TOWARD ZETA FUNCTIONS AND
COMPLEX DIMENSIONS OF MULTIFRACTALS

MICHEL L. LAPIDUS AND JOHN A. ROCK

ABSTRACT. Multifractals are inhomogeneous measures (or functions) which
are typically described by a full spectrum of real dimensions, as opposed to a
single real dimension. Results from the study of fractal strings in the analysis
of their geometry, spectra and dynamics via certain zeta functions and their
poles (the complex dimensions) are used in this text as a springboard to define
similar tools fit for the study of multifractals such as the binomial measure.
The goal of this work is to shine light on new ideas and perspectives rather
than to summarize a coherent theory. Progress has been made which connects
these new perspectives to and expands upon classical results, leading to a
healthy variety of natural and interesting questions for further investigation
and elaboration.
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1. INTRODUCTION

The concept of multifractals arises from the study of objects in physics, geology,
chemistry, economy and crystal growth (among others) which are believed to be
more fully described by a spectrum of real dimensions rather than with a single real
value such as the Hausdorff or the Minkowski dimension. Chapter 9 of [29] provides
an excellent introduction to some natural occurrences of these multifractal objects,
and Chapter 17 of [2] and Appendix B of [27] provide mathematically heuristic
descriptions of their construction and properties. Essentially, each dimension in the
spectrum corresponds in a specific manner to a regularity value that describes the
multi-scale behavior of the object in question. In our case, we focus on a binomial
measure on the unit interval whose support is the ternary Cantor set. Ultimately we
would like to take into account the oscillations intrinsic to such objects by allowing
a spectrum of complex dimensions, perhaps one for each regularity value.

Section 2 features the construction of our primary example of a multifractal
(a binomial measure with support on the Cantor set) and recalls some heuristic
results on measures of this type from [2] and [27]. Also, the definition of regularity
is recalled as it appears in [19]. Regularity is key to the description of the multi-scale
behavior of multifractal measures and functions.

Section 3 provides a brief introduction to and a summary of some results from
the analysis of fractals in the study of the geometry, spectra and dynamics of fractal
strings via certain zeta functions and their poles (the complex dimensions) in the
classical sense of [13], [9], [15], and [16]. Further results and analysis from the
theory of complex dimensions of fractal strings can be found in [3, 11, 12, 15, 16].

Section 4 summarizes some of the recent results from [14] and [28]. The def-
inition of the partition zeta function and some illustrative theorems on the con-
nection to current results from other approaches to multifractal analysis (see, e.g.,
[4, 7, 17, 24]) are given and discussed, in particular the further solidification of the
heuristic results described in [2] and [27] and revisited in Section 2.

Section 5 reviews the slightly less recent results (from [10] and [28]) on the use
of multifractal zeta functions to illuminate some topological properties of fractal
strings. These results generalize and expand the theory of complex dimensions of
ordinary fractal strings from [15, 16].

Section 6 closes with a collection of natural questions that arise from the work
and deserve further attention. Also, suggestions for further research are given and
briefly discussed.

Overall, the goal of this work is to shine some light on new ideas, not to
summarize a coherent theory. The proofs and full development of theorems have
been left out for brevity but can be found in the appropriate references.

2. A MULTIFRACTAL MEASURE ON THE CANTOR SET

This section begins with the construction of a simple example of a multifractal
measure. A binomial measure p can be constructed by adding a mass distribution
to the construction of the Cantor set which consists of a countable intersection of a
nonincreasing sequence of closed intervals whose lengths tend to zero. Specifically,
in addition to removing open middle thirds, weight is added at each stage. On the
remaining closed intervals of each stage of the construction, place 1/3 of the weight
on the left interval and 2/3 on the right, ad infinitum. See Figure 1. The measure
found in the limit, denoted p, is a multifractal measure.
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Figure 1. Constructing a binomial measure p on the Cantor set.

An integral notion of this text which stems from other approaches to multi-
fractal analysis is regularity (or coarse Hélder exponent). This notion and some
illustrative theorems on its application to a mathematical formalism for multifrac-
tals can be found in [19]. In our case, as well as that of [10, 14, 18, 19, 28], regularity
allows for the breakdown of a given multifractal measure by observing its behavior
at different scales.

Definition 2.1. Let X([0,1]) denote the space of closed subintervals of [0,1]. The
reqularity A(U) of a Borel measure p with U € X([0,1]) and range [0, 00] is

log u(U)
AlU) = ———~
) = e,
where | - | = A(+) is the Lebesgue measure on R.

Equivalently, A(U) is the exponent « that satisfies
U = u(U).

Note that regularity can be considered for any interval, whether open, closed or
neither.

Collecting intervals according to their regularity is key to the developments of
the multifractal and partition zeta functions (defined in sections 5 and 4 respec-
tively), which mirror that of the geometric zeta functions (in section 3) in certain
respects. Thus, the following notation is helpful: Let U € R(«) if and only if
A(U) = «. Regularity values « in the extended real numbers [—o0, 00| will be
considered. In the extreme cases,

a=00=AU) < uwU)=0and |U| >0,

and
a=—-00=AU) < uU) =00 and |U| > 0.

Fixing the regularity « allows for the definition of a generalization of geometric
zeta functions called multifractal zeta functions. These functions, originally from
[10] and discussed in Section 5, yield additional topological information for fractal
strings and suggest a way of conducting multifractal analysis for Borel measures
on the unit interval. The properties of these multifractal zeta functions have not
yet been shown to relate significantly to current results in multifractal analysis.
However, as discussed in Section 4, the partition zeta functions first described in
[28] and later in [14] do relate to the results described in [2] and [27] mentioned
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Figure 2. The multifractal spectrum curve of f(«) for the measure
w, as found in [2], page 259.

below. A similar approach to this type of analysis appears in the work-in-progress
[18], where very nice connections to classical results also exist and are explained.

Current preliminary results on the measure y can be found in Chapter 17 of [2].
To briefly summarize, a Legendre transform pair using the multifractal spectrum
f(a) of regularity « and parameter ¢ results in the curve in Figure 2. Roughly
speaking, each regularity value « corresponds to a collection of sets which have the
same regularity value at ever-decreasing scales and combine to yield a dimension
(of sorts) for that regularity value. In particular, when the parameter ¢ = 1,
the regularity value yields the information dimension of the measure p, and when
q = 0, the regularity value yields the Minkowski dimension of the support of u.
This multifractal spectrum is rediscovered as the abscissa of convergence function
o(a) for the partition zeta functions of the measure p, as described in Section 4 of
this work.

Multifractal analysis has not yet been defined in a common, strict sense. In-
deed, different authors provide a variety of different approaches arising from both
mathematics and applications. For a physics perspective, see, e.g., [22, 26, 29] and
part of [17]. For a mathematical perspective, see Chapter 17 of [2] and Appendix B
of [27] for an introduction to the subject matter, and see [29] from an applications
standpoint. For even more on the mathematics side, see [4, 5, 6, 7, 17, 21, 23, 24, 25].

Before elaborating on the connections between the results described in this
work and the results described in [2] and [27], the next section discusses the tech-
niques used in the study of fractal strings that motivate the definitions of the
multifractal and partition zeta functions.
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Figure 3. An approximation of the Cantor String Q.

3. FRACTAL STRINGS

A fractal string, in the classical sense of [13], [9], [15] and [16], is a bounded, open
subset of the real line denoted by Q = U2, (a;,b;). Such objects consist of an at
most countable collection of disjoint open intervals. When there is a countably
infinite collection of disjoint intervals in £ contained in [0,1] and the boundary
09 is equal to the complement Q¢ in the usual topology of [0, 1], the resulting set
is often a fractal subset of the real line. An example of such an object which is
directly pertinent to this work is the Cantor String. Its complement in [0, 1] is the
classic Cantor set. See Figure 3 for a finite approximation of the Cantor String.
Throughout this text!, we assume that a fractal string € has total length 1, is a
subset of [0,1], and has boundary 992 equal to €, the complement of Q in [0, 1].

Important geometric, spectral and dynamical information is contained in the
collection of the lengths of the intervals which constitute €2. This collection is
denoted £. Thus, £ = {{;}52,, where the {; are the lengths of the disjoint open
intervals (a;,b;). Often it is best to consider £ as a set of distinct lengths {l,,}22,
with multiplicities {m,, }2° ;. The results of this section depend only on the sequence
of lengths £ and not on the topological configuration of the disjoint open intervals
of the fractal string 2 which generate them. As such, and by abuse of notation,
the lengths £ may be referred to as the fractal string in place of the open set Q. A
discussion regarding the differences between fractal strings with varying topological
configuration but identical lengths can be found in Section 5. The independence
of the results presented in this section from the topological configuration of the
relevant fractal strings is a key motivation for the definitions that follow in Section 4.
The lengths themselves retain much information regarding the fractal strings, and
a similar comment can be applied to the lengths associated with the construction
in Section 4 of a multifractal measure such as p from Section 2.

In this work, the key notion of dimension is the Minkowski dimension, whereas
in many other works on fractals and multifractals, the Hausdorff dimension is promi-
nent. The following develops the definition of the Minkowski dimension.

The one-sided volume of the tubular neighborhood of radius € of 952 is

(1) Vie) =A{zx € Q| dist(xz,00) < e}),
where A(-) = | - | denotes the Lebesgue measure. The Minkowski dimension of 052,
or simply of L, is
(2) dimp(0Q) = D = Dy :=inf{d > 0 | limsupV(e)e? ™ < oo}.
e—0t

Note that one may refer directly to the Minkowski dimension of the sequence of
lengths L.

The equation below describes a relationship between the Minkowski dimension
D of (the boundary of) a fractal string with lengths £ and the sum of each of its

ITheorem 5.2 is an exception.
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lengths with exponent o € R. This was first observed in [9] using a key result of
Besicovitch and Taylor [1], and a direct proof can be found in [16], pp. 17-18.

oo
(3) D=Dy=inf{oceR | Y 7 <o

Jj=1

D/ is the abscissa of convergence of the Dirichlet series Z;’;l 0%, where s € C. This
Dirichlet series is the geometric zeta function of £ and it is the function that has

been generalized in [10, 14, 28] using notions from multifractal analysis.

Definition 3.1. The geometric zeta function of a fractal string 0 with lengths L

18
Ce(s) =D 6= mul;,
j=1 n=1

where Re(s) > D.

When possible, such a function can be meromorphically continued to a region W
in the complex plane. Such an extension may reveal a family of poles which are
called the complex dimensions of the string £, denoted D, which has the following
definition.

Definition 3.2. The set of complex dimensions of a fractal string Q with lengths
L is

De(W)={w e W | (¢ has apole at w}.

Many interesting results stem from the investigation of the geometric zeta
functions and complex dimensions of fractal strings. For instance, the following
theorem characterizes the Minkowski measurability of a fractal string and can be
found in [15, 16]. First, we define some of the terms used in the theorem.

If lim,_, o+ V ()e?! exists and is positive and finite for some d, then d = D and
we say that £ is Minkowski measurable. The Minkowski content of L is then defined
by M(D, L) := lim._,g+ V(g)eP~1. The Minkowski dimension? can be expressed in
terms of the upper box dimension

(4) lim sup M,

T Tloge
where N (F') is the smallest number of cubes with side length ¢ that cover a
nonempty bounded subset F' of R". In [8], it is shown that if F = 9Q is the
boundary of a bounded open set Q, then r — 1 < dimgy (F) < dimp;(F) < r where
r is the Euclidean dimension of the ambient space, dimgy (F) is the Hausdorff di-
mension of F and dimy;(F) = D is the Minkowski dimension of F. In this work,
we have r = 1 and thus 0 < dimg(F) < dimp(F) < 1. The specific conditions
under which the theorem below holds are too complicated to concisely describe in
this work, however the full theorem and context can be found in Chapter 8 of [16].

Theorem 3.3. If a fractal string Q with lengths L satisfies certain mild conditions,
then the following statements are equivalent:

(1) D is the only complex dimension of Q with real part Dr, and it is simple.
(2) 09 is Minkowski measurable.

2Defined as previously in Eq. (2), except 1 is replaced with 7.
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The complex dimensions of the Cantor String are easily found. The distinct
lengths are [,, = 3~" with multiplicities m,, = 2"~! for every n € N. Hence, for
Re(s) > logs 2,

Cels) = os(s) = 3277137 =

The last equation holds for all s € C after analytic continuation, hence

N
Dp=Des =4logs2+ % | meZb.
log 3

Remark 3.4. Theorem 3.3 applies to self-similar strings (fractal strings whose
boundary is a self-similar set). The Cantor String is self-similar, thus Theorem 3.3
indicates that the Cantor String is not Minkowski measurable.

The texts [15, 16] (specifically Chapter 8 of [16]) also contain the following key
result, which uses the complex dimensions of a fractal string in a formula for the
volume of the inner e-neighborhoods of the fractal string.

Theorem 3.5 (Tube Formula). The volume of the one-sided tubular neighborhood
of radius € of the boundary of a fractal string Q0 with lengths L is given (under mild
hypotheses) by the following explicit formula with error term:

Ce(s)(2e)'
1—23)

where the error term can be estimated by R(e) = O(e as € — 07 with o being
the upper bound of the graph of a certain bounded, real-valued continuous function.
When the horizontal and vertical azes are exchanged, the graph of this function is
the left part of the boundary of the region W.

Vi) = T ( S ;w) + R(e),
wED (W)U{0}

170')

Remark 3.6. If £ is a self-similar string, the hypotheses of Theorem 3.5 are always
satisfied and its conclusion holds with R(¢) = 0. This is the case for the Cantor
String, for example.

In order to illustrate Theorem 3.5 in a very simple situation, we give the
concrete form of the tube formula for the Cantor String (see [16, Eq.(1.14), p.15]):

1 0 (25)1—D—inp
Ves(e) = —— _9
cs(e) 21og 3 n:z_:oo (D +inp)(1—D —inp) =

for all 0 < € < 1/2, where D = log, 2 is the Minkowski dimension of the Cantor
String (and the Cantor set) as above, and p = 27/ log 3 is its oscillatory period.

Important geometric and spectral information regarding the structure of a
fractal string is contained in its sequence of lengths £. The real parts of the complex
dimensions are related to the amplitudes of the oscillations in the volume V() of
the tubular neighborhood of the string, while the imaginary parts coincide with the
frequencies. Other examples elaborating this philosophy are provided in [15, 16]
as well as [11, 12], where some higher—dimensional counterparts to Theorem 3.5 in
the case of the Koch snowflake curve and self-similar systems (and tilings) can be
found.

The strength of these results and their independence from the topological con-
figuration of the fractal string €2, and hence their complete dependence on the
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lengths £ alone, is a key motivation for defining the partition zeta functions in the
next section in terms of sequences of lengths with certain properties. The next sec-
tion translates the construction of the geometric zeta function of a fractal string into
the construction of a family of partition zeta functions for a multifractal measure
such as the measure p from Section 2.

4. PARTITION ZETA FUNCTIONS

The partition zeta functions described in this section were first defined in [28] and
will be discussed further in [14]. These functions are defined for any Borel measure
on the unit interval along with a family of partitions and are parameterized by
the regularity values attained by such measures. The construction is very similar
to that of the geometric zeta function in the sense that the functions are series
whose terms come from a sequence of properly defined lengths. For geometric zeta
functions the terms are derived from the lengths of the disjoint intervals of a given
fractal string. However, for partition zeta functions the terms are derived from a
sequence of lengths from a family of partitions which exhibit the same regularity.

The families of partitions we consider satisfy certain requirements and occur
quite naturally in the construction of multinomial measures such as the binomial
measure. Consider an ordered family of partitions P = {P,}52, of [0, 1], each of
which splits the unit interval into finitely many subintervals. The order is given
by the relation P, > P41 taken to mean that each of the intervals P, ; which
comprise the partition P, is a subinterval of some interval in P,,3.

Definition 4.1. For a measure p on the interval [0,1] with an ordered family of
partitions P, the partition zeta function with reqularity a is

Cplavs) =" > IRl

n=1A(P})=a

where the inner sum is taken over the intervals P¥ in the partition P, which have
regularity A(PF) = a € [~o00,00], and Re(s) is large enough.

Recall the construction of the measure p from Section 2. The breakdown of
mass and length readily defines a natural family of partitions B for this measure p as
simply the closed intervals and their complements in the construction of the Cantor
set. The mass breakdown allows for the separation of the individual intervals in 3
into collections according to their regularity, found with respect to the measure pu.
At each stage, the intervals with the same regularity o have multiplicities given by
binomial coefficients. In turn, their lengths and multiplicities constitute the terms
in the definition of the partition zeta function with that regularity.

To determine the intervals which have the same regularity, note that the col-
lection of all intervals from every partition in the family 8 is a countable set. Thus,
the regularity values attained on these intervals are a function of the ordered pair
of integers (k1, k2) (which satisfy the properties mentioned below) as follows:

 log (21K /3nhz) k1

= Oé(k17]€2) = W =1- Elog:;?,

3To avoid trivial situations, we further assume that the mesh of the sequence of partitions Py,
tends to zero.
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Figure 4. Construction of the multifractal binomial measure p,
with emphasis on the intervals with reqularity «(1,2).

for all n € N and where ky € NU{0}, ko € N, ky < ko and k; and ko are necessarily
relatively prime (denoted (ki, ko) = 1), except when k1 = 0 or 1 and ke = 1. The
integers k; relate to the measure and regularity of intervals in that, roughly, & is
the number of times an interval falls to the right and gets 2/3 of the mass after ko
stages during the construction.

The regularity value a(kq, ko) with fixed (ki, k2) as above only occurs in the
partitions Py, for each n € N, with multiplicity (ZZ?) In summation,

Chla(ky k2). s) = Ch(alky — k1 ko), s) = Y (nk)g

See Figure 4 for the first several intervals with regularity a(1,2).

There is a notion of multifractal spectrum which stems immediately from this
set up and is reminiscent of similar results on multifractals found in Chapter 17 of
[2], especially the graphs of the spectra in Figures 17.2 on page 259 (reproduced in
Section 2 of this work) and 17.3 on page 261. In our context, the spectrum o(«) is
defined as the function which yields the abscissa of convergence of the partition zeta
function with regularity «, (f]g (a, s), for all @. See Figure 5 for an approximation
of the graph for this function and compare to Figure 2 which contains the graph of
the multifractal spectrum f(«) from [2].

This graph exhibits some interesting properties, such as its maximum coincides
with the Minkowski dimension of the support of . Further, this structure holds
in greater generality. If, in the construction of the Cantor set, the initial length
is replaced by some h~! and the smaller weight by a w=!, we have the following
theorem. The proof is omitted, but can be found in [14, 28].

Theorem 4.2. As a function of the reqularity values, the abscissa of convergence
function o associated with the partition zeta function of the measure p(h,w) with
h > 2 and w > 2 has the form

(0 —logyw) | (~(a—log,w)
logy (w — 1) lg”( logy (w — 1) )

(5) o(a)



10 LAPIDUS AND ROCK

o(a)

I
|
|
|

dim, (suppft ))

1 % 1 a

1-log 2 1-(1/2)log 2 1

Figure 5. o as a function of a for the measure p.

As the abscissa of convergence function, o is defined on a dense subset of the
interval [log, w — log;, (w —1),log;, w], and it attains its mazimum at

(6) a=al,2) =log, w— (1/2)log, (w —1).
This maximum value coincides with the Minkowski dimension of the support of the
measure u(h,w). That is,
(7) dimps (supp(p(h,w)) = max{o(a) | a = a(ky, k), (ki,ke) =1}
= log, 2.

Theorem 4.2 almost contains the following multifractal spectrum f(«) dis-
cussed on page 934 of Appendix B in [27] as a specific case:

Q& — Omin lOg < a — Qmin >
- 2 - 9

AUmaz — Umin Umaz — Omin

where a0 and auyi, denote the maximum and minimum regularity values attained
by the measure in question. To fit the measure from page 934 of Appendix B in
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[27] to our setting, take h = 2 and w = 3. The pertinent regularity values become

- log (2nk1 /3nk2)
o = Oé(khkg) = W = 10g2 3— E’
where 4. and o, are attained when k; = 0 with by = 1 and k1 = ko = 1,
respectively. We say that f is “almost” a specific case because the equation o(a) =
f(«) only holds on a dense and discrete subset of [amin, Qmaz], a8 opposed to the
full interval on which f is defined.

In addition, the graph of the spectrum f(«) depicted in Section 2 of this work
and Chapter 17 of [2] also stems from an equation such as (5) from Theorem 4.2
(see page 261 of [2]).

Among the common features of these graphs are the coincidence of the max-
imum height of the curve with the Minkowksi dimension of the support of the
underlying measure and the symmetry about the vertical line that passes through
this maximum height. The symmetry of o(«) is evident from the equality of the
binomial coefficients (sz) and (n(k’;kfkl)) in the respective partition zeta functions.

The distinctions between the abscissa of convergence function o of this text and
the multifractal spectrum f of [2] and [27] lie in their developments. The function o
follows directly from the partition zeta functions defined by the weighted partitions
which define the measure u, whereas f follows from the same heuristic development
but takes its values from an appropriate Legendre transform.

Further generalizations to measures with multiplicative structure similar to
that of u have been made, but for brevity we shall merely mention their existence.
Also, in [18], another type of zeta function which describes multifractal measures
in a manner very similar to the partition zeta functions has been defined and
investigated. The results contained in that paper provide even more connections
between the analysis of fractal strings via zeta functions and this new approach to
multifractal analysis.

It is important to note that the partition zeta functions do not yield the geo-
metric zeta function as some kind of special case. Indeed, there is no underlying
fractal string or closed set that results from a construction like that of the Cantor
set for the intervals of 3 and a fixed regularity. So, although they do not recover
the geometric zeta function for fractal strings, the partition zeta functions pro-
vide some interesting information for multifractal measures, further solidifying the
existing results described, for example, in [2] and [27].

The next section describes a precursor to the partition zeta function and the
similar zeta function in [18]. Despite its name, the multifractal zeta function does
not connect to multifractal analysis as thoroughly as these other zeta functions, but
it is a generalization of the geometric zeta functions of fractal strings and provides
topological information which can not be obtained from their complex dimensions.

5. MULTIFRACTAL (OR TOPOLOGICAL) ZETA FUNCTIONS

The multifractal zeta function, which made its first appearance in [10], was initially
developed to investigate the properties of multifractal measures. Its definition also
relies on the notion of regularity, but the lengths come from a much larger and more
complicated family than the family given by 3 for the partition zeta functions. This
larger collection creates many computational and theoretical difficulties, yet two
regularity values (£o00) yield new and existing results for fractal strings. The results
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Figure 6. Three strings with the same lengths L, the lengths of the
Cantor String 1, but different topological configuration.

presented in this section are originally from [10] (viewed from a slightly different
perspective), and can also be found in [28] (viewed from the current perspective of
this work).

In order to bring fractal strings into a framework that uses regularity, an
appropriate measure must be defined. For a fractal string € in the unit interval,
the measure ugq is the measure which has a unit point-mass at every endpoint of
the fractal string. Thus, any interval which does not contain an endpoint of {2 does
not have mass, hence its regularity is co. On the other hand, any interval which
contains a neighborhood of a limit point of the endpoints of 2 has infinite mass,
hence its regularity is —oo. These measures combine with the multifractal zeta
functions to recover and extend the results obtained for fractal strings through the
geometric zeta functions.

Using intervals whose lengths appear in a sequence N (which decreases to
zero) and collecting them according to their regularity « allow for the definition of
multifractal zeta function given below, where k,(«) is the number of new disjoint
intervals K'(a) which arise at stage n. The intervals K'(a) do not necessarily
have length in AV, rather they are the disjoint intervals of the set which is the union
of all closed intervals of length 7, € A" and the same regularity «.

Definition 5.1. The multifractal zeta function of a measure p, sequence N, asso-
ciated regularity value o € [—00, 0] and is given by

[e’e} kn(o‘)
el s) =" > K (@)
p=1

n=1

for Re(s) large enough.

In this setting, we have the following theorem. The full proof can be found in
[10, 28]. The basic idea of the proof is that an interval with regularity oo = oo has
no mass, thus this interval must be a subset of the complement of the support of the
measure, the fractal string Q,, = (supp(p))¢. The decreasing sequence N ensures
that every disjoint open interval in this fractal string is recovered, in turn enabling
us to recover the geometric zeta function. Unlike some of the other results on fractal
strings mentioned in this work, the following theorem does not require the fractal
string to have total length 1, to be a subset of [0, 1], nor to have boundary equal to
the complement in the smallest compact interval which contains the fractal string.

Theorem 5.2. The multifractal zeta function of a positive Borel measure 1, any
sequence N such that n,, \, 0 and regularity a = oo is the geometric zeta function
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of Q,, = (supp(p))® (where the complement is taken in the smallest compact interval
containing supp(p)), with lengths L,,. That is, (i-(00,s) = (z, (s).

When a fractal string which has a boundary (complement in the unit interval)
that is a perfect set, such as the Cantor String, we get the following theorem with
omitted proof. The full development and proof can be found in [10, 28]. The
regularity value —oo allows us to distinguish between fractal strings with identical
lengths £ and, hence, the same Minkowski dimension, but with different topological
arrangements. See Figure 6 for approximations of three fractal strings which have
the same £ (the lengths of the Cantor String €;), but have obviously distinct
topological properties. In light of the following theorem, one may refer to the
multifractal zeta function of a measure pg with regularity a = —oo as the topological
zeta function of the fractal string €.

Theorem 5.3. Let ) be a fractal string with sequence of lengths L and perfect
boundary. Suppose that N is a sequence which decreases to zero such that I, >
N = lpy1 and 1, > 2ny,, for alln € N. Then

(8) Ch(0o,s) = (o(s) =) muply, and
9) C/l\t/’n(_oo’ s) = h(s)+ Z My (I — 210)°,

where h(s) is the entire function given by h(s) = Z’;;(foo) | K (—00)]*.
For ¢ =1,2,3 and fractal strings 4, Theorem 5.3 yields

(00, 8) = (os(s) = L

N 1-2-3

However, the multifractal zeta functions corresponding to the regularity value —oo
have the following forms, where the function hj is entire:

Gooos) = 214 ) iy (Lo 2 Y
—00,8) = S+ = — -
N 3'9) &~ 3n 3ntl
4\° 2 1
= 9= Y S
(9> +27s<1—2-3—s>’
1
CK/Z(—OO,S) = 7719:§a
(Wt (=00,8) = hg(s)+ Y man (lan-1 +l2n — 202n-1)°
n=2

(oo} 1 1 2 S
n—1
= ha(s)+ 32 <32n1 + g 3%)
n=2

ha(s) + (285;1> (1 - 21~ 98) '

More definitively, it follows from the above discussion that the poles (complex
dimensions) of these multifractal zeta functions differ completely:
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2imm
Dt (— = Dcs = qlogg2 Z
W (—00) cs {Ogg * Tog3 | m e },
Dt (—o0) = 0, and
o
Dl (—o0) — {10g92+$ | mez}.

Thus, multifractal zeta functions for at least two regularity values provide
useful information about the properties of fractal strings when certain measures
are considered, specifically the measures which have unit mass at every endpoint
of the disjoint open intervals which define the fractal string. These multifractal
zeta functions were the starting point for the development of the more refined and
relevant (with respect to multifractal analysis) partition zeta functions.

6. CONCLUSION

There are many questions that arise in this new investigation of the application of
zeta functions to fractal and multifractal analysis. For instance, when and where
do the partition zeta functions have a meromorphic extension? And what are their
poles? Furthermore, what are the ramifications? In light of the results with the
complex dimensions of fractal strings in [15, 16], can we capture other oscillations
intrinsic to multifractals in terms of these zeta functions? Can the theory be ex-
tended to higher-dimensional multifractals, as was done in the case of ordinary
self-similar fractals in [11, 12]? And what about multifractals which are not the
result of a multiplicative process?

Although the multifractal zeta functions do not (conveniently) provide signifi-
cant information regarding a multifractal analysis of measures, they allow for new
results on the topological properties of fractal strings to be obtained. In particular,
such results can not be obtained through use of the geometric zeta functions of
ordinary fractal strings alone. With this in mind, can we randomize the theory in
order to deal with more realistic examples from the point of view of applications,
as was done in [3] for ordinary fractal strings?

In general, what other information can be uncovered in the world of fractals
by means of such zeta functions?
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