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Résumé. On étudie la méthode de Langlands-Shahidi sur les corps de

fonctions de caractéristique p. On preuve la fonctorialité de Langlands

globale et locale des groupes unitaires vers groupes linéaires pour les

représentations génériques. Supposant la conjecture de Shahidi pour les

L-paquets modérés, on donne une extension de la définition des fonctions

L et facteurs ε. Enfin, utilisant le travail de L. Lafforgue, on établit la

conjecture de Ramanujan et on prouve que les fonctions L automorphes

de Langlands-Shahidi satisfont l’hypothèse the Riemann.

Abstract. We study the Langlands-Shahidi method over a global field

of characteristic p. We prove global and local Langlands functoriality

from unitary groups to general linear groups for generic representations.

Assuming Shahidi’s tempered L-packet conjecture, we provide an exten-

sion of the definition of L-functions and ε-factors. Finally, thanks to the

work of L. Lafforgue, we establish the Ramanujan conjecture and prove

that Langlands-Shahidi automorphic L-functions satisfy the Riemann

Hypothesis.

Introduction

We make the Langlands-Shahidi method available over function fields. The
method was developed by Shahidi in the case of number fields over the course
of several decades. Previously, the LS method in characteristic p was only well
understood for the split classical groups.

Let G be a connected reductive group defined over a function field k. Let
P = MN be a maximal parabolic subgroup of G and let LG denote its Langlands
dual group. The LS method allows us to study automorphic L-functions arising
from the adjoint action r = ⊕ ri of LM on Ln, where Ln is the Lie algebra of
the unipotent radical LN on the dual side. Let π be any globally generic cuspidal
automorphic representation of M(Ak). The Langlands-Shahidi method provides a
definition of global L-functions and root numbers

L(s, π, ri) and ε(s, π, ri), s ∈ C.

Locally, we obtain a system of γ-factors, L-functions and ε-factors at every place v
of k. Let ψ = ⊗vψv = k\Ak → C× be a character, where Ak is the ring of adèles.
Then we have

γ(s, πv, ri.v, ψv), L(s, πv, ri,v) and ε(s, πv, ri,v, ψv).
1
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The connection between the local and global theory can be seen via the global
functional equation

LS(s, π, ri) =
∏
v∈S

γ(s, πv, ri,v, ψv)L
S(1− s, π̃, ri).

The partial L-function being defined by

LS(s, π, ri) =
∏
v/∈S

L(s, πv, ri,v)

and local factors for tempered representations satisfy the following relation

ε(s, πv, ri,v, ψv) = γ(s, πv, ri,v, ψv)
L(s, πv, ri,v)

L(1− s, π̃v, ri,v)
.

We begin in a purely local setting in sections 1 and 2, where we define local factors
over any non-archimedean local field F of characteristic p via the Langlands-Shahidi
local coefficient. We take π to be any generic representation of M(F ) and ψ an
additive character of F . The local coefficient

Cψ(s, π, w̃0)

is obtained via intertwining operators and the multiplicity one property for Whit-
taker models.

The rank one cases are addressed in Proposition 1.3, which shows compatibil-
ity of the Langlands-Shahidi local coefficient with the abelian γ-factors of Tate’s
thesis [60]. This result is essentially Propostion 3.2 of [41], which includes the
case of char(F ) = 2. Let W = {w̃α, dµα}α∈∆ be a system of Weyl group element
representatives w̃α together with Haar measures, indexed by the simple roots ∆.
Proposition 2.2 determines the behavior of the local coefficient as W varies. When
π is an unramified principal series representation, the local coefficient decomposes
into product of rank one cases.

Globally, there is a connection to Langlands’ theory of Eisenstein series over
function fields [16, 46]. In order to be more precise, let π be a globally generic
cuspidal representation of M(A). By choosing the appropriate test function in the
space of π one is able to obtain a relation between the global and local Whittaker
model, matching with the Casselman-Shalika formula at unramified places [6]. This
enables us to prove in § 3 the crude functional equation involving the Langlands-
Shahidi local coefficient and partial L-functions, Theorem 3.3. The connection
between Eisenstein series and partial L-functions is stated in Corollary 3.4.

We then turn towards the main result of the Langlands-Shahidi method in § 4.
Theorem 4.1 establishes the existence and uniqueness of a system of γ-factors, L-
functions and root numbers. One ingredient in its proof is a very useful local to
global result, Lemma 4.2, which allows us to lift any supercuspidal representation
π0 to a cuspidal automorphic representation π with controlled ramification at all
other places; if π0 is generic, then π is globally generic. Another ingredient is
a recursive argument that is already present in Arthur’s work, using endoscopic
groups, in addition to Shahidi [53]; Lemma 4.4 allows us to produce individual
functional equations for each ri. We define local γ-factors recursively by means
of the local coefficient and they connect to the global theory via the functional
equation.

An inspiring list of axioms for γ-factors that uniquely characterize them can be
found in [36]. Work on the uniqueness of Rankin-Selberg L-functions for general
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linear groups [21], led us to extend the characterization in a natural way to include
L-functions and ε-factors beginning with the classical groups in [40]. We provide a
simple proof of the local to global result for quasi-split reductive groups, originally
written in [21] for GLn and generalized in [14] as mentioned in § 4.2. Lemma 4.2
has allowed us to reduce the number of required axioms.

We conclude with the general treatment of the Langlands-Shahidi method over
function fields in § 5, where we study their analytic properties and applications.
Langlands-Shahidi autmorphic L-functions over function fields are rational, a prop-
erty we prove based on Harder’s rationality for Eisenstein series [16]. After twists
by highly ramified characters, our automorphic L-functions in characteristic p be-
come Laurent polynomials. Locally, a consequence of having a theory of L-functions
leads towards reducibility results and Shahidi’s applications to complementary se-
ries [53]. If we assume the Ramanujan conjecture, our automorphic L-functions are
holomorphic for <(s) > 1; in § A.2 of the Appendix, we provide several examples
when this property is true.

The second part of the article is devoted to the unitary groups. We extend the
LS method to include the study of products of globally generic representations of
two unitary groups. We prove stable Base Change for globally generic reprensen-
tations of unitary groups. Globally, we base ourselves on previous work on the
classical groups over function fields and we guide ourselves with the work of Kim
and Krishnamurthy for the unitary groups in the case of number fields [28, 29].

Our approach is possible by combining the LS method and the Converse The-
orem of Cogdell and Piatetski-Shapiro [7]. Over number fields, functoriality for
the classical groups was established for globally generic representations by Cogdell,
Kim, Piatetski-Shapiro and Shahidi [9]; the work of Arthur establishes the gen-
eral case for not necessarily generic representations in [1]; and, Mok addresses the
endoscopic classification for the unitary groups in [45].

Over function fields, work of V. Lafforgue addresses the Langlands correspon-
dence from a connected reductive group to the Galois side [32]. The transfer σ of a
cuspidal representation π of a connected reductive group, has the property that σv
corresponds to πv at every unramified place. A stong lift would require the local
Langlands correspondence at every place, and not just unramified places. There
is the ongoing work of A. Genestier and V. Lafforgue, who aim to prove the local
Langlands correspondence in characteristic p. In contrast, in our approach we work
purely with techniques from Automorphic Forms and Representation Theory of p-
adic groups. The functorial lift is from globally generic cuspidal representations of
a unitary group UN to automorphic representations of Res GLN . We note that once
on the general linear group side, the work of L. Lafforgue [31] provides a one to one
global correspondence with Galois representations. Locally, we prove the Langlands
correspondence from generic representations of the quasi-split classical groups to
admissible representations of a general linear group. Again, once on the general
linear groups side, we have a one to one correspondence with Galois representations
[37]. And, we reduce the general case to the generic case via the tempered L-packet
conjecture. This is already a theorem for the split classical groups in characteristic
p, thanks to the work of Ganapathy-Varma [15]. For two alternative approaches to
the local Langlands correspondence for admissible representations of the quasi-split
classical groups, see §§ 7 and 8 of [14].
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Before studying L-functions for products of two unitary groups, we prepare in
§ 6 with the induction step of the LS method for the unitary groups. Namely,
the case of Asai and twisted Asai L-functions studied in [20, 41]. We also retrieve
from Theorem 4.1 the Rankin-Selberg product L-function of a unitary group and a
general linear group. We have the main theorem on extended γ-factors, L-functions
and root numbers, Theorem 7.3. Locally, we work with irreducible admissible
representations in general. However, the proof is completed in § 10.2 under the
assumption that the tempered L-packet conjecture holds to be true for the unitary
groups in positive characteristic. As mentioned above, cases of this conjecture
are already known. We then provide the list of axioms that uniquely characterize
extended local factors. In addition, we list three important properties: the local
functional equation; the global functional equation for completed L-functions; and,
stability of γ-factors after twits by highly ramified characters. A proof of the latter
property for all Langlands-Shahidi γ-factors in positive characteristic can be found
in [14]; we use this to obtain a very useful stable form of local factors for the unitary
groups after highly ramified twists.

In § 8, we establish stable Base Change for globally generic representations over
function fields. In fact, we first produce a “weak” base change (agreeing with the
local Base Change lift at every unramified place), before proving it is a “strong”
Base Change (agreeing at every place) in §§ 9 and 10. Let K/k be a separable qua-
dratic extension of function fields. Given a cuspidal automorphic representation π
of a unitary group UN , we construct a candidate admissible representation Π for
the Base Change to Res GLN . Namely, at every unramified place, let Âv be the
semisimple conjugacy class of πv in GLN (C) obtained via the Satake parametriza-
tion. The Weil group Wkv acts via the Galois group Gal(Kv/kv) = {1, θv}. We
have

Πv of GLN (Kv)

BC

πv of UN (kv)
{

(Âv, wθ,v)
}

of LUN

{
(Âv, Âv, wθ,v)

}
of LResKv/kvGLN

where we use the fact that there is a natural bijection between wθ,v-conjugacy
classes of LResKv/kvGLN = GLN (C) × GLN (C) oWkv and conjugacy classes of
LGLN = GLN (C) oWKv as in [42]. At ramified places we can basically take an
arbitrary representation Πv with the same central character as πv, since we can
locally incorporate stability under highly ramified twists.

For suitable twists by cuspidal automorphic representations τ of GLm, we have
that L(s,Π × τ) = L(s, π × τ). The Converse Theorem requires that these L-
functions be nice. Over a function field k with field of constants Fq, this means
they are rational on q−s and satisfy the global functional equation. The required
rationality property is Theorem 5.1 and the global functional equation is Prop-
erty (xii) of § 4.4. An important property that allows us to work with ramified
places is the stability of γ-factors after highly ramified twists. To summarize, we
are then able to apply the Converse Theorem and establish the existence of a weak
Base Change to Res GLN , Theorem 8.6.
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In § 9 we turn towards the local Langlands conjecture for the unitary groups, that
is, local Base Change. Let UN be a unitary group defined over a non-archimedean
local field F of characteristic p and let E/F be the underlying quadratic extension.
Let π be a generic representation of UN (F ). Then, Theorem 9.10 establishes the
local transfer{

generic representations
π of UN (F )

}
BC−−→

{
generic representations

Π of GLN (E)

}
The local Base Change Π = BC(π) is known as stable base change. It is uniquely
characterized by the property that it preserves local L-functions, γ-factors and root
numbers, just as in the case of GLN [19]. The proof is global in nature and we
use the weak global Base Change of Theorem 8.6 to deduce existence for generic
supercuspidals of UN (F ). We then go through the classification of representations
of unitary groups. In particular, the construction of discrete series by Mœglin
and Tadić [43] and the work on Muić on the standard module conjecture [48] play
an important role. The Basic Assumption (BA) of [43] is part of Theorem 5.8,
where we follow Shahidi for generic representations. In general, we verify (BA)
in [14] without the generic assumption. In addition, the work of M. Tadić [59]
on the classification of unitary representations of GLm is very useful. Local Base
Change in general is thus established recursively: Langlands’ classification reduces
to the tempered case; then, tempered representations are constructed via discrete
series, which in turn are constructed via supercuspidals. In this article, we focus on
generic representations, and we refer to §§ 7 and 8 of [14] for a discussion of local
Base Change in general.

Let K/k be a separable quadratic extension of global function fields. The weak
Base Change of Theorem 8.6 is proven to be the strong Base Change lift, i.e., it
is compatible with local Base Change at every place v of k. More precisely, in
Theorem 9.11, we have stable Base Change for globally generic representations of
unitary groups: globally generic cupsidal

automorphic representations
π of UN (Ak)

 BC−−→

 automorphic representations
Π = Π1 � · · ·�Πd

of GLN (AK)


We use the analytic properties of automorphic L-functions over function fields of
§ 5 in order to write Π = BC(π) as an isobaric sum of cuspidal automorphic
representations Πi of GLni(AK). The approach of this article also applies to the
classical groups over function fields and we refer to § A.3 for the proof of the strong
functorial lift.

In § 10 we conclude our study of L-functions for the unitary groups. In the
case of generic representations, both local and global, our treatment is entirely self
contained using only methods of Automorphic Forms and p-adic Representation
Theory. For representations that are not necessarily generic, we note in § 10.2
how to reduce the study of local L-functions, γ-factors and root numbers to the
case of generic representations. This part is written under the assumption that
Conjecture 10.3 is valid.

We conclude our treatise over function fields by transporting via Base Change
two important problems from the unitary groups to GLN . More precisely, we com-
bine our results with those of L. Lafforgue [31] to prove the Ramanujan Conjecture
and the Riemann Hypothesis for our automorphic L-functions.
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In the Appendix, we take the opportunity to go back and remove the restriction
of p 6= 2 that was present in our prior study of functoriality for the classical groups
[39], and applications [40]. In § A.2 we prove an important holomorphy property
of L-functions for the split classical groups as well as the unitary groups. In § A.3
we prove that the weak lift of [39] for the classical groups (resp. Theorem 8.6 for
the unitary groups) agrees with the local Langlands functorial lift, thus completing
the proof of the strong functorial lift.
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1. The Langlands-Shahidi local coefficient

In this section and the next we revisit the theory of the Langlands-Shahidi local
coefficient [52]. Now in characteristic p, basing ourselves in [39, 41]. After some
preliminaries, we normalize Haar measures and choose Weyl group element repre-
sentatives for rank groups in § 1.3. The local coefficient is compatible with Tate’s
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thesis in these cases. In § 2 we will turn towards the subtle issues that arise when
gluing these pieces together.

1.1. Local notation. Throughout the article we let F denote a non-archimedean
local field of characteristic p. The ring of integers is denoted by OF and a fixed
uniformizer by $F . Given a maximal Levi subgroup M of a quasi-split connected
reductive group scheme G, we let Lloc(p,M,G) denote the class of triples (F, π, ψ)
consisting of: a non-archimedean local field F , with char(F ) = p; a generic represen-
tation π of M = M(F ); and, a smooth non-trivial additive character ψ : F → C×.

When M and G are clear from context, we will write Lloc(p) for Lloc(p,M,G).
We say (F, π, ψ) ∈ Lloc(p) is supercuspidal (resp. discrete series, tempered, princi-
pal series) if π is a supercuspidal (resp. discrete series, tempered, principal series)
representation.

Let us now fix the quasi-split connected reductive groups scheme G. Let B = TU
be a fixed Borel subgroup of G with maximal torus T and unipotent radical U.
Parabolic subgroups P of G will be standard, i.e., P ⊃ B. We write P = MN,
where M is the corresponding Levi subgroup and N its unipotent radical. Given
an algebraic group H, we let H denote its group of rational points, e.g., H = H(F ).

Let Σ denote the roots of G with respect to the split component Ts of T and
∆ the simple roots. Let Σr denote the reduced roots. The positive roots are
denoted Σ+ and the negative roots Σ−, and similarly for Σ+

r and Σ−r . The fixed
borel B corresponds to a pinning of the roots with simple roots ∆. Standard
parabolic subgroups are then in correspondence with subsets θ ⊂ ∆; θ ↔ Pθ. The
opposite of a parabolic Pθ and its unipotent radical Nθ are denoted by P−θ and

N−θ , respectively.
Given the choice of Borel there is a Chevalley-Steinberg system. To each α ∈ Σ+

there is a subgroup Nα of U, stemming from the Bruhat-Tits theory of a not
necessarily reduced root system. Given smooth characters ψα : Nα/N2α → C×,
α ∈ ∆, we can construct a character of U via

(1.1) U� U/
∏

α∈Σ+−∆

Nα
∼=
∏
α∈∆

Nα/N2α

and taking ψ =
∏
α∈∆ ψα.

The character ψ is called non-degenerate if each ψα is non-trivial. We often
begin with a non-trivial smooth character ψ : F → C×. When this is the case,
unless stated otherwise, it is understood that the character ψ of U is obtained from
the additive character ψ of F by setting

∏
α∈∆ ψ in (1.1).

Fix a non-degenerate character ψ : U → C× and consider ψ as a one dimensional
representation on U . Recall that an irreducible admissible representation π of G is
called ψ-generic if there exists an embedding

π ↪→ IndGU (ψ).

This is called a Whittaker model of π. More precisely, if V is the space of π then
for every v ∈ V there is a Whittaker functional Wv : G→ C with the property

Wv(u) = ψ(u)Wv(e), for u ∈ U.
It is the multiplicity one result of Shalika [56] which states that the Whittaker
model of a representation π is unique, if it exists. Hence, up to a constant, there is
a unique functional

λ : V → C
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satisfying

λ(π(u)v) = ψ(u)λ(v).

We have that

Wv(g) = λ(π(g)v), for g ∈ G.
Given θ ⊂ ∆ let Pθ = MθNθ be the associated standard parabolic. Let Aθ be

the torus (∩α∈∆ker(α))◦, so that Mθ is the centralizer of Aθ in G. Let X(Mθ) be
the group of rational characters of Mθ, and let

a∗θ,C = X(Mθ)⊗ C.

There is the set of cocharacters X∨(Mθ). And there is a pairing 〈·, ·〉 : X(Mθ) ×
X∨(Mθ)→ Z, which assigns a coroot α∨ to every root α.

Let Xnr(Mθ) be the group of unramified characters of Mθ. It is a complex
algebraic variety and we have Xnr(Mθ) ∼= (C×)d, with d = dimR(a∗θ). To see
this, for every rational character χ ∈ X(Mθ) there is an unramified character
q〈χ,Hθ(·)〉 ∈ Xnr(Mθ), where

q〈χ,Hθ(m)〉 = |χ(m)|F .

This last relation can be extended to a∗θ,C by setting

q〈s⊗χ,Hθ(m)〉 = |χ(m)|sF , s ∈ C.

We thus have a surjection

(1.2) a∗θ,C � Xnr(Mθ).

Recall that, given a parabolic Pθ, the modulus character is given by

δθ(p) = q〈ρθ,Hθ(m)〉, p = mn ∈ Pθ = MN,

where ρθ is half the sum of the positive roots in θ.
In [44] the variable appearing in the corresponding Eisenstein series ranges over

the elements of Xnr(Mθ). Already in Tate’s thesis [60], the variable ranges over the
quasi-characters of GL1. The surjection (1.2) allows one to use complex variables.
In particular, our L-functions will be functions of a complex variable. For this we
start by looking at a maximal parabolic subgroup P = MN of G. In this case,
there is a simple root α such that P = Pθ, where θ = ∆−{α}. We fix a particular
element α̃ ∈ a∗θ,C defined by

(1.3) α̃ = 〈ρθ, α∨〉
−1
ρθ.

For general parabolics Pθ we can reduce properties of L-functions to maximal
parabolics via multiplicativity (Property (iv) of Theorem 4.1).

We make a few conventions concerning parabolic induction that we will use
throughout the article. Let (π, V ) be a smooth admissible representation of M =
Mθ and let ν ∈ a∗θ,C. By parabolic induction, we mean normalized unitary induction

indGP (π),

where we extend the representation π to P = MN by making it trivial on N . Also,
whenever the parabolic subgroup P and ambient group G are clear from context,
we will simply write

Ind(π) = indGP (π).
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We also incorporate twists by unramified characters. For any ν ∈ a∗θ,C, we let

I(ν, π) = indGPθ (q
〈ν,Hθ(·)〉
F ⊗ π)

be the representation with corresponding space V(ν, π). Finally, if P is maximal,
we write

I(s, π) = I(sα̃, π), s ∈ C,
with α̃ as in equation (1.3); its corresponding space is denoted by V(s, π). Further-
more, we write I(π) for I(0, π).

1.2. The Langlands-Shahidi local coefficient. Let W denote the Weyl group
of Σ, which is generated by simple reflections wα ∈ ∆. And, let Wθ denote the
subgroup of W generated by wα, α ∈ θ. We let

(1.4) w0 = wlwl,θ,

where wl and wl,θ are the longest elements of W and Wθ, respectively. Choice of
Weyl group element representatives in the normalizer N(Ts) will be addressed in
section 2, in order to match with the semisimple rank one cases of § 1.3. For now,
we fix a system of representatives W = {w̃α, dµα}α∈∆.

There is an intertwining operator

A(ν, π, w̃0) : V(ν, π)→ V(w̃0(ν), w̃0(π)),

where w̃0(π)(x) = π(w̃−1
0 xw̃0). Let Nw0

= U ∩ w0N
−
θ w
−1
0 , then it is defined via

the principal value integral

A(ν, π, w̃0)f(g) =

∫
Nw0

f(w̃−1
0 ng) dn.

With fixed ψ of U , let ψw̃0 be the non-degenerate character on the unipotent
radical Mθ ∩ U of Mθ defined by

(1.5) ψw̃0(u) = ψ(w̃0uw̃
−1
0 ), u ∈Mθ ∩ U.

This makes ψ and ψw̃0 w̃0-compatible.
Given an irreducible ψw̃0

-generic representation (π, V ) of Mθ, Theorem 1.4 of
[39] gives that I(ν, π), ν ∈ a∗θ,C, is ψ-generic and establishes an explicit principal
value integral for the resulting Whittaker functional

(1.6) λψ(ν, π, w̃0)f =

∫
Nθ′

λψw̃0
(f(w̃−1

0 n))ψ(n) dn,

where θ′ = w0(θ).

Definition 1.1. For every ψw̃0
-generic (F, π, ψ) ∈ Lloc(p), the Langlands-Shahidi

local coefficient Cψ(s, π, w̃0) is defined via the equation

(1.7) λψ(sα̃, π, w̃0) = Cψ(s, π, w̃0)λψ(sw̃0(α̃), w̃0(π), w̃0)A(sα̃, π, w̃0),

where sα̃ ∈ a∗θ,C for every s ∈ C.

Remark 1.2. When it is clear from context, we identify s ∈ C with the element
sα̃ ∈ a∗θ,C. We thus write λψ(s, π, w̃0) for λψ(sα̃, π, w̃0) and I(s, π) for I(sα̃, π).

Similarly, we identify s′ with sw̃0(α̃) ∈ a∗θ′,C and let π′ = w̃0(π). Hence, we simply

write λψ(s′, π′, w̃0) instead of λψ(sw̃0(α̃), w̃0(π), w̃0).
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Let (F, π, ψ) ∈ Lloc(p) be ψw̃0
-generic. From Theorem 1.4 of [39] we know

that λψ(s, π, w̃0) is a polynomial in
{
qsF , q

−s
F

}
for a test function fs ∈ I(s, π). By

Theorem 2.1 of [39], the Langlands-Shahidi local coefficient Cψ(s, π, w̃0) is a rational
function on q−sF , independent of the choice of test function.

1.3. Rank one cases and compatibility with Tate’s thesis. Let F ′/F be a
separable extension of local fields. Let G be a connected quasi-split reductive group
of rank one defined over F . The derived group is of the following form

GD = ResF ′/FSL2 or ResF ′/FSU3.

Note that given a degree-2 finite étale algebra E over the field F ′, we consider
the semisimple group SU3 given by the standard Hermitian form h for the unitary
group in three variables as in § 4.4.5 of [11]. Given the Borel subgroup B = TU of
G, the group GD shares the same unipotent radical U. The F rational points of
the maximal torus TD are given by

TD =
{

(diag(t, t−1) | t ∈ F ′×
}
,

in the former case, and by

TD =
{

(diag(z, z̄z−1, z̄−1) | z ∈ E×
}

in the latter case.
We now fix Weyl group element representatives and Haar measures. In these

cases, ∆ is a singleton {α}, and we note that the root system of SU3 is not reduced.
If GD = ResF ′/FSL2, we set

(1.8) w̃α =

(
0 1
−1 0

)
,

and, if GD = ResF ′/FSU3, we set

(1.9) w̃α =

 0 0 1
0 −1 0
1 0 0

 .

Given a fixed non-trivial character ψ : F → C×, we then obtain a self dual
Haar measure dµψ of F , as in equation (1.1) of [41]. In particular, for SL2 we have
the unipotent radical Nα, which is isomorphic to the the unique additive abelian
group Ga of rank 1. Here, we fix the Haar measure dµψ on Ga ∼= F . Given a
separable extension F ′/F , we extend ψ to a character of F ′ via the trace, i.e.,
ψF ′ = ψ ◦ TrF ′/F . We also have a self dual Haar measure µψF ′ on Ga(F ′) ∼= F ′.

Given a degree-2 finite étale algebra E over the field F , assume we are in the
case GD = SU3. The unipotent radical is now N = NαN2α, with Nα and N2α

the one parameter groups associated to the non-reduced positive roots. We use the
trace to obtain a character ψE : E → C× from ψ. We then fix measures dµψ and
dµψE , which are made precise in § 3 of [41] for Nα and N2α. We then extend to
the case GD = ResF ′/FSU3 by taking ψF ′ = ψ ◦ TrF ′/F and ψE = ψF ′ ◦ TrE/F ′ .
Furthermore, we have corresponding self dual Haar measures dµψF ′ and dµψE for
ResF ′/FNα(F ) ∼= Nα(F ′) and ResF ′/FN2α(F ) ∼= N2α(E).

We also have the Langlands factors λ(F ′/F , ψ) defined in [34]. LetWF ′ andWF

be the Weil groups of F ′ and F , respectively. Recall that if ρ is an n-dimensional
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semisimple smooth representation of WF ′ , then

λ(F ′/F, ψ)n =
ε(s, IndWF

WF ′
ρ, ψ)

ε(s, ρ, ψF ′)
.

On the right hand side we have Galois ε-factors, see Chapter 7 of [5] for further
properties. Given a degree-2 finite étale algebra E over F ′, the factor λ(E/F ′, ψ)
and the character ηE/F ′ have the meaning of equation (1.8) of [41].

The next result addresses the compatibility of the Langlands-Shahidi local coeffi-
cient with the abelian γ-factors of Tate’s thesis [60]. It is essentially Propostion 3.2
of [41], which includes the case of char(F ) = 2.

Proposition 1.3. Let (F, π, ψ) ∈ Lloc(p,T,G), where G is a quasi-split connected
reductive group defined over F whose derived group GD is either ResF ′/FSL2 or
ResF ′/FSU3.

(i) If GD = ResF ′/FSL2, let χ be the smooth character of TD given by π|TD .
Then

CψF ′ (s, π, w̃0) = γ(s, χ, ψF ′).

(ii) If GD = ResF ′/FSU3, χ and ν be the smooth characters of E× and E1,
respectively, defined via the relation

π|TD (diag(t, z, t̄−1)) = χ(t)ν(z).

Extend ν to a character of E× via Hilbert’s theorem 90. Then

CψF ′ (s, π, w̃0) = λ(E/F ′, ψF ′) γE(s, χν, ψE) γ(2s, ηE/F ′χ|F ′× , ψF ′).

The computations of [41] rely mostly on the unipotent group U, which is in-
dependent of the group G. However, there is a difference due to the variation of
the maximal torus in the above proposition. For example, all smooth representa-
tions π of SL2(F ) are of the form π(diag(t, t−1)) = χ(t) for a smooth character
χ of GL1(F ); then Cψ(s, π, w̃0) = γ(s, χ, ψ). However, in the case of GL2(F ) we
have π(diga(t1, t2)) = χ1(t1)χ2(t2) for smooth characters χ1 and χ2 of GL1(F );
then Cψ(s, π, w̃0) = γ(s, χ1χ

−1
2 , ψ). Note that the semisimple groups of rank one in

the split case, ranging from adjoint type to simply connected, are PGL2, GL2 and
SL2. The cases PGL2

∼= SO3 and SL2 = Sp2 are also included in Propostion 3.2 of
[loc.cit.]. Of particular interest to us in this article are ResE/FGL2(F ) ∼= GL2(E),
U2(F ) and U3(F ), which arise in connection with the quasi-split unitary groups.

Given an unramified character π of T = T(F ), we have a parameter

(1.10) φ :WF → LT

corresponding to π. Let u denote the Lie algebra of U and let r be the adjoint
action of LT on Lu. Then r is irreducible if GD = ResF ′/FSL2 and r = r1 ⊕ r2 if
ResF ′/FSU3. As in [24], we normalize Langlands-Shahidi γ-factors in order to have
equality with the corresponding Artin factors.

Definition 1.4. Let (F, π, ψ) ∈ Lloc(p,T,G) be as in Proposition 1.3:

(i) If GD = ResF ′/FSL2, let

γ(s, π, r, ψ) = λ(F ′/F, ψ)γ(s, χ, ψF ′).

(ii) If GD = ResF ′/FSU3, let

γ(s, π, r1, ψ) = λ(E/F, ψ)γ(s, χν, ψE)
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and

γ(s, π, r2, ψ) = λ(F/F ′, ψ) γ(s, ηE/F ′χ|F ′× , ψF ′).

In this way, with φ as in (1.10), we have for each i:

γ(s, π, ri, ψ) = γ(s, ri ◦ φ, ψ).

The γ-factors on the right hand side are those defined by Deligne and Langlands
[61]. We can then obtain corresponding L-functions and root numbers via γ-factors,
see for example § 1 of [41].

2. Normalization of the local coefficient

We begin with Langlands lemma. This will help us choose a system of Weyl
group element representatives in a way that the local factors agree with the rank
one cases of the previous section. We refer to Shahidi’s algorithmic proof of [52],
for Lemma 2.1 below. In Proposition 2.2, we address the effect of varying the
non-degenerate character on the Langlands-Shahidi local coefficient, in addition to
changing the system of Weyl group element representatives and Haar measures. We
then recall the multiplicativity property of the local coefficient, and we use this to
connect between unramified principal series and rank one Proposition 1.3.

2.1. Weyl group element representatives and Haar measures. Recall that
given two subsets θ and θ′ of ∆ are associate if W (θ, θ′) = {w ∈W |w(θ) = θ′} is
non-empty. Given w ∈W (θ, θ′), define

Nw = U ∩ wN−θ w
−1 Nw = w−1Nww.

The corresponding Lie algebras are denoted nw and nw.

Lemma 2.1. Let θ, θ′ ⊂ ∆ are associate and let w ∈ W (θ, θ′). Then, there exists
a family of subsets θ1, . . . , θd ⊂ ∆ such that:

(i) We begin with θ1 = θ and end with θd = θ′.
(ii) For each j, 1 ≤ j ≤ d− 1, there exists a root αj ∈ ∆− θj such that θj+1 is

the conjugate of θj in Ωj = {αj} ∪ θj.
(iii) Set wj = wj,Ωjwl,θj in W (θj , θj+1) for 1 ≤ j ≤ d−1, then w = wd−1 · · ·w1.

(iv) If one sets ẇ1 = w and ẇj+1 = ẇjw
−1
j for 1 ≤ j ≤ d− 1, then ẇd = 1 and

nẇj = nwj ⊕Ad(w−1
j )nẇj+1 .

For each α ∈ ∆ there corresponds a group Gα whose derived group is simply
connected semisimple of rank one. We fix an embedding Gα ↪→ G. A Weyl group
element representative w̃α is chosen for each wα and the Haar measure on the unipo-
tent radical Nα are normalized as indicated in § 1.3. We take the corresponding
measure on N−α inside Gα. Fix

(2.1) W = {w̃α, dµα}α∈∆

to be this system of Weyl group element representatives in the normalizer of N(Ts)
together with fixed Haar measures on each Nα.

We can apply Lemma 2.1 by taking the Borel subgroup B of G for the w0 as in
equation (1.4), i.e., we use θ = ∅. In this way, we obtain a decomposition

(2.2) w0 =
∏
β

w0,β ,
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where β is seen as an index for the product ranging through β ∈ Σ+
r . For each such

w0,β , there corresponds a simple reflection wα for some α ∈ ∆.
From Langlands lemma and equation (2.2) we further obtain a decomposition of

N in terms of N ′β , β ∈ Σ+
r , where each N ′β corresponds to the unipotent group of

Nα of Gα, for some α ∈ ∆. In this way, the measure on N is fixed by W and we
denote it by

(2.3) dn = dµN (n).

The decomposition of (2.2) is not unique. However, the choice W of representatives
determines a unique w̃0.

We now summarize several facts known to the experts about the Langlands-
Shahidi local coefficient in the following proposition.

Proposition 2.2. Let (F, π, ψ) ∈ Lloc(p,M,G). Let W′ = {w̃′α, dµ′α}α∈∆ be an
arbitrary system of Weyl group element representatives and Haar measures. Let
φ : U → C× be a non-degenerate character and assume that π is φw̃′0-generic.

Let G̃ be a connected quasi-split reductive group defined over F , sharing the same

derived group as G, and with maximal torus T̃ = ZG̃T. Then, there exists an

element x ∈ T̃ such that the representation πx, given by

πx(g) = π(x−1gx)

is ψw̃0
-generic. And, there exists a constant ax(φ,W′) such that

Cφ(s, π, w̃′0) = ax(φ,W′)Cψ(s, πx, w̃0).

Let (F, πi, ψ) ∈ L (p), i = 1, 2. If π1
∼= π2 and are both ψw̃0

-generic, then

Cψ(s, π1, w̃0) = Cψ(s, π2, w̃0).

Proof. The existence of a connected quasi-split reductive group G̃ of adjoint type,
sharing the same derived group as G, is due thanks to Proposition 5.4 of [55]. Its

maximal torus is given by T̃ = ZG̃T. Let (F, π, ψ) ∈ Lloc(p), where (π, V ) is

φw̃′0-generic. Because G̃ is of adjoint type, the character φ lies on the same orbit

as the fixed ψ. Thus, there indeed exists an x ∈ T̃ such that πx is ψw̃0-generic.
The system W′ fixes a measure onN , which we denote by dn′ = dµ′N . Uniqueness

of Haar measures gives a constant b ∈ C such that dn = b dn′. Also, notice that we

can extend π to a representation of G̃ which is trivial on ZG̃. And, the restriction
of π to T decomposes into irreducible constituents

π|T = ⊕τi.

Each τi, is one dimensional by Schur’s lemma. Hence, for any element y ∈ T̃ we
have π(y) ∈ C.

To work with the local coefficient, take ϕ ∈ C∞c (Pθw0B, V ) and let f = fs = Psϕ
be as in Proposition 1.1 of [39]. Now, using the system W′ in the right hand side
of the definition (1.7) for Cφ(s, π, w̃′0), we have

λφ(sw̃′0(α̃), w̃′0(π), w̃′0)A(s, π, w̃′0)f

=

∫
Nθ

∫
Nw0

λφw̃′0

(
f(w̃′−1

0 n1w̃
′−1
0 n2)

)
φ(n2) dn′1 dn

′
2.
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Let fx(g) = f(x−1gx) for f ∈ I(s, π), so that fx ∈ I(s, πx) is ψ-generic for the
ψw̃0 -generic (πx, V ). Let cx be the module for the automorphism n 7→ x−1nx.
Then, after two changes of variables and an appropriate change in the domain of
integration, the above integral is equal to

b2c2x

∫
Nθ

∫
w̃′0Nw0 w̃

′−1
0

λψw̃0

(
fx(w̃′−2

0 n1n2)
)
ψ(n2) dn1 dn2,

letting z = (w̃′0)2, w̃′0 = w̃0t
−1 and changing back the domain of integration, we

obtain

b2c2xcz

∫
Nθ

∫
Nw0

λψw̃0

(
fx(t2w̃−1

0 n1w̃
−1
0 n2)

)
ψ(n2) dn1 dn2

= b2c2xczπ(t2)λψw̃0
(sw̃0(α̃), w̃0(πx), w̃0)A(s, π, w̃0)fx.

Now, working in a similar fashion with the left hand side of equation (1.7) we obtain

λφ(sα̃, π, w̃′0)f = bcx

∫
Nθ

λψw̃0

(
fx(xw̃′−1

0 x−1w̃′0w̃
′−1
0 n)

)
ψ(n) dn.

We can always find an x ∈ T̃ satisfying the above discussion and such that

(2.4) d = xw̃′−1
0 x−1w̃′0 ∈ T.

Alternatively, we can go to the separable closure, as in the discussion following
Lemma 3.1 of [53], to obtain an element x ∈ T(Fs). To see this, we can re-
duce to rank one computations to produce the right x. In the case of SL2, all
additive characters are of the form ψa and we can take t = diag(a, 1) ∈ T̃ or
t = diag(a1/2, a−1/2) ∈ T(Fs). We then have

λφ(sα̃, π, w̃′0)f = bcxπ(d)

∫
Nθ

λψw̃0

(
fx(tw̃−1

0 n)
)
ψ(n) dn

= bcxπ(dt)λψ(s, π, w̃0)fx.

In this way, we finally arrive at the desired constant

ax(φ,W′) =
π(dt−1)

bcxcz
.

To conclude, we notice that if (F, πi, ψ) ∈ L (p), i = 1, 2, have π1
∼= π2 and are

both ψw̃0 -generic, then Proposition 3.1 of [52] gives

Cψ(s, π1, w̃0) = Cψ(s, π2, w̃0).

�

2.2. Multiplicativity of the local coefficient. Shahidi’s algorithm allows us to
obtain a block based version of Langlands’ lemma from the Corollary to Lemma 2.1.2
of [52]. We summarize the necessary results in this section. More precisely, let
P = MN be the maximal parabolic associated to the simple root α ∈ ∆, i.e.,
P = Pθ for θ = ∆ − {α}. We have the Weyl group element w0 of equation (1.4).
Consider a subset θ0 ⊂ θ and its corresponding parabolic subgroup Pθ0 with max-
imal Levi Mθ0 and unipotent radical Nθ0 .

Let Σ(θ0) be the roots of (Pθ0 ,Aθ0). In order to be more precise, let Σ+(Aθ0 ,Mθ0)
be the positive roots with respect to the maximal split torus Aθ0 in the center of
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Mθ0 . We say that α, β ∈ Σ+ − Σ+(Aθ0 ,Mθ0) are Aθ0-equivalent if β|Aθ0 = α|Aθ0 .
Then

Σ+(θ0) =
(
Σ+ − Σ+(Aθ0 ,Mθ0)

)
/ ∼ .

Let Σ+
r (θ0) be the block reduced roots in Σ+(θ0). With the notation of Langlands’

lemma, take θ′0 = w(θ0) and set

Σr(θ0, w) =
{

[β] ∈ Σ+
r (θ0)|w(β) ∈ Σ−

}
.

We have that

(2.5) [βi] = w−1
1 · · ·w

−1
j−1([αj ]), 1 ≤ j ≤ n− 1,

are all distinct in Σr(θ0, w) and all [β] ∈ Σr(θ0, w) are obtained in this way.

(2.6) N ẇj = Ad(w−1
j )N ẇj+1

oNwj .

We now obtain a block based decomposition

(2.7) w0 =
∏
j

w0,j .

In addition, the unipotent group Nw0
decomposes into a product via successive

applications of equation (2.6). Namely

(2.8) Nw0
=
∏
j

N0,j .

where each N0,j is a block unipotent subgroup of G corresponding to a finite subset
Σj of Σr(θ0, w0). In this way, we can partition the block set of roots into a disjoint
union

(2.9) Σr(θ0, w0) =
⋃
i

Σi.

Explicitly

(2.10) N0,j = Ad(w−1
1 · · ·w

−1
j−1)Nwj ,

which gives a block unipotent Nj of G. For each j we have an embedding

Gj ↪→ G

of connected quasi-split reductive groups. Each constitutent of this decomposition
of Nw0 is isomorphic to a block unipotent subgroup Nwj of Mj . The reductive
group Mj has root system θj and is a maximal Levi subgroup of the reductive
group Gj with root system Ωj . We have Pj = MjNwj , a maximal parabolic
subgroup of Gj . Notice that each Mj corresponds to a simple root αj of Gj . We
obtain from π a representation πj of Mj . We let

α̃j =
〈
ρPj , α

∨
j

〉−1
ρPj .

We note that each wj in equation (2.7) is of the form

(2.11) wj = wl,Gj
wl,Mj

.

Additionally, each wj decomposes into a product of Weyl group elements corre-
sponding to simple roots α ∈ ∆. While these decompositions are again not unique,
the choice W of representatives fixes a unique w̃j , independently of the decompo-
sition of wj .

For each [β] ∈ Σ+
r (θ0, w0), we let

i[β] = 〈α̃, β∨〉 .
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Since θ0 ⊂ θ, we have that the values of i[β] range among the integer values

i = 〈α̃, γ∨〉 , 1 ≤ i ≤ mr,

where [γ] ∈ Σ+
r (θ, w0). Let

aj = min
{
i[β]|[β] ∈ Σj

}
,

where the Σi are as in (2.9). The following is Proposition 3.2.1 of [52].

Proposition 2.3. Let (F, π, ψ) ∈ Lloc(p,M,G) and assume π is obtained via
parabolic induction from a generic represetation π0 of Mθ0

π ↪→ indMθ

Pθ0
π0.

Then, with the notation of Langlands’ lemma, we have

Cψ(sα̃, π, w̃0) =
∏
j

Cψ(ajsα̃j , πj , w̃j).

2.3. L-groups and the adjoint representation. Given our connected reduc-
tive quasi-split group G over a non-archimedean local field or a global function
field, it is also a group over its separable algebraic closure. Let W be the corre-
sponding Weil group. The pinning of the roots determines a based root datum
Ψ0 = (X∗,∆, X∗,∆

∨). The dual root datum Ψ∨0 = (X∗,∆
∨, X∗,∆) determines

the Chevalley group LG◦ over C. Then the L-group of G is the semidirect product
LG = LG◦ oW,

with details given in [3]. The base root datum Ψ∨ fixes a borel subgroup LB, and
we have all standard parabolic subgroups of the form LP = LP ◦ oW. The Levi
subgroup of LP is of the form LM = LM◦oW, while the unipotent radical is given
by LN = LN◦.

Let r : LM → End(Ln) be the adjoint representation of LM on the Lie algebra
Ln of LN . It decomposes into irreducible components

r = ⊕mri=1ri.

The ri’s are ordered according to nilpotency class. More specifically, consider the
Eigenspaces of LM◦ given by

Lni =
{
Xβ∨ ∈ Ln| 〈α̃, β〉 = i

}
, 1 ≤ i ≤ mr.

Then each ri is a representation of the complex vector space Lni.

2.4. Unramified principal series and Artin L-functions. Consider a triple
(F, π, ψ) ∈ Lloc(p,M,G), where π has an Iwahori fixed vector. From Proposi-
tion 2.2, we can assume π is ψw̃0

-generic and w̃0-compatible with ψ; the choice of
Weyl group element representatives and Haar measures W being fixed. With the
multiplicativity of the local coefficient, we can proceed as in § 2 of [24] and § 3 of
[53], and reduce the problem to the rank one cases of § 1.3. We now proceed to
state the main result.

For every root β ∈ Σr(∅, w0), we have as in § 2.1 a corresponding rank one group
Gα. Let Σr(w0,SL2) denote the set consisting of α ∈ Σr(∅, w0) such that Gα is as
in case (i) of Proposition 1.3. Similarly, let Σr(w0,SU3) consist of α ∈ Σr(∅, w0)
such that Gα is as in the corresponding case (ii). Let

λ(ψ,w0) =
∏

α∈Σr(w0,SL2)

λ(F ′α/F, ψ)
∏

α∈Σr(w0,SU3)

λ(Eα/F, ψ)2λ(F ′α/F, ψ)−1
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Partitioning each of the sets Σi of equation (2.9) arising in this setting further by
setting Σi = Σi(SL2) ∪ Σi(SU3) we can define λi(ψ,w0) appropriately, so that

λ(ψ,w0) =
∏
i

λi(ψ,w0).

Proposition 2.4. Let (F, π, ψ) ∈ Lloc(p,M,G) be such that π has an Iwahori
fixed vector. Then

Cψ(s, π, w̃0) = λ(ψ,w0)−1
mr∏
i=1

γ(is, π, ri, ψ).

Let φ :W ′F → LM be the parameter of the Weil-Deligne group corresponding to π.
Then

mr∏
i=1

γ(is, π, ri, ψ) =

mr∏
i=1

γ(is, ri ◦ φ, ψ),

where on the right hand side we have the Artin γ-factors defined by Delinge and
Langlands [60].

3. Partial L-functions and the local coefficient

The Langlands-Shahidi method studies L-functions arising from the adjoint rep-
resentation r : LM → End(Ln). It decomposes into irreducible components ri,
1 ≤ i ≤ mr, as in § 2.3. Locally, let (F, π, ψ) ∈ Lloc(p) be such that π has an
Iwahori fixed vector. Then π corresponds to a conjugacy class {Aπ o σ} in LM ,
where Aπ is a semisimple element of LM◦. Then

L(s, π, ri) =
1

det(I − ri(Aπ o σ)q−sF )
,

for (F, π, ψ) ∈ Lloc(p) unramified, with the notation of § 1.1.

3.1. Global notation. For the remainder of the article k will denote a global
function field with field of constants Fq. Let Ak denote its ring of adèles. Given an
algebraic group H and a place v of k, we write qv for qkv and Hv instead of H(kv).
Similarly with Ov and $v.

We globally fix a maximal compact open subgroup K =
∏
v Kv of G(Ak), where

the Kv range through a fixed set of maximal compact open subgroups of Gv. Each
Kv is special and Kv is hyperspecial at almost every place. In addition, we can
choose each Kv to be compatible with the decomposition

Kv = (N−v ∩ Kv)(Mv ∩ Kv)(Nv ∩ Kv),

for every standard parabolic subgroup P = MN. The group M ∩ K is a maximal
compact open subgroup of M = M(Ak). Furthermore

G = PK.

Given a finite set of places S of k, we let GS =
∏
v∈S Gv

∏
v/∈S Kv.

Let Lglob(p,M,G) be the class of quadruples (k, π, ψ, S) consisting of: k of
characteristic p; a globally generic cuspidal automorphic representation π = ⊗vπv
of M(Ak); a non-trivial character ψ = ⊗vψv : k\Ak → C×; and, a finite set of
places S where k, π and ψ are unramified. We write Lglob(p) when M and G are
clear from context.



THE LANGLANDS-SHAHIDI METHOD OVER FUNCTION FIELDS 19

Given (k, π, ψ, S) ∈ Lglob(p), we have partial L-functions

LS(s, π, ri) =
∏
v/∈S

L(s, πv, ri,v).

They are absolutely convergent for <(s)� 0.

3.2. Tamagawa measures. Fix (k, π, ψ, S) ∈ Lglob(p). From the discussion of
§ 2.1, the character ψ = ⊗vψv, gives a self-dual Haar measure dµv at every place v
of k. We let

dµ =
∏
v

dµv.

Notice that dµv(Ov) = dµ×v (O×v ) = 1 for all v /∈ S. Representatives of Weyl
group elements are chosen using Langlands’ lemma for G(k). This globally fixes
the system

(3.1) W = {w̃α, dµα}α∈∆ .

As in § 2.1, this fixes the Haar measure on N(Ak).
We obtain a character of U(Ak) via the surjection (1.1) and the fixed character

ψ. Given an arbitrary global non-degenerate character χ of N(Ak), we obtain a
global character χw̃0

of NM (Ak) = M(Ak)∩N(Ak) via (1.5) which is w̃0-compatible
with χ. We note that the discussion of Appendix A of [9] is valid also for the case of
function fields. In particular, Lemma A.1 of [loc. cit.] combined with Proposition 5.4
of [55] give Proposition 3.1 below, which allows us to address the variance of the
globally generic character.

Proposition 3.1. Let (k, π, ψ, S) ∈ Lglob(p). There exists a connected quasi-split

reductive group G̃ defined over k, sharing the same derived group as G, and with

maximal torus T̃ = ZG̃T. Then, there exists an element x ∈ T̃ such that the
representation πx, given by

πx(g) = π(x−1gx)

is ψw̃0-generic. Furthermore, we have equality of partial L-functions

LS(s, π, ri) = LS(s, πx, ri).

3.3. Eisenstein series. We build upon the discussion of § 5 of [39], which is written
for split groups. Let φ : M(k)\M(Ak) → C be an automorphic form on the
space of a cuspidal automorphic representation π of M(Ak). Then φ extends to an
automorphic function Φ : M(k)U(Ak)\G(Ak)→ C as in § I.2.17 of [44]. For every
s ∈ C, set

Φs = Φ · q〈sα̃+ρP,HP(·)〉.

The function Φs is a member of the globally induced representation of G given by
the restricted direct product

I(s, π) = ⊗′I(s, πv).
The irreducible constituents of I(s, π) are automorphic representations Π = ⊗′Πv

of G such that the representation πv has Kv-fixed vectors for almost all v. The
restricted tensor product is taken with respect to functions f0

v,s that are fixed under
the action of Kv.

We use the notation of Remark 1.2, where w0 = wlwl,M. We have the global
intertwining operator

M(s, π, w̃0) : I(s, π)→ I(s′, π′),
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defined by

M(s, π, w̃0)f(g) =

∫
N ′
f(w̃−1

0 ng)dn,

for f ∈ I(s, π). It decomposes into a product of local intertwining operators

M(s, π, w̃0) = ⊗v A(s, πv, w̃0),

which are precisely those appearing in the definition of the Langlands-Shahidi local
coefficient.

The following crucial result is found in [16] for everywhere unramified represen-
tations of split groups, the argument is generalized in [44, 46] and includes all the
cases at hand.

Theorem 3.2 (Harder). The Eisenstein series

E(s,Φ, g,P) =
∑

γ∈P(k)\G(k)

Φs(γg)

converges absolutely for <(s)� 0 and has a meromorphic continuation to a rational
function on q−s. Furthermore

M(s, π) = ⊗v A(s, πv, w̃0)

is a rational operator in the variable q−s.

We also have that the Fourier coefficient of the Eisenstein series E(s,Φ, g) is
given by

Eψ(s,Φ, g,P) =

∫
U(K)\U(Ak)

E(s,Φ, ug)ψ(u) du.

The Fourier coefficients are also rational functions on q−s.

3.4. The crude functional equation. We now turn towards the link between
the Langlands-Shahidi local coefficient and automorphic L-functions.

Theorem 3.3. Let (k, π, ψ, S) ∈ Lglob(p) be ψw̃0
-generic. Then

mr∏
i=1

LS(is, π, ri) =
∏
v∈S

Cψ(s, πv, w̃0)

mr∏
i=1

LS(1− is, π̃, ri).

Proof. Since π is globally ψ-generic, by definition, there is a cusp form ϕ in the
space of π such that

WM,ϕ(m) =

∫
UM (K)\UM (Ak)

ϕ(um)ψ(u) du 6= 0.

The function Φ defined above is such that the Eisenstein series E(s,Φ, g, P ) satisfies

(3.2) Eψ(s,Φs, g, P ) =
∏
v

λψv (s, πv)(I(s, πv)(gv)fs,v),

with fs ∈ V(s, π), fs,v = f◦s,v for all v /∈ S. Here Eψ(s,Φs, g, P ) denotes the Fourier
coefficient

Eψ(s,Φs, g, P ) =

∫
U(K)\U(Ak)

E(s,Φs, ug, P )ψ(u) du.

The global intertwining operator M(s, π) is defined by

M(s, π, w̃0)f(g) =

∫
N′(Ak)

f(w̃−1
0 ng) dn,
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where f ∈ V(s, π) and N′ is the unipotent radical of the standard parabolic P′

with Levi M′ = w0Mw−1
0 . It is the product of local intertwining operators

M(s, π, w̃0) =
∏
v

A(s, πv, w̃0).

It is a meromorphic operator, which is rational on q−s (Proposition IV.1.12 of [44]).
We set s′ = sw̃0(α̃) globally as well as locally, and we use the conventions of

Remark 1.2. Now equation (3.2) gives

Eψ(s′,M(s, π, w̃0)Φs, g, P
′)

=
∏
v

λψv (s′, w0(πv))(I(s
′, π′v)(gv)A(s, πv, w̃0)fs,v).

Fourier coefficients of Eisenstein series satisfy the functional equation:

Eψ(s′,M(s, π, w̃0)Φs, g, P
′) = Eψ(s,Φs, g, P ).

And, equation (3.2) gives

Eψ(s,Φs, e, P ) =
∏
v

λψv (s, πv)fs,v

Eψ(s′,M(s, π, w̃0)Φs, e, P
′) =

∏
v

λψv (s′, π′v)A(s, πv, w̃0)fs,v.

Then, the Casselman-Shalika formula for unramified quasi-split groups, Theorem 5.4
of [6], allows one to compute the Whittaker functional when πv is unramified:

λψv (s, πv)f
0
s,v =

mr∏
i=1

L(1 + is, πv, ri,v)
−1f0

s,v(ev).

Also, for v /∈ S, the intertwining operator gives a function A(s, πv, w0)f0
s,v ∈

I(−s, w0(πv)) satisfying

A(s, πv, w̃0)f0
s,v(ev) =

mr∏
i=1

L(is, πv, ri,v)

L(1 + is, πv, ri,v)
f0
s,v(ev).

This equation is established by means of the multiplicative property of the inter-
twining operator, which reduces the problem to semisimple rank one cases.

Finally, combining the last five equations together gives
mr∏
i=1

LS(is, π, ri) =
∏
v∈S

λψv (s, πv)fs,v
λψv (s′, π′v)A(s, πv, w̃0)fs,v

mr∏
i=1

LS(1− is, π̃, ri).

For every v ∈ S, equation (1.7) gives a local coefficient. Thus, we obtain the crude
functional equation. �

The following useful corollary is a direct consequence of the proof of the theorem.
It provides the connection between Eisenstein series and partial L-functions for
globally generic representations.

Corollary 3.4. Let (k, π, ψ, S) ∈ Lglob(p), then

Eψ(s,Φ, g,P) =
∏
v∈S

λψv (s, πv) (I(s, πv)(gv)fs,v)

mr∏
i=1

LS(1 + is, π, ri)
−1,

for g ∈ GS.
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4. The Langlands-Shahidi method over function fields

4.1. Main theorem. We now come to the main result of the Langlands-Shahidi
method over function fields. The corresponding result over number fields can be
found in Theorem 3.5 of [53]. We note that compatibility with Artin factors for
real groups is the subject of [51].

Theorem 4.1. Let G be a connected quasi-split reductive group and M = Mθ a
maximal Levi subgroup. Let r = ⊕ ri be the adjoint action of LM on Ln. There
exists a system of rational γ-factors, L-functions and ε-factors on Lloc(p). They
are uniquely determined by the following properties:

(i) (Naturality). Let (F, π, ψ) ∈ Lloc(p). Let η : F ′ → F be an isomorphism
of non-archimedean local fields and let (F ′, π′, ψ′) ∈ Lloc(p) be the triple
obtained via η. Then

γ(s, π, ri, ψ) = γ(s, π′, ri, ψ
′).

(ii) (Isomorphism). Let (F, πj , ψ) ∈ Lloc(p), j = 1, 2. If π1
∼= π2, then

γ(s, π1, ri, ψ) = γ(s, π2, ri, ψ).

(iii) (Compatibility with Artin factors). Let (F, π, ψ) ∈ Lloc(p) be such that π
has an Iwahori fixed vector. Let σ :W ′F → LM be the Langlands parameter
corresponding to π. Then

γ(s, π, ri, ψ) = γ(s, ri ◦ σ, ψ).

(iv) (Multiplicativity). Let (F, π, ψ) ∈ Lloc(p,M,G)be such that

π ↪→ indMPθ0
(π0),

where π0 is a generic representation of Mθ0 , with θ0 ⊂ θ. Suppose (F, πj , ψ) ∈
Lloc(p,Mj ,Gj), where the πj are those of Proposition 2.3. With Σi as in
(2.9) we have

γ(s, π, ri, ψ) =
∏
j∈Σi

γ(s, πj , ri,j , ψ).

(v) (Dependence on ψ). Let (F, π, ψ) ∈ Lloc(p). For a ∈ F×, let ψa : F → C×
be the character given by ψa(x) = ψ(ax). Then, there is an hi such that

γ(s, π, ri, ψ
a) = ωπ(a)hi |a|ni(s−

1
2 )

F · γ(s, π, ri, ψ),

where ni = dim Lni.
(vi) (Functional equation). Let (k, π, ψ, S) ∈ Lglob(p). Then

LS(s, π, ri) =
∏
v∈S

γ(s, π, ri, ψ)LS(s, π̃, ri).

(vii) (Tempered L-functions). For (F, π, ψ) ∈ Lloc(p) tempered, let Pπ,ri(t) be
the unique polynomial with Pπ,ri(0) = 1 and such that Pπ,ri(q

−s
F ) is the

numerator of γ(s, π, ri, ψ). Then

L(s, π, ri) =
1

Pπ,ri(q
−s
F )

.

is holomorphic and non-zero for <(s) > 0.



THE LANGLANDS-SHAHIDI METHOD OVER FUNCTION FIELDS 23

(viii) (Tempered ε-factors). Let (F, π, ψ) ∈ Lloc(p) be tempered, then

ε(s, π, ri, ψ) = γ(s, π, ri, ψ)
L(s, π, ri)

L(1− s, π̃, ri)

is a monomial in q−sF .
(ix) (Twists by unramified characters). Let (F, π, ψ) ∈ Lloc(p), then

L(s+ s0, π, ri) = L(s, q
〈s0α̃,Hθ(·)〉
F ⊗ π, ri),

ε(s+ s0, π, ri, ψ) = ε(s, q
〈s0α̃,Hθ(·)〉
F ⊗ π, ri, ψ).

(x) (Langlands’ classification). Let (F, π, ψ) ∈ Lloc(p,M,G). Let π0 be a tem-
pered generic representation of M0 = Mθ0 and χ a character of A0 = Aθ0
which is in the Langlands’ situation. Suppose π is the Langlands’ quotient
of the representation

ξ = Ind(π0,χ),

with π0,χ = π0 ·χ. Suppose (F, πj , ψ) ∈ Lloc(p,Mj ,Gj) are quasi-tempered,
where the πj are obtained via Langlands’ lemma and equation (2.9). Then

L(s, π, ri) =
∏
j∈Σi

L(s, πj , ri,j),

ε(s, π, ri, ψ) =
∏
j∈Σi

ε(s, πj , ri,j , ψ).

4.2. A local to global result and induction. Lemma 4.2 below is the quasi-
split reductive groups generalization of the local to global result of Henniart-Lomeĺı
for GLn over function fields [21]. A more general globalization theorem in charac-
teristic p is now proved in collaboration with Gan [14]. Thanks to a mathematical
discussion with Gan on the minimum number of places required, a simplified proof
is included here for self-containment; Lemma 4.2 includes all of the cases at hand.
This result can be seen as the function fields counterpart of Shahidi’s number fields
Propostion 5.1 of [53], which is in turn a subtle refinement of a result of Henniart
and Vignéras [18, 62].

Lemma 4.2 (Henniart-Lomeĺı). Let π0 be a supercuspidal unitary representation
of G(F ). There is a global function field k with a set of two places S = {v0, v∞}
such that kv0

∼= F . There exists a cuspidal automorphic representation π = ⊗vπv
of G(Ak) satisfying the following properties:

(i) πv0
∼= π0;

(ii) πv has an Iwahori fixed vector for v /∈ S;
(iii) πv∞ is a constituent of a tamely ramified principal series;
(iv) if π0 is generic, then π is globally generic.

Proof. We construct a function f = ⊗vfv on G(A) in such a way that the Poincaré
series

Pf(g) =
∑

γ∈G(k)

f(γg)

is a cuspidal automorphic function.
Let Z be the center of G. Note that the central character ωπ is unitary. It is

possible to construct a global unitary character ω : Z(k)\Z(Ak) → C× such that:
ωv0 = ωπ0

; ωv∞ is trivial on Z1
v∞ ; and, ωv is trivial on Z0

v for every v /∈ {v0, v∞}.



24 LUIS ALBERTO LOMELÍ

Here, Z1
v∞ is the pro-p unipotent radical mod p∞ of Zv∞ and Z0

v is the maximal
compact open subgroup of Zv.

We let S′ = {v0, v
′, v∞}, where v′ is an auxiliary place of k. Outside of S′ we

consider the characteristic functions

fv = 1Kv , v /∈ S′.

At the place v0 of k, we let

fv0(g) = 〈π0(g)x, y〉 , x, y ∈ Vπ0
,

be a matrix coefficient of π0, where Vπ0
is the space of π0. The function fv0 has

compact support Cv0 modulo Zv0 .
At the place v′, consider the Iwahori subgroup Iv′ of upper triangular matrices

mod pv′ . At the place at infinity, we let I1
v∞ be the pro-p Iwahori subgroup of

unipotent lower triangular matrices mod pv∞ . Let

fv′ = 1Iv′ and fv∞ = 1I1v∞ .

Twist the global function f = ⊗fv by ω−1, in order to be able to mod out by
the center. Let H = G/Z and set

C = Cv0 ×
∏
v/∈S′
Kv × Iv′ × I1

v∞ .

The projection C′ of C on H(Ak) is compact. Hence, C′ ∩H(k) is finite. Because of
this, there exists a constant h, such that the height ‖g‖ ≤ h bounds the entries of
g = (gij) ∈ H(k) ∩ C′. See § I.2.2 of [44] for the height functions ‖g‖ and ‖g‖v for
elements of G(Ak) and Gv, respectively.

We now impose the further conditions on the choice of places v′ and v∞. These
two places need to be such that the cardinality of their respective residue fields is
larger than h. This is to ensure that the poles of the entries of all g ∈ H(k)∩C′ are
absorbed. Indeed, given a connected smooth projective curve X over Fq, its set of
points over the algebraic closure F̄q is infinite. Hence, it is always possible to find
places v with residue field Fqv , with qv > h.

We then have that

gij ∈ Ov′ , i ≤ j,
and the congruence relations

gij ≡ 0 mod pv′ , i > j.

By incorporating the condition at infinity, we obtain similar relationships corre-
sponding to the use of lower triangular matrices at v∞. We can see that C′∩H(k) ∈
H(Fq). In fact, the pro-p condition at v∞ ensures that C′ ∩H(k) = {In}. Now, we
incorporate the twist by ω, and lift the function f = ⊗fv back to one of G(Ak).
We then have that

P(f)(g) = f(g), for g ∈ C.
We can now proceed as in p. 4033 of [21] to conclude that Pf belongs to the

space L2
0(G, ω) of cuspidal automorphic functions on G(k)\G(Ak) transforming via

ω under Z(Ak). The resulting cuspidal automorphic representation π of G(Ak) is
such that: πv0

∼= π0; πv′ has a non-zero fixed vector under Iv′ ; and, πv∞ has a non-
zero fixed vector under I1

v∞ . The last three paragraphs of the proof of Theorem 3.1
of [loc. cit.] are general and can be used to establish property (iii) of our theorem.
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Let ψ : k\Ak → C× with ψv be an additive character which is unramified at
every place. We extend ψ to a character of U(k)\U(Ak) via equation (1.1). If π is
ψv0 -generic, we can proceed as in Theorem 2.2 of [62] to show that

Wψ(f)(g) =

∫
U(k)\U(Ak)

f(ng)ψ(n) dn 6= 0.

Hence, the Whittaker model is globalized in this construction.
�

Remark 4.3. The above proposition admits a modification. Property (ii) can be
replaced by: (ii)’ πv is spherical for v /∈ S; and, condition (iii) replaced by: (iii)’
πv∞ is a level zero supercuspidal representation in the sense of Morris [47]. If we
begin with a level zero supercuspidal π0, the above globalization produces a cuspi-
dal automorphic representation π such that πv arises from an unramified principal
series at every v 6= v0.

The next result is present in Arthur’s work, using endoscopy groups, in addition
to Shahidi [53]. In particular, the discussion in § 4 of [loc. cit.] can be adapted to
our situation. We here present a straight forward proof of the induction step.

Lemma 4.4. Let (M,G) be a pair consisting of a connected quasi-split reductive
group and M = Mθ a maximal Levi subgroup. Let r = ⊕mri=1ri be the adjoint
action of LM on Ln. For each i > 1, there exists a pair (Mi,Gi) such that the
corresponding adjoint action of LMi on Lni decomposes as

r′ =

m′r⊕
j=1

r′j with m′r < mr,

and ri = r′1.

Proof. To construct the pair (Mi,Gi), we begin by taking Mi = M. For the group
Gi, we look at the unipotent subgroup

N′w0
=
∏
l∈Σ′

N0,l,

obtained from a subproduct of equaiton (2.8), where Σ′ is the resulting indexing set.
Each one unipotent group N0,l corresponds to a block set of roots [β] ∈ Σ+

r (θ, w0).
We take only groups N0,l in the product corresponding to a [β] ∈ Σ+

r (θ, w0) such
that

〈α̃, β〉 ≥ i, β ∈ [β].

We then set

Ni = w−1
0 Nw0

w0.

For the group Gi we take the reductive group generated by Mi, Ni and N−i . The
pair (Mi,Gi) has

r′ =

mr⊕
j=i

r′j .

After rearranging, we obtain the form of the proposition. �
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4.3. Proof of Theorem 4.1. The crude functional equation of Theorem 3.3, to-
gether with Proposition 2.4, points us towards the existence part of Theorem 4.1
concerning γ-factors. Indeed, let (F, π, ψ) ∈ Lloc(p) be such that π is ψw0-generic.
Then we recursively define γ-factors via the equation

(4.1) Cψ(s, π, w̃0) =

mr∏
i=1

λi(ψ,w0)−1γ(is, π, ri, ψ)

and Lemma 4.4. For arbitrary (F, π, ψ) ∈ Lloc(p), they are defined with the aid of
Proposition 2.2. From Theorem 2.1 of [39], it follows that γ(s, π, ri, ψ) ∈ C(q−sF ).

With the above definition of γ-factors based on equation (4.1), Properties (i) and
(ii) can be readily verified. The inductive argument on the adjoint action together
with Proposition 2.4 give Property (iii). Multiplicativity of the local coefficient,
Proposition 2.3, leads towards Property (iv).

For Property (v), given the two characters ψ and ψa, a ∈ F×, we use Propo-
sition 2.2 to examine the variation of π from being ψaw̃0

-generic to πx which is
ψw̃0

-generic for a suitable x. For this we let x ∈ T(Fs) be as in equation (2.4) and
such that d ∈ ZM . In fact, d is identified with a power of a. In this case we have

Cψ(s, π, w̃0) = ax(ψa,W)Cψa(s, πx, w̃0),

where ax(ψa,W) = ωπ(a)h ‖a‖n(s− 1
2 )

F . The recursive definition of γ-factors, allows
us to obtain integers hi and ni for each 1 ≤ i ≤ mr. Holomorphy of tempered
L-functions is proved in [17], the discussion there is valid in characteristic p.

Furthermore, we obtain individual functional equations for each of the γ-factors.
Namely, this reasoning proves Property (vi) for (k, π, ψ, S) ∈ Lglob(p) with ψw̃0

-
generic π. Note we define γ-factors in a way that they are compatible with the
functional equation for a χ-generic π with the help of Propositions 2.2 and 3.1.

Before continuing, we record the following important property of γ-factors:

(xi) (Local functional equation) Let (F, π0, ψ0) ∈ Lloc(p), then

γ(s, π0, ri, ψ0)γ(1− s, π̃0, ri, ψ0) = 1.

To prove this property, we start with a local triple (F, π0, ψ0) ∈ Lloc(p). Propo-
sition 4.1 allows us to globalize π0 into a globally generic representation π = ⊗vπv,
with πv0

∼= π0 and πv unramified outside a finite set of places S of k. We take a
global character ψ : k\Ak → C×. The character ψ0, using Property (v) if necessary,
can be assumed to be ψv0 . Applying Property (vi) twice to (k, π, ψ, S) ∈ Lglob(p),
we obtain

(4.2)
∏
v∈S

γ(s, πv, ri,v, ψv)γ(1− s, π̃v, ri,v, ψv) = 1.

For each v ∈ S − {v0, v∞}, the representation πv is unramified and we have the
local functional equation for the corresponding Artin γ-factors. At the place v∞,
we still obtain a generic constituent of a tamely ramified principal series

πv∞ ↪→ Ind(χ∞),

with χ∞ a tamely ramified character of T(kv∞). Property (iv) gives

(4.3) γ(s, πv∞ , ri,v, ψv∞) =
∏
j∈Σi

γ(s, πj,v∞ , ri,j,v∞ , ψv∞).
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Each γ-factor on the right hand side of the product is then obtained from (i) or (ii)
of Proposition 1.3. The resulting abelian γ-factors are known to satisfy a functional
equation as in Tate’s thesis. Hence, we also have the local functional equation for
v∞. From the product of (4.2) we can thus conclude Property (xi) at the place v0

as desired.
Property (viii), sates the relation connecting Langlands-Shahidi local factors. We

show that ε-factors are well defined for tempered representations. Let (F, π, ψ) ∈
Lloc(p) be tempered. Let Pπ,ri(z) and Pπ̃,ri(z) the polynomials of Property (vii)
with z = q−sF and write

γ(s, π, ri, ψ) = e1,ψ(z)
Pπ,ri(z)

Qπ,ri(z)
and γ(s, π̃, ri, ψ) = e2,ψ(z)

Pπ̃,ri(z)

Qπ̃,ri(z)
,

where e1,ψ(z) and e2,ψ(z) are monomials in z. From Property (xi), we have

Qπ,ri(z)Qπ̃,ri(q
−1
F z−1) = e1,ψ(z)e2,ψ(q−1

F z−1)Pπ,ri(z)Pπ̃,ri(q
−1
F z−1).

Property (viii) implies that the Laurent polynomials Pπ,ri(z) and Pπ̃,ri(qF z
−1) have

no zeros on <(s) < 0 and <(s) > 1, respectively. Then, up to a monomial in z±1,
we have L(s, π, ri) = Qπ̃,ri(qF z

−1)−1 and L(1 − s, π̃, ri) = Qπ,ri(z)
−1. Hence,

ε(s, π, ri, ψ) is a monomial in q−sF .
Property (ix) follows from the definitions for (F, π, ψ) ∈ Lloc(p) tempered, and

the fact that

I(s+ s0, π) = indGPθ (q
〈sα̃+s0α̃,HM (·)〉
F ⊗ π).

To proceed to the general (F, π, ψ) ∈ Lloc(p), we use Langlands’ classification.
More precisely, π is a representation of Mθ and we let θ0 ⊂ θ. Let π0 be a tempered
generic representation of M0 = Mθ0 and χ a character of A0 = Aθ0 which is in the
Langlands’ situation [4, 57]. Then π is the Langlands’ quotient of the representation

ξ = Ind(π0,χ),

with π0,χ = π0 · χ.
From Proposition 2.3 we obtain (F, πj , ψ) ∈ Lloc(p,Mj ,Gj). Each πj is quasi-

tempered. Property (ix) allows us to define L(s, πj , ri,j) and ε(s, πj , ri,j , ψ). We
then let

L(s, π, ri) =
∏
j∈Σi

L(s, πj , ri,j),

ε(s, π, ri, ψ) =
∏
j∈Σi

ε(s, πj , ri,j , ψ)

be the definition of L-functions and root numbers. This concludes the existence
part of Theorem 4.1.

For uniqueness, we start with a local triple (F, π0, ψ0) ∈ Lloc(p). We globalize
π0 into a globally generic representation π = ⊗vπv via Proposition 4.1. We have
a global character ψ = ⊗ψv, where by Property (v) if necessary, we can assume
ψv0 = ψ0. Notice that partial L-functions are uniquely determined. Hence, the
functional equations gives a uniquely determined product∏

v∈S
γ(s, πv, ri,v, ψv).

For each v ∈ S − {v0, v∞} we can use Proposition 2.4. At v∞ equation (4.3) above
reduces γ(s, πv∞ , ri,v∞ , ψv∞) to a product of uniquely determined abelian γ-factors.
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Tempered L-functions and ε-factors are uniquely determined by Properties (vii) and
(viii). Then in general by Properties (ix) and (x). �

4.4. Functional equation. Given (k, π, ψ, S) ∈ Lglob(p), we define

L(s, π, ri) =
∏
v

L(s, πv, ri,v) and ε(s, π, ri) =
∏
v

ε(s, πv, ri,v, ψv).

The global functional equation for Langlands-Shahidi L-functions is now a direct
consequence of the existence of a system of γ-factors, L-functions and ε-factors
together with Property (vi) of Theorem 4.1.

(xii) (Global functional equation) Let (k, π, ψ, S) ∈ Lglob(p), then

L(s, π, ri) = ε(s, π, ri)L(1− s, π̃, ri).

5. Properties and applications of L-functions

5.1. Rationality of Langlands-Shahidi L-functions. The connection between
Eisenstein series and the Langlands-Shahidi local coefficient allows us to prove the
following property over function fields.

Proposition 5.1. Let (k, π, ψ, S) ∈ Lglob(p). Then each L-function L(s, π, ri)
converges absolutely for <(s)� 0 and has a meromorphic continuation to a rational
function in q−s.

Proof. Given (k, π, ψ, S) ∈ Lglob(p), from Propostion 3.1, we can assume that
π is globally ψ-generic. From equation (3.2), we have the connection between
the global Whittaker model and the local ones. Corollary 3.4 further gives the
connection with partial L-functions, where each of the local Whittaker function-
als λψv (s, πv)(I(s, πv)(gv)fs,v) are polynomials in {qsv, q−sv }, where qv = qdeg v (see
Theorem 1.4 of [39]). Now, the Fourier coefficients Eψ(s,Φ, g,P) are rational on
q−s. Also, recall that each LS(s, π, ri) is absolutely convergent for <(s) � 0, by
Theorem 13.2 of [3]. Then, we can conclude that the product

mr∏
i=1

LS(1 + is, π, ri)

extends to a rational function on q−s. The induction step of Lemma 4.4 allows us
to isolate each L-function to conclude that each

LS(1 + is, π, ri)

is rational in the variable q−s. Hence, each LS(s, π, ri) is rational. Furthermore,
Theorem 4.1 gives that locally each L-function

L(s, πv, ri,v), for (kv, πv, ψv) ∈ Lloc(p),

is a rational function on q−sv . Hence, the completed L-function

L(s, π, ri) =
∏
v∈S

L(s, πv, ri,v)L
S(s, π, ri)

meromorphically continues to a rational function in the variable q−s. �



THE LANGLANDS-SHAHIDI METHOD OVER FUNCTION FIELDS 29

5.2. Intertwining operators. We have the following connection between the in-
tertwining operator and Langlands-Shahidi partial L-functions. Let (k, π, ψ, S) ∈
Lglob(p), then

(5.1) M(s, π, w̃0) =

mr∏
i=1

LS(is, π, ri)

LS(1 + is, π, ri)

⊗
v∈S

A(s, πv, w̃0).

The following Lemma is possible by looking into the spectral theory of Eisenstein
series available over function fields.

Lemma 5.2. Let (k, π, ψ, S) ∈ Lglob(p). If w̃0(π) � π, then M(s, π, w̃0) and
E(s,Φ, g,P) are holomorphic for <(s) ≥ 0.

Proof. Let Φ be the automorphic functions of § 1.2 that we obtain from π. We
have the pseudo-Eisenstein series

θΦ =

∫
<(s)=s0

E(s,Φ, g,P) ds.

This is first defined for s0 > 〈ρp, α∨〉 by Proposition II.1.6 (iii) and (iv) of [44].
Then II.2.1 Théorème of [loc. cit.] gives for self-associate P that

〈θΦ, θΦ〉 =

∫
<(s)=s0

∑
w̃∈{1,w̃0}

〈
M(s, π, w̃)Φ−w̃(s̄α̃),Φs

〉
ds,

and is zero if P is not self-associate. Now, for P self-associate, the condition
w̃0(π) � π allows us to shift the imaginary axis of integration by V.3.8 Lemme
of [44] to <(s) = 0. However, by IV.1.11 Proposition we have that M(s, π, w̃0)
is holomorphic for <(s) = 0. Thus, we have that M(s, π, w̃0) is holomorphic for
<(s) > 0. Finally, the poles of Eisenstein series are contained by the constant
terms. �

5.3. An assumption of Kim. Locally, let (F, π, ψ) ∈ Lloc(p). We have the
normalized intertwining operator

N(s, π, w̃0) : I(s, π)→ I(s′, π′)

defined by

N(s, π, w̃0) =

mr∏
i=1

ε(is, π̃, ri, ψ)
L(1 + is, π̃, ri)

L(is, π̃, ri)
A(s, π, w̃0).

Globally, for (k, π, ψ, S) ∈ Lglob(p), we have

N(s, π, w̃0) = ⊗v N(s, πv, w̃0).

The following assumption was made by H.H. Kim in his study of local Langlands-
Shahidi L-functions and normalized intertwining operators over number fields [25].
Having now the Langlands-Shahidi method available in positive characteristic, we
are lead at this point to Kim’s assumption.

Assumption 5.3. Let (k, π, ψ, S) ∈ Lglob(p). At every place v of k, the normalized
intertwining operator N(s, πv, w̃0) is holomorphic and non-zero for <(s) ≥ 1/2.

It is already known to hold in many cases, including all the quasi-split classical
groups. See [27] for a more detailed account. We make this assumption to prove
Proposition 5.5 below.
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Lemma 5.4. Let (k, π, ψ, S) ∈ Lglob(p). If w̃0(π) � π, then
mr∏
i=1

L(is, π, ri)

L(1 + is, π, ri)

is holomorphic for <(s) ≥ 1/2.

Proof. For every place v /∈ S, we have that

A(s, πv, w̃0)f0
s,v(ev) =

mr∏
i=1

L(is, πv, ri)

L(1 + is, πv, ri)
f0
s,v(ev),

for (kv, πv, ψv) ∈ Lloc(p). Globally, the condition w̃0(π) � π allows us to apply
Lemma 5.2 to (k, π, ψ, S) ∈ Lglob(p). Thus M(s, π, w̃0) is holomorphic for <(s) ≥ 0,
and in this region we have

M(s, π, w̃0)fs =

mr∏
i=1

ε(is, π̃, ri)
−1 L(is, π̃, ri)

L(1 + is, π̃, ri)
⊗v N(s, πv, w̃0)f0

s,v,

where fs = ⊗v f0
s,v ∈ I(s, π). Now, with an application of Assumption 5.3, we can

prove the Lemma. �

5.4. Global twists by characters. We now extend a number fields result of Kim-
Shahidi to the case of positive characteristic. In particular, Proposition 2.1 of [30]
shows that, up to suitable global twists, Langlands-Shahidi L-functions become
holomorphic. In the case of function fields, Harder’s rationality result allows us
to prove the stronger property of L-functions becoming polynomials after suitable
twists.

Let ξ ∈ X∗(M) be the rational character defined by

ξ(m) = det (Ad(m)|n) ,

where n is the Lie algebra of N. At every place v of k, we obtain a rational character
ξv ∈ X∗(M)v. Given a grössencharakter χ = ⊗χv : k×\Ak → C×, we obtain the
character

χ · ξ = ⊗χv · ξv
of M(Ak). Let (k, π, ψ, S) ∈ Lglob(p). For n ∈ Z≥0, form the automorphic repre-
sentation

πn,χ = π ⊗ (χ · ξn).

Proposition 5.5. Let (k, π, ψ, S) ∈ Lglob(p) and fix a place v0 ∈ S. Then there
exist non-negative integers n and fv0 such that for every grössencharakter χ = ⊗χv
with cond(χv0) ≥ fv0 , we have that

L (s, πn,χ, ri) ,

1 ≤ i ≤ mr, is a polynomial function on {qs, q−s}.

Proof. In order to apply Lemmas 5.2 and 5.4, we first need the existence of an
integer n such that w̃0(πn,χ) � πn,χ, for suitable χ. Write P = Pθ, with θ =
∆− {α}, so that M = Mθ and N = Nθ. Let Aθ be the split torus of Mθ and let
Aθ = Aθ(kv0), the group of kv0-rational points. Let

A1
θ = w̃0(Aθ)A

−1
θ =

{
a ∈ Aθ|w̃0(a) = a−1

}
.

Then Lemma 2 of [54] gives
ξ|A1

θ
6= 1.
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In fact, ξ : A1
θ → Gm is onto. Given an integer n, we choose `v0 ∈ Z≥0 such that

1 + p
`v0
v0 ⊂ ξn(A1

θ)

and `v0 is minimal with this property. Let ωv0 be the central character of πv0 . Take

(5.2) fv0 ≥ max {`v0 , cond(ωv0)} ,
which depends on n. Then

(5.3) w̃0(ωv0 ⊗ (χv0 · ξn)) � ωv0 ⊗ (χv0 · ξn),

for cond(χv0) ≥ fv0 .
Let (Mi,Gi) be as in Lemma 4.4, where Gi ↪→ G and we have the corresponding

parabolic Pi = MiNi of Gi. Let ξi ∈ X∗(Mi) be the rational character

ξi(m) = det (Ad(m)|ni) ,
where ni is the Lie algebra of Ni. There are then integers n1, . . . , nmr , such that
upon restriction to Mi we have ξnii = ξn1 and χ · ξnii = χ · ξn1 . With this choice of
n = n1, we choose fv0 as in (5.5) at the place v0 ∈ S. Then, for any grössencharakter
χ : k×\A×k → C× with cond(χv0) ≥ fv0 . Equation (5.3) at v0 ensures that

w̃0(πn,χ) � πn,χ.

Now, Lemma 5.2 together with Corollary 3.4 give that
mr∏
i=1

LS(1 + is, πn,χ, ri)

is holomorphic and non-zero for <(s) ≥ 0. The induction step found in § 4.2 allows
us to isolate each L-function and conclude that each

LS(s, πn,χ, ri)

is holomorphic and non-zero on <(s) ≥ 1. Furthermore, with the aid of Lemma 5.4
we conclude that each LS(s, πn,χ, ri) is holomorphic on <(s) ≥ 1/2.

The functional equation of Theorem 4.1, allows us to conclude holomorphy for
<(s) ≤ 1/2. The automorphic L-functions L(s, πn,χ, ri) being now entire, in addi-
tion to being rational by Proposition 5.1, must be polynomials on {q−s, qs}. �

The following corollary is obtained from the proof of the Proposition.

Corollary 5.6. Let (k, π, ψ, S) ∈ Lglob(p) be such that w̃0(π) � π. Then L(s, π, ri),
1 ≤ i ≤ mr, is a polynomial on {q−s, qs}.
5.5. Local reducibility properties. The following result is an immediate con-
sequence of having a sound theory of local L-functions in characteristic p. It is
Corollary 7.6 of [53].

Proposition 5.7. Let (F, π, ψ) ∈ Lloc(p) be supercuspidal. If i > 2, then L(s, π, ri) =
1. Also, the following are equivalent:

(i) The product L(s, π, r1)L(2s, π, r2) has a pole at s = 0.
(ii) For one and only one i = 1 or i = 2, the L-function L(s, π, ri) has a pole

at s = 0.
(iii) The representation Ind(π) is irreducible and w0(π) ∼= π.

Also a consequence of the Langlands-Shahidi theory of L-functions is Shahidi’s
result on complimentary series. Namely, Theorem 8.1 of [53], whose proof carries
through in the characteristic p case:
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Theorem 5.8. Let (F, π, ψ) ∈ Lloc(p) be unitary supercuspidal. With the equiva-
lent conditions of the previous proposition, choose i = 1 or i = 2, to be such that
L(s, π, ri) has a pole at s = 0, then

(i) For 0 < s < 1/i, the representation I(s, π) is irreducible and in the comple-
mentary series.

(ii) The representation I(1/i, π) is reducible with a unique generic subrepre-
sentation which is in the discrete series. Its Langlands quotient is never
generic. It is a pre-unitary non-tempered representation.

(iii) For s > 1/i, the representations I(s, π) are always irreducible and never in
the complimentary series.

If w0(π) ∼= π and I(π) is reducible, then no I(s, π), s > 0, is pre-unitary; they are
all irreducible.

Remark 5.9. We refer to [14] for a generalization of parts of this theorem to
discrete series representations. Namely, we prove the basic assumption (BA) of
Mœglin and Tadić [43] when char(F ) = p in §§ 7.8 and 7.9 of [14].

In the case of unramified principal series, we can combine the theory of local
L-functions with a result of J.-S. Li [38] to obtain the following:

Lemma 5.10. Let (F, π, ψ) ∈ Lloc(p) be tempered and unramified. Then I(s, π) is
irreducible for <(s) > 1.

Proof. We have that
π ↪→ Ind(χ),

with χ an unramified unitary character of T(F ). From the Satake classification,
the character χ corresponds to a complex semisimple conjugacy class in the dual
torus, each Satake parameter having absolute value 1. Let

χs = χ · q〈sα̃,HP(·)〉.

The function ξα(χs) defined in § 2 of [38] for each non-divisible root α is either a
non-zero constant or a factor appearing in

(5.4)

mr∏
i=1

L(1 + is, π̃, ri)
−1 or

mr∏
i=1

L(1− is, π, ri)−1.

The result of Li, specifically Theorem 2.2 of [loc. cit.], states that I(s, π) is irreducible
when each ξα(χs) 6= 0. The local L-functions involved are never zero, and from
[17] we have that the first product

∏mr
i=1 L(1 + is, π̃, ri)

−1 is non-zero for <(s) > 1.
We claim that the same is also true for the second product. For this, notice that
because π is tempered we can write for each i:

L(s, π, ri)
−1 =

∏
j

(1− ai,jq−sv ),

where the parameters ai,j have absolute value 1. Then

mr∏
i=1

L(1− is, π, ri)−1 =

mr∏
i=1

∏
j

(1− ai,jq−1
v qisv ).

Each factor in the latter product is non-zero for <(is) > 1. In particular, the prod-
uct is non-zero for <(s) > 1. From Li’s theorem, we must have I(s, π) irreducible
for <(s) > 1. �
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5.6. On the holomorphy of L-functions. We can prove a general theorem for
any pair (M,G) under the assumption that π satisfies the Ramanujan conjecture,
which we now recall.

Conjecture 5.11. Let π be a globally generic cuspidal automorphic representation
of a quasi-split connected reductive group H. Then each πv is tempered.

We note that in this article, we will only make use of the fact that the Ramanujan
conjecture is valid for GLn from the work of L. Lafforgue [31]. In § A.2 of the
Appendix, we provide examples of the following proposition involving the classical
groups.

Proposition 5.12. Let (K/k, π, ψ, S) ∈ Lglob(p,M,G), with M a maximal Levi
subgroup of a quasi-split connected reductive group G. Assume that π satisfies the
Ramanujan conjecture. Then, for each i, 1 ≤ i ≤ mr, the automorphic L-function
L(s, π, ri) is holomorphic for <(s) > 1.

Proof. Let (K/k, π, ψ, S) ∈ Lglob(p,M,G). From [17], we know that at places
v ∈ S each of the L-functions L(s, πv, ri,v) is holomorphic for <(s) > 0. We
begin with the known observation that local components of residual automorphic
representations are unitary representations. Furthermore, if the local representation
I(s, πv) is irreducible, then it cannot be unitary. From Lemma 5.10, we conclude
that the global intertwining operator M(s, π, w̃0) must be holomorphic for <(s) > 1.
Then, from equation (5.1) we conclude that the product

mr∏
i=1

LS(is, π, ri)

LS(1 + is, π, ri)

is holomorphic on <(s) > 1. Since the poles of Eisenstein series are contained in
the constant terms, with an application of Corollary 3.4 we can further conclude
that

mr∏
i=1

LS(1 + is, π, ri)
−1

is holomorphic for <(s) > 1. Now, the induction step found in § 4.2 allows us to
isolate each L-function and prove that each

LS(s, π, ri)

is holomorphic for <(s) > 1. �

6. The quasi-split unitary groups and the Langlands-Shahidi method

We study generic L-functions L(s, π × τ) in the case of representations π of a
unitary group and τ of a general linear group. For this, we go through the induction
step of the Langlands-Shahidi method, which gives the case of Asai L-functions [20].
The case of L(s, π× τ) for representations of two unitary groups will be established
in §§ 7-10.

6.1. Definitions. Let K be a degree-2 finite étale algebra over a field k with non-
trivial involution θ. We write x̄ = θ(x), for x ∈ K, and extend conjugation to
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elements g = (gi,j) of GLn(K), i.e., ḡ = (ḡi,j). We fix the following hermitian
forms:

h2n+1(x, y) =

2n∑
i=1

x̄iy2n+2−i − x̄n+1yn+1, x, y ∈ K2n+1,

h2n(x, y) =

n∑
i=1

x̄iy2n+1−i −
n∑
i=1

x̄2n+1−iyi, x, y ∈ K2n.

Let N = 2n + 1 or 2n. We then have odd or even quasi-split unitary groups of
rank n whose group of k-rational points is given by

UN (k) = {g ∈ GLN (K) |hN (gx, gy) = hN (x, y)} .

These conventions for odd and even unitary groups U2n+1 and U2n are in accordance
with those made in [11, 20, 41].

In particular, we have the two main cases to which every degree-2 finite étale al-
gebra is isomorphic: if K is the separable algebra k×k, we have θ(x) = θ(x1, x2) =
(x2, x1) = x̄ and NK/k(x1, x2) = x1x2; and, if K/k is a separable quadratic exten-
sion, we have Gal(K/k) = {1, θ} and NK/k(x) = xx̄. Notice that

U1(k) = K1 = ker(NK/k),

where in the separable algebra case we embed k ↪→ K via k = {(x1, x2) ∈ K|x1 = x2}
and k× ↪→ K× via k× =

{
(x1, x2) ∈ K|x1 = x−1

2

}
= U1(k). In these two cases we

have that Hilbert’s theorem 90 gives us a continuous surjection

(6.1) h : K× � K1, x 7→ xx̄−1.

Throughout this article we let Gn be either restriction of scalars of a general
linear group or a quasi-split unitary group of rank n. We think of Gn as a functor
taking degree-2 finite étale algebras with involution, K over k, to either ResK/kGLn
or a unitary group U2n+1, U2n defined over k.

Notice that in the case of the separable algebra K = k × k, we have

UN (k) ∼= GLN (k) and ResK/kGLN (k) ∼= GLN (k)×GLN (k).

6.2. L-groups. Let K/k be a separable quadratic extension of global function
fields. Let Gn be a unitary group of rank n. Let N = 2n+1 or 2n, according to the
unitary group being odd or even. Then, the L-group of Gn = UN has connected
component LG◦n = GLN (C). The L-group itself is given by the semidirect product

LGn = GLN (C)oWk.

To describe the action of the Weil group, let Φn be the n×n matrix with ij-entries
(δi,n−j+1). If N = 2n+ 1, we let

JN =

 Φn
1

−Φn

 ,

and, if N = 2n, we let

JN =

(
Φn

−Φn

)
.
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Then, the Weil groupWk acts on LGn through the quotientWk/WK
∼= Gal(K/k) =

{1, θ} via the outer automorphism

θ(g) = J−1
N

tg−1JN .

The Langlands Base Change lift that we will obtain is from the unitary groups to
the restriction of scalars group HN = ResK/kGLN . Its corresponding L-group is
given by

LHN = GLN (C)×GLN (C)oWk,

where the Weil groupWk acts on GLN (C)×GLN (C) through the quotientWk/WK
∼=

Gal(K/k) = {1, θ} via

θ(g1 × g2) = g2 × g1.

6.3. Asai L-functions (even case). The induction step in the Langlands-Shahidi
method for the unitary groups can be seen in the when M is a Siegel Levi subgroup.
The even case, when (E/F, τ, ψ) ∈ Lloc(p,M,U2n), is thoroughly studied in [20,
41].

Assume first that E/F is a quadratic extension of non-archimedean local fields.
In this case, τ is a representation of M ∼= GLn(E) and the adjoint representation r
of LM on Ln is irreducible. More precisely, let rA be the Asai representation

rA : LResE/FGLn → GLn2(C),

given by

rA(x, y, 1) = x⊗ y, and rA(x, y, θ) = y ⊗ x.
We thus have for (E/F, τ, ψ) ∈ Lloc(p,M,U2n), that Theorem 4.1 gives

γ(s, τ, r, ψ) = γ(s, τ, rA, ψ).

And, similarly we have Asai L-functions L(s, π, rA) and root numbers ε(s, π, rA, ψ).
Now, assume E is the degree-2 finite étale algebra F×F , we have for (E/F, π, ψ) ∈

Lloc(p,M,U2n) that π = π1 ⊗ π2 is a representation of M = GLn(F ) × GLn(F ).
Then, Proposition 4.5 of [41], together with a local-to-global argument, gives that

γ(s, π, rA, ψ) = γ(s, π1 × π2, ψ),

a Rankin-Selberg γ-factor. And, similarly for the corresponding L-functions and
root numbers.

Asai local factors obtained via the Langlands-Shahidi method are indeed the
correct ones. Theorem 3.1 of [20] establishes their compatibility with the local
Langlands correspondence [37]:

Theorem 6.1 (Henniart-Lomeĺı). Let (E/F, π, ψ) ∈ Lloc(p,M,U2n), with E/F
a quadratic extension of non-archimedean local fields. Let σ be the Weil-Deligne
representation of WE corresponding to π via the local Langlands correspondence.
Then

γ(s, π, rA, ψ) = γGal
F (s,⊗I(σ), ψ).

Here, ⊗I(σ) denotes the representation of WF obtained from σ via tensor induction
and the Galois γ-factors on the right hand side are those of Deligne and Langlands.
Local L-functions and root numbers satisfy

L(s, π, rA) = L(s,⊗I(σ)),

ε(s, π, rA, ψ) = ε(s,⊗I(σ), ψ).
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Remark 6.2. Since we are in the case of GLn, the results of this section hold when
π is a smooth representation, and not just generic [20]. Furthermore, the Rankin-
Selberg products of GLm and GLn that appear in this article arise in the context
of the Langlands-Shahidi method in positive characteristic. These are equivalent to
those obtained via the integral representation of [22] (see [21]).

6.4. Asai L-functions (odd case). The case (E/F, π, ψ) ∈ Lloc(p,M,U2n+1),
with E/F a quadratic extension of non-archimedean local fields, hasM ∼= GLn(E)×
E1 and r = r1 ⊕ r2. In this case π is of the form τ ⊗ ν, where ν is a character of
E1, and we extend ν to a smooth representation of GL1(E) via Hilbert’s theorem
90. Then, from Theorem 4.1, we have

γ(s, π, r1, ψ) = γ(s, τ × ν, ψE),

γ(s, π, r2, ψ) = γ(s, τ ⊗ ηE/F , rA, ψ).

Where the former γ-factor is a Rankin-Selber product of GLn(E) and GL1(E),
while the latter is a twisted Asai γ-factor. And, similarly for the local L-functions
L(s, π, ri) and root numbers ε(s, π, ri, ψ), 1 ≤ i ≤ 2. This result in characteristic
p is given by Theorem’ 6.4 of [41] and the unramified case is proved ab initio in
Proposition 4.5 there without any restriction on p.

Furthermore, the case E = F ×F is also discussed in [41]. To interpret this case
correctly, let ν be the character of E obtained from a character ν0 : F× → C× and
Hilbert’s theorem 90 (6.1). Then π is of the form τ ⊗ ν, with τ = τ1 ⊗ τ2 and each
τi a representation of GLn(F ). We thus obtain

γ(s, π, r1, ψ) = γ(s, τ1 × ν−1
0 , ψ)γ(s, τ2 × ν0, ψ),

γ(s, π, r2, ψ) = γ(s, τ1 × τ2, ψ).

Each factor on the right hand side is a Rankin-Selberg γ-factor. In particular, the
unramified case in this setting can be found in Theorem 4.5 of [loc. cit.]. The above
equality can be obtained by combining Theorems 4.5 and Theorem’ 6.4 of [loc. cit.]
together with a local to global argument.

6.5. Rankin-Selberg products and Asai factors. We record a useful property
of Asai factors. First for generic representations π of GLn(E), and then for any
smooth irreducible π.

Proposition 6.3. Given (E/F, π, ψ) ∈ Lloc(p,GLn,Gn), let πθ be the representa-
tion of GLn(E) given by πθ(x) = π(x̄). Then

γ(s, π, rA, ψ) = γ(s, πθ, rA, ψ),(6.2)

γ(s, π ⊗ ηE/F , rA, ψ) = γ(s, πθ ⊗ ηE/F , rA, ψ),(6.3)

and we have the following equation involving Rankin-Selberg and Asai γ-factors

(6.4) γ(s, π × πθ, ψE) = γ(s, π, rA, ψ)γ(s, π ⊗ ηE/F , rA, ψ).

Proof. Let σ be the n-dimensional `-adic Frob-semisimple Weil-Deligne represen-
tation of WE corresponding to π via the local Langlands correspondence. Then,
σθ corresponds to πθ. And, from the definition of tensor induction (see [12]) we
have that ⊗I(σ) ∼= ⊗I(σθ). Artin L-functions and root numbers remain the same
for equivalent Weil-Deligne representations, thus

γ(s,⊗I(σ), ψ) = γ(s,⊗I(σθ), ψ).
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Hence, by Theorem 6.1, the first equation of the Proposition follows.
The second equation, involving twisted Asai factors, follows from the first and

the third. To prove equation (6.4), we first use multiplicativity of γ-factors to
establish it for principal series representations. Then, in general, via the local-to-
global technique of [20, 21]. �

Corollary 6.4. Let π be a smooth representation of GLn(E) and let πθ be the
representation of GLn(E) given by πθ(x) = π(x̄). Then

L(s, π, rA) = L(s, πθ, rA),

ε(s, π, rA, ψ) = ε(s, πθ, rA, ψ)

and

L(s, π ⊗ ηE/F , rA) = L(s, πθ ⊗ ηE/F , rA),

ε(s, π ⊗ ηE/F , rA, ψ) = ε(s, πθ ⊗ ηE/F , rA, ψ).

Furthermore, we have the following equation involving Rankin-Selberg and Asai
factors

L(s, π × πθ) = L(s, π, rA, ψ)γ(s, π ⊗ ηE/F , rA)

ε(s, π × πθ, ψE) = ε(s, π, rA, ψ)ε(s, π ⊗ ηE/F , rA, ψ).

Proof. Since we are in the case of GLn, the idea from § 4.2 of [20] directly applies
to the cases at hand. �

6.6. Products of GLm and UN . When the maximal Levi subgroup M is not a
Siegel Levi and we have a quadratic extension E/F of non-archimedean local fields,
the adjoint representation always has two irreducible components r = r1 ⊕ r2. In
this case, take (E/F, ξ, ψ) ∈ Lloc(p,M,Gl) in Theorem 4.1. We then have that
M ∼= Res GLm×Gn where Gl and Gn are unitary groups of the same parity. Also,
ξ is of the form τ⊗ π̃ with τ and π representations of GLm(E) and Gn, respectively.

We then have

γ(s, ξ, r1, ψ) = γ(s, τ × π, ψ),

the Rankin-Selberg γ-factor of τ and π. For the second γ-factor we obtain Asai
γ-factors

γ(s, ξ, r2, ψ) =

{
γ(s, τ, rA, ψ) if N = 2n
γ(s, τ ⊗ ηE/F , rA, ψ) if N = 2n+ 1

.

From Property (vii), given (E/F, ξ, ψ) ∈ Lloc(p,M,Gl) tempered, we obtain the
L-functions

L(s, ξ, r1) = L(s, π × τ)

and

L(s, ξ, r2) =

{
L(s, τ, rA) if N = 2n
L(s, τ ⊗ ηE/F , rA) if N = 2n+ 1

.

Tempered root numbers

ε(s, ξ, ri, ψ), 1 ≤ i ≤ 2,

are obtained via Property (viii) of Theorem 4.1. Then, L-functions and ε-factors
are defined in general as in the proof of Theorem 4.1.

Now, assume E = F × F . Let (E/F, ξ, ψ) ∈ Lloc(p,M,Gl), so that Gl
∼= UL

∼=
GLL and M ∼= GLm×UN×GLm, l = m+n, with L and N of the same parity. The
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representation ξ is of the form τ1⊗ π⊗ τ2. Then we obtain the following equations
involving Rankin-Selberg products

γ(s, ξ, r1, ψ) = γ(s, τ1 × π̃, ψ)γ(s, τ2 × π, ψ)

and

γ(s, ξ, r2, ψ) = γ(s, τ1 × τ2, ψ).

And, similarly for the corresponding L-functions and root numbers.

7. Extended Langlands-Shahidi local factors for the unitary groups

Let G1 be either a quasi-split unitary group UN or the group Res GLN . In the
case of G1 = UN , it is of rank n, where we write N = 2n + 1 or 2n according to
wether the unitary group is odd or even. Similarly, we let G2 be either a unitary
group of rank m or Res GLM , with M = 2m+ 1 or 2m.

We interpret Res GLN as a functor, taking a quadratic extension E/F to the
group scheme ResE/FGLN . Also, UN takes E/F to the quasi-split reductive group
scheme U(hN ), where hN is the standard hermitian form of § 6.1. In order to
emphasize the underlying quadratic extension, and the extended case of a system
of γ-factors, L-functions and root numbers for products of two unitary groups, we
modify the notation of Sections 1.1 and 3.1 accordingly. Also, given the involution
θ of the quadratic extension E/F and a character η : GL1(E) → C×, denote by
ηθ : GL1(E)→ C× the character given by ηθ(x) = η(x̄).

In section § 7.3 below we treat the case of a separable quadratic algebra E =
F ×F . This extends the local theory to all degree-2 finite étale algebras E over the
archimedean local field F .

7.1. Local notation. Let Lloc(p,G1,G2) be the category whose objects are quadru-
ples (E/F, π, τ, ψ) consisting of: a non-archimedean local field F , with char(F ) = p;
a degree-2 finite étale algebra E over F ; irreducible admissible representations π of
G1 and τ of G2; and, a smooth non-trivial additive character ψ : F → C×.

We construct a character ψE : E× → C× from the character ψ of F via the trace,
i.e., ψE = ψ ◦ TrE/F . When G1 and G2 are clear from context, we will simply
write Lloc(p) for Lloc(p,G1,G2). We say (E/F, π, τ, ψ) ∈ Lloc(p) is generic (resp.
supercuspidal, discrete series, tempered, principal series) if both π and τ are generic
(resp. supercuspidal, discrete series, tempered, principal series) representations.
We let qF denote the cardinality of the residue field of F .

7.2. Global notation. Let Lglob(p,G1,G2) be the category whose objects are
quintuples (k, π, τ, ψ, S) consisting of: a separable quadratic extension of global
function fields K/k, with char(k) = p; globally generic cuspidal automorphic rep-
resentations π = ⊗vπv of G1(Ak) and τ = ⊗vτv of G2(Ak); a non-trivial character
ψ = ⊗vψv : k\Ak → C×; and, a finite set of places S where k, π and ψ are
unramified.

We write Lglob(p) when G1 and G2 are undestood. We let q be the cardinality
of the field of constants of k. And, for every place v of k, we let qv be the cardinality
of the residue field of kv.

Let (K/k, π, τ, ψ, S) ∈ Lglob(p). Then we have partial L-functions

LS(s, π × τ) =
∏
v/∈S

L(s, πv × τv).



THE LANGLANDS-SHAHIDI METHOD OVER FUNCTION FIELDS 39

The case of a place v in k, which splits in Kv leads to the case of a separable algebra
and we write Kv = kv × kv.

7.3. The case of a separable algebra. Let E = F×F , then we have the following
possibilities for Langlands-Shahidi γ-factors:

(i) Let (E/F, π, τ, ψ) ∈ Lloc(p,UM ,UN ). Then π is a representation of GLM (F )
and τ one of GLN (F ). The local functorial lift of π to HM (F ) obtained
from

Gm(F ) = UM (F ) = GLM (F ) HM (F ) = GLM (F )×GLM (F )

is given by π⊗ π̃. Similarly the local functorial lift of τ to HN (F ) obtained
from

Gn(F ) = UN (F ) = GLN (F ) HN (F ) = GLN (F )×GLN (F )

is given by τ ⊗ τ̃ . Then the Langlands-Shahidi local factors are

γE/F (s, π × τ, ψE) = γ(s, π × τ, ψ)γ(s, π̃ × τ̃ , ψ)

LE/F (s, π × τ) = L(s, π × τ)L(s, π̃ × τ̃)

εE/F (s, π × τ, ψE) = ε(s, π × τ, ψ)ε(s, π̃ × τ̃ , ψ).

(ii) Let (E/F, π, τ, ψ) ∈ Lloc(p,UM ,Res GLN ). Then π is a representation of
GLM (F ) and τ one of GLN (F )×GLN (F ). The local functorial lift of π to
HM (F ) obtained from

Gm(F ) = UM (F ) = GLM (F ) HM = GLM (F )×GLM (F )

is given by π ⊗ π̃. Write τ = τ1 ⊗ τ2 as a representation of

ResE/FGLN (F ) = GLN (F )×GLN (F ).

Then the Langlands-Shahidi local factors are

γE/F (s, π × τ, ψE) = γ(s, π × τ1, ψ)γ(s, π̃ × τ2, ψ)

LE/F (s, π × τ) = L(s, π × τ1)L(s, π̃ × τ2)

εE/F (s, π × τ, r, ψE) = ε(s, π × τ1, ψ)ε(s, π̃ × τ2, ψ).

(iii) Let (E/F, π, τ, ψ) ∈ Lloc(p,Res GLM ,Res GLN ). Then π = π1 ⊗ π2 is a
representation of GLM (F ) × GLM (F ) and τ = τ1 ⊗ τ2 one of GLN (F ) ×
GLN (F ). Then the Langlands-Shahidi local factors are

γE/F (s, π × τ, ψE) = γ(s, π1 × τ1, ψ)γ(s, π2 × τ2, ψ)

LE/F (s, π × τ) = L(s, π1 × τ1)L(s, π2 × τ2)

εE/F (s, π × τ, r, ψE) = ε(s, π1 × τ1, ψ)ε(s, π2 × τ2, ψ).

Remark 7.1. We usually drop the subscripts E/F when dealing with Langlands-
Shahidi local factors. Hopefully, it is clear from context what we mean by an L-
function, and related local factors, at split places of a global function field.

Remark 7.2. Let (K/k, π, τ, ψ, S) ∈ Lglob(p,G1,G2). Then, at places v of k
which are split in K we set Kv = kv × kv. It is interesting to note that the theory
of the Langlands-Shahidi local coefficient can be treated directly and uniformly for
unitary groups defined over a degree-2 finite étale algebra E over a non-archimedean
local field F as in [41]. Alternatively, one can use the isomorphism UN

∼= GLN in
the case of a separable quadratic algebra.
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7.4. Main theorem. In § 6 we showed the existence of a system of γ-factors, L-
functions and root numbers on Lloc(p,G,GLm). We now state our main theorem
for extended factors. However, we postpone the proof until § 10. More precisely, we
give a self contained proof for (E/F, π, τ, ψ) ∈ Lloc(p) generic in § 10.1. In general,
the tempered L-packet conjecture is expected to hold for the unitary groups (see
Conjecture 10.3). Under this assumption, we complete the proof of existence and
uniqueness of local factors on Lloc(p) in § 10.2.

Theorem 7.3. There exist rules γ, L and ε on Lloc(p) which are uniquely char-
acterized by the following properties:

(i) (Naturality). Let (E/F, π, τ, ψ) ∈ Lloc(p) be generic and let η : E′/F ′ →
E/F be an isomorphism on local field extensions. Let (E′/F ′, π′, τ ′, ψ′) ∈
Lloc(p) be the quadruple obtained via η. Then

γ(s, π × τ, ψE) = γ(s, π′ × τ ′, ψ′E).

(ii) (Isomorphism). Let (E/F, π, τ, ψ), (E/F, π′, τ ′, ψ) ∈ Lloc(p) be generic
quadruples such that π ∼= π′ and τ ∼= τ ′. Then

γ(s, π × τ, ψE) = γ(s, π′ × τ ′, ψE).

(iii) (Compatibility with class field theory). Let Gi be either U1 or Res GL1, for
i = 1 or 2, and let (E/F, χ1, χ2, ψ) ∈ Lloc(p,G1,G2). In the case of U1, we
extend a character χi of U1(F ) = E1 to one of ResE/FGL1(F ) = GL1(E)
via Hilbert’s theorem 90. Then

γ(s, χ1 × χ2, ψE) = γ(s, χ1χ2, ψE),

where the γ-factors on the right hand side are those of Tate’s thesis for
GL1(E).

(iv) (Multiplicativity). Let (E/F, π, τ, ψ) ∈ Lloc(p,G1,G2) be generic. Let M1

and M2 be Levi subgroups of G1 and G2, respectively. Let π0 be a generic
representation of M1 and suppose that

π ↪→ Ind(π0)

is the generic constituent. And let τ0 be a generic representations of M2

and let

τ ↪→ Ind(τ0)

be the generic constituent. There exists a finite set Σ such that for each
j ∈ Σ: there is a maximal Levi subgroup Mj of Gj, where Gj is either
Res GLnj or Unj ; there is a generic representation ξj of Mj; and, the
following relationship holds

γ(s, π × τ, ψ) =
∏
j∈Σ

γ(s, ξj , r1, ψ).

(v) (Dependence on ψ). Let (E/F, π, τ, ψ) ∈ Lloc(p) be generic and let a ∈ E×,
then ψaE be the character of E defined by ψaE(x) = ψE(ax). Let ωπ and ωτ
be the central characters of π and τ . Then

γ(s, π × τ, ψaE) = ωπ(a)Mωτ (a)N |a|MN(s− 1
2 )

E γ(s, π × τ, ψE).
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(vi) (Functional Equation). Let (K/k, π, τ, ψ, S) ∈ Lglob(p), then

LS(s, π × τ) =
∏
v∈S

γ(s, π × τ, ψv)LS(1− s, π̃ × τ̃).

At split places v of k, where Kv
∼= kv × kv, the Langlands-Shahidi local

factors are the ones of § 7.3.
(vii) (Tempered L-functions). For (E/F, π, τ, ψ) ∈ Lloc(p) tempered, let Pπ×τ (t)

be the polynomial with Pπ×τ (0) = 1, with Pπ×τ (q−sF ) the numerator of
γ(s, π × τ, ψE). Then

L(s, π × τ) =
1

Pπ×τ (q−sF )

is holomorphic and non-zero for Re(s) > 0.
(viii) (Tempered ε-factors). Let (E/F, π, τ, ψ) ∈ Lloc(p) be tempered, then

ε(s, π × τ, ψE) = γ(s, π × τ, ψE)
L(s, π × τ)

L(1− s, π̃ × τ̃)
.

(ix) (Twists by unramified characters). Let (E/F, π, τ, ψ) ∈ Lloc(p,UM ,Res GLN ).
Then

L(s+ s0, π × τ) = L(s, π × (τ |det(·)|s0E )),

ε(s+ s0, π × τ, ψE) = ε(s, π × (τ |det(·)|s0E ), ψE).

(x) (Langlands classification). Let (E/F, π, τ, ψ) ∈ Lloc(p,G1,G2). Let M1

and M2 be Levi subgroups of G1 and G2, respectively. Let π0 be a tempered
representation of M1 and suppose that π is the Langlands quotient of

Ind(π0 ⊗ χ)

with χ ∈ Xnr(M1) in the Langlands situation. And let τ0 be a tempered
representation of M2 such that τ is the Langlands quotient of

Ind(τ0 ⊗ µ)

and µ ∈ Xnr(M2) is in the Langlands situation. There exists a finite set
Σ such that for each j ∈ Σ: there is a maximal Levi subgroup Mj of Gj,
where Gj is either Res GLnj or Unj ; there is a tempered representation ξj
of Mj; and, the following relationship holds

L(s, π × τ) =
∏
j∈Σ

L(s, ξj , r1)

ε(s, π × τ, ψ) =
∏
j∈Σ

ε(s, ξj , r1, ψ).

7.5. Additional properties of L-functions and local factors. The proof of
Theorem 7.3 in the case of G1 = Um and G2 = Res GLn can be obtained from
that of Theorem 4.1. The proof of existence is completed in § 10.1 for generic
representations, and in § 10.2 under the assumption that the tempered L-packet
conjecture is valid. For uniqueness, we proceed as in Theorem 4.3 of [40].

We also obtain a local functional equation for γ-factors which is proved using
only Properties (i)–(vi) of Theorem 7.3, as in § 4.2 of [40].

(xi) (Local functional equation). Let (E/F, π, τ, ψ) ∈ Lloc(p), then

γ(s, π × τ, ψE)γ(1− s, π̃ × τ̃ , ψE) = 1.
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We can now define automorphic L-functions and root numbers for (E/F, π, τ, ψ) ∈
Lglob(p) by setting

L(s, π × τ) =
∏
v

L(s, πv × τv) and ε(s, π × τ) =
∏
v

ε(s, πv × τv, ψv).

They satisfy a functional equation, whose proof is completed in § 10.3.

(xii) (Global functional equation). Let (K/k, π, τ, ψ, S) ∈ Lglob(p), then

L(s, π × τ) = ε(s, π × τ)L(1− s, π̃ × τ̃).

The following property is Theorem 5.1 of [14] adapted to the case of unitary
groups.

(xiii) (Stability). Let (E/F, πi, τi, ψ) ∈ Lloc(p,UN ,Res GLm), for i = 1 or 2, be
generic and such that ωπ1 = ωπ2 and ωτ1 = ωτ2 . If η : E× → C× is highly
ramified, then

γ(s, π1 × (τ1 · η), ψE) = γ(s, π2 × (τ2 · η), ψE).

We note that we also have the corresponding stability properties for local L-
functions and root numbers

L(s, π1 × (τ1 · η)) = L(s, π2 × (τ2 · η)),

ε(s, π1 × (τ1 · η), ψE) = ε(s, π2 × (τ2 · η), ψE).

The stability of local L-functions is a result of Shahidi [54]. Stability for ε-factors
follows by combining stability for γ-factors and L-functions via Property (viii)
above for tempered representations. Then in general, by Langlands’ classification,
Property (x).

7.6. Multiplicativity and Langlands classification. We being by making ex-
plicit the multiplicativity property of γ-factors.

(iv) (Multiplicativity). Let M = m1 + · · ·md +m0 and N = n1 + · · ·+ ne + n0.
For 1 ≤ i ≤ d, 1 ≤ j ≤ e, let (E/F, πi, τj , ψ) ∈ Lloc(p,Res GLmi ,Res GLnj )
be generic. Take G1,0 and G2,0 be of the same kind as G1 and G2, and
let (E/F, π0, τ0, ψ) ∈ Lloc(p,G1,0,G2,0). In the case of either G1,0 or G2,0

being U1, we extend the corresponding character π0 or τ0 of U1(F ) = E1 to
one of ResE/FGL1(F ) = GL1(E) via Hilbert’s theorem 90. Suppose that

π ↪→ indG1

P1
(π1 ⊗ · · · ⊗ πd ⊗ π0)

is the generic constituent, where P1 is the parabolic subgroup of G1 with

Levi M1 =
∏d
i=1 ResE/FGLmi ×G1,0. And let

τ ↪→ indG2

P2
(τ1 ⊗ · · · ⊗ τe ⊗ τ0)

be the generic constituent, where P2 is the parabolic subgroup of G2 with
Levi M2 =

∏e
i=1 ResE/FGLni ×G2,0.

(iv.a) If both G1 and G2 are unitary groups, then

γ(s, π × τ, ψE) = γ(s, π0 × τ0, ψE)

×
d∏
i=1

γ(s, πi × τ0, ψE)γ(s, π̃i × τ0, ψE)

e∏
i=1

γ(s, π0 × τj , ψE)γ(s, π0 × τ̃j , ψE)

×
∏

1≤h≤d,1≤l≤e

γ(s, πh × τl, ψE)γ(s, πh × τ̃l, ψE)γ(s, π̃h × τ̃l, ψE)γ(s, π̃h × τl, ψE).
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(iv.b) If G1 = UM and G2 = Res GLN , then

γ(s, π × τ, ψE) =

e∏
j=1

γ(s, π0 × τj , ψE)×
∏

1≤h≤d,1≤l≤e

γ(s, πh × τl, ψE)γ(s, π̃h × τl, ψE).

(iv.c) If G1 = Res GLM and G2 = Res GLN , then

γ(s, π × τ, ψE) =
∏
i,j

γ(s, πi × τj , ψE).

With the definition of L-functions and ε-factors for tempered representations of
Properties (vii) and (viii), then Langlands classification and Property (ix) allows
us to reduce to the tempered case. Which we now make explicit to the cases arising
from the unitary groups.

(x) (Langlands classification). Let M = m1 + · · ·md +m0 and N = n1 + · · ·+
ne + n0. For 1 ≤ i ≤ d, 1 ≤ j ≤ e, consider quasi-tempered quadruples
(E/F, πi, τj , ψ) ∈ Lloc(p,Res GLmi ,Res GLnj ). Take G1,0 and G2,0 be of
the same kind as G1 and G2, and let (E/F, π0, τ0, ψ) ∈ Lloc(p,G1,0,G2,0)
be tempered. In the case of either G1,0 or G2,0 being U1, we extend the
corresponding character π0 or τ0 of U1(F ) = E1 to one of ResE/FGL1(F ) =
GL1(E) via Hilbert’s theorem 90. Suppose that

π ↪→ indG1

P1
(π1 ⊗ · · · ⊗ πd ⊗ π0)

is the generic constituent, where P1 is the parabolic subgroup of G1 with

Levi M1 =
∏d
i=1 Res GLmi ×G1,0. And let

τ ↪→ indG2

P2
(τ1 ⊗ · · · ⊗ τe ⊗ τ0)

be the generic constituent, where P2 is the parabolic subgroup of G2 with
Levi M2 =

∏e
i=1 Res GLni ×G2,0.

(x.a) If both G1 and G2 are unitary groups, then

L(s, π × τ) = L(s, π0 × τ0)

×
d∏
i=1

L(s, πi × τ0)L(s, π̃i × τ0)

e∏
i=1

L(s, π0 × τj)L(s, π0 × τ̃j)

×
∏

1≤h≤d,1≤l≤e

L(s, πh × τl)L(s, πh × τ̃l)L(s, π̃h × τ̃l)L(s, π̃h × τl).

ε(s, π × τ, ψE) = ε(s, π0 × τ0, ψE)

×
d∏
i=1

ε(s, πi × τ0, ψE)ε(s, π̃i × τ0, ψE)

e∏
i=1

ε(s, π0 × τj , ψE)ε(s, π0 × τ̃j , ψE)

×
∏

1≤h≤d,1≤l≤e

ε(s, πh × τl, ψE)ε(s, πh × τ̃l, ψE)ε(s, π̃h × τ̃l, ψE)ε(s, π̃h × τl, ψE).

(x.b) If G1 = UM and G2 = Res GLN , then

L(s, π × τ) =

e∏
j=1

L(s, π0 × τj)×
∏

1≤h≤d,1≤l≤e

L(s, πh × τl)L(s, π̃h × τl).
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ε(s, π × τ, ψE) =

e∏
j=1

ε(s, π0 × τj , ψE)×
∏

1≤h≤d,1≤l≤e

ε(s, πh × τl, ψE)ε(s, π̃h × τl, ψE).

(x.c) If G1 = Res GLM and G2 = Res GLN , then

L(s, π × τ) =
∏
i,j

L(s, πi × τj).

ε(s, π × τ, ψE) =
∏
i,j

ε(s, πi × τj , ψE).

7.7. Stable form of local factors. The following Lemma and its Corollary, pro-
vides a stable form for the local factors after twists by highly ramified characters.
It plays an important role in establishing global Base Change.

Lemma 7.4. Let (E/F, π, τ, ψ) ∈ Lloc(p,UN ,Res GLm) be generic. Consider a
quadruple (E/F,Π, T, ψ) ∈ Lloc(p,Res GLN ,Res GLm), with Π and T principal
series, such that ωτ = ωT and ωΠ is the character of E× obtained from ωπ of E1

via Hilbert’s theorem 90. Then, whenever η : E× → C× is highly ramified, we have
that

L(s, π × (τ · η)) = L(s,Π× (T · η)),

ε(s, π × (τ · η), ψE) = ε(s,Π× (T · η), ψE),

γ(s, π × (τ · η), ψE) = γ(s,Π× (T · η), ψE).

Proof. There is always a T , which is the generic constituent of

Ind(µ1 ⊗ · · · ⊗ µm),

where µ1, . . . , µm are characters of GL1(E). Multiplicativity of γ-factors for the
unitary groups gives

(7.1) γ(s, π × (τ · η), ψE) =

m∏
i=1

γ(s, π × (χiη), ψE).

And similarly for Rankin-Selberg products of general linear groups

(7.2) γ(s,Π× (τ · η), ψE) =

m∏
i=1

γ(s,Π× (χiη), ψE).

Now, let ξ be the representation of Gn = UN (F ) which is the generic constituent
of either

indGnB (χ1 ⊗ · · · ⊗ χn) or indGnB (χ1 ⊗ · · · ⊗ χn ⊗ ν),

depending on wether N = 2n or 2n+ 1, and such that ωξ = ωπ. Then, let

(7.3) Ξ ↪→ ind
GLN (E)
B (χ1 ⊗ · · · ⊗ χn ⊗ χ̄θn ⊗ · · · ⊗ χ̄θ1),

if N = 2n, and let

(7.4) Ξ ↪→ ind
GLN (E)
B (χ1 ⊗ · · · ⊗ χn ⊗ ν ⊗ χ̄θn ⊗ · · · ⊗ χ̄θ1),

if N = 2n+ 1. Then, Ξ has ωΞ = ωΠ obtained from ωπ as in the statement of the
Proposition. Using stability of γ-factors on Lloc(p,UN ,Res GL1), Property (xiii)
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of § 7.5, we have that for each i

γ(s, π × (χi · η), ψE) = γ(s, ξ × (χi · η), ψE)

= γ(s,Ξ× (χi · η), ψE)

= γ(s,Π× (χi · η), ψE)

Then from equations (7.1) and (7.2), we have the desired equality of γ-factors. The
corresponding relations for the L-functions and root numbers can then be proved
arguing as in the proof of Lemma 9.3. �

In the course of proof, we constructed (E/F,Π, T, ψ) ∈ Lloc(p,Res GLN ,Res GLm)
which also allows us to compute the following stable form of local factors.

Corollary 7.5. Let (E/F, π, τ, ψ) ∈ Lloc(p,UN ,Res GLm) be generic and let η :
E× → C× be sufficiently ramified. Let χ1, . . . , χn, µ1, . . . , µm be characters of E×

and let ν be a character of E1, which we extend to one of E× via Hilbert’s theo-
rem 90. Assume that ξ is the generic constituent of

indGnB (χ1 ⊗ · · · ⊗ χn) or indGnB (χ1 ⊗ · · · ⊗ χn ⊗ ν),

depending on wether N = 2n or 2n+1, and has central character ωξ = ωπ. Suppose
T is the generic constituent of

ind
GLm(E)
Bm

(µ1 ⊗ · · · ⊗ µm),

and has central character ωT = ωτ . Then, if N = 2n, we have

L(s, π × (τ · η)) =

m∏
i=1

n∏
j=1

L(s, χjµiη)L(s, χ̄θµiη),

ε(s, π × (τ · η), ψE) =

m∏
i=1

n∏
j=1

ε(s, χjµiη, ψE)ε(s, χ̄θjµiη, ψE),

γ(s, π × (τ · η), ψE) =

m∏
i=1

n∏
j=1

γ(s, χjµiη, ψE)γ(s, χ̄θjµiη, ψE).

And, if N = 2n+ 1, we have

L(s, π × (τ · η)) =

m∏
i=1

L(s, µiην)

n∏
j=1

L(s, χjµiη)L(s, χ̄θjµjη),

ε(s, π × (τ · η), ψE) =

m∏
i=1

ε(s, µiην, ψE)

n∏
j=1

ε(s, χjµiη, ψE)ε(s, χ̄θjµiη, ψE),

γ(s, π × (τ · η), ψE) =

m∏
i=1

γ(s, µiην, ψE)

n∏
j=1

γ(s, χjµiη, ψE)γ(s, χ̄θjµiη, ψE).

�

8. The converse theorem and Base Change for the unitary groups

We begin by recalling the converse theorem of Cogdell and Piatetski-Shapiro
[7]. In fact, we use a variant in the function field case [49] allowing for twists by
a continuous character η (see § 2 of [8]). We then combine the Langlands-Shahidi
method with the Converse Theorem and establish what is known as “weak” Base
Change for globally generic representations.
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8.1. The converse theorem. Fix a finite set of places S of a global function field
K, a Grössenkaracter η : K×\A×K → C× and an integer N . Let T (S; η) be the
set consisting of representations τ = τ0 ⊗ η of GLn(AK) such that: n is an integer
ranging from 1 ≤ n ≤ N − 1; and, τ0 is a cuspidal automorphic representation.

Let π of G1(Ak) and τ of G2(Ak) be admissible representations whose L-function
L(s, π × τ) converges on some right half plane. We say L(s, π × τ) is nice if the
following properties are satisfied:

(i) L(s, π × τ) and L(s, π̃ × τ̃) are polynomials in {q−s, qs}.
(ii) L(s, π × τ) = ε(s, π × τ)L(1− s, π̃ × τ̃).

We note that Property (i) implies that L(s, π × τ) and L(s, π̃ × τ̃) have analytic
continuations to entire functions to the whole complex plane and are bounded on
vertical strips.

Theorem 8.1 (Converse Theorem). Let Π = ⊗Πv be an irreducible admissible
representation of GLN (AK) whose central character ωΠ is a Grössenkaracter and
whose L-function L(s,Π) =

∏
v L(s,Πv) is absolutely convergent in some right half-

plane. Suppose that for every τ ∈ T (S; η) the L-function L(s,Π× τ) is nice. Then,
there exists an automorphic representation Π′ of GLN (AK) such that Πv

∼= Π′v for
all v /∈ S.

8.2. Base change for the unitary groups. Let K/k be a separable quadratic
extension of global function fields. Let Ak and AK denote the ring of adèles of k
and K, respectively. We now turn towards Base Change from Gn = UN to HN =
Res GLN . The groups Gn and HN are related via the following homomorphism of
L-groups

(8.1) BC : LGn = GLN (C)oWk ↪→ LHN = GLN (C)×GLN (C)oWk.

We say that a globally generic cuspidal automorphic representation π = ⊗′πv of
Gn(Ak) has a base change lift Π = ⊗′Πv to HN (Ak) = GLN (AK), if at every place
where πv is unramified, we have that

L(s, πv) = L(s,Πv).

This notion of a Base Change lift is sometimes referred to as a weak lift. The strong
Base Change lift requires equality of L-functions and ε-factors at every place v of
k. We will establish the strong Base Change lift in §§ 9-10.

Remark 8.2. In order to be more precise, the base change map or Langlands
functorial lift for the unitary groups obtained from (8.1) is known as “stable” base
change. There is also “unstable” base change. See for example the “stable” and
“labile” base change discussion for U2 of [13].

8.3. Unramified Base Change. Let π = ⊗′πv be a globally generic cuspidal
automorphic representation of UN (Ak). Fix a place v of k that remains inert in K
and such that πv is unramified. Two unramified L-parameters φv : Wkv → LGn
and Φv :Wkv → LHN are connected via the homomorphism of L-groups

Wkv

Φv

LGn
LHN

φv
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given by the base change map of (8.1).
Each πv, being uramified, is of the form

(8.2) πv ↪→
{

Ind(χ1,v ⊗ · · ·χn,v ⊗ νv) if N = 2n+ 1
Ind(χ1,v ⊗ · · ·χn,v) if N = 2n

,

with χ1,v, . . . , χn,v, unramified characters of K×v . Let $v be a uniformizer and let

αi,v = χi,v($v), i = 1, . . . , n.

Let Frobv denote the Frobenius element of Wkv . We know that πv is parametrized
by the conjugacy class in LU

(φv(Frobv), wθ) =

{
diag(α

1
2
1,v, . . . , α

1
2
n,v, 1, α

− 1
2

n,v , . . . , α
− 1

2
1,v )o wθ if N = 2n+ 1

diag(α
1
2
1,v, . . . , α

1
2
n,v, α

− 1
2

n,v , . . . , α
− 1

2
1,v )o wθ if N = 2n

.

Then, from the results of [42], the L-parameter Φv = BC◦φv corresponds a semisim-
ple conjugacy class in GLN (C) given by

Φv(Frobv) =

{
diag(α1,v, . . . , αn,v, 1, α

−1
n,v, . . . , α

−1
1,v) if N = 2n+ 1

diag(α1,v, . . . , αn,v, α
−1
n,v, . . . , α

−1
1,v) if N = 2n

.

The resulting Satake parameters Φv, then uniquely determine an unramified rep-
resentation Πv of ResKv/kvGLN (kv) = GLN (Kv) of the form

(8.3) Πv ↪→
{

Ind(χ1,v ⊗ · · ·χn,v ⊗ 1⊗ χ−1
n,v ⊗ · · · ⊗ χ−1

1,v) if N = 2n+ 1

Ind(χ1,v ⊗ · · ·χn,v ⊗ χ−1
n,v ⊗ · · · ⊗ χ−1

1,v) if N = 2n
.

To summarize, let Âv be the semisimple conjugacy class of φv(Frobv) in GLN (C)
obtained via the Satake parametrization. We have

Π of GLN (Kv)

BC

π of UN (kv)
{

(Âv, wθ,v)
}

of GLN (C)oW ′kv

{
(Âv, Âv, wθ,v)

}
of GLN (C)×GLN (C)oW ′kv

Where we use the fact that there is a natural bijection between wθ,v-conjugacy
classes of GLN (C)×GLN (C) and conjugacy classes of GLN (C).

Definition 8.3. Let v be a place of k that remains inert in K. For every unramified
πv corresponding to φv we call the representation

BC(πv) = Πv,

corresponding to Φv as in (8.3), the unramified local Langlands lift or the unramified
base change of πv.

Let τv be any irreducible admissible generic representation of GLm(Kv). We
know that, given the homomorphism of L-groups BC, we have the following equality
of local factors

γ(s, πv × τv, ψv) = γ(s,Πv × τv, ψv)
L(s, πv × τv) = L(s,Πv × τv)

ε(s, πv × τv, ψv) = ε(s,Πv × τv, ψv).
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8.4. Split Base Change. At split places v of k, we are in the case of a separable
algebra, as in § 7.3. The local functorial lift of πv to HM (kv) obtained from

UN (kv) = GLN (kv) HN (kv) = GLN (kv)×GLN (kv).

Definition 8.4. Fix a place v of k such that Kv = kv×kv. Let πv be an irreducible
generic representation of UN (kv) ∼= GLN (kv). We call the representation

(8.4) BC(πv) = πv ⊗ π̃v
the split local Langlands lift or the split base change of πv.

Let τv = τ1,v ⊗ τ2,v be any irreducible admissible generic representation of
GLm(Kv) = GLm(kv)×GLm(kv). Then, from § 7.3, we have the following equality
of local factors

γ(s, πv × τv, ψv) = γ(s, πv × τv, ψv)γ(s, π̃v × τ̃v, ψv)
L(s, πv × τv) = L(s, πv × τv)L(s, π̃v × τ̃v)

ε(s, πv × τv, ψv) = ε(s, πv × τv, ψv)ε(s, π̃v × τ̃v, ψv).

8.5. Ramified Base Change. At places v of k where the cuspidal automorphic
representation π of UN (Ak) may have ramification, we can use the stable form
hinged by Corollary 7.5. At this point, we do not have a unique ramified Base
Change, even after twisting by a highly ramified character. However, we will es-
tablish a unique local Langlands lift or local Base Change completely in § 9.

Definition 8.5. Let χ1,v, . . . , χn,v be characters of K×v . Let νv be a character
of K1

v , which we extend to one of K×v via Hilbert’s theorem 90. Assume that the
representation

Πv ↪→
{

Ind(χ1,v ⊗ · · · ⊗ χn,v ⊗ νv ⊗ χ−1
n,v ⊗ · · · ⊗ χ−1

1,n) if N = 2n+ 1

Ind(χ1,v ⊗ · · · ⊗ χn,v ⊗ χ−1
n,v ⊗ · · · ⊗ χ−1

1,n) if N = 2n

has central character ωΠv = ωπv . Then Πv is called a ramified local Langlands lift
or a ramified Base Change of πv.

We no longer have equality of local factors for every τv of GLm(kv). However,
from Lemma 7.4, whenever ηv : K×v → C× is a highly ramified character, we have
that

γ(s, πv × (τv · ηv), ψv) = γ(s,Πv × (τv · ηv), ψv)
L(s, πv × (τv · ηv)) = L(s,Πv × (τv · ηv))

ε(s, πv × (τv · ηv), ψv) = ε(s,Πv × (τv · ηv), ψv).

8.6. Weak Base Change. We establish a preliminary version of Base Change for
the unitary groups by combining the Langlands-Shahidi method with the Converse
Theorem.

Theorem 8.6. Let π = ⊗′πv be a globally generic cuspidal automorphic representa-
tion of UN (Ak). There exists a unique globally generic automorphic representation

BC(π) = Π

of ResK/kGLN (Ak) = GLN (AK), which is a weak Base Change lift of π.
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Proof. Let Πv = BC(πv) be the local Base change of Definitions 8.3, 8.4 and 8.5,
accordingly. Consider the irreducible admissible representation

Π = ⊗′Πv

of GLN (AK) whose central character ωΠ has ωΠv obtained from ωπv via Hilbert’s
theorem 90 at every place v of k. By construction, ωΠ is invariant under K×.

Let S be a finite set of places of k such that πv is unramified for v /∈ S. We
abuse notation and identify S with the finite set of places of K lying above the
places v ∈ S. Then, we have an equality of partial L-functions

LS(s,Π) = LS(s, π × 1).

Hence, LS(s,Π) converges absolutely on a right hand plane; and so does L(s,Π).
Let τ be a cuspidal automorphic representation of GLm(AK). Choose a grössen-

karacter η = ⊗ηv : K×\A×K → C× such that ηv is highly ramified for v ∈ S. Then,
letting τ ′ = τ ⊗ η, we have that (K/k, π, τ ′, ψ) ∈ Lglob(p,UN ,GLm). We have seen
in §§ 8.3, 8.4 and 8.5 that the following equality of local factors holds in every case:

L(s, πv × τ ′v) = L(s,Πv × τ ′v)
ε(s, πv × τ ′v, ψv) = ε(s,Πv × τ ′v, ψv).

With η as in Proposition 5.5, we know that the Langlands-Shahidi L-functions
L(s, π × τ ′) are polynomials in {qs, q−s}. They also satisfy the global functional
equation, Theorem 4.1(vi). Thus, they are nice. Then, since

L(s,Π× τ ′) = L(s, π × τ ′) and ε(s,Π× τ ′) = ε(s, π × τ ′),

we can conclude that the L-functions L(s,Π × τ ′) are nice, as τ ′ ranges through
the set T (S; η). From the Converse Theorem, there now exists an automorphic
representation Π′ of GLN (AK) such that Πv

∼= Π′v for all v /∈ S. Then Π′ gives a
weak Base Change.

Now, from [33], every automorphic form Π of GLN (AK) arises as a subquotient
of the globally induced representation

(8.5) Ind(Π1 ⊗ · · · ⊗Πd),

with each Πi a cuspidal automorphic representation of GLN (AK). Since every Πi is
cuspidal, they are globally generic. The results on the classification of automorphic
representations for general linear groups [23], shows that there exists a unique
generic subquotient of (8.5), which we denote by

Π = Π1 � · · ·�Πd.

It is this automorphic representation Π which is our desired Base Change, i.e., we let
BC(π) = π. It has the property that at every place w of K where Πw is unramified,
it is generic. Hence, at places where πv is unramified and w = v remains inert, Πw

is given by the unique generic subquotient of a principal series representation and
Πw agrees with the local Base Change lift of sections § 8.3. At split places it also
agrees with that of § 8.4 at almost all places. It thus agrees with Π′ at almost all
places and is itself a weak Base Change lift. Furthermore, by multiplicity one [50],
any two globally generic automorphic representations of GLN (AK) that agree at
almost every place are equal. Hence Π is uniquely determined. �
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9. On local Langlands functoriality and Strong Base Change

In Algebraic Number Theory there is a well known proof of existence for local
class field theory from global class field theory. In an analogous fashion, we here
prove the existence of the generic local Langlands functorial lift from a unitary
group UN to Res GLN , i.e., local Base Change. We are guided by the discussion
found in [9, 29]. The lift preserves local L-functions and root numbers. In general,
we refer to § 10.2 for a discussion on reducing the study of local factors to the
generic case. In § 7 of [14] we show how to establish Base Change in general, which
preserves Plancherel measures for non-generic representations.

In § 9.5 we address how to strengthen the “weak” base change map of Theo-
rem 8.6 so that it is compatibile with the local Langlands functorial lift or local
base change. Throughout this section, we fix a quadratic extension E/F of non-
archimedean local fields of positive characteristic. Given any general linear group
GLm(E), we let ν denote the unramified character obtained via the determinant,
i.e., ν = |det(·)|E . Globally, we let K/k denote a separable quadratic extension of
function fields.

Definition 9.1. Let π be a generic representation of UN (F ). Then, we say that a
generic irreducible representation Π of GLN (E) is a local base change lift of π if
for every supercuspidal representation τ of GLm(E) we have that

γ(s, π × τ, ψE) = γ(s,Π× τ, ψE).

9.1. Uniqueness of the local base change lift. The previous definition extends
to twists by a general irreducible unitary generic representation τ of GLm(E), as
we show in the next lemma. For this, the clasification of [59] is very useful. It
allows us to write

(9.1) τ = Ind(δ1ν
t1 ⊗ · · · ⊗ δdνtd ⊗ δd+1 ⊗ · · · ⊗ δd+k ⊗ δdν−td ⊗ · · · ⊗ δ1ν−t1),

where the δi’s are unitary discrete series representations of GLni(E) and 0 < td ≤
· · · ≤ t1 < 1/2.

Furthermore, from the Zelevinsky classification [64], we know that every unitary
discrete series representation δ of GLm(E) is obtained from a segment of the form

∆ =
[
ρν−

t−1
2 , ρν

t−1
2

]
,

where ρ is a supercuspidal representation of GLe(E), e|m, and t is a positive integer.
The representation δ is precisely the generic constituent of

(9.2) Ind(ρν−
t−1
2 ⊗ · · · ⊗ ρν

t−1
2 ).

An important result of Henniart [19] allows us to characterize the local Langlands
functorial lift by the condition that it preserves local factors.

Lemma 9.2. Let π be a generic representation of UN (F ) and suppose there exists
Π, a local base change lift to GLN (E). Then, for every irreducible unitary generic
representation τ of GLm(E) we have that

γ(s, π × τ, ψE) = γ(s,Π× τ, ψE).

Furthermore, such a local base change lift Π is unique.
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Proof. Given an irreducible unitary generic representation τ of GLm(E), write τ in
the form given by (9.1). Then, multiplicativity of γ-factors gives

γ(s, π × τ, ψE) =

k∏
i=1

γ(s, π × δd+i, ψE)

d∏
j=1

γ(s+ tj , π × δj , ψE)γ(s− tj , π × δj , ψE).

And, similarly

γ(s,Π× τ, ψE) =

k∏
i=1

γ(s,Π× δd+i, ψE)

d∏
j=1

γ(s+ tj ,Π× δj , ψE)γ(s− tj ,Π× δj , ψE).

In this way, we reduce the problem to proving the relation

γ(s, π × δ, ψE) = γ(s,Π× δ, ψE)

for discrete series representations δ of GLm(E).
Now, we write the representation δ as the generic constituent of

Ind(ρν−
t−1
2 ⊗ · · · ⊗ ρν

t−1
2 ),

as in (9.2). Then, using the multiplicativity property of γ-factors, we obtain

γ(s, π × δ, ψE) =

t−1∏
l=0

γ(s− t− 1

2
+ l, π × ρ, ψE)

=

t−1∏
l=0

γ(s− t− 1

2
+ l,Π× ρ, ψE)

= γ(s,Π× δ, ψE).

This shows that Π satisfies the desired relation involving γ-factors. That Π is
unique then follows from Theorem 1.1 of [19]. �

Lemma 9.3. Let π be a generic representation of UN (F ) and suppose it has a local
Langlands functorial lift Π of GLN (E). Then, for every irreducible unitary generic
representation τ of GLm(E) we have that

L(s, π × τ) = L(s,Π× τ)

ε(s, π × τ, ψE) = ε(s,Π× τ, ψE).

Proof. As in the previous Lemma, begin by writing the unitary generic representa-
tion τ of GLm(E) as in (9.1), with discrete series as inducing data. And, write

τ0 = Ind(δd+1 ⊗ · · · ⊗ δd+k).
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Then, using Properties (ix) and (x) of Theorem 7.3, we obtain

L(s, π × τ) = L(s, π × τ0)

d∏
i=1

L(s+ ti, π × δi)L(s− ti, π × δi),

ε(s, π × τ, ψE) = ε(s, π × τ0, ψE)

d∏
i=1

ε(s+ ti, π × δi, ψE)ε(s− ti, π × δi, ψE).

Now, for the factors involving τ0, we use Langlands classification to express π as a
Langlands quotient of

Ind(π1 ⊗ · · · ⊗ πe ⊗ π0).

Then π is the generic constituent, where P is the parabolic subgroup of UN with

Levi M =
∏d
i=1 Res GLmi ×UN0

and each πi is a quasi-tempered representation of
GLmi(E). Now, Properties (ix) and (x) of Theorem 7.3 in this situation directly
give

L(s, π × τ0) = L(s, π0 × τ0)

e∏
i=1

L(s, πi × τ0),

ε(s, π × τ0, ψE) = ε(s, π0 × τ0, ψE)

e∏
i=1

ε(s, πi × τ0, ψE).

All representations involved in the previous two equations are quasi-tempered. Each
individual local factor on the RHS of these equations can be shifted by Property (ix)
of Theorem 7.3, which leads to an L-functions and ε-factor involving tempered rep-
resentations. The connection to γ-factors, and the previous lemma, is now made via
Property (viii) of Theorem 7.3 in addition to Property (xi). Now, multiplicativity
of γ-factors leads to

L(s, π × τ0) =

k∏
l=1

L(s, π × δd+l),

ε(s, π × τ0, ψE) =

k∏
l=1

ε(s, π × δd+l, ψE).

The properties of [21], for example, can be applied to Rankin-Selberg factors to
obtain

L(s,Π× τ) =

k∏
l=1

L(s,Π× δd+l)

d∏
i=1

L(s+ ti, π × δi)L(s− ti, π × δi),

ε(s,Π× τ, ψE) =

k∏
l=1

ε(s,Π× δd+l, ψE)

d∏
i=1

ε(s+ ti, π × δi, ψE)ε(s− ti, π × δi, ψE).

Where we reduced to proving

L(s, π × ρ) = L(s,Π× ρ)

ε(s, π × ρ, ψE) = ε(s,Π× ρ, ψE)

for discrete series representations ρ of GLm(E). Indeed, we now address this case
in what follows.
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For the irreducible unitary generic representation Π of GLN (E), we use (9.1) to
write

(9.3) Π = Ind(ξ1ν
r1 ⊗ · · · ⊗ ξfνrf ⊗ ξf+1 ⊗ · · · ⊗ ξf+h ⊗ ξfν−rf ⊗ · · · ⊗ ξ1ν−r1),

with each ξi a discrete series and 0 < rf ≤ · · · ≤ r1 < 1/2.

γ(s, π × ρ, ψE) =

h∏
i=1

γ(s, ξf+i × ρ, ψE)

f∏
j=1

γ(s+ rj , ξj × ρ, ψE)γ(s− rj , ξj × ρ, ψE).

Each γ-factor on the right hand side of the previous expression involves discrete
series (hence tempered) representations. Thus, each factor has a corresponding
L-function and root number via Property (viii) of Theorem 4.1. The product

P (q−sF )−1 =

h∏
i=1

L(s, ξf+i × ρ)

f∏
j=1

L(s+ rj , ξj × ρ)L(s− rj , ξj × ρ).

From the Proposition on p. 451 of [22], each L(s, ξi × ρ) has no poles for <(s) > 0.
And, since rj < 1/2, the function P (q−sF ) is non-zero for <(s) ≥ 1/2. Now, the
product

Q(q−sF )−1 =

h∏
i=1

L(1− s, ξ̃f+i × ρ̃)

f∏
j=1

L(1− s− rj , ξ̃j × ρ̃)L(1− s− rj , ξ̃j × ρ̃)

is in turn non-zero for <(s) ≤ 1/2. Then, Property (viii) of Theorem 4.1 gives the
relation

γ(s, π × ρ, ψE) ∼
P (q−sF )

Q(q−sF )
,

which is an equality up to a monomial in q−sF . More precisely, the monomial is the
root number, which we can decompose as

ε(s, π × ρ, ψE) =

h∏
i=1

ε(s, ξf+i × ρ, ψE)

f∏
j=1

ε(s+ rj , ξj × ρ, ψE)ε(s− rj , ξj × ρ, ψE)

=ε(s,Π× ρ, ψE).

Notice that the regions where P (q−sF ) and Q(q−sF ) may be zero do not inter-
sect. Hence, there are no cancellations involving the numerator and denominator
of γ(s, π × ρ, ψE). This shows that

L(s, π × ρ) =
1

P (q−sF )
= L(s,Π× ρ),

where the second equality follows using the form (9.3) of Π and the multiplicativity
property of Rankin-Selberg L-functions. �

Lemma 9.4. Let π be a tempered generic representation of UN (F ) and suppose it
has a local Langlands functorial lift Π of GLN (E). Then, Π is also tempered.
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Proof. We proceed by contradiction. If Π is not tempered, then there is at least
one ri0 > 0 in the decomposition (9.3) of Π. From the previous lemma, we know
that

L(s, π × ρ) = L(s,Π× ρ)

is valid for any discrete series representation ρ of GLm(E). Take ρ = ξ̃i0 . From
the holomorphy of tempered L-functions, L(s, π × ρ) has no poles in the region
<(s) > 0. On the other hand

L(s,Π× ξ̃i0) =

h∏
i=1

L(s, ξf+i × ξ̃i0)

f∏
j=1

L(s+ rj , ξj × ξ̃i0)L(s− rj , ξj × ξ̃i0)

has a pole at s = ri0 , due to the term L(s−ri0 , ξi0× ξ̃i0). And, L(s,Π× ξ̃i0) inherits
this pole, which gives the contradiction. Hence, it must be the case that f = 0 in
equation (9.3) and we have that

Π = Ind(ξ1 ⊗ · · · ⊗ ξh)

is thus tempered. �

9.2. A global to local result. We prove that global Base Change is compatible
with local Base Change. At unramified and split places it is that of §§ 8.3 and 8.4;
the central character obtained via (6.1).

Proposition 9.5. Given a globally generic cuspidal automorphic representation
π = ⊗′πv of UN (Ak), let BC(π) = Π = ⊗′Πv be the base change lift of Theorem 8.6.
Then, for every v we have:

(i) Πv is the uniquely determined local base change of πv;
(ii) Πv is unitary with central character ωΠv of K×v obtained from the character

ωπv of K1
v via Hilbert’s theorem 90.

Proof. The base change lift Π = BC(π), being globally generic, has every local Πv

generic. At every place where πv is unramified, Πv is a constituent of an unramified
principal series representation by construction. Since Πv is generic, it has to be the
unique generic constituent of the principal series representation. Thus

(9.4) Πv = BC(πv)

is the unramified local base change of § 8.3, if v is inert, and that of § 8.4, if v is
split.

Fix a place v0 of k which remains inert in K. We wish to show that

γ(s, πv0 × τ0, ψv0) = γ(s,Πv0 × τ0, ψv0)

for every generic (Kv0/kv0 , πv0 , τ0, ψv0) ∈ Lloc(p,UN ,GLm) with τ0 supercuspidal.
Let S be a finite set of places of k, not containing v0, such that πv is unramified
for v /∈ S ∪ {v0}. Via Property (v) of Theorem 7.3, we may assume that ψv0 is the
component of a global additive character ψ = ⊗ψv : K\AK → C×.

Via Lemma 4.2, there is a cuspidal automorphic representation τ = ⊗′τv of
GLm(AK) such that τv0 = τ0 and τv is unramified for all v /∈ S. Now, using the
Grunwald-Wang theorem of class field theory [2], there exists a Grössencharakter
η : K×\A×K → C× such that ηv0 = 1 and ηv is highly ramified for all v ∈ S such
that v remains inert in K.
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At places v ∈ S, which remain inert in K, we have the stable form of Lemma 7.4.
Indeed, after twisting τv by the highly ramified character ηv we have

γ(s, πv × (τv · ηv), ψv) = γ(s,Πv × (τv · ηv), ψv).

At split places v ∈ S, we write τv = τ1,v⊗τ2,v as a representation of ResKv/kvGLm(kv) =
GLm(kv) × GLm(kv) with each τ1,v and τ2,v supercuspidal. From § 7.3 (ii), the
Langlands-Shahidi γ-factors are given by

γ(s, πv × τv, ψv) = γ(s, πv × τ1,v, ψv)γ(s, π̃v × τ2,v, ψv),

which are compatible with the split Base Change map of § 8.4. Now, consider
τ ′ = τ ⊗ η. For (K/k, π, τ ′, ψ) ∈ Lglob(p,UN ,GLm) we have the global functional
equation

LS(s, π × τ ′) = γ(s, πv0 × τv0 , ψv)
∏

v∈S−{v0}

γ(s, πv × (τv · ηv), ψv)LS(1− s, π̃ × τ̃ ′),

and for (K/k,Π, τ ′, ψ) ∈ Lglob(p,GLN ,GLm) the functional equation for Rankin-
Selberg products reads

LS(s,Π× τ ′) = γ(s,Πv0 × τv0 , ψv)
∏

v∈S−{v0}

γ(s,Πv × (τv · ηv), ψv)LS(1− s, Π̃× τ̃ ′).

At unramified places, it follows from equation (9.4) that local L-functions agree.
This gives equality of the corresponding partial L-functions appearing in the above
two functional equations. We thus obtain

γ(s, πv0 × τv0 , ψv0) = γ(s,Πv0 × τv0 , ψv0).

Since our choice of supercuspidal τ0 = τv0 of GLm(E) was arbitrary, we have that
Π0 is a local base change for π0. Uniqueness follows from Lemma 9.2. Proving
property (i) as desired.

Note that the central character ωπ = ⊗ωπv of π is an automorphic representation
of U1(Ak). Now, let χ = ⊗χv be defined on GL1(AK) from ωπ via Hilbert’s
theorem 90. Namely, we let hv : xv 7→ xvx̄

−1
v be the continuous map of (6.1) and

let

χv = ωπv ◦ hv.
at every place v of k; we view Kv as a degree-2 finite étale algebra over kv.
Then χ : K×\A×K → C× is a Grössencharakter. Also, χ and ωΠ are continu-
ous Grössencharakters such that χv agrees with ωΠv at every v /∈ S ∪ {v0}. Hence
χ = ωΠ. Thus, the central character of Πv0 is ωΠv0

= χv0 , which is obtained via

ωπv0 as in property (ii) of the Proposition. �

Remark 9.6. Let π0 be a generic representation of UN (F ). Suppose there is
a globally generic cuspidal automorphic representation π = ⊗′πv of UN (Ak) with
π0 = πv0 at some place v0 of k, where kv0 = F . Then it follows from Proposition 9.5
that it has a uniquely determined local base change Π0 = BC(π0).

9.3. Supercuspidal lift. To avoid confusion between local and global notation,
from here until the end of § 9, we use π0 to denote a local representation of a
unitary group and Π0 for its local base change, when it exists. We use π = ⊗′πv
for a cuspidal automorphic representation of a unitary group and Π = ⊗′Πv for its
its corresponding global base change.
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Proposition 9.7. Let π0 be a generic supercuspidal representation of UN (F ). Then
π0 has a unique local base change

Π0 = BC(π0)

to GLN (E). The central character ωΠ0 of Π0 is the character of E× obtained from
ωπ0 of E1 via Hilbert’s theorem 90. Moreover

Π0 = Ind(Π0,1 ⊗ · · · ⊗Π0,d),

where each Π0,i is a supercuspidal representation of GLNi(E) satisfying: Π0,i
∼=

Π̃θ
0,i; Π0,i � Π0,j for i 6= j; and

(i) L(s,Π0,i, rA) has a pole at s = 0 if N is odd;
(ii) L(s,Π0,i ⊗ ηE/F , rA) has a pole at s = 0 if N is even.

Proof. Let k be a global function field with kv0 = F . From Lemma 4.2, there
exists a globally generic cuspidal automorphic representation π = ⊗πv of UN (Ak)
such that π0 = πv0 . Then, Remark 9.6 gives the existence of a unique base change
Π0 = BC(π0).

By Lemma 9.4, Π0 is a unitary tempered representation of GLm(E). Hence, we
have that

Π0 = Ind(Π0,1 ⊗ · · · ⊗Π0,d),

with each Π0,i a discrete series representation. Via (9.2), each Πi is the generic
constituent of

Ind(ρiν
− ti−1

2 ⊗ · · · ⊗ ρiν
ti−1

2 ),

where ρi is a supercuspidal representation of GLmi(E), mi|m, and ti is an integer.
We look at a fixed Π0,j . Due to the fact that all of the representations involved

are tempered, we have

L(s,Π0×Π̃0,j) =

d∏
i=1

L(s,Π0,i×Π̃0,j) =

d∏
i=1

ti∏
l=0

tj∏
r=0

L(s+l+r− ti − 1

2
− tj − 1

2
, ρl×ρ̃r).

The L-function L(s+ tj − 1, ρj × ρ̃j) on the right hand side gives that the product
has a pole at s = 1− tj . Now, the tempered L-function

L(s,Π0 × Π̃0,j) = L(s, π0 × Π̃0,j)

is holomorphic for <(s) > 0. This contradicts the fact that L(s,Π0 × Π̃0,j) has a

pole at s = 1−tj , unless tj = 1. This forces Π0,j = ρj , in addition to L(s, π0×Π̃0,j)
having a pole at s = 0. The argument proves that our fixed Π0,j is supercuspidal.

Now, let P = MN be the parabolic subgroup of U2m+N with Levi M ∼=
Res GLm × UN . Then Proposition 5.7 tells us that L(s, π0 × Π̃0,j) has a pole
at s = 0 if and only if

ind
U2m+N (F )
P (Π̃0,j ⊗ π̃0)

is irreducible and Π̃0,j ⊗ π̃0 = w0(Π̃0,j ⊗ π̃0) ∼= Πθ
0,j ⊗ π̃0. This gives, for each j,

that Π0,j
∼= Π̃θ

0,j . Furthermore, we have

L(s, π0 × Π̃0,j) = L(s,Π0 × Π̃0,j) =

d∏
i=0

L(s,Π0,i × Π̃0,j).

Each L-function in the the product of the right hand side has a pole at s = 0
whenever Π0,i

∼= Π0,j . However, the pole of L(s, π0 × Π̃0,j) at s = 0 being simple,
forces Π0,i � Π0,j for i 6= j.
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From the fact that Π0,i
∼= Π̃θ

0,i and Proposition 6.4, we have

L(s,Π0,i × Π̃0,i) = L(s,Π0,i, rA)L(s,Π0,i ⊗ ηE/F , rA).

Then, one and only one of L(s,Π0,i, rA) or L(s,Π0,i ⊗ ηE/F , rA) has a simple pole

at s = 0. With the notation of § 6.6, we have (E/F, Π̃0,i⊗ π̃0, ψE) ∈ Lloc(p,M,G)
for M = Res GLmi ×UN and G = U2mi+N . By Proposition 5.7, the product

L(s, Π̃0,i ⊗ π̃0, r1)L(2s, Π̃0,i, r2)

has a simple pole at s = 0. Using Π0,i
∼= Π̃θ

0,i and Proposition 6.4, we have that

L(s,Π0,i, r2) = L(s, Π̃0,i, r2) =

{
L(s,Π0,i, rA) if N = 2n
L(s,Π0,i ⊗ ηE/F , rA) if N = 2n+ 1

.

Since we showed above that L(s, π0 × Π̃0,i) = L(s, Π̃0,i ⊗ π̃0, r1) has a simple pole

at s = 0, then L(2s, Π̃0,i, r2) cannot. Thus, depending on wether N is even or odd,
the other one between L(s,Π0,i, rA) and L(s,Π0,i ⊗ ηE/F , rA) must have a pole at
s = 0. �

9.4. Discrete series, tempered representations and Langlands classifica-
tion. Thanks to the work of Mœglin and Tadić [43], we have the classification of
generic discrete series representations for the unitary groups. Their work allows us
to obtain a generic discrete series representation ξ of UN (F ) as a subrepresentation
as follows

(9.5) ξ ↪→ Ind(δ1 ⊗ · · · ⊗ δd ⊗ δ′1 ⊗ · · · δ′e ⊗ π0).

Here, for 1 ≤ i ≤ d and 1 ≤ j ≤ e, we have essentially square integrable repre-
sentations δi of GLli(E) and δ′j of GLmj (E). The representation π0 is a generic
supercuspidal of UN0

(F ), with N0 of the same parity as N . We refer to [14] for
a discussion including non-generic representations and the basic assumption (BA)
that is made in [43].

We can apply the Zelevinsky classification [64], to the essentially discrete repre-
sentations of general linear groups appearing in the decomposition (9.5). They are
obtained via segments of the form

∆ =
[
ρν−b, ρνa

]
,

where a, b ∈ 1
2Z, a > b > 0, and ρ is a supercuspidal representation of GLf (E), f |li

or mj , respectively.
The Mœglin-Tadić classification involves a further refinement of the segments

corresponding to each δi and δ′j . More precisely, let ai > bi > 0 now be integers of
the same parity. Then we have

(9.6) δi = Ind
(
ρiν
− bi−1

2 ⊗ · · · ⊗ ρiν
ai−1

2

)
,

where ρi is a supercuspidal representation of GLf (E), f |li. Furthermore, we have
ρi ∼= ρ̃θi . Next, let a′j be a positive integer. We set εj = 1/2 if a′j is even and εj = 1
if a′j is odd. Then we have

(9.7) δ′j = Ind

(
ρ′jν

εj ⊗ · · · ⊗ ρ′jν
a′j−1

2

)
,

with ρ′j
∼= (ρ̃′j)

θ a supercuspidal representation of GLf ′(E), f ′|mj . Furthermore,
the integer a′j will be odd if L(s, π0 × ρ′) has a pole at s = 0, and a′j will be even
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otherwise. This is due to (BA) of [43] concerning the reducibility of the induced
representation Ind(ρ′jν

s⊗π0) at s = 1/2 or 1, which is addressed in § 5.5 for generic
representations.

Proposition 9.8. Let ξ0 be a generic discrete series representation of UN (F ),
which we can write as

(9.8) ξ0 ↪→ Ind(δ1 ⊗ · · · ⊗ δd ⊗ δ′1 ⊗ · · · ⊗ δ′e ⊗ π0)

with π0 a generic supercuspidal of UN0
(F ) and δi, δ

′
j as in (9.5). Then ξ0 has a

uniquely determined base change

Ξ0 = BC(ξ0),

which is a tempered generic representation of GLN (E) satisfying Ξ0
∼= Ξ̃θ0. The

central character ωΞ0
of Ξ0 is the character of E× obtained from ωξ0 of E1 via

Hilbert’s theorem 90. Moreover, the lift Ξ0 is the generic constituent of an induced
representation:

Ξ0 ↪→ Ind
(
δ1 ⊗ · · · ⊗ δd ⊗ δ′1 ⊗ · · · ⊗ δ′e ⊗Π0 ⊗ δ̃′eθ ⊗ · · · ⊗ δ̃′1θ ⊗ δ̃θd ⊗ · · · ⊗ δ̃θ1

)
,

The representation Π0 is the local Langlands functorial lift of π0 of Proposition 9.7.

Proof. Let ξ0 be as in the statement of the Proposition, and consider quadruples
(E/F, ξ0, ρ, ψ) ∈ Lloc(p,UN ,Res GLm) such that ρ is an arbitrary supercuspidal
representation. To π0 there corresponds a Π0 via Proposition 9.7. With Ξ0 as in
the Proposition, we have (E/F,Ξ0, ρ, ψ) ∈ Lloc(p,Res GLN ,Res GLm). Then we
can use multiplicativity of γ-factors to obtain

γ(s, ξ0 × ρ, ψE) = γ(s, π0 × ρ, ψE)

d∏
i=1

e∏
j=1

γ(s, δi × ρ, ψE)γ(s, δ′j × ρ, ψE)

= γ(s,Π0 × ρ, ψE)

d∏
i=1

e∏
j=1

γ(s, δi × ρ, ψE)γ(s, δ′j × ρ, ψE)

= γ(s,Ξ0 × ρ, ψE).

From Lemma 9.2, we have that Ξ0 is the unique local Langlands lift of ξ0. It
satisfies Ξ0

∼= Ξ̃θ0 and has the right central character.

For each i, 1 ≤ i ≤ d, let τi be the generic constituent of Ind(δi ⊗ δ̃θi ). After
rearranging the factors coming from equation (9.6), we can see that τi is isomorphic
to the generic constituent of

Ind
(

(ρiν
− ai−1

2 ⊗ · · · ⊗ ρiν
ai−1

2 )⊗ (ρiν
− bi−1

2 ⊗ · · · ⊗ ρiν
bi−1

2 )
)
.

Recall that ρi ∼= ρ̃θi . Hence, each τi is tempered and satisfies τi ∼= τ̃θi . We proceed

similarly with τ ′j , 1 ≤ j ≤ e, the generic constituent of Ind(δ′j ⊗ δ̃′jθ), now with the

aid of equation (9.7). We conclude that τ ′j is tempered and satisfies τ ′j
∼= τ̃ ′j

θ. We
then rearrange the inducing data for Ξ0 to obtain the form

Ξ0 ↪→ Ind (τ1 ⊗ · · · ⊗ τd ⊗ τ ′1 ⊗ · · · ⊗ τ ′e ⊗Π0) .

Each τi, τ
′
i and Π0 being tempered, we conclude that Ξ0 is also tempered. �

We now turn to the tempered case, which is crucial, since L-functions and ε-
factors are defined via γ-factors in this case. The proofs of the remaining two results
are now similar to the case of a discrete series, thanks to Lemma 9.2.
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Proposition 9.9. Let τ0 be a generic tempered representation of UN (F ), which we
can write as

τ0 ↪→ Ind (δ1 ⊗ · · · ⊗ δd ⊗ ξ0) ,

with each δi a discrete series representation of GLni(E) and ξ0 is one of UN0
(F ).

Then τ0 has a uniquely determined base change

T0 = BC(τ0),

which is a tempered generic representation GLN (E) satisfying T0
∼= T̃ θ0 . The central

character ωT0
obtained from ωτ0 via Hilbert’s theorem 90. Specifically, the lift T0 is

of the form

T0 = Ind
(
δ1 ⊗ · · · ⊗ δd ⊗ Ξ0 ⊗ δ̃dθ ⊗ · · · ⊗ δ̃θ1

)
.

The representation Ξ0 is the base change lift of Proposition 9.8.

Proof. The proof is now along the lines of Proposition 9.8, where we use multiplica-
tivity of γ-factors and the fact that Ξ0 is the local Langlands lift of the discrete series
ξ0. This way, we obtain equality of γ-factors to apply Lemma 9.2 and conclude that
T0
∼= T̃ θ0 and has the correct central character. �

In general we have the Langlands quotient [4, 57]. The work of Muić on the
standard module conjecture [48] helps us to realize a general generic representation
π0 of UN (F ) as the unique irreducible generic quotient of an induced representation.
More precisely, π0 is the Langlands quotient of

(9.9) Ind (τ ′1 ⊗ · · · ⊗ τ ′d ⊗ τ0) ,

with each τ ′i a quasi-tempered representation of GLni(E) and τ0 a tempered rep-
resentation of UN0(F ). We can write τ ′i = τi,0ν

ti with τi,0 tempered and the
Langlands parameters have 0 ≤ t1 ≤ · · · ≤ td.

Theorem 9.10. Let π0 be a generic representation of UN (F ). Write π0 as the
Langlands quotient of

Ind (τ ′1 ⊗ · · · ⊗ τ ′d ⊗ τ0) ,

as in (9.9). Then π0 has a unique generic local base change

Π0 = BC(π0),

which is a generic representation of GLN (E) satisfying Π0
∼= Π̃θ

0. The central
character ωΠ0

obtained from ωπ0
via Hilbert’s theorem 90. Specifically, the lift Π0

is the Langlands quotient of

Ind
(
τ ′1 ⊗ · · · ⊗ τ ′d ⊗ T0 ⊗ τ̃ ′θd ⊗ · · · ⊗ τ̃ ′θ1

)
,

with T0 the Langlands functorial lift of the tempered representation τ0. Given
(E/F, π0, τ, ψ) ∈ L (p,UN ,Res GLm), we have equality of local factors

γ(s, π0 × τ, ψE) = γ(s,Π0 × τ, ψE)

L(s, π0 × τ) = L(s,Π0 × τ)

ε(s, π0 × τ, ψE) = ε(s,Π0 × τ, ψE).

Proof. We reason as in the case of a tempered representation, Proposition 9.9.
Equality of local factors follows from the definition of base change and Lemmas 9.2
and 9.3, after incorporating twists by unramified characters. �
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Theorem 9.10 summarizes our main local result. Local base change being recur-
sively defined via the tempered, discrete series and supercuspidal cases of Propos-
tions 9.9, 9.8 and 9.7, respectively.

9.5. Strong base change. Base change is now refined in such a way that it agrees
with the local functorial lift of Theorem 9.10 at every place. Let

h : U1(Ak)→ GL1(AK)

be the global reciprocity map such that hv is the map given by Hilbert’s Theorem 90
at every place v of k, as in equation (6.1). We also have global twists by the
unramified character ν of a general linear group obtained via the determinant, as
in the local theory.

Theorem 9.11. Let π be a cuspidal globally generic automorphic representation
of UN (Ak). Then π has a unique Base Change to an automorphic representation
of GLN (AK), denoted by

Π = BC(π).

The central character of Π is given by ωΠ = ωπ ◦ h and is unitary. Furthermore,
Π ∼= Π̃θ and there is an expression as an isobaric sum

Π = Π1 � · · ·�Πd,

where each Πi is a unitary cuspidal automorphic representation of GLNi(AK) such

that Π̃i
∼= Πθ

i and Πi � Πj, for i 6= j. At every place v of k, we have that

Πv = BC(πv)

is the local base change of Theorem 9.10 preserving local factors.

In the case of number fields, the method of descent is used in [58] to show how to
obtain the strong lift from the weak lift. Over function fields, we can now give a self
contained proof with the results of this article. Since the proof can be adapted to
the classical groups in characteristic p, we prove this result in § A.3 of the Appendix,
where we complete the results of [39, 40].

10. Ramanujan Conjecture and Riemann Hypothesis

Let K/k be a quadratic extension of global function fields of characteristic p.
We can now complete the proof of the existence of extended γ-factors, L-functions
and root number in order to include products of two unitary groups. Note that
the Base Change map of Theorem 8.6 was strengthened in Theorem 9.11 so that
it agrees with the local functorial lift of Theorem 9.10 at every place v of k. In
this way, we can prove our main application involving L-functions for the unitary
groups. The Riemann Hypothesis for L-functions associated to products of cuspidal
automorphic representations of two general linear groups was proved by Laurent
Lafforgue in [31].

Theorem 10.1. Let γ, L and ε be rules on Lloc(p) satisfying the ten axioms of
Theorem 7.3. Given (K/k, π, τ, ψ) ∈ Lglob(p), define

L(s, π × τ) =
∏
v

L(s, πv × τv) and ε(s, π × τ, ψ) =
∏
v

ε(s, πv × τv, ψv).

Automorphic L-functions on Lglob(p) satisfy the following:
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(i) (Rationality). L(s, π×τ) converges absolutely on a right half plane and has
a meromorphic continuation to a rational function on q−s.

(ii) (Functional equation). L(s, π × τ) = ε(s, π × τ)L(1− s, π̃ × τ̃).
(iii) (Riemann Hypothesis). The zeros of L(s, π × τ) are contained in the line

<(s) = 1/2.

10.1. Extended local factors. Let us complete the definition of extended local
factors of Theorem 7.3. In this section for generic representations and in the next
in general under a certain assumption. The case of a unitary group and a general
linear group for generic representations already addressed in § 6. An exposition,
within the Langlands-Shahidi method of the case of two general linear groups can
be found in [21]. We now focus on the new case of G1 = UM and G2 = UN .

Definition 10.2. Given (E/F, π0, τ0, ψ) ∈ Lloc(p,UM ,UN ) generic, let

Π0 = BC(π0) and T0 = BC(τ0)

be the corresponding base change maps of Theorem 9.10. We define

γ(s, π0 × τ0, ψE) := γ(s,Π0 × T0, ψE)

L(s, π0 × τ0) := L(s,Π0 × T0)

ε(s, π0 × τ0, ψE) := ε(s,Π0 × T0, ψE).

The defining Properties (vii)–(x) of Theorem 7.3 allow us to construct L-functions
and root numbers from γ-factors in the tempered case. This is compatible with the
decomposition of π0 and τ0 of Theorem 9.10. The rules γ, L and ε then satisfy all of
the local properties of Theorem 7.3. The remaining property, the global functional
equation, is part (ii) of Theorem 10.1, addressed in § 10.2.

10.2. Non-generic representations and local factors. Consider an irreducible
admissible representation π of UN (F ) that is not necessarily generic. We first look
at the case when π is tempered. If char(F ) = 0, the tempered L-packet conjecture,
Conjecture 10.3 below, is known (see Theorem 2.5.1 of [45]). Furthermore, it is part
of the work of Ganapathy-Varma [15] on the local Langlands correspondence for the
split classical groups if char(F ) = p. For the unitary groups UN (F ), char(F ) = p,
it is thus reasonable to work under the assumption that Conjecture 10.3 holds.

Let Φ be the set of all Langlands parameters

φ :W ′F → LUN .

A parameter φ is tempered if its image on GLN (C) is bounded. For any tempered
L-parameter φ, there is an L-packet Πφ which is a finite multi-set. We consider only
tempered L-packets in this section, which agree with tempered Arthur packets.

Conjecture 10.3. If an L-packet contains a tempered element, then all of its
elements are tempered. Every tempered L-packet Πφ of UN (F ) contains a repre-
sentation π0 which is generic.

In fact, we can be more precise. Let (B, ψ) be Whittaker datum with B = TU a
fixed Borel subgroup of G = UN and ψ : U → C× non-degenerate. Every tempered
L-packet Πφ of UN (F ) contains exactly one representation π0 which is generic with
respect to (B, ψ). In this article, we take the Borel subgroup of UN consisting of
upper triangular matrices.
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Furthermore, L-functions are independent on how the non-degenerate character

varies. Let G = UN and let G̃ be as in Proposition 2.2, sharing the same derived

group as G. Then L-functions are independent up to Ad(g) by elements of G̃(F ).
And there is a formula that keeps track of how γ-factors and root numbers behave
as the additive character ψ varies.

The importance of this conjecture is that it reduces the study of γ-factors, L-
functions and ε-factors to the case of generic representations. Hence, under the
assumption that Conjecture 10.3 is valid, we complete the existence part of Theo-
rem 7.3 for tempered representations with the following definition.

Definition 10.4. Let (E/F, π, τ, ψ) ∈ Lloc(p) be tempered. Let Πφ1
and Πφ2

be
tempered L-packets with π ∈ Πφ1

and τ ∈ Πφ2
. Let π0 ∈ Πφ1

and τ0 ∈ Πφ2
be

generic. Then we have

γ(s, π × τ, ψE) := γ(s, π0 × τ0, ψE)

L(s, π × τ) := L(s, π0 × τ0)

ε(s, π × τ, ψE) := ε(s, π0 × τ0, ψE).

To prove Theorem 7.3 in general, we can use Langlands classification to write

π ↪→ Ind(σ1 ⊗ χ1)

and
τ ↪→ Ind(σ2 ⊗ χ2)

with σ1, σ2 tempered and χ1, χ2 ∈ Xnr(M) in the Langlands situation, as in [4, 57].
With tempered L-functions and corresponding local factors defined, then Properties
(vii)–(x) of Theorem 7.3 can now be used to define L-functions and related local
factors on Lloc(p,G1,G2) in general.

Remark 10.5. We refer to §§ 7 and 8 of [14] for a further discussion on L-
parameters and the local Langlands correspondence for the classical groups, includ-
ing the unitary groups. Written under certain working hypothesis, we address the
local Langlands correspondence in characteristic p. First for supercuspidal repre-
sentations, then for discrete series and tempered L-parameters, to end with general
admissible representations.

10.3. Proof of Theorem 10.1. The case of two general linear groups, i.e., for
(K/k, π, τ, ψ) ∈ Lglob(p,ResK/kGLM ,ResK/kGLN ), is already well understood.
Properties (i) and (ii) of Theorem 10.1 are attributed to Piatetski-Shapiro [49].
They can be proved in a self contained way via the Langlands-Shahidi method over
function fields, see [21, 41]. The Riemann Hypothesis in this case was proved by
Laurent Lafforgue in [31].

The case of (K/k, π, τ, ψ) ∈ Lglob(p,ResK/kGLm,UN ) is included in Theo-
rem 4.1 by taking M = GLm × UN as a maximal Levi subgroup of G = UN+2m

and forming the globally generic representation τ ⊗ π̃ of M(Ak). Property (i) in
this situation is Proposition 5.1. Property (ii) is the functional equation of § 4.4.
To prove the Riemann Hypothesis, we let

BC(π) = Π = Π1 � · · ·�Πd

be the base change lift of Theorem 9.11. Then

L(s, π × τ) = L(s,Π× τ) =

d∏
i=1

L(s,Πi × τ),
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with each (K/k,Πi, τ, ψ) ∈ Lglob(p,ResK/kGLmi ,ResK/kGLni). This reduces the
problem to the Rankin-Selberg case, established by L. Lafforgue.

Given (K/k, π, τ, ψ) ∈ Lglob(p,UM ,UN ), let

BC(π) = Π = Π1 � · · ·�Πd and BC(τ) = T = T1 � · · ·� Te

be the base change maps of Theorem 9.11. Then

L(s, π × τ) = L(s,Π× T ) =
∏
i,j

L(s,Πi × Tj).

For each (K/k,Πi, Tj , ψ) ∈ Lglob(p,ResK/kGLmi ,ResK/kGLni), 1 ≤ i ≤ d, 1 ≤
j ≤ e, we have rationality, the functional equation

L(s,Πi × Tj) = ε(s,Πi × Ti)L(1− s, Π̃i × T̃j),

and the Riemann Hypothesis. Hence the L-function L(s, π× τ) also satisfies Prop-
erties (i)–(iii) of Theorem 10.1. �

10.4. The Ramanujan Conjecture. Base Change over function fields also allows
us to transport the Ramanujan conjecture from the unitary groups to GLN . The
Ramanujan conjecture for cuspidal representations of general linear groups, being
a theorem of L. Lafforgue [31].

Theorem 10.6. Let π = ⊗′πv be a globally generic cuspidal automorphic repre-
sentation of UN (Ak). Then every πv is tempered. Whenever πv is unramified, its
Satake parameters satisfy

|αj,v|kv = 1, 1 ≤ j ≤ n.

Proof. Fix a place v of k, which remains inert in K. We can write πv as the generic
constituent of

Ind
(
τ ′1,v ⊗ · · · ⊗ τ ′d,v ⊗ τ0,v

)
,

as in (9.9), with each τ ′i,v quasi-tempered and τ0,v tempered. Furthermore, we can

write τ ′i,v = τi,vν
ti,v with τi,v tempered and Langlands parameters 0 ≤ t1,v ≤ · · · ≤

td,v.
Now, let Π = BC(π) be the base change lift of Theorem 9.11. From Theo-

rem 9.11, Πv is the local Langlands functorial lift of πv. By Theorem 9.10, Πv is
the generic constituent of

(10.1) Ind
(
τ ′1,v ⊗ · · · ⊗ τ ′d,v ⊗ T0,v ⊗ τ̃ ′θd,v ⊗ · · · ⊗ τ̃ ′θ1,v

)
,

with T0,v the Langlands functorial lift of the tempered representation τ0,v. The
representation T0,v is also tempered by Lemma 9.4.

On the other hand, the base change lift can be expressed as an isobaric sum

Π = Π1 � · · ·�Πe,

with each Πi a cuspidal unitary automorphic representation of GLmi(AK). Hence,
Πv is obtained from

(10.2) Ind(Π1,v ⊗ · · · ⊗Πe,v).

Then, thanks to Théorème VI.10 of [31], each Πi,v is tempered.
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We then look at a fixed τ̃j,v from (10.1), where we now have

L(s, πv × τ̃j,v) = L(s,Πv × τ̃j,v)

= L(s, τ0,v × τ̃j,v)
d∏
i=1

L(s+ ti,v, τi,v × τ̃j,v)L(s− ti,v, τi,v × τ̃j,v).

The L-function L(s − tj,v, τj,v × τ̃j,v) appearing on the right hand side has a pole
at s = tj,v. However, from (10.2) we have

L(s,Πv × τ̃j,v) =

e∏
i=1

L(s,Πi,v × τ̃j,v).

Notice that each representation involved in the product on the right hand side is
tempered. Then each L(s,Πi,v × τ̃j,v) is holomorphic for <(s) > 0. Hence, so is
L(s,Πv × τ̃j,v). This causes a contradiction unless tj,v = 0.

If v is split, we have that BC(πv) = πv ⊗ π̃v from § 8.4. For the places w1 and
w2 of K lying above v, we have that the representation of GLN (kv)

πv = Ind(Π1,w1
⊗ · · · ⊗Πe,w1

)

is tempered. Hence, so is

π̃v = Ind(Π̃1,w2
⊗ · · · ⊗ Π̃e,w2

).

Now, if v is inert and πv is unramified, we have from § 8.3 that the unramified
Base Change BC(πv) = Πv corresponds to a semisimple conjugacy class given by

Φv(Frobv) =

{
diag(α1,v, . . . , αn,v, 1, α

−1
n,v, . . . , α

−1
1,v) if N = 2n+ 1

diag(α1,v, . . . , αn,v, α
−1
n,v, . . . , α

−1
1,v) if N = 2n

.

Each αj,v or α−1
j,v is a Satake parameter for one of the representations Πi,v, which

are unramified. Since we are in the case of GLmi(Kv), we conclude that

|αj,v|kv = 1.

�

Appendix A. On functoriality for the classical groups

The main purpose of this appendix is to remove the previously present assump-
tion made in [39, 40] that char(k) 6= 2. In A.1 we restrict ourselves to the split
case.

A.1. Langlands functoriality. Let us summarize the results of [39] on the glob-
ally generic functorial lift for the classical groups. Let Gn be a split classical group
of rank n defined over a global function field k. The functorial lift of [39] takes
globally generic cuspidal automorphic representations π of Gn(Ak) to automorphic
representations of HN (Ak), where HN is chosen by the following table.

Gn
LGn ↪→ LHN HN

SO2n+1 Sp2n(C)×Wk ↪→ GL2n(C)×Wk GL2n

Sp2n SO2n+1(C)×Wk ↪→ GL2n+1(C)×Wk GL2n+1

SO2n SO2n(C)×Wk ↪→ GL2n(C)×Wk GL2n

Table 1
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Theorem A.1. Let Gn be a split classical group. Let π be a globally generic
cuspidal representation of Gn(Ak); n ≥ 2 if Gn = SO2n. Then, π has a functorial
lift to an automorphic representation Π of HN (Ak). It has trivial central character
and can be expressed as an isobaric sum

Π = Π1 � · · ·�Πd,

where each Πi is a unitary self-dual cuspidal automorphic representation of GLNi(Ak)
such that Πi � Πj for i 6= j. Furthermore, Πv is the local Langlands functorial lift
of πv at every place v of k. That is, for every (kv, πv, τv, ψv) ∈ Lloc(p,Gn,GLm)
there is equality of local factors

γ(s,Πv × τv, ψv) = γ(s, πv × τv, ψv)
L(s,Πv × τv) = L(s, πv × τv)

ε(s,Πv × τv, ψv) = ε(s, πv × τv, ψv).

Basically, Theorem A.1 is proved in a characteristic free way for any global
function field in § A.3. For this, we build upon the results on the properties of
Langlands-Shahidi L-functions of § 5. In Theorem A.2, the Ramanujan Conjecture
and the Riemann Hypothesis are addressed.

Theorem A.2. Let Gn be a split classical group defined over a function field k.

(i) (Ramanujan Conjecture). If π = ⊗′πv is a globally generic cuspidal auto-
morphic representation of Gn(Ak), then each local component πv is tem-
pered.

Let (k, π, τ, ψ) ∈ Lglob(p,Gn,Gm), with Gm either GLm or a split classical group
of rank m. Then

(ii) (Rationality). L(s, π×τ) converges absolutely on a right half plane and has
a meromorphic continuation to a rational function on q−s.

(iii) (Functional Equation). L(s, π × τ) = ε(s, π × τ)L(1− s, π̃ × τ̃).
(iv) (Riemann Hypothesis). The zeros of L(s, π × τ) are contained in the line

<(s) = 1/2.

The proof of the Ramanujan conjecture is essentially that of [39]. And the proofs
of Properties (ii)–(iv) are those appearing in [40]. However, they are completed with
the results of this article.

A.2. Rankin-Selberg L-functions for the classical groups. Let us adapt the
notation to include the split classical groups. Let Lglob(p,Gn,Res GLm) be the
class consisting of quintuples (K/k, π, τ, ψ, S): k a global function field of charac-
teristic p; K = k if Gn is split and K/k a separable quadratic extension if Gn

is a quasi-split unitary group; π = ⊗′πv a globally generic cuspidal automorphic
representation of Gn(Ak); τ = ⊗′τv a cuspidal (unitary) automorphic representa-
tion of Res GLm(Ak) = GLm(AK); ψ : k\Ak → C× a global additive character;
and S a finite set of places of k such that πv and ψv are unramified for v /∈ S. In
the case of a separable quadratic extension, we can think of the additive character
ψK : K\AK → C× obtained via the trace.

Theorem A.3. Let (K/k, π, τ, ψ, S) ∈ Lglob(p,Gn,Res GLm). Then L(s, π × τ)
is holomorphic for <(s) > 1 and has at most a simple pole at s = 1.
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Proof. The classification of generic unitary representations of Gn(kv) [35] gives that
every πv is a constituent of

(A.1) Ind(δ1,vν
β1 ⊗ · · · ⊗ δd,vνβd ⊗ δ′1,vνα1 ⊗ · · · ⊗ δ′e,vναe ⊗ π0,v).

Here, the representations δi,v and δ′j,v are unitary discrete series, π0,v is tempered,
and the Langlands parameters are of the form 1 > β1 > · · ·βd > 1/2 > α1 > · · · >
αe > 0.

Now, thanks to the work of L. Lafforgue [31], each local component τv of the
cuspidal unitary τ arises from an induced representation of the form

Ind(τ1,v ⊗ · · · ⊗ τf,v),

with each τl,v tempered. The L-functions L(s, τ, r) for r = Sym2, ∧2, rA or rA ⊗
ηK/k satisfy the following relationships

L(s, τ × τ) = L(s, τ, Sym2)L(s, τ,∧2)

L(s, τ × τθ) = L(s, τ, rA)L(s, τ, rA ⊗ ηK/k).

Also, because we are in the cases arising from GLn, we can apply Proposition 5.12.
Each L-function L(s, τ, r) appearing on the right hand sides of the previous two
equations is then holomorphic for <(s) > 1. The Rankin-Selberg product L-
functions on the left hand sides of the previous two equations are non vanishing for
<(s) > 1 [23]. Hence, each L(s, τ, r) in turn must be non vanishing for <(s) > 1.

Then, the multiplicativity property of Langlands-Shahidi L-functions gives

L(s, πv × τv) = L(s, πv,0 × τv)
d∏
i=1

e∏
j=1

f∏
l=1

L(s+ βi, δi,v × τl,v)L(s+ αj , δ
′
j,v × τl,v)

×
d∏
i=1

e∏
j=1

f∏
l=1

L(s− βi, δi,v × τl,v)L(s− αj , δ′j,v × τl,v).

From [17], each of the L-functions appearing in the right hand side is holomorphic
for <(s) large enough. This carries through to the left hand side and we can conclude
that L(s, πv × τv) is holomorphic for <(s) > β1. In particular, for <(s) > 1.

Now, we globally let σ = τ⊗π̃, so that (K/k, σ, ψ, S) ∈ Lglob(p,M,G). Where G
is a classical group of rank l = m+n of the same type as Gn and M = Res GLm×Gn

is a maximal Levi subgroup. From [44, 46], if the global intertwining operator
M(s,Φ, g,P) has a pole at s0, then a subquotient of I(s0, σ) would belong to the
residual spectrum and we would have that almost every I(s0, σv) is unitary.

However, to obtain a contradiction, we claim for <(s) > 1 that the representation
I(s, σv) cannot be unitary for at least one v /∈ S (we can actually show this for all
v /∈ S). For this, we begin by fixing a place v /∈ S, which we assume remains inert
if we are in the case of a non-split quasi-split classical group. In these cases we
now apply equation (A.1) for the group Gl. If I(s0, σv) were unitary then, up to
rearrangement if necessary, it would be of the form
(A.2)
Ind(χ1,vν

s0⊗· · ·⊗χm,vνs0⊗µ1,vν
β1⊗· · ·⊗µd,vνβd⊗µ′1,vνα1⊗· · ·⊗µ′e,vναe⊗µ0,v),

where we now have unramified unitary characters µ0,v, µi,v and µ′j,v; the character
µ0,v is taken to be trivial unless we are in the odd unitary group case. The Langlands
parameters are of the form 1 > β1 > · · ·βd > 1/2 > α1 > · · · > αe > 0. The
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classification tells us that this cannot be the case if <(s0) > 1. Hence, the global
intertwining operator M(s,Φ, g,P) must be holomorphic for <(s) > 1.

The product
mr∏
i=1

LS(is, σ, ri)

LS(1 + is, σ, ri)

is then holomorphic on <(s) > 1. For the classical groups we precisely have that
mr = 2 and

(A.3)

mr∏
i=1

LS(s, σ, ri) = LS(s, σ, r1)LS(2s, τ, r2),

where r1 = ρn⊗ ρ̃m and LS(s, σ, r2) = LS(s, τ, r2) has r2 either an exterior square,
symmetric square or Asai L-function. The induction step is given by the Siegel
Levi, and we showed that in these cases we have holomorphy and nonvanishing
for <(s) > 1. We can then cancel the second L-functions and conclude that the
quotient

(A.4)
LS(s, π × τ)

LS(1 + s, π × τ)

is holomorphic for <(s) > 1.
Finally, the poles of Eisenstein series are contained in the constant terms, hence

Corollary 3.4 gives that LS(1+s, π×τ)−1 is holomorphic for <(s) > 1. In this way,
we can cancel the now non-zero denominator in equation (A.4) to conclude that
LS(s, π × τ) is holomorphic on <(s) > 1. We have also noted that L(s, πv × τv)
is holomorphic for <(s) > 1 at every place v ∈ S. We then obtain the required
holomorphy property for the completed L-function L(s, π × τ).

Now, we have that the poles of the global intertwining operator M(s, σ, w̃0) are
all simple [44]. Then, by equation (5.1), the quotient

LS(s, π × τ)LS(2s, τ, r2)

LS(1 + s, π̃ × τ̃)LS(1 + 2s, τ̃ , r2)

has at most a simple pole at s = 1. From Corollary A.4, LS(2, τ, r2) and LS(3, τ̃ , r2)
are different from zero. Thus, L(s, π × τ) has at most a simple pole at s = 1. �

Corollary A.4. Let (K/k, τ, ψ, S) ∈ Lglob(p,M,G), with M the Siegel Levi sub-
group of a quasi-split classical group. Then, for each i, 1 ≤ i ≤ mr, the automorphic
L-function L(s, τ, ri) is holomorphic and non vanishing for <(s) > 1.

A.3. Proof of Theorem A.1. We keep the notation of § A.2, where Gn is either
a split classical group or a quasi-split unitary group; and, similarly for K/k and
Res GLm. If Gn = Un we let HN = Res GLN , with N = n.

Let π be a cuspidal globally generic automorphic representation of Gn(Ak). Let
Π′ be the automorphic representation of GLN (Ak) obtained from π via the weak
functorial lift of Theorem 8.5 of [39] or the weak base change lift of Theorem 8.6 for
the unitary groups. This lift has the property that Π′v is the unramified lift of πv
for all v /∈ S of § 8.2.1 of [loc. cit.] or §§ 8.3 & 8.4 for unitary groups. In the latter
case, by Proposition 9.5, we know that Π = BC(π) has unitary central character

ωΠ = ωπ ◦ h.
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From the Jacquet-Shalika classification [23], the functorial lift Π decomposes as
an isobaric sum

Π = Π1 � · · ·�Πd.

More precisely, each cuspidal automorphic representation Πi of GLNi(AK) can be
written in the form

Πi = Ξiν
ti ,

with Ξi a unitary cuspidal automorphic representation of GLNi(AK). Reordering if
necessary, we can assume t1 ≤ · · · ≤ td. We wish to prove that each ti = 0. Notice
that if ti < 0 for some i, then there is a j > i such that tj > 0, due to the fact
that Π is unitary. Also, we cannot have t1 > 0. To obtain a contradiction, suppose
there exists a tj0 which is the smallest with the property tj0 < 0.

Consider (K/k, π,Ξj0 , ψ) ∈ Lglob(p,Gn,Res GLNj0 ). Theorem A.3 above tells

us that L(s, π × Ξ̃j0) is holomorphic for <(s) > 1. However, if we consider
(K,Π,Ξj0 , ψ) ∈ Lglob(p,Res GLN ,Res GLNj0 ), we have that

L(s,Π× Ξ̃j0) =

d∏
i=1

L(s+ ti,Ξi × Ξ̃j0).

And, by Theorem 3.6 of [23] (part II) the L-function

L(s,Ξj0 × Ξ̃j0)

has a simple pole at s = 1. This carries over to a pole at s = 1− tj0 > 1 for

L(s, π × Ξ̃j0) = L(s,Π× Ξ̃j0).

This causes a contradiction unless there exists no such tj0 . Hence, all ti must be
zero. This proves that each Πi is a unitary cuspidal automorphic representation.

We now have that each Πi = Ξi and

L(s,Π× Π̃l0) =

d∏
i=1

L(s,Πi × Π̃l0),

where l0 is a fixed ranging from 1 ≤ l0 ≤ d. On the right hand side we have
a pole at s = 1 every time that Πl0

∼= Πi, by Proposition 3.6 of [23] part II.
However, on the left hand side, from Proposition A.3 of the Appendix, we have
that L(s,Π× Π̃l0) = L(s, π× Π̃l0) has only a simple pole at s = 1. Hence, Πl0

∼= Πi

can only occur if l0 = i.
It remains to show that, for each j, we have Πj

∼= Π̃θ
j . For this, let Tj = Πj ⊗π.

From Corollary 5.6, L(s, π × Π̃j) is a Laurent polynomial if w̃0(Tj) � Tj . In this
case, would have no poles. However

L(s, π × Π̃j) =

d∏
i

L(s,Πi × Π̃j)

has only a simple pole at s = 1, reasoning as before. Thus, it must be the case that
w̃0(Tj) ∼= Tj , giving the desired Πj

∼= Π̃θ
j .

In the case of unitary groups, the compatibility of global to local base change is
addressed by Proposition 9.5 (i). We have that

Πv = BC(πv)
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is unique and must be given by Theorem 9.10. Notice that Πv
∼= Π̃θ

v for every

v /∈ S. By multiplicity one for GLN , we globally have Π ∼= Π̃θ.
Let now Gn be a split classical group, where θ = 1. We argue as in § 9 in order

to adapt the results of [39] and complete the proof of the Theorem. In particular,
we proceed as in the proof of Theorem 9.5 to show that Πv is the unique local
Langlands functorial lift of πv at every place v of k. A crucial step is the stability
property of γ-factors under twists by highly ramified characters, Theorem 6.10 of
[39], which is available in characteristic two. Finally, Lemmas 9.2 and 9.3 indicate
how to obtain the desired equality of local factors. �
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