suffisant pour construire des noyaux du transfert automorphe par ρ de G à $\mathrm{GL}_r \dots \square$

Démonstration de la proposition. Il existe un unique homomorphisme

$$\mathrm{SL}_2(\mathbb{C}) \to \hat{G}_{\alpha}^{\mathrm{der}}$$

dont le composé avec

$$\begin{array}{ccc} \mathbb{C}^{\times} & \hookrightarrow & \mathrm{SL}_2(\mathbb{C}) \\ \lambda & \mapsto & \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \end{array}$$

envoie \mathbb{C}^{\times} dans \hat{T} et se confond avec la coracine

$$\alpha: \mathbb{C}^{\times} \to \hat{T}$$
.

Le composé

$$\mathrm{SL}_2(\mathbb{C}) \to \hat{G}_{\alpha}^{\mathrm{der}} \hookrightarrow \hat{G}_{\alpha} \hookrightarrow \hat{G} \stackrel{\rho}{\longrightarrow} \mathrm{GL}_r(\mathbb{C})$$

définit une action de $SL_2(\mathbb{C})$ sur $V = \mathbb{C}^r$.

La réflexion $\sigma_{\alpha} = \sigma_{\stackrel{\vee}{\alpha}}$ n'est autre que la conjugaison par l'image de l'élément $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ de $\mathrm{SL}_2(\mathbb{C})$.

Par hypothèse, σ_{α} échange les deux caractères distincts ρ_1 et ρ_2 . La représentation

$$\mathrm{SL}_2(\mathbb{C}) \to \mathrm{GL}_r(\mathbb{C})$$

est donc non triviale.

L'homomorphisme

$$\mathrm{SL}_2(\mathbb{C}) \to \hat{G}_{\alpha}^{\mathrm{der}}$$

est surjectif et on a nécessairement

$$\hat{G}_{\alpha} = \hat{T} \cdot \hat{G}_{\alpha}^{\text{der}} = \hat{T}_{\alpha} \cdot \hat{G}_{\alpha}^{\text{der}}.$$

Décomposons l'espace $V = \mathbb{C}^r$ comme une somme de représentations irréductibles sous l'action de \hat{T} . Par hypothèse, il existe une seule telle décomposition. Elle s'écrit

$$V = \bigoplus_{\mu \in \Phi_{\rho}} V_{\mu}$$

où V_{μ} désigne l'espace propre, de dimension 1, associé à chaque caractère $\mu \in \Phi_{\rho}$.

Puis décomposons V sous l'action du produit semi-direct $\hat{T} \times \{1, \sigma_{\alpha}\}$. La décomposition reste unique. Elle s'écrit

$$V = \left(\bigoplus_{\substack{\mu \in \Phi_{\rho} \\ \sigma_{\alpha}(\mu) = \mu}} V_{\mu}\right) \oplus \left(\bigoplus_{\substack{\{\mu_{1}, \mu_{2}\} \\ \mu_{1}, \mu_{2} \in \Phi_{\rho} \\ \mu \neq \mu_{2} = \sigma_{\alpha}(\mu_{1})}} (V_{\mu_{1}} \oplus V_{\mu_{2}})\right).$$

L'un des facteurs de cette décomposition est $V_{\rho_1,\rho_2} = V_{\rho_1} \oplus V_{\rho_2}$.

Enfin, décomposons V sous l'action de $\hat{G}_{\alpha} = \hat{T} \cdot \hat{G}_{\alpha}^{\text{der}} = \hat{T}_{\alpha} \cdot \hat{G}_{\alpha}^{\text{der}}$, et notons V' l'unique facteur irréductible de la décomposition obtenue qui contient V_{ρ_1,ρ_2} .

Le tore \hat{T}_{α} est central dans \hat{G}_{α} donc il agit sur V' par un caractère.

On en déduit que V' est une représentation irréductible de $\hat{G}_{\alpha}^{\text{der}}$ ou, ce qui revient au même, de $\mathrm{SL}_2(\mathbb{C})$. Il existe un entier $k \geq 1$ tel que V' muni de l'action de $\mathrm{SL}_2(\mathbb{C})$ soit isomorphe à la puissance symétrique $\mathrm{Sym}^k(\mathbb{C}^2)$.

Alors l'action du tore maximal $\mathbb{C}^{\times} = \left\{ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \right\}$ de $\mathrm{SL}_2(\mathbb{C})$ sur V' fait apparaître tous les caractères

$$\beta_{k'}: \lambda \mapsto \lambda^{2k'-k}, \quad k' \in \{0, 1, \dots, k\},$$

chacun avec la multiplicité 1.

L'action du tore \hat{T} sur V' fait donc apparaître des caractères

$$\mu_{k'}: \hat{T} \to \mathbb{C}^{\times}, \quad k' \in \{0, 1, \dots, k\},$$

tous avec la multiplicité 1, tels que les quotients $\mu_{k'}/\mu_0$ soient triviaux sur \hat{T}_{α} et soient égaux à $\beta_{k'}/\beta_0$ sur le tore maximal \mathbb{C}^{\times} de $\mathrm{SL}_2(\mathbb{C})$. Autrement dit, utilisant la notation additive dans le réseau $X_{\hat{G}} = X_G^{\vee}$ des caractères de \hat{T} , on a

$$\mu_{k'} = \mu_0 + k' \cdot \overset{\vee}{\alpha}, \quad 0 \le k' \le k.$$

Or on sait d'après la théorie générale des représentations des groupes réductifs que, pour tout choix d'un sous-groupe de Borel \hat{B} de \hat{G} contenant \hat{T} , la représentation irréductible ρ de \hat{G} admet un "plus haut poids" : c'est un élément μ de Φ_{ρ} tel que

$$\mu \geq \mu'$$
, $\forall \mu' \in \Phi_{\rho}$.

Comme le groupe de Weyl $\mathfrak{S}_G = \mathfrak{S}_{\hat{G}}$ agit transitivement sur Φ_{ρ} par hypothèse, on peut supposer que \hat{B} a été choisi de telle façon que $\mu_1 = \mu_0 + \overset{\vee}{\alpha}$ soit le "plus haut poids" de la représentation irréductible ρ . Il doit vérifier à la fois $\mu_1 \geq \mu_0$ et $\mu_1 \geq \mu_k = \mu_0 + k \cdot \overset{\vee}{\alpha}$.

Cela impose k = 1, ce qui entraı̂ne les assertions (i) et (iv) de la proposition.

Cela entraîne aussi que l'homomorphisme composé

$$\mathrm{SL}_2(\mathbb{C}) \to \hat{G}_{\alpha}^{\mathrm{der}} \hookrightarrow \hat{G} \stackrel{\rho}{\longrightarrow} \mathrm{GL}_r(\mathbb{C})$$

est injectif, si bien que

$$\mathrm{SL}_2(\mathbb{C}) \to \hat{G}_{\alpha}^{\mathrm{der}}$$

est un isomorphisme. C'est l'assertion (iii) de la proposition.

Elle implique que $\frac{1}{2} \cdot \alpha$ n'est pas élément du réseau $X_{\hat{G}}^{\vee} = X_G$ et donc que le quotient G_{α}/T_{α} est isomorphe à PGL₂. C'est l'assertion (ii) qui restait à prouver.

2 Paires admissibles et variétés toriques affines complexes associées

Dans ce paragraphe, nous considérons un groupe réductif connexe G sur le corps de fonctions F ainsi qu'un homomorphisme de transfert

$$\rho: \hat{G} \rtimes \Gamma_F \to \mathrm{GL}_r(\mathbb{C})$$
.

On peut choisir une extension finie galoisienne E de F contenue dans F_s telle que ρ se factorise en

$$\hat{G} \rtimes \Gamma_{E/F} \to \mathrm{GL}_r(\mathbb{C})$$
.

D'autre part, quitte à remplacer ρ par son conjugué par un élément de $\operatorname{GL}_r(\mathbb{C})$, on peut supposer qu'il envoie le tore maximal \hat{T} de \hat{G} dans le tore diagonal $\hat{T}_r = (\mathbb{C}^\times)^r$ de $\operatorname{GL}_r(\mathbb{C})$. Alors ρ induit un homomorphisme de tores composé de r caractères

$$\rho_T = (\rho_1, \dots, \rho_r) : \hat{T} \to (\mathbb{C}^\times)^r$$
.

Soit (e_1, \ldots, e_r) une base de $V = \mathbb{C}^r$ telle que, pour tout indice $i \in \{1, \ldots, r\}$, le tore maximal \hat{T} de \hat{G} agit sur le vecteur e_i par le caractère ρ_i .

Pour tout rang $s \in \{1, \dots, r\}$, l'espace $\Lambda^s V$ admet pour base la famille des vecteurs

$$e_S = e_{i_1} \wedge e_{i_2} \wedge \ldots \wedge e_{i_s}$$

indexés par les parties $S = \{i_1 < i_2 < \dots < i_s\}$ de $\{1, 2, \dots, r\}$ de cardinal s. On note $\{S\}_s^r$ l'ensemble de ces parties et $(e_S^*)_{S \in \{S\}_s^r}$ la base duale de $(e_S)_{S \in \{S\}_s^r}$.

Pour tout rang $s \in \{1, ..., r\}$ et toute partie $S \in \{S\}_s^r$, le tore \hat{T} agit sur le vecteur e_S par le caractère

$$\rho_S = \prod_{i \in S} \rho_i : \hat{T} \to \mathbb{C}^{\times} .$$

À titre heuristique, considérons maintenant une partition

$$\underline{r} = \{r_1, r_1 + r_2, \dots, r_1 + \dots + r_k = r\} \subseteq \{1, 2, \dots, r\}$$

de l'entier r et une filtration

$$V_{\bullet} = (0 \subsetneq V_{r_1} \subsetneq V_{r_1+r_2} \subsetneq \cdots \subsetneq V_{r_1+\cdots+r_k} = V)$$

de l'espace $V = \mathbb{C}^r$ par des sous-espaces V_s de dimension $s, s \in \underline{r}$.

Pour tout rang $s \in \underline{r}$, $\Lambda^s V_s$ est une droite vectorielle plongée dans $\Lambda^s V$. On peut lui associer la partie non vide

$$\beta_s \subseteq \{S\}_s^r$$

composée des sous-ensembles $S \subseteq \{1,\dots,r\}$ de cardinal s tels que la forme linéaire de coordonnée d'indice S

$$e_S^*:\Lambda^sV\to\mathbb{C}$$

ne soit pas nulle sur la droite $\Lambda^s V_s$.

Alors le fixateur de la filtration (V_{\bullet}) dans le tore \hat{T} est le sous-tore (pas nécessairement connexe) défini par les équations

$$\rho_{S'} = \rho_{S''}, \quad \forall S', S'' \in \beta_s, \quad \forall s \in r.$$

On remarque qu'il existe seulement un nombre fini de possibilités pour les partitions \underline{r} de l'entier r et les familles de parties non vides $\beta_s \subseteq \{S\}_s^r$, $s \in \underline{r}$, et donc pour les sous-tores de \hat{T} définis par de telles familles d'équations.

Ces considérations amènent à poser la définition suivante :

Définition VII.3. – Considérons une paire (\underline{r}, β) constituée de :

- une partition de l'entier r, notée comme une partie $\underline{r} = \{r_1, r_1 + r_2, \dots, r_1 + \dots + r_k = r\}$ de l'intervalle $\{1, 2, \dots, r\}$ qui contient r,
- une famille $\beta = (\beta_s)_{s \in \underline{r}}$ composée, pour chaque indice $s \in \underline{r}$, d'une partie non vide β_s de l'ensemble $\{S\}_s^r$. On notera $\Omega_{r,\beta}^{\hat{T},\rho}$ la variété torique dont le tore est un quotient de

$$\hat{T} \times \prod_{s \in \underline{r}} \mathbb{C}^{\times} = \hat{T} \times \prod_{s \in \underline{r}} \operatorname{Spec} \left(\mathbb{C}[X_s^{\pm 1}] \right)$$

et qui est définie comme le spectre de l'algèbre du monoïde $\mathcal{C}_{\underline{r},\beta}^{\hat{T},\rho}$ engendré par les caractères

$$X_s \cdot \rho_S$$
, $s \in \underline{r}$, $S \in \beta_s$.

Remarque. L'ensemble $\{S\}_r^r$ compte exactement un élément, l'intervalle $\{1, 2, ..., r\}$, si bien que, pour toute paire (r, β) comme dans la définition ci-dessus, on a

$$\beta_r = \{S\}_r^r.$$

Par définition, $\Omega_{\underline{r},\beta}^{\hat{T},\rho}$ est un sous-schéma fermé de l'espace affine produit

$$\mathbb{C}_{\underline{r},\beta} = \prod_{s \in r} \prod_{S \in \beta_s} \operatorname{Spec} \left(\mathbb{C}[X_S] \right).$$

D'après la théorie générale des variétés toriques, $\Omega_{\underline{r},\beta}^{\hat{T},\rho}$ est réunion d'un nombre fini d'orbites localement fermées.

Chaque orbite possède un unique "point base" : il est défini par la propriété que tous les caractères du tore $\hat{T} \times (\mathbb{C}^{\times})^{\underline{r}}$ qui induisent des fonctions rationnelles sur $\Omega_{\underline{r},\beta}^{\hat{T},\rho}$ bien définies au voisinage de cette orbite prennent en ce point les valeurs 0 ou 1.

Ainsi, pour qu'un point de $\Omega_{\underline{r},\beta}^{\hat{T},\rho}$ soit le point base d'une orbite, il faut et il suffit que toutes les coordonnées de son image dans $\mathbb{C}_{\underline{r},\beta}$ valent 0 ou 1.

Lemme VII.4. – Soit (r, β) une paire comme ci-dessus.

Alors

- (i) Le point base de l'unique orbite ouverte (dense) de la variété torique $\Omega_{\underline{r},\beta}^{\hat{T},\rho}$ est le point $1_{\underline{r},\beta}$ de $\mathbb{C}_{\underline{r},\beta}$ dont toutes les coordonnées valent 1.
- (ii) Le fixateur de ce point $1_{\underline{r},\beta}$ est le sous-tore $\hat{T}_{\underline{r},\beta}$ de

$$\hat{T} \times \prod_{s \in \underline{r}} \mathbb{C}^{\times} = \hat{T} \times \prod_{s \in \underline{r}} \operatorname{Spec} \left(\mathbb{C}[X_s^{\pm 1}] \right)$$

défini par les équations

$$X_s \cdot \rho_S = 1$$
, $\forall s \in \underline{r}$, $\forall S \in \beta_s$.

Il se projette isomorphiquement sur le sous-tore \hat{T}_{β} de \hat{T} défini par les équations

$$\rho_{S'} = \rho_{S''}, \quad \forall s \in \underline{r}, \quad \forall S', S'' \in \beta_s.$$

(iii) L'unique orbite fermée de la variété torique affine $\Omega^{\hat{T},\rho}_{\underline{r},\beta}$ consiste en le point $O_{\underline{r},\beta}$ de $\mathbb{C}_{\underline{r},\beta}$ dont toutes les coordonnées valent 0.

Son fixateur est le tore $\hat{T} \times (\mathbb{C}^{\times})^{\underline{r}}$ tout entier.

Remarque. Il résulte de (i) et (ii) que $\Omega_{r,\beta}^{\hat{T},\rho}$ est une variété torique de tore

$$(\hat{T} \times (\mathbb{C}^{\times})^{\underline{r}})/\hat{T}_{\underline{r},\beta}$$
.

On peut également noter $1_{\underline{r},\beta}$ le point de la variété affine sur $\mathbb C$

$$\mathbb{C}_{\underline{r}} = \prod_{s \in \underline{r}} \Lambda^s \, \mathbb{C}^r = \prod_{s \in \underline{r}} \prod_{S \in \{S\}_s^r} \operatorname{Spec} \left(\mathbb{C}[X_S] \right)$$

dont les coordonnées valent

$$\begin{cases} X_S = 1 & \text{si} \quad S \in \beta_s \,, \ s \in \underline{r} \,, \\ X_S = 0 & \text{si} \quad S \in \{S\}_s^r - \beta_s \,, \ s \in \underline{r} \,. \end{cases}$$

Posons:

Définition VII.5. -

(i) Une paire (\underline{r}, β) comme ci-dessus est dite "admissible" si le point $1_{\underline{r},\beta}$ de $\mathbb{C}_{\underline{r}}$ est élément de la variété torique définie comme l'adhérence schématique de l'image de l'homomorphisme

$$(\mathbb{C}^{\times})^r \times (\mathbb{C}^{\times})^{\underline{r}} \to \mathbb{C}_r$$

$$((\lambda_1, \dots, \lambda_r), (x_s)_{s \in \underline{r}}) \mapsto \left(x_s \cdot \prod_{i \in S} \lambda_i\right)_{\substack{s \in \underline{r} \\ S \in \{S\}_s^r}}.$$

(ii) Étant donné un homomorphisme de transfert

$$\rho: \hat{G} \rtimes \Gamma_{E/F} \to \mathrm{GL}_r(\mathbb{C})$$

qui envoie \hat{T} dans $\hat{T}_r = (\mathbb{C}^{\times})^r$, une paire (\underline{r}, β) comme ci-dessus est dite "pré- ρ -admissible" si elle est "admissible" au sens de (i) et si :

• L'action du groupe de Galois $\Gamma_{E/F}$ sur \hat{T} préserve chaque ensemble de caractères

$$\{\rho_S: \hat{T} \to \mathbb{C}^{\times} \mid S \in \beta_s\}, \ s \in \underline{r}.$$

• La codimension du sous-tore $\hat{T}_{\underline{r},\beta}$ de $\hat{T} \times (\mathbb{C}^{\times})^{\underline{r}}$ est égale au cardinal $\#\beta = \sum_{s \in r} \#\beta_s$.

Pour toute paire pré- ρ -admissible (\underline{r}, β) , l'action de $\Gamma_{E/F}$ respecte le monoïde de caractères

$$\mathcal{C}_{r,\beta}^{\hat{T},\rho} \subset X_{\hat{T}} \times X_{(\mathbb{C}^{\times})^{\underline{r}}}$$

qui définit la variété torique $\Omega_{\underline{r},\beta}^{\hat{T},\rho}$. Celle-ci est donc munie d'une action du groupe de Galois $\Gamma_{E/F}$.

3 Variétés toriques affines locales et leurs duales

Dans ce paragraphe, on travaille en une place $x \in |F|$ telle que

- le groupe réductif G_{F_x} est quasi-déployé sur F_x ,
- ullet l'extension finie galoisienne E de F est non ramifiée en x.

En une telle place x, le groupe réductif G_{F_x} est donc non ramifié sur F_x , de même que l'homomorphisme de transfert

$$\rho: \hat{G} \rtimes \Gamma_F \to \mathrm{GL}_r(\mathbb{C}).$$

On rappelle qu'en une telle place x sans ramification on a noté :

- σ_x l'image dans le groupe fini $\Gamma_{E/F}$ de l'élément de Frobenius en x,
- \mathfrak{S}_G^x le groupe de Weyl F_x -rationnel de G_{F_x} , identifié au sous-groupe de \mathfrak{S}_G constitué des éléments fixés par σ_x ,
- \hat{T}_x^d le tore complexe défini comme le conoyau de l'homomorphisme

$$\hat{T} \rightarrow \hat{T},$$
 $\lambda \mapsto \sigma_x(\lambda) \cdot \lambda^{-1},$

• Λ_x^{\vee} le réseau des caractères complexes

$$\hat{T}^d_x \to \mathbb{C}^\times \,,$$

identifié au sous-réseau de $X_{\hat{T}} = X_T^{\vee}$ constitué des caractères complexes

$$\hat{T} \to \mathbb{C}^\times$$

fixés par l'action de σ_x sur \hat{T} .

Considérons maintenant une paire pré- ρ -admissible (r, β) au sens de la définition VII.5.

La variété torique complexe affine $\Omega_{r,\beta}^{\hat{T},\rho}$ a été définie au paragraphe précédent comme le spectre de l'algèbre d'un certain monoïde

$$\mathcal{C}_{r,\beta}^{\hat{T},\rho} \subset X_{\hat{T}} \times X_{(\mathbb{C}^{\times})^{\underline{r}}}$$

stabilisé par l'action de $\Gamma_{E/F}$ et, a fortiori, par celle de l'élément σ_x .

Définition VII.6. – Soit $x \in |F|$ une place où G et $\rho : \hat{G} \rtimes \Gamma_{E/F} \to \mathrm{GL}_r(\mathbb{C})$ sont non ramifiés.

(i) Pour toute paire pré- ρ -admissible (\underline{r}, β) , on note

$$\mathcal{C}_{r,\beta,x}^{\hat{T}_x^d,\rho} \subset \Lambda_x^\vee \times X_{(\mathbb{C}^\times)^{\underline{r}}}$$

le monoïde constitué des éléments de $\mathcal{C}_{\underline{r},\beta}^{\hat{T},\rho}$ qui sont fixés par l'action de σ_x . Autrement dit, c'est l'intersection du monoïde $\mathcal{C}_{\underline{r},\beta}^{\hat{T},\rho}$ et du réseau $\Lambda_x^\vee \times X_{(\mathbb{C}^\times)^r}$ dans $X_{\hat{T}} \times X_{(\mathbb{C}^\times)^{\underline{r}}}$.

(ii) Puis on note

$$\Omega_{\underline{r},\beta,x}^{\hat{T}_x^d,\rho}$$

la variété torique complexe affine, de tore quotient de

$$\hat{T}_x^d \times \prod_{s \in r} \mathbb{C}^{\times}$$
,

qui est définie comme le spectre de l'algèbre du monoïde $C_{T,\beta,x}^{\hat{T}_{x}^{d},\rho}$

Le plongement de l'algèbre de $\mathcal{C}_{r,\beta,x}^{\hat{T}^d,\rho}$ dans celle de $\mathcal{C}_{r,\beta}^{\hat{T},\rho}$ définit un morphisme de variétés affines complexes

$$\Omega_{\underline{r},\beta}^{\hat{T},\rho} \to \Omega_{\underline{r},\beta,x}^{\hat{T}_x^d,\rho}$$

qui est équivariant pour l'action du tore

$$\hat{T} \times \prod_{s \in r} \mathbb{C}^{\times}$$
.

Le point $1_{\underline{r},\beta}$ de $\Omega^{\hat{T},\rho}_{\underline{r},\beta}$ s'envoie sur un point de $\Omega^{\hat{T}^d_x,\rho}_{\underline{r},\beta,x}$ que nous noterons de la même façon : c'est le point base de l'unique orbite ouverte (dense) de la variété torique affine $\Omega^{\hat{T}^d_x,\rho}_{\underline{r},\beta,x}$. Son fixateur est le sous-tore $\hat{T}^d_{\underline{r},\beta,x}$ de $\hat{T}^d_x \times \prod_{s \in r} \mathbb{C}^\times$ qui est l'image de $\hat{T}_{\underline{r},\beta}$ par l'homomorphisme surjectif

$$\hat{T} \times \prod_{s \in \underline{r}} \mathbb{C}^{\times} \to \hat{T}^d_x \times \prod_{s \in \underline{r}} \mathbb{C}^{\times} .$$

Il n'est pas nécessairement connexe. Il se projette isomorphiquement sur son image dans \hat{T}_x^d , qui n'est autre que l'image $\hat{T}_{\beta,x}^d$ de \hat{T}_β par l'homomorphisme surjectif

$$\hat{T} \rightarrow \hat{T}_r^d$$
.

Rappelons maintenant que, en la place sans ramification $x \in |F|$, nous avons noté T_x un tore F_x -rationnel et maximal de G_{F_x} , et T_x^d le plus grand sous-tore de T_x déployé sur F_x .

Comme le groupe réductif local G_{F_x} est quasi-déployé sur F_x , on peut identifier X_{T_x} à X_G et $X_{T_x}^\vee$ à X_G^\vee . Le réseau $\Lambda_x^\vee = X_{T_x^d}^\vee$ des cocaractères du tore déployé maximal T_x^d s'identifie au sous-réseau de $X_{T_x}^\vee = X_G^\vee$ constitué des éléments fixés par l'action de σ_x . Le réseau Λ_x dual de $\Lambda_x^\vee = X_{T_x^d}^\vee$ s'identifie au réseau $X_{T_x^d}$ des caractères

$$T_x^d \to \mathbb{G}_m$$
.

Posons encore:

Définition VII.7. – Comme dans la définition précédente, considérons une place $x \in |F|$ sans ramification et une paire pré- ρ -admissible (\underline{r}, β) .

(i) Notons

$$\mathcal{C}_{r,\beta,x}^{T_x^d,\rho} \subset \Lambda_x \times X_{\mathbb{G}_m^r}$$

le monoïde saturé défini comme le dual du monoïde $\mathcal{C}_{\underline{r},\beta,x}^{\hat{T}_x^d,\rho}$:

$$\mathcal{C}^{T_x^d,\rho}_{\underline{r},\beta,x} = \{\chi \in \Lambda_x \times X_{\mathbb{G}^r_m} \mid \langle \chi,\mu \rangle \geq 0 \,, \,\, \forall \, \mu \in \mathcal{C}^{\hat{T}_x^d,\rho}_{\underline{r},\beta,x} \}$$

Ce monoïde engendre le réseau $\Lambda_x \times X_{\mathbb{G}_m^r}$ tout entier.

(ii) Notons

$$\Omega^{T^d_x,\rho}_{\underline{r},\beta,x}$$

la variété torique affine normale sur F_x , de tore

$$T_x^d \times \mathbb{G}_{\overline{m}}^r$$
,

qui est définie comme le spectre de l'algèbre du monoïde

$$\mathcal{C}_{\underline{r},\beta,x}^{T_x^d,d} \subset \Lambda_x \times X_{\mathbb{G}_{\overline{m}}^{\underline{r}}}$$
.

On note $\omega_{\underline{r},\beta,x}$ le point base de son unique orbite fermée, et $T^d_{\underline{r},\beta,x}$ le sous-tore de $T^d_x \times \mathbb{G}^{\underline{r}}_m$ fixateur de ce point base.

Le monoïde $\mathcal{C}^{T^d_x,\rho}_{\underline{r},\beta,x}$ engendre le réseau $\Lambda_x \times X_{\mathbb{G}^r_m}$ tout entier parce que la variété torique affine $\Omega^{\hat{T}^d_x,\rho}_{\underline{r},\beta,x}$ contient un point, l'image de $O_{\underline{r},\beta}$, qui est fixé par le tore $\hat{T}^d_x \times (\mathbb{C}^\times)^{\underline{r}}$ tout entier.

La variété torique $\Omega_{r,\beta,x}^{T_x^d,\rho}$ est normale parce que le monoïde $\mathcal{C}_{r,\beta,x}^{T_x^d,\rho}$ est saturé.

Le sous-tore $T^d_{\underline{r},\beta,x}$ de $T^d_x \times \mathbb{G}^{\underline{r}}_m$, fixateur du point base $\omega_{\underline{r},\beta,x}$ de l'unique orbite fermée, est connexe. Il est défini par les équations

$$\chi(\mu_x) = 1$$

où χ décrit l'ensemble des caractères, éléments de $\Lambda_x \times X_{\mathbb{G}_m^r},$ qui vérifient

$$\langle \chi, \mu \rangle = 0, \quad \forall \mu \in \mathcal{C}_{r,\beta,x}^{\hat{T}_x^d, \rho}.$$

En ce sens, il est l'orthogonal de l'image $\hat{T}^d_{\underline{r},\beta,x}$ du tore $\hat{T}_{\underline{r},\beta}$ par l'homomorphisme surjectif

$$\hat{T} \times \prod_{s \in r} \mathbb{C}^{\times} \to \hat{T}_x^d \times \prod_{s \in r} \mathbb{C}^{\times}$$
.

4 Résidus aux bords pour les noyaux locaux du transfert

Comme dans les deux paragraphes précédents, on considère un homomorphisme de transfert

$$\rho: \hat{G} \rtimes \Gamma_{E/F} \to \mathrm{GL}_r(\mathbb{C})$$

qui envoie le tore maximal \hat{T} de \hat{G} dans le tore diagonal \hat{T}_r de $\mathrm{GL}_r(\mathbb{C})$ et induit donc un homomorphisme

$$\rho_T = (\rho_1, \dots, \rho_r) : \hat{T} \to \hat{T}_r = (\mathbb{C}^\times)^r.$$

On travaille comme dans le précédent paragraphe en une place $x \in |F|$ où le groupe réductif G est non ramifié et l'extension finie galoisienne E de F est non ramifiée.

Le groupe réductif local G_{F_x} possède une paire de Borel (T_x, B_x) rationnelle sur F_x , et le tore maximal T_x devient déployé sur l'extension non ramifiée $E_x = E \otimes_F F_x$ de F_x .

La notation T_x^d désigne toujours le plus grand sous-tore déployé contenu dans T_x . Son dual \hat{T}_x^d est le tore complexe défini comme le conoyau de l'homomorphisme

$$\begin{array}{ccc} \hat{T} & \to & \hat{T} \\ \lambda & \mapsto & \sigma_x(\lambda) \cdot \lambda^{-1} \, . \end{array}$$

Comme rappelé dans le théorème I.14(ii) du paragraphe I.4, nous disposons de la complétion F_x rationnelle $\Omega_{G_{F_x}}$ du groupe réductif G_{F_x} quasi-déployé sur F_x . C'est un schéma lisse sur F_x , muni d'une
action à droite de $T_x^d \times G_{F_x} \times G_{F_x}$ et qui contient comme ouvert dense

$$(T_x^d \times G_{F_x})/(T_x^d \cap Z_{G_{F_x}})$$
.

Il est muni d'un morphisme équivariant et lisse

$$\Omega_{G_{F_x}} \to \mathbb{A}_{G_{F_x}}$$

vers la variété torique affine

$$\mathbb{A}_{G_{F_x}} = \prod_{\alpha \in \Delta_{G_{F_x}} = \Delta_G/\sigma_x} \mathbb{A}^1$$

de tore $T_x^d/(T_x^d \cap Z_{G_{F_x}})$.

D'autre part, si (\underline{r}, β) est une paire pré- ρ -admissible, nous avons construit au paragraphe précédent une variété torique affine normale sur F_x

$$\Omega_{\underline{r},\beta,x}^{T_x^d,\rho}$$

de tore $T_x^d \times \mathbb{G}_m^{\underline{r}}$.

Nous avons noté $T^d_{\underline{r},\beta,x}$ le sous-tore connexe de $T^d_x \times \mathbb{G}^{\underline{r}}_m$ qui est le fixateur du point base $\omega_{\underline{r},\beta,x}$ de l'unique orbite fermée de $\Omega^{T^d_x,\rho}_{\underline{r},\beta,x}$.

Rappelons encore que, par la définition IV.4 du paragraphe IV.2, nous avons associé à tout polynôme symétrique $p_x \in \mathbb{C}[\Lambda_x^\vee]^{\mathfrak{S}_G^x} = \mathbb{C}[\hat{T}_x^d]^{\mathfrak{S}_G^x}$ un "noyau local du transfert par l'homomorphisme ρ "

$$K_{x,p_x}^{G,\rho,\psi_x}:G_{F_x}(O_x)\backslash G(F_x)/G_{F_x}(O_x)\times \mathrm{GL}_r(F_x)/\mathrm{GL}_r(O_x)\to \mathbb{C}$$

défini par la formule intégrale

$$K_{x,p_x}^{G,\rho,\psi_x}(g,g') = \int_{\operatorname{Im}\hat{T}_x^d} d\lambda^{e_x} \cdot p_x(\lambda^{e_x}) \cdot \varphi_{x,\lambda^{e_x}}^G(g) \cdot W_{x,\varepsilon_x\cdot\rho_{T,x}(\lambda)}^{r,\psi_x}(g').$$

Dans cette formule, les différentes notations ont la signification suivante :

• Im \hat{T}_x^d désigne le plus grand sous-tore réel compact du tore complexe \hat{T}_x^d . Il est défini par les équations

$$|\mu(\lambda)| = 1$$
,

où μ décrit le réseau Λ_x^{\vee} des caractères $\hat{T}_x^d \to \mathbb{C}^{\times}$.

 \bullet e_x désigne l'ordre de l'élément de Frobenius σ_x dans le groupe fini $\Gamma_{E/F}.$

- $d\lambda^{e_x}$ désigne la mesure sur Im \hat{T}_x^d qui se déduit de la mesure de Plancherel $d\lambda$ par le changement de variable $\lambda \mapsto \lambda^{e_x}$.
- \bullet Pour tout $\lambda \in \hat{T}^d_x, \, \varphi^G_{x,\lambda}$ désigne l'unique fonction sphérique

$$G_{F_x}(O_x)\backslash G(F_x)/G_{F_x}(O_x)\to \mathbb{C}$$

telle que

$$\begin{cases} \varphi_{x,\lambda}^G * \varphi_x = \varphi_x * \varphi_{x,\lambda}^G = S_x^G(\varphi_x)(\lambda) \cdot \varphi_{x,\lambda}^G \,, \ \forall \, \varphi_x \in \mathcal{H}_{x,\emptyset}^G \,, \\ \varphi_{x,\lambda}^G(1) = 1 \,. \end{cases}$$

• $\rho_{T,x}=(\rho_{T,x}^1,\dots,\rho_{T,x}^r):\hat{T}_x^d\to\hat{T}_r=(\mathbb{C}^\times)^r$ est l'homomorphisme de tores dont le composé avec l'homomorphisme surjectif

$$\hat{T} \rightarrow \hat{T}_r^d$$

est égal à

$$\lambda \mapsto \rho_T(\lambda \cdot \sigma_x(\lambda) \cdot \ldots \cdot \sigma_x^{e_x - 1}(\lambda))$$
.

• $\varepsilon_x = (\varepsilon_x^1, \dots, \varepsilon_x^r)$ est un élément de $\hat{T}_r = (\mathbb{C}^\times)^r$ tel que

$$\begin{cases} (\varepsilon_x^1)^{e_x} = \dots = (\varepsilon_x^r)^{e_x} = 1, \\ \rho_x^*(p_x)(\lambda^{e_x}) = p_x(\varepsilon_x \cdot \rho_{T,x}(\lambda)), \ \forall \, p_x \in \mathbb{C}[\hat{T}_r]^{\mathfrak{S}_r}, \ \forall \, \lambda \in \hat{T}_x^d. \end{cases}$$

• Pour tout élément λ' de $\hat{T}_r = (\mathbb{C}^{\times})^r$, la fonction de Whittaker $W^{r,\psi_x}_{x,\lambda'}$ est l'unique fonction

$$\mathrm{GL}_r(F_x)/\mathrm{GL}_r(O_x) \to \mathbb{C}$$

telle que

$$\begin{cases} W_{x,\lambda'}^{r,\psi_x}(ug') = \psi_{(r)}^{-1}(u) \cdot W_{x,\lambda'}^{r,\psi_x}(g') , \ \forall u \in N_r(F_x) , \ \forall g' \in \operatorname{GL}_r(F_x) , \\ W_{x,\lambda'}^{r,\psi_x} * \varphi_x' = S_x^r(\varphi_x')(\lambda') \cdot W_{x,\lambda'}^{r,\psi_x} , \ \forall \varphi_x' \in \mathcal{H}_{x,\emptyset}^r , \\ W_{x,\lambda'}^{r,\psi_x} \begin{pmatrix} \begin{pmatrix} \gamma_x^{r-1} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \gamma_x & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix} \end{pmatrix} = 1 \text{ pour n'importe quel élément } \gamma_x \in F_x^{\times} \text{ de valuation } v_x(\gamma_x) = N_{\psi_x}.$$

Rappelons enfin que, par la définition III.13 du paragraphe III.4, nous avons associé à tout élément λ' de $\hat{T}_r = (\mathbb{C}^{\times})^r$ une "fonction de Whittaker de type \underline{r} "

$$W_{x,\lambda'}^{\underline{r},\psi_x}: \mathrm{GL}_r(F_x)/\mathrm{GL}_r(O_x) \to \mathbb{C}$$

qui vérifie les propriétés suivantes :

Hetes survantes:
$$\begin{cases} W_{x,\lambda'}^{r,\psi_x}(ug') = \psi_{\underline{r}}^{-1}(u) \cdot W_{x,\lambda'}^{r,\psi_x}(g') \,, \; \forall \, u \in N_r(F_x) \,, \; \forall \, g' \in \operatorname{GL}_r(F_x) \,, \\ W_{x,\lambda'}^{r,\psi_x} * \varphi_x' = S_x^r(\varphi_x')(\lambda') \cdot W_{x,\lambda'}^{r,\psi_x} \,, \; \forall \, \varphi_x' \in \mathcal{H}_{x,\emptyset}^r \,, \\ W_{x,\lambda'}^{r,\psi_x} \begin{pmatrix} \gamma_x^{r-1} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \gamma_x & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix} = 1 \text{ si } \gamma_x \in F_x^{\times} \text{ et } v_x(\gamma_x) = N_{\psi_x} \,. \end{cases}$$

Par analogie avec la définition IV.4 du paragraphe IV.2 rappelée ci-dessus, il est naturel de poser la définition suivante :

Définition VII.8. – Pour toute partition \underline{r} de l'entier r et tout polynôme symétrique $p_x \in \mathbb{C}[\hat{T}_x^d]^{\mathfrak{S}_G^x}$, on note

$$K_{x,p_x,r}^{G,\rho,\psi_x}:G_{F_x}(O_x)\backslash G(F_x)/G_{F_x}(O_x)\times \mathrm{GL}_r(F_x)/\mathrm{GL}_r(O_x)\to \mathbb{C}$$

la fonction définie par la formule intégrale

$$(g,g') \mapsto \int_{\operatorname{Im} \hat{T}_x^d} d\lambda^{e_x} \cdot p_x(\lambda^{e_x}) \cdot \varphi_{x,\lambda^{e_x}}^G(g) \cdot W_{x,\varepsilon_x \cdot \rho_{T,x}(\lambda)}^{\underline{r},\psi_x}(g').$$

Tout comme $K_{x,p_x}^{G,\rho,\psi_x}$, les fonctions $K_{x,p_x,\underline{r}}^{G,\rho,\psi_x}$ sont compatibles avec l'homomorphisme de transfert local induit par ρ

$$\rho_x^*: \mathcal{H}_{x,\emptyset}^r \to \mathcal{H}_{x,\emptyset}^G$$

au sens que, pour toute fonction sphérique $\varphi'_x \in \mathcal{H}^r_{x,\emptyset}$, on a

$$K_{x,p_x,\underline{r}}^{G,\rho_x,\psi_x} *_2 \varphi_x' = K_{x,p_x,\underline{r}}^{G,\rho_x,\psi_x} *_1 \rho_x^*(\varphi_x').$$

Nous avons besoin de pouvoir considérer les fonctions sphériques sur $G(F_x)$ comme des fonctions sphériques sur $(T_x^d \times G(F_x))/(T_x^d \cap Z_{G_{F_x}})$.

Pour cela, nous disposons du lemme suivant :

Lemme VII.9. -

(i) La restriction

$$\tilde{\varphi}\left(\bullet,\bullet\right)\mapsto\tilde{\varphi}\left(1,\bullet\right)$$

définit un isomorphisme de l'espace des fonctions

$$\tilde{\varphi}: T_x^d/T_x^d(O_x) \times G_{F_x}(O_x) \backslash G(F_x)/G_{F_x}(O_x) \to \mathbb{C}$$

telles que

- la restriction $g_x \mapsto \tilde{\varphi}(\mu_x, g_x)$ est à support compact dans $G(F_x)$ pour tout élément $\mu_x \in T_x^d$,
 la restriction $\mu_x \mapsto \tilde{\varphi}(\mu_x, g_x)$ est invariante par \mathfrak{S}_G^x pour tout élément $g_x \in G(F_x)$,
 pour tous éléments $\mu_x \in T_x^d$, $g_x \in G(F_x)$ et $z_x \in T_x^d \cap Z_{G_{F_x}}$, on a

$$\tilde{\varphi}(z_x \, \mu_x, g_x) = \tilde{\varphi}(\mu_x, z_x \, g_x) \,,$$

• pour toute fonction sphérique $\varphi_x \in \mathcal{H}_{x,\emptyset}^G$ dont la transformée de Satake $S_x^G(\varphi_x) \in \mathbb{C}[\Lambda_x^\vee]^{\mathfrak{S}_G^x}$ est vue comme une fonction $\varphi_x': T_x^d/T_x^d(O_x) \to \mathbb{C}$, on a

$$\tilde{\varphi} *_2 \varphi_x = \tilde{\varphi} *_1 \varphi'_x$$

sur l'espace des fonctions sphériques à support compact

$$\varphi: G_{F_n}(O_x)\backslash G(F_x)/G_{F_n}(O_x) \to \mathbb{C}$$
.

(ii) L'isomorphisme réciproque, noté

$$\varphi\left(\bullet\right)\mapsto\tilde{\varphi}\left(\bullet,\bullet\right)$$

s'obtient en écrivant la décomposition spectrale de φ

$$\varphi(g_x) = \int_{\operatorname{Im} \hat{T}_x^d} d\lambda \cdot p_x(\lambda) \cdot \varphi_{x,\lambda}^G(g_x)$$

 $avec \ p_x = S_x^G(\varphi) \in \mathbb{C}[\Lambda_x^\vee]^{\mathfrak{S}_G^x} = \mathbb{C}[\hat{T}_x^d]^{\mathfrak{S}_G^x}, \ et \ en \ posant$

$$\tilde{\varphi}(\mu_x, g_x) = \int_{\operatorname{Im} \hat{T}_x^d} d\lambda \cdot p_x(\lambda) \cdot \langle \operatorname{ord}_x(\mu_x), \lambda \rangle \cdot \varphi_{x,\lambda}^G(g_x).$$

Ce lemme permet de considérer la fonction sphérique de deux variables

$$K_{x,p_x,r}^{G,\rho,\psi_x}: G_{F_x}(O_x)\backslash G(F_x)/G_{F_x}(O_x) \times \mathrm{GL}_r(F_x)/\mathrm{GL}_r(O_x) \to \mathbb{C}$$

comme une fonction sphérique de trois variables

$$\tilde{K}_{x,p_x,r}^{G,\rho,\psi_r}: (T_x^d \times G(F_x))/(T_x^d \cap Z_{G_{F_x}}) \times \mathrm{GL}_r(F_x) \to \mathbb{C}$$
.

Pour toute partie non vide S de $\{1, 2, \dots, r\}$, nous avons noté

$$\rho_S: \hat{T} \to \mathbb{C}^{\times}$$

le caractère $\rho_S = \prod_{i \in S} \rho_i$.

De même, nous pouvons noter

$$\rho_{T,x}^S: \hat{T}_x^d \to \mathbb{C}^{\times}$$

le caractère

$$\rho_{T,x}^S = \prod_{i \in S} \rho_{T,x}^i$$

et $\varepsilon_x^S \in \mathbb{C}^{\times}$ le produit

$$\varepsilon_x^S = \prod_{i \in S} \varepsilon_x^i$$
.

Introduisons encore de nouvelles fonctions qui vont nous servir à définir des résidus aux bords pour les fonctions $\tilde{K}^{G,\rho,\psi_x}_{x,p_x,\underline{r}}$ sur $T^d_x \times G(F_x) \times \mathrm{GL}_r(F_x)$:

Définition VII.10. – Pour toute paire pré- ρ -admissible (r, β) , soit

$$\varphi_{r,\beta,x}: (F_x^{\times})^{\underline{r}}/(O_x^{\times})^{\underline{r}} \times T_x^d/T_x^d(O_x) \to \mathbb{C}$$

la fonction sphérique (à support non compact) dont la transformée de Satake est la série formelle

$$\frac{1}{\# \, \mathfrak{S}_G^x} \, \sum_{\sigma \in \mathfrak{S}_G^x} \, \prod_{s \in \underline{r}} \, \prod_{S \in \beta_s} \, \frac{1}{1 - X_s \cdot \varepsilon_x^S \cdot \sigma(\rho_{T,x}^S)} \, .$$

La fonction sphérique

$$\varphi_{\underline{r},\beta,x}:(F_x^\times)^{\underline{r}}\times T_x^d\to\mathbb{C}$$

est invariante par l'action de \mathfrak{S}_G^x sur T_x^d .

Il en est de même, pour tout polynôme symétrique $p_x \in \mathbb{C}[\Lambda_x^{\vee}]^{\mathfrak{S}_G^x} = \mathbb{C}[\hat{T}_x^d]^{\mathfrak{S}_G^x}$, de la fonction sphérique

$$\tilde{K}_{x,p_x,r}^{G,\rho,\psi_x}: T_x^d \times G(F_x) \times \mathrm{GL}_r(F_x) \to \mathbb{C}$$
.

Cette fonction est également invariante par le sous-tore $T_x^d \cap Z_{G_{F_x}}$ plongé dans $T_x^d \times G(F_x)$ par l'homomorphisme $\mu_x \mapsto (\mu_x, \mu_x^{-1})$.

On peut définir un produit de convolution de ces deux fonctions :

Lemme VII.11. – La convolution par rapport à la variable commune $\mu_x \in T_x^d$ définit une fonction sphérique

$$\varphi_{\underline{r},\beta,x} *_2 \tilde{K}^{G,\rho,\psi_x}_{x,p_x,\underline{r}} : (F_x^\times)^{\underline{r}} \times T^d_x \times G(F_x) \times \mathrm{GL}_r(F_x) \to \mathbb{C}$$

invariante par l'action du groupe de Weyl F_x -rationnel \mathfrak{S}_G^x sur T_x^d et par le sous-tore $T_x^d \cap Z_{G_{F_x}}$ plongé dans $T_x^d \times G(F_x)$.

Dans ce lemme apparaît une fonction définie sur l'espace des points à valeurs dans F_x de la variété produit

$$\mathbb{G}_{\overline{m}}^r \times T_x^d \times G_{F_x} \times \operatorname{GL}_r$$
.

L'oubli des deux dernières variables définit une projection équivariante vers le tore

$$\mathbb{G}_{\overline{m}}^{\underline{r}} \times T_x^d$$

que l'on peut identifier à l'orbite ouverte de la variété torique affine

$$\Omega_{r,\beta,x}^{T_x^d,\rho}$$

D'autre part, l'oubli de la première variable et de la dernière, suivi du passage au quotient par le tore $T_x^d \cap Z_{G_{F_x}}$, définit une projection équivariante vers le groupe

$$(T_x^d \times G_{F_x})/(T_x^d \cap Z_{G_{F_x}})$$

que l'on peut identifier à l'orbite ouverte dense du schéma

$$\Omega_{G_{F_{m}}}$$
.

Enfin, ce schéma $\Omega_{G_{F_x}}$ est lui-même muni d'un morphisme équivariant et lisse

$$\Omega_{G_{F_x}} \to \mathbb{A}_{G_{F_x}}$$

vers la variété torique affine lisse

$$\mathbb{A}_{G_{F_x}} = \prod_{\alpha \in \Delta_{G_{F_x}} = \Delta_G/\sigma_x} \mathbb{A}^1$$

de tore $T_x^d/(T_x^d \cap Z_{G_{F_x}})$.

On est amené à poser encore :

Définition VII.12. – Pour toute paire pré- ρ -admissible (r, β) , on note

$$\tilde{\Omega}_{r,\beta,x}^{T_x^d,\rho}$$

la variété torique affine sur F_x de tore

$$\mathbb{G}_{\overline{m}}^{\underline{r}} \times T_x^d$$

qui est définie comme l'adhérence schématique de ce tore dans le produit

$$\Omega_{r,\beta,x}^{T_x^d,\rho} \times \mathbb{A}_{G_{F_x}}$$
.

Le point base de toute orbite de la variété torique $\tilde{\Omega}_{r,\beta,x}^{T_x^d,\rho}$ est nécessairement de la forme $(\omega,1_{\theta})$ où ω est le point base d'une orbite de $\Omega_{r,\beta,x}^{T_x^d,\rho}$ et où, comme dans le paragraphe I.4, 1_{θ} désigne le point base de l'orbite de $\mathbb{A}_{G_{F_x}}$ associée à une partie θ de $\Delta_{G_{F_x}} = \Delta_G/\sigma_x$.

La variété

$$\mathbb{G}_{\overline{m}}^{\underline{r}} \times T_x^d \times G_{F_x} \times \mathrm{GL}_r$$

s'identifie à un ouvert dense du sous-schéma fermé de

$$\Omega_{r,\beta,x}^{T_x^d,\rho} \times \Omega_{G_{F_x}} \times \mathrm{GL}_r$$

défini comme l'image réciproque du sous-schéma fermé

$$\tilde{\Omega}_{\underline{r},\beta,x}^{T_x^d,\rho} \hookrightarrow \Omega_{\underline{r},\beta,x}^{T_x^d,\rho} \times \mathbb{A}_{G_{F_x}}.$$

Nous pouvons maintenant prolonger aux bords la fonction $\varphi_{\underline{r},\beta,x} *_2 \tilde{K}^{G,\rho,\psi_x}_{x,p_x,\underline{r}}$ introduite dans le lemme VII.11 :

Théorème VII.13. – Pour toute paire pré- ρ -admissible (\underline{r}, β) et tout polynôme symétrique $p_x \in \mathbb{C}[\Lambda_x^{\vee}]^{\mathfrak{S}_G^x} = \mathbb{C}[\hat{T}_x^d]^{\mathfrak{S}_G^x}$, la fonction sphérique

$$\varphi_{\underline{r},\beta,x} *_2 \tilde{K}_{x,p_x,\underline{r}}^{G,\rho,\psi_x} : (F_x^{\times})^{\underline{r}} \times T_x^d \times G(F_x) \times \mathrm{GL}_r(F_x) \to \mathbb{C}$$

se prolonge par continuité en une fonction sur le fermé de

$$[\Omega_{r,\beta,x}^{T_x^d,\rho} \times \Omega_{G_{F_x}} \times \mathrm{GL}_r](F_x)$$

qui est l'image réciproque du fermé

$$\tilde{\Omega}_{r,\beta,x}^{T_x^d,\rho}(F_x)$$

$$de \ [\Omega^{T^d_x,\rho}_{r,\beta,x} imes \mathbb{A}_{G_{F_x}}](F_x).$$

Nous nous intéressons particulièrement aux restrictions de la fonction $\varphi_{\underline{r},\beta,x} *_2 \tilde{K}_{x,p_x,\underline{r}}^{G,\rho,\psi_x}$ au-dessus des points bases de la variété torique $\tilde{\Omega}_{\underline{r},\beta,x}^{T_x^d,\rho}$ qui relèvent le point base $\omega_{\underline{r},\beta,x}$ de l'unique orbite fermée de la variété torique affine $\Omega_{\underline{r},\beta,x}^{T_x^d,\rho}$.

Rappelons que, d'après le théorème 1.14(iii) du paragraphe I.4, la fibre du morphisme équivariant et lisse

$$\Omega_{G_{F_x}} \to \mathbb{A}_{G_{F_x}} = \prod_{\alpha \in \Delta_{G_{F_x}} = \Delta_G/\sigma_x} \mathbb{A}^1$$

au-dessus du point base 1_θ de $\mathbb{A}_{G_{F_x}}$ associé à une partie θ de $\Delta_{G_{F_x}}$ s'identifie au quotient

$$M_{\theta} \cdot (N_{\theta} \times N_{\theta}^{\mathrm{op}}) \backslash (G \times G)$$
.

On peut prouver:

Théorème VII.14. – Dans les conditions du théorème précédent, considérons un point base $(\omega_{\underline{r},\beta,x},1_{\theta})$ de $\tilde{\Omega}_{\underline{r},\beta,x}^{T_x^d,\rho}$ constitué du point base $\omega_{\underline{r},\beta,x}$ de $\Omega_{\underline{r},\beta,x}^{T_x^d,\rho}$ et d'un point base 1_{θ} de $\mathbb{A}_{G_{F_x}}$, nécessairement associé à une partie θ de $\Delta_{G_{F_x}} = \Delta_G/\sigma_x$.

Alors:

(i) La restriction de la fonction

$$\varphi_{\underline{r},\beta,x} *_2 \tilde{K}_{x,p_x,\underline{r}}^{G,\rho,\psi_x}$$

à la fibre de

$$[\Omega_{r,\beta,x}^{T_x^d,\rho} \times \Omega_{G_{F_x}} \times \mathrm{GL}_r](F_x)$$

au-dessus du point base $(\omega_{r,\beta,x},1_{\theta})$ peut être vue comme une fonction

$$K_{x,p_x,\beta}^{G,\rho,\psi_x,\theta}: G(F_x)\times G(F_x)\times \mathrm{GL}_r(F_x)\to \mathbb{C}$$
.

- (ii) Cette fonction $K^{G,\rho,\psi_x,\theta}_{x,p_x,\beta}$ vérifie les propriétés suivantes :
 - Elle est invariante à droite par $G_{F_x}(O_x) \times G_{F_x}(O_x) \times GL_r(O_x)$.
 - Elle est invariante à gauche par $[M_{\theta} \cdot (N_{\theta} \times N_{\theta}^{\text{op}})](F_x)$.
 - ullet Elle est ψ_{r}^{-1} -équivariante au sens que

$$K_{x,p_{x},\beta}^{G,\rho,\psi_{x},\theta}(g_{1},g_{2},ug') = \psi_{\underline{r}}^{-1}(u) \cdot K_{x,p_{x},\beta}^{G,\rho,\psi_{x},\theta}(g_{1},g_{2},g') \,, \, \forall g_{1},g_{2} \in G(F_{x}) \,, \, \forall g' \in \mathrm{GL}_{r}(F_{x}) \,, \, \forall u \in N_{r}(F_{x}) \,.$$

• Elle est compatible avec le transfert local par

$$\rho_x^*: \mathcal{H}_{x,\emptyset}^r \to \mathcal{H}_{x,\emptyset}^G$$

 $au\ sens\ que$

$$K_{x,p_{x},\beta}^{G,\rho,\psi_{x},\theta} \ast_{3} \varphi_{x}' = K_{x,p_{x},\beta}^{G,\rho,\psi_{x},\theta} \ast_{2} \rho_{x}^{\ast}(\varphi_{x}') \,, \quad \forall \, \varphi_{x}' \in \mathcal{H}_{x,\emptyset}^{r} \,,$$

et

$$K_{x,p_{x},\beta}^{G,\rho,\psi_{x},\theta} *_{2} \varphi_{x} = K_{x,p_{x},\beta}^{G,\rho,\psi_{x},\theta} *_{1} \varphi_{x}^{\vee}, \quad \forall \varphi_{x} \in \mathcal{H}_{x,\emptyset}^{G}.$$

(iii) La restriction de la fonction

$$K_{x,p_x,\beta}^{G,\rho,\psi_x,\theta}$$

 \grave{a}

$$M_{\theta}(F_x) \times M_{\theta}(F_x) \times GL_r(F_x)$$

s'écrit sous la forme

$$(m_1, m_2, g') \mapsto \int_{\{\lambda \in \operatorname{Im} \hat{T}_x^d | \lambda^{e_x} \in \operatorname{Im} \hat{T}_{\beta, x}^d\}} d\lambda^{e_x} \cdot p_x((\lambda \lambda_0)^{e_x}) \quad \cdot \quad \varphi_{x, (\lambda \lambda_0)^{e_x}}^{M_{\theta}}(m_1^{-1} m_2)$$

$$\cdot \quad \rho_{P_{\theta}}^{1/2}(m_1^{-1} m_2) \cdot W_{x, \varepsilon_x \cdot \rho_{T, x}(\lambda \lambda_0)}^{\underline{r}, \psi_x}(g')$$

pour une certaine mesure $d\lambda^{e_x}$ sur le tore

$$\{\lambda \in \operatorname{Im} \hat{T}^d_x \mid \lambda^{e_x} \in \operatorname{Im} \hat{T}^d_{\beta,x}\}$$

et un certain élément $\lambda_0 \in \hat{T}_x^d$.

On peut se demander dans quelle mesure la fonction

$$K_{x,n_x,\beta}^{G,\rho,\psi_x,\theta}:G(F_x)\times G(F_x)\times \mathrm{GL}_r(F_x)\to\mathbb{C}$$

dépend du choix du relèvement $(\omega_{r,\beta,x},1_{\theta})$ de $\omega_{r,\beta,x}$. En fait, elle n'en dépend pas :

Théorème VII.15. – Soit une paire pré- ρ -admissible (\underline{r},β) telle que le point base $\omega_{\underline{r},\beta,x}$ de l'unique orbite fermée de la variété torique affine $\Omega_{\underline{r},\beta,x}^{T_x^d,\rho}$ se relève en au moins un point base $(\omega_{\underline{r},\beta,x},1_{\theta})$ de la variété torique affine $\tilde{\Omega}_{\underline{r},\beta,x}^{T_x^d,\rho}$.

Alors, pour tout polynôme symétrique $p_x \in \mathbb{C}[\hat{T}_x^d]^{\mathfrak{S}_G^x}$, la fonction

$$K_{x,p_x,\beta}^{G,\rho,\psi_x,\theta}:G(F_x)\times G(F_x) imes \mathrm{GL}_r(F_x) o \mathbb{C}$$

 $ne\ d\'epend\ pas\ du\ choix\ du\ rel\`evement\ (\omega_{\underline{r},\beta,x},1_{\theta})\ de\ \omega_{\underline{r},\beta,x}.$

On la notera simplement

$$K_{x,p_x,\beta}^{G,\rho,\psi_x}: G(F_x) \times G(F_x) \times \mathrm{GL}_r(F_x) \to \mathbb{C}$$
.

5 Termes complémentaires pour la construction de noyaux globaux du transfert automorphe

Dans ce paragraphe, nous allons travailler globalement sur le corps de fonctions F.

Nous considérons un groupe réductif connexe G qui est quasi-déployé sur F ainsi qu'un homomorphisme de transfert

$$\rho: \hat{G} \rtimes \Gamma_F \to \mathrm{GL}_r(\mathbb{C}).$$

Il existe une extension finie galoisienne E de F, contenue dans la clôture séparable F_s et telle que ρ se factorise en

$$\hat{G} \rtimes \Gamma_{E/F} \to \mathrm{GL}_r(\mathbb{C})$$
.

Considérons une paire pré- ρ -admissible (\underline{r}, β) .

Au paragraphe 2, nous avons construit une variété torique affine $\Omega_{r,\beta}^{\hat{T},\rho}$ de tore

$$\left(\hat{T} \times \prod_{s \in \underline{r}} \mathbb{C}^{\times}\right) / \hat{T}_{\underline{r},\beta}$$

où $\hat{T}_{\underline{r},\beta}$ désigne le sous-tore de $\hat{T}\times\prod_{s\in\underline{r}}\mathbb{C}^\times$ défini par les équations

$$X_s \cdot \rho_S = 1$$
, $\forall s \in \underline{r}$, $\forall S \in \beta_s$.

Comme schéma, $\Omega_{r,\beta}^{\hat{T},\rho}$ est le spectre de l'algèbre du monoïde $\mathcal{C}_{r,\beta}^{\hat{T},\rho}$ engendré par les caractères

$$X_s \cdot \rho_S$$
, $s \in r$, $S \in \beta_s$.

Il contient une unique orbite fermée : celle-ci est réduite à un point $O_{\underline{r},\beta}$ fixé par le tore $\hat{T} \times (\mathbb{C}^{\times})^{\underline{r}}$ tout entier.

Le groupe réductif connexe G, étant quasi-déployé sur F, possède un épinglage $(T, B, (u_{\alpha})_{\alpha \in \Delta_G})$ défini sur F.

On note T_F^d le plus grand sous-tore de T déployé sur F. Son dual \hat{T}_F^d est le plus grand quotient du tore complexe \hat{T} sur lequel le groupe de Galois $\Gamma_{E/F}$ agisse trivialement. Autrement dit, $X_{\hat{T}_F^d} = X_{T_F^d}^{\vee}$ s'identifie au sous-réseau de $X_{\hat{T}} = X_T^{\vee}$ constitué des caractères de \hat{T} (ou des cocaractères de T) qui sont fixés par l'action de $\Gamma_{E/F}$.

Définition VII.16. – Considérons comme ci-dessus un groupe réductif connexe G quasi-déployé sur F et un homomorphisme de transfert

$$\rho: \hat{G} \rtimes \Gamma_F \to \mathrm{GL}_r(\mathbb{C}).$$

Soit (\underline{r}, β) une paire pré- ρ -admissible.

- (i) On note $C_{\underline{r},\beta}^{\hat{T}_{r}^{d},\rho}$ le monoïde constitué des éléments de $C_{\underline{r},\beta}^{\hat{T},\rho}$ qui sont fixés par l'action de Γ_{F} . Autrement dit, c'est l'intersection du monoïde $C_{r,\beta}^{\hat{T},\rho}$ et du sous-réseau $X_{\hat{T}_{r}^{d}} \times X_{(\mathbb{C}^{\times})^{\underline{r}}}$ de $X_{\hat{T}} \times X_{(\mathbb{C}^{\times})^{\underline{r}}}$.
- (ii) On note

$$\Omega_{\underline{r},\beta}^{\hat{T}_F^d,\rho}$$

la variété torique affine complexe, de tore quotient de

$$\hat{T}_F^d \times (\mathbb{C}^\times)^{\underline{r}},$$

qui est définie comme le spectre de l'algèbre du monoïde $C_{r,\beta}^{\hat{T}_{r}^{f},\rho}$.

Le plongement de l'algèbre de $\mathcal{C}_{r,\beta}^{\hat{T}_F^d,\rho}$ dans celle de $\mathcal{C}_{r,\beta}^{\hat{T},\rho}$ définit un morphisme de variétés complexes affines

$$\Omega_{r,\beta}^{\hat{T},\rho} \to \Omega_{r,\beta}^{\hat{T}_F^d,\rho}$$

qui est équivariant pour l'action du tore

$$\hat{T} \times (\mathbb{C}^{\times})^{\underline{r}}$$
.

Le tore de la variété torique $\Omega_{F,\beta}^{\hat{T}_{F}^{d},\rho}$ est le quotient

$$(\hat{T}_F^d \times (\mathbb{C}^\times)^{\underline{r}})/\hat{T}_{F,r,\beta}^d$$

où $\hat{T}^d_{F.r.\beta}$ désigne l'image de $\hat{T}_{\underline{r},\beta}$ par l'homomorphisme surjectif

$$\hat{T} \times (\mathbb{C}^{\times})^{\underline{r}} \to \hat{T}_F^d \times (\mathbb{C}^{\times})^{\underline{r}}.$$

Le sous-tore $\hat{T}^d_{F,\underline{r},\beta}$ n'est pas nécessairement connexe. Il se projette isomorphiquement sur son image dans \hat{T}^d_F , qui n'est autre que l'image $\hat{T}^d_{\beta,F}$ de \hat{T}_β par l'homomorphisme surjectif

$$\hat{T} \rightarrow \hat{T}_F^d$$
.

Définition VII.17. – Dans les mêmes conditions que la définition précédente, considérons une paire pré- ρ -admissible (\underline{r}, β) .

(i) Notons

$$\mathcal{C}^{T_F^d,\rho}_{\underline{r},\beta} \subset X_{T_F^d} \times X_{\mathbb{G}_{\overline{m}}^{\underline{r}}}$$

le monoïde saturé défini comme le dual du monoïde $\mathcal{C}_{\underline{r},\beta}^{\hat{T}_F^d,\rho}$:

$$\mathcal{C}^{T_F^d,\rho}_{\underline{r},\beta} = \{\chi \in X_{T_F^d} \times X_{\mathbb{G}_m^{\underline{r}}} \mid \langle \chi,\mu \rangle \geq 0 \,, \quad \forall \, \mu \in \mathcal{C}^{\hat{T}_F^d,\rho}_{\underline{r},\beta} \}$$

Ce monoïde engendre le réseau $X_{T^d_F} \times X_{\mathbb{G}^r_m}$ tout entier.

(ii) Notons

$$\Omega_{r,\beta}^{T_F^d,\rho}$$

la variété torique affine normale sur F, de tore

$$T_F^d \times \mathbb{G}_{\overline{m}}^r$$
,

qui est définie comme le spectre de l'algèbre du monoïde

$$\mathcal{C}_{r,\beta}^{T_F^d,\rho} \subset X_{T_F^d} \times X_{\mathbb{G}_m^r}$$
.

On note $\omega_{\underline{r},\beta}$ le point base de son unique orbite fermée, et $T^d_{\underline{r},\beta,F}$ le sous-tore de $T^d_F \times \mathbb{G}^{\underline{r}}_m$ fixateur de ce point base.

Nous disposons d'autre part de la complétion F-rationnelle Ω_{G_F} du groupe réductif connexe G quasidéployé sur F. C'est un schéma lisse sur F, muni d'une action à droite de $T_F^d \times G \times G$ et qui contient comme ouvert dense

$$(T_F^d \times G)/(T_F^d \cap Z_G)$$
.

Il est également muni d'un morphisme équivariant et lisse

$$\Omega_{G_F} \to \mathbb{A}_{G_F}$$

vers la variété torique affine lisse

$$\mathbb{A}_{G_F} = \prod_{\alpha \in \Delta_{G_F} = \Delta_G/\Gamma_{E/F}} \mathbb{A}^1$$

de tore $T_F^d/(T_F^d \cap Z_G)$.

Définition VII.18. – Dans la même situation que les deux définitions précédentes, on note

$$\tilde{\Omega}_{r,\beta}^{T_F^d,\rho}$$

la variété torique affine de tore

$$\mathbb{G}_{\overline{m}}^{\underline{r}} \times T_F^d$$
,

qui est définie comme l'adhérence schématique de ce tore dans le produit

$$\Omega^{T_F^d,\rho}_{\underline{r},\beta} \times \mathbb{A}_{G_F}$$
.

Le point base de toute orbite de la variété torique $\tilde{\Omega}_{\underline{r},\beta}^{T_F^d,\rho}$ est nécessairement de la forme $(\omega,1_{\theta})$ où ω est le point base d'une orbite de $\Omega_{\underline{r},\beta}^{T_F^d,\rho}$ et 1_{θ} est le point base de l'orbite de \mathbb{A}_{G_F} associée à une partie θ de $\Delta_{G_F} = \Delta_G/\Gamma_{E/F}$.

Définition VII.19. – Considérons comme ci-dessus un groupe réductif connexe G quasi-déployé sur F et un homomorphisme de transfert $\rho: \hat{G} \rtimes \Gamma_F \to \mathrm{GL}_r(\mathbb{C})$ supposé irréductible.

- (i) Une paire pré- ρ -admissible (\underline{r},β) sera dite " ρ -admissible" si le point base $\omega_{\underline{r},\beta}$ de l'unique orbite fermée de $\Omega^{T_F^d,\rho}_{F,\beta}$ se relève en au moins un point base $(\omega_{\underline{r},\beta},1_{\theta})$ de la variété torique $\tilde{\Omega}^{T_F^d,\rho}_{\underline{r},\beta}$.
- (ii) Si (\underline{r}, β) est une paire ρ -admissible, on notera

$$T_{\beta} \subset T$$

le sous-tore connexe de T défini par les équations

$$\chi(\mu) = 1$$

associées à tous les caractères $\chi \in X_T = X_{\hat{T}}^{\vee}$ tels que

$$\langle \chi, \rho_{S'}/\rho_{S''} \rangle = 0, \quad \forall s \in \underline{r}, \quad \forall S', S'' \in \beta_s.$$

Ce sous-tore T_{β} de T est rationnel sur F. Il est contenu dans le groupe dérivé G^{der} de G.

(iii) Toujours si (\underline{r}, β) est une paire ρ -admissible, on notera

$$G_{\beta}$$
 [resp. $G_{\beta}^{\rm sc}$]

le sous-groupe réductif de $G^{\text{der}} \subseteq G$ [resp. du revêtement simplement connexe G^{sc} de G^{der}] engendré par le sous-tore T_{β} de T [resp. par l'image réciproque de T_{β} dans G^{sc}] et par les sous-groupes unipotents

$$U_{\alpha}$$

associés aux racines $\alpha \in \Delta_G$ telles que :

 $\begin{cases} \bullet & \text{la r\'eflexion } \sigma_{\alpha} \in \mathfrak{S}_{G} \text{ pr\'eserve le sous-tore } T_{\underline{r},\beta} \text{ de } T, \\ \bullet & \text{le cocaract\`ere } \overset{\vee}{\alpha} : \mathbb{G}_{m} \to T \text{ prend ses valeurs dans } T_{\underline{r},\beta}. \end{cases}$

Ce sous-groupe réductif G_{β} de G [resp. G_{β}^{sc} de G^{sc}] est rationnel sur F.

Si (\underline{r},β) est une paire ρ -admissible et $(\omega_{\underline{r},\beta},1_{\theta})$ un relèvement dans $\tilde{\Omega}^{T_{\underline{r}}^d,\rho}_{\underline{r},\beta}$ du point base $\omega_{\underline{r},\beta}$ de $\Omega^{T_{\underline{r}}^d,\rho}_{\underline{r},\beta}$, on peut noter $GN_{\beta,\theta}$ [resp. $GN_{\beta,\theta}^{\mathrm{op}}$] le sous-groupe algébrique de $G^{\mathrm{der}} \subset G$ rationnel sur F engendré par G_{β} et N_{θ} [resp. G_{β} et N_{θ}^{op}].

De même, on peut noter $GN_{\beta,\theta}^{\text{sc}}$ [resp. $GN_{\beta,\theta}^{\text{sc,op}}$] le sous-groupe algébrique de G^{sc} rationnel sur F engendré par G_{β}^{sc} et N_{θ} [resp. G_{β}^{sc} et N_{θ}^{op}].

Enfin, on peut noter $P_{\beta,\theta}$ [resp. $P_{\beta,\theta}^{\text{op}}$] le sous-groupe parabolique de G rationnel sur F engendré par G_{β} et $P_{\theta} = M_{\theta} \cdot N_{\theta}$ [resp. G_{β} et $P_{\theta}^{\text{op}} = M_{\theta} \cdot N_{\theta}^{\text{op}}$].

On a:

Lemme VII.20. – Dans les conditions de la définition précédente, considérons une paire ρ -admissible (\underline{r}, β) .

(i) Si θ est une partie de $\Delta_{G_F} = \Delta_G/\Gamma_F$ telle que $(\omega_{\underline{r},\beta}, 1_{\theta})$ soit un point base de la variété torique $\tilde{\Omega}_{\underline{r},\beta}^{T_{\sigma}^f,\rho}$, on a les égalités dans G

$$GN_{\beta,\theta} = G_{\beta} \cdot N_{\theta} \,, \quad GN_{\beta,\theta}^{\text{op}} = G_{\beta} \cdot N_{\theta}^{\text{op}}$$
$$P_{\beta,\theta} = G_{\beta} \cdot P_{\theta} \,, \quad P_{\beta,\theta}^{\text{op}} = G_{\beta} \cdot P_{\theta}^{\text{op}}$$

et l'égalité dans G^{sc}

$$GN_{\beta,\theta}^{\mathrm{sc}} = G_{\beta}^{\mathrm{sc}} \cdot N_{\theta} \,, \quad GN_{\beta,\theta}^{\mathrm{sc,op}} = G_{\beta}^{\mathrm{sc}} \cdot N_{\theta}^{\mathrm{op}} \,.$$

(ii) Lorsque θ décrit l'ensemble des parties de Δ_{G_F} qui satisfont l'hypothèse de (i), les sous-groupes algébriques rationnels sur F

$$GN_{\beta,\theta}, \ GN_{\beta,\theta}^{\text{op}} \subset G,$$

 $P_{\beta,\theta}, \ P_{\beta,\theta}^{\text{op}} \subset G$

et

$$GN_{\beta,\theta}^{\mathrm{sc}}, \ GN_{\beta,\theta}^{\mathrm{sc,op}} \subset G^{\mathrm{sc}}$$

ne dépendent pas du choix de θ .

On peut les noter simplement

$$GN_{eta}\,,\quad GN_{eta}^{
m op}$$

$$P_{eta}\,,\qquad P_{eta}^{
m op}$$
 et $GN_{eta}^{
m sc}\,,\quad GN_{eta}^{
m sc,op}\,.$

En toute place $x \in |F|$ où le groupe réductif connexe G, l'homomorphisme de transfert $\rho : \hat{G} \rtimes \Gamma_F \to GL_r(\mathbb{C})$ et l'extension finie galoisienne E de F sont non ramifiés, le plongement de tores

$$T_F^d \hookrightarrow T_x^d$$

se prolonge en un morphisme équivariant de variétés toriques

$$\mathbb{A}_{G_F} = \prod_{\alpha \in \Delta_{G_F} = \Delta_G/\Gamma_{E/F}} \mathbb{A}^1 \hookrightarrow \prod_{\alpha \in \Delta_{G_{F_x}} = \Delta_G/\sigma_x} \mathbb{A}^1 = \mathbb{A}_{G_{F_x}}.$$

De même, pour toute paire ρ -admissible (\underline{r}, β) , on a un morphisme équivariant

$$\Omega^{T_F^d,\rho}_{\underline{r},\beta} \to \Omega^{T_x^d,\rho}_{\underline{r},\beta}$$
.

Le morphisme produit

$$\Omega^{T_F^d,\rho}_{\underline{r},\beta}\times \mathbb{A}_{G_F} \to \Omega^{T_x^d,\rho}_{\underline{r},\beta}\times \mathbb{A}_{G_{F_x}}$$

envoie la variété torique $\tilde{\Omega}_{r,\beta}^{T_f^d,\rho}$ dans $\tilde{\Omega}_{r,\beta}^{T_x^d,\rho}.$

En particulier, si θ est une partie de $\Delta_{G_F} = \Delta_G/\Gamma_{E/F}$ telle que $(\omega_{\underline{r},\beta}, 1_{\theta})$ soit un point base de $\tilde{\Omega}_{\underline{r},\beta}^{T_F^d,\rho}$, la partie correspondante θ_x de $\Delta_{G_{F_x}} = \Delta_G/\sigma_x$ définit un point base de $\tilde{\Omega}_{r,\beta}^{T,\rho}$.

Pour tout polynôme symétrique $p_x \in \mathbb{C}[\Lambda_x^\vee]^{\mathfrak{S}_G^x} = \mathbb{C}[\hat{T}_x^d]^{\mathfrak{S}_G^x}$, on dispose alors de la fonction

$$K_{x,p_x,\beta}^{G,\rho,\psi_x}:G(F_x) imes G(F_x) imes \mathrm{GL}_r(F_x) o \mathbb{C}$$

définie dans les théorèmes VII.14 et VII.15 du précédent paragraphe.

Lemme VII.21. – Dans la situation de la définition et du lemme qui précèdent, soit x une place de F où le groupe réductif connexe G, l'homomorphisme de transfert $\rho: \hat{G} \rtimes \Gamma_F \to \operatorname{GL}_r(\mathbb{C})$ et l'extension finie galoisienne E de F sont non ramifiés.

Alors, pour toute paire ρ -admissible (\underline{r}, β) , la fonction

$$K_{x,p_x,\beta}^{G,\rho,\psi_x}:G(F_x)\times G(F_x) imes \mathrm{GL}_r(F_x) o \mathbb{C}$$

est invariante à gauche par l'image du sous-groupe

$$G_{\beta}^{\rm sc}(F_x) \times G_{\beta}^{\rm sc}(F_x)$$

$$de\ G^{\rm sc}(F_x) \times G^{\rm sc}(F_x).$$

Si θ est une partie de $\Delta_{G_F} = \Delta_G/\Gamma_{E/F}$ telle que $(\omega_{r,\beta}, 1_{\theta})$ soit un point base de $\tilde{\Omega}_{r,\beta}^{T_{\theta}^f,\rho}$, on sait aussi d'après le théorème VII.14(ii) que la fonction $K_{x,p_x,\beta}^{G,\rho,\psi_x,\theta} = K_{x,p_x,\beta}^{G,\rho,\psi_x}$ est invariante à gauche par $N_{\theta}(F_x) \times N_{\theta}^{\text{op}}(F_x)$ et par $M_{\theta}(F_x)$ plongé diagonalement.

Cette fonction est donc invariante à gauche par l'image du sous-groupe

$$GN_{\beta}^{\rm sc}(F_x) \times GN_{\beta}^{\rm sc,op}(F_x)$$

de $G^{\rm sc}(F_x) \times G^{\rm sc}(F_x)$ ainsi que par le sous-groupe

$$P_{\beta}(F_x) \cap P_{\beta}^{\text{op}}(F_x) = G_{\beta}(F_x) \cdot M_{\theta}(F_x)$$

plongé diagonalement dans $G(F_x) \times G(F_x)$ puisque ce sous-groupe est engendré par $M_{\theta}(F_x)$ et l'image de $G_{\beta}^{\rm sc}(F_x)$.

Supposons maintenant que le groupe réductif connexe quasi-déployé G sur F est non ramifié en toute place $x \in |F|$, de même que l'homomorphisme de transfert ρ et l'extension finie E de F.

Si $p = (p_x)_{x \in |F|}$ est une famille de polynômes symétriques $p_x \in \mathbb{C}[\Lambda_x^\vee]^{\mathfrak{S}_G^x}$ presque tous égaux à 1, et (\underline{r}, β) est une paire ρ -admissible, on peut définir une fonction

$$K_{p,\beta}^{G,\rho,\psi}:G(\mathbb{A})\times G(\mathbb{A})\times \mathrm{GL}_r(\mathbb{A})\to\mathbb{C}$$

en formant le produit

$$K_{p,\beta}^{G,\rho,\psi} = \prod_{x \in |F|} K_{x,p_x,\beta}^{G,\rho,\psi_x} \,.$$

D'après le lemme ci-dessus, cette fonction $K_{p,\beta}^{G,\rho,\psi}$ est invariante à gauche par l'image du sous-groupe $G_{\beta}^{\rm sc}(\mathbb{A}) \times G_{\beta}^{\rm sc}(\mathbb{A})$ de $G^{\rm sc}(\mathbb{A}) \times G^{\rm sc}(\mathbb{A})$.

Proposons la conjecture suivante :

Conjecture VII.22. – Considérons un groupe réductif connexe G sur F qui est

- quasi-déployé sur F,
- non ramifié en toute place $x \in |F|$,

ainsi qu'un homomorphisme de transfert partout non ramifié

$$\rho: \hat{G} \rtimes \Gamma_F^{\mathrm{nr}} \to \mathrm{GL}_r(\mathbb{C}).$$

On fait l'hypothèse que cet homomorphisme de transfert ρ est "minimal" au sens de la définition VII.1. Alors, pour toute famille $p=(p_x)_{x\in |F|}$ de polynômes symétriques $p_x\in \mathbb{C}[\Lambda_x^\vee]^{\mathfrak{S}_G^x}$ presque tous égaux à 1, il existe une (unique) fonction

$$K_p^{G,\rho}: G(\mathbb{A}) \times G(\mathbb{A}) \times \mathrm{GL}_r(\mathbb{A}) \to \mathbb{C}$$

telle que :

• C'est un "noyau du transfert non ramifié par ρ " au sens de la définition II.18 du paragraphe II.6; en particulier, elle est invariante à gauche par $G(F) \times G(F) \times GL_r(F)$.

• Son coefficient de Fourier régulier

$$(g_1, g_2, g') \mapsto W_{(r)} K_p^{G, \rho}(g_1, g_2, g') = \int_{N_r(F) \setminus N_r(\mathbb{A})} du \cdot \psi_{(r)}(u) \cdot K_p^{G, \rho}(g_1, g_2, ug')$$

est égal à la somme

$$\sum_{\gamma \in G(F)} K_{p,(r)}^{G,\rho,\psi}(g_1^{-1} \gamma g_2, g')$$

où

$$(g,g') \mapsto K_{p,(r)}^{G,\rho,\psi}(g,g') = \prod_{x \in |F|} K_{x,p_x}^{G,\rho,\psi_x}(g,g')$$

est la fonction introduite dans la discussion qui précède l'énoncé du lemme IV.6 du paragraphe IV.3.

ullet Pour toute partition non triviale \underline{r} de l'entier r, le coefficient de Fourier de type \underline{r}

$$(g_1, g_2, g') \mapsto W_{\underline{r}} K_p^{G, \rho}(g_1, g_2, g') = \int_{N_r(F) \setminus N_r(\mathbb{A})} du \cdot \psi_{\underline{r}}(u) \cdot K_p^{G, \rho}(g_1, g_2, ug')$$

est égal à la somme, sur toutes les familles $\beta = (\beta_s)_{s \in \underline{r}}$ de parties non vides $\beta_s \subset \{S\}_s^r$ telles que la paire (\underline{r}, β) soit ρ -admissible, des expressions

$$\frac{1}{\# \operatorname{Ker} \left(G_{\beta}^{\operatorname{sc}}(F) \to G_{\beta}(F) \right)} \cdot \sum_{\gamma_{1} \in P_{\beta}(F) \backslash G(F)} \sum_{\gamma_{2} \in \operatorname{Coker} \left(GN_{\beta}^{\operatorname{sc,op}}(F) \to G(F) \right)} K_{p,\beta}^{G,\rho,\psi} \left(\gamma_{1} g_{1}, \gamma_{2} g_{2}, g' \right).$$

Bibliographie

- A. Borel et W. Casselman (éditeurs), 1978, "Automorphic forms, representations and L-functions", Proceedings of symposia in pure mathematics, volumes 33.I et 33.II, AMS.
- M. Brion et S. Kumar, 2005, "Frobenius splitting methods in geometry and representation theory", Progress in mathematics, volume 231, Birkhäuser.
- W. Casselman et J.A. Shalika, "The unramified principal series of *p*-adic groups II: the Whittaker function", Compositio mathematica 41, fascicule 2, p. 207-231.
- J.W. COGDELL et I.I. PIATETSKI-SHAPIRO, 1994, "Converse theorems for GL_n ", Publications mathématiques de l'IHES, numéro 79, p. 157-214.
- C. DE CONCINI et C. PROCESI, 1983, "Complete symmetric varieties", p. 1-44 dans "Invariant theory", LNM 996, Springer-Verlag.
- J.E. Humphreys, 1975, "Linear algebraic groups", GTM 21, Springer-Verlag.
- H. JACQUET et R.P. LANGLANDS, 1970, "Automorphic forms on GL(2)", LNM 114, Springer-Verlag.
- H. Jacquet, I.I. Piatetski-Shapiro et J.A. Shalika, 1983, "Rankin-Selberg convolutions", American journal of mathematics 105, p. 367-464.
- L. LAFFORGUE, 1998, "Une compactification des champs classifiant les chtoucas de Drinfeld", Journal of the AMS, volume 11, numéro 4, p. 1001-1036.
- L. LAFFORGUE, 2002, "Chtoucas de Drinfeld et correspondance de Langlands", Inventiones mathematicae 147, fascicule 1, p. 1-242.
- L. LAFFORGUE, 2007, "Quelques remarques sur le principe de fonctorialité", prépublication de l'IHES numéro M/07/31, à paraître dans un volume de la collection "Astérisque" de la SMF.
- L. LAFFORGUE, 2008, "Construire un noyau de la fonctorialité? Le cas de l'induction automorphe sans ramification de GL_1 à GL_2 ", texte disponible sur le site de l'auteur (www.ihes.fr/ \sim lafforgue/publications.html), à paraître dans les "Annales de l'Institut Fourier".
- R.P. Langlands, 1970, "Problems in the theory of automorphic forms", p. 18-61 dans "Lectures in modern analysis and applications III", LNM 170, Springer-Verlag.
- R.P. Langlands, 2004, "Beyond endoscopy", in "Contributions to automorphic forms, geometry and number theory", p. 611-697, John Hopkins University Press.
- I.G. MACDONALD, 1971, "Spherical functions on a group of *p*-adic type", Ramanujan Institute publications, University of Madras.
- C. Moeglin et J.-L. Waldspurger, 1993, "Décomposition spectrale et séries d'Eisenstein", Progress in mathematics, volume 113, Birkhäuser.
- I. Satake, 1963, "Theory of spherical functions on reductive algebraic groups over p-adic fields", Publications mathématiques de l'IHES, tome 18, p. 5-70.
- J. Shalika, 1974, "The multiplicity one theorem for GL_n", Annals of mathematics, volume 100, p. 171-193.
- T. Shintani, 1976, "On an explicit formula for class-1 Whittaker functions on GL_n over p-adic fields", Proceedings of the Japan Academy, volume 52, p. 180-182.
- J. Tate, 1950, "Fourier analysis in number fields and Hecke's zeta-functions", thèse de doctorat (Princeton) reproduite dans : J.W.S. Cassels et A. Fröhlich (éditeurs), "Algebraic number theory", Academic Press (1967), p. 305-347.