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RESUME. On étudie la méthode de Langlands-Shahidi sur les corps de
fonctions de caractéristique p. On preuve la fonctorialité de Langlands
globale et locale des groupes unitaires vers groupes linéaires pour les
représentations génériques. Supposant la conjecture de Shahidi pour les
L-paquets modérés, on donne une extension de la définition des fonctions
L et facteurs €. Enfin, utilisant le travail de L. Lafforgue, on établit la
conjecture de Ramanujan et on prouve que les fonctions L automorphes
de Langlands-Shahidi satisfont I’hypothese the Riemann.

ABSTRACT. We study the Langlands-Shahidi method over a global field
of characteristic p. We prove global and local Langlands functoriality
from unitary groups to general linear groups for generic representations.
Assuming Shahidi’s tempered L-packet conjecture, we provide an exten-
sion of the definition of L-functions and e-factors. Finally, thanks to the
work of L. Lafforgue, we establish the Ramanujan conjecture and prove
that Langlands-Shahidi automorphic L-functions satisfy the Riemann
Hypothesis.

INTRODUCTION

We make the Langlands-Shahidi method available over function fields. The
method was developed by Shahidi in the case of number fields over the course
of several decades. Previously, the £S method in characteristic p was only well
understood for the split classical groups.

Let G be a connected reductive group defined over a function field k. Let
P = MN be a maximal parabolic subgroup of G and let G denote its Langlands
dual group. The LS method allows us to study automorphic L-functions arising
from the adjoint action r = @®r; of LM on “n, where “n is the Lie algebra of
the unipotent radical “N on the dual side. Let 7 be any globally generic cuspidal
automorphic representation of M(Ag). The Langlands-Shahidi method provides a
definition of global L-functions and root numbers

L(s,m,r;) and e(s,m,1;), s € C.

Locally, we obtain a system of vy-factors, L-functions and e-factors at every place v
of k. Let ¢ = ®,1, = k\Ar — C* be a character, where Ay is the ring of adeéles.
Then we have

V(8 Ty Tiwy Yo )y L(s, Ty, Ti0) and (s, my, 7i v, o).
1
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The connection between the local and global theory can be seen via the global
functional equation

L5(s,m, 1) = H V(8 T, Tiws o) L (1 — 5,7, 77).
veES
The partial L-function being defined by
L3(s,m, 1) = H L(s,my,Tiw)
vg S

and local factors for tempered representations satisfy the following relation

L(s, Ty, Tiw)
L(1— s,y Tiv)

We begin in a purely local setting in sections 1 and 2, where we define local factors
over any non-archimedean local field F' of characteristic p via the Langlands-Shahidi

local coefficient. We take 7 to be any generic representation of M(F') and % an
additive character of F'. The local coefficient

5(87 anTi,vawv) = 7(s>7rv7ri,v7¢v)

Cw(S, ™, ’LZ)())

is obtained via intertwining operators and the multiplicity one property for Whit-
taker models.

The rank one cases are addressed in Proposition 1.3, which shows compatibil-
ity of the Langlands-Shahidi local coefficient with the abelian y-factors of Tate’s
thesis [60]. This result is essentially Propostion 3.2 of [41], which includes the
case of char(F') = 2. Let W = {Wa, dita}4ecn be a system of Weyl group element
representatives w, together with Haar measures, indexed by the simple roots A.
Proposition 2.2 determines the behavior of the local coefficient as 2 varies. When
7 is an unramified principal series representation, the local coefficient decomposes
into product of rank one cases.

Globally, there is a connection to Langlands’ theory of Eisenstein series over
function fields [16, 46]. In order to be more precise, let m be a globally generic
cuspidal representation of M(A). By choosing the appropriate test function in the
space of 7 one is able to obtain a relation between the global and local Whittaker
model, matching with the Casselman-Shalika formula at unramified places [6]. This
enables us to prove in § 3 the crude functional equation involving the Langlands-
Shahidi local coefficient and partial L-functions, Theorem 3.3. The connection
between Eisenstein series and partial L-functions is stated in Corollary 3.4.

We then turn towards the main result of the Langlands-Shahidi method in § 4.
Theorem 4.1 establishes the existence and uniqueness of a system of y-factors, L-
functions and root numbers. One ingredient in its proof is a very useful local to
global result, Lemma 4.2, which allows us to lift any supercuspidal representation
o to a cuspidal automorphic representation m with controlled ramification at all
other places; if 7 is generic, then 7 is globally generic. Another ingredient is
a recursive argument that is already present in Arthur’s work, using endoscopic
groups, in addition to Shahidi [53]; Lemma 4.4 allows us to produce individual
functional equations for each ;. We define local ~-factors recursively by means
of the local coefficient and they connect to the global theory via the functional
equation.

An inspiring list of axioms for y-factors that uniquely characterize them can be
found in [36]. Work on the uniqueness of Rankin-Selberg L-functions for general



THE LANGLANDS-SHAHIDI METHOD OVER FUNCTION FIELDS 3

linear groups [21], led us to extend the characterization in a natural way to include
L-functions and e-factors beginning with the classical groups in [40]. We provide a
simple proof of the local to global result for quasi-split reductive groups, originally
written in [21] for GL,, and generalized in [14] as mentioned in § 4.2. Lemma 4.2
has allowed us to reduce the number of required axioms.

We conclude with the general treatment of the Langlands-Shahidi method over
function fields in § 5, where we study their analytic properties and applications.
Langlands-Shahidi autmorphic L-functions over function fields are rational, a prop-
erty we prove based on Harder’s rationality for Eisenstein series [16]. After twists
by highly ramified characters, our automorphic L-functions in characteristic p be-
come Laurent polynomials. Locally, a consequence of having a theory of L-functions
leads towards reducibility results and Shahidi’s applications to complementary se-
ries [53]. If we assume the Ramanujan conjecture, our automorphic L-functions are
holomorphic for (s) > 1; in § A.2 of the Appendix, we provide several examples
when this property is true.

The second part of the article is devoted to the unitary groups. We extend the
LS method to include the study of products of globally generic representations of
two unitary groups. We prove stable Base Change for globally generic reprensen-
tations of unitary groups. Globally, we base ourselves on previous work on the
classical groups over function fields and we guide ourselves with the work of Kim
and Krishnamurthy for the unitary groups in the case of number fields [28, 29)].

Our approach is possible by combining the £S method and the Converse The-
orem of Cogdell and Piatetski-Shapiro [7]. Over number fields, functoriality for
the classical groups was established for globally generic representations by Cogdell,
Kim, Piatetski-Shapiro and Shahidi [9]; the work of Arthur establishes the gen-
eral case for not necessarily generic representations in [1]; and, Mok addresses the
endoscopic classification for the unitary groups in [45].

Over function fields, work of V. Lafforgue addresses the Langlands correspon-
dence from a connected reductive group to the Galois side [32]. The transfer o of a
cuspidal representation 7 of a connected reductive group, has the property that o,
corresponds to m, at every unramified place. A stong lift would require the local
Langlands correspondence at every place, and not just unramified places. There
is the ongoing work of A. Genestier and V. Lafforgue, who aim to prove the local
Langlands correspondence in characteristic p. In contrast, in our approach we work
purely with techniques from Automorphic Forms and Representation Theory of p-
adic groups. The functorial lift is from globally generic cuspidal representations of
a unitary group Uy to automorphic representations of Res GL. We note that once
on the general linear group side, the work of L. Lafforgue [31] provides a one to one
global correspondence with Galois representations. Locally, we prove the Langlands
correspondence from generic representations of the quasi-split classical groups to
admissible representations of a general linear group. Again, once on the general
linear groups side, we have a one to one correspondence with Galois representations
[37]. And, we reduce the general case to the generic case via the tempered L-packet
conjecture. This is already a theorem for the split classical groups in characteristic
p, thanks to the work of Ganapathy-Varma [15]. For two alternative approaches to
the local Langlands correspondence for admissible representations of the quasi-split
classical groups, see §§ 7 and 8 of [14].
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Before studying L-functions for products of two unitary groups, we prepare in
§ 6 with the induction step of the £S method for the unitary groups. Namely,
the case of Asai and twisted Asai L-functions studied in [20, 41]. We also retrieve
from Theorem 4.1 the Rankin-Selberg product L-function of a unitary group and a
general linear group. We have the main theorem on extended v-factors, L-functions
and root numbers, Theorem 7.3. Locally, we work with irreducible admissible
representations in general. However, the proof is completed in § 10.2 under the
assumption that the tempered L-packet conjecture holds to be true for the unitary
groups in positive characteristic. As mentioned above, cases of this conjecture
are already known. We then provide the list of axioms that uniquely characterize
extended local factors. In addition, we list three important properties: the local
functional equation; the global functional equation for completed L-functions; and,
stability of y-factors after twits by highly ramified characters. A proof of the latter
property for all Langlands-Shahidi y-factors in positive characteristic can be found
in [14]; we use this to obtain a very useful stable form of local factors for the unitary
groups after highly ramified twists.

In § 8, we establish stable Base Change for globally generic representations over
function fields. In fact, we first produce a “weak” base change (agreeing with the
local Base Change lift at every unramified place), before proving it is a “strong”
Base Change (agreeing at every place) in §§ 9 and 10. Let K /k be a separable qua-
dratic extension of function fields. Given a cuspidal automorphic representation
of a unitary group Uy, we construct a candidate admissible representation II for
the Base Change to Res GLy. Namely, at every unramified place, let A, be the
semisimple conjugacy class of 7, in GLx(C) obtained via the Satake parametriza-
tion. The Weil group Wy, acts via the Galois group Gal(K,/k,) = {1,0,}. We
have

7w of Uy(ky) — {(/Alv,wgw)} of LUy

BC 1
+

I, of GLN(K,) «—— {(Av,Awwe,v)} of “Resg, jr, GLy

where we use the fact that there is a natural bijection between wg ,-conjugacy
classes of “Resy, /p, GLy = GLy(C) x GLy(C) x Wy, and conjugacy classes of
LGLy = GLN(C) x Wk, as in [42]. At ramified places we can basically take an
arbitrary representation II, with the same central character as m,, since we can
locally incorporate stability under highly ramified twists.

For suitable twists by cuspidal automorphic representations 7 of GL,,, we have
that L(s,II x 7) = L(s,m X 7). The Converse Theorem requires that these L-
functions be nice. Over a function field k with field of constants IF,, this means
they are rational on ¢—*° and satisfy the global functional equation. The required
rationality property is Theorem 5.1 and the global functional equation is Prop-
erty (xii) of § 4.4. An important property that allows us to work with ramified
places is the stability of y-factors after highly ramified twists. To summarize, we
are then able to apply the Converse Theorem and establish the existence of a weak
Base Change to Res GLy, Theorem 8.6.
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In § 9 we turn towards the local Langlands conjecture for the unitary groups, that
is, local Base Change. Let Uy be a unitary group defined over a non-archimedean
local field F' of characteristic p and let E/F be the underlying quadratic extension.
Let m be a generic representation of Uy (F). Then, Theorem 9.10 establishes the
local transfer

generic representations BC generic representations
7 of UN(F) II of GLN(E)

The local Base Change I = BC(7) is known as stable base change. It is uniquely
characterized by the property that it preserves local L-functions, y-factors and root
numbers, just as in the case of GLy [19]. The proof is global in nature and we
use the weak global Base Change of Theorem 8.6 to deduce existence for generic
supercuspidals of Uy (F). We then go through the classification of representations
of unitary groups. In particular, the construction of discrete series by Mceeglin
and Tadié¢ [43] and the work on Muié on the standard module conjecture [48] play
an important role. The Basic Assumption (BA) of [43] is part of Theorem 5.8,
where we follow Shahidi for generic representations. In general, we verify (BA)
in [14] without the generic assumption. In addition, the work of M. Tadié [59]
on the classification of unitary representations of GL,, is very useful. Local Base
Change in general is thus established recursively: Langlands’ classification reduces
to the tempered case; then, tempered representations are constructed via discrete
series, which in turn are constructed via supercuspidals. In this article, we focus on
generic representations, and we refer to §§ 7 and 8 of [14] for a discussion of local
Base Change in general.

Let K/k be a separable quadratic extension of global function fields. The weak
Base Change of Theorem 8.6 is proven to be the strong Base Change lift, i.e., it
is compatible with local Base Change at every place v of k. More precisely, in
Theorem 9.11, we have stable Base Change for globally generic representations of
unitary groups:

globally generic cupsidal 5 automorphic representations
automorphic representations Be, II=I18---BIl,
7 of UN(Ak) of GLN(AK)

We use the analytic properties of automorphic L-functions over function fields of
§ 5 in order to write I = BC(w) as an isobaric sum of cuspidal automorphic
representations II; of GL,,(Ak). The approach of this article also applies to the
classical groups over function fields and we refer to § A.3 for the proof of the strong
functorial lift.

In § 10 we conclude our study of L-functions for the unitary groups. In the
case of generic representations, both local and global, our treatment is entirely self
contained using only methods of Automorphic Forms and p-adic Representation
Theory. For representations that are not necessarily generic, we note in § 10.2
how to reduce the study of local L-functions, y-factors and root numbers to the
case of generic representations. This part is written under the assumption that
Conjecture 10.3 is valid.

We conclude our treatise over function fields by transporting via Base Change
two important problems from the unitary groups to GLy. More precisely, we com-
bine our results with those of L. Lafforgue [31] to prove the Ramanujan Conjecture
and the Riemann Hypothesis for our automorphic L-functions.
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In the Appendix, we take the opportunity to go back and remove the restriction
of p # 2 that was present in our prior study of functoriality for the classical groups
[39], and applications [40]. In § A.2 we prove an important holomorphy property
of L-functions for the split classical groups as well as the unitary groups. In § A.3
we prove that the weak lift of [39] for the classical groups (resp. Theorem 8.6 for
the unitary groups) agrees with the local Langlands functorial lift, thus completing
the proof of the strong functorial lift.
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1. THE LANGLANDS-SHAHIDI LOCAL COEFFICIENT

In this section and the next we revisit the theory of the Langlands-Shahidi local
coefficient [52]. Now in characteristic p, basing ourselves in [39, 41]. After some
preliminaries, we normalize Haar measures and choose Weyl group element repre-
sentatives for rank groups in § 1.3. The local coefficient is compatible with Tate’s
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thesis in these cases. In § 2 we will turn towards the subtle issues that arise when
gluing these pieces together.

1.1. Local notation. Throughout the article we let ' denote a non-archimedean
local field of characteristic p. The ring of integers is denoted by Op and a fixed
uniformizer by wg. Given a maximal Levi subgroup M of a quasi-split connected
reductive group scheme G, we let Ao (p, M, G) denote the class of triples (F, 7, )
consisting of: a non-archimedean local field F', with char(F') = p; a generic represen-
tation w of M = M(F); and, a smooth non-trivial additive character ¢ : F — C*.

When M and G are clear from context, we will write Aoc(p) for Aoc(p, M, G).
We say (F,m,1) € Loc(p) is supercuspidal (resp. discrete series, tempered, princi-
pal series) if 7 is a supercuspidal (resp. discrete series, tempered, principal series)
representation.

Let us now fix the quasi-split connected reductive groups scheme G. Let B = TU
be a fixed Borel subgroup of G with maximal torus T and unipotent radical U.
Parabolic subgroups P of G will be standard, i.e., P D B. We write P = MN,
where M is the corresponding Levi subgroup and N its unipotent radical. Given
an algebraic group H, we let H denote its group of rational points, e.g., H = H(F).

Let ¥ denote the roots of G with respect to the split component T of T and
A the simple roots. Let X, denote the reduced roots. The positive roots are
denoted ©1 and the negative roots ¥, and similarly for ¥} and .. The fixed
borel B corresponds to a pinning of the roots with simple roots A. Standard
parabolic subgroups are then in correspondence with subsets 8 C A; 0 <> Py. The
opposite of a parabolic Py and its unipotent radical Ny are denoted by P, and
N, , respectively.

Given the choice of Borel there is a Chevalley-Steinberg system. To each oo € ¥T
there is a subgroup N, of U, stemming from the Bruhat-Tits theory of a not
necessarily reduced root system. Given smooth characters ¢, : No/Nay, — C*,
a € A, we can construct a character of U via

(1.1) U-U/ [[ Nao=]]Na/Ni

acXt—A a€A

and taking ¢ = [[,ca Ya-
The character ¢ is called non-degenerate if each v, is non-trivial. We often

begin with a non-trivial smooth character v : F — C*. When this is the case,
unless stated otherwise, it is understood that the character i of U is obtained from
the additive character ¢ of F' by setting [], . % in (1.1).

Fix a non-degenerate character ¢ : U — C* and consider 1) as a one dimensional
representation on U. Recall that an irreducible admissible representation 7 of G is
called v-generic if there exists an embedding

7 Ind$ (¢).

This is called a Whittaker model of w. More precisely, if V' is the space of 7 then
for every v € V there is a Whittaker functional W, : G — C with the property

Wy (u) = (u)W,(e), for u € U.

It is the multiplicity one result of Shalika [56] which states that the Whittaker
model of a representation 7 is unique, if it exists. Hence, up to a constant, there is
a unique functional

AV —=C
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satisfying

We have that
Wo(g) = A(m(g)v), for g € G.

Given 0 C A let Py = MyNy be the associated standard parabolic. Let Ay be
the torus (Ngeaker(a))®, so that My is the centralizer of Ag in G. Let X (My) be
the group of rational characters of My, and let

a;,c — X(M@) ® (C

There is the set of cocharacters XV (Mjy). And there is a pairing (-,-) : X (Mjp) x
XV(My) — Z, which assigns a coroot a¥ to every root a.

Let X,,(Mj) be the group of unramified characters of My. It is a complex
algebraic variety and we have X,,(My) = (C*)?, with d = dimg(aj). To see
this, for every rational character x € X(My) there is an unramified character
gxHe () ¢ Xnr(My), where

g = x(m)| .

This last relation can be extended to aj ¢ by setting
e =y (m), s € C
We thus have a surjection
(1.2) agc = Xnr(Mp).
Recall that, given a parabolic Py, the modulus character is given by
So(p) = P2t p = mn € Py = MN,

where pg is half the sum of the positive roots in 6.

In [44] the variable appearing in the corresponding Eisenstein series ranges over
the elements of X,,,(My). Already in Tate’s thesis [60], the variable ranges over the
quasi-characters of GL;. The surjection (1.2) allows one to use complex variables.
In particular, our L-functions will be functions of a complex variable. For this we
start by looking at a maximal parabolic subgroup P = MN of G. In this case,
there is a simple root « such that P = Py, where § = A — {a}. We fix a particular
element & € aj ¢ defined by

(1.3) &= {po.a’)"" py.

For general parabolics Py we can reduce properties of L-functions to maximal
parabolics via multiplicativity (Property (iv) of Theorem 4.1).

We make a few conventions concerning parabolic induction that we will use
throughout the article. Let (7, V) be a smooth admissible representation of M =
My and let v € aj . By parabolic induction, we mean normalized unitary induction

ind3 (),

where we extend the representation 7 to P = M N by making it trivial on N. Also,
whenever the parabolic subgroup P and ambient group G are clear from context,
we will simply write

Ind(7) = ind%(m).
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We also incorporate twists by unramified characters. For any v € aj ¢, we let

I(v,7) = ind% (quu’lq@(')> ® )

be the representation with corresponding space V(v, 7). Finally, if P is maximal,
we write

I(s,m) =1(sa,m), s € C,

with & as in equation (1.3); its corresponding space is denoted by V(s, 7). Further-
more, we write I(m) for I(0, 7).

1.2. The Langlands-Shahidi local coefficient. Let W denote the Weyl group
of X, which is generated by simple reflections w, € A. And, let Wy denote the
subgroup of W generated by wq, o € 0. We let

(14) wo = wlww,

where w; and w; ¢ are the longest elements of W and Wy, respectively. Choice of

Weyl group element representatives in the normalizer N(7s) will be addressed in

section 2, in order to match with the semisimple rank one cases of § 1.3. For now,

we fix a system of representatives 20 = {W,, duq }
There is an intertwining operator

Ay, m, ) : V(v, ) = V(o (v),wo(m)),

aEA”

where 1(7)(z) = m(Wy '2Wg). Let Ny, = U NwoN,y wy' !, then it is defined via
the principal value integral

A i) fo) = [ fd5 ng)dn.

With fixed ¢ of U, let 1, be the non-degenerate character on the unipotent
radical My NU of My defined by

(1.5) Vo (1) = Y(Wouity '), u € My NU.

This makes 1 and v, Wo-compatible.

Given an irreducible 1), -generic representation (m,V) of My, Theorem 1.4 of
[39] gives that I(v,7), v € aj ¢, is ¢-generic and establishes an explicit principal
value integral for the resulting Whittaker functional

(1.6) Ay (v, m, o) f = N Apa, (f(lbo_ln))a(n) dn,
o
where 6/ = wq(0).
Definition 1.1. For every v, -generic (F,m, ) € Loc(p), the Langlands-Shahidi
local coefficient Cy (s, 7, W) is defined via the equation
(1.7) Ay (8@, m,w0) = Cy (s, T, o) Ay (s (&), Wo (), Wo)A(s@, T, o),
where sa € ag ¢ for every s € C.

Remark 1.2. When it is clear from context, we identify s € C with the element
sa € apc. We thus write Ay (s, m,wWo) for Ay(sa,m,wo) and I(s,m) for I(sa, ).
Similarly, we identify s" with swo(&) € aj, ¢ and let 7' = wo(7). Hence, we simply
write Ay (s', 7', Wg) instead of Ay (swo(&), Wo(m), o).
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Let (F,m,7%) € Loc(p) be g,-generic. From Theorem 1.4 of [39] we know
that Ay (s, 7, W) is a polynomial in {q%,qgs} for a test function fs € I(s, 7). By
Theorem 2.1 of [39], the Langlands-Shahidi local coefficient Cy, (s, 7, W) is a rational
function on ¢z*, independent of the choice of test function.

1.3. Rank one cases and compatibility with Tate’s thesis. Let F'/F be a
separable extension of local fields. Let G be a connected quasi-split reductive group
of rank one defined over F. The derived group is of the following form

Gp = ResprypSLy or Resp/ ) pSUs.

Note that given a degree-2 finite étale algebra E over the field F’, we consider
the semisimple group SUjs given by the standard Hermitian form h for the unitary
group in three variables as in § 4.4.5 of [11]. Given the Borel subgroup B = TU of
G, the group Gp shares the same unipotent radical U. The F rational points of
the maximal torus Tp are given by

Tp = {(diag(t,t™")|t € F'*},
in the former case, and by
Tp = {(diag(z, 2z~ ",z ") |z € EX}

in the latter case.

We now fix Weyl group element representatives and Haar measures. In these
cases, A is a singleton {a}, and we note that the root system of SUj is not reduced.
If Gp = Respr/pSLa, we set

(1.8) u?a:<_(1) (1))

and, if Gp = Resp/,pSUs, we set

(1.9) g =

_ o O
O~ O

1
0
0

Given a fixed non-trivial character ¢ : FF — C*, we then obtain a self dual
Haar measure du,, of F, as in equation (1.1) of [41]. In particular, for SLy we have
the unipotent radical N, which is isomorphic to the the unique additive abelian
group G, of rank 1. Here, we fix the Haar measure du,y on G, = F. Given a
separable extension F’'/F, we extend 1 to a character of F’ via the trace, i.e.,
Ypr =1 o Trpp. We also have a self dual Haar measure g, on Go(F') = F'.

Given a degree-2 finite étale algebra E over the field F', assume we are in the
case Gp = SUs. The unipotent radical is now N = N Ny, with N, and Ny,
the one parameter groups associated to the non-reduced positive roots. We use the
trace to obtain a character ¥g : E — C* from 1. We then fix measures djy and
dpiy,,, which are made precise in § 3 of [41] for N, and Na,. We then extend to
the case Gp = Resp//pSUs by taking g = ¢ o Trp//p and ¢Yp = Yp o Trg, pr.
Furthermore, we have corresponding self dual Haar measures dpy,., and dpiy,, for
Respr/pNo(F) = No(F') and Respr pNaoo (F) = Naoo (E).

We also have the Langlands factors A(F’/F, 1) defined in [34]. Let Wg and Wg
be the Weil groups of F’ and F, respectively. Recall that if p is an n-dimensional
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semisimple smooth representation of Wg/, then

e(s, Indxl‘:/ P, )

5(87 Py wF’)
On the right hand side we have Galois e-factors, see Chapter 7 of [5] for further
properties. Given a degree-2 finite étale algebra E over F”, the factor AM(E/F’, )
and the character g, have the meaning of equation (1.8) of [41].

The next result addresses the compatibility of the Langlands-Shahidi local coeffi-

cient with the abelian -factors of Tate’s thesis [60]. It is essentially Propostion 3.2
of [41], which includes the case of char(F') = 2.

AF'JF )" =

Proposition 1.3. Let (F,m,v¢) € Loc(p, T, G), where G is a quasi-split connected
reductive group defined over F whose derived group Gp is either Resp:/pSLa or
ReSF//FSU3.
(i) If Gp = Respr/pSLa, let x be the smooth character of Tp given by 7|y, .
Then
prl (57 T, ’lDQ) = 7(37 X ¢F/)'
(i) If Gp = Resp//pSUs, x and v be the smooth characters of E* and E',
respectively, defined via the relation

7|7y, (diag(t, z, £ 1)) = x(t)v(2).
Extend v to a character of E* wvia Hilbert’s theorem 90. Then

Cypr (s,m,00) = NE/F' b p) ve (s, xv, ¥E) (28, M5 70 X| P s ).

The computations of [41] rely mostly on the unipotent group U, which is in-
dependent of the group G. However, there is a difference due to the variation of
the maximal torus in the above proposition. For example, all smooth representa-
tions m of SLa(F) are of the form w(diag(t,t=1)) = x(t) for a smooth character
x of GL1(F); then Cy(s,m, o) = (s, x,). However, in the case of GLy(F) we
have w(diga(ti,t2)) = x1(t1)x2(t2) for smooth characters x; and x2 of GL1(F);
then Cy (s, m,100) = v(s, x1X3 > ¥). Note that the semisimple groups of rank one in
the split case, ranging from adjoint type to simply connected, are PGLo, GLy and
SLo. The cases PGLy = SO3 and SLo = Sp, are also included in Propostion 3.2 of
[loc.cit.]. Of particular interest to us in this article are Resg/pGL2(F) = GLy(E),
Us(F) and Us(F'), which arise in connection with the quasi-split unitary groups.

Given an unramified character m of T = T(F'), we have a parameter

(1.10) ¢:Wrp = LT

corresponding to m. Let u denote the Lie algebra of U and let r be the adjoint
action of “T on Fu. Then r is irreducible if Gp = Resp:/pSLy and 7 = 71 @ ry if
Resp/ pSUs. As in [24], we normalize Langlands-Shahidi y-factors in order to have
equality with the corresponding Artin factors.

Definition 1.4. Let (F,7,v) € Loc(p, T, G) be as in Proposition 1.5:
(i) If Gp = Resp:/pSLy, let
’Y(S,Wﬂ"ﬂ/’) = )‘(F//Fa 7!’)7(57)(,7/117’)-
(11) [f GD = ReSF//FSUg,, let
’7(3,7@7"171/’) = )‘(E/Fa ¢)7(87XV7 ’IZ}E)
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and
’7(5771'77”2711[}) = A(F/F/’Q/}) ’Y(S?TIE/F’X|F’X7¢F/)'

In this way, with ¢ as in (1.10), we have for each i:

7(877T771i7w) = W(Sar’i o ¢7¢)

The v-factors on the right hand side are those defined by Deligne and Langlands
[61]. We can then obtain corresponding L-functions and root numbers via y-factors,
see for example § 1 of [41].

2. NORMALIZATION OF THE LOCAL COEFFICIENT

We begin with Langlands lemma. This will help us choose a system of Weyl
group element representatives in a way that the local factors agree with the rank
one cases of the previous section. We refer to Shahidi’s algorithmic proof of [52],
for Lemma 2.1 below. In Proposition 2.2, we address the effect of varying the
non-degenerate character on the Langlands-Shahidi local coefficient, in addition to
changing the system of Weyl group element representatives and Haar measures. We
then recall the multiplicativity property of the local coefficient, and we use this to
connect between unramified principal series and rank one Proposition 1.3.

2.1. Weyl group element representatives and Haar measures. Recall that
given two subsets 6 and 6’ of A are associate if W(0,0") = {w € W|w(f) = ¢’} is
non-empty. Given w € W (0,6’), define

N, =UnN wN(;w_1 Ny =w 'Nyw.
The corresponding Lie algebras are denoted n,, and n,,.

Lemma 2.1. Let 0,6’ C A are associate and let w € W(0,6"). Then, there exists
a family of subsets 01,...,04 C A such that:
(i) We begin with 01 = 0 and end with 64 = 6.
(ii) For each j, 1 < j < d—1, there exists a root ccj € A —0; such that 041 is
the conjugate of 6; in Q; = {a;} U6;.
(iii) Set w; = wjo,wie, in W(0;,0;41) for1 <j <d—1, thenw = wq_1---w;.
(iv) If one sets w1 = w and Wit = ij;1 for1<j<d-1, thenwg =1 and

ﬁu'}j = ﬁwj' D Ad(wj_l)ﬁle .

For each a € A there corresponds a group G, whose derived group is simply
connected semisimple of rank one. We fix an embedding G, — G. A Weyl group
element representative w, is chosen for each w, and the Haar measure on the unipo-
tent radical NV, are normalized as indicated in § 1.3. We take the corresponding
measure on N_, inside G,. Fix

(2.1) W = {wWa, dpta} e

to be this system of Weyl group element representatives in the normalizer of N(75)
together with fixed Haar measures on each N.

We can apply Lemma 2.1 by taking the Borel subgroup B of G for the wq as in
equation (1.4), i.e., we use § = (. In this way, we obtain a decomposition

(22) wo = I_A[U)O’ﬁ7
B
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where 3 is seen as an index for the product ranging through 8 € 3. For each such
wo,g, there corresponds a simple reflection w, for some o € A.

From Langlands lemma and equation (2.2) we further obtain a decomposition of
N in terms of N/ 5 B € ¥F, where each N, [’3 corresponds to the unipotent group of
N, of G, for some a € A In this way, the measure on N is fixed by 2J and we
denote it by

(2.3) dn =dun(n).

The decomposition of (2.2) is not unique. However, the choice 20 of representatives
determines a unique wyg.

We now summarize several facts known to the experts about the Langlands-
Shahidi local coefficient in the following proposition.

Proposition 2.2. Let (F,7,1) € Loc(p, M, G). Let W' = {0, duy,} e be an
arbitrary system of Weyl group element representatives and Haar measures. Let
¢ : U — C* be a non-degenerate character and assume that 7 is ¢g;-generic.

Let G be a connected quast-split reductive group defined over F, sharing the same
derived group as G, and with mazimal torus T = ZgT. Then, there exists an

element v € T such that the representation T, given by
o (g) = m(z ™ g)
is Y, -generic. And, there exists a constant a.(p,20") such that
Cy(s,m,0)) = az(¢p, W) Cy (s, Ta, Wo).
Let (F,m;, ) € Z(p), i =1, 2. If m = 79 and are both 1y, -generic, then
Cy (s, m1,W0) = Cy(s, m2, o).

Proof. The existence of a connected quasi-split reductive group G of adjoint type,
sharing the same derived group as G, is due thanks to Proposition 5.4 of [55]. Its
maximal torus is given by T = ZsT. Let (F,m,v¢) € Loc(p), where (m,V) is
¢w;-generic. Because G is of adjoint type, the character ¢ lies on the same orbit
as the fixed ¥. Thus, there indeed exists an z € T such that Ty 1S Py,-generic.

The system 2’ fixes a measure on N, which we denote by dn’ = du/y. Uniqueness
of Haar measures gives a constant b € C such that dn = bdn’. Also, notice that we
can extend 7 to a representation of G which is trivial on Zs. And, the restriction
of m to T' decomposes into irreducible constituents

|l = BT

Each 7;, is one dimensional by Schur’s lemma. Hence, for any element y € T we
have 7(y) € C.

To work with the local coefficient, take ¢ € C°(PywoB, V) and let f = fs = Py
be as in Proposition 1.1 of [39]. Now, using the system 20’ in the right hand side
of the definition (1.7) for C’¢(s T, ), we have

A (s10(@), g (), W) A(s, m,dp) f
/ / Ao, . (wh tnyay ng)) d(ng) dny dnb,.
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Let f.(9) = f(z7lgx) for f € I(s,n), so that f, € I(s,m,) is 1-generic for the

Ya,-generic (7, V). Let ¢, be the module for the automorphism n ~ z~!nz.

Then, after two changes of variables and an appropriate change in the domain of
integration, the above integral is equal to

b22/ /N o Mg (fa (0 711”2))@(le)dnldng7

wo W

letting z = (w))?, Wy = wot ' and changing back the domain of integration, we

obtain
bzcicz / / Ay (fx (tzﬁzo_lnlﬁio_lng)) P (na) dny dns
Ny J Nuy

= b2 em(t?) Ay, (so(@), Wo(ma), o) A(s, 7, do) fr-

Now, working in a similar fashion with the left hand side of equation (1.7) we obtain
ol i) =bes [ N, (o a0 ) () d

We can always find an = € T satisfying the above discussion and such that

(2.4) d = zw) tx oy € T.

Alternatively, we can go to the separable closure, as in the discussion following
Lemma 3.1 of [53], to obtain an element 2z € T(Fs). To see this, we can re-
duce to rank one computations to produce the right z. In the case of SLy, all

additive characters are of the form ¥® and we can take ¢ = diag(a,1) € T or
t = diag(a'/?,a='/?) € T(F;). We then have

Ao (s@, m, ) f = begym(d) /Ni A, (fo(tiwg 'n)) 1(n) dn

= me’/T(dt)Aw (S, ™, ’lz)())fz.
In this way, we finally arrive at the desired constant
m(dt™1)
bege,

az(¢,20") =

To conclude, we notice that if (F,m;,v) € Z(p), i = 1, 2, have m; = 79 and are
both t4,-generic, then Proposition 3.1 of [52] gives

Cy (s, m1,W0) = Cy(s, m2,W0).
O

2.2. Multiplicativity of the local coefficient. Shahidi’s algorithm allows us to
obtain a block based version of Langlands’ lemma from the Corollary to Lemma 2.1.2
of [52]. We summarize the necessary results in this section. More precisely, let
P = MN be the maximal parabolic associated to the simple root o € A, i.e.,
P =Py for 6 = A — {a}. We have the Weyl group element wq of equation (1.4).
Consider a subset 6y C 0 and its corresponding parabolic subgroup Py, with max-
imal Levi My, and unipotent radical Ny, .

Let X(6p) be the roots of (Pg,, Ag,). In order to be more precise, let X (Ag,, My,)
be the positive roots with respect to the maximal split torus Ag, in the center of
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My,. We say that o, f € BT — X (Ag,, My, ) are Ag,-equivalent if 5|4, = ala,, -
Then
SH(00) = (1 — ST (Ag,, My,)) / ~ .
Let X7 (6p) be the block reduced roots in 1 (6p). With the notation of Langlands’
lemma, take 6 = w(fy) and set
50(69,w) = {[8] € 5 (Bo)|w(B) € 5}
We have that

(2:5) (B =wit e wit(leg]), 1< <n—1,
are all distinct in X, (6p, w) and all [5] € X, (6y, w) are obtained in this way.
(26) Nubj = Ad(wj_l)ijJrl X ij .

We now obtain a block based decomposition

(27) Wwo = Hw07j.

In addition, the unipotent group N,,, decomposes into a product via successive
applications of equation (2.6). Namely

(2.8) Nu, = [[No,-
J

where each Ny ; is a block unipotent subgroup of G corresponding to a finite subset
Y, of £,(0p, wp). In this way, we can partition the block set of roots into a disjoint
union

(2.9) Sr (B, wo) = ) 5.

Explicitly

(2.10) No; = Ad(wy " w; ') )Ny,

which gives a block unipotent N; of G. For each j we have an embedding
Gj — G

of connected quasi-split reductive groups. Each constitutent of this decomposition
of Ny, is isomorphic to a block unipotent subgroup N, of M;. The reductive
group M; has root system 6; and is a maximal Levi subgroup of the reductive
group G; with root system €2;. We have P; = M;N,,, a maximal parabolic
subgroup of G;. Notice that each M; corresponds to a simple root a; of G;. We
obtain from 7 a representation m; of M;. We let

- 1
a; = <ij7O‘;’/> PP;-
We note that each w; in equation (2.7) is of the form
(211) wj; = wl,ijhMj.
Additionally, each w; decomposes into a product of Weyl group elements corre-
sponding to simple roots a € A. While these decompositions are again not unique,
the choice 20 of representatives fixes a unique w;, independently of the decompo-
sition of w;.
For each [3] € &,F (6o, wo), we let

ig = (&,BY).



THE LANGLANDS-SHAHIDI METHOD OVER FUNCTION FIELDS 17

Since fp C 0, we have that the values of i[5 range among the integer values
i=(a7"), 1<i<m,

where [] € X1 (0,wp). Let
a; = min {i[ﬁ]\[ﬁ] €x;},

where the ¥; are as in (2.9). The following is Proposition 3.2.1 of [52].

Proposition 2.3. Let (F,7,9) € Loc(p, M, G) and assume 7 is obtained via
parabolic induction from a generic represetation my of My,

T ind%g 0.
0
Then, with the notation of Langlands’ lemma, we have

Cw(sd,ﬂ',ﬁ)o) = HCw(ajSONZj,ﬂ'j,’lI}j).
J
2.3. L-groups and the adjoint representation. Given our connected reduc-
tive quasi-split group G over a non-archimedean local field or a global function
field, it is also a group over its separable algebraic closure. Let W be the corre-
sponding Weil group. The pinning of the roots determines a based root datum
Uy = (X*, A, X,,AY). The dual root datum ¥y = (X,,AY, X* A) determines
the Chevalley group “G° over C. Then the L-group of G is the semidirect product

La=1G°xw,

with details given in [3]. The base root datum ¥V fixes a borel subgroup ©B, and
we have all standard parabolic subgroups of the form “P = ©P° x W. The Levi
subgroup of £ P is of the form “M = “M° x W, while the unipotent radical is given
by N = ENe.

Let 7 : M — End(¥n) be the adjoint representation of M on the Lie algebra
In of EN. It decomposes into irreducible components

m
r =@, 17

The r;’s are ordered according to nilpotency class. More specifically, consider the
Eigenspaces of M®° given by

Ln; = {Xpv € Lnf (@, 8) =i}, 1 <i<m,.

L

Then each r; is a representation of the complex vector space “n;.

2.4. Unramified principal series and Artin L-functions. Consider a triple
(F,m,%) € Loc(p,M, G), where 7 has an Iwahori fixed vector. From Proposi-
tion 2.2, we can assume 7 is 9,-generic and wo-compatible with 1; the choice of
Weyl group element representatives and Haar measures 20 being fixed. With the
multiplicativity of the local coefficient, we can proceed as in § 2 of [24] and § 3 of
[53], and reduce the problem to the rank one cases of § 1.3. We now proceed to
state the main result.

For every root 8 € ¥,.(,wg), we have as in § 2.1 a corresponding rank one group
G,. Let 3, (wp, SLs) denote the set consisting of a € X,.(0, wp) such that G, is as
in case (i) of Proposition 1.3. Similarly, let X, (wq, SU3) consist of a € X,.(0, wy)
such that G, is as in the corresponding case (ii). Let

Abywo) = [ MF/FEY) [ MEa/F)>NEL/F)~

a€X, (wo,SLa) a€X, (wo,SU3)
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Partitioning each of the sets ; of equation (2.9) arising in this setting further by
setting ¥; = ¥;(SLa) U X;(SUs) we can define A; (1, wp) appropriately, so that

A(wa wO) = H )\2(1/}7 ’LU()).

Proposition 2.4. Let (F,7,¢) € Loc(p, M, G) be such that © has an Twahori
fized vector. Then

Cw(S,T('7U~}0) = A(w7w0)71 H’Y(iS,ﬂ', Ty 11[})

=1

Let ¢ : Wi, — LM be the parameter of the Weil-Deligne group corresponding to .
Then

H'Y(isaﬂ-vriv,(/)) = H’Y(?:S,Ti © ¢7w)7
i=1 i=1

where on the right hand side we have the Artin ~y-factors defined by Delinge and
Langlands [60].

3. PARTIAL L-FUNCTIONS AND THE LOCAL COEFFICIENT

The Langlands-Shahidi method studies L-functions arising from the adjoint rep-
resentation r : “M — End(fn). It decomposes into irreducible components r;,
1 <i<mg,asin§ 2.3. Locally, let (F,m, 1) € Loc(p) be such that = has an
Iwahori fixed vector. Then 7 corresponds to a conjugacy class {A, x o} in LM,
where A, is a semisimple element of “M°. Then

1
det(I —r;(Ar x 0)q;°)’

for (F,m, 1) € Loc(p) unramified, with the notation of § 1.1.

L(S, T, Ti) =

3.1. Global notation. For the remainder of the article k& will denote a global
function field with field of constants IF;. Let Ay denote its ring of adeles. Given an
algebraic group H and a place v of k, we write ¢, for g, and H, instead of H(k,).
Similarly with O, and w,.

We globally fix a maximal compact open subgroup K =[], K, of G(Ay), where
the IC,, range through a fixed set of maximal compact open subgroups of G,. Each
Ky is special and KC, is hyperspecial at almost every place. In addition, we can
choose each I, to be compatible with the decomposition

Ky = (N, NK,)(M, NK,) (N, NK),

for every standard parabolic subgroup P = MN. The group M N K is a maximal
compact open subgroup of M = M(Ay). Furthermore

G = PK.

Given a finite set of places S of k, we let Gs =[], G0 HU¢S Ky

Let Zyiob(p, M, G) be the class of quadruples (k,m,1,S5) consisting of: k of
characteristic p; a globally generic cuspidal automorphic representation 7 = ®,m,
of M(Ag); a non-trivial character ¢ = ®,%, : k\Ar — C*; and, a finite set of
places S where k, 7 and 1 are unramified. We write Zyi01(p) when M and G are
clear from context.
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Given (k,m,v,S) € Zyon(p), we have partial L-functions

LS(877T7Ti) == H L(&’”va”,v)-
vegS

They are absolutely convergent for R(s) > 0.

3.2. Tamagawa measures. Fix (k,7,7,5) € Zyon(p). From the discussion of
§ 2.1, the character ¥ = ®,1,, gives a self-dual Haar measure dyu,, at every place v

of k. We let
dp = ] dpo-

Notice that du,(0,) = duy(OF) = 1 for all v ¢ S. Representatives of Weyl
group elements are chosen using Langlands’ lemma for G(k). This globally fixes
the system

(3.1) W = {Wa, ditafqen -

As in § 2.1, this fixes the Haar measure on N(Ay).

We obtain a character of U(Ay) via the surjection (1.1) and the fixed character
1. Given an arbitrary global non-degenerate character y of N(Ag), we obtain a
global character xg, of Nas(Ag) = M(A;)NN(Ay) via (1.5) which is @wo-compatible
with x. We note that the discussion of Appendix A of [9] is valid also for the case of
function fields. In particular, Lemma A.1 of [loc. cit.] combined with Proposition 5.4
of [55] give Proposition 3.1 below, which allows us to address the variance of the
globally generic character.

Proposition 3.1. Let (k,m,1,S) € Zyon(p). There exists a connected quasi-split
reductive group G defined over k, sharing the same derived group as G, and with
mazimal torus T = ZgT. Then, there erists an element x € T such that the
representation mw;, given by

7 (9) = m(x " gx)
18 Y, -generic. Furthermore, we have equality of partial L-functions

LS($77TaTi) = LS($77T$7Ti)'

3.3. Eisenstein series. We build upon the discussion of § 5 of [39], which is written
for split groups. Let ¢ : M(k)\M(Ar) — C be an automorphic form on the
space of a cuspidal automorphic representation 7 of M(Ay). Then ¢ extends to an
automorphic function ® : M(k)U(A,)\G(Ay) — C as in § 1.2.17 of [44]. For every
s € C, set
P, =P - q<s&+pp,Hp(~)>.

The function ®; is a member of the globally induced representation of G given by
the restricted direct product

I(s,7) = @"1(s, my).

The irreducible constituents of I(s, ) are automorphic representations II = ®'TI,
of G such that the representation m, has KC,-fixed vectors for almost all v. The
restricted tensor product is taken with respect to functions fﬂs that are fixed under
the action of IC,.

We use the notation of Remark 1.2, where wy = wjw;m. We have the global
intertwining operator

M(S,’/T,’l[)o) : 1(53 ’/T) — I(Slvﬂ-/)a
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defined by
M(s.m,d0)f(9) = [ f(@g ng)dn
N/
for f € I(s,m). It decomposes into a product of local intertwining operators
M(s, 7, o) = @y A(S, 7y, Wo),

which are precisely those appearing in the definition of the Langlands-Shahidi local
coeflicient.

The following crucial result is found in [16] for everywhere unramified represen-

tations of split groups, the argument is generalized in [44, 46] and includes all the
cases at hand.

Theorem 3.2 (Harder). The Eisenstein series
E(S,(I),g,P) = Z (I)s('yg)
YEP(K)\G (k)

converges absolutely for R(s) > 0 and has a meromorphic continuation to a rational
function on q—°. Furthermore

M(s, ) = ®y A(S, Ty, Wo)

is a rational operator in the variable ¢—°.

We also have that the Fourier coefficient of the Eisenstein series E(s, ®,g) is
given by

M@@%m:/’ E(s, @, ug)B(u) du.
U(K)\U(Ag)

The Fourier coefficients are also rational functions on ¢—*.

3.4. The crude functional equation. We now turn towards the link between
the Langlands-Shahidi local coeflicient and automorphic L-functions.

Theorem 3.3. Let (k,m,1,S) € Laob(p) be g, -generic. Then

my

HLS(is,ﬂ,ri) = H Cy (s, Ty, Wo) ﬁLS(l — 8,7, 15).
i=1

veS =1

Proof. Since m is globally 1)-generic, by definition, there is a cusp form ¢ in the
space of 7 such that

War(m) = [ o (um)p(u) du 0.
Un (K)\Un (Ak)

The function ® defined above is such that the Eisenstein series E(s, ®, g, P) satisfies
(3.2) Ew(S, ®,,9,P) = H Ay, (s,m0)(I(s, 7Tv)(gv)fS,v)a
v

with fs € V(s,m), fso = fg, forallv ¢ S. Here Ey (s, @5, g, P) denotes the Fourier
coefficient

Ey(s, ®s,9,P) = E(s, ®,,ug, P){(u) du.

/U (K)\U(Ax)
The global intertwining operator M(s, ) is defined by

MG, ) S(0) = [ St ng)an,
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where f € V(s,7) and N’ is the unipotent radical of the standard parabolic P’
with Levi M/ = woMuwy, ! Tt is the product of local intertwining operators

M(s, 7, W) HASﬂ'v,wo

Itisa meromorphic operator, which is rational on ¢~* (Proposition IV.1.12 of [44]).
We set s = swg(@) globally as well as locally, and we use the conventions of
Remark 1.2. Now equation (3.2) gives

E¢(Sl7 M(sv T, 'UNJO)(I)svg» Pl)
=] Ao (s wo(m)) (A", 7, (g0) A(s, o, t0) fio.0).

Fourier coefficients of Eisenstein series satisfy the functional equation:
Ey (s, M(s, m,w0)®s, g, P') = Ey(s, ®s, g, P).
And, equation (3.2) gives
Ey(s, @5, ¢, P) =H/\¢ $,7y) fs v

Ey (s, M(s, 7, wo)®s, e, P) H/\% s 7 A(S, T, Wo) fs,0-

Then, the Casselman-Shalika formula for unramlﬁed quasi-split groups, Theorem 5.4
of [6], allows one to compute the Whittaker functional when , is unramified:

)\%(s 7T7j HL 1+ s, 7(-1)77"7,1)) ! 0 (ev)
=1

Also, for v ¢ S, the intertwining operator gives a function A(s,m,,wo) fS,U €
I(—s,wp(m,)) satisfying

my

A(s, Ty, 100) fe . (€0) = H L

i=1

L(is, 7y, Tiw)

(141is,mp,Tip) "

O (ev)

This equation is established by means of the multiplicative property of the inter-
twining operator, which reduces the problem to semisimple rank one cases.
Finally, combining the last five equations together gives

ﬁLS(is,ﬂ',n H )\% 5 ﬂv)fsv
i=1

ves )‘wv s 71- (Saﬂ-mwo)fs,'u

ez

LY(1 —is, 7, 1;).
i=1
For every v € S, equation (1.7) gives a local coefficient. Thus, we obtain the crude
functional equation. O

The following useful corollary is a direct consequence of the proof of the theorem.
It provides the connection between Eisenstein series and partial L-functions for
globally generic representations.

Corollary 3.4. Let (k,m, ¢, S) € Zyon(p), then

Ed)(sv D, g, P) = H )‘wv (577%) (I(saﬂv)(gv)fsw) HLS(l + isvﬁvri)ilv
veS i=1

for g€ Gg.



22 LUIS ALBERTO LOMELI

4. THE LANGLANDS-SHAHIDI METHOD OVER FUNCTION FIELDS

4.1. Main theorem. We now come to the main result of the Langlands-Shahidi
method over function fields. The corresponding result over number fields can be
found in Theorem 3.5 of [53]. We note that compatibility with Artin factors for
real groups is the subject of [51].

Theorem 4.1. Let G be a connected quasi-split reductive group and M = My a
mazimal Levi subgroup. Let v = @r; be the adjoint action of “M on Fn. There
exists a system of rational y-factors, L-functions and e-factors on Loc(p). They
are uniquely determined by the following properties:

(i) (Naturality). Let (F,m,9) € Loc(p). Let n: F' — F be an isomorphism
of non-archimedean local fields and let (F', 7' v)') € Loc(p) be the triple
obtained via 1. Then

’7(87 T, T, w) = ’Y(S’ 7T/, T4, w/)
(ii) (Isomorphism). Let (F,m;,v) € Loc(p), j =1, 2. If m = 7, then

’Y(Sa 1, T, d)) = 7(57 T2, T, dj)

(iii) (Compatibility with Artin factors). Let (F,m, 1) € Aoc(p) be such that
has an Twahori fived vector. Let o : Wi — LM be the Langlands parameter
corresponding to w. Then

’Y(sa ™, T,y ,(/)) = ’7(57 r;oo, Tp)
(iv) (Multiplicativity). Let (F,m,¢) € Loc(p, M, G)be such that

T indlj\fe0 (7o),

where g is a generic representation of Mg, , with 6y C 6. Suppose (F,mj, 1) €
Lioc(p, M, Gj), where the m; are those of Proposition 2.3. With ¥; as in
(2.9) we have

7(57 USRED 1/}) = H 7(57 USERENT 1/’)
JEX;
(v) (Dependence on v)). Let (F,m,1) € Loc(p). Fora e F*, let p* : F — C*
be the character given by ¥%(x) = ¥(ax). Then, there is an h; such that

ni(s—3)
alp ’

’Y(Saﬂ»m»wa) :wﬂ'(a)hi 7(577,T1,¢)7

where n; = dim Ln;.
(vi) (Functional equation). Let (k, 7,1, S) € Lyon(p). Then

LS(S7 T, Ti) = H ’7(87 T, T, w)LS(87 77“ Ti)-
veS

(vii) (Tempered L-functions). For (F,m,v) € Loc(p) tempered, let Py ., (t) be
the unique polynomial with Py, (0) = 1 and such that P ,,(¢z°) is the
numerator of (s, m,r;,v¥). Then

_
Pr oy, (q;g) .

is holomorphic and non-zero for R(s) > 0.

L(s,m,1;) =
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(viii) (Tempered e-factors). Let (F,w,%) € Loc(p) be tempered, then
L(Sv T, Tz')

e(s,m,ri, ) = 7(3’%7}‘71/})m

is a monomial in qp°.
(ix) (Twists by unramified characters). Let (F,m,v¢) € Loc(p), then

L(s+ sg,m, 1) = L(s, qﬁfod’He('» Q 7, Ti),
E(S + S50, T, T4,y d)) = 6(83 qﬁfodeG(')) oy USRET d))

(x) (Langlands’ classification). Let (F,m, %) € LAoc(p, M, G). Let my be a tem-
pered generic representation of Mo = Mp, and x a character of Ag = Ap,
which is in the Langlands’ situation. Suppose 7 is the Langlands’ quotient
of the representation

§= Ind(WO,X)v
with mo, = mo-X. Suppose (F,m;,¢) € Loc(p, Mj, G;) are quasi-tempered,
where the m; are obtained via Langlands’ lemma and equation (2.9). Then

L(sv T, 7‘2') = H L(Sa T, ri,j)a
JEY;
e(s,m,1i,0) = H e(s,mj, 75, 9).

JES;
4.2. A local to global result and induction. Lemma 4.2 below is the quasi-
split reductive groups generalization of the local to global result of Henniart-Lomeli
for GL,, over function fields [21]. A more general globalization theorem in charac-
teristic p is now proved in collaboration with Gan [14]. Thanks to a mathematical
discussion with Gan on the minimum number of places required, a simplified proof
is included here for self-containment; Lemma 4.2 includes all of the cases at hand.
This result can be seen as the function fields counterpart of Shahidi’s number fields

Propostion 5.1 of [53], which is in turn a subtle refinement of a result of Henniart
and Vignéras [18, 62].

Lemma 4.2 (Henniart-Lomel{). Let my be a supercuspidal unitary representation
of G(F). There is a global function field k with a set of two places S = {vg, Voo }
such that k,, = F. There exists a cuspidal automorphic representation m = ®,m,
of G(Ay) satisfying the following properties:

(i) o, = 705

(ii) my has an Iwahori fized vector for v ¢ S;

(iii) m,, s a constituent of a tamely ramified principal series;

(iv) if mp is generic, then m is globally generic.

Proof. We construct a function f = ®, f, on G(A) in such a way that the Poincaré
series
Pflg)= Y. f(v9)
v€G(k)
is a cuspidal automorphic function.
Let Z be the center of G. Note that the central character w, is unitary. It is
possible to construct a global unitary character w : Z(k)\Z(Ar) — C* such that:

Wy = Wry; Woo s trivial on Z}_; and, w, is trivial on Z7 for every v ¢ {vo, Voo }-
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Here, Z%oc is the pro-p unipotent radical mod po, of Z, _ and Z0 is the maximal
compact open subgroup of Z,.

We let S" = {vp,v’, 000}, where v’ is an auxiliary place of k. Outside of S’ we
consider the characteristic functions

fv = ]l]cv, v ¢ S/.
At the place vy of k, we let
foo(9) = (mo(g)x, ), =,y € Va,

be a matrix coefficient of my, where V;, is the space of my. The function f,, has
compact support C,, modulo Z,,.

At the place v’, consider the Iwahori subgroup Z, of upper triangular matrices
mod p,r. At the place at infinity, we let I&OO be the pro-p Iwahori subgroup of
unipotent lower triangular matrices modp,,__ . Let

Jo =1z, and f, =11

Voo

Twist the global function f = ®f, by w™!, in order to be able to mod out by
the center. Let H = G/Z and set

C = Cyy X H Ko x Iy x I, _.
vgS’

The projection C’ of C on H(Ay) is compact. Hence, C' NH(k) is finite. Because of
this, there exists a constant h, such that the height ||g|| < h bounds the entries of
g = (g:5) € H(E) NC'. See § 1.2.2 of [44] for the height functions ||g|| and |/g|, for
elements of G(Ay) and G,, respectively.

We now impose the further conditions on the choice of places v' and vs,. These
two places need to be such that the cardinality of their respective residue fields is
larger than h. This is to ensure that the poles of the entries of all g € H(k)NC’ are
absorbed. Indeed, given a connected smooth projective curve X over F, its set of
points over the algebraic closure ]Fq is infinite. Hence, it is always possible to find
places v with residue field F,, , with ¢, > h.

We then have that

9ij € O'U’a ZSJa
and the congruence relations
9i; = 0 mod py, @ > 7.

By incorporating the condition at infinity, we obtain similar relationships corre-
sponding to the use of lower triangular matrices at vo,. We can see that C'NH(k) €
H(F,). In fact, the pro-p condition at v, ensures that ' "H(k) = {I,,}. Now, we
incorporate the twist by w, and lift the function f = ®f, back to one of G(Ay).
We then have that

P(f)(g) = f(g), for g € C.

We can now proceed as in p. 4033 of [21] to conclude that Pf belongs to the
space L2(G,w) of cuspidal automorphic functions on G(k)\G(A}) transforming via
w under Z(Ag). The resulting cuspidal automorphic representation 7 of G(Ag) is
such that: m,, = mo; m,» has a non-zero fixed vector under Z,; and, m,_ has a non-
zero fixed vector under I&OO. The last three paragraphs of the proof of Theorem 3.1
of [loc. cit.] are general and can be used to establish property (iii) of our theorem.
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Let ¢ : k\Ap — C* with ¢, be an additive character which is unramified at
every place. We extend v to a character of U(k)\U(Ay) via equation (1.1). If 7 is
1y, -generic, we can proceed as in Theorem 2.2 of [62] to show that

Wo(f)(g) = / F(ng)(n) dn # 0.
U(k)\U(Ax)

Hence, the Whittaker model is globalized in this construction.
O

Remark 4.3. The above proposition admits a modification. Property (ii) can be
replaced by: (ii)’ m, is spherical for v ¢ S; and, condition (iil) replaced by: (iii)’
Tuo, 5 @ level zero supercuspidal representation in the sense of Morris [47]. If we
begin with a level zero supercuspidal Ty, the above globalization produces a cuspi-
dal automorphic representation m such that m, arises from an unramified principal
series at every v # vg.

The next result is present in Arthur’s work, using endoscopy groups, in addition
to Shahidi [53]. In particular, the discussion in § 4 of [loc. cit.] can be adapted to
our situation. We here present a straight forward proof of the induction step.

Lemma 4.4. Let (M, G) be a pair consisting of a connected quasi-split reductive
group and M = My a mazimal Levi subgroup. Let r = &;r; be the adjoint
action of "M on n. For each i > 1, there exists a pair (M;, G;) such that the
corresponding adjoint action of “M; on Tn; decomposes as

’
m

T
! ! . !
r = @rj with m,. < my,
=1

and r; = 71.

Proof. To construct the pair (M;, G;), we begin by taking M; = M. For the group
G;, we look at the unipotent subgroup

!
N, = [ No.
ey’

obtained from a subproduct of equaiton (2.8), where ¥’ is the resulting indexing set.
Each one unipotent group Ny ; corresponds to a block set of roots [3] € ;7 (6, wo).
We take only groups Ny in the product corresponding to a [8] € X;7 (6, wg) such
that

(@,B) =1, Belp]
We then set
Ni = wo_leowo.

For the group G; we take the reductive group generated by M;, N; and N; . The
pair (M;, G;) has

my
/ /
r= @Tr
j=i

After rearranging, we obtain the form of the proposition. O
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4.3. Proof of Theorem 4.1. The crude functional equation of Theorem 3.3, to-
gether with Proposition 2.4, points us towards the existence part of Theorem 4.1
concerning y-factors. Indeed, let (F,m,¥) € Hoc(p) be such that 7 is 1, -generic.
Then we recursively define y-factors via the equation

my

(41) CW(svwva) = H)\i(/(bva)_l’y(i&ﬂ-ariaw)
i=1

and Lemma 4.4. For arbitrary (F, 7, 1) € Loc(p), they are defined with the aid of
Proposition 2.2. From Theorem 2.1 of [39], it follows that (s, m,7;,%) € C(gz®).

With the above definition of y-factors based on equation (4.1), Properties (i) and
(ii) can be readily verified. The inductive argument on the adjoint action together
with Proposition 2.4 give Property (iii). Multiplicativity of the local coefficient,
Proposition 2.3, leads towards Property (iv).

For Property (v), given the two characters ¢ and ¢¥*, a € F*, we use Propo-
sition 2.2 to examine the variation of m from being 97 -generic to m, which is
i, -generic for a suitable x. For this we let € T(Fs) be as in equation (2.4) and
such that d € Z;. In fact, d is identified with a power of a. In this case we have

01/,(8, T, U~)0) = ax(W, QU)CW (57 Ty wO)v

where a,(1%,20) = w,(a)" Ha||TFL(87%). The recursive definition of y-factors, allows
us to obtain integers h; and n; for each 1 < ¢ < m,. Holomorphy of tempered
L-functions is proved in [17], the discussion there is valid in characteristic p.
Furthermore, we obtain individual functional equations for each of the y-factors.
Namely, this reasoning proves Property (vi) for (k,m,%,85) € Zyob(p) with ¢g,-
generic w. Note we define y-factors in a way that they are compatible with the
functional equation for a y-generic m with the help of Propositions 2.2 and 3.1.
Before continuing, we record the following important property of ~-factors:

(xi) (Local functional equation) Let (F,mg, %) € Loc(p), then

,V(Saﬂ077ﬂi7z/)0)’7(1 - 8,7}077'7;7@0) =1

To prove this property, we start with a local triple (F, mg,%0) € Loc(p). Propo-
sition 4.1 allows us to globalize 7y into a globally generic representation m = ®,,m,,
with m,, = my and m, unramified outside a finite set of places S of k. We take a
global character ¢ : k\A, — C*. The character 1y, using Property (v) if necessary,
can be assumed to be 1,,. Applying Property (vi) twice to (k,m,,S) € Lyob(p),
we obtain

(42) H ’Y(S’M,Ti,m%)’)’(l - 377?1); 7‘1’,1}7@@) =1
vES

For each v € S — {vg, v}, the representation 7, is unramified and we have the
local functional equation for the corresponding Artin 7-factors. At the place v,
we still obtain a generic constituent of a tamely ramified principal series

Toe <7 Ind(Xoo ) ,

with xoo a tamely ramified character of T(k,_ ). Property (iv) gives

(4'3) 7(57 Tvee s T'i,vs 7/}%0) = H 'Y(Sa Tjvoos Ti,j,000 9 ¢vm)'
JEZ;
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Each v-factor on the right hand side of the product is then obtained from (i) or (ii)
of Proposition 1.3. The resulting abelian y-factors are known to satisfy a functional
equation as in Tate’s thesis. Hence, we also have the local functional equation for
Voo. From the product of (4.2) we can thus conclude Property (xi) at the place vy
as desired.

Property (viii), sates the relation connecting Langlands-Shahidi local factors. We
show that e-factors are well defined for tempered representations. Let (F,m, ) €
Loc(p) be tempered. Let Py, (z) and P, (z) the polynomials of Property (vii)
with z = ¢z° and write

Pﬂ'ﬂ“i(z) P7~T,7‘1,(Z)

7(3777,7"1‘31@ = el,lﬁ(z)m and 7(877?77‘7;71/)) = eg,w(z)m7

where e1 (2) and eg (%) are monomials in z. From Property (xi), we have
Qe ()Qar (072 7Y) = €102y 3052 ) Pror (2) Pror, (g7 2 7).

Property (viii) implies that the Laurent polynomials P ., (z) and P; ., (¢rz~") have
no zeros on R(s) < 0 and R(s) > 1, respectively. Then, up to a monomial in z*!,
we have L(s,m,7;) = Qz,,(qrz1)"" and L(1 — s,7,7;) = Qnr(2)"'. Hence,
e(s,m,r4,7) is a monomial in ¢z°.

Property (ix) follows from the definitions for (F,m, 1) € HAoc(p) tempered, and
the fact that o

I(s + sg, ™) = ind§, (qifa+s°a’HM(')> ®m).

To proceed to the general (F,m, 1) € Loc(p), we use Langlands’ classification.
More precisely, 7 is a representation of My and we let g C 6. Let my be a tempered
generic representation of My = My, and x a character of Ay = Ag, which is in the

Langlands’ situation [4, 57]. Then 7 is the Langlands’ quotient of the representation
f = Ind(ﬂ'o,x),

with mg , = 7o - X.

From Proposition 2.3 we obtain (F,7;,%) € Hoc(p, M;, G;). Each 7; is quasi-
tempered. Property (ix) allows us to define L(s, 7, r; ;) and (s, m;,7; 5,%). We
then let

L(sv T, Ti) = H L(Sv Tjs Ti’j)v
JED;
e(s,m,ri, ) = H e(s,mj, 75 5,%)
JEX;
be the definition of L-functions and root numbers. This concludes the existence
part of Theorem 4.1.

For uniqueness, we start with a local triple (F, g, %) € Hoc(p). We globalize
mp into a globally generic representation 7 = ®,m, via Proposition 4.1. We have
a global character ¢y = ®1,, where by Property (v) if necessary, we can assume
Yy, = Po. Notice that partial L-functions are uniquely determined. Hence, the
functional equations gives a uniquely determined product

H ’7(37 Ty Tiv, %)
veS

For each v € S — {vg, v } We can use Proposition 2.4. At vy, equation (4.3) above
reduces (s, Ty, Ti v » Yoo, ) t0 & product of uniquely determined abelian y-factors.
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Tempered L-functions and e-factors are uniquely determined by Properties (vii) and
(viii). Then in general by Properties (ix) and (x). O

4.4. Functional equation. Given (k, 7,9, S) € Zob(p), we define

L(s,m,r;) = l_IL(S7 Tw, i) and (s, m,r;) = HE(S, T, Tiyw, Yo)-

v

The global functional equation for Langlands-Shahidi L-functions is now a direct
consequence of the existence of a system of y-factors, L-functions and e-factors
together with Property (vi) of Theorem 4.1.

(xii) (Global functional equation) Let (k,m, 1, S) € Lyob(p), then

L(s,m,r;) =e(s,m,r;)L(1 — s,7,r;).

5. PROPERTIES AND APPLICATIONS OF L-FUNCTIONS

5.1. Rationality of Langlands-Shahidi L-functions. The connection between
Eisenstein series and the Langlands-Shahidi local coefficient allows us to prove the
following property over function fields.

Proposition 5.1. Let (k,m,1,5) € Zuon(p). Then each L-function L(s,m,r;)
converges absolutely for R(s) > 0 and has a meromorphic continuation to a rational
function in q—*.

Proof. Given (k,m,1,S) € ZLyob(p), from Propostion 3.1, we can assume that
7 is globally t-generic. From equation (3.2), we have the connection between
the global Whittaker model and the local ones. Corollary 3.4 further gives the
connection with partial L-functions, where each of the local Whittaker function-
als Ay, (8,7,)(I(s,7,)(gv) fs,v) are polynomials in {g%,q, %}, where g, = ¢4°8" (see
Theorem 1.4 of [39]). Now, the Fourier coefficients Ey(s, ®, g, P) are rational on
q~°. Also, recall that each L°(s,,7;) is absolutely convergent for R(s) > 0, by
Theorem 13.2 of [3]. Then, we can conclude that the product

my

H L1 +is,m, 1)
i=1

extends to a rational function on ¢~*. The induction step of Lemma 4.4 allows us
to isolate each L-function to conclude that each

L5(1 +is,m, 1)

is rational in the variable ¢—*. Hence, each L° (s,m,7;) is rational. Furthermore,
Theorem 4.1 gives that locally each L-function

L(Saﬂ—vvri,v)’ for (kvvﬂvvwv) € ﬁoc(p)y

is a rational function on ¢, °. Hence, the completed L-function

L(s,m,1;) = H L(S,TK’U,TZ‘,U)LS(S,TF,’M)
vES

meromorphically continues to a rational function in the variable ¢—*. ([
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5.2. Intertwining operators. We have the following connection between the in-
tertwining operator and Langlands-Shahidi partial L-functions. Let (k,m, 1, S) €
Zsiob(p), then

18, T, T;
(5.1) M(s, 7, W) Hle—i—ZSﬂ'r ®As7rv,w0

The following Lemma is possible by looking into the spectral theory of Eisenstein
series available over function fields.

Lemma 5.2. Let (k,m,v,5) € Zyon(p). If wo(m) & m, then M(s,m, o) and
E(s,®,9,P) are holomorphic for R(s) > 0.

Proof. Let ® be the automorphic functions of § 1.2 that we obtain from 7. We
have the pseudo-Eisenstein series

Oy = / E(s,®,9,P)ds.
R(s)

This is first defined for so > (pp,a") by Proposition II.1.6 (iii) and (iv) of [44].
Then I1.2.1 Théoreme of [loc. cit.] gives for self-associate P that

<9¢>, 9<1>> = / Z <M(S,7T, 'lb)(b_w(gd)7 ‘I’s> dS,
R()=s0 Ge{1,m0}
and is zero if P is not self-associate. Now, for P self-associate, the condition
wo(m) 2 7 allows us to shift the imaginary axis of integration by V.3.8 Lemme
of [44] to R(s) = 0. However, by IV.1.11 Proposition we have that M (s, , W)
is holomorphic for $(s) = 0. Thus, we have that M (s, m, W) is holomorphic for
R(s) > 0. Finally, the poles of Eisenstein series are contained by the constant
terms. (I

5.3. An assumption of Kim. Locally, let (F,m, 1) € Zoc(p). We have the
normalized intertwining operator

N(s,m,0) : I(s,7) — I(s', 7)
defined by
L(l +i8,7,7;)

A To).
L(is,7,r;) (5,7, t0o)

N(s, m, o) Hazswn,

Globally, for (k, 7,4, S) € fglob(p), we have
N(s,m,Wo) = ®, N(s, Ty, Wp).

The following assumption was made by H.H. Kim in his study of local Langlands-
Shahidi L-functions and normalized intertwining operators over number fields [25].
Having now the Langlands-Shahidi method available in positive characteristic, we
are lead at this point to Kim’s assumption.

Assumption 5.3. Let (k,m,1,S5) € Zuon(p). At every place v of k, the normalized
intertwining operator N(s,m,, W) is holomorphic and non-zero for R(s) > 1/2.

It is already known to hold in many cases, including all the quasi-split classical
groups. See [27] for a more detailed account. We make this assumption to prove
Proposition 5.5 below.
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Lemma 5.4. Let (k,m,¢,S) € ZLyon(p). If wo(m) & 7, then

H L(is,m, 1)
D L(1+is, m,r;)

is holomorphic for R(s) > 1/2.
Proof. For every place v ¢ S, we have that
L(is, my, 7)) Lo

A vy v/
(S s ’LUO H L 1+’LS Wy,rz) s,v(e )

for (ky, 7y, ¥y) € Loc(p). Globally, the condition wo(7) 2 7 allows us to apply
Lemma 5.2 to (k, 7%, S) € Zgon(p). Thus M(s, 7, 00) is holomorphic for R(s) > 0
and in this region we have

Lis, 7,r;) -
M(s, m, W) f. He 18,70, 1%) L(l—i—z—s,frjrl) R N(s,m,wo)fg,m
where fs = ®, S’U € I(S,’IT). Now, with an application of Assumption 5.3, we can
prove the Lemma. (I

5.4. Global twists by characters. We now extend a number fields result of Kim-
Shahidi to the case of positive characteristic. In particular, Proposition 2.1 of [30]
shows that, up to suitable global twists, Langlands-Shahidi L-functions become
holomorphic. In the case of function fields, Harder’s rationality result allows us
to prove the stronger property of L-functions becoming polynomials after suitable
twists.

Let £ € X*(M) be the rational character defined by

§(m) = det (Ad(m)|n),
where n is the Lie algebra of N. At every place v of k, we obtain a rational character
& € X*(M),. Given a grossencharakter y = ®x, : k*\A; — C*, we obtain the
character
X-§=Q®xv-&
of M(Ay). Let (k,m,1,S) € ZLyob(p). For n € Z>q, form the automorphic repre-
sentation

Ty =7 ® (x-£").
Proposition 5.5. Let (k,m,1,5) € Zuon(p) and fiz a place vg € S. Then there
exist non-negative integers n and fy,, such that for every gréssencharakter x = ®xy
with cond(xv,) > fve, we have that

L (87 Wn,xv ri) )
1 <4< m,, is a polynomial function on {q°,q°}.
Proof. In order to apply Lemmas 5.2 and 5.4, we first need the existence of an
integer n such that wo(m,,y) 2 7y, for suitable x. Write P = Py, with § =
A — {a}, so that M = My and N = Ny. Let Ay be the split torus of My and let
Ap = Ay(ky,), the group of k, -rational points. Let
Ap = wo(Ag) Ay = {a € Aglwg(a) =a""}.
Then Lemma 2 of [54] gives
flag # 1.
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In fact, & : Aé — Gy, is onto. Given an integer n, we choose ¢,, € Z>( such that
£y 1
L+ po CE"(Ap)

and £, is minimal with this property. Let w,, be the central character of 7,,. Take

(5.2) fuo = max {€,,, cond(wy, )},
which depends on n. Then
(53) ’LT}()(MUO ® (Xvo gn)) 9—3 Wy Y (Xvo : gn)v

for cond(xuvy) = fuo-
Let (M;, G;) be as in Lemma 4.4, where G; — G and we have the corresponding
parabolic P; = M;N; of G;. Let & € X*(M;) be the rational character

& (m) = det (Ad(m)|ny),
where n; is the Lie algebra of N;. There are then integers nq,...,ny,,., such that
upon restriction to M; we have £ = £™ and x - &' = x - £™. With this choice of
n = ny, we choose f,, asin (5.5) at the place vg € S. Then, for any grossencharakter
X 0 kX \A; — C* with cond(xv,) > fu,- Equation (5.3) at vy ensures that

Wo(Tr,x) & Ty -
Now, Lemma 5.2 together with Corollary 3.4 give that
my
H L1+ 8, Ty, 74)
i=1
is holomorphic and non-zero for $(s) > 0. The induction step found in § 4.2 allows
us to isolate each L-function and conclude that each

LS(S, Tn,xs T3)

is holomorphic and non-zero on R(s) > 1. Furthermore, with the aid of Lemma 5.4
we conclude that each L¥(s, 7, ,7;) is holomorphic on R(s) > 1/2.

The functional equation of Theorem 4.1, allows us to conclude holomorphy for
R(s) < 1/2. The automorphic L-functions L(s, m,, y, ;) being now entire, in addi-
tion to being rational by Proposition 5.1, must be polynomials on {¢~*,¢°}. O

The following corollary is obtained from the proof of the Proposition.

Corollary 5.6. Let (k,m,v,S5) € Zuob(p) be such that wo(m) 2 . Then L(s,w,1;),
1 <i < m,, is a polynomial on {q~%,¢°}.

5.5. Local reducibility properties. The following result is an immediate con-
sequence of having a sound theory of local L-functions in characteristic p. It is
Corollary 7.6 of [53].

Proposition 5.7. Let (F,7,1) € Loc(p) be supercuspidal. Ifi > 2, then L(s,m,r;) =
1. Also, the following are equivalent:
(i) The product L(s,m,r1)L(2s,m,12) has a pole at s = 0.
(ii) For one and only one i =1 or i = 2, the L-function L(s,m, ;) has a pole
at s = 0.
(iii) The representation Ind(r) is irreducible and wo(mw) = .

Also a consequence of the Langlands-Shahidi theory of L-functions is Shahidi’s
result on complimentary series. Namely, Theorem 8.1 of [53], whose proof carries
through in the characteristic p case:
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Theorem 5.8. Let (F,7,v¢) € Loc(p) be unitary supercuspidal. With the equiva-
lent conditions of the previous proposition, choose i = 1 or i = 2, to be such that
L(s,m,r;) has a pole at s = 0, then

(i) For0 < s < 1/i, the representation I(s, ) is irreducible and in the comple-
mentary series.

(ii) The representation 1(1/i,7) is reducible with a unique generic subrepre-
sentation which is in the discrete series. Its Langlands quotient is never
generic. It is a pre-unitary non-tempered representation.

(iil) For s > 1/i, the representations I(s,7) are always irreducible and never in
the complimentary series.

If wo(m) =2 7w and I(7) is reducible, then no I(s,m), s > 0, is pre-unitary; they are
all irreducible.

Remark 5.9. We refer to [14] for a generalization of parts of this theorem to
discrete series representations. Namely, we prove the basic assumption (BA) of
Meeglin and Tadié¢ [43] when char(F) =p in §§ 7.8 and 7.9 of [14].

In the case of unramified principal series, we can combine the theory of local
L-functions with a result of J.-S. Li [38] to obtain the following:

Lemma 5.10. Let (F, 7, 1)) € Loc(p) be tempered and unramified. Then I(s,m) is
irreducible for R(s) > 1.

Proof. We have that
7w < Ind(x),

with x an unramified unitary character of T(F). From the Satake classification,
the character y corresponds to a complex semisimple conjugacy class in the dual
torus, each Satake parameter having absolute value 1. Let

Yo = x - qlsaHR ()

The function &, (xs) defined in § 2 of [38] for each non-divisible root « is either a
non-zero constant or a factor appearing in

(5.4) [[za+is, 7)™ or J]LO—is,mr) "

i=1 i=1
The result of Li, specifically Theorem 2.2 of [loc. cit.], states that I(s, 7) is irreducible
when each &,(xs) # 0. The local L-functions involved are never zero, and from
[17] we have that the first product [/ L(1 +is,7,r;)"" is non-zero for R(s) > 1.

We claim that the same is also true for the second product. For this, notice that
because 7 is tempered we can write for each i:

L(SﬂT’ri)_l = H(l - aidqv_s)v
J
where the parameters a; ; have absolute value 1. Then

my my
[Tra—is,mr)t =TI - aija;ta™).
i=1 =1 j

Each factor in the latter product is non-zero for $(is) > 1. In particular, the prod-
uct is non-zero for N(s) > 1. From Li’s theorem, we must have I(s, ) irreducible
for R(s) > 1. O
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5.6. On the holomorphy of L-functions. We can prove a general theorem for
any pair (M, G) under the assumption that 7 satisfies the Ramanujan conjecture,
which we now recall.

Conjecture 5.11. Let 7 be a globally generic cuspidal automorphic representation
of a quasi-split connected reductive group H. Then each m, is tempered.

We note that in this article, we will only make use of the fact that the Ramanujan
conjecture is valid for GL,, from the work of L. Lafforgue [31]. In § A.2 of the
Appendix, we provide examples of the following proposition involving the classical
groups.

Proposition 5.12. Let (K/k,7,4,S5) € ZLyob(p, M, G), with M a mazimal Levi
subgroup of a quasi-split connected reductive group G. Assume that m satisfies the
Ramanujan conjecture. Then, for each i, 1 < i < m,, the automorphic L-function
L(s,m,r;) is holomorphic for R(s) > 1.

Proof. Let (K/k,m,¢,S) € Zgon(p, M, G). From [17], we know that at places
v € S each of the L-functions L(s,my,7;) is holomorphic for R(s) > 0. We
begin with the known observation that local components of residual automorphic
representations are unitary representations. Furthermore, if the local representation
I(s,m,) is irreducible, then it cannot be unitary. From Lemma 5.10, we conclude
that the global intertwining operator M(s, 7, W) must be holomorphic for f(s) > 1.
Then, from equation (5.1) we conclude that the product

my

LS(Z.S, T, 7‘1‘)
bl L5(1 +is,m, ;)
is holomorphic on #(s) > 1. Since the poles of Eisenstein series are contained in

the constant terms, with an application of Corollary 3.4 we can further conclude
that

H L3 +is,m,r;) "t

i=1
is holomorphic for R(s) > 1. Now, the induction step found in § 4.2 allows us to
isolate each L-function and prove that each

Ls(s7 i)

is holomorphic for R(s) > 1. O

6. THE QUASI-SPLIT UNITARY GROUPS AND THE LANGLANDS-SHAHIDI METHOD

We study generic L-functions L(s,7m x 7) in the case of representations m of a
unitary group and 7 of a general linear group. For this, we go through the induction
step of the Langlands-Shahidi method, which gives the case of Asai L-functions [20].
The case of L(s, 7 x 7) for representations of two unitary groups will be established
in §§ 7-10.

6.1. Definitions. Let K be a degree-2 finite étale algebra over a field k with non-
trivial involution . We write Z = 0(z), for x € K, and extend conjugation to
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elements g = (g; ;) of GL,(K), i.e., § = (g;;). We fix the following hermitian
forms:

2n

— — 2 1
hont1(z,y) = E TiYon+2—i — Tnt1Ynt1, T,y € K2
i=1

n n
hon(z,y) = Z@'yznﬂ—i - foszrl—iyia z,y € K.
i=1 =1

Let N =2n 4+ 1 or 2n. We then have odd or even quasi-split unitary groups of
rank n whose group of k-rational points is given by

Un(k) = {9 € GLn(K) | hn(gz,9y) = hn(2,9)} -

These conventions for odd and even unitary groups Usg,, 41 and Uy, are in accordance
with those made in [11, 20, 41].

In particular, we have the two main cases to which every degree-2 finite étale al-
gebra is isomorphic: if K is the separable algebra k x k, we have 0(z) = 0(x1,x2) =
(r2,21) = & and N i (21, 22) = x122; and, if K/k is a separable quadratic exten-
sion, we have Gal(K/k) = {1,0} and Ng/,(x) = 2. Notice that

Ul(k) = Kl = ker(NK/k),

where in the separable algebra case we embed k — K via k = {(x1,22) € K|z = 22}
and k* — K> via kX = {(z1,22) € K|z1 = 23"} = Uy (k). In these two cases we
have that Hilbert’s theorem 90 gives us a continuous surjection

(6.1) h:K* - K' o zz '

Throughout this article we let G,, be either restriction of scalars of a general
linear group or a quasi-split unitary group of rank n. We think of G,, as a functor
taking degree-2 finite étale algebras with involution, K over k, to either Resg /. GLy,
or a unitary group Usgy, 41, Usg, defined over k.

Notice that in the case of the separable algebra K = k X k, we have

UN(k) = GLN(IC) and RGSK/kGLN(k) = GLN(k) X GLN(k)
6.2. L-groups. Let K/k be a separable quadratic extension of global function
fields. Let G,, be a unitary group of rank n. Let N = 2n+1 or 2n, according to the

unitary group being odd or even. Then, the L-group of G, = Uy has connected
component “G® = GLy(C). The L-group itself is given by the semidirect product

L@, = GLN(CT) x W
To describe the action of the Weil group, let ®,, be the n X n matrix with ij-entries
(6i,n7j+l)- If N =2n + 1, we let

JN: ]- )

and, if N = 2n, we let
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Then, the Weil group W, acts on “G,, through the quotient Wy /Wi = Gal(K/k) =
{1, 0} via the outer automorphism

0(g) = Jy"'g " In.

The Langlands Base Change lift that we will obtain is from the unitary groups to
the restriction of scalars group Hy = Resg,,GLx. Its corresponding L-group is
given by
EHx = GLy(C) x GLy(C) x Wy,
where the Weil group Wy, acts on GLy (C)x GL x (C) through the quotient Wy /Wg =
Gal(K/k) = {1,0} via
0(g1 x g2) = g2 x g1

6.3. Asai L-functions (even case). The induction step in the Langlands-Shahidi
method for the unitary groups can be seen in the when M is a Siegel Levi subgroup.
The even case, when (E/F,7,9) € Loc(p, M, Us,), is thoroughly studied in [20,
41].

Assume first that E/F is a quadratic extension of non-archimedean local fields.
In this case, 7 is a representation of M = GL,,(E) and the adjoint representation r
of “M on Pn is irreducible. More precisely, let 74 be the Asai representation

TA: LReSE/FGLn — GLn2 ((C),
given by
TA(xaya 1) =Y, and T.A(I7y7 0) =y
We thus have for (E/F,7,v) € Loc(p, M, Us, ), that Theorem 4.1 gives

7(87 T7 r? w) = 7(57 T7 TA? w)'
And, similarly we have Asai L-functions L(s, m, 7 4) and root numbers e(s, 7,74, ).
Now, assume E is the degree-2 finite étale algebra F' X F', we have for (E/F,7,) €
BAoc(p, M, Us,) that m = m ® 7o is a representation of M = GL,,(F') x GL,,(F).
Then, Proposition 4.5 of [41], together with a local-to-global argument, gives that

7(87 T™TA, ’(/}) = 7(8? Ty X T2, w)a
a Rankin-Selberg y-factor. And, similarly for the corresponding L-functions and
root numbers.
Asai local factors obtained via the Langlands-Shahidi method are indeed the
correct ones. Theorem 3.1 of [20] establishes their compatibility with the local
Langlands correspondence [37]:

Theorem 6.1 (Henniart-Lomeli). Let (E/F,m,%) € Loc(p, M, Usy,), with E/F
a quadratic extension of non-archimedean local fields. Let o be the Weil-Deligne

representation of Wg corresponding to m via the local Langlands correspondence.
Then

’)/(37 ™ TA, 1][}) = Vgal(sv ®I(J)7 ?/J)
Here, ®1(0) denotes the representation of Wr obtained from o via tensor induction

and the Galois y-factors on the right hand side are those of Deligne and Langlands.
Local L-functions and root numbers satisfy

L(s,m,74) = L(s,%1(c))
e(s,mra,v) = e(s,®1(a),v).
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Remark 6.2. Since we are in the case of GL,,, the results of this section hold when
7 18 a smooth representation, and not just generic [20]. Furthermore, the Rankin-
Selberg products of GL,, and GL,, that appear in this article arise in the context
of the Langlands-Shahidi method in positive characteristic. These are equivalent to
those obtained via the integral representation of [22] (see [21]).

6.4. Asai L-functions (odd case). The case (E/F,m, 1) € HAoc(p, M, Uznt1),
with F/F a quadratic extension of non-archimedean local fields, has M = GL,,(E) x
E' and r = r{ ® 2. In this case 7 is of the form 7 ® v, where v is a character of
El, and we extend v to a smooth representation of GL;(E) via Hilbert’s theorem
90. Then, from Theorem 4.1, we have

7(877T7T17w) = ’7(877- XV, ’(/}E)a
V(Svﬂ-aTQaw) = 7(577— oy nE/Far.Aaw)'

Where the former y-factor is a Rankin-Selber product of GL,(E) and GL;(E),
while the latter is a twisted Asai -factor. And, similarly for the local L-functions
L(s,m,r;) and root numbers &(s,m,r;,1), 1 <4 < 2. This result in characteristic
p is given by Theorem’ 6.4 of [41] and the unramified case is proved ab initio in
Proposition 4.5 there without any restriction on p.

Furthermore, the case E = F x F is also discussed in [41]. To interpret this case
correctly, let v be the character of E obtained from a character vg : F* — C* and
Hilbert’s theorem 90 (6.1). Then 7 is of the form 7 ® v, with 7 = 73 ® 72 and each
7; a representation of GL, (F). We thus obtain

’7(3? URRAT) w) = 7(87 T1 X V(;17 1/1)7(8’ T2 X 1, 1p)7

V(Sa T, T2, ’lr/)) = 7(57 T1 X T2, w)
Each factor on the right hand side is a Rankin-Selberg ~-factor. In particular, the
unramified case in this setting can be found in Theorem 4.5 of [loc. cit.]. The above

equality can be obtained by combining Theorems 4.5 and Theorem’ 6.4 of [loc. cit.]
together with a local to global argument.

6.5. Rankin-Selberg products and Asai factors. We record a useful property
of Asai factors. First for generic representations 7 of GL,(F), and then for any
smooth irreducible 7.

Proposition 6.3. Given (E/F,7,¢) € Loc(p, GLn, Gy), let 7 be the representa-
tion of GL,(E) given by n°(z) = 7(z). Then

(62) ’Y(SaWWA»?/J) = 7(8a797TA>1/})7

(63) fY(SaTr®77E/F7rA71/J) :’Y(Sﬂﬂ-9®77E/F7rA7w)7

and we have the following equation involving Rankin-Selberg and Asai y-factors
(64) ’Y(sa ™ X 71—97 1pE) = ’7(8’ T, TA, w)’Y(S, ™ nE/Fv TA, w)

Proof. Let o be the n-dimensional /-adic Frob-semisimple Weil-Deligne represen-
tation of Wg corresponding to 7 via the local Langlands correspondence. Then,
o’ corresponds to 7. And, from the definition of tensor induction (see [12]) we
have that ®I(c) = ®I(0?). Artin L-functions and root numbers remain the same

for equivalent Weil-Deligne representations, thus

’7(8’ ®I(0)7 1/}) = 7(5a ®I(09)7 'l/))



THE LANGLANDS-SHAHIDI METHOD OVER FUNCTION FIELDS 37

Hence, by Theorem 6.1, the first equation of the Proposition follows.

The second equation, involving twisted Asai factors, follows from the first and
the third. To prove equation (6.4), we first use multiplicativity of ~-factors to
establish it for principal series representations. Then, in general, via the local-to-
global technique of [20, 21]. O

Corollary 6.4. Let © be a smooth representation of GL,(E) and let ¥ be the
representation of GL,,(E) given by n°(z) = 7(z). Then

L(s,m,ra) = L(S,WQ,TA),

€<S7 T™TA, w) = €<S7 71-9’ T A, w)

and
L(s,m®@ng/r,Ta) = L(s,n’ ® NE/F>TA),
6(377( ® 77E/F7TAvw) = 6(577T0 ® T]E/F,’I‘A,Q/J).

Furthermore, we have the following equation involving Rankin-Selberg and Asai
factors

L(S77T X ﬂ—e) = L(S77T7TA71/})’V(S77T ®77E/F77"A)
E(Saﬂ- X 7T97¢E) = 5(877‘—771./47’(/})5(877( & nE/FaT./hw)'

Proof. Since we are in the case of GL,,, the idea from § 4.2 of [20] directly applies
to the cases at hand. |

6.6. Products of GL,, and Uy. When the maximal Levi subgroup M is not a

Siegel Levi and we have a quadratic extension E/F of non-archimedean local fields,

the adjoint representation always has two irreducible components r = r; ® ro. In

this case, take (E/F,&,v) € Loc(p, M, G;) in Theorem 4.1. We then have that

M = Res GL,,, X G,, where G; and G,, are unitary groups of the same parity. Also,

¢ is of the form 7 ® 7 with 7 and 7 representations of GL,,(FE) and G,,, respectively.
We then have

7(‘9’67T151/}) = 7(557— X 7T7¢)7

the Rankin-Selberg «-factor of 7 and 7. For the second ~-factor we obtain Asai
~-factors

_ 7(87T7TA7w) if N =2n
7(57§,T2’¢)—{ ’7(377—®nE/F7T-A7{¢)) 1fN:27’L+]_

From Property (vii), given (E/F,&,9) € Loc(p, M, G;) tempered, we obtain the
L-functions

L(s,&,m) = L(s,m X T)
and

[ L(s,1,74) if N=2n
L(s,&,m2) = { L(s,7®ng/p,ma) ifN=2n+1

Tempered root numbers

5(8,537"1'77/))3 1 §z§2,
are obtained via Property (viii) of Theorem 4.1. Then, L-functions and e-factors
are defined in general as in the proof of Theorem 4.1.

Now, assume E = F x F. Let (E/F,&, 1) € Loc(p, M, G)), so that G; 2 Uy &

GLz and M = GL,,, x Uy x GL,,,, l = m+mn, with L and N of the same parity. The
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representation £ is of the form 7 ® m ® 7. Then we obtain the following equations
involving Rankin-Selberg products

Y(s, &1, 90) = (s, 710 X T, p)v(s, 72 X T, 9)
and
Y(8,€,12,9) = (s, 71 X T2, 9).
And, similarly for the corresponding L-functions and root numbers.

7. EXTENDED LANGLANDS-SHAHIDI LOCAL FACTORS FOR THE UNITARY GROUPS

Let G; be either a quasi-split unitary group Uy or the group Res GLy. In the
case of G; = Uy, it is of rank n, where we write N = 2n + 1 or 2n according to
wether the unitary group is odd or even. Similarly, we let Gy be either a unitary
group of rank m or Res GL,;, with M = 2m + 1 or 2m.

We interpret Res GLy as a functor, taking a quadratic extension E/F to the
group scheme Resp,pGLy. Also, Uy takes E/F to the quasi-split reductive group
scheme U(hy), where hy is the standard hermitian form of § 6.1. In order to
emphasize the underlying quadratic extension, and the extended case of a system
of y-factors, L-functions and root numbers for products of two unitary groups, we
modify the notation of Sections 1.1 and 3.1 accordingly. Also, given the involution
0 of the quadratic extension E/F and a character n : GL;(E) — C*, denote by
n? : GL1(E) — C* the character given by n’(x) = n(z).

In section § 7.3 below we treat the case of a separable quadratic algebra F =
F x F. This extends the local theory to all degree-2 finite étale algebras F over the
archimedean local field F'.

7.1. Local notation. Let Hoc(p, G1, G2) be the category whose objects are quadru-
ples (E/F,m,7,1) consisting of: a non-archimedean local field F', with char(F) = p;
a degree-2 finite étale algebra E over F'; irreducible admissible representations 7 of
G1 and 7 of Ga; and, a smooth non-trivial additive character ¢ : F' — C*.

We construct a character ¢g : E* — C* from the character ¥ of F' via the trace,
ie., Yg =Y oTrg/p. When G; and Gg are clear from context, we will simply
write Hoc(p) for Loc(p, G1, G2). We say (E/F,m,7,1%) € Loc(p) is generic (resp.
supercuspidal, discrete series, tempered, principal series) if both 7 and 7 are generic
(resp. supercuspidal, discrete series, tempered, principal series) representations.
We let g denote the cardinality of the residue field of F'.

7.2. Global notation. Let Zion(p, G1,G2) be the category whose objects are
quintuples (k,7,7,4,S) consisting of: a separable quadratic extension of global
function fields K/k, with char(k) = p; globally generic cuspidal automorphic rep-
resentations m = ®,7, of G1(Ag) and 7 = ®,7, of G2(Ag); a non-trivial character
Y = Ry, : k\Ar — C*; and, a finite set of places S where k, 7 and v are
unramified.

We write Zyion(p) when Gq and Go are undestood. We let ¢ be the cardinality
of the field of constants of k. And, for every place v of k, we let ¢, be the cardinality
of the residue field of k,.

Let (K/k,m,7,%,85) € Zgon(p). Then we have partial L-functions

L3(s,m x 1) = H L(s,my X 7).
v S
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The case of a place v in k, which splits in K, leads to the case of a separable algebra
and we write K, = k, X k.

7.3. The case of a separable algebra. Let E = F' X F, then we have the following
possibilities for Langlands-Shahidi y-factors:

(i) Let (E/F, 7, 7,v) € Loc(p, Upnr, Un). Then 7 is a representation of GL s (F)
and 7 one of GLy(F'). The local functorial lift of = to Hjs(F') obtained
from

is given by 7 ® 7. Similarly the local functorial lift of 7 to Hy (F') obtained
from

G (F) = Un(F) = GLn(F) ~ Hy(F) = GLy(F) x GLy(F)
is given by 7 ® 7. Then the Langlands-Shahidi local factors are
Ve P (8, T X T,E) = (s, X T,)y(s, T X T,1)
Lg/p(s,mx 1) = L(s,m x 7)L(s,7 X T)
ep/p(8, T X T,9E) = (s, X T,9)e(s, T X T,9).

(ii) Let (E/F,m,7,v¢) € Loc(p, Upnr,ResGLy). Then = is a representation of
GLj(F) and 7 one of GLy(F) x GLy(F). The local functorial lift of 7 to
H);(F) obtained from

G (F) = Up(F) = GLar(F) ~ Hyr = GLy (F) x GLys (F)
is given by 7 ® 7. Write 7 = 71 ® 72 as a representation of
Resp/rGLN(F) = GLy(F) x GLn (F).
Then the Langlands-Shahidi local factors are

Ve P (8, T X T,E) = (s, X T1,9)Y(s, T X T2,9)
Lg/p(s,mx 1) = L(s,m x 1) L(s,7 X T2)
ep/r(8, T X 7,1, YE) = &(s, T X T1,)e(s, T X T2, 7).
(ii) Let (E/F,m,7,¢) € Loc(p,ResGLps, ResGLy). Then w7 = m @ 7o is a

representation of GLy(F) x GLy(F) and 7 = 71 ® 72 one of GLy(F) X
GLN(F). Then the Langlands-Shahidi local factors are

’YE/F(877T X T, 1pE‘) = ’Y(Saﬂ-l X 7171/})7(87772 X 7—27’(/])
Lg/p(s,mx 1) = L(s,m x 71)L(s, T2 X T2)

5E‘/F(537r X T, T, ’lZ)E) = 5(577(1 X 7_137;[})5(537@ X Tzﬂﬁ)-

Remark 7.1. We usually drop the subscripts E/F when dealing with Langlands-
Shahidi local factors. Hopefully, it is clear from context what we mean by an L-
function, and related local factors, at split places of a global function field.

Remark 7.2. Let (K/k,m,7,9,5) € Zgon(p, G1,G2). Then, at places v of k
which are split in K we set K, = k, X k,. It is interesting to note that the theory
of the Langlands-Shahidi local coefficient can be treated directly and uniformly for
unitary groups defined over a degree-2 finite étale algebra E over a non-archimedean
local field F as in [41]. Alternatively, one can use the isomorphism Uy = GLy in
the case of a separable quadratic algebra.
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7.4. Main theorem. In § 6 we showed the existence of a system of v-factors, L-
functions and root numbers on Ay (p, G, GL,,). We now state our main theorem
for extended factors. However, we postpone the proof until § 10. More precisely, we
give a self contained proof for (E/F, 7, T,1) € ZAoc(p) generic in § 10.1. In general,
the tempered L-packet conjecture is expected to hold for the unitary groups (see
Conjecture 10.3). Under this assumption, we complete the proof of existence and
uniqueness of local factors on ZHyc(p) in § 10.2.

Theorem 7.3. There exist rules v, L and € on Loc(p) which are uniquely char-
acterized by the following properties:

(i)

(iii)

(Naturality). Let (E/F,m,7,9) € Loc(p) be generic and let n : E'/F' —
E/F be an isomorphism on local field extensions. Let (E'/F' «', 7', ¢) €
Boc(p) be the quadruple obtained via n. Then

Y(s,m x 7,90E) = (s, 7" x 7', ¢p).

(Isomorphism). Let (E/F,m, 7,%), (E/F,7',7 %) € Loc(p) be generic
quadruples such that 1 = 7’ and 7 = 7'. Then

’Y(Saﬂ- X T, '(/}E) = 7(877(/ X Tla¢E)'

(Compatibility with class field theory). Let G; be either Uy or Res GLy, for
i=1o0r2, andlet (E/F,x1,x2,%) € Loc(p, G1, G2). In the case of Uy, we
extend a character x; of Uy(F) = E* to one of Resgp/pGL1(F) = GL1(E)
via Hilbert’s theorem 90. Then

7(53X1 X XQ,wE) = 7(57X1X27wE)a

where the v-factors on the right hand side are those of Tate’s thesis for
GLy(E).

(Multiplicativity). Let (E/F,m,7,%) € Loc(p, G1, G2) be generic. Let M,
and My be Levi subgroups of G1 and Ga, respectively. Let my be a generic
representation of My and suppose that

7 < Ind(mp)

s the generic constituent. And let 79 be a generic representations of My
and let

7 < Ind(79)

be the generic constituent. There exists a finite set 3 such that for each
J € X: there is a mazximal Levi subgroup M; of G;, where G; is either
ResGL,; or U,,; there is a generic representation &; of Mj; and, the
following relationship holds

7(87 T™XT, ¢) = H ’Y(S, €j» 1, ¢)
jes
(Dependence on ). Let (E/F,m,7,1) € Loc(p) be generic and let a € E*,
then % be the character of E defined by v¥%(x) = ¢Yg(ax). Let w, and w,
be the central characters of m and 7. Then

a MN(s—1
(s, % 7, 0%) = wrl(@)Mwr(@)N Jaly T v (s, 7 x 7, 0m).
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(vi) (Functional Equation). Let (K/k,m,T,¢,S) € Zyon(p), then

LS(s,mx 1) = [[ 7(s,m x 7,0) LS(1 = 5,7 x 7).
veS
At split places v of k, where K, = k, X k,, the Langlands-Shahidi local
factors are the ones of § 7.3.

(vii) (Tempered L-functions). For (E/F,7,7,%) € Loc(p) tempered, let Pry (1)
be the polynomial with Pry,(0) = 1, with Pry,(qp®) the numerator of
v(s,m X 7,%g). Then

1

PWXT(QI;S)

is holomorphic and non-zero for Re(s) > 0.
(viii) (Tempered e-factors). Let (E/F,m,T,v) € Loc(p) be tempered, then

L(s,m x 1) =

L(s,m xT
(s, m x 1,9p) = (s, T X nW)M-
(ix) (Twists by unramified characters). Let (E/F, 7, T,1) € ZLoc(p, Unr, ResGLy ).

Then
L(s+ so,m x 7) = L(s,m x (7|det(-)|)),
e(s+so,m X T,0p) =e(s,m x (7]det(:)| ), ¥E).

(x) (Langlands classification). Let (E/F,7,7,v¥) € Loc(p, G1,Gza). Let M,
and My be Levi subgroups of G1 and G, respectively. Let my be a tempered
representation of My and suppose that 7 is the Langlands quotient of

Ind(m) ® X)
with x € Xn:(M1) in the Langlands situation. And let 79 be a tempered
representation of My such that T is the Langlands quotient of

Ind(To & M)

and p € Xn(Mz) is in the Langlands situation. There exists a finite set
> such that for each j € X: there is a mazimal Levi subgroup M; of G,
where G is either Res GLy,, or Uy, ; there is a tempered representation ;
of M;; and, the following relationship holds

L(s,mx 1) = H L(s,&;,71)
jex
e(s,m X 1,9) = H e(s,&,r1,¥).
jex
7.5. Additional properties of L-functions and local factors. The proof of
Theorem 7.3 in the case of G; = U,, and Gy = ResGL,, can be obtained from
that of Theorem 4.1. The proof of existence is completed in § 10.1 for generic
representations, and in § 10.2 under the assumption that the tempered L-packet
conjecture is valid. For uniqueness, we proceed as in Theorem 4.3 of [40].
We also obtain a local functional equation for ~-factors which is proved using
only Properties (i)—(vi) of Theorem 7.3, as in § 4.2 of [40].

(xi) (Local functional equation). Let (E/F,m,7,¢) € Loc(p), then
’7(‘9)71— X T, ZZJE')’V(]- - Sv,ﬁ- X 7~—7EE‘) =1
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We can now define automorphic L-functions and root numbers for (E/F, 7, 7,1) €
jglob(p) by Setting
L(s,mx71)= HL(s,m X Tp) and e(s,m X 7) = Hs(smu X Ty, Uy).
They satisfy a functional equation, whose proof is completed in § 10.3.
(xii) (Global functional equation). Let (K/k,m, 7,9,5) € Lyon(p), then
L(s,mx71)=¢e(s,m x 7)L(1 — 8,7 X 7).

The following property is Theorem 5.1 of [14] adapted to the case of unitary

groups.

(xiii) (Stability). Let (E/F,m;,7;,%) € Loc(p, Un,Res GLyy,), fori =1 or 2, be
generic and such that wy, = wx, and Wy, = wr,. If n: EX — C* is highly
ramified, then

’Y(svﬂ-l X (Tl . n)a 1/JE) = 7(‘9771-2 X (TZ : n)a wE)
We note that we also have the corresponding stability properties for local L-
functions and root numbers
L(s,m x (11 - 1)) = L(s, m2 x (12 1)),
e(s,m1 x (11-m),YE) = (s, m2 X (T2 1), ¥E).
The stability of local L-functions is a result of Shahidi [54]. Stability for e-factors
follows by combining stability for ~-factors and L-functions via Property (viii)

above for tempered representations. Then in general, by Langlands’ classification,
Property (x).

7.6. Multiplicativity and Langlands classification. We being by making ex-
plicit the multiplicativity property of y-factors.

(iv) (Multiplicativity). Let M =mq +---mg+mo and N =nq + -+ ne + ng.
For1<i<d,1<j<e,let (E/F m,7j%) € Loc(p, Res GLy,, Res GL,,, )
be generic. Take Gi, and Gg be of the same kind as G; and G, and
let (E/F,m,70,%) € Loc(p, G1,0, Ga,0). In the case of either G1 9 or Ga
being Uy, we extend the corresponding character g or 79 of Uy (F) = E! to
one of Resp,pGL1(F) = GL1 (&) via Hilbert’s theorem 90. Suppose that

T indgll(m ® - Qg & M)
is the generic constituent, where P is the parabolic subgroup of G; with
Levi My = []?_, Resg)pGLy, X G1,0. And let
T indIGD;(Tl ® QT ®Tp)
be the generic constituent, where P5 is the parabolic subgroup of G4 with
Levi My = [[;_, Resg/rGLy, x Gop.
(iv.a) If both Gy and Gg are unitary groups, then
7(8771— X T, Q/JE) = 7(877(-0 X TO7¢E)

€

d
X HW(S,M X 70, YE)Y(8, T X T0,YE) H7<577T0 X 75, YE)Y(s, o X Tj,VE)

i=1 i=1

< I somn = e)y(s,mn x 7, 08)v(s, Fn X 71,908)Y(s, Th X 71, 0E).
1<h<d1<I<e
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(iv.b) If Gy = Ujps and G = Res GLy, then

e
’Y(Saﬂ- X T, wE) = H7(87ﬂ-0 X TjawE) X H ’Y(saﬂ-h X Tl7¢E)7(5777'h X Tlal/JE)'
j=1 1<h<d,1<i<e

(iv.c) If Gy = ResGLj); and G = Res GLy, then
7(87,” X T,wE) = HPY(Saﬂ_i X TjaquJE)'

0.

With the definition of L-functions and e-factors for tempered representations of
Properties (vii) and (viii), then Langlands classification and Property (ix) allows
us to reduce to the tempered case. Which we now make explicit to the cases arising
from the unitary groups.

(x) (Langlands classification). Let M =mq +---mg+moand N =nq +---+
ne +ng. For 1 <1¢ <d, 1 <5 < e, consider quasi-tempered quadruples
(E/F,mi,7j,%) € Loc(p, Res GLy,, Res GLy,; ). Take Gy and Ggg be of
the same kind as G1 and Go, and let (E/F, my, 70,%) € Loc(p; G1,0, G2,0)
be tempered. In the case of either G or Ga o being Uy, we extend the
corresponding character g or 79 of Uy (F) = E* to one of Resg,rGL1 (F) =
GL; (FE) via Hilbert’s theorem 90. Suppose that

T (—>indg11(7r1 R QMg m)
is the generic constituent, where P is the parabolic subgroup of G; with
Levi M =[], Res GL,,, X G1. And let

T < indgj(ﬁ Q- QT @T0)

be the generic constituent, where P5 is the parabolic subgroup of G4 with
Levi Mg = Hle Res GLm X GQ,O.
(x.a) If both G; and G are unitary groups, then

L(s,m x 1) = L(s,m X 7p)

€

d
X HL(S,ﬂ]‘ X T())L(S,’fri X To)HL(SﬂTO X Tj)L(S,’]TO X 7~'J)

i=1 =1

X H L(S,ﬂ'h XTl)L(S,ﬂ'h X%J)L(S,ﬁhX%Z)L(S,ﬁ'h XT[).
1<h<d,1<Ii<e

(s, ™ X 7,9p) = (s, 7m0 X 70, VE)

d e
x [ (s, mi x 70,4m)e(s, 7 x 70, 0m) [ [ e(s,m0 x 75,9m)e(s, m0 % 75,98)
=1 =1
X H E(S,TF}LXTZ,’QZJE)E(S,’]T}LX’ﬁ,l/JE)E(&’frhX%Z,QZ)E)E(SJ?}IXH,#}E).

1<h<d,1<I<e

(x.b) If G; = Ups and Go = Res GLy;, then

e
L(S,TFXT)ZHL(S,ﬂ'()XTj)X H L(S,ﬂ'hXTl)L(S,ﬁ'hXTl).
j=1 1<h<d,1<I<e
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e

6(8,7‘(‘ X Taqu) = HE(Saﬂ-O X Tj7¢E‘) X H 6(5,7Th X 7'171/)E)5(57ﬁ'h X Tl7¢E)'

j=1 1<h<d,1<I<e

(x.c) If G; = Res GL); and G2 = Res GLy, then

L(s,mxT) = HL(s,m X 7).
]

e(s,m X T,9p) = Hs(s,m X Tj, VE).

(]

7.7. Stable form of local factors. The following Lemma and its Corollary, pro-
vides a stable form for the local factors after twists by highly ramified characters.
It plays an important role in establishing global Base Change.

Lemma 7.4. Let (E/F,m,7,¢) € Hoc(p, Un,ResGL,,) be generic. Consider a
quadruple (E/FILT,¢¥) € Aoc(p, Res GLy,ResGL,,), with II and T principal
series, such that w, = wy and wr is the character of EX obtained from wy, of E*
via Hilbert’s theorem 90. Then, whenever n: E* — C* is highly ramified, we have
that
L(s,mx (1-1n)) = L(s,I x (T -n)),
e(s,mx (1-n),vp) =c(s, I x (T n),vE),
V(s mx (7)., ¥p) =(s, 1 x (T"-n),¥p).

Proof. There is always a T', which is the generic constituent of

Ind(p1 @ -+ ® pim),
where py, ..., iy are characters of GLy(E). Multiplicativity of ~-factors for the
unitary groups gives

m

(7.1) V(s mx (r-m),dE) = [[ (s, 7 x (xim), ¥m).

i=1

And similarly for Rankin-Selberg products of general linear groups
(7.2) Y(s, T x (7 n),9p) = [[7(s, T x (xin), i)
i=1

Now, let £ be the representation of G,, = Uy (F') which is the generic constituent
of either

indg" (X1 ®--®xn) or indg" X1® - ®xnQv),
depending on wether N = 2n or 2n + 1, and such that we = w;. Then, let

(7.3) Eoindi " P e - 0o © X)),

if N =2n, and let

(7.4) 2o indd" P e @merexle--oxd),

if N =2n+ 1. Then, = has w= = wyy obtained from w, as in the statement of the

Proposition. Using stability of y-factors on Aoc(p, Un, Res GL1), Property (xiii)
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of § 7.5, we have that for each ¢

Y(s,m % (Xi - m),¥E) = (5,6 X (Xi * 1), ¥E)
=7(s,Ex (xi *m),¥E)
:’7(371_[ X (Xi 77)71/)E)

Then from equations (7.1) and (7.2), we have the desired equality of y-factors. The
corresponding relations for the L-functions and root numbers can then be proved
arguing as in the proof of Lemma 9.3. |

In the course of proof, we constructed (E/F,II, T, 1) € Loc(p, Res GLy,Res GL,,,)

which also allows us to compute the following stable form of local factors.

Corollary 7.5. Let (E/F,7w,7,v%) € Loc(p, Un,Res GL,,) be generic and let n :
E* — C* be sufficiently ramified. Let x1,...,Xn,M1,-- -, 4m be characters of E*
and let v be a character of E', which we extend to one of EX via Hilbert’s theo-
rem 90. Assume that £ is the generic constituent of

ind§" (x1 ® -+ @ xn) or indG"(x1® @ xn @),

depending on wether N = 2n or 2n+1, and has central character we = wy. Suppose
T is the generic constituent of

ind 1 ® @ ),

and has central character wr = w,. Then, if N = 2n, we have

L(s,m x (7 -1) :HHLS Xgham) L(s, X° in),

GLm(E)(

m

i=1j=1
e(s,mx (r-m),¢) = [[ [] (s xjmin ¥p)e(s, Xgpin, i)
i=1j=1
y(s,mx (r-m), ) = [ [ [T xmin, oe)v(s, Xonm, ve).
i=1j=1
And, if N =2n + 1, we have
m n
L(s,m x ( HL S, Liny) H s, X5 1im) L(s, X4 1m),
e(s,mx ( H€ s, v, v) [ [ (s xgpam m)e (s, Xpan, i),
j=1
Y(s,mx (7-1n) Hv 8, WiV YE) H (s, X, V)Y (8, X im, ¥g)-

1=1 1

<.

O

8. THE CONVERSE THEOREM AND BASE CHANGE FOR THE UNITARY GROUPS

We begin by recalling the converse theorem of Cogdell and Piatetski-Shapiro
[7]. In fact, we use a variant in the function field case [49] allowing for twists by
a continuous character 7 (see § 2 of [8]). We then combine the Langlands-Shahidi
method with the Converse Theorem and establish what is known as “weak” Base
Change for globally generic representations.
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8.1. The converse theorem. Fix a finite set of places S of a global function field
K, a Grossenkaracter n : K*\Ax — C* and an integer N. Let 7(S;n) be the
set consisting of representations 7 = 79 ® n of GL,, (Ag) such that: n is an integer
ranging from 1 <n < N — 1; and, 7q is a cuspidal automorphic representation.
Let 7 of G1(Ay) and 7 of Go2(Af) be admissible representations whose L-function

L(s,m x 7) converges on some right half plane. We say L(s,7m X 7) is nice if the
following properties are satisfied:

(i) L(s,m x 7) and L(s, 7 x 7) are polynomials in {¢~*%, ¢°}.

(ii) L(s,mx 1) =¢e(s,m x T)L(1 — 5,7 X 7).
We note that Property (i) implies that L(s,7 x 7) and L(s,7 x 7) have analytic
continuations to entire functions to the whole complex plane and are bounded on
vertical strips.

Theorem 8.1 (Converse Theorem). Let I = ®1II, be an irreducible admissible
representation of GLy(Ag) whose central character wyy is a Gréssenkaracter and
whose L-function L(s,1I) =[], L(s,I1,) is absolutely convergent in some right half-
plane. Suppose that for every 7 € T(S;n) the L-function L(s,II x T) is nice. Then,
there exists an automorphic representation II' of GLy (Ak) such that I, 2 1T, for
allv ¢ S.

8.2. Base change for the unitary groups. Let K/k be a separable quadratic
extension of global function fields. Let Ay and Ak denote the ring of adeles of k
and K, respectively. We now turn towards Base Change from G, = Uy to Hy =
Res GLy. The groups G,, and Hy are related via the following homomorphism of
L-groups

(8.1) BC: %G, = GLy(C) x W), = “Hy = GLy(C) x GLy/(C) x W.

We say that a globally generic cuspidal automorphic representation ™ = ®'m, of
G, (Ag) has a base change lift IT = ®'TL, to Hy(Ag) = GLy(Ak), if at every place
where m, is unramified, we have that

L(s,m,) = L(s,11,).

This notion of a Base Change lift is sometimes referred to as a weak lift. The strong
Base Change lift requires equality of L-functions and e-factors at every place v of
k. We will establish the strong Base Change lift in §§ 9-10.

Remark 8.2. In order to be more precise, the base change map or Langlands
functorial lift for the unitary groups obtained from (8.1) is known as “stable” base
change. There is also “unstable” base change. See for example the “stable” and
“labile” base change discussion for Us of [13].

8.3. Unramified Base Change. Let 71 = ®'m, be a globally generic cuspidal
automorphic representation of Uy (Ag). Fix a place v of k that remains inert in K
and such that m, is unramified. Two unramified L-parameters ¢, : Wy, — La,
and @, : Wy, — “Hy are connected via the homomorphism of L-groups

‘LHN

LGn
Wi

v
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given by the base change map of (8.1).
Each 7, being uramified, is of the form

Ind(X1,0 @+ Xnow ®@vy) if N=2n+1
(82) Ty <> { Il’ld(Xl,v Q- va) if N =2n )
with X1,v, .-+, Xn,o, unramified characters of K. Let w, be a uniformizer and let

oy = Xi77](w’[))’ 1= 17 ey
Let Frob, denote the Frobenius element of Wy, . We know that =, is parametrized

by the conjugacy class in “U

1 1 1 1
di 2 i, Lan?, .. a0 2) X if N =2 1
(¢v (FI'ObU), wg) _ lag(all,'uv 70/'711,1), 770‘7’n,’07 77631,1) ) We 1 n—+
diag(af -« -5 QR O,y e vy iy ) X Wo if N=2n
Then, from the results of [42], the L-parameter ®,, = BCo¢, corresponds a semisim-
ple conjugacy class in GLy (C) given by

. —1 —1 .
diag(ai v,y Qnw, 1,05 055 ap,) N =2n+1
: -1 -1y : _
dlag(al,v,...,an,man)v,...,aljv) if N =2n

. (Frob,) = {

The resulting Satake parameters ®,, then uniquely determine an unramified rep-
resentation II, of Resg, /i, GLy (k) = GLy (k) of the form

(83) I <_>{Ind(XLU@"'Xn,U®1®X;ﬁ;®"'®x1—ﬂl}) N =2n+1

Id(X1,0 @ X @ Xrp @+ @ X1.p) if N =2n

To summarize, let A, be the semisimple conjugacy class of ¢, (Frob,) in GLy (C)
obtained via the Satake parametrization. We have

7 of Un(ky) ——— {(Av,wg,v)} of GLy (C) x Wi,

BC ]
11 of GLy(K,) <—{(Av,Av,w9,,,)} of GL(C) x GLy(C) x Wi,

Where we use the fact that there is a natural bijection between wy ,-conjugacy
classes of GLy(C) x GLx(C) and conjugacy classes of GLy (C).

Definition 8.3. Let v be a place of k that remains inert in K. For every unramified
m, corresponding to ¢, we call the representation
BC(m,) =11,

corresponding to @, as in (8.3), the unramified local Langlands lift or the unramified
base change of .

Let 7, be any irreducible admissible generic representation of GL,,(K,). We
know that, given the homomorphism of L-groups BC, we have the following equality
of local factors

7(577% X Tvﬂ/}v) = 7(53 IT, x Tvﬂ/}v)
L(s,m, X T,) = L(s,IL, X )

€<377rv X T’an’u) = E(Svnv X Tvv"/}v)~
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8.4. Split Base Change. At split places v of k, we are in the case of a separable
algebra, as in § 7.3. The local functorial lift of 7, to Hy,(k,) obtained from

UN(kv) = GLN(kv) ~ HN(kv) = GLN(kv) X GLN(kv)

Definition 8.4. Fiz a place v of k such that K, = k,, x k,,. Let w, be an irreducible
generic representation of Un(ky) = GLy(ky). We call the representation

(8.4) BC(my) = m, @ Ty
the split local Langlands lift or the split base change of m,.

Let 7, = 71y ® T2, be any irreducible admissible generic representation of
GL,, (Ky) = GLy, (ky) X GLy, (k). Then, from § 7.3, we have the following equality
of local factors

’Y(Saﬂ-v X TU7¢U) = ’Y(Saﬂ'v X T’an'u)’)/(sﬂ?v X Ty, %)
L(s, 7y X Ty) = L(8, 7y X Ty) L(8, Ty X 7o)
5(377(1) X Tv,%) = 5(577(1) X TU,’(/JU)E(S,’fﬁJ X 7~—va¢v>~
8.5. Ramified Base Change. At places v of k where the cuspidal automorphic
representation 7 of Uy (Ag) may have ramification, we can use the stable form
hinged by Corollary 7.5. At this point, we do not have a unique ramified Base

Change, even after twisting by a highly ramified character. However, we will es-
tablish a unique local Langlands lift or local Base Change completely in § 9.

Definition 8.5. Let Xx1.4,...,Xn,v be characters of K*. Let v, be a character
of K}, which we extend to one of K wvia Hilbert’s theorem 90. Assume that the
representation

Ind(x1,0 @ ® Xnw @V @ Xph @@ x1,) i N=2n+1
Hv -1 —1 ’ - _
Ind(X1,0 ® @ Xnw @ Xpp @ - @ X1 ) if N =2n

has central character wn, = wg,. Then I1, is called a ramified local Langlands lift
or a ramified Base Change of m,.

We no longer have equality of local factors for every 7, of GL,,(k,). However,
from Lemma 7.4, whenever 7, : K0 — C* is a highly ramified character, we have
that

7(877(1) X (Tv ’ 771;)77/%) = 7(87 I, x (Tv ) 77v)7¢v)
L(s,my X (Ty - M) = L(8, 1, X (T4 - M)
(8, X (Ty - M), Vo) = (8, 11y X (T4 - M), Py).
8.6. Weak Base Change. We establish a preliminary version of Base Change for

the unitary groups by combining the Langlands-Shahidi method with the Converse
Theorem.

Theorem 8.6. Let 7 = Q'm, be a globally generic cuspidal automorphic representa-
tion of Un(Ay). There exists a unique globally generic automorphic representation

BC(m) =11
of Resg /1,GLN(Ag) = GLy(Ak), which is a weak Base Change lift of m.
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Proof. Let 11, = BC(m,) be the local Base change of Definitions 8.3, 8.4 and 8.5,
accordingly. Consider the irreducible admissible representation

I = @11,

of GLy(Ak) whose central character wyy has wyy, obtained from w,, via Hilbert’s
theorem 90 at every place v of k. By construction, wyy is invariant under K *.

Let S be a finite set of places of k such that m, is unramified for v ¢ S. We
abuse notation and identify S with the finite set of places of K lying above the
places v € S. Then, we have an equality of partial L-functions

L(s,11) = LS (s, m x 1).

Hence, L°(s,II) converges absolutely on a right hand plane; and so does L(s,II).
Let 7 be a cuspidal automorphic representation of GL,,(Ag). Choose a grossen-
karacter n = @n, : K*\Ajx — C* such that 7, is highly ramified for v € S. Then,
letting 7" = 7 ®n, we have that (K/k,m,7',9) € Zob(p, Un, GLy,). We have seen
in §§ 8.3, 8.4 and 8.5 that the following equality of local factors holds in every case:

L(s,m, x 7)) = L(s,11, x 7,)
e(s,my X Ty thy) = (s, I, X 71, 10y).

With 7 as in Proposition 5.5, we know that the Langlands-Shahidi L-functions
L(s,m x 7') are polynomials in {¢°,¢~°}. They also satisfy the global functional
equation, Theorem 4.1(vi). Thus, they are nice. Then, since

L(s,I x ") = L(s,m x 7") and &(s,II x ') = e(s,m x '),

we can conclude that the L-functions L(s,II x 7') are nice, as 7/ ranges through
the set 7(S;n). From the Converse Theorem, there now exists an automorphic
representation II' of GLy(Ag) such that II, 2 II/ for all v ¢ S. Then II' gives a
weak Base Change.

Now, from [33], every automorphic form II of GLx(Ag) arises as a subquotient
of the globally induced representation

(8.5) Ind(I; @ - -- @ ),

with each II; a cuspidal automorphic representation of GLy (Ak). Since every II; is
cuspidal, they are globally generic. The results on the classification of automorphic
representations for general linear groups [23], shows that there exists a unique
generic subquotient of (8.5), which we denote by

=18 B,

It is this automorphic representation II which is our desired Base Change, i.e., we let
BC(7) = m. It has the property that at every place w of K where IL,, is unramified,
it is generic. Hence, at places where 7, is unramified and w = v remains inert, II,,
is given by the unique generic subquotient of a principal series representation and
IT,, agrees with the local Base Change lift of sections § 8.3. At split places it also
agrees with that of § 8.4 at almost all places. It thus agrees with II' at almost all
places and is itself a weak Base Change lift. Furthermore, by multiplicity one [50],
any two globally generic automorphic representations of GLy(Ag) that agree at
almost every place are equal. Hence II is uniquely determined. [
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9. ON LOCAL LANGLANDS FUNCTORIALITY AND STRONG BASE CHANGE

In Algebraic Number Theory there is a well known proof of existence for local
class field theory from global class field theory. In an analogous fashion, we here
prove the existence of the generic local Langlands functorial lift from a unitary
group Uy to Res GLy, i.e., local Base Change. We are guided by the discussion
found in [9, 29]. The lift preserves local L-functions and root numbers. In general,
we refer to § 10.2 for a discussion on reducing the study of local factors to the
generic case. In § 7 of [14] we show how to establish Base Change in general, which
preserves Plancherel measures for non-generic representations.

In § 9.5 we address how to strengthen the “weak” base change map of Theo-
rem 8.6 so that it is compatibile with the local Langlands functorial lift or local
base change. Throughout this section, we fix a quadratic extension E/F of non-
archimedean local fields of positive characteristic. Given any general linear group
GL,,(E), we let v denote the unramified character obtained via the determinant,
i.e., v =|det(-)|. Globally, we let K/k denote a separable quadratic extension of
function fields.

Definition 9.1. Let w be a generic representation of Un(F'). Then, we say that a
generic irreducible representation II of GLx(E) is a local base change lift of 7 if
for every supercuspidal representation T of GL,,(E) we have that

’Y(Saﬂ- X T, ¢E) = 7(571_[ X T, wE)

9.1. Uniqueness of the local base change lift. The previous definition extends
to twists by a general irreducible unitary generic representation 7 of GL,,(E), as
we show in the next lemma. For this, the clasification of [59] is very useful. It
allows us to write

(9.1) 7=Ind(610"' ® - @ Ig1" @ g1 @+ @ Sqyr D 6qv M @ -+ ®@ G171,

where the ¢;’s are unitary discrete series representations of GL,,,(F) and 0 < tg <
<t <12,

Furthermore, from the Zelevinsky classification [64], we know that every unitary
discrete series representation ¢ of GL,,(F) is obtained from a segment of the form

t—1 t—1

A= [W‘T,pv% ,

where p is a supercuspidal representation of GL.(F), e|m, and t is a positive integer.
The representation ¢ is precisely the generic constituent of

(9.2) Ind(pyf% ®-® py%).

An important result of Henniart [19] allows us to characterize the local Langlands
functorial lift by the condition that it preserves local factors.

Lemma 9.2. Let w be a generic representation of Uy (F') and suppose there exists
I1, a local base change lift to GLy(E). Then, for every irreducible unitary generic
representation T of GLy, (E) we have that

’Y(S,ﬂ' X T, ¢E> = 7(571—[ X T, 1/)E)

Furthermore, such a local base change lift 1 is unique.
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Proof. Given an irreducible unitary generic representation 7 of GL,,(E), write 7 in
the form given by (9.1). Then, multiplicativity of ~-factors gives

.

@
Il
—

V(S’ﬂ- X T, ¢E) = W(Sa ™ X 6d+i7’(/}E)

E&

fY(S—’_tJ’TF X 6]7'(/113‘)’7(8 _tj77T X 6JawE)

<.
Il
—_

And, similarly

’Y(S,H X T, ’(/JE) = V(SaH X 5d+i7’(/}E)

=

.
Il
-

E@_

’Y(S + tj,H X 67,¢E)’Y(S — tj,H X 5jawE)-

<.
Il
_

In this way, we reduce the problem to proving the relation

7(877(- X 57 1Z)E') = ’Y(S,H X 5» "/}E)

for discrete series representations § of GL,, (E).
Now, we write the representation § as the generic constituent of

t—1 t—1
Ind(pyiT ® e ® pyT)’

as in (9.2). Then, using the multiplicativity property of y-factors, we obtain

t—1
t—1
’Y(S,WX5,¢E) :E)’Y(S*?JFZJTXPW)E)
t—1 F1
=0
— (s, 1T x 8, ).

This shows that II satisfies the desired relation involving ~-factors. That II is
unique then follows from Theorem 1.1 of [19]. O

Lemma 9.3. Let 7 be a generic representation of Uy (F') and suppose it has a local
Langlands functorial lift IL of GLx (E). Then, for every irreducible unitary generic
representation T of GL,,(E) we have that

L(s,mx7)=L(s,II x 7)
5(8771— X T, wE) = 5(‘9’1_[ X T, wE')

Proof. As in the previous Lemma, begin by writing the unitary generic representa-
tion 7 of GL,,(E) as in (9.1), with discrete series as inducing data. And, write

T0 — Ind(5d+1 Q& 5d+k)~
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Then, using Properties (ix) and (x) of Theorem 7.3, we obtain

d
L(s,m x ) = L(s,m x 1) [ [ L(s + ti,™ x 8;)L(s — t;, 7 x 83),
i=1
d
e(s,m X T,9%p) =€(s,m X 10, YE) Hs(s +ti,m X 0, pp)e(s —ti, ™ X 8, YE).
=1

Now, for the factors involving 7y, we use Langlands classification to express 7 as a
Langlands quotient of

Ind(m ® -+ ® me ® o).

Then 7 is the generic constituent, where P is the parabolic subgroup of Uy with
Levi M = H?Zl Res GL,,,, x Uy, and each =; is a quasi-tempered representation of
GL,,,,(E). Now, Properties (ix) and (x) of Theorem 7.3 in this situation directly
give
e
L(s,m x 19) = L(s,m X T9) HL(s,m— X 7o),
i=1
e
e(s,m x 19, ¥E) = e(s,m X To, VE) Hs(s,ﬂ'i X T, YE).
i=1

All representations involved in the previous two equations are quasi-tempered. Each
individual local factor on the RHS of these equations can be shifted by Property (ix)
of Theorem 7.3, which leads to an L-functions and e-factor involving tempered rep-
resentations. The connection to y-factors, and the previous lemma, is now made via
Property (viii) of Theorem 7.3 in addition to Property (xi). Now, multiplicativity
of ~-factors leads to

L(s,mx19) = || L(sy,m X d441),

=

~

1

-

e(s,mx 19,9g) = || e(s,m X bat1,¥E).

~

1

The properties of [21], for example, can be applied to Rankin-Selberg factors to
obtain

k d
L(s,lIx 1) = HL(S,H X Odti) HL(S + by, x 0;)L(s —ty,m X &;),
=1 =1
k d
e(s, Il x 7,9p) = Ha(svﬂ X day1,VE) H5(5 +ti, T X 85, Yp)e(s — ti, ™ X 04, YE).
=1 =1

Where we reduced to proving
L(s,m x p) = L(s,1I x p)
e(s,mx p,hE) =e(s, 11 X p,E)

for discrete series representations p of GL,,(E). Indeed, we now address this case
in what follows.
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For the irreducible unitary generic representation IT of GLy (E), we use (9.1) to
write
(93) T=Tnd(E" @ ®EL @bp1 @+ @ Eppn @™ @ - @ G,
with each &; a discrete series and 0 <7y <--- <11 < 1/2.

h
’Y(S,’]T X P, wE) :H7(87£f+2 X P, wE)

i=1

f
[+ 75,8 x pobp)v(s —15,& % p,voE).
j=1

Each ~-factor on the right hand side of the previous expression involves discrete

series (hence tempered) representations. Thus, each factor has a corresponding
L-function and root number via Property (viii) of Theorem 4.1. The product

h f
Pqp®) " = [ L(s:&p4i x o) [T L(s + 75, & % p)L(s = 15,&5 % p).
i=1 j=1

From the Proposition on p. 451 of [22], each L(s,&; X p) has no poles for R(s) > 0.
And, since r; < 1/2, the function P(¢z”) is non-zero for R(s) > 1/2. Now, the
product

h f
Qlap*) ' =L =584 x p) [T LA = s =15, x HL(L = s —1,&; X p)
j=1

i=1
is in turn non-zero for R(s) < 1/2. Then, Property (viii) of Theorem 4.1 gives the
relation

’Y(S,ﬂ' X P, ¢E) ~ WES)’

which is an equality up to a monomial in ¢z°. More precisely, the monomial is the
root number, which we can decompose as

h
E(Saﬂ_ X p, wE) :He(s,gf—l-i X p, ’l/}E')
=1

f
[[e(s+75.8 x p.bp)e(s — 15,85 x pbe)
j=1

:€(S,H X Py '(/JE)

Notice that the regions where P(¢z") and Q(gr") may be zero do not inter-
sect. Hence, there are no cancellations involving the numerator and denominator
of y(s,m x p,vg). This shows that

1

L(s,m X p) = — = L(s,11 x p),
P(qz®)
where the second equality follows using the form (9.3) of IT and the multiplicativity
property of Rankin-Selberg L-functions. O

Lemma 9.4. Let 7 be a tempered generic representation of Un(F) and suppose it
has a local Langlands functorial lift 11 of GLy(E). Then, II is also tempered.
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Proof. We proceed by contradiction. If IT is not tempered, then there is at least
one 73, > 0 in the decomposition (9.3) of II. From the previous lemma, we know
that

L(s,m x p) = L(s,1I x p)

is valid for any discrete series representation p of GL,,(F). Take p = éio. From
the holomorphy of tempered L-functions, L(s,7 X p) has no poles in the region
R(s) > 0. On the other hand

i=1

h f
L(s, I x &,) = [ [ L(s. €41 x &) [] L(s + 75,85 x &) L(s = 15,5 x &)
j=1

has a pole at s = r;,, due to the term L(s—ry,, &, X &, ). And, L(s, TI x &) inherits
this pole, which gives the contradiction. Hence, it must be the case that f =0 in
equation (9.3) and we have that

II=Ind(& ® - ®&)
is thus tempered. ([

9.2. A global to local result. We prove that global Base Change is compatible
with local Base Change. At unramified and split places it is that of §§ 8.3 and 8.4;
the central character obtained via (6.1).

Proposition 9.5. Given a globally generic cuspidal automorphic representation
m=®'m, of Uy(Ay), let BC(r) = II = ®'I1, be the base change lift of Theorem 8.6.
Then, for every v we have:

(i) IL, is the uniquely determined local base change of m,;
(ii) IL, is unitary with central character wr, of K¢ obtained from the character
wx, of K} via Hilbert’s theorem 90.

v

Proof. The base change lift IT = BC(7), being globally generic, has every local II,
generic. At every place where 7, is unramified, IT, is a constituent of an unramified
principal series representation by construction. Since I, is generic, it has to be the
unique generic constituent of the principal series representation. Thus

(9.4) I, = BC(m,)

is the unramified local base change of § 8.3, if v is inert, and that of § 8.4, if v is
split.
Fix a place vy of k which remains inert in K. We wish to show that

,Y(Saﬂ-vo X 7'071%0) = 7(571_[’00 X Tvavo)

for every generic (Ky,/kvys Togs T0s Yuo) € Loc(D, Un, GLyy,) with 75 supercuspidal.
Let S be a finite set of places of k, not containing vy, such that m, is unramified
for v ¢ SU{vg}. Via Property (v) of Theorem 7.3, we may assume that v, is the
component of a global additive character ¢ = ®,, : K\Ag — C*.

Via Lemma 4.2, there is a cuspidal automorphic representation 7 = ®'r, of
GL,,(Ak) such that 7,, = 79 and 7, is unramified for all v ¢ S. Now, using the
Grunwald-Wang theorem of class field theory [2], there exists a Grossencharakter
n: K*\Ax — C* such that 7,, = 1 and 7, is highly ramified for all v € S such
that v remains inert in K.
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At places v € S, which remain inert in K, we have the stable form of Lemma, 7.4.
Indeed, after twisting 7, by the highly ramified character n, we have

7(877('0 X (Tv 'nv)vwv) = 7(571_[1) X (Tv : Tlv),%)-

At split places v € S, we write 7, = 71 ,®To,,, as a representation of Resg, /i, GLy (ky) =
GLy, (ky) x GLy,(ky) with each 7, and 73, supercuspidal. From § 7.3 (ii), the
Langlands-Shahidi y-factors are given by

7(877‘—1) X Tvv"/}v) = ’7(877% X Tl,va"/}v)’\/(saﬁ—v X 7-2,1/77[}1))»

which are compatible with the split Base Change map of § 8.4. Now, consider
" =71®n. For (K/k,m,7',¢) € Zaob(p, Un,GLy,) we have the global functional
equation

L5 (5,7 X ') = (8, Ty X Tug> Vo) H V(8,7 X (Ty - 1)y ) LI (1 — 8,7 x 7),
veS—{vo}

and for (K/k,II,7',v) € Zyob(p, GLy, GLyy,) the functional equation for Rankin-
Selberg products reads

L3(s, T x ') = (5, Iy, X Tug, ) H v(s, Iy X (Ty - ), %) L¥ (1 — 5,11 x 7).
veS—{vo}

At unramified places, it follows from equation (9.4) that local L-functions agree.
This gives equality of the corresponding partial L-functions appearing in the above
two functional equations. We thus obtain

’Y(‘g?ﬂ-vo X TU[)?,(/}’Uo) = ’Y(S?H’Uo X Tv()?wvo)'

Since our choice of supercuspidal 9 = 7, of GL,,(E) was arbitrary, we have that
Iy is a local base change for my. Uniqueness follows from Lemma 9.2. Proving
property (i) as desired.

Note that the central character w, = Qw,, of 7 is an automorphic representation
of Uj(Ag). Now, let x = ®x, be defined on GL;(Ak) from w, via Hilbert’s
theorem 90. Namely, we let b, : z, — x,Z, ! be the continuous map of (6.1) and
let

Xv = Wg, © [Jv~
at every place v of k; we view K, as a degree-2 finite étale algebra over k,.
Then x : K*\Ax — C* is a Grossencharakter. Also, y and wp are continu-
ous Grossencharakters such that x, agrees with wrr, at every v ¢ S U {vo}. Hence
X = wrn. Thus, the central character of II,, is WIT,, = Xvos which is obtained via
wr, as in property (ii) of the Proposition. O

vg

Remark 9.6. Let my be a generic representation of Uy (F). Suppose there is
a globally generic cuspidal automorphic representation m = ®'m, of Un(Ag) with
To = Ty, at some place vy of k, where k,, = F. Then it follows from Proposition 9.5
that it has a uniquely determined local base change Iy = BC(my).

9.3. Supercuspidal lift. To avoid confusion between local and global notation,
from here until the end of § 9, we use my to denote a local representation of a
unitary group and Iy for its local base change, when it exists. We use 7 = ®',
for a cuspidal automorphic representation of a unitary group and II = ®'IL, for its
its corresponding global base change.
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Proposition 9.7. Let g be a generic supercuspidal representation of Uy (F). Then
mo has a unique local base change
HO = BC(?T())
to GLy(FE). The central character wyy, of Iy is the character of E* obtained from
Wr, of EY via Hilbert’s theorem 90. Moreover
HO = Ind(HO,l X R HO,d);

where each Iy ; is a supercuspidal representation of GLy,(E) satisfying: Ilo
Hg,i; Iy,; 21, fori#j; and

(i) L(s,p,7.4) has a pole at s =0 if N is odd;

(ii) L(s, 1o ® ng/p,74) has a pole at s = 0 if N is even.
Proof. Let k be a global function field with k,, = F. From Lemma 4.2, there
exists a globally generic cuspidal automorphic representation 7 = @, of Un(Ag)
such that mg = m,,. Then, Remark 9.6 gives the existence of a unique base change
HQ = BC(Wo)

By Lemma 9.4, IIj is a unitary tempered representation of GL,,(E). Hence, we

have that

~

Iy =Ind(Ilp ® - -- @ g 4),
with each Ilp; a discrete series representation. Via (9.2), each II; is the generic
constituent of L L

Ind(p;r™ "2 ®@---®@pv T ),
where p; is a supercuspidal representation of GL,,, (E), m;|m, and ¢; is an integer.

We look at a fixed Ily ;. Due to the fact that all of the representations involved
are tempered, we have
N d i d t b ti—1 t;—1
L(S,H()XHOJ') = HL(Svnﬂ,iXHO,j) = HHHL(S*}’Z‘FT’* 5 — 2 ,plxﬂr).
i=1 i=11=07r=0

The L-function L(s+t; — 1, p; X p;) on the right hand side gives that the product
has a pole at s =1 —¢;. Now, the tempered L-function

L(s,To x g ;) = L(s, m x o)

is holomorphic for R(s) > 0. This contradicts the fact that L(s,IIy x Iy ;) has a
pole at s = 1—t;, unless t; = 1. This forces Iy ; = p;, in addition to L(s, o x Iy ;)
having a pole at s = 0. The argument proves that our fixed Il ; is supercuspidal.

Now, let P = MN be the parabolic subgroup of Us,,+n with Levi M =2
ResGL,, x Uyn. Then Proposition 5.7 tells us that L(s,mo X lzloyj) has a pole
at s = 0 if and only if

indem+N(F) (Tlp ; ® 7o)
is irreducible and ﬁo,j ® Ty = Wy (ﬁo,j ® ) = Hg’j ® 7. This gives, for each j,
that Iy ; = 1:187]-. Furthermore, we have

d
L(S,ﬂ'o X HO,j) = L(S,HO X H()’j) = HL(S,HOJ X HO,j)-
i=0

Each L-function in the the product of the right hand side has a pole at s = 0
whenever Il ; = IIy ;. However, the pole of L(s,mp x Iy ;) at s = 0 being simple,
forces Iy ; 2 Iy ; for @ # j.
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From the fact that Il ; = ﬁg’i and Proposition 6.4, we have

L(s,Mo; x Mo ;) = L(s, Mo 3, 7.4)L(3, o ; @ g/, 7).
Then, one and only one of L(s,Ily;,74) or L(s,Io; ® ng/p,r.4) has a simple pole

at s = 0. With the notation of § 6.6, we have (E/F, 1:10’1- ®70,VE) € Loc(p, M, G)
for M = Res GL,,,; x Uy and G = Uy, +n. By Proposition 5.7, the product

L(S7 1:[011' X 77F(), T'1)L(25, ﬁoyi, 7”2)
has a simple pole at s = 0. Using IIy; = 1:18’14 and Proposition 6.4, we have that

L(s,1Lp;,7.) if N =2n

L o3, r2) = L(s, o3, m2) = { L(s,p; @ng/p,ra) ifN=2n+1

Since we showed above that L(s,my x 1:[072-) = L(s, 1:[071' ® 7o, 71) has a simple pole
at s =0, then L(2s,IIj;,r2) cannot. Thus, depending on wether NV is even or odd,
the other one between L(s,Ilo;,7.4) and L(s,Io; ® Ng/p,7.4) must have a pole at
s=0. (I

9.4. Discrete series, tempered representations and Langlands classifica-
tion. Thanks to the work of Meeglin and Tadié [43], we have the classification of
generic discrete series representations for the unitary groups. Their work allows us
to obtain a generic discrete series representation £ of Uy (F') as a subrepresentation
as follows

(9.5) o Ind(b ® - ®6Q0 @8, @m).

Here, for 1 < ¢ < d and 1 < j < e, we have essentially square integrable repre-
sentations &; of GLy,(E) and &} of GLy,, (). The representation mo is a generic
supercuspidal of Uy, (F), with Ny of the same parity as N. We refer to [14] for
a discussion including non-generic representations and the basic assumption (BA)
that is made in [43].

We can apply the Zelevinsky classification [64], to the essentially discrete repre-
sentations of general linear groups appearing in the decomposition (9.5). They are
obtained via segments of the form

A= [ovt ],

where a,b € %Z, a>b> 0, and p is a supercuspidal representation of GL¢(E), f|l;
or myj, respectively.

The Mceeglin-Tadi¢ classification involves a further refinement of the segments
corresponding to each J; and 6;-. More precisely, let a; > b; > 0 now be integers of
the same parity. Then we have

(96) 6; = Ind (piI/*biTil ®R® piyﬂigl) ,

where p; is a supercuspidal representation of GL;(E), f|l;. Furthermore, we have
pi = pY. Next, let a; be a positive integer. We set €; = 1/2 if a is even and ¢; = 1
if a} is odd. Then we have

’

(9.7) &5 = Ind <p;w ® - ® p;l,z> 7

with p = (,5;»)9 a supercuspidal representation of GLy/ (E), f'|m;. Furthermore,
the integer a’; will be odd if L(s, mo x p’) has a pole at s = 0, and a}; will be even
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otherwise. This is due to (BA) of [43] concerning the reducibility of the induced
representation Ind(pjv° @) at s = 1/2 or 1, which is addressed in § 5.5 for generic
representations.

Proposition 9.8. Let & be a generic discrete series representation of Upn(F),
which we can write as
(9.8) S —=Ind(6;® - @64 Q- R, @ m)
with o a generic supercuspidal of Un,(F) and 6;, &} as in (9.5). Then & has a
uniquely determined base change

E0 = BC(€0)7

which is a tempered generic representation of GLy(E) satisfying Z¢ = ég. The
central character ws, of Zo is the character of E* obtained from we, of E' via
Hilbert’s theorem 90. Moreover, the lift Zy is the generic constituent of an induced
representation:

Zo ‘—>Ind(51®"'®5d®5’1®"'®5Q®H0®Sée®~"®5£0®S§®"'®5§),
The representation Iy is the local Langlands functorial lift of my of Proposition 9.7.

Proof. Let & be as in the statement of the Proposition, and consider quadruples
(E/F, &0, p, ) € Loc(p, Un,Res GL,,) such that p is an arbitrary supercuspidal
representation. To 7y there corresponds a Il via Proposition 9.7. With = as in
the Proposition, we have (E/F,Zq, p,%) € Loc(p, Res GLy,Res GL,,). Then we
can use multiplicativity of y-factors to obtain

d e
’7(8350 X p, wE) = ’Y(Saﬂ—o X P, ’IZ)E’) H H’Y(Saéz X p, QZ)E)W(S?(% X p, wE)

i=1j=1

d e
= V(Sa HO X P, 1/)E) H H 7(57 5i X P, TJJE)’V(Sv 5; X P, wE)
i=1j=1

= 7(53 EO X p, q/)E)
From Lemma 9.2, we have that Z is the unique local Langlands lift of §. It
satisfies =9 = =§ and has the right central character.

For each i, 1 < i < d, let 7; be the generic constituent of Ind(J; ® 5?). After

rearranging the factors coming from equation (9.6), we can see that 7; is isomorphic
to the generic constituent of

a;—1 a;—1 b;—1 b;—1
(2 ~
similarly with 7/, 1 < j <'e, the generic constituent of Ind(d} ® (5;-9), now with the

aid of equation (9.7). We conclude that 7/ is tempered and satisfies 7/ = 7/¢. We
then rearrange the inducing data for =y to obtain the form

Sp—ond(n® - @men -7 o1).

Each 7;, 7/ and Il being tempered, we conclude that = is also tempered. O

Recall that p; = p¢. Hence, each 7; is tempered and satisfies 7; = %f . We proceed

We now turn to the tempered case, which is crucial, since L-functions and e-
factors are defined via ~-factors in this case. The proofs of the remaining two results
are now similar to the case of a discrete series, thanks to Lemma 9.2.
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Proposition 9.9. Let 19 be a generic tempered representation of Uy (F), which we
can write as

70— Ind (6 ® - ® I3 @ &),

with each §; a discrete series representation of GL,,(E) and &y is one of Uy, (F).
Then 19 has a uniquely determined base change

TO - BC(TO)a

which is a tempered generic representation GLy (E) satisfying Ty = T(‘;), The central
character wr, obtained from w,, via Hilbert’s theorem 90. Specifically, the lift Ty is
of the form

To :Ind(51®~~‘®5d®50®5d9®"‘®5?>'
The representation =g is the base change lift of Proposition 9.8.

Proof. The proof is now along the lines of Proposition 9.8, where we use multiplica-
tivity of y-factors and the fact that Zg is the local Langlands lift of the discrete series
&o. This way, we obtain equality of y-factors to apply Lemma 9.2 and conclude that
To = T¢ and has the correct central character. g

In general we have the Langlands quotient [4, 57]. The work of Muié¢ on the
standard module conjecture [48] helps us to realize a general generic representation
7o of Un (F') as the unique irreducible generic quotient of an induced representation.
More precisely, 7y is the Langlands quotient of

(9.9) Ind (1] ® - Q@7 ®70),

with each 7] a quasi-tempered representation of GL,,(E) and 7y a tempered rep-

/

resentation of Uy, (F). We can write 7/ = Ti)ol/ti with 70 tempered and the

Langlands parameters have 0 <t¢; < -+ < 4.

Theorem 9.10. Let my be a generic representation of Un(F). Write mg as the
Langlands quotient of

Ind (1] ® - @7, ®70),
as in (9.9). Then mo has a unique generic local base change

HO = BC(TFQ),

which is a generic representation of GLn(E) satisfying Iy = 1:18. The central
character wr, obtained from wy, via Hilbert’s theorem 90. Specifically, the lift Iy
is the Langlands quotient of
Ind(rf® - @mnelhei e o7,

with Ty the Langlands functorial lift of the tempered representation 19. Given
(E/F, 7o, 1,0) € £(p,Un,Res GL,,), we have equality of local factors

’7(877[-0 X T, /(/)E) = /Y(Su HO X T, ’(/JE)

L(s,mo x 7) = L(s,IIp x 7)

8(577T0 X T, wE) = 8(571_[0 X T, wE)

Proof. We reason as in the case of a tempered representation, Proposition 9.9.

Equality of local factors follows from the definition of base change and Lemmas 9.2
and 9.3, after incorporating twists by unramified characters. ([
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Theorem 9.10 summarizes our main local result. Local base change being recur-
sively defined via the tempered, discrete series and supercuspidal cases of Propos-
tions 9.9, 9.8 and 9.7, respectively.

9.5. Strong base change. Base change is now refined in such a way that it agrees
with the local functorial lift of Theorem 9.10 at every place. Let

b:Ui(Ay) = GL1(Ak)

be the global reciprocity map such that b, is the map given by Hilbert’s Theorem 90
at every place v of k, as in equation (6.1). We also have global twists by the
unramified character v of a general linear group obtained via the determinant, as
in the local theory.

Theorem 9.11. Let m be a cuspidal globally generic automorphic representation
of Un(Ag). Then m has a unique Base Change to an automorphic representation
of GLy(Ak), denoted by

IT = BC(n).
The central character of 11 is given by wy = wx o b and is unitary. Furthermore,
I~ T and there is an expression as an isobaric sum

M=1I, 8 B,

wher(;~ each I1; is a unitary cuspidal automorphic representation of GLy, (Ak) such
that T; = 119 and T1; 2 IL;, for i # j. At every place v of k, we have that

I1, = BC(my)
is the local base change of Theorem 9.10 preserving local factors.

In the case of number fields, the method of descent is used in [58] to show how to
obtain the strong lift from the weak lift. Over function fields, we can now give a self
contained proof with the results of this article. Since the proof can be adapted to
the classical groups in characteristic p, we prove this result in § A.3 of the Appendix,
where we complete the results of [39, 40].

10. RAMANUJAN CONJECTURE AND RIEMANN HYPOTHESIS

Let K/k be a quadratic extension of global function fields of characteristic p.
We can now complete the proof of the existence of extended v-factors, L-functions
and root number in order to include products of two unitary groups. Note that
the Base Change map of Theorem 8.6 was strengthened in Theorem 9.11 so that
it agrees with the local functorial lift of Theorem 9.10 at every place v of k. In
this way, we can prove our main application involving L-functions for the unitary
groups. The Riemann Hypothesis for L-functions associated to products of cuspidal
automorphic representations of two general linear groups was proved by Laurent
Lafforgue in [31].

Theorem 10.1. Let v, L and € be rules on Loc(p) satisfying the ten axioms of
Theorem 7.3. Given (K/k,m,7,%) € Zaob(p), define

L(s,mx7)= HL(s,ﬂ'U X Ty) and e(s,m X T,) = Ha(s,ﬂv X Ty, Uy).

Automorphic L-functions on Laon(p) satisfy the following:
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(i) (Rationality). L(s, 7 X T) converges absolutely on a right half plane and has
a meromorphic continuation to a rational function on q%.
(ii) (Functional equation). L(s,m x 7) = &(s,m X 7)L(1 — 8,7 X 7).
(iii) (Riemann Hypothesis). The zeros of L(s,m X T) are contained in the line

R(s) =1/2.

10.1. Extended local factors. Let us complete the definition of extended local
factors of Theorem 7.3. In this section for generic representations and in the next
in general under a certain assumption. The case of a unitary group and a general
linear group for generic representations already addressed in § 6. An exposition,
within the Langlands-Shahidi method of the case of two general linear groups can
be found in [21]. We now focus on the new case of Gy = Uy and Gy = Uy.

Definition 10.2. Given (E/F, 7o, 70,%) € Loc(p, Un, Un) generic, let
HO = BC(’]T()) and TO = BC(T())
be the corresponding base change maps of Theorem 9.10. We define

’7(877T0 X TO7¢E) = 7(871_‘[0 X TOv/wE)
L(S,ﬂ'o X TQ) = L(S,HQ X To)

(s, mo X 10, %E) = e(s, 1o x To, V&)

The defining Properties (vii)—(x) of Theorem 7.3 allow us to construct L-functions
and root numbers from «-factors in the tempered case. This is compatible with the
decomposition of my and 7y of Theorem 9.10. The rules v, L and € then satisfy all of
the local properties of Theorem 7.3. The remaining property, the global functional
equation, is part (ii) of Theorem 10.1, addressed in § 10.2.

10.2. Non-generic representations and local factors. Consider an irreducible
admissible representation 7 of Uy (F') that is not necessarily generic. We first look
at the case when = is tempered. If char(F) = 0, the tempered L-packet conjecture,
Conjecture 10.3 below, is known (see Theorem 2.5.1 of [45]). Furthermore, it is part
of the work of Ganapathy-Varma [15] on the local Langlands correspondence for the
split classical groups if char(F) = p. For the unitary groups Uy (F), char(F) = p,
it is thus reasonable to work under the assumption that Conjecture 10.3 holds.
Let @ be the set of all Langlands parameters

¢ W — LUy,

A parameter ¢ is tempered if its image on GLx (C) is bounded. For any tempered
L-parameter ¢, there is an L-packet II, which is a finite multi-set. We consider only
tempered L-packets in this section, which agree with tempered Arthur packets.

Conjecture 10.3. If an L-packet contains a tempered element, then all of its
elements are tempered. Every tempered L-packet Iy of Un(F) contains a repre-
sentation my which is generic.

In fact, we can be more precise. Let (B, ) be Whittaker datum with B = TU a
fixed Borel subgroup of G = Uy and 4 : U — C* non-degenerate. Every tempered
L-packet IT; of Uy (F) contains exactly one representation my which is generic with
respect to (B,%). In this article, we take the Borel subgroup of Uy consisting of
upper triangular matrices.
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Furthermore, L-functions are independent on how the non-degenerate character
varies. Let G = Uy and let G be as in Proposition 2.2, sharing the same derived
group as G. Then L-functions are independent up to Ad(g) by elements of CN}(F)
And there is a formula that keeps track of how ~-factors and root numbers behave
as the additive character v varies.

The importance of this conjecture is that it reduces the study of v-factors, L-
functions and e-factors to the case of generic representations. Hence, under the
assumption that Conjecture 10.3 is valid, we complete the existence part of Theo-
rem 7.3 for tempered representations with the following definition.

Definition 10.4. Let (E/F,m,7,¢) € Loc(p) be tempered. Let Il and Il4, be
tempered L-packets with m € Ilg, and 7 € Ilg,. Let mg € Iy, and 7o € Ily, be
generic. Then we have

Y(s,m X 7,9E) = (s, T X To, VE)
L(s,mx 7) := L(s,m X To)
e(s,m X 1,¢¥g) :=¢e(s,m X 70, VE).
To prove Theorem 7.3 in general, we can use Langlands classification to write
7 < Ind(o1 ® x1)

and

7 < Ind(o2 ® x2)
with o1, o9 tempered and x1, X2 € Xu (M) in the Langlands situation, as in [4, 57].
With tempered L-functions and corresponding local factors defined, then Properties
(vii)—(x) of Theorem 7.3 can now be used to define L-functions and related local
factors on Hoc(p, G1, G2) in general.

Remark 10.5. We refer to §§ 7 and 8 of [14] for a further discussion on L-
parameters and the local Langlands correspondence for the classical groups, includ-
ing the unitary groups. Written under certain working hypothesis, we address the
local Langlands correspondence in characteristic p. First for supercuspidal repre-
sentations, then for discrete series and tempered L-parameters, to end with general
admissible representations.

10.3. Proof of Theorem 10.1. The case of two general linear groups, i.e., for
(K/k,m,7,¢) € Lyob(p, Resk/iGLyr, Resg/pGLy), is already well understood.
Properties (i) and (ii) of Theorem 10.1 are attributed to Piatetski-Shapiro [49].
They can be proved in a self contained way via the Langlands-Shahidi method over
function fields, see [21, 41]. The Riemann Hypothesis in this case was proved by
Laurent Lafforgue in [31].

The case of (K/k,m,7,9) € Zaob(p, Resk/,GLm, Uy) is included in Theo-
rem 4.1 by taking M = GL,,, x Uy as a maximal Levi subgroup of G = Uyn_42.,
and forming the globally generic representation 7 ® 7 of M(Ay). Property (i) in
this situation is Proposition 5.1. Property (ii) is the functional equation of § 4.4.
To prove the Riemann Hypothesis, we let

BC(r) =T =11, 8- B,

be the base change lift of Theorem 9.11. Then
d
L(s,m x 7) = L(s,TT x 7) = [ [ L(s,T0; x 7),

i=1
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with each (K/k,I1;,7,9) € ZLgob(p, Resg/xGLim,, Resg/xGLy,). This reduces the
problem to the Rankin-Selberg case, established by L. Lafforgue.
Given (K/k, T, '(/J) S gglob(p, UM, UN), let

BC(m)=II=1;8---8I; and BC(r)=T=T:8---8T.
be the base change maps of Theorem 9.11. Then
L(s,mx 1) = L(s,TI x T) = [ L(s,TI; x Ty).

4,
For each (K/k,11;,Tj,v) € ZLgob(p, Resg/xGLm,, Resg ) GLy,), 1 < i < d, 1 <
j < e, we have rationality, the functional equation

L(s,TL; x Tj) = e(s,T; x T;)L(1 — s,10; x T}),

and the Riemann Hypothesis. Hence the L-function L(s,7 x 7) also satisfies Prop-
erties (i)—(iii) of Theorem 10.1. O

10.4. The Ramanujan Conjecture. Base Change over function fields also allows
us to transport the Ramanujan conjecture from the unitary groups to GLy. The
Ramanujan conjecture for cuspidal representations of general linear groups, being
a theorem of L. Lafforgue [31].

Theorem 10.6. Let 1 = ®'m, be a globally generic cuspidal automorphic repre-
sentation of Un(Ag). Then every m, is tempered. Whenever m, is unramified, its
Satake parameters satisfy

lajol,, =1, 1<j<n.

Proof. Fix a place v of k, which remains inert in K. We can write 7, as the generic
constituent of

Ind (T{’v Q- Tcll,v ® To)v) ,

as in (9.9), with each Ti’ﬂ) quasi-tempered and 7y, tempered. Furthermore, we can
write 7/, = 7 1"
tq,v-

Now, let II = BC(w) be the base change lift of Theorem 9.11. From Theo-
rem 9.11, I, is the local Langlands functorial lift of m,. By Theorem 9.10, II, is

the generic constituent of

#v with 7; , tempered and Langlands parameters 0 <t;, <--- <

(101) Ind (T{,v Q@ T(Ii,v ® TO,U ® 7~—rli?v K- %{?v) ’

with Tp, the Langlands functorial lift of the tempered representation 7y ,. The
representation Tj , is also tempered by Lemma 9.4.
On the other hand, the base change lift can be expressed as an isobaric sum

M=1IL 8. B,

with each II; a cuspidal unitary automorphic representation of GL,,, (Ag). Hence,
II, is obtained from

(10.2) Ind(Il; , @ - - - @ e ).
Then, thanks to Théoreme VI.10 of [31], each II; , is tempered.
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We then look at a fixed 7}, from (10.1), where we now have

L(S,TI'U X %j,v) = L(S,H,U X 7-j,’u)
d
= L(S, T0,v X 7~'j71,) H L(S —+ ti,va Tiv X 7~'j7U)L(S — ti,v; Tiv X %j,v)-
i=1
The L-function L(s — t;,,Tj» X Tj,») appearing on the right hand side has a pole
at s =t;,. However, from (10.2) we have

€
L(s, Ty x 70) = [ [ L(s. i x 75.0).
i=1
Notice that each representation involved in the product on the right hand side is
tempered. Then each L(s,II;, X 7;,) is holomorphic for $(s) > 0. Hence, so is
L(s,II, x 7j,). This causes a contradiction unless t;, = 0.
If v is split, we have that BC(w,) = m, ® 7, from § 8.4. For the places w; and
wg of K lying above v, we have that the representation of GLy (k)

Ty = IHd(HLwl [N He,wl)
is tempered. Hence, so is
o = Ind(I} 1, @ -+ - @ T 4y, ).

Now, if v is inert and m, is unramified, we have from § 8.3 that the unramified
Base Change BC(m,) = II,, corresponds to a semisimple conjugacy class given by

diag(a,py - -+ Qs Liag L, ,041__})) if N=2n+1

n,v’

&, (Frob,) = . — — .
(Frob, ) { diag(ar,v, -+ -, Qnyws Oy -5 07 L) if N=2n

Each «;,, or ajji is a Satake parameter for one of the representations II; ,,, which
are unramified. Since we are in the case of GL,, (K, ), we conclude that

|0‘j,v|kv =1

APPENDIX A. ON FUNCTORIALITY FOR THE CLASSICAL GROUPS

The main purpose of this appendix is to remove the previously present assump-
tion made in [39, 40] that char(k) # 2. In A.1 we restrict ourselves to the split
case.

A.1. Langlands functoriality. Let us summarize the results of [39] on the glob-

ally generic functorial lift for the classical groups. Let G,, be a split classical group

of rank n defined over a global function field k. The functorial lift of [39] takes

globally generic cuspidal automorphic representations 7 of G, (Ax) to automorphic

representations of Hy (Ay), where Hy is chosen by the following table.
Gn LGn — LHN HN

SOQ7L+1 San(C) X Wk — GLQn(C) X Wk GLQn
San SOQn+1((C) X Wk — GL2n+1(C) X Wk GL2n+1
SOQn SOQn((C) X Wi — GLQn(C) X Wy GLQn

Table 1
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Theorem A.l. Let G, be a split classical group. Let m be a globally generic
cuspidal representation of G, (Ag); n > 2 if G, = SOs2,. Then, © has a functorial
lift to an automorphic representation I1 of Hy (Ay). It has trivial central character
and can be expressed as an isobaric sum

M=1, 8. B,

where each I1; is a unitary self-dual cuspidal automorphic representation of GLy, (A)
such that 11; 2 11; for i # j. Furthermore, 11, is the local Langlands functorial lift

of m, at every place v of k. That is, for every (ky, Ty, Tv, ¥y) € Loc(p, Gn, GLiy)

there is equality of local factors

7(57Hv X Tvv"/)v) = 7(577Tv X Tv;wv)
L(s, 11, x 7,) = L(8, 7y X Ty)

E(Sanv X Tm%) = 6(577(1) X Tv;wv)'

Basically, Theorem A.l is proved in a characteristic free way for any global
function field in § A.3. For this, we build upon the results on the properties of
Langlands-Shahidi L-functions of § 5. In Theorem A.2, the Ramanujan Conjecture
and the Riemann Hypothesis are addressed.

Theorem A.2. Let G, be a split classical group defined over a function field k.

(i) (Ramanujan Conjecture). If 7 = ®'m, is a globally generic cuspidal auto-
morphic representation of G, (Ay), then each local component m, is tem-
pered.

Let (k,m,7,%) € Zaob(p, Gn, Gn), with G, either GLy, or a split classical group
of rank m. Then
(ii) (Rationality). L(s,m X T) converges absolutely on a right half plane and has
a meromorphic continuation to a rational function on q—*.
(iii) (Functional Equation). L(s,m x 7) = &(s,m X 7)L(1 — 8,7 X T).
(iv) (Riemann Hypothesis). The zeros of L(s,m X T) are contained in the line

R(s) =1/2.

The proof of the Ramanujan conjecture is essentially that of [39]. And the proofs
of Properties (ii)—(iv) are those appearing in [40]. However, they are completed with
the results of this article.

A.2. Rankin-Selberg L-functions for the classical groups. Let us adapt the
notation to include the split classical groups. Let Zgon(p, Gp, Res GL,,) be the
class consisting of quintuples (K/k, 7, 7,1,5): k a global function field of charac-
teristic p; K = k if G,, is split and K/k a separable quadratic extension if G,
is a quasi-split unitary group; @ = ®’m, a globally generic cuspidal automorphic
representation of G, (Ag); 7 = ®'7, a cuspidal (unitary) automorphic representa-
tion of Res GL,,(Ar) = GL,,(Ak); ¥ : k\Ar — C* a global additive character;
and S a finite set of places of k such that 7, and v, are unramified for v ¢ S. In
the case of a separable quadratic extension, we can think of the additive character
Vi K\Ag — C* obtained via the trace.

Theorem A.3. Let (K/k,m,7,9,5) € Lyob(p, Gn,ResGLy,). Then L(s,m x T)
is holomorphic for R(s) > 1 and has at most a simple pole at s = 1.
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Proof. The classification of generic unitary representations of G, (k,) [35] gives that
every T, is a constituent of

(A1) Ind(61,,0™ ® -+ ® 84,07 @ 6] ™ @ -+ ® O, v @ o).

Here, the representations d;, and (5;-7,1) are unitary discrete series, g ,, is tempered,
and the Langlands parameters are of the form 1 > 81 > -+ 84> 1/2> a1 > -+ >
ae > 0.

Now, thanks to the work of L. Lafforgue [31], each local component 7, of the
cuspidal unitary 7 arises from an induced representation of the form

Ind(71,, ® - ® Tf0),

with each 7, tempered. The L-functions L(s,7,r) for r = Sym?, A2, rq 0orry ®
Nk /x satisfy the following relationships
L(s,7 x 7) = L(s,7,Sym?)L(s, T, A%)
L<377— X 7—0) = L<877—7 r.A)L(S?Ta A & nK/k)

Also, because we are in the cases arising from GL,,, we can apply Proposition 5.12.
Each L-function L(s,7,r) appearing on the right hand sides of the previous two
equations is then holomorphic for R(s) > 1. The Rankin-Selberg product L-
functions on the left hand sides of the previous two equations are non vanishing for

R(s) > 1 [23]. Hence, each L(s,7,7) in turn must be non vanishing for f(s) > 1.
Then, the multiplicativity property of Langlands-Shahidi L-functions gives

d e f
L(s,my X 7y) = L(8, Tp,0 X Ty) H H HL(S + B3 io X Tiw)L(s + v, 05, X T10)

i=1j=11=1
d e f

X H H HL(S — Bi, 6i0 X Tiw)L(s — ay, 5;-71, X Tp)-
i=1j=11=1

From [17], each of the L-functions appearing in the right hand side is holomorphic
for R(s) large enough. This carries through to the left hand side and we can conclude
that L(s,m, x 7,) is holomorphic for R(s) > p1. In particular, for £(s) > 1.

Now, we globally let ¢ = 7®7, so that (K/k, 0,1, 5) € ZLyion(p, M, G). Where G
is a classical group of rank [ = m—+n of the same type as G,, and M = Res GL,, xG,,
is a maximal Levi subgroup. From [44, 46], if the global intertwining operator
M(s, @, g,P) has a pole at sg, then a subquotient of I(sp,0) would belong to the
residual spectrum and we would have that almost every I(sg,0,) is unitary.

However, to obtain a contradiction, we claim for $(s) > 1 that the representation
I(s,0,) cannot be unitary for at least one v ¢ S (we can actually show this for all
v ¢ S). For this, we begin by fixing a place v ¢ S, which we assume remains inert
if we are in the case of a non-split quasi-split classical group. In these cases we
now apply equation (A.1) for the group G;. If I(sg,0,) were unitary then, up to
rearrangement if necessary, it would be of the form
(A.2)

Ind(Xl,UVSO - - .@meyso ®,u1,vl/ﬁl Q- - '®/Ld,u’/ﬁd ®:u/1,vyal Q- '®,ule,vl/ac ®U0,v)a
where we now have unramified unitary characters pg o, i, and “;',v; the character

Ho,v 1s taken to be trivial unless we are in the odd unitary group case. The Langlands
parameters are of the form 1 > 8y > -84 > 1/2 > a1 > -+ > a, > 0. The
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classification tells us that this cannot be the case if $(sg) > 1. Hence, the global
intertwining operator M(s, @, g, P) must be holomorphic for f(s) > 1.
The product

my

Ls(i57 a, Ti)

bl L5(1 +is,0,7;)

is then holomorphic on R(s) > 1. For the classical groups we precisely have that
m, = 2 and

(A.3) HLS(S,U, i) = L%(s,0,71)L% (25,7, 73),
i=1

where 71 = p,, ® p, and L (s, 0,79) = L3 (s, T,73) has ry either an exterior square,
symmetric square or Asai L-function. The induction step is given by the Siegel
Levi, and we showed that in these cases we have holomorphy and nonvanishing
for R(s) > 1. We can then cancel the second L-functions and conclude that the
quotient

L3(s,mx T)

(A.4) LS5(1+s,mxT)

is holomorphic for R(s) > 1.

Finally, the poles of Eisenstein series are contained in the constant terms, hence
Corollary 3.4 gives that L®(1+s,7 x 7)~! is holomorphic for #(s) > 1. In this way,
we can cancel the now non-zero denominator in equation (A.4) to conclude that
L3(s,m x 7) is holomorphic on R(s) > 1. We have also noted that L(s, 7, x 7,)
is holomorphic for (s) > 1 at every place v € S. We then obtain the required
holomorphy property for the completed L-function L(s, 7 x 7).

Now, we have that the poles of the global intertwining operator M (s, o, W) are
all simple [44]. Then, by equation (5.1), the quotient

L5(s,m x 7)L5(2s,7,73)
L5(1+ 8,7 x 7)LS(1 + 25, 7,72)

has at most a simple pole at s = 1. From Corollary A.4, L°(2, 7,72) and L° (3, 7, 15)
are different from zero. Thus, L(s, 7 x 7) has at most a simple pole at s =1. O

Corollary A.4. Let (K/k,7,9,5) € ZLgon(p, M, G), with M the Siegel Levi sub-
group of a quasi-split classical group. Then, for each i, 1 < i < m,., the automorphic
L-function L(s,,r;) is holomorphic and non vanishing for R(s) > 1.

A.3. Proof of Theorem A.1. We keep the notation of § A.2, where G, is either
a split classical group or a quasi-split unitary group; and, similarly for K/k and
ResGL,,. If G,, = U,, we let Hy = Res GL, with N = n.

Let 7 be a cuspidal globally generic automorphic representation of G, (Ay). Let
IT" be the automorphic representation of GLx (Ag) obtained from 7 via the weak
functorial lift of Theorem 8.5 of [39] or the weak base change lift of Theorem 8.6 for
the unitary groups. This lift has the property that IT/ is the unramified lift of m,
for all v ¢ S of § 8.2.1 of [loc. cit.] or §§ 8.3 & 8.4 for unitary groups. In the latter
case, by Proposition 9.5, we know that II = BC(x) has unitary central character

wi = wyr obh.
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From the Jacquet-Shalika classification [23], the functorial lift II decomposes as
an isobaric sum

=18 -8I,.

More precisely, each cuspidal automorphic representation II; of GLy, (Ak) can be
written in the form
Hi = Eil/ti,

with Z; a unitary cuspidal automorphic representation of GLy, (Ax ). Reordering if
necessary, we can assume t; < --- < tg. We wish to prove that each t; = 0. Notice
that if ¢; < O for some 4, then there is a j > 7 such that ¢; > 0, due to the fact
that II is unitary. Also, we cannot have ¢t; > 0. To obtain a contradiction, suppose
there exists a ¢;, which is the smallest with the property ¢;, < 0.

Consider (K/k,m,Z;,,¥) € Zgob(p, Gn,Res GLy; ). Theorem A.3 above tells
us that L(s,m x Zj,) is holomorphic for R(s) > 1. However, if we consider
(KL Ejy, ) € Zgtob (P, Res GLv, Res GLy, ), we have that

d
L(S,H X éjo) = HL(S + ti,Ei X éjo)'
i=1
And, by Theorem 3.6 of [23] (part II) the L-function
L(stjo x éjo)
has a simple pole at s = 1. This carries over to a pole at s =1 —t;, > 1 for
L(s,m x Z5,) = L(s,TI x Z;,).

This causes a contradiction unless there exists no such t;,. Hence, all ¢; must be
zero. This proves that each II; is a unitary cuspidal automorphic representation.
‘We now have that each II; = =; and
d
L(s,TT x Iyy) = [ [ L(s, 10 x 1),
i=1

where [y is a fixed ranging from 1 < [y < d. On the right hand side we have
a pole at s = 1 every time that II;, = II;, by Proposition 3.6 of [23] part IL
However, on the left hand side, from Proposition A.3 of the Appendix, we have
that L(s,II x ﬁlo) = L(s, 7% ﬁlo) has only a simple pole at s = 1. Hence, II;, = II;
can only occur if [y = i.

It remains to show that, for each j, we have 1I; = f[? For this, let T; = II; ® .
From Corollary 5.6, L(s, 7 x ﬁj) is a Laurent polynomial if wo(T;) 2 T;. In this
case, would have no poles. However

d
L(s,m x T0;) = [ [ L(s, T x T1;)

has only a simple pole at s = 1, reasoning as before. Thus, it must be the case that
wo(T;) = T;, giving the desired II; = 1:[?.

In the case of unitary groups, the compatibility of global to local base change is
addressed by Proposition 9.5 (i). We have that

I1, = BC(my,)
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is unique and must be given by Theorem 9.10. Notice that II, = 1:[2 for every
v ¢ S. By multiplicity one for GLy, we globally have IT & I°.

Let now G,, be a split classical group, where § = 1. We argue as in § 9 in order
to adapt the results of [39] and complete the proof of the Theorem. In particular,
we proceed as in the proof of Theorem 9.5 to show that II, is the unique local
Langlands functorial lift of m, at every place v of k. A crucial step is the stability
property of y-factors under twists by highly ramified characters, Theorem 6.10 of
[39], which is available in characteristic two. Finally, Lemmas 9.2 and 9.3 indicate
how to obtain the desired equality of local factors. O
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