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Abstract

The projective hull X of a compact set X C P™ is an analogue of
the classical polynomial hull of a set in C". In the special case that
X C C™ C P", the affine part X N C™ can be defined as the set of
points z € C” for which there exists a constant M, so that

Ip(x)] < MY sup p|

for all polynomials p of degree < d, and any d > 1. Let )?(M) be the
set of points z where M, can be chosen < M. Using an argument
of E. Bishop, we show that if ¥ C C? is a compact real analytic
curve (not necessarily connected), then for any linear projection
7 : C? — C!, the set (M) Nw~1(2) is finite for almost all z € C.
It is then shown that for any compact stable real-analytic curve
v C P, the set Y— is a 1-dimensional complex analytic subvariety
of P" — ~. Boundary regularity for 7 is also discussed in detail.

*Partially supported by the N.S.F.



§1. Introduction. The classical polynomial hull of a compact subset X C C" is the
set of points x € C” such that

Ip(z)] < sup|p| for all polynomials p. (1.1)
X

In [4] the first two authors introduced an analogue for compact subsets of projective space.
Given X C P", the projective hull of X is the set X of points z € P" for which there
exists a constant C' = C, such that

|P(z)]| < C¢ 81)1(p | P for all sections P € H°(P™, O(d)) (1.2)

and all d > 1. Here O(d) is the dth power of the hyperplane bundle with its standard
metric. Recall that H?(P™, O(d)) is given naturally as the set of homogeneous polynomials
of degree d in homogeneous coordinates. If X is contained in an affine chart X ¢ C™ C P”
and x € C", then condition (1.2) is equivalent to

Ip(z)] < MY Sl)l(p Ip| for all polynomials p of degree d (1.3)

and all d > 1 where M, = p\/1+ ||z||2C, and p depends only on X. Therefore the set

X N C™ consists exactly of those points z € C™ for which there exists an M, satisfying
condition (1.3).

This paper is concerned with the case where X = « is a real analytic curve. In [4]
evidence was given for the following conjecture.

CONJECTURE 1.1. Let v C P be a finite union of simple closed real analytic curves. Then
~ — v is a 1-dimensional complex analytic suvariety of P™ — ~.

This conjecture has many interesting geometric consequences (See [5], [6], and [7] ).

The assumption of real analyticity is important. The conjecture does not hold for all
smooth curves. In particular, it does not hold for curves which are not pluripolar.

One point of this paper is to prove Conjecture 1.1 under the hypothesis that the
function C,, is bounded on 4. We begin by adapting arguments of E. Bishop in [2] to prove
the following finiteness theorem.

THEOREM 1.1. Let v C C? be a finite union of simple closed real analytic curves. Set
v = {r€AnC?*: M, < M}

where M, is the function appearing in condition (1.3). Let m : C?2 — C be a linear
projection. Then
Ay N7 1(2) is finite for almost all z € C.

Consequently, ¥ N w~1(z) is countable for almost all z € C.

In section 3 this theorem is combined with results from [4] and the theorems concerning
maximum modulus algebras to prove the following. A set X C P™ is called stable if the
function C, in (1.2) is bounded on X. Note that if X is stable and X € C™ C P", then
the function M, is bounded on C™ by p\/1 + ||z||2.

THEOREM 1.2. Let v C P™ be a finite union of simple closed real analytic curves. Assume
v is stable. Then 7 — v is a 1-dimensional complex analytic subvariety of P™ — ~.



§2. The Finiteness Theorem. Let X be a compact set in C™ and denote by Py the
space of polnomials of degree < d on C".

DEFINITION 2.1. Denote by X NC" the set of all # € C" such that there exists a constant
M, with
[P(z)] < M -sup|P| (2.1)
X
for every P € P; and d > 1. The set X NC" is called the projective hull of X in C™.

As noted above, the projective hull, defined in [4], is a subset of projective space P",
and the set X N C" is exactly that part of the projective hull which lies in the affine chart
C™ C P". Closely related to Definition 2.1 is the following.

DEFINITION 2.2. Fix a number M > 1 and a point z € C"~!. Then we set

Xu(z) = {weC:|P(z,w) <M sup|P| VP € P, and Vd > 1}
X

and let X (z) = Unrs1 Xu(z)={weC:(zw) e X}.

We consider a special case of these definitions. We fix n = 2 and consider a simple
closed real-analytic curve X in C2. Let A denote the unit disk in C.

ThroREM 2.1. Fix M > 1. For almost all z € A, X;(2) is a finite set.

COROLLARY 2.1. For almost all z € C the set )A((z) is countable.

We shall prove Theorem 2.1 by adapting an argument, for the case of polynomially
convex hulls, by Errett Bishop in [2]. We shall follow the exposition of Bishop’s argument
in [10], Chapter 12.

DErINITION 2.3. The polynomial Q(z,w) = Zn’m Cnm 2" w™ is called a unit polynomial
if max,, m|Cpm| = 1.

DEFINITION 2.4. The polynomial Q(z,w) = 3, . cam2z"w™ is said to have bidegree
(d, e), for non-negative integers d and e, if ¢, = 0 unless n < d and m < e.

Note that degQ < d + e < 2deg Q.
DEFINITION 2.5. Fix M > 1. For each z € C set

Su(z) = {we C:|Q(z,w)| < (M) sup|Q| YQ € C|z,w] of bidegree (d,e) for d, e > 1}.
X

We now fix a number M > 1 and keep it fixed throughout what follows.
THEOREM 2.2. For almost all z € A, Sy/(2) is a finite set.

Theorem 2.1 is an immediate consequence of Theorem 2.2. To see this, fix z € A and
choose w € Xps(z). Choose next a polynomial @) of bidegree (d,e) and let 6 = deg Q.
Then

Qzw)| < M°|Qx < M¥|Q|x
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and so w € Sy(2). Since this holds for all such w, X;(z) C Sp(z). By Theorem 2.2
Sy (z) is a finite set for a. a. z € A. so )A(M(z) is a finite set for a. a. z € A. Thus
Theorem 2.1 holds.

We now go to the proof of Theorem 2.2.

LEMMA 2.1. Let Q be a plane domain, let K be a compact set in ), and fix zy € Q). Then
there exists a constant r, 0 < r < 1, so that if f is holomorphic on Q and |f| < 1 on Q
and if f vanishes to order \ at zy, then

If] < on K.

Proof. We construct a bounded and smoothly bounded subdomain Qg of Q with Qg C €,
20 € Qp and K C Q. Denote by G(zp, z) the Green’s function of £y with pole at z.

Then e~ (¢+H) is a multiple-valued holomorphic function on Qg with a single-valued
modulus e~ and this modulus is = 1 on 9. (H is the harmonic conjugate of G.)
Consequently, f

o~ NG+iH)

is multiple-valued and holomorphic on €2y, and its modulus is single-valued and < 1 on
0€)y. By the maximum principle for holomorphic functions, for each z € K, we have

f

o—NG1iH)

‘<1
at z and so

A

7(z) < et

G we get our desired inequality. [ ]

Putting r = sup, e™

LuvMA 2.2. Let Q be a bounded plane domain and K a compact subset of Q. Let L be
an algebra of holomorphic functions on €. Put ||¢|| = supg |¢| for all ¢ € L.

Fix f,g € L. Then there exist r, 0 < r < 1 and C' > 0 such that for each pair of
positive integers (d, e) we can find a unit polynomial F,; . of bidegree (d,e) such that

1Fac(f, o)l < CFerde. (2.2)

Proof. Choose a sub@main Q; of Q with K € Q1 € Q1 C Q. Choose Cy > 1 with
|f| < Co, |g| < Co on Q4. Consider an arbitrary polynomial

d e

and let h be the function F(f,g) in £. Fix a positive integer A. The requirement that
h should vanish at zy to order A imposes A linear homogeneous conditions on the ¢y,
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and hence has a non-trivial solution if A < (d 4+ 1)(e + 1). We may assume that the
corresponding polynomial F' is a unit polynomial. Since
d’h
dzv

(z0) = 0, v=0,1,..,A—1,

Lemma 2.1 gives us some 7, 0 < r < 1, such that

|h] < (Sﬂ)W) oA on K.

Q1

Since F' is a unit polynomial,

d e
A< DY lenmllfMg™ < (d+D(e+1)CFT on Q.

n=0 m=0

Hence for large C,
b < (d+1)(e+1)CETe < Corept,

We choose A = de. Since de < (d+1)(e + 1), we get
IF(f.g)ll = |Ih|| < Coterde

as desired. ]

NoTE . We shall apply this result to the case when K is the unit circle, Q is an annulus
containing K, and L is the algebra of functions holomorphic on €.

The curve X in our Theorem 2.2 is real analytic by hypothesis, and hence can be
represented parametrically:

where f, g are functions in L.

LEmMA 2.3. Let r,C and Fy. be as in Lemma 2.2. Fix o, r < ro < 1. Then there exists
do such that
(MC)dte . pde < pde for d,e > dy. (2.3)

Proof. We write ~ for “is equivalent to”.

(2.3) ~ (MC)™e < (%O)d
~ (d+e)log(MC) < delog (%)
~ <% + é) log(MC) < log (%0) .
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The last inequality is true for d, e > dy for some suitable dy. We are done. [ ]
With M, r,r fixed, we choose dy as in (2.3). Henceforth, we tacitly assume d, e > d.

DEFINITION 2.6. Fix d, e and put F' = F, . as above. Then
F(z,w) = ZGj(z)wj
§=0

where for some j = jo, G, is a unit polynomial of degree < d. We define

T(de) = {z€A:]G;(2)| < ro—}

LEMMA 2.4. Let F be a unit polynomial in z, of degree k, and let o be a positive number.
Put A={z€ A:|f(2)| < a*}. Then

m(A) < 48a,

where m is two-dimensional measure.
Proof. This is Lemma 12.3 in [10], and a proof of it is given there.

LEMMA 2.5. Fix d,e. Fix a point z; € A —T(d, e). Then there exists a unit polynomial B
in one variable, of degree < e, such that for every wg € Sys(z1), we have

ae

|B(wo)| < 7¢” -

Proof. Define the polynomial A in one variable by A(w) = F(21,w), where F' = F;.. As
in Definition 2.6 then

Aw) = ) Gj(z)w?
j=0

and G, is a unit polynomial in z.
Since z; ¢ T'(d, e), we have

de

Gjo ()| > rg”. (2.4)
Fix wg € Spr(z1). Then
|F(z1,w0)| < MT-||F||x
< MAFegdte . pde by (2.2)
< rde by (2.3).

We shall divide A by its largest coefficient K. Note that
de
K| > |Gy (z1)] > ¢
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by (2.4). Put B(w) = A(w)/K. Then deg B < e and

| A(wo)| |F'(21, wo)| rge de
‘B<w0)‘ = = < —— = z
K] K] T
We are done. .

LEMMA 2.6. For each d,

Proof. Fix e and fix d. With G, as above, write G = Gj,. Then deg G < d. By definition
of T'(d,e), if z € T'(d,e), then

de e\ d e\ deg G
Ge) <y = () = ()

and so

Therefore,

m([T(d,e)] < m{zeA:|G(z)| < ak}
where a = r(;g and k = degG. By Lemma 2.4, m{z € A :|G(z)| < o} <480, and so
m[T(d,e)] <48 r(?, as was to be shown. n

DEFINITION 2.7. Fix e and and set

H.= {z:2€ A—-T(d,e) for infinitely many d}.

LEMMA 2.7. If 2* € H., then Sy;(2*) has at most e elements.

Proof. Fix z* € H.. Then there exists a sequence {d;} such that z* € A —T(d;,e) for
each j. By Lemma 2.5, for each j there is a unit polynomial B; with deg B; < e such that

dje

|Bj(wo)| < 19% for each wo € Sp(2"). (2.5)

Sincedeg B; < e for all j, and each B; is a unit polynomial, there exists a subsequence
of the sequence {B;} converging uniformly to a unit polynomial B* on compact sets in the
w-plane. Because of (2.5), B*(wy) = 0 for each wg € Sp(z*). Also, deg B* < e. Hence
the cardinality of Sys(z*) is < e. We are done. u

Proof of Theorem 2.2. Our task is to show that m{z € A : Sy/(z) is infinite } = 0. Fix
e. Fix z € A — H.. Since z ¢ H,., we have z € A —T(d,e) for only finitely many d, so
z € T(d,e) for all d from some d = k on. Therefore,

z € m T(d,e)
d=k
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and so

A_I—Ie g G

d=dy

By Lemma 2.6, m(T'(d,e) < 48 rge for each d. Therefore,

ﬂT(d,e)
d=Fk

m (N2 T(dye)) < 487§

for each k. So the right hand side of (2.6) is the union of an increasing family of sets each
of which has m-measure < 487¢. Thus (2.6) gives

Nl

m(A—H.) < 487r§. (2.7)
Also, by Lemma 2.7, we have
If z* e H., then #{Su (")} < e. (2.8)

Fix z € A such that the set Sp;(z) is infinite. Then z ¢ H, for each e, that is, z € A — H,
for all e. Hence, {z € A : Sy/(z) is infinite } C A — H,. Therefore

m{z € A: Sy(z) isinfinite } < m(A — H.) <48 rog

by (2.7). We now let e — oo and conclude that m{z € A : Sy(2) is infinite } = 0.
Theorem 2.2 is proved. ]

Proof of Corollary 2.1. Fix r > 0 and apply Theorem 2.1 to the curve p,.(X) where
pr: C2 — C2 is given by p,(z) = r2. Since p,(X N C2) = (p,X) N C2, we conclude that
Theorem 2.1 holds with A replaced by %A. |

THEOREM 2.3. Theorem 2.1 remains valid without the assumption that X is connected,
that is, it is valid when X is a finite union of real analytic simple closed curves in C?2.

Proof. Write X = 71 Uy, U --- U~y where each 7, C C? is a simple closed real analytic
curve. Choose a neighborhood €2 of the unit circle K in C and complex analytic maps
(fresgr) : Q. — C?, k = 1,..., N whose restriction to K is a parameterization of v;. We
now apply the following.

LuvMA 2.8, Let Q be a plane domain and K a compact subset of Q. Let £ be an algebra
of holomorphic functions on Q. Put ||¢|| = supy || for all p € L.

Fix fr,gr € L for k =1,..., N. Then there exist r, 0 < r < 1 and C > 0 such that for
each pair of positive integers (d,e) with d +e > N, we can find a unit polynomial Fy . of
bidegree (d, e) such that

|Fpe(fe,gn)ll < CHer®  for k=1,..,N. (2.9)

Proof. We fix a point zp € Q and choose Fy . so that Fy.(fx,gr) vanishes to order de/N

at zg for all k. This is possible if d +e > N. We then proceed as in the proof of Lemma
2.2. ]

One can now carry out the arguments given above for the case of one component. The
only difference is that in the estimates, r§ will be replaced by 7. [ ]
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3. The Analyticity Theorem. Let O(1) — P" denote the holomorphic line bundle of
Chern class 1 over complex projective n-space, endowed with its standard U(n+1)-invariant
metric || - ||. Following [4], we define the projective hull of a compact subset X C P™ to be

the set X of points x € P" for which there exists a constant C' = C,, such that
lo(@)|| < Cf SUp lo]l- (3.1)

for all holomorphic sections o € H°(P",O(d)) and all d > 1.

NotE 3.1. Recall that the holomorphic sections H°(P",O(d)) correspond naturally to
the homogeneous polynomials of degree d in homogeneous coordinates [Zy, ..., Z,] for P".
From this one can see (cf. [4, §6]) that if X is contained in an affine chart C" C P",
then X N C™ is exactly the “projective hull of X in C"” introduced in §2. Moreover, the
function M, appearing in (2.1) can be taken to be M; = py/1+ ||¢||?C, for ( € X N C™,
where p is a constant depending only on X.

For each z € X there is a best constant C(z) = min{C, : (3.1) holds Vo}. The set X

~

is called stable if the best constant function C'is bounded on X. We know from [4, Prop.
10.2] that if X is stable, then X is compact.

The point of this section is to prove the following projective version of the main
theorem in [9].

THEOREM 3.1. Let v C P™ be a finite union of real analytic closed curves and assume 7 is
stable. Then 7 — 7y is a one-dimensional complex analytic subvariety of P™ — ~.

NoTE 3.2. When this conclusion holds, one can show that, in fact, ¥ is the image of a
compact riemann surface with analytic boundary under a holomorphic map to P". We
will prove this in §4.

Proof. Assume to begin that n = 2. Since -y is real analytic, it is pluripolar, i.e., locally
contained in the {—oo}-set of a plurisubharmonic function (which is # —oc0). Therefore,
by [4, Cor. 4.4] we know that 7 is also pluripolar. In particular, it is nowhere dense. As
noted above, 7 is closed by stability. Hence, we may choose a point x € P? and a ball B
centered at x such that
7 ¢ P2-B.
Let
P2 - {z} — P! (3.2)
be linear projection with center x. This projection (3.2) is naturally a holomorphic line
bundle = O(1), and
P?-B - P! (3.3)
can be identified, after scalar multiplication by some constant » > 0, with its open unit
disk bundle.
Cover P! with two affine charts: Vy = P! — {0} and V,, = P! — {c0}, and assume
that y N 771(0) = yN 7~ 1(c0) = . By symmetry we may restrict attention to 7=1(V,).
This chart has an identification

7N (Va) 2 C? = {(z,w) : z,w € C}
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with the property that Vi, maps linearly to the z-axis and 7 can be written as 7(z, w) = z.
The subset P2 — B, intersected with this chart, is represented by

(P2-B)NC? = {(z,w): |w|* <|z]* +1}. (3.4)

Set

Q=C—-n(y) and U=710) =C* -1 Yn(v)).

ProprosITION 3.1. Let v C C? be a stable real analytic curve with the property that
ANC? C {(z,w): |w]® < |z)* +1}. (3.5)

Then ¥ N U is a 1-dimensional complex analytic subvariety of U.

Proof. Note to begin that since 7 is compact, condition (3.5) implies that
T:ANU — Q is a proper map. (3.6)

Consider now the algebra A of functions on 4 N U given by restriction of the holomorphic
functions on U, i.e.,

A = {flsy: feOW)}.

We now claim that (A,7NU, Q, 1) is a maximum modulus algebra, as defined in [1, pg.64].
Given (3.6) this means that we need only prove the following.

LEMMA 3.1. For each zy € Q and each closed disk D C Q centered at zy, the equality

Feowo) € s If (3.7)
yNr—1(8D)

holds for all f € A.
Proof. By hypothesis (3.5) there exists an R > 0 such that

ANa YD) C Dx Agys
where A, = {w : |w| < r}. In particular, we have that
ANA(D x Ag) = AN (ID x Ag) = N7 1 (OD). (3.8)
Now Theorem 12.8 in [4] states that
ANn7~ YD) = AN (D x Ag) C Polynomial Hull of 5 N (D x Ag).
Applying (3.8) gives
N7~ YD) c Polynomial Hull of ¥ N7~ 1(8D),
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and Lemma 3.1 follows immediately. ]

We have now shown that (A, 70U, Q, ) is a maximum modulus algebra. Furthermore,
since 7 is stable, we know from Theorem 2.1 that there exists an N > 0 such that

QN) = {z€Q:#(rn '(2)N7) < N}

has positive measure. (Since Q—J, (V) has measure zero.) It now follows from Theorem
11.8 in [1] that:

(i) @ =Q(N), and
(i) There exists a discrete subset A C Q2 such that ¥ N 7~1(Q — A) has the structure of a
Riemann surface on which every function in A is analytic.

Since A is the restriction of holomorphic functions on U to 7, condition (ii) implies that
ANT~1(Q—A) is a 1-dimensional complex analytic subvariety of 7=1(Q—A) = U —7~1(A).

It now follows that ¥ N U is a 1-dimensional complex analytic subvariety of U. To
see this, fix 2o € A and choose a small closed disk D C Q centered at zg with DN A = (.
The arguments above show that ¥ N7 ~1(D) is contained in the polynomial hull of the real
analytic curve ¥ N 7~ 1(dD). Applying standard results [1, §12] proves Proposition 3.1 =

Proposition 3.1 together with the discussion preceding it, give the following.

COROLLARY 3.1. The set ¥ — w~1(7v) is a complex analytic subvariety of dimension one
in P? — 77 1(7).

Observe that for every point y € P? — 7 there is a point x € P2 — 7 such that
m(y) ¢ w(y) where 7 is the projection (3.2) with center z. Consequently, Corollary 3.1
proves Theorem 3.1 for the case n = 2.

Suppose now that n = 3 and choose € P3 —7. The set of such z is open and dense
since 7 is a compact pluripolar set of Hausdorff dimension 2 (cf. [4, Cor. 4.4 and Thm.
12.5]). Let IT : P3 — {x} — P2 be the projection with center z. One sees easily that

I(7) C Iy,

and by the above ﬁ?y — I is a complex analytic curve in P? — IIy. Standard arguments
now show that 4 — v is a complex analytic curve in P? — . Proceeding by induction on n
completes the proof of Theorem 3.1. [ ]
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4. Boundary Regularity. The conclusion of Theorem 3.1 implies a strong regularity at
the boundary. For future reference we include a discussion of this regularity.

THEOREM 4.1. Let v C P™ be a finite union of real analytic closed curves, and suppose V
is a 1-dimensional complex analytic subvariety of the complement P™ — ~. Then

m l
V = UV] U U %4 where
j=1 k=m-+1

(1) Each V; is an irreducible 1-dimensional complex analytic subvariety of finite area in
P —~ whose closure Vj is an immersed variety in P™ with non-empty boundary ij =
consisting of a union of components of . In particular, there exists a connected Riemann
surface S;j, a compact subdomain W ; C S; with real analytic boundary, and a generically
injective holomorphic map

ijSj —s P with pj(Wj) = Vj

which is an embedding on a neighborhood of OW ; and has p;(OW ;) = ;.

(2) Each V| is an irreducible algebraic curve in P"™ with -, C Reg(V}) where v is a
(possibly empty) finite union of components of .

(3) The curve v is a disjoint union v = o U~y U -+ - U~y where 7y is also a finite union
of connected components of .

NoTE 4.2. When 7 is stable and V' =7, each ~y;, is non-empty for m < k < £.
Theorem 4.1 can be put into a more succinct form.

THEOREM 4.1’. Let v and V be as above. Then there exists a Riemann surface S (not
necessarily connected), a compact subdomain W C S with real analytic boundary, and a
holomorphic map p : S — P"™ which is generically injective and satisfies

(1) p(W) =V,
(2) p is an embedding on a tubular neighborhood of OW in S and
(3) p(OW) is a union of components of .

Proof of Theorem 4.1. We assume n = 2. The case of general n is similar.

We first note that V has finite area and finitely many irreducible components Vi, ..., Vj.
This follows from work of Shiffman, but can be seen directly as follows. Choose any
p € P2 -V and let 7 : P?2 — {p} — P! be projection. Then W}V is finitely sheeted over
P! —7(v), and therefore V has finitely many components. In fact W}V must also be finitely

sheeted over all of P1. To see this note that V' can contain no fibre of 7 since p ¢ V = VUs.
Hence, the intersection 7=1(z) NV for z € 7(v) is at most countable. If it were infinite,
one easily sees that the sheeting number in contiguous domains of P! — () is unbounded.
Choosing two distinct such projections and an easy estimate shows that the integral of the
projective Kéahler form on V' is finite.
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Now each irreducible component V; defines a current [V;] by integration whose bound-
ary is supported in 7. By the Federer Flat Support Theorem [3, 4.1.15],

aVj] = nj[v,]

where v; = supp 0[V}] is a union of connected components of v (appropriately oriented)
and n; > 01is a locally constant integer-valued function on 7;. Order the V; so that n; > 1
for j =1,...,m and n; = 0 (that is, 0[V}] = 0) for j > m.

Since 7 is a regularly embedded real analytic curve, it has a complexification X D v
which is a union of regularly embedded closed complex analytic annuli. Let ¥; denote that
part of ¥ which is the complexification of «; for j < m. Write ¥; = Z}" U~y; UX; where
Zf are the components of ¥; — v; with signs chosen so that X7 is the “outer strip”, that
is, so that

8E;r = 7;' — ;-

Consider the current [V*] = [Vj] + n; [Ej] which has

J

The structure theorem of King [8] implies that supp[V;’] is a 1-dimensional subvariety of
P2 — 7;'. It follows that V" is an analytic continuation of V; and in particular

n; =1 and E;r cVj.

Defining p; : S; — V" to be the normalization of V" and setting W, =p YV;)
completes part (1).

The remaining components of V' are algebraic curves. If one of them, say Vj, contains
a union ~y; of components of v, then it contains the complexification of 4 which is a union
regularly embedded of complex annuli. This proves part (2). Part (3) is obvious. n
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