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Abstract. The Koch snowflake KS is a nowhere differentiable curve. The
billiard table Ω(KS) with boundary KS is, a priori, not well defined. That is,
one cannot a priori determine the minimal path traversed by a billiard ball
subject to a collision in the boundary of the table. It is this problem which
makes Ω(KS) such an interesting, yet difficult, table to analyze.

In this paper, we approach this problem by approximating (from the inside)

Ω(KS) by well-defined (prefractal) rational polygonal billiard tables Ω(KSn).
We first show that the flat surface S(KSn) determined from the rational bil-
liard Ω(KSn) is a branched cover of the singly punctured hexagonal torus.
Such a result, when combined with the results of [Gut2], allows us to define a
sequence of compatible orbits of prefractal billiards Ω(KSn). Using a particu-
lar addressing system, we define a hybrid orbit of a prefractal billiard Ω(KSn)
and show that every dense orbit of a prefractal billiard Ω(KSn) is a dense hy-
brid orbit of Ω(KSn). This result is key in obtaining a topological dichotomy
for a sequence of compatible orbits. Furthermore, we determine a sufficient
condition for a sequence of compatible orbits to be a sequence of compatible
periodic hybrid orbits.

We then examine the limiting behavior of a sequence of compatible periodic
hybrid orbits. We show that the trivial limit of particular (eventually) con-
stant sequences of compatible hybrid orbits constitutes an orbit of Ω(KS). In
addition, we show that the union of two suitably chosen nontrivial polygonal
paths connects two elusive limit points of the Koch snowflake. We conjecture
that such a path is indeed the subset of what will eventually be an orbit of the
Koch snowflake fractal billiard, once an appropriate ‘fractal law of reflection’
is determined.

Finally, we close with a discussion of several open problems and potential
directions for further research. We discuss how it may be possible for our
results to be generalized to other fractal billiard tables and how understand-
ing the structures of the Veech groups of the prefractal billiards may help in
determining ‘fractal flat surfaces’ naturally associated with the billiard flows.

1. Introduction

The Koch snowflake curve KS, the construction of which is depicted in Figure
1, is everywhere nondifferentiable. The absence of a well-defined tangent at any
point of KS is what, a priori, prevents one from determining a billiard flow on the
billiard Ω(KS) with boundary KS. Indeed, since every point of KS is apparently
a singularity of the billiard flow, one cannot a priori find a minimal path traversed
by a billiard ball subject to a collision in the boundary. Our search for a solution to
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Figure 1. The Koch snowflake curve KS and its prefractal ap-
proximations KSn, for n = 0, 1, 2, · · · . As is well known, KS is a
fractal, nowhere differentiable and closed curve, of infinite length
and enclosing a finite area. Furthermore, it is self-similar; more
precisely, it is the union of three abutting self-similar sets, each an
isometric copy of the classic Koch curve. (See, e.g., [Fa].)

this problem will be, in part, motivated by the discussion on experimental results
given in our earlier paper [LapNie1].

For each n = 0, 1, 2, ..., the prefractal KSn is the nth (inner) polygonal approx-
imation to KS, and defines a rational polygonal billiard table Ω(KSn); that is,
a polygon whose interior angles are all rational multiples of π. (See Figure 1.)
Since the theory of rational polygonal billiards is very well developed (see, e.g.,
[GaStVo, Gut1, GutJu1, GutJu2, HuSc, HaKa, KaZe, Mas, MasTa, Ta1, Ta2, Ve1,
Ve2, Vo, Zo]), it is natural to want to define the dynamics on the fractal “billiard
table” Ω(KS) in terms of the dynamics on its prefractal approximations Ω(KSn).
The focus of this paper is then to build a foundation on which we can begin to
investigate the nature of orbits of the Koch snowflake billiard Ω(KS). We next
describe the contents of this paper and outline our main results.

In order for the results of §§3–6 to be accessible to a broader audience, we pro-
vide in §2 a brief treatment of the necessary topics from the theory of mathematical
billiards and particular examples from fractal geometry. In connection with math-
ematical billiards, we also give a brief description of how a flat surface can be used
to rigorously relate the billiard flow on the billiard Ω(B), where B is a rational
polygon, to the geodesic flow on the corresponding flat surface S(B).

The main results of the paper are presented in §§3–5. §3 contains results on the
prefractal flat surface S(KSn), for any arbitrary n ≥ 0, and consequences of the
fact (also established in §3, see Theorem 13) that such a surface is a branched cover
of the hexagonal torus S(KS0). Most importantly, we show that the billiard flow
on the rational polygonal billiard Ω(KSn) is dynamically equivalent to the geodesic
flow on the associated prefractal flat surface S(KSn). Such a result allows us to
deduce that the set of directions for which a billiard orbit is closed (resp., dense)
in Ω(KS0) is exactly the set of directions for which an orbit is closed (resp., dense)
in Ω(KSn), for any n ≥ 0. (See Theorem 15 and Corollary 16.)

This fact is used extensively in §4 when describing orbits of Ω(KSn), n ≥ 0, and
constructing what we call a sequence of compatible orbits. Such a sequence consists
of orbits of each of the billiards Ω(KSn), for n = 0, 1, 2, ..., with initial conditions
that are themselves compatible in a suitable manner; see Definitions 20, 22 and
23. Using an addressing system developed in §2.4, we define what we are calling
hybrid orbits of Ω(KSn); see Definition 17. In a very concrete sense, hybrid orbits
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are orbits that survive the construction of Ω(KSn+1) from Ω(KSn). We show that
dense orbits of Ω(KSn) are actually dense hybrid orbits and we provide sufficient
conditions under which a sequence of compatible orbits is a sequence of compatible
periodic hybrid orbits. (See Proposition 19, along with Theorems 26 and 27.) In
addition to this, we establish a topological dichotomy for sequences of compatible
orbits: a sequence of compatible orbits is either entirely comprised of closed orbits
or entirely comprised of dense hybrid orbits. (See Theorem 25.)

We would like to suggest that such sequences of compatible orbits should have
suitable limits that constitute orbits of the Koch snowflake billiard. As we will see,
there are hybrid orbits of Ω(KSn) that remain fixed in every subsequent approxi-
mation Ω(KSN ), n ≥ N , for some integer N ≥ 0; see Theorem 30 and Example 31.
Such hybrid orbits have basepoints corresponding to so-called Cantor-points (i.e.,
points of KS which belong to some finite approximation KSn but are not vertices of
KSn; see §2.5), and they certainly constitute periodic orbits of the Koch snowflake
fractal billiard. In §5, a particular subset of basepoints can be derived from a cer-
tain sequence of compatible periodic hybrid orbits which is converging to a point of
the snowflake curve called an elusive limit point (i.e., a point of KS which does not
belong to any polygonal approximation KSn, for n ≥ 0; see §2.5). (An interesting
example of such a situation is provided by a sequence of compatible ‘hook orbits’,
discussed in Example 29; see also Example 28 further discussed in §5, as well as
Conjecture 32.) Such basepoints can then be connected to form what we call a
nontrivial polygonal path of Ω(KS). Furthermore, we consider the concatenation
of two suitably chosen nontrivial polygonal paths, thereby connecting two elusive
limit points of KS in a well-defined manner, as is done in §5.

In §6, since the field of “fractal billiards” is still in its infancy, we discuss directions
for future research and provide several open questions and conjectures regarding
the ‘fractal flat surface’ S(KS) and the generalization of our results to other fractal
tables. A number of these open questions are addressed in current works in progress
(i.e., [LapNie3, LapNie4]). For a more comprehensive, and somewhat different, list
of conjectures, we refer the interested reader to [LapNie2, §6].

2. Background and preliminaries

2.1. Mathematical Billiards. Under ideal conditions, we know that a point mass
making a perfectly elastic collision with a C1 surface (or curve) will reflect at an
angle which is equal to the angle of incidence, this being referred to as the law of
reflection.

Consider a compact region Ω(B) in the plane with connected boundary B. Then,
Ω(B) is called a planar billiard when B is smooth enough to allow the law of re-
flection to hold, off of a set of measure zero (where the measure is taken to be the
Hausdorff measure or the arc length measure). Though the law of reflection implic-
itly states that the angles of incidence and reflection be determined with respect to
the normal to the line tangent at the basepoint, we adhere to the equivalent con-
vention in the field of mathematical billiards that the vector describing the position
and velocity of the billiard ball (which amounts to the position and angle, since we
are assuming unit speed) be reflected in the tangent to the point of incidence. That
is, employing such a law in order to determine the path on which the billiard ball
departs after impact essentially amounts to identifying certain vectors.
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Figure 2. A billiard ball traverses the interior of a billiard and
collides with the boundary. The velocity vector is pointed outward
at the point of collision. The resulting direction of flow is found by
either reflecting the vector through the tangent or by reflecting the
incidence vector through the normal and reversing the direction of
the vector. We use the former method in this paper.

Then we can rigorously reformulate the law of reflection as follows: the vector
describing the direction of motion is the reflection—through the tangent at the point
of collision—of the translation of the vector previously describing the direction of
motion. One may express the law of reflection in terms of equivalence classes of
vectors by identifying these two vectors to form an equivalence class of vectors in
the unit tangent bundle corresponding to the billiard table Ω(B) (see Figure 2).
(See [Sm] for a detailed discussion of this equivalence relation on the unit tangent
bundle Ω(B)× S1.)

The billiard map fB is defined on the boundary B of the billiard table. Re-
ally, fB : (B × S1)/ ∼→ (B × S1)/ ∼, where the equivalence relation ∼ is as
discussed above. More precisely, if θ0 is an inward pointing vector at a basepoint
x0, then (x0, θ0) is the representative element of the equivalence class [(x0, θ0)] and
fk
B([x

0, θ0]) = [(xk, θk)], where fk
B := fB ◦ ... ◦ fB is the kth iterate of fB.

When B is a nontrivial, connected polygon in R
2, Ω(B) is called a polygonal

billiard. The collection of vertices of Ω(B) forms a set of zero measure (when we
take our measure to be the Hausdorff measure or simply, the arc-length measure
on B), since there are finitely many vertices. A rational billiard is defined below.

Definition 1 (Rational polygon and rational billiard). If B is a nontrivial con-
nected polygon such that for each interior angle θj of B there are relatively prime
integers pj ≥ 1 and qj ≥ 1 such that θj =

pj

qj
π, then we call B a rational polygon

and Ω(B) a rational billiard.

Remark 2. In the sequel, we will simply refer to an element [(xk, θk)] by (xk, θk),
since the vector corresponding to θk is inward pointing at the basepoint xk. So
as not to introduce unneccessary notation, when we discuss the billiard map fKSn

corresponding to the nth prefractal billiard Ω(KSn), we will simply write fKSn
as

fn. When discussing the discrete billiard flow on (Ω(KSn)× S1)/ ∼, the kth point
in an orbit (xk, θk) ∈ (Ω(KSn) × S1)/ ∼ will instead be denoted by (xkn

n , θkn
n ), so

as to be clear as to which space such a point belongs. Specifically, kn refers to the
number of iterates of the billiard map fn necessary to produce the pair (xkn

n , θkn
n ).

An initial condition of an orbit of Ω(KSn) will always be referred to as (x0n, θ
0
n).
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In the event that a basepoint xj of f j
B(x

0, θ0) is a corner of Ω(B) (that is, a
vertex of the polygonal boundary B), then the resulting closed orbit is said to be
singular. In addition, there exists a positive integer k such that the basepoint x−k

of f−k
B (x0, θ0) is a corner of Ω(B). (Here, f−k

B denotes the kth inverse iterate of
fB.) The path then traced out by the billiard ball connecting xj and x−k is called
a saddle connection.

Definition 3 (Footprint of an orbit). Let On(x
0
n, θ

0
n) be an orbit of Ω(KSn). Then

Fn(x
0
n, θ

0
n) := On(x

0
n, θ

0
n) ∩KSn(1)

is called the footprint of the orbit Ω(KSn).

2.2. Flat surfaces and properties of the flow. In this section, we deal only
with flat surfaces constructed from rational billiards.

Definition 4 (Flat structure and flat surface). Let M be a compact, connected,
orientable surface. A flat structure on M is an atlas ω, consisting of charts of the
form (Uα, ϕα)α∈A , where Uα is a domain (i.e., a connected open set) in M and ϕα

is a homeomorphism from Uα to a domain in R
2, such that the following conditions

hold:

(1) the collection {Uα}α∈A cover the whole surface M except for finitely many
points z1, z2, ..., zk, called singular points ;

(2) all coordinate changing functions are translations in R
2;

(3) the atlas ω is maximal with respect to properties (1) and (2);
(4) for each singular point zj, there is a positive integer mj , a punctured neigh-

borhood U̇j of zj not containing other singular points, and a map ψj from

this neighborhood to a punctured neighborhood V̇j of a point in R
2 that is

a shift in the local coordinates from ω, and is such that each point in V̇j
has exactly mj preimages under ψj .

We say that a connected, compact surface equipped with a flat structure is a flat
surface.

Remark 5. Note that in the literature on billiards and dynamical systems, the
terminology and definitions pertaining to this topic are not completely uniform;
see, for example, [GaStVo, Gut1, GutJu1, GutJu2, HaKa, HuSc, Mas, MasTa, Ve1,
Ve2, Vo, Zo]. We have adopted the above definition for clarity and the reader’s
convenience.

We now discuss how to construct a flat surface from a rational billiard. Consider
a rational polygon billiard Ω(P ) with k sides and interior angles

pj

qj
π at each vertex

zj, for 1 ≤ j ≤ k, where the positive integers pj and qj are relatively prime. The
linear portions of the planar symmetries generated by reflection in the sides of the
polygonal billiard Ω(P ) generate the dihedral group DN , where N := lcm{qj}kj=1.
Next, we consider Ω(P )×DN (equipped with the product topology). We want to
glue ‘sides’ of Ω(P ) ×DN together and construct a natural atlas on the resulting
surface M so that M becomes a flat surface.

As a result of the identification, the points of M that correspond to the vertices
of Ω(P ) constitute (removable or nonremovable) conic singularities of this surface.
Heuristically, Ω(P ) × DN can be represented as {rjΩ(P )}2Nj=1, in which case it is
easy to see what sides are made equivalent under the action of ∼. That is, ∼
identifies opposite and parallel sides in a manner which preserves the orientation.
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Figure 3. Unfolding an orbit of the equilateral triangle billiard Ω(KS0).

2.3. Unfolding a billiard orbit. Consider a rational polygonal billiard Ω(B)
and an orbit O(x0, θ0). Reflecting the billiard Ω(B) and the orbit in a side of the
billiard containing a basepoint of the orbit (or an element of the footprint of the
orbit) partially unfolds the orbit O(x0, θ0); see Figure 3. Continuing this process
until the orbit is a straight line produces as many copies of the billiard table as
there are elements of the footprint. That is, if the period of an orbit O(x0, θ0)
is some positive integer p, then the number of copies of the billiard table in the
unfolding is also p. Therefore, we refer to such a straight line as the unfolding of
the billiard orbit.

2.4. Symbolic representation of the ternary Cantor set. Every point of the
ternary Cantor set C (hereafter referred to as the Cantor set) has a ternary rep-
resentation given in terms of the characters l, c and r (standing for left, center
and right, respectively). For example, in terms of our alphabet, we say 1/3 has a

ternary representation given by lr and 1/4 has a ternary representation given by lr,
where the over-bar indicates that the corresponding string of symbols is repeated
ad infinitum. We stress that a ternary representation will always consist of infin-
itely many characters, while a ternary expansion of an element of the unit interval
I can be finite, which is illustrated by the example of the rational value 1/3 = 0.1
in base-3. For the sake of simplicity, we take every element of C to have a ternary
representation that contains no c’s. (What we want to prevent is an element of C

having a representation determined by approaching it from the complement of C

in I = [0, 1]. In this way, every point of C has a unique ternary representation.)
In the sequel, the type of ternary representation will provide us with important

information. Particular qualities of the representation will, in part, dictate the type
of resulting orbit and the nature of the sequence of compatible orbits.

Notation 6. The type of ternary representation can be defined as follows. If x ∈ I,
then the first coordinate of [·, ·] describes the characters that occur infinitely often
and the second coordinate of [·, ·] describes the characters that occur finitely often.
If we want to discuss many different types of ternary representations, then we use
‘or.’ That is, the notation [·, ·]∨ [·, ·]∨ ...∨ [·, ·] is to be read as [·, ·] or [·, ·] or ... or
[·, ·]. If the collection of characters occurring finitely often is empty, then we denote
the corresponding type of ternary representation by [·, ∅].
Example 7. If an element x ∈ I = [0, 1] has a ternary representation consisting of
infinitely many c’s and l’s but finitely many r’s, then we write this type of ternary
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Figure 4. An illustration of Definition 8 in terms of KS0 = ∆
and KS1. Represented are the three cells C1,1, C1,2 and C1,3 of
Ω(KS1).

representation as [lc, r]. If we have a collection of points in I such that each point
has a ternary representation consisting of infinitely many c’s and l’s and finitely
many r’s or else infinitely many l’s and r’s and finitely many c’s, then we write the
corresponding types of ternary representations as [lc, r] ∨ [lr, c].

2.5. The Koch snowflake. The Koch snowflake KS is a compact, connected and
infinitely long curve in the plane with the property that at no point of the snowflake
KS can one form a well-defined tangent. This last property is what makes defining
a law of reflection on the Koch snowflake billiard boundary so difficult.

The Koch snowflake is constructed, as shown in Figure 1, by removing the open
middle third of each successive side of length 1/3n−1 and placing at each pair of
endpoints two uprights that would have formed the sides of an equilateral triangle
with side lengths measuring 1/3n.

Next, we define what a cell of the Koch snowflake billiard is.

Definition 8 (A cell Cn,ν of Ω(KSn)). Consider (the ‘set-theoretic difference’)
Ω(KSn)\Ω(KSn−1). Each resulting triangular region is then called a cell of Ω(KSn).
We denote a cell of Ω(KSn) by Cn,ν , where ν denotes the side of Ω(KSn−1) to which
the cell was glued; see Figure 4. Hence, there are 3 · 4n−1 cells Cn,ν of Ω(KSn) and
so 1 ≤ ν ≤ 3 · 4n−1.

In §4, we will be interested in the information provided by the ternary represen-
tation of an element x0n of a side sn,ν of Ω(KSn). We have already seen how to
represent elements of the unit interval I. An element of a side sn,ν of Ω(KSn) has
a ternary representation also given in terms of the characters l, c and r.

In the Koch snowflake KS, there are three types of points: corners, Cantor-
points and elusive limit points. A corner of the Koch snowflake KS is a point of
KS that is a corner of a finite approximation KSn, for some n ≥ 0. A Cantor-point
of KS is a point of a finite approximation KSn, for some n ≥ 0, such that the
ternary representation of this point (with respect to the side on which it lies) has
the form [lr, ∅] (that is, consists of infinitely many l’s and r’s and no c’s). Therefore,
a Cantor-point is a point of KS that is not a corner, but definitely a point of KS
that exists in some finite approximation. An elusive limit point of KS is a point of
KS that never belongs to any finite approximation KSn. We will see that it is the
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Figure 5. The flat surfaces S(KSn), for n = 1, 2, 3. Note that the
proper identification is not shown in the figures above. Given the
arrangement of the six copies of KSn, one then identifies opposite
and parallel sides to make the proper identification that results in
a geodesic flow that is dynamically equivalent with the billiard flow
on the associated billiards Ω(KS1),Ω(KS2),Ω(KS3).

Cantor-points and elusive limit points that will be of the greatest interest in the
sequel.

3. The Koch snowflake prefractal flat surface S(KSn)

We denote by S(P ) the flat surface M constructed from a particular rational
billiard Ω(P ).

In particular, S(KSn) is the flat surface associated with the prefractal billiard
Ω(KSn). The flat surfaces S(KSn), n = 1, 2, 3, are given in Figure 5. For each
billiard Ω(KSn), the group of symmetries DN , where N = lcm{qj}3·4

n

j=1 (that is, the

second component in the product Ω(KSn)×DN ) is the dihedral groupD3, and thus
is independent of n. From this, we deduce that for any n ≥ 0, there are six copies
of the prefractal billiard table Ω(KSn) (with sides appropriately identified) used in
the construction of the associated flat surface S(KSn) := (Ω(KSn) ×D3)/ ∼; see
Figure 5. We refer the reader back to §2.2 for a general discussion of flat surfaces
and, e.g., to [Ma] for the topological notions (such as covering map, branched cover)
used in this section (esp., in Theorem 13 and its proof).

Remark 9. For the remainder of the paper, when we say that a regular polygon
is of scale n, we mean that the side length of the regular polygon is 1/3n. For
example, an equilateral triangle of scale n is one for which the side length is 1/3n.

The flat surface S(KSn) is a surface with both types of conic singularities: re-
movable and nonremovable. In constructing the flat surface S(KSn) via Ω(KSn),
we see that the nonremovable conic singularities correspond to corners with obtuse
angles of Ω(KSn) and removable singularities correspond to corners with acute an-
gles (both measured relative to the interior of Ω(KSn)). Since for every n ≥ 1, the
measure of every obtuse corner is the same (specifically, 4π/3 radians), it follows
that the conic angle of a nonremovable singularity is 8π. For the same reason,
every corner with an acute angle (with every acute angle measuring π/6 radians)
gives rise to a removable singularity with conic angle 2π; this is, in fact, a defining
characteristic of a removable singularity.
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Figure 6. The hexagonal torus S(KS0). As usual, similarly
marked sides are identified. It should be noted that S(KS0) is
topologically (but not metrically) equivalent to the flat square
torus.

Proposition 10. For any n ≥ 0, the genus gn of the surface S(KSn) is given by

gn = 3 · 4n − 2.(2)

Proof. Let Ω(P ) be a rational billiard and let {Vj}νj=1 denote the ν vertices of
the polygon P . For each j = 1, ..., ν, let the measure of the angle formed by the
vertex Vj be (pj/qj)π, and let N := lcm{qj}νj=1. Then, if g is the genus of the
corresponding flat surface S(P ), the Euler characteristic χ = 2 − 2g of that same
surface is given by

χ = N

ν
∑

j=1

1

qj
−Nν + 2N ;(3)

see [HuSc] for a detailed description of how to calculate the genus of a surface that
arises from a rational billiard table.

The prefractal billiard Ω(KSn) has 3 · 4n many sides and as many vertices.
Moroever, Nn = lcm{qj}3·4

n

j=1 = 3, for every n ≥ 0. The Euler characteristic χn =

2− 2gn of S(KSn) is given by Equation (3). Therefore, solving for gn, we see that
the genus of the prefractal flat surface S(KSn) is given by Equation (2).

3.1. S(KSn) is a branched cover of S(KS0). Taking as inspiration the results
and methods of Gutkin and Judge in [GutJu1] and [GutJu2], we now show that
for each n ≥ 1, the flat surface S(KSn) is a branched cover of the hexagonal torus
S(KS0); see Figure 6. To such end, we establish several results culminating in this
fact.

Lemma 11. Let n ∈ N. Then, for any positive integer k ≥ n, S(KSn) can be tiled
by equilateral triangles of scale k.

Proof. This follows from the construction of the Koch snowflake. We note that
each triangle of scale n, denoted ∆n, can be tiled by 9k−n triangles of scale k ≥ n;
see Figure 7 for the case when k = n+1. Note that S(KSn) = (Ω(KSn)×D3)/ ∼
and that Ω(KSn) is constructed from Ω(KSn−1) by gluing a copy of ∆n to every
side sn−1,ν at the middle third of sn−1,ν . Since every triangle ∆n−1 tiling Ω(KSn−1)
can also be tiled by ∆n, it follows that Ω(KSn) is tiled by ∆n.. So, S(KSn) can be
tiled by equilateral triangles of scale k, for every k ≥ n.
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Figure 7. We see that ∆n is tiled by nine copies of ∆n+1, six of
which form a hexagonal tile Hn+1 in the center.

In the sequel, given a bounded set A ⊆ R
2, we will write that “A can be tiled by

Hn” in order to indicate that A can be tiled by finitely many copies of hexagonal
tiles Hn of scale n.

Proposition 12. Let n ∈ N. Then the flat surface S(KSn) can be tiled by Hk, for
all k ≥ n+1, in such a way that each conic singularity is at the center of some tile
Hk.

Proof. We see in Figure 8 that S(KS1) can be tiled by H2 such that each conic
singularity is at the center of some tile H2. Each H2 is tiled by six equilateral
triangles ∆2. As was seen in the proof of Lemma 11, each ∆2 is tiled by nine ∆3

such that six of these triangles form a hexagonal tile H3; see Figure 7. At the center
of H2 is a copy of H3. Hence, each conic singularity remains at the center of some
tile H3; see Figure 9. Continuing in this fashion, we see that for each k ≥ 2, Hk

tiles S(KS2) in such a way that each conic singularity is at the center of some Hk.
Suppose there exists N ∈ N such that, for every n ≤ N , S(KSn) can be tiled

by Hk, for every k ≥ n + 1. In particular, S(KSN ) can be tiled by Hk, for every
k ≥ N + 1. We then have that, for every k ≥ N + 2, S(KSN ) can be tiled by Hk.
By Lemma 11, ∆N+1 tiles S(KSN+1). Each triangular region ∆N+1 in S(KSN+1)
but not in S(KSN ) is tiled by nine triangles ∆N+2 in such a way that six ∆N+2

comprise a tile HN+2. Continuing in this fashion, we see that each ∆k contributes
to a hexagonal tile Hk (as part of the embedded tiling) in such a way that each
conic singularity is at the center of some hexagonal tile Hk.

Theorem 13. For every n ∈ N, the prefractal Koch snowflake flat surface S(KSn)
is a branched cover of the (singly punctured) prefractal Koch snowflake flat surface
S(KS0), which is the hexagonal torus. Such a covering map pn : S(KSn) → S(KS0)
is given by suitably defined translations on S(KSn).

Proof. The center point x0 of the flat hexagonal torus S(KS0) is a branched
locus of the cover S(KSn) when S(KSn) is tiled by Hn+1 as described in Propo-
sition 12. This follows from the fact that every nonremovable conic singularity of
S(KSn) is at the center of four hexagonal tiles. Specifically, this means that this
center point x0 is not evenly covered by the covering map pn : S(KSn) → S(KS0)
determined by suitable translations of hexagonal tiles Hn+1 on S(KSn). Any other
point in S(KS0) is evenly covered since every element in the fiber p−1

n (z), z 6= x0,
has a conic angle of 2π.
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Figure 8. Tiling the flat surface S(KS1) by hexagonal tiles H2.
We note that the conic singularities (both removable and nonre-
movable) are at the center of hexagonal tiles.

Figure 9. Six triangles ∆n tile Hn. The hexagonal tile Hn is tiled
by seven tiles Hn+1 with six rhombic tiles.

3.2. Minimality of the flow on Ω(KSn) and its consequences. When dis-
cussing billiard orbits of Ω(KSn), we will find it more convenient to measure angles
of incidence and reflection relative to a fixed coordinate system. As such, we sup-
pose that the left corner of the equilateral triangle with side length one constitutes
the origin. However, on occasion, we will find it useful to refer to the angle of
reflection measured relative to a particular side. So that no confusion arises, when
we are discussing such a situation, if ̟ is an angle measured relative to a side
of Ω(KSn), then θ(̟) is the same angle measured relative to the fixed coordinate
system.

If {u1, u2} is a basis for R
2, then a vector z ∈ R

2 is called rational with respect
to {u1, u2} if z = mu1+nu2, for some m,n ∈ Z. Combining the results of [GutJu1]
with Theorem 3 of [Gut2], we can state the following result, which we do not claim
as a new theorem, but which we rephrase in a way that is suitable for our purposes.

Theorem 14 ([Gut2]). Let S(P ) be a flat surface determined from a rational
polygonal billiard Ω(P ). If S(P ) is a branched cover of a singly punctured torus,
then a geodesic on S(P ) is periodic or forms a saddle connection if and only if the
geodesic has an initial direction that is rational. In addition, a geodesic on S(P ) is
dense if and only if the geodesic has an initial direction that is irrational.
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Figure 10. The lattice points constitute linear integer combina-
tions of the basis vectors {u1, u2} = {(1, 0), (1/2,

√
3/2)}. Here

we show an unfolded orbit to emphasize the utility of such a tool.
The unfolded orbit has an initial direction that is rational, meaning
such an orbit will be closed in the equilateral triangle.

By what we saw in §§2.2 and 2.3, the geodesic flow on S(KSn) is dynamically
equivalent to the billiard flow on Ω(KSn). In §3.1, we proved that S(KSn) is a
branched cover of the singly punctured torus S(KS0). Applying Theorem 14 to the
Koch snowflake prefractal flat surfaces, we then obtain the following result.

Theorem 15. Let n ≥ 0. A direction θ is a rational direction (with respect to the

basis {u1, u2} = {(1, 0), (1/2,
√
3/2)}) if and only if a geodesic in the direction of

θ on S(KSn) is periodic or forms a saddle connection. Furthermore, a direction θ
is an irrational direction (with respect to {u1, u2}) if and only if a geodesic in the
direction of θ on S(KSn) is dense.

Because the geodesic flow on the prefractal flat surface S(KSn) is dynamically
equivalent to the billiard flow on the corresponding billiard table Ω(KSn), we can
state Theorem 15 in terms of the billiard flow on the prefractal billiard Ω(KSn).

Corollary 16. Let n ≥ 0. A direction θ is a rational direction (with respect

to {u1, u2} = {(1, 0), (1/2,
√
3/2)}) if and only if an orbit in the direction of θ of

Ω(KSn) is closed. Furthermore, a direction θ is an irrational direction (with respect
to {u1, u2}) if and only if an orbit with the initial direction of θ in Ω(KSn) is dense.

4. Hybrid orbits of the Koch snowflake prefractal billiard Ω(KSn)

We want to construct sequences of orbits in such a way that one orbit is suitably
related to another. More precisely, we want to develop a notion of ‘compatibility’
that relates an orbit of Ω(KSn) to an orbit of Ω(KSn+1), for each n ≥ 0. Let us
first consider an orbit of Ω(KS0). Such an orbit has basepoints that potentially
lie on segments that are removed as part of the construction of finer prefractal
approximations, on the Cantor set that remains as part of the construction process
or both. Obviously, an orbit of Ω(KS0) may not be an orbit of Ω(KS1). However,
depending on the types of the ternary representations of the basepoints of the orbit
of Ω(KS0), a sequence of compatible orbits will exhibit particularly interesting
dynamical behavior. While certain orbits in a so-called sequence of compatible
orbits will form saddle connections in their respective billiard tables, we will see
that this is the exception rather than the rule.
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A hybrid orbit of a prefractal billiard is an orbit of Ω(KSn) for which the ternary
representation of the elements of the corresponding footprint are such that they
never correspond to points of KS with finite ternary representations (i.e., corners).
As we will see, certain orbits remain constant from one prefractal billiard Ω(KSn)
to the next and certain orbits change entirely with each prefractal billiard. The
term hybrid is meant to indicate that such orbits have qualities that are found in
these two types of orbits mentioned in the previous sentence. As such, Definition
17 is phrased so as to include these two types of orbits and more general orbits that
have qualities reminiscent of both.

Definition 17 (Hybrid orbit). Let On(x
0
n, θ

0
n) be an orbit of Ω(KSn). If all but

at most two basepoints xkn
n ∈ Fn(x

0
n, θ

0
n) have ternary representations (determined

with respect to the side sn,ν on which each point resides) of type [c, lr] ∨ [cl, r] ∨
[cr, l] ∨ [lcr, ∅] ∨ [lr, ∅], then we call On(x

0
n, θ

0
n) a hybrid orbit of Ω(KSn).

Definition 18 (A P hybrid orbit). If On(x
0
n, θ

0
n) is a hybrid orbit with property

P, then we say that it is a P hybrid orbit.

Proposition 19. If On(x
0
n, θ

0
n) is a dense orbit of Ω(KSn), then On(x

0
n, θ

0
n) is a

dense hybrid orbit.

Proof. Suppose there were two basepoints xkn
n and x

k′

n
n of a dense orbit On(x

0
n, θ

0
n)

with ternary representations of types [l, cr] ∨ [r, lc]. Then, there exists N ≥ n such
that the orbit connects two vertices of two equilateral triangles of scale N tiling
Ω(KSn). Since this orbit can be unfolded (much as in §2.3) into the corresponding
flat surface and then projected down onto the hexagonal torus, such an orbit (or
flow line on the flat surface) must be at least a saddle connection of the equilateral
triangle billiard. However, such a direction θ0n should yield a dense billiard flow in

Ω(KS0), which is not the case. Hence, xkn
n and x

k′

n
n do not both have a ternary

representation of type [l, cr] ∨ [r, lc]. Moreover, if any basepoint of On(x
0
n, θ

0
n) al-

ready corresponds to a corner of Ω(KSn), then a similar argument shows that no
other basepoint may have a ternary representation of type [l, cr]∨ [r, lc]. Therefore,
On(x

0
n, θ

0
n) is a dense hybrid orbit.

We will construct sequences of suitably related orbits with the intention of ex-
amining the limiting behavior of such sequences. This will be the focus of the latter
part of this section and of §5. To such end, we define a sequence of compatible initial
conditions below.

Definition 20 (Compatible initial conditions). Without loss of generality, suppose
that n and m are nonnegative integers such that n > m. Let (x0n, θ

0
n) ∈ (KSn ×

S1)/ ∼ and (x0m, θ
0
m) ∈ (KSm × S1)/ ∼ be two initial conditions of the orbits

On(x
0
n, θ

0
n) and Om(x0m, θ

0
m), respectively, where we are assuming θ0n and θ0m are

both inward pointing. If θ0n = θ0m and if x0n and x0m lie on a segment determined
from θ0n (or θ0m) that intersects KSn only at x0n, then we say (x0n, θ

0
n) and (x0m, θ

0
m)

are compatible initial conditions.

Remark 21. When two initial conditions (x0n, θ
0
n) and (x0m, θ

0
m) are compatible,

then we simply write each as (x0n, θ
0) and (x0m, θ

0).

Not every orbit must pass through the region of Ω(KSn) corresponding to the
interior of Ω(KS0), let alone pass through the interior of Ω(KSm), for any m < n.
Because of this, it may be the case that an initial condition (x0n, θ

0) is not compatible
with (x0m, θ

0), for any m < n.
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Definition 22 (Sequence of compatible initial conditions). Let {(x0i , θ0i )}∞i=N be a
sequence of initial conditions, for some integer N ≥ 0. We say that this sequence is
a sequence of compatible initial conditions if for every m ≥ N and for every n > m,
we have that (x0n, θ

0
n) and (x0m, θ

0
m) are compatible initial conditions. In such a

case, we then write the sequence as {(x0i , θ0)}∞i=N .

Definition 23 (Sequence of compatible orbits). Consider a sequence of compat-
ible initial conditions {(x0n, θ0)}∞n=N . Then the corresponding sequence of orbits
{On(x

0
n, θ

0)}∞n=N is called a sequence of compatible orbits.

If Om(y0m, θ(̟
0
m)) is an orbit of Ω(KSm), then Om(y0m, θ(̟

0
m)) is a member of

a sequence of compatible orbits {On(x
0
n, ̟

)}∞n=N for some N ≥ 0. It is clear from
the definition of a sequence of compatible orbits that such a sequence is determined
by the first orbit ON (x0N , ̟

0). Since the initial condition of an orbit determines
the orbit, we can say without any ambiguity that a sequence of compatible orbits
is determined by an initial condition (x0N , ̟

0).

Definition 24 (A sequence of compatible P orbits). Let P be a property (resp.,
P1, ...,Pj a list of properties). If every orbit in a sequence of compatible orbits has
the property P (resp., a list of properties P1, ...,Pj), then we call such a sequence
a sequence of compatible P (resp., P1, ...,Pj) orbits.

We know that for each fixed billiard table Ω(KSn) and fixed direction θ0n, an
orbit is either closed or dense, regardless of the initial basepoint x0n. Applying the
results in §§3.1 and 3.2, we have the following.

Theorem 25 (A topological dichotomy for sequences of compatible orbits). Let
{On(x

0
n, θ

0)}∞n=N be a sequence of compatible orbits. Then {On(x
0
n, θ

0)}∞n=N is
either entirely comprised of closed orbits or is entirely comprised of dense hybrid
orbits.

Proof. Let {On(x
0
n, θ

0)}∞n=N be a sequence of compatible orbits. By construc-
tion θ0 is the same initial direction for every orbit in the sequence of compatible or-
bits. Suppose θ0 is rational with respect to the basis {u1, u2} := {(1, 0), (1/2,

√
3/2)}.

Then, applying Corollary 16, for every n ≥ N , we deduce that the orbit On(x
0
n, θ

0)
is a closed orbit of Ω(KSn). Hence, {On(x

0
n, θ

0)}∞n=N is a sequence of compatible
orbits for which every orbit in the sequence is closed.

Suppose now that θ0 is irrational with respect to the basis {u1, u2}. Then, by
Corollary 16, for every n ≥ N , the orbit On(x

0
n, θ

0
n) is a dense orbit of Ω(KSn).

By Proposition 19, On(x
0
n, θ

0
n) is therefore a dense hybrid orbit of Ω(KSn). Hence,

{On(x
0
n, θ

0)}∞n=N is a sequence of compatible orbits for which every orbit in the
sequence is a dense hybrid orbit.

Theorem 26. If O0(x
0
0, θ

0
0) is a periodic hybrid orbit of Ω(KS0) with no base-

points corresponding to ternary points, then for every n ≥ 0, the compatible orbit
On(x

0
n, θ

0
n) is a periodic hybrid orbit of Ω(KSn).

Proof. Since Ω(KSn) can be tiled by scale n copies of Ω(KS0), an orbit of
Ω(KS0) can be unfolded in the Koch snowflake prefractal billiard Ω(KSn), for every
n ≥ 0; see §2.3. Therefore, each basepoint of the corresponding compatible orbit
On(x

0
n, θ

0
n) will have a ternary representation consistent with that described in

Definition 17.
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Theorem 27 (A sequence of compatible periodic hybrid orbits). Consider a vector

(a, b) that is rational with respect to the basis {u1, u2} := {(1, 0), (1/2,
√
3/2)} and

let x00 ∈ I. Then, we have the following:

(1) If a and b are both positive integers with b being odd, x00 = r
4s , for some

r, s ∈ N with s ≥ 1, 1 ≤ r < 4s being odd and θ0 := arctan b
√
3

2a+b
, then

the sequence of compatible closed orbits {On(x
0
n, θ

0)}∞n=0 is a sequence of
compatible periodic hybrid orbits.

(2) If a = 1/2, b is a positive odd integer, x00 = r
2s , for some r, s ∈ N with s ≥ 1,

1 ≤ r < 2s being odd and θ0 := arctan b
√
3

2a+b
, then the sequence of compatible

closed orbits {On(x
0
n, θ

0)}∞n=0 is a sequence of compatible periodic hybrid
orbits.

Proof. Let r, s ∈ N, with s ≥ 1 and 1 ≤ r < 4s, a and b both be positive
integers with b being odd and x00 = r

4s . Suppose a line starting at (x00, 0) with slope
b
√
3

2a+b
intersects a point in R

2 that would correspond to a lattice point of a lattice
comprised of equilateral triangles at scale k. If m,n, p, q, k ∈ Z, with k ≥ 1 and
p, q ≤ 3k, then such a point has the form (m+p/3k)u1+(n+ q/3k)u2. Then, using
the equation for a line in the plane, we find that

(

n+
q

3k

)

√
3

2
=

b
√
3

2a+ b

(

m+
p

3k
+
n

2
+

q

2 · 3k − r

4s

)

,(4)

(

3kn+ q

3k

)

1

2
=

b

2a+ b

(

4s3km+ 4sp+ 2 · 4s−13kn+ 2 · 4s−1q − 3kr

3k4s

)

,(5)

2 · 4s−1(3kn+ q)(2a+ b) = b(4s3km+ 4sp+ 2 · 4s−13kn+ 2 · 4s−1q − 3kr).(6)

Since b and r are odd, the left-hand side of Equation (6) is even, but the right-
hand side is not. Therefore, our assumption that such a point corresponding to a

lattice point at scale k laid on the line beginning at x00 = r/4s with slope b
√
3

2a+b
was

incorrect. It follows that such a line emanating from x00 = r/4s avoids all points
in the boundary of Ω(KS0) having finite ternary representations. By Theorem 26,
every orbit in the sequence of compatible orbits must therefore be a periodic hybrid
orbit, meaning that {On(x

0
n, θ

0)}∞n=0 is a sequence of compatible periodic hybrid
orbits.

If a = 1/2, b is a positive odd integer, x00 = r/2s, with s ≥ 1 and 1 ≤ r < 2s,
then a similar argument shows that {On(x

0
n, θ

0)}∞n=0 is a sequence of compatible

periodic hybrid orbits. Suppose a line starting at (x00, 0) with slope b
√
3

2a+b
intersects

a point in R
2 that would correspond to a lattice point of a lattice comprised of

equilateral triangles at scale k. If m,n, p, q, k ∈ Z, with k ≥ 1 and p, q ≤ 3k, then
such a point has the form (m+ p/3k)u1 + (n+ q/3k)u2. Then, using the equation
for a line in the plane, we find that

(

n+
q

3k

)

√
3

2
=

b
√
3

2a+ b

(

m+
p

3k
+
n

2
+

q

2 · 3k − r

2s

)

,(7)

(

3kn+ q

3k

)

1

2
=

b

2a+ b

(

2s3km+ 2sp+ 2s−13kn+ 2s−1q − 3kr

3k2s

)

,(8)

2s−1(3kn+ q)(2a+ b) = b(2s3km+ 2sp+ 2s−13kn+ 2s−1q − 3kr).(9)
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Figure 11. Three examples of periodic hybrid orbits. These are
the first three elements of the sequence of compatible periodic hy-
brid orbits described in Example 28.

Since b and r are odd and a = 1/2, we see that the left-hand side of Equation (9)
is even and the right-hand side is not. Therefore, our assumption that such a point
corresponding to a lattice point at scale k laid on the line beginning at x00 = r/2s

with slope b
√
3

2a+b
was incorrect. It follows that such a line emanating from x00 = r/2s

avoids all points in the boundary of Ω(KS0) having finite ternary representations.
By Theorem 26, every orbit in the sequence of compatible orbits must therefore be
a periodic hybrid orbit, meaning that {On(x

0
n, θ

0)}∞n=0 is a sequence of compatible
periodic hybrid orbits.

Example 28 (A sequence of compatible periodic hybrid orbits). In Figure 11, three
periodic hybrid orbits are displayed. These three orbits constitute the first three
terms in a sequence of compatible periodic hybrid orbits. If we choose x00 = c ∈ I
and θ00 to be an angle such that x00 connects with the midpoint of the lower one-
third interval on the side of Ω(KS0), we can see that O0(x

0
0, θ

0
0) is a periodic hybrid

orbit. More importantly, there are elements of the footprint F0(x
0
0, θ

0
0) with ternary

representations of type [lr, c]. This observation is key for constructing what we call
nontrivial polygonal paths of Ω(KS), a topic which is discussed in more detail in §5.

Example 29 (A sequence of compatible hook orbits). Let x00 ∈ I have a ternary

representation given by rl, which is a Cantor-point of KS (in the sense of §2.5).
Such a point has a value of 3/4. Considering an orbit of Ω(KS0) with an initial
direction of π/6, the ternary representation of the basepoints at which the billiard
ball path forms right angles with the sides of Ω(KS0) is of the type [c, lr]. This
is a degenerate periodic hybrid orbit, meaning that it doubles back on itself, and
the next orbit in the sequence of compatible periodic hybrid orbits has the initial
condition (x01, π/6) = (x00, π/6). Since the ternary representation of the basepoint
of f0(x

0
0, π/6) is rc and θ00 = θ01 = π/6, it follows that the basepoint of f1(x

0
1, π/6) is

a Cantor-point. Then, still in the notation introduced in Remark 2, the basepoint
of f2

1 (x
0
1, π/6) has a ternary representation of type [c, lr]. This same pattern is re-

peated for every subsequent orbit in the sequence of compatible orbits. As a result,
the sequence of compatible orbits forms a sequence of orbits that is converging to a
set that is well defined. That is, such a set will be some path with finite length that
is effectively determined by the law of reflection in each prefractal approximation.

Such orbits are referred to as hook orbits for the fact that they appear to be
“hooking” into the Koch snowflake; see Figure 12.
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Figure 12. An example of a hook orbit. The same initial condi-
tion is used in each prefractal billiard.

Theorem 30. If every element xk0

0 ∈ F0(x
0
0, θ

0
0) has a ternary representation of

type [lr, c], then there exists N ≥ 0 such that {On(x
0
n, θ

0)}∞n=N is a constant se-
quence of compatible periodic hybrid orbits.

Proof. Recall that the orbit O0(x
0
0, θ

0
0) can be unfolded in the billiard Ω(KSn).

Each element xkn
n of the footprint Fn(x

0
n, θ

0
n) of the compatible orbit On(x

0
n, θ

0
n) has

a ternary representation of type [lr, c]. Since there are finitely many c’s in such a
representation, there exists N such that the ternary representation of every element
xkN

N ∈ FN(x0N , θ
0
N ) (this being the footprint of a compatible orbit ON (x0N , θ

0
N ))

is of type [lr, ∅]. As a result, the sequence of compatible periodic hybrid orbits
{On(x

0
n, θ

0)}∞n=N is constant, since every basepoint of every orbit remains fixed for
every subsequent prefractal billiard Ω(KSM ), M ≥ N .

Example 31 (A constant sequence of compatible periodic hybrid orbits). Consider
x00 = 7/12 in the base of the equilateral triangle. Such a value has a ternary
representation of type [lr, c]. Consider the initial condition (x00, π/3). The sequence
of compatible orbits {On(x

0
n, π/3)}∞n=1 is a constant sequence. This follows from

the fact that the ternary representation of x01 is rl. Moreover, the representation of
every basepoint of On(x

0
n, π/3) is lr. In Figure 13, we show the first three orbits in

this (eventually) constant sequence of compatible periodic hybrid orbits.

As of now, the only examples of constant sequences of compatible nondegenerate
periodic hybrid orbits we can provide are those for which the initial direction is
π/3. Of course, one can construct a constant sequence of compatible periodic
hybrid orbits, each with an initial direction of π/6 or π/2, but such orbits will be
degenerate.

5. Nontrivial polygonal paths of Ω(KS)

Consider a periodic hybrid orbit of Ω(KS0). Each basepoint xk0

0 of a footprint
F0(x

0
0, θ

0
0) has a ternary representation that indicates such a point never corre-

sponds to a ternary point of a side. Hence, the unfolding never hits a corner of any
prefractal billiard Ω(KSn). As a result, we formulate the following conjecture.
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Figure 13. An eventually constant sequence of compatible peri-
odic hybrid orbits. We see that the initial basepoint x00 = 7/12 lies
on the middle third of the unit interval. The basepoint x01 of the
compatible initial condition (x01, π/3) has a ternary representation
of type [lr, ∅].

Zoomed AgainZoomed And yet again

Figure 14. A collection of basepoints from successive compatible
periodic hybrid orbits converging to an elusive limit point of KS.

Conjecture 32. If the sequence of basepoints xk0

0 is dynamically ordered in such
a way that the type of ternary representation alternates between [c, lr] ∨ [cl, r] ∨
[cr, l] ∨ [lcr, ∅] and [lr, ∅], then the corresponding sequence of compatible periodic
hybrid orbits yields a sequence of basepoints converging to an elusive limit point of
the Koch snowflake KS.

We know that this conjecture is true for some family of sequences of compatible
periodic hybrid orbits, as evidenced by the fact that a sequence of compatible hook
orbits and the sequence of compatible periodic hybrid orbits given in Figure 11
exhibit such a behavior. In Figure 14, we show exactly the points referred to in
Conjecture 32. In this particular case, such points are derived from the sequence
of compatible periodic hybrid orbits given in Figure 11.

As we can see from Figure 14, the sequences of Cantor-points determined from
a sequence of compatible periodic hybrid orbits can be connected to form what we
call a nontrivial polygonal path of Ω(KS). Specifically, for every n ≥ 0, there exists

N ≤ n and a sequence of basepoints {xkn
n }Nn=0 such that for every j < N , x

kj

j

has a ternary representation of type [lr, ∅] and xkN

N has a ternary representation of

type [c, lr] ∨ [cl, r] ∨ [cr, l] ∨ [lcr, ∅]. Then each pair {xkj

j , x
kj+1

j+1 }, 0 ≤ j < N , can
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be connected to form a line segment and, collectively, the segments form a path.
Then, limN→∞ xkN

N is an elusive limit point of KS and the collection of segments
{

x
kj

j x
kj+1

j+1

}∞

j=0
constitutes a nontrivial polygonal path of Ω(KS). We denote such

a path by N (x00, θ
0
0).

We next show how to construct two nontrivial polygonal paths that will connect
two elusive limit points of the Koch snowflake KS. Consider a sequence of compat-
ible periodic hybrid orbits {On(x

0
n, θ

0)}∞n=0 that determines a nontrivial polygonal

path. Let θ0 = θ0 + π be the angle made by a vector based at x10 when measured

relative to the fixed coordinate system and define x00 := x10. Then the sequence of

compatible hybrid periodic orbits {On(x0n, θ
0)}∞n=0 determines a nontrivial polygo-

nal path of KS. Denoting the nontrivial polygonal paths of {On(x
0
n, θ

0)}∞n=0 and

{On(x0n, θ
0)}∞n=0 by N (x00, θ

0) and N (x00, θ
0), respectively, we see that the con-

catenation N (x00, θ
0) ∪ N (x00, θ

0) determines a path from one elusive point of KS
to another elusive limit point of KS.

As a result, if one is given the fact that an elusive limit point x0 ∈ KS is the
limit of a sequence of basepoints constituting the vertices of a nontrivial polygonal
path, then one can determine a path from x0 to another elusive limit point x1 ∈ KS
by following the path determined by the two nontrivial polygonal paths, each being
determined by the law of reflection.

6. Concluding remarks

We have seen two extremes: sequences of compatible orbits that are (eventu-
ally) constant and sequences of compatible orbits with nontrivial limiting behavior.
Ultimately, we want to answer the following question: Can one determine the short-
est path between two points of the snowflake subject to a well-defined collision in
the boundary? Finding an answer to such a question amounts to determining a
suitable law of reflection in the boundary KS. As we have seen in the case of a
constant sequence of compatible orbits, for certain initial conditions, it is possible
to determine a well-defined orbit of the Koch snowflake. In the case of a sequence
of compatible periodic hybrid orbits that determines a nontrivial polygonal path,
we have seen a way to connect two elusive limit points via two nontrivial polygonal
paths of finite length; cf. §5. We conjecture that such paths constitute subsets of a
well-defined orbit of Ω(KS). That is, once a suitable law of reflection is determined,
we expect a nontrivial polygonal path determined from a sequence of compatible
periodic hybrid orbits to be a subset of the corresponding orbit.

We note that several of the geometric and topological properties of certain pos-
sible periodic orbits (or their footprints) of Ω(KS) are provided in [LapNie2] and
[LapNie4], along with some experimental evidence in support of a “fractal law of
reflection”.

Understanding how a billiard ball reflects off of an elusive limit point is at the
heart of the ‘fractal billiards problem’. In general, fractal snowflakes constitute
the canonical examples of fractal billiards. One may perform a similar analysis
with similar results for the square snowflake. While not the prototypical examples
of a fractal billiard, the T -fractal and a Sierpinski carpet billiard also constitute
fractal billiard tables; see Figure 15. Each of these tables contain elusive limit
points, and in some ways may be more tractable than a snowflake billiard. Recent
work between the second author and Joe P. Chen in [CheNie] extends the results
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Figure 15. The square snowflake, T -fractal and a Sierpinski carpet.

of [Du-CaTy] with the intention of understanding the billiard dynamics on a self-
similar Sierpinski carpet billiard table. By further understanding the nature of
what are called nontrivial line segments, one can determine orbits of a self-similar
Sierpinski carpet that never intersect any corners or sides of any deleted squares of
any prefractal approximation, save for those of the initial unit square. Of course,
the problem is that such orbits do intersect infinitely many elusive limit points
of the self-similar Sierpinski carpet, highlighting the core problem of determining
dynamics on a fractal billiard table.

Taking a different perspective, the work in progress [LapNie3] seeks to under-
stand the nature of the ‘fractal flat surface’ by examining the sequence of Veech
groups of prefractal flat surfaces. By extending the work of [We-Sc], the authors
hope to view the prefractal flat surfaces S(KSn) as ‘rhombic origamis’, as opposed
to the traditional square tiled surfaces found in [We-Sc].

Approaching the problem of determining dynamics on fractal billiard tables from
various perspectives may eventually bring about a clearer picture of what should
constitute a true fractal billiard. We hope that our work will help lay the founda-
tions for this new subject and spark the interest of other researchers working on
related questions and who may provide the additional insights needed for solving
these difficult problems.
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