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Abstract

We formalize various properties of characteristic functors on p–groups,
and discuss relationships between them. Applications to the Thompson
subgroup and certain of its analogues are then given.

1 Introduction

In a now classical paper ([8]), John Thompson introduced, for p a prime number
and S a p–group, the subgroup JR(S) (there denoted by J(S)) generated by
the abelian subgroups of S of maximal rank :

JR(S) ≡def.< A ∈ ab(S)| m(A) = max
B∈ab(S)

m(B) > , (1.1)

where ab(S) denotes the set of all abelian subgroups of S, and, for C an abelian
group, m(C) denotes the minimal cardinality of a generating system of C.

Later on, in [2], Glauberman modified that definition to :

J(S) ≡def.< A ∈ ab(S)| |A| = max
B∈ab(S)

|B| > . (1.2)

Thompson had formulated a p–nilpotence criterion using JR ; this work was
later built upon by Glauberman ([2]) with his ZJ–Theorem, and by Thompson
himself ([9]). For the prime p = 2, it is often more convenient to work with the
subgroup Je(S), defined using elementary abelian subgroups instead of abelian
ones :

Je(S) ≡def.< A ∈ abe(S) | |A| = max
B∈abe(S)

|B| > (1.3)

where abe(S) denotes the set of elementary abelian subgroups of S.
The functors Je, JR and J are excellently abelian–generated characteristic

p–functors in the sense of §3 below. In §4, we shall establish various reduction
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results concerning such objects ; most notably, in certain cases, the normality of
W (S) in G (for S ∈ Sylp(G) and W a characteristic p–functor) can be inferred
from the (apparently much weaker) property of control of p–nilpotence by W
(see Theorem 4.1(2)). In the fifth paragraph, we shall specialize our results to
the prime p = 2 and the functors Je and Ĵ (for the definition of the last one of
which see [3]), and shall henceforth refine, in a very particular case, Thompson’s
Factorization Theorem ([9],Theorem 1(c)), thus recovering the results of [6].

In the course of the proof some reduction lemmas of independent interest,
concerning normality of p–subgroups, and control of p–nilpotence, will be es-
tablished.

Our notations are standard : for G a (finite) group and p a prime number,
Op(G) will denote the largest normal p–subgroup of G, Op′ (G) the largest nor-
mal subgroup of G with order prime to p, and Z(G) the center of G. We set
o(G) = |G|, re(G) = m(G) if G is an elementary abelian p–group for some prime
p, and re(G) = 0 else; for (x, y) ∈ G2 :

yx := x−1yx ,

and, for A ⊆ G and x ∈ G :

Ax := {yx|y ∈ A}.

As usual, by a slight abuse of language, G will be said to have p–length
one if G = Op′ ,p,p′ (G). By a class of groups, we shall mean a family of groups
containing every subgroup and every homomorphic image of each of its elements.
Ab will denote the class of finite abelian groups, Solv the class of finite solvable
groups, and, for p a prime, Abp the class of finite abelian p–groups. For H a
finite group, C′(H) will denote the class of finite groups, no section of which is
isomorphic to H. For p a prime and n ∈ N, Cn

p will denote the class of finite
groups, one (i.e. all) of whose Sylow p–subgroups has (resp. have) nilpotency
class at most n. By ab(G) we shall denote the set of abelian subgroups of a
group G. Finally, Σn will denote the symmetric group of degree n.

I am deeply grateful to the organizers of the conference “Finite Groups 2003”
(Gainesville, March 6th-13th, 2003) for giving me the opportunity to present
for the first time the main results of this paper.

2 A preliminary Lemma

The following result was first stated by Hayashi ([5],Lemma 3.9,p.101), though
with an incomplete proof ; our own attempt at a proof ([6],Lemme) was not
conclusive either (the sentence “Q, agissant sans point fixe sur le 2–groupe
abélien élémentaire X, est donc cyclique” is ambiguous, as in order to thus
establish the cyclicity of Q, we need to know that each nonidentity element
of Q acts on X without fixed point, which is not obvious). Here, we shall take
the opportunity to clarify the matter once and for all ; during the course of the
proof, we shall feel free to use some ideas from [5] and [6].
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Lemma 2.1 Let G be a (solvable) {2, 3}–group ; then the following statements
are equivalent :

(1) G is Σ4–free , and :

(2) G = O3,2,3(G).

Remark 2.2 According to Burnside’s paqb–Theorem, the solvability hypothe-
sis is redundant.

Proof. The implication (2) =⇒ (1) is obvious, as the condition G = O3,2,3(G)
is inherited by all sections of G, and Σ4 6= O3,2,3(Σ4).

Let G denote a minimal counterexample to the statement that (1) =⇒
(2) ; it is clear that O3(G) = 1, that G possesses a unique minimal non–trivial
normal subgroup X, that X is a 2–group, and that N0 = O2,3(G) ⊂ G is the

unique maximal normal subgroup of G. It follows (as O3

( G

N0

)
= 1) that

G

N0

has order 2; therefore one has O3(G) 6⊆ N0, whence G = O3(G), thus

O3(
G

X
) =

O3(G)X
X

=
G

X
.

But, by the minimality of G, one may write

O3,2,3(
G

X
) =

G

X
,

whence
G

X
= O3,2(

G

X
) .

Take now Q ∈ Syl3(G); we have just established that QX C G, and the Frattini
argument yields :

G = XNG(Q) .

Let L =def NG(Q) ; then L 6= G and G = LX. Let us assume L ⊆ H ⊂ G ;
then

H = H ∩G

= H ∩ LX

= L(H ∩X) ;

but H ∩X C < H, X >= G, whence H ∩X = 1 or H ∩X = X. In the second
case, H = LX = G, a contradiction ; therefore H∩X = 1, and H = L(H∩X) =
L : L is a maximal subgroup of G. Taking now H = L in the above argument
yields :

L ∩X = 1 .
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Let C = CL(X) ; then C C LX = G, and X 6⊆ C (else one would have
G = LX = L, a contradiction), therefore C = 1. As X C G, X ⊆ O2(G),
whence X C O2(G) and Y = X ∩Z(O2(G)) 6= 1 ; but Y C G, therefore Y = X,
i.e. X ⊆ Z(O2(G)). It follows that

O2(G) ⊆ CG(X)
= CG(X) ∩XL

= XCL(X)
= X .

Therefore X = O2(G). Let us set Ḡ =
G

X
; then O2(Ḡ) =

O2(G)
X

= 1, and

(as Ḡ is solvable)

CḠ(O3(Ḡ)) ⊆ O3(Ḡ). (∗)

Let now t̄ = tX denote an element of order 2 in Ḡ =
G

X
; according to (∗), t̄

does not centralize O3(Ḡ), therefore some ȳ ∈ O3(Ḡ) is not centralized by t̄,
thus z̄ =def [t̄, ȳ] 6= 1, z̄ ∈ O3(Ḡ), and

z̄t̄ = t̄−1z̄t̄

= t̄−1t̄−1ȳ−1t̄ȳt̄

= ȳ−1t̄ȳt̄

= (t̄−1ȳ−1t̄ȳ)−1

= z̄−1 .

Let ω(z̄) = 3m(m ≥ 1), and v̄ =def z̄3m−1
; then ω(v̄) = 3 and v̄t̄ = v̄−1, whence

< t̄, v̄ >' Σ3. Set now V = X < t, tv > ; then
V

X
=< t̄, v̄ >' Σ3, and

O3(V ) ⊆ CG(O2(V )) ⊆ CG(X) ⊆ X, whence O3(V ) = 1. If V 6= G, then (by
induction) V = O3,2,3(V ), whence V = O2,3(V ), t ∈ O2(V ), < t, tv >⊆ O2(V ),
V is a 2–group, and hence also is V̄ , a contradiction. Therefore V = G and

L ' G

X
= V̄ ' Σ3 . It follows that G = LX = L n X, X (as a minimal normal

subgroup of G) being a nontrivial irreducible F2L ' F2Σ3–module. But then
X has to be isomorphic to the canonical module F2

2 for Σ3 ' SL2(F2), and
one obtains G ' Σ3 n F2

2 ' Σ4, a contradiction. �

3 Characteristic p–functors : generalities

For p a prime number, Gp will denote the category of finite p–groups (morphisms
in Gp being the group isomorphisms in the usual sense).
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Definition 3.1 ([2],p.1116) By a characteristic p–functor we shall mean a func-
tor K : Gp → Gp such that, for each P ∈ Gp, K(P ) ⊆ P and K(P ) 6= 1 if P 6= 1.

Clearly, whenever K1 and K2 are characteristic p–functors, K1 ◦K2 (simply
denoted by K1K2), defined by :

(K1 ◦K2)(P ) ≡def K1(K2(P ))

is one. Examples of characteristic p–functors include JR, J , Ĵ , Je, Z, and Ωn

(n ∈ N), the last one defined by :

Ωn(P ) ≡def< x ∈ P |xpn

= 1 > .

A general class of characteristic p–functors is obtained via :

Definition 3.2 Let ϕ denote a mapping from Abp to N, invariant under iso-
morphisms, and such that

A 6= 1 =⇒ ϕ(A) ≥ 1 ;

then, for P a p–group, let

Kϕ(P ) ≡def.< A abelian subgroup of P | ϕ(A) = max
B⊆A;B abelian

ϕ(B) > .

It is easily seen that Kϕ is a characteristic p–functor ; such characteristic p–
functors will be termed excellently abelian generated . Clearly, J , JR and Je are
such ; in fact , J = Ko, JR = Km and Je = Kre .

Definition 3.3 The characteristic p–functor W is termed excellent if, when-
ever G is a finite group, P ∈ Sylp(G), x ∈ G, and W (P ) ⊆ Q ⊆ P x, then
W (P ) = W (Q) = W (P x)(= W (P )x). In particular, W (P ) is weakly closed in
P , and characteristic in any p–subgroup of G that contains it.

Lemma 3.4 Any excellently abelian generated characteristic p–functor is ex-
cellent.

Proof. For S a p–group, let

rϕ(S) =def max
A∈ab(S)

ϕ(A) .

Let us assume that Kϕ(P ) ⊆ Q ⊆ P x, and let A0 ∈ ab(P ) such that

ϕ(A0) = max
A∈ab(P )

ϕ(A) = rϕ(P ) .

Obviously,
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rϕ(Q) ≤ rϕ(P x)
= max

A∈ab(P x)
ϕ(A)

= max
C∈ab(P )

ϕ(Cx)

= max
C∈ab(P )

ϕ(C)

(as ϕ is invariant under isomorphisms)
= rϕ(P )
= ϕ(A0)
≤ rϕ(Q)(as A0 ⊆ Kϕ(P ) ⊆ Q).

Therefore rϕ(P ) = rϕ(Q), whence

Kϕ(Q) = < A ∈ ab(Q)|ϕ(A) = rϕ(Q) >

= < A ∈ ab(Q)|ϕ(A) = rϕ(P ) >

= < A ∈ ab(P )|ϕ(A) = rϕ(P ) >

= Kϕ(P )

(because A ∈ ab(P ) and ϕ(A) = rϕ(P ) yield A ⊆ Kϕ(P ) ⊆ Q)
Incidentally we have shown that rϕ(Q) = rϕ(P x), whence Kϕ(Q) ⊆ Kϕ(P x)

and Kϕ(P ) = Kϕ(Q) ⊆ Kϕ(P x) = (Kϕ(P ))x, and equality all along follows. �

4 A Reduction Theorem

Let p, W and C denote respectively a prime number, a characteristic p–functor,
and a class of groups ; the following properties of the triple (W, C, p) will be
considered (S denoting a Sylow p–subgroup of the group G) :

(P1) For each G ∈ C, one has

G = NG(W (S))Op′ (G) .

(P2) For each p–solvable G ∈ C, one has

G = NG(W (S))Op′ (G) .

(P3) For each solvable G ∈ C, one has

G = NG(W (S))Op′ (G) .

(P4) For each solvable G ∈ C, all of whose Sylow q–subgroups for all primes
q 6= p are abelian, one has

G = NG(W (S))Op′ (G) .
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(P5) W controls p–length 1 in C, i.e. for each p–solvable G ∈ C, if NG(W (S))
has p–length one then G has p–length one.

(P6) W controls p–nilpotence in C, i.e. for each G ∈ C, if NG(W (S)) is
p–nilpotent then G is p–nilpotent.

Stellmacher’s result ([7]) asserts the existence of a (non–explicit) characteris-
tic 2–functor W such that (P1)(and hence (P2),...,(P6)) hold for (W, C′(Σ4), 2).

Theorem 4.1 (1) One has (P1) ⇒ (P2) ⇒ (P3) ⇒ (P4) ⇒ (P6), and (P3)
⇒ (P5) ⇒ (P6).

(2) If p = 2, W (S) ⊆ Ω1(S) for all S, and either

(i) C ⊆ C2,2 and W is excellent ,

or

(ii) W is excellently abelian generated,

then (P6)⇒(P2), and hence properties (P2),...,(P6) are equivalent.

Proof. (1) The implications (P1) ⇒ (P2) ⇒ (P3) ⇒ (P4) are trivial.
In order to establish that (P3) ⇒ (P5), let us assume (P3), let G denote a

counterexample to (P5) with minimal order. We shall use arguments similar to

Bauman’s in [1],pp.388–389. If Op′ (G) 6= 1, let Ḡ =def
G

Op′ (G)
; then one has :

NḠ(W (S̄)) = NḠ(
W (S)Op′ (G)

Op′ (G)
)

=
NG(W (S))Op′ (G)

Op′ (G)

(by the Frattini argument)

' NG(W (S))
NG(W (S)) ∩Op′ (G)

.

Therefore NḠ(W (S̄)) has p–length one, whence, by induction (as Ḡ ∈ C and
Ḡ is p–solvable), Ḡ has p–length one, hence so has G, a contradiction. Thus
Op′ (G) = 1, whence (as G is p–solvable) CG(Op(G)) ⊆ Op(G) ; in particular,

Op(G) 6= {1}. Let now Ḡ =
G

Op(G)
, and let H̄ = NḠ(W (S̄)) ; if H = G,

then W (S̄) C Ḡ, thus W (S̄) ⊆ Op(Ḡ) = 1, W (S̄) = 1, S̄ = 1, S = Op(G),
W (S) = W (Op(G)) C G , and G = NG(W (S)) has p–length one, a contra-
diction. Therefore H ⊂ G ; as NH(W (S)) ⊆ NG(W (S)) has p–length one, so
has H by induction, hence so has H̄, hence so has Ḡ, again by induction (Ḡ
and H both belonging to C). Let K̄ = Op′(Ḡ) ; it appears that S̄K̄ C Ḡ,
hence SK C G ; if SK 6= G, one finds by induction that SK has p–length
1;but SK C G, whence Op′ (SK) C G and Op′(SK) ⊆ Op′(G) = 1. Therefore
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S C SK, whence S = Op(SK) C G, and again W (S) C G and G = NG(W (S)),
a contradiction. Therefore G = SK, and Ḡ = S̄K̄.

For q ∈ π(K̄), let Q̄ denote a Sylow q–subgroup of K̄ ; the total number of
Sylow q–subgroups of K̄ is |K̄ : NK̄(Q̄)| 6≡ 0[p], therefore one of them, K̄q, is
S̄–invariant. If, for each q ∈ π(K̄), one has SKq 6= G, then, by induction, SKq

has p–length one; but Op′(SKq) ⊆ CG(Op(SKq)) ⊆ CG(Op(G)) ⊆ Op(G), thus
Op′ (SKq) = 1 and S C SKq,thus Kq ⊆ NG(S), hence

K̄ =< K̄q|q ∈ π(K̄) >⊆ NG(S)

and S C SK = G, a contradiction. Thus for some prime q one has G = SKq,
and it appears that G is solvable (in fact, a solvable {p, q}–group for some prime
q). But now (P3) yields that G = NG(W (S)), whence G has p–length one, a
contradiction (in this proof, due to the hypotheses on C, all the groups that
appear belong to C ; such will be the case in all subsequent similar reasonings).

Assuming (P4), let G denote a counterexample to (P6), with minimal order ;
then Thompson’s arguments ([8],pp.43–44) yield that Op′ (G) = 1, Op(G) 6= 1
and G is a {p, q}–group with (elementary) abelian Sylow subgroups for some
prime q 6= p. But then (P4) yields that G = NG(W (S)), whence G has p–length
one, a contradiction. Therefore (P4) ⇒ (P6) is established.

In order to establish that (P5) ⇒ (P6), the same argument works ; here, we
only need Thompson’s reduction up to an earlier point, viz. Op′ (G) = 1 and G
p–solvable.

(2) Let us assume all the conditions in (2), and let G denote a minimum
counterexample to (P6) ⇒ (P2) ; it is clear, as usual, that O2′ (G) = 1, and
then (by the same reasoning as in (1)) that O2′ (H) = 1 for any subgroup H
of G containing S, and therefore that M :≡ NG(W (S)) is the unique maximal

subgroup of G containing S. Let Ḡ =
G

O2(G)
; then Ḡ is 2–solvable, and M̄ is

the unique maximal subgroup of G containing S̄. By induction, one has

Ḡ = NḠ(W (S̄))O2′ (Ḡ)
= NḠ(W (S̄))(S̄O2′ (Ḡ)) ;

the two factors on the right–hand side of this equality contain S̄, whence at
least one is not contained in M̄ , i.e. either NḠ(W (S̄)) = Ḡ or Ḡ = S̄O2′ (Ḡ).
The first possibility leads to a contradiction as in the proof that (P3) ⇒ (P5) ;
therefore Ḡ = S̄O2′ (Ḡ), i.e. G has 2–length one.

As S̄ is contained into a unique maximal subgroup of Ḡ (M̄), O2′ (Ḡ) pos-
sesses a unique maximal S̄–invariant proper subgroup : O2′ (Ḡ) ∩ M̄ . It fol-
lows, first, that O2′ (Ḡ) is a q–group for some prime q 6= 2 : O2′ (Ḡ) = Q̄
(Q ∈ Sylq(G)), and therefore G = SQ is a solvable {2, q}–group, and secondly

that S̄ acts irreducibly on
Q̄

Φ(Q̄)
; in particular, Z(S̄) is cyclic.

Let N ≡def< W (S)G >C G ; then O2′ (N) = 1, and S ∩ N ∈ Syl2(N). If
N < G, the minimality of G yields :
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N = NN (W (S ∩N))O2′ (N)
= NN (W (S ∩N)) .

But W (S) ⊆ S ∩N ⊆ S, whence W (S) = W (S ∩N), as W is excellent (in case
(i) by assumption, and in case (ii) by Lemma 3.4). The Frattini argument now
yields that :

G = NNG(S ∩N)
⊆ NNG(W (S ∩N))
⊆ NG(W (S ∩N))
⊆ G ,

whence G = NG(W (S ∩ N)) = NG(W (S)) is 2–nilpotent, a contradiction.
Therefore N = G, i.e. G =< W (S)G >; thence

Ḡ = < W (S)
Ḡ

>

= < W (S)
S̄Q̄

>

= < W (S)
Q̄

>

⊆ W (S)Q̄ (as Q̄ C Ḡ) ,

and S̄ = S̄ ∩W (S)Q̄ = W (S)(S̄ ∩ Q̄) = W (S), i.e. S = W (S)O2(G).
In case (ii), let W = Kϕ ; then W (S) * O2(G) (else one would have

S = W (S)O2(G) = O2(G) C G), whence there is an abelian subgroup A of S
with ϕ(A) = rϕ(P ) and A * O2(G). Let N =< AG >C G ; if N 6= G, then,
by induction, it follows as above that W (S ∩ N) C N whence W (S ∩ N) ⊆
O2(N) ⊆ O2(G). But

ϕ(A) ≤ rϕ(S ∩N) ≤ rϕ(S) = ϕ(A)

whence ϕ(A) = rϕ(S∩N) and A ⊆ Kϕ(S∩N) = W (S∩N) ⊆ O2(N) ⊆ O2(G),
a contradiction. Therefore G =< AG >, whence

Ḡ = < ĀḠ >

= < ĀS̄Q̄ >

= < ĀS̄ > Q̄(as Q̄ C Ḡ) ;

therefore

S̄ = S̄ ∩ Ḡ

= S̄ ∩ < ĀS̄ > Q̄

= < ĀS̄ > (S̄ ∩ Q̄)

= < ĀS̄ > .
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By a well–known property of p–groups, it follows that S̄ = Ā ; in particular,
S̄ is abelian.

In case (i), C ⊆ C2,2, i.e. cl(S) ≤ 2, whence

[S, S] ⊆ Z(S)
⊆ CG(O2(G))
⊆ O2(G)

(by the solvability of G and the Hall–Higman Lemma), whence, again, S̄ is
abelian. Therefore, S̄ is abelian in both cases, (i) and (ii). Now, from the fact
that Z(S̄) is cyclic, follows that S̄ itself is. But S̄ = W (S) ⊆ Ω1(S) ⊆ Ω1(S̄)
(by the hypothesis); therefore S̄ has order 2.

Now, as S̄ acts irreducibly on the Fq–module M =
Q̄

Φ(Q̄)
, the nontrivial

element t̄ of S̄ either centralizes each element of M , or inverts each element of

M ; now, irreducibility forces |M | = q, i.e.
Q̄

Φ(Q̄)
= M is cyclic ; but then so

are Q̄, and Q ' Q̄.
Let now H̄ = S̄Φ(Q̄) ; then H < G (in fact, |G : H| = q), and S ⊆ H.

Therefore H is contained in M = NG(W (S)), whence

[S̄,Φ(Q̄)] = [W (S),Φ(Q̄)]
⊆ [W (S), H̄] ∩ Φ(Q̄)
⊆ [W (S), M̄ ] ∩ Φ(Q̄)
⊆ W (S) ∩ Φ(Q̄)

= 1 ,

i.e. S̄ centralizes Φ(Q̄). If |Q̄| ≥ q2, then Ω1(Q̄) ⊆ Φ(Q̄), whence S̄ centralizes
Ω1(Q̄), and therefore S̄ centralizes Q̄, a contradiction. Thus |Q̄| = q, and
Ḡ = S̄Q̄ is dihedral of order 2q ; it follows that S̄ is a maximal subgroup of
Ḡ, i.e. S is a maximal subgroup of G. Therefore S = M = NG(W (S)), and
NG(W (S)) is 2–nilpotent ; but now (P6) yields that G itself is 2–nilpotent, a
contradiction. �

5 Of Je and Ĵ

By a well–known variation([4],Theorem 1(c), and Remarks p.372) on Thomp-
son’s factorization([9]), any solvable Σ3–free finite group G with Sylow 2–subgroup
S satisfies :

G = NG(Je(S))CG(Z(S))O2′(G). (5.1)

In [3] Glauberman introduced a new characteristic functor Ĵ having the
property that, for each 2–group S, one has :

Je(S) ⊆ Ĵ(S) ⊆ S. (5.2)
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For this functor he was able to prove ([3], Theorem 7.4, p.48) that, for any
2–constrained Σ4–free finite group G and each S ∈ Syl2(G), one had :

G = NG(Ĵ(S))CG(Z(S))O2′(G) (5.3).

By (5.2) one finds Je(S) = Je(Ĵ(S))charĴ(S) whence

NG(Ĵ(S)) ⊆ NG(Je(S)) ;

(5.3) is therefore stronger than (5.1).
In the particular case that S has nilpotence class at most two, we can state

Theorem 5.1 Let G be a 2–constrained, Σ4–free finite group with Sylow 2–
subgroup S of nilpotence class at most two ; then one has :

G = NG(Ĵ(S))O2′(G).

By the above remark follows

Corollary 5.2 In the situation of the Theorem,

G = NG(Je(S))O2′(G).

Thus one can assert

Corollary 5.3 Let G be a finite solvable Σ4–free group with Sylow 2–subgroup
S of class at most two ; then :

G = NG(Je(S))O2′(G).

In other words, (Je, C
′
(Σ4) ∩ Solv, 2) satisfies (P1), and hence (P2),...,(P6).

This Corollary was first proved by the author in [6].

Proof. of Theorem 5.1. Let G be a counterexample of minimal order.

(1) O2′(G) = 1.

If not, Ḡ =
G

O2′(G)
is of smaller order than G and satisfies the hypothesis,

whence
Ḡ = NḠ(Ĵ(S̄))O2′(Ḡ) = NḠ(Ĵ(S̄)).

But the canonical map S → SO2′(G)
O2′(G)

= S̄ is an isomorphism, whence

Ĵ(S̄) =
Ĵ(S)O2′(G)

O2′(G)
and

NḠ(Ĵ(S̄)) =
NG(Ĵ(S)O2′(G))

O2′(G)
=

NG(Ĵ(S))O2′(G)
O2′(G)

,

by the Frattini argument. Thus we get G = NG(Ĵ(S))O2′(G), a contra-
diction.
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(2) CG(O2(G)) ⊆ O2(G).

Obvious, because G is 2–constrained and O2′ (G) = 1.

(3) M = NG(Ĵ(S)) is the unique maximal subgroup of G that contains S.

By hypothesis M ⊂ G. Let H be a proper subgroup of G containing S;
one has O2(G) ⊆ S ⊆ H, whence (as in the proof of Theorem 4.1(1))

O2(G) ⊆ O2(H)

and :

CH(O2(H)) = H ∩ CG(O2(H))
⊆ H ∩ CG(O2(G))
⊆ H ∩O2(G) (by (2))
⊆ O2(H).

Therefore O2′(H) = 1 and H is 2–constrained with Sylow 2–subgroup
S ; the minimality of G now yields :

H = NH(Ĵ(S))O2′(H) = NH(Ĵ(S))
⊆ NG(Ĵ(S)) = M.

Thus M is a proper subgroup of G that contains any proper subgroup of
G containing S ; the result follows.

(4) Z(S) ⊆ Z(G) .

By (5.3) one has

G = NG(Ĵ(S))CG(Z(S))O2′(G) = MCG(Z(S)) ;

thus S ⊆ CG(Z(S)) * M , whence CG(Z(S)) = G by (3).

(5) G centralizes
O2(G)
Z(G)

.

Let C = CG(
O2(G)
Z(G)

) / G ; then

[S, O2(G)] ⊆ [S, S] ⊆ Z(S) ⊆ Z(G)

(by (4) and the hypothesis on S). It follows that S ⊆ C, whence

G = CNG(S) ,

again by the Frattini argument. If C were different from G, one would
have C ⊆ M (because of (3)) and

G = CNG(S) ⊆ MNG(S) ⊆ M.M = M ,

a contradiction. Thus C = G.
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(6) The End.

By (5) one has [G, O2(G)] ⊆ Z(G), i.e.

[G, O2(G), G] = [O2(G), G,G] = 1.

Philip Hall’s Three Subgroups Lemma now yields

[G, G,O2(G)] = 1 ,

that is :
G′ ⊆ CG(O2(G)) ,

whence G′ ⊆ O2(G) by (2). Therefore H =
G

O2(G)
is an abelian group

with O2(H) = 1, i.e. an abelian 2′–group ; it appears that S = O2(G)/G,
whence Ĵ(S) / G, thus G = M and again a contradiction ensues. This
concludes the proof. �

Remark 5.4 It seems difficult to generalize directly Corollary 5.2, and even
Corollary 5.3, as the counter-examples to the ZJ–Theorem for p = 2 given by
Glauberman in the last paragraph of [2] show. Such a counterexample G is
solvable, with Sylow 2–subgroup S of nilpotence class 3 (this is not difficult to
see), and S possesses a unique abelian subgroup of maximal order A, that is
elementary abelian. Therefore Je(S), JR(S), J(S) and ZJ(S) all cöıncide with
A, and neither is normal in G.
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Amiens Cédex, Phone 03 22 82 79 70, Fax 03 22 82 78 38, paul.lescot@u-
picardie.fr

14


