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Abstract

We consider a class of Ising spin systems on a set A of sites. The sites are grouped
into units with the property that each site belongs to either one or two units, and the
total internal energy of the system is the sum of the energies of the individual units,
which in turn depend only on the number of up spins in the unit. We show that under
suitable conditions on these interactions none of the |A| Lee-Yang zeros in the complex
2z = e?P" plane, where [ is the inverse temperature and h the uniform magnetic field,
touch the positive real axis, at least for large values of 5. In some cases one obtains, in an
appropriately taken 8 ' oo limit, a gas of hard objects on a set A’; the fugacity for the
limiting system is a rescaling of z and the Lee-Yang zeros of the new partition function also
avoid the positive real axis. For certain forms of the energies of the individual units the
Lee-Yang zeros of both the finite- and zero-temperature systems lie on the negative real
axis for all 8. One zero-temperature limit of this type, for example, is a monomer-dimer
system; our results thus generalize, to finite 3, a well-known result of Heilmann and Lieb
that the Lee-Yang zeros of monomer-dimer systems are real and negative.

*Dedicated to Elliott Lieb on the occasion of his eightieth birthday, in friendship and
admiration.



1. Introduction

We consider a system of Ising spins on a finite set A of sites; we often think of A as a
subset of some lattice L. Writing ¢ = (0;);ea, with o; = +1, for a spin configuration, we
let N = N(cg) = > ,ca(1+0;)/2 be the total number of up spins. We will sometimes think
of this system as a lattice gas in which 7; = (14 0;)/2 is the indicator of a particle at site
i; N is then the total number of particles in the system and N/|A|, with |A| the number
of sites, the average density p. The average magnetization per site is m = |[A|71Y oy =
|A|71(2N — |A|) = 2p — 1. The thermodynamic properties of this system are determined
[1] by the partition function

Inzf) = 3 N U@ (1.1)
o:A—+1

where U (o) is the internal energy of the configuration o, [ is the inverse temperature, and
z is the magnetic fugacity, that is, z = €2 with h the magnetic field. Z, is a polynomial
in z of order |A|, with positive coefficients.

The zeros in the complex fugacity plane of Z,(z,3), usually called Lee-Yang zeros,
have been of interest since the original studies of Yang and Lee [2] and Lee and Yang [3].
For finite systems none of the |A| zeros can lie on the physically relevant positive real axis.
But when A is a subset of some periodic lattice . and U(g) is the restriction to A of a
translation invariant energy (with some boundary conditions), so that we may speak of the
thermodynamic limit A ' L, the zeros can in this limit approach the real axis, signaling
(typically) the existence of a phase transition in the model [2]. The nature of the phase
transition depends on the manner in which the zeros approach the positive z-axis as 8 or
other parameters in U are changed. Speaking loosely, there will be a discontinuity in the
magnetization per site, that is, a first order transition, at a value H of the magnetic field if
the density of zeros on the real axis at z = e?* is nonzero, and a higher order transition
if there is a nonzero density arbitrarily close to this point [2].

In their second paper [3], Lee and Yang proved that for the Ising model with ferro-
magnetic pair interactions, that is, for

U(Q) = — Z JijUin7 (12)

{i.g}en, i#j

with all J;; > 0, all the zeros of Z lie on the unit circle |z| = 1. Consequently, the only
possible thermodynamic phase transition in this system takes place at z =1 or h = 0. The
Lee-Yang theorem has been extended in many ways to a variety of classical and quantum
systems; see [4,5] for reviews. One can also prove in many cases that there is indeed a
first order phase transition at sufficiently large 3, so that the zeros must have a nonzero
density at z = 1 in the thermodynamic limit.

Much less is known rigorously for general spin systems in which the zeros do not lie on
the unit circle. This has led to numerical studies of these zeros for A a subset of a lattice L;
in particular, the cases in which L is either Z? or the planar triangular lattice, and in which
the internal energy is given by (1.2) with uniformly antiferromagnetic nearest-neighbor
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interactions, that is, with J;; = J&,_;| 1, J < 0, have been investigated extensively [6,7,8].
These systems can be proven to undergo phase transitions in the thermodynamic limit
A /L, for large values of 3, at nonzero values of h [9,10,11]. This implies that the zeros
of their partition functions must converge to the real axis at some point z(3) # 1. More
recently there have also been results for systems in which the zeros lie on the unit circle
for large (8 but not for small § [12]. In some cases they touch the real axis, either for finite
[ or in the limit 3 " co.

There have also been many studies of the Lee-Yang zeros of the grand canonical
partition function for general interacting particle systems on lattices or in the continuum.
Of particular interest to us is the case of “hard” interactions, in which for every particle
configuration n either U(n) = 0 or U(n) = oo; put another way, some configurations are
forbidden, while all others have no internal energy. Systems with such interactions can
often be obtained as a suitable § — oo limit of (1.2). In many interesting cases one may
then think of the model as a system of particles (which may or may not correspond to
the original particles) with fixed shapes, like dimers, diamonds, or hexagons, which cover
more than one lattice site and which cannot overlap. For such systems temperature plays
no role, so that the partition function does not depend on (; we will write y for the
fugacity of the new particles and Q(y) for the corresponding partition function. It has
been shown in particular for the case of dimers (on an arbitrary graph) that the zeros of
Qa(y) all lie on the negative real y-axis [13]; any system with this property will of course
not have any phase transitions in the thermodynamic limit. On the other hand, hard
diamonds on Z? and hard hexagons on the triangular lattice do have a phase transition in
the thermodynamic limit [9,14,15].

In this note we will first describe a new class of Ising systems for which no zeros touch
the positive real axis, at least for large 3 (low temperature). In some of these systems all
the zeros lie on the negative real axis, either for all values of § or for large (3; in others,
the zeros are excluded from some wedge —¢ < argz < ¢, where 0 < ¢ < w. We will then
investigate the “hard” systems obtained from some of these, after suitable rescaling, in the
limit $ — oo; these systems will similarly have no zeros of Q(y) encroaching on the real y-
axis and hence no phase transition. The models obtained in this way include the monomer-
dimer model [13] and the graph-counting models of [16,17]; our results thus generalize these
latter results to a wider class of “hard” systems and to related low-temperature models.

2. A class of systems with Lee-Yang zeros bounded away from the positive
real axis

We consider Ising spin systems decomposable into subsystems, called units, with the
property that each site belongs to either one or two units. Examples include the (three
dimensional) pyrochlore lattice [18,19], in which the units are tetrahedra, the (two dimen-
sional) kagome lattice (Figure 1(a)), in which the units may be taken to be either the
triangles or the hexagons, the checkerboard [20,12], in which the units are the alternate
squares of the two dimensional square lattice (Figure 1(b)), and the ladder, in which ev-
ery square is a unit (Figure 1(c)). We use the notation of Section 1 and write A, for
the set of sites of the o® unit, with |A,| = ne, and o, for the spin configuration and



N, = Nu(g,) = Nqu(o) for the total number of up spins in the a™ unit. Note that in
general N(o) < > N,(g) < 2N(g), since a site ¢ with 0; = 1 may belong to either one
or two units.

«
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(a) Kagome lattice (b) Pyrochlore checkerboard (c) Ladder
Figure 1: Lattices decomposable into units with each site in two units.

The internal energy U(g) of the system is assumed to be the sum of the internal
energies of the units,

Ue) = Ualo,), (2.1)
0%
and these are assumed to be symmetric in the spins of the unit, so that

Ua(0) = 3 Fa(Na(0)), (2.2)

with F, a polynomial of degree at most n,. We can think of (2.2) as a mean field interaction
among the spins in A,. The partition functions (1.1) for a single unit and for the entire
system thus become

< (Mo 4
I = Y ZNa@a)e—ﬁFa(Na(zanzz(l)zle ) (23)

Za(z,8) = Z N@ B, FalNal2)) (2.4)
Ui:il

We will prove in Section 3 that under certain conditions on the function F,, the Lee-
Yang zeros of Z,(z, 3) are bounded away from the positive real z-axis at low temperature
or, under stronger conditions, must lie on the negative real axis. The next result shows that
such bounds on the zeros of Z,(z, 3) follow from similar bounds on the zeros of Z, _ (z, ).

Theorem 2.1: Suppose that the angle ¢ satisfies 0 < ¢ < w/2. If each zero { of Zy_(z, 3)
satisfies

(#0, m—¢<arg(<m+9, (2.5)
then each zero (' of Zx(z, 3) satisfies

¢ #0,  7—2¢<argl <7+ 2¢. (2.6)
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In particular, if each ( is real and negative, so is each (.
Before proceeding to the proof of the theorem we give a simple example.

Example 2.2: If unit « has antiferromagnetic pair interactions of equal strength between
every pair of sites then its internal energy may be written, after adding a constant, as

Fo(Na(gn)==J Y (0i0;—1)==2]J|Na(na — No),  J<0.  (2.7)
{i,j}CAa, i#j

We consider several cases in which each unit has energy of the form (2.7).

(a) The one-dimensional nearest neighbor antiferromagnetic Ising model, defined on A =
{1,...,n}, may be regarded as a model of this type in which the units are the pairs «; =
{i,i+1}, all with the same coupling J. From (2.7) we then have Z,, (z,8) = 2> +2az+1
with a = €??l7/! > 1; this polynomial has two negative real zeros and hence, by Theorem 2.1,
the zeros Z(z, ) are negative real.

(b) When the only interactions considered for the checkerboard of Figure 1(b) are pair
interactions then one may term the system the pyrochlore checkerboard [20], since if each
pair of vertices in a square are connected with edges one obtains a planar representation
of a tetrahedron. To be concrete we choose, for example, a 2L x 2L lattice with doubly
periodic boundary conditions. It is then possible to check that with the unit energy (2.7),
with of course n, = 4, all four zeros of Z,_(z,3) are on the negative real axis (this is in
fact verified for arbitrary values of n, in Theorem 3.1 below). Theorem 2.1 then states
that the zeros of Z, will all lie on the negative real axis; since this remains true as A Z2,
the system will not have a phase transition at any finite temperature. In fact the pressure
and all correlations will be analytic functions of h for all h € R.

(c) The ladder (Figure 1(c)) illustrates the fact that two units may share several vertices
and thus an edge. Note, however, that the form (2.2) of the total energy implies,with (2.7),
that the coupling constant for these shared edges (vertical in Figure 1(c)) is twice that for
the unshared (horizontal) edges.

2.1 Proof of Theorem 2.1

The proof of Theorem 2.1 depends on two standard results, which we quote for com-
pleteness; see the Appendix of [21] for more details. We let A,, denote the space of complex
polynomials in z1, ..., z,, which are separately affine in each variable, and observe that if
P is a complex polynomial of degree at most n then there is a unique symmetric P € A,
such that P(z,...,z) = P(z). A closed circular region is a closed subset K of C bounded
by a circle or a straight line.

Theorem 2.3 (Grace’s theorem): Let P be a complex polynomial in one variable of

degree at most n. If the n roots of P are contained in a closed circular region K and
z21¢ K,...,z, ¢ K, then P(z1,...,2z,) # 0.

If P is in fact of degree k£ with £ < n then we say that n — k roots of P lie at oo and
take K noncompact. For a proof of the result see Polya and Szegd [22] V, Exercise 145.
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Lemma 2.4 (Asano-Ruelle) [23,24]: Let K1, Ky be closed subsets of C, with K1, Ky Z 0.
If @ is separately affine in z; and zo, and if

D(z1,29) = A+ Bzy +Czo+ D212 #0
whenever zy ¢ K; and zo ¢ Ko, then
P(z)=A+Dz#0
whenever z ¢ —K; - Ky. [We have written —K; - Ko = {—uv : u € Kj,v € Ks}].

The map ® — ® is called Asano contraction; we denote it by (z1,22) — z. To state
the next result we define, for € > 0 and —7/2 < 0 < 7/2, Kg(e) = {2 : Re[e? (2 +¢)] < 0}.

Lemma 2.5: If ¢ is as in Theorem 2.1 and P is a complex polynomial each of whose
zeros ( satisfies (2.5), then for any 6 with || < w/2 — ¢ there is an € > 0 such that

A

P(z1,...,2n) # 0 when 21, ..., 2, ¢ Kgy(e).

Proof: Clearly there is an € > 0 such that P(z) # 0 when z ¢ Ky(¢), and the result follows
from Grace’s theorem. m

Lemma 2.6: Suppose that ¢ is as in Theorem 2.1 and that P;(z), i = 1,...,1, is a
polynomial of degree n; each of whose zeros ( satisfies (2.5). Suppose further that the
polynomial Q(z1, ..., z,) is obtained from the product

I
Hpi(21717 .. '7217711)
=1

by a sequence of Asano contractions (z; j, zx,1) — zm or relabelings z; j — z,. Then each
zero ' of Q(z) satisfies (2.6).

Proof: For each 0 with [0] < 7/2 — ¢ we obtain from Lemma 2.5 and the Asano-Ruelle
lemma that for some € > 0, Q(zl, ...y 2n) # 0 when each of 21, .. ., z, lies in the complement
of the set —Ky(€) - Ky(e). This complement is the interior of a parabola with focus at 0
and in particular contains the ray making an angle 26 with the positive real axis. As 6
varies in 0 € (—7w/2+ ¢, /2 — ¢) this ray sweeps out the complement of the region defined
by (2.6). m

We can now give the proof of the main result.

Proof of Theorem 2.1: 'The main statement of the theorem is an immediate consequence
of Lemma 2.6, since Z(21,...,2s|) is obtained from [], Za(2a1; - - -; Zan,) by Asano con-
tractions and relabelings. The last statement follows by taking ¢ =0. =

In Section 3.1 below we will need the following corollary of Lemma 2.6.

Corollary 2.7: Suppose that P(z) is a polynomial of degree n for which each zero ( is
real and negative. If () is obtained from P by squaring all coefficients, then each zero ('
of Q) is real and negative.

Proof: Take ¢ = 0, I = 2 and P, = P, = P in Lemma 2.6 and make all contractions
(le,ZQj) — z;. N



3. Zeros of the partition function of a single unit

In this section we consider a particular unit « with n, sites, energy F,(N,), and
partition function Z,_, and address the question implicitly raised by Theorem 2.1: when
are all zeros of the function Z,_ confined to a sector of the form (2.5) for some ¢7? In
Section 3.1 we give a criterion which guarantees that for all 5 these zeros satisfy (2.5) with
¢ = 0, and in Section 3.2 several criteria implying bounds of the form (2.5) for various
values of ¢.

3.1 A quadratic interaction energy
Theorem 3.1: Suppose that F,(l) is quadratic with positive leading coefficient: F,(l) =
al? + bl + ¢ with a > 0. Then for any 3 > 0 all zeros of Zx_(z, 3) are real and negative.

Note that if F,,(I) = al® + bl + ¢ then the constant c is irrelevant, the constant
b represents a shift in the magnetic field, and the constant a may be absorbed into the
inverse temperature; thus we may (and will) assume without loss of generality that F,, (l) =
—l(n —1). In the spin language this is an energy in which every pair of spins in the unit is
coupled with the same antiferromagnetic interaction and there is a uniform magnetic field,
as in Example 2.2; in the lattice gas language particles on each pair of sites interact with
the same positive repulsive potential and there is a uniform chemical potential.

Lemma 3.2: Ifb > 0, the polynomial

n

Py(z) =Y (7) (1+ bl(n — 1))

1=0
has only real negative zeros.

Proof: We have )
— -2
Pay(z) = (z+1)" +bn(n -1 Z (7_1) l
=1

=(z+1D)"+bn(n—1)z(z+1)"
=(z4+1)" 222+ (2+bn(n—1))z+ 1],
which has only real negative zeros. m

Proof of Theorem 3.1: Starting from P-xg) as in Lemma 3.2, we obtain by k applications
of Corollary 2.7 that the polynomial

3 (7) (14 Bl(n —1)277)2" ! (3.1)
=0

has only real negative zeros. Letting k — oo we find that

Zn (2, ) = Xn: (7) eBln=0) 1 (3.2)

=0
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has only nonpositive real zeros, and we need only observe that the constant term in (3.2)
is nonzero. =

Remark 3.3: (a) If we consider the system to be comprised of a single unit, i.e., take A, =
A, then Theorem 3.1 implies that in the mean-field Ising model with antiferromagnetic
interactions all Lee-Yang zeros lie on the negative real axis.

(b) If we consider this same system but with ferromagnetic pair interactions, which is
equivalent to taking 5 < 0 in (3.2), then the standard Lee-Yang theory implies that all
zeros of Z lie on the unit circle.

3.2 A convex interaction energy

When F,, is as in Theorem 3.1 it is convex on the range 0 <[ < n, in the sense that
2F, (1) < Fo(l+ 1)+ Fo,(l—-1), I=1,...,n6— 1. (3.3)

In this section we consider a unit energy F,(l), not necessarily quadratic, which satisfies
(3.3).

We begin by introducing some notation to describe such an F,, more precisely. Let
0=ko<ks <-<kr_1 <k, =n, be indices such that strict inequality holds in (3.3) if
and only if [ = k; for some ¢ with 1 < ¢ < r — 1. To understand the role of these indices
it is helpful to introduce a geometric interpretation. Let f,(z) be defined on the interval
[0, 4] as the linear interpolation of the nodes (I, F,(1)), I = 0,1,...,ny, and let f* C R?
be the epigraph of fo: fi = {(x,y) | z € [0,n4], y > fa(x)}. Then f¥ is a convex subset
of R? with two vertical faces and r nonvertical faces. The vertices of f are the nodes
(ki, Fo(k;)); all other nodes (I, F, (1)) are interior points of the (nonvertical) faces of f7.
See Figure 2. For 1 < i < r we define H,; to be the slope of the (nonvertical) face of
[ containing (k;_1, Fo(ki—1)) and (k;, Fi(k;)), and note that H,; = Fu(l) — F, (I — 1)
whenever k; — 1 <[ < k;. Finally, for h € R we define

Eo(h) = min (Fa(l) — hl). (3.4)

We will be interested in Section 4 in the set S, (h) of values of [ on which the minimum in
(3.4) is realized; clearly if h is not equal to any of the H, ; then S, (h) contains a unique
I, while for h = H, ; it contains those [ for which (I, F,(l)) lies in the i*" nonvertical face
of fx.

The next result shows that at low temperature the zeros of Z,_ fall into r groups,
where the i'" group is naturally associated with the i*" nonvertical face of f and contains
k; — k;_1 points, all with magnitude of order e #Hei,

Lemma 3.4: Fort=1,...r let

Ri(t) = i <7”;a)tj—ml

j=ki—1

7



Figure 2: Typical set f*, with n, =8, r =5, and (ko,...,ks) = (0,3,4,5,7,8).
Nodes (I, F, (1)) are indicated by dots, with heavier dots when [ = k; for some i.

and let t; 1 ...t k,—k,_, be the zeros of R;. Then one may number the zeros z1,...z,, of
Zy,, in such a way that for k;—1 < j < k;,

lim z; ePH

A
ﬂ—)OO - tl:]_ki—l'

Proof: For | < ki_y or | > k; the coefficient of t' in the polynomial
Rpalt) = /P12, (1P, )

n
_ kiRt 3 o\ l g B(Fa ()~ Ha i1~ Fa (Ha,0))
(*) ( l ) c
l<k;_q1 or I>k;

converge to zero as 3 /" oo. Thus k;_; of the roots converge to 0, n, — k; to infinity, and
the remaining k; — k;_1 to the roots of R; [25]. m

To state the main result of this section we let § = maxj<;<,(ki — k;—1); 6 + 1 is the
maximum number of nodes lying on any nonvertical face of f7.

Theorem 3.5: (a) If 6 =1, i.e, if all the inequalities in (3.3) are strict, then all roots of
Zy,, are real and negative for sufficiently large (3.

(b) If § = 2 then all roots of Z, satisfy (2.5) with ¢ = w/3 for sufficiently large (3.

(c) If § = 3 then there is an angle ¢, , which as indicated may be chosen to depend only
on ng, such that ¢, < m/2 and such that all roots of Z_, satisty (2.5) with ¢ = ¢, for
sufficiently large [3.

(d) If ky < 4 and k,_1 < n, — 4 with at least one of these an equality, and k; — k;—1 < 3
fori—2,...,r — 1 so that § = 4, then there is an angle ¢, < 7/2 such that all roots of
Zy,, satisty (2.5) with ¢ = ¢, for sufficiently large [3.

Proof: (a) When 6 = 1 each of the polynomials R;(t) is linear, with a negative real root.
From Lemma 3.4 the roots of Z,_ for large # must be widely separated in magnitude, and
since any complex roots among these occur in complex conjugate pairs, the roots must in
fact be real.



(b) It follows from Lemma 3.4 that argz; — argt; j_r, , as 8 / oo, so that it suffices to
show that each root t;; satisfies |argt;; — 7| < m/3. When ¢ = 2 the R;(¢) are either linear,
with roots having argument 7, or quadratic; in the latter case the quadratic formula shows
that the roots t;; are complex, have negative real part, and satisfy

. 4(]{72 — 1)(na + 1-— kl)
_\/ TR —1< 3, (3.5)

Im tij
Re tij

which yields the desired bound. Improved bounds on the roots for specific values of k; and
n. may be obtained from (3.5). For example, if i = 1 then k1 = 2 and one obtains (2.5)
with ¢ = 7 /4 for the smallest (in magnitude, at large 3) two zeros of Z,_, a result closely
related to earlier work of Ruelle [16], as we discuss in Section 5.

(¢) When § = 3 the polynomials R; can be linear, quadratic, or cubic; following the analysis
of (b) it suffices to show that in the cubic case all roots have negative real part. Up to a
constant factor any such cubic R; has the form

k(k —1)(k — 2) + k(k — 1)(n+3 — k)t

+k(n+3—k)n+2—k)t*+(n+3—k)(n+2—k)(n+1—Fk)}, (3:6)
where n = n, and k = k;. For n = k = 3 this polynomial has a triple root at z = —1;
we may then vary n and k continuously to some desired values and ask whether roots can
cross the imaginary axis during this procedure. We may assume that the intermediate
values of n, k remain real and satisfy n,k > 3 and n — k > 0. Suppose (3.6) vanishes for
t = is, s real. We cannot have s = 0 since k(k + 1)(k + 2) # 0. For s # 0 we would have
both
(k—1)(k-2)=(n—k+2)(n—k+3)s?

and
kE(k—1)=(n—k+1)(n—k+2)s?
so that (n —k+1)(k—2) =k(n—k+ 3), i.e., n+ 1 =0, in contradiction with n > 3.

(d) We suppose that k1 = 4; the analysis when k,_; = n, —4 is the same. With the results
(a)—(c) above it suffices to show that the roots of

4
Ri(t) = no‘)tl 3.7
0=3( (3.7
satisfy an appropriate bound of the form (2.5). The roots of R;(t) are all equal to —1 for
n, = 4 and, treating n, as a continuous variable, can have the form ¢t = is, s real, only
for n, a root of n? 4+ 9n — 4 = 0; as both the roots of this polynomial are less than 4 the
roots of Ry for n, > 4 must all lie strictly in the left half plane. =

Remark 3.6: (a) A classical result of Newton provides a converse to Theorem 3.5(a): if
all roots of Z,_ are real for some 3 then either equality holds for all [ in (3.3), in which
case F,(l) = A+ Bl for some A, B, there are no interactions, and all roots of Z,_ are
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equal, or strict inequality holds for all [ in (3.3). For a proof see [26], page 104. Other
related results are contained in [27,28,29]. In particular, (a) of the theorem follows from
the result of [27].

(b) By taking k ~ n,/2 one sees that there is no bound (2.5) on the roots of (3.6) which
is uniform in n, and k and satisfies ¢ < 7/2. On the other hand, one can show that such

a uniform bound may be found both for the roots of (3.6) for fixed k and for the roots of
(3.7).

3.3 An example: quartic and quadratic interactions

As an example we consider a unit with two and four spin interactions which satisfy
spin flip symmetry. In the particle language described in Section 1 the energy is

Ua(g) = — K> Z (ninj + 77277]) — Ky Z (Hz‘eX ni + HieX 772) )
1<i<j<n Xc{1,...,n}
| X |=4

where 7; =1 —n;, i.e.,

Fo(l) = — K K;) " (na; l)] e Kfl) " (na‘l_ l)] |

We assume that Ko and K, are not both zero. The convexity condition (3.3) is satisfied
with strict inequality for all [ if

K
2K2+74 [(1=1)(1=2)+ (o — 1 = 1)(ny —1—2)] <0
for l =1,...,n — 1. This happens when

O, < arg(Ko+iKy) < én,,, (3.8)

where the angles ¢,, and 6,, are given by

4
n— s 2<6, )
tan 6 CED ) T/2<0,<m7
— 8 if n is even
tan ¢,, = (n—82)(n—4) 3n/2 < ¢, < 2.
—m, lfTLlS Odd,

See Figure 3. Under condition (3.8), Theorem 3.5(a) implies that Z,_ has its zeros on the
negative real axis at low temperature, and hence by Theorem 2.1 so does Z,, if all units
in the system are of this type. Note that in particular (3.8) includes the negative Ks-axis,
where we know from Theorem 3.1 that the zeros are real and negative at all temperatures.
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Figure 3: In the shaded region (which extends to —oo in both
the x and y directions) all zeros are real and negative at low temperature.

For nonzero values of K5 and K4 not satisfying (3.8), Remark 3.6(a) implies that the zeros
do not lie exclusively on the real z-axis for any (.

If we specialize further to the case n, = 4, in which ,, = tan~!(—2) and ¢,, = 37/2,
then the region in the space of interactions at which all zeros are on the negative real axis
can be computed exactly. Since a change of temperature is equivalent to a rescaling of
(K3, K4) it is convenient to take 5 = 1; then this region is given by

4a — 3 .
S Ky > log{ o }, if Ky >log(3/4),

—00, otherwise,

2a4

[3 — /9= 8a2
log | 2 Y2 5%

where a = e®2. See Figure 4. The computation follows that in the proof of Proposition 6
of [12], and we omit details.

4. Ground states and zero temperature limits

Consider a system which is assembled from units, as described in Section 2, such that
the energy F, for each unit is convex in the sense of (3.3). In this section we suppose
further that each site belongs to exactly two units.

Let us fix, for the moment, a magnetic field hg. The total energy of the system in
spin configuration g, including the magnetic energy, is then

U(g) - 2hoN(2) = Y [Fa(Na(0)) — hoNa(2)]- (4.1)

«

From (4.1) and (3.4) it follows that this energy is bounded below by Ey = )" Eqs(ho). On
the other hand, if we recall the definition of S, (h¢) given below (3.4) we see that Ej is in
fact the ground state energy of the system—the minimum value of (4.1)—if and only if it
is possible to find a spin configuration ¢ such that N, (¢) € S, (ho) for each a. When this
is true we say that the system is not frustrated.
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Figure 4: The case n, = 4. When 8 =1 all zeros are real and negative
if and only if (K5, K4) lies in the shaded region (which extends
to —oo in both the z and y directions).

Now we assume that our system is not frustrated and consider a zero temperature
limit 3 /" oo with a 3-dependent fugacity z(8) = e?*"®) such that h(3) — ho as § " oo;
specifically, for some A € R we take

A
h(B) = ho + —. 4.2
()= o+ 35 (42)
In the h-T phase plane (where T' = 1/ is the temperature) this corresponds to approaching
(ho,0) along a line with slope 2/X [30]. Then with y = e* the limiting partition function

1S

Qaly,ho) = lim "2, (2(8), )

= lim ZyN(g)e—B(U(g)—%oN(g)—Eo) — Z yN (@D (4.3)
brety €6 (ho)

where G(ho) is the set of ground-state configurations. We are of course interested in the
behavior of the zeros of Z; under the limiting process (4.3). If Nuin(ho) = mingeg(n,) N (o)
and Npax(ho) = maxyeg(ny) V(o) then Ny, zeros will converge to 0 and |A| — Nyax to
oo [25], while the remaining zeros converge to the (nonzero) roots of y=NminQ (y, ho).
When for each a one has |S,(ho)| = 1, that is, when hg # H,; for any a1, there
is a unique ground state configuration and Q(y, ho) is rather uninteresting. When there
are many ground state configurations, however, they can in some cases be identified with
configurations of “hard objects” and Q(y, Hp) is then the partition function for these.
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In the next example we illustrate these ideas by revisiting Example 2.2(b). In Section 5
we describe a family of examples involving graph-counting polynomials.

Example 4.1:  We consider again Example 2.2(b): pair interactions on a 2L x 2L
pyrochlore checkerboard with doubly periodic boundary conditions. The unit energy of
the model is given in (2.7), with n, = 4 for all a. Since the energy for all units has the
same form F,(I) = —2|J]i(4 — ) we will omit the subscript o on F' and similar quantities
when no confusion can arise. The fields H; = F(I) — F(Il — 1) defined in Section 3.2 are
H, = —6‘J|, H; = —2|J‘, H; = 2‘J|, and Hy = 6‘J| For H; < hg < Hl+1 (Wlth Hy=—-x
and Hs = 00) the zero temperature limit along the line (4.2) is independent of A and the
ground state configurations each have exactly [ up spins in each unit, that is, N, = [ for
each a. If we take the T — 0 limit of the partition function along a line (4.2) with hg = H;
we obtain ground states in which both N, =1 and N, = [ — 1 are possible, with the total
value of N controlled by the fugacity y = e*. The situation in the h-T plane is shown in
Figure 5, with a typical line (4.2) for hy = H; = —6|J]|.

) T
slope 2/A 7

/
/

I I | I h I
—6[.J] —2[J| 2|J| 6[.]

Figure 5: The h-T plane for the pyrochlore checkerboard with pair interactions.

We may interpret the ground state configurations in terms of hard objects by con-
sidering dimers on the new lattice A’ obtained from A by shrinking each unit to a vertex
and introducing an edge joining two of these points when the corresponding units share a
site; A’ is again a square lattice with certain periodic boundary conditions. An occupied
site in A corresponds to a dimer covering the corresponding edge in A’, so that a ground
state for H; < hg < Hjy1, with with N, = [ for each «, corresponds to a dimer configu-
ration on A’ in which every vertex is covered by exactly [ dimers. In a ground state with
ho = H; each site of A’ is covered by either [ or | — 1 dimers. Thus, for example, for
ho = Hy = —6|J| these are monomer-dimer configurations; for hg = Hy = —2|.J| they are
a restricted class of unbranched subgraphs [17]. In each case, Theorem 3.5(a) implies that
all zeros of the partition function lie on the negative real axis, a result originally obtained
for the monomer-dimer system (in much more generality) in [13].

5. Graph-counting polynomials

Consider a graph G with sets V of vertices and F of edges, such that each edge
connects a pair of distinct vertices. Note that such graphs may have several edges joining
the same pair of vertices. We let dy be the maximum vertex degree in G. A subgraph M
of G is a graph with vertex set V' and edge set contained in E; |M| denotes the number
of edges of M and for any vertex v € V' we let djs(v) denote the vertex degree of v in M
that is, number of edges of M incident on v.
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A graph-counting polynomial [16] is a polynomial

Qo(y)= > y™,
Me(C)
where (C) is the collection of subgraphs of G associated with some set C' of nonnegative
integers via (C) = {M | dy(v) € C, Yv € V}. For C = {0,1}, (C) is the class of dimer
subgraphs of G in this case it was shown by Heilmann and Lieb [13] that all the zeros of
Q¢ are real and negative. For C' = {0,1,2}, (C) is the set of unbranched subgraphs of
G and it is shown in [17] that the zeros of Q¢ lie in the left half plane; results for other
choices of C are given in [16]. In this section we study Q¢ for C a nonempty interval
Cpq ={p,p+1,...,q} of nonnegative integers.

Given the graph G and the set C},; we introduce a statistical mechanical system of
the type described in Section 2. In this system A = F; we may think of starting with a
geometric realization of the graph and then putting a site of A at the center of each edge.
For each v € V there is a unit «, which contains those sites of A which correspond to
edges of GG incident on v. Since in G each edge is incident on two vertices, this system has
the property, assumed in Section 4, that every site belongs to exactly two units. Finally,
we introduce a unit energy F'(I), 1 =0,1,...,do(G), the same for all units, which satisfies
(3.3) and is such that, with k; the indices defined in Section 3.2, (i) p = k;—1 and ¢ = k; for
some 4, and (ii) k; = kj—1 + 1 for all j # 4. In other words, the it? nonvertical face of the
convex set f* associated with F' (see Figure 2) contains the nodes (I, F(1)) for i =p,...,q,
and all other faces contain exactly two nodes.

Now consider the limit (4.3) with hg = H; = (F(q) — F(p))/(q¢—p). The ground state
configurations at magnetization H; are precisely those in which N,, € C,, for each v,
and the assumption that the system is not frustrated is precisely the assumption that such
configurations exist. Each such configuration, however, has an immediate interpretation as
a subgraph of GG: an edge e € E belongs to the subgraph if and only if the corresponding site
in A is occupied (using the lattice gas language). With this identification the ground state
configurations then give rise precisely to the subgraphs belonging to (Cp,), and the limiting
partition function Qa(y, H;) is the same as the graph-counting polynomial Qcpq(y).

The next result, which describes the behavior of the zeros of Q¢,, for certain choices
of p, q, follows immediately from Theorem 3.5.

Theorem 5.1: Suppose that p and q are such that (Cp,) is nonempty. Then:
(a) If g = p+ 1 then all the nonzero roots of @Cpq (y) are real and negative.

(b) If ¢ = p + 2 then all the nonzero roots of @Cpq (y) satisty (2.6) with ¢ = /3.

(c) If ¢ = p+ 3 then there is an angle ¢, which may depend on p, q, and do(G) but not on
the size of the graph, such that ¢ < m/2 and such that all the nonzero roots of Qcpq(y)
satisfy (2.6) with the angle ¢.

(d) If p=0 and ¢ = 4 or p = do(g) — 4 and q = do(G) then there is an angle ¢ < 7/2,
which depends on do(G) but may be chosen uniformly in the size of G, such that all the
nonzero roots of Qcpq (y) satisty (2.6) with the angle ¢.
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