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& LPTMC UMR 7600, Université Pierre et Marie Curie-Paris 6

4 place Jussieu, F-75252 Paris Cedex 05, France.

1 Introduction

Biological functions involve processes at different scales. This statement is obviously true for
organismic processes like development. It is already relevant for a bacterial colony, the example
on which we shall more specifically focus here. Understanding biological functions thus requires
to integrate knowledge and data of different natures, available at different levels, and described
within different frameworks, from quantum mechanics (for elementary intracellular processes e.g.
light transduction) to stochastic kinetics to deterministic rate equations and continuous medium
theory (e.g. elasticity theory or hydrodynamics). Beyond the epistemic issue of capturing a real
process in descriptions and measurements prescribed by our own abilities and limitations, biological
functions and their regulation present a greater challenge: they are intrinsically and irreducibly

multiscale processes. Indeed regulation of a biological function has to bridge the overall state
of the cells as well as some surroundings features with the basic ingredients and mechanisms at
the atomic or molecular scale, in an adaptive and interrelated way. A bacterial cell itself has to
perform a multiscale integration. Accordingly our analysis and modeling should follow the same
line. For these two main reasons, multiscale approaches play an essential role in the way towards
the integrated understanding of biological functions, and all the more of biological systems. We
refer to [22] for a mathematical account and to [18] for another biological example.

We will first describe bottom-up approaches deriving the large-scale consequences of microscopic
ingredients and their interactions; they rely on the notion of effective parameters. This notion is
implemented in a systematic way in homogenization methods. It is also the basis of recursive
integration methods developed to handle phenomena displaying long-range correlations, termed
critical phenomena (Sec. 2). Choosing the proper model essentially depends on the investigated
issue. In fact, each new question requires to devise the adapted model. We will mention the minimal
models suitable for large-scale integration and the choice between deterministic or stochastic models
(Sec. 3). We will detail a standard decoupling scheme exploiting scale separation to dissect a
multiscale dynamics into more tractable lower-dimension problems (Sec. 4). We will then consider
top-down approaches deriving the impact of macroscopic constraints on lower-level elements and
mechanisms (Sec. 5). A brief comparison of multiscale issues currently encountered in physics and
biology (Sec. 6) shows that it is of special importance in living systems to properly account for
the feedback of collective features and emergent properties onto the underlying elements. In this
aim, the means we favor are self-consistent methods, also well-suited to bridge partial knowledge
at different scales (Sec. 7). Conclusion will enlarge the scope of the presented material (Sec. 8).

2 Bottom-up approaches: effective parameters

A first way for implementing a multiscale analysis is to travel across the scales in the bottom-up
direction. This way is the standard one in physics and it has motivated much work, both technical
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contributions (for instance the whole domain of statistical physics, see [5]) and epistemological
account (see for instance [1, 31]). A basic notion is here that of effective parameter, encapsulating
the net result of several mechanisms involving several degrees of freedom in a single quantity pa-
rameterizing at a higher level a structural feature, an interaction, or a contribution to an evolution
law. Let us cite a few examples.

• rate constants involved in chemical kinetics are in fact not elementary (molecular) parameters:
they are derived under simplifying assumptions from the stochastic (and possibly quantum) analysis
of the reaction process. Within the general framework of Kramers theory, they are expressed as a
function of the temperature and the free-energy barrier of the limiting step [11].

• in the case of chemical reactions involving several species and intermediate steps, some being
possibly unknown, while we are interested only in the evolution of the concentration a of one given
substrate A, it is often fruitful to adopt a pseudo-first-order kinetic scheme: da/dt = σ + ka [15].
Here the kinetic rates σ and k encapsulate in an effective way the influence of other species which
we do not intend to describe explicitly. They will be fit in each experimental condition. Such
a simplified scheme is valid only if the concentration of the marginal species can be considered
as constant, either because they relax very fast to a stationary value (see Sec. 4), or because a
regulatory circuit ensures their homeostasis. In a similar way, effective rate constants could be
defined and computed to account for some structuration of the underlying medium [3].

• an effective diffusion coefficient can account on the average of microscopic inhomogeneities that
are present within a porous substrate provided they have a finite characteristic size a. Introducing
such a parameter allows to make use of a plain diffusion equation (that is, with a spatially constant
diffusion coefficient and simple boundary conditions at the border of the inhomogeneous sample)
at mesoscopic scales dx ≫ a [22, 29, 33].

It is to be strongly underlined that an effective parameter should have a restricted use: it makes
sense only in the dimensionally reduced large-scale equation defining it. It does not necessarily
share all the relationship and meanings of the corresponding bare parameter, despite sharing the
same name. For instance, an effective diffusion coefficient does not necessarily satisfy the Einstein
relation linking diffusion and friction coefficients.

Computing an effective diffusion coefficient is an instance of a more general method called ho-

mogenization [17, 33]. It is for example possible to replace a two-phase reactive medium with an
effective homogeneous medium and to compute the associated kinetic rates and diffusion coefficient
[3]. This approach has also been intensively developed in the context of porous media [33] and com-
posite materials [26]. The physical motivation and intuitive justification has been supplemented
with a rigorous mathematical analysis, specifying the validity conditions. In particular, it is essen-
tial to determine and validate what is the appropriate “representative volume”. We here mean the
size dx of the regions of the initial system that can be considered as the elementary (infinitesimal)
volumes of the homogenized system [4] and in which all the detailed microscopic structures and
processes will be averaged. Roughly, dx has to be large compared to the characteristic lengths of
these microscopic structures and processes.

The notion of effective parameter is not limited to systems exhibiting a clear scale separa-
tion between microscopic fluctuations and macroscopic observables. On the contrary, it is often
very fruitful to encapsulate in mesoscopic parameters the effect of long-range correlations between
microscopic elements. Extending this idea in a systematic way, renormalization-group methods
developed to handle critical phenomena (where long-range correlations propagate at all scales
the influence of microscopic fluctuations) also rely on the notion of effective parameter, rather
called renormalized parameter in this context. The essential properties of a critical system (i.e.
a system with correlations at all scales and diverging correlation length) lie precisely in the rela-
tionship between bare and effective parameters; in other words, they lie in the transformation (the
renormalization-group transformation) expressing how does the system modeling change when we
change the scale of its description [5, 21]. We shall see in the following that biological systems,
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mostly due to the presence of regulation and adaptation, escape a plain use of effective parameters
and associated reduction to a purely macroscopic description, but yet effective parameters play a
central role in self-consistent integrative approaches (Sec. 7).

3 What is the proper model?

A caveat is to be done right now about the term of “model” since it covers different notions and
practices. We here endow it with a two-fold meaning: it first refers to the theoretical framework (e.g.
quantum mechanics, partial differential equations, cellular automata, thermodynamics . . . ), then
to the representation of the system and the mechanisms ruling its behavior within the considered
framework (conservation laws, evolution laws, interactions . . . ). Several models might thus be
associated to one and the same system. We claim that different models should be associated to the
same system according to the investigated question. In particular, models entering a multiscale
analysis should, in general, be designed on purpose so as to take into account inter-level couplings
and allow integration (deriving the collective behavior of an assembly of elementary models and/or
bridging different models designed at different scales).

3.1 Minimal models for integrative studies

Several multiscale issues require to determine the collective behavior of an assembly of sub-systems.
In order to tackle this integration, we have to devise a minimal model, retaining among the richness
of molecular details and processes only those controlling or participating to collective effects and
having ultimately an observable impact at macroscopic scale. Other details could of course be
essential in other issues, but they appear to be irrelevant degrees of freedom as regards emergent
phenomena. A minimal model would be not only more efficient in large-scale numerical computa-
tions, but actually more relevant insofar as it yields more generic results. For instance, elementary
units of the system can be modeled within a cellular-automata approach, involving a finite number
of states for each unit, as well as discrete time and space variable with tunable units; the ele-
mentary level is thus described in a phase space of the lowest possible dimension, hence the most
efficient for numerical simulations [30]. Conversely, the very existence of robust collective behavior
supports the use of minimal model at microscopic scale, retaining only the details relevant to the
dominant macroscopic features.

Minimal models, involving only the essential variables and parameters (possibly collective vari-
ables and effective parameters), are also to be recommended when we lack of knowledge on the
wealth of microscopic ingredients and mechanisms. Indeed, compared to more detailed modeling,
they avoid biases, over-interpretation and possible inconsistencies between the details that are ac-
counted for and those that are ignored. They provide a more faithful and more robust modeling
basis, because small changes in the microscopic ingredients will only slightly affect the value of
the effective parameters without modifying the general form of the model. Minimal models are
more relevant to bring out the main principles at work in the observed phenomenon, since they
involve less arbitrary or tunable parameters, hence exhibit a greater statistical significance and
discriminating power. This approach has been justified by Turing when he introduced, in its sem-
inal paper on morphogenesis [34], a simple reaction-diffusion model exhibiting pattern formation
in some suitable conditions.

3.2 Stochastic vs deterministic models

A large class of effective models is formed by stochastic models, whose evolution laws or the
rules determining their state embed a probabilistic contribution. A first subclass is obtained by
adding a noise term to the deterministic ordinary or partial differential equations describing the
system evolution. These stochastic differential equations are currently called Langevin equations,
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by extension of the equation of this kind introduced by Langevin [19] to account for Brownian
motion. The noise term arises either from an ill-defined or variable external influence, either from
the net result of microscopic degrees of freedom that we do not intend to take into account [20].
The latter description corresponds to a cutoff at high frequencies and short wavelength replacing
the specific description of the “most microscopic” modes by an effective noise term. Stochastic
calculus has been developed to handle such equation [12] but is full efficiency is limited to special
kinds of noise terms (white or colored noises). Another subclass is formed by stochastic processes,
whose evolution rules are essentially random, for instance a Markov chain whose dynamics is fully
prescribed by the probabilities of transition between the instantaneous state and the following one
[35]. In case of a Markov process, the characteristic times (correlation, relaxation and transition
times of the process) are directly related to the eigenvalues of the transition matrix [13].

Modelers are confronted to the choice between deterministic and stochastic models. The essen-
tial point is that this choice is not bound to reflect the nature of the system, i.e. an intrinsic feature;
rather, the model should fit the perception of the observers, their possible lack of knowledge or the
question they intend to solve. The scale of the description and the scale at which predictions are
to be done have a strong impact on this choice, for instance:
— statistical laws (e.g. the law of large numbers or central limit theorem) ensure that the macro-
scopic behavior of a stochastic microscopic model is deterministic;
— the macroscopic behavior of a deterministic but high-dimensional (or chaotic) microscopic model
might be best captured within a statistical description.
These situations might be both encountered in modeling a given phenomenon. The paradigmatic
example is diffusion, where a whole hierarchy of stochastic models can be introduced [23], at
increasing scale and with an increasing number of simplifying assumptions (Markov, Gaussian,
dimensionally reduced by projection): Liouville equation for the N -particle distribution function
f(~r1, ~v1, . . . , ~rN , ~vN , t), master equation for a discrete description in terms of the occupancy num-
bers of q spatial cells, namely the evolution of the probability P (N1, . . . , Nq, t), Smoluchowsky
equation for the full one-particle distribution function f(~r,~v, t), Fokker-Planck equation for the
reduced distribution function f(~r, t) or equivalently a Langevin equation with a white-noise term,
or still equivalently a random walk. This hierarchy bridges two deterministic models and their
parameters: at the microscopic scale the reversible description in terms of Newtonian dynamics,
and at the macroscopic scale the irreversible diffusion equation [5].

3.3 The example of biofilms

A major functional specificity of biofilms is their multiscale organization: as regards the growth
of the biofilm, its structural properties (density, porosity, thickness), its mechanical properties
(attachment/detachment under the action of a flow), or its activity in consuming substrate (in
applications to waste treatments), we have to describe and understand jointly the individual and
global levels. Microscopic simulations can be developed in order to give an explicit basis to effective
macroscopic models of biofilms and provide a framework to integrate experimental data. Two main
types can be consdiered: cellular automata, describing the evolution of the particle contents of
microscopic spatial cells according to some simple rules involving only the states of the neighboring
cells, an individual-based model (IBM), describing the behavioral rules of each individual particle.
Both can be used to integrate microscopic knowledge and determine the explicit expression of local
effective rate constants, to be henceforth plugged in macroscopic models in terms of ordinary or
partial differential equations. Confronting the predictions of microscopic and macroscopic models
moreover specifies the validity conditions of a deterministic continuous approach, and conversely
delineates the regimes (for the microscopic parameters or the macroscopic setting) where the
effect of discreteness of the bacteria and stochasticity of their growth and attachment/detachment
cannot be ignored. Such a bottom-up approach allows to take into account refined mechanisms
or complicated geometry at the bacteria level and provide a framework to integrate experimental
data obtained at different levels using different techniques.
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4 Multiple-scale methods

Multiple-scale methods have been developed for more than a century to handle singular perturba-
tion expansions, e.g. in celestial mechanics [5, 22]. The system is typically ruled by an evolution
equation (ordinary or partial differential equations) depending on a dimensionless small parameter
ǫ ≪ 1 in a singular way, insofar as the behavior of the solution for ǫ → 0 qualitatively differs from
the behavior of the solution for ǫ = 0. Let us consider for instance an ordinary differential equation
where a multiplicative small parameter appears in front of a highest-order time derivative. The ba-
sic idea is to decouple “slow and fast variables” , that is, to exploit the scale separation (with scale
factor ǫ) for explicitly considering formally independent time evolutions. This strategy is called a
quasi-stationary approximation because it amounts to first solve for the fast evolution while con-
sidering that the slow variables are frozen, then to plug in the asymptotic behavior of the fast
variables (typically a stationary state) in the slow evolution equations. For instance, considering
the coupled evolution

{

ǫdx/dt = f(x, Y )
dY/dt = g(x, Y )

(1)

we first solve the equation for x at fixed value of Y . This yields the asymptotic value X(Y ) such
that f [X(Y ), Y ] ≡ 0, that we plug into the evolution of Y . We thus obtain the slow evolution

dY/dt = g[X(Y ), Y ] ≡ G(Y ) (2)

for the slow (“macroscopic” ) variable Y . Note that neither X(Y ) nor G(Y ) depend on ǫ: we here
determine the behavior ǫ → 0 of the asymptotic regime of the solution of (1). This procedure can
be made more obvious by a change τ = t/ǫ of the time variable, yielding

{

dx/dτ = f(x, Y )
dY/dτ = ǫg(x, Y )

(3)

where setting ǫ = 0 freezes Y (it comes Y (τ) = Y (0) ≡ Y whatever x is) and yields a close equation
for x, parameterized by a constant Y , that determines the stationary state X(Y ) of the fast regime.

This approach is in particular encountered in the Michaelis-Menten analysis of enzyme catalysis

S
E−→ P where S is the substrate, E the enzyme and P the product [27]. The proposed kinetic

scheme is the following:

S + E
k
⇋

k′

ES
kcat−→ P + E (4)

Denoting

s =
[S]

[S]0
, c =

[ES]

[E]0
, p = [P ], λ =

q

k[S]0
, K =

k′ + q

k[S]0
(5)

yields the system of coupled equations







ǫ ċ = s − c(s + k) c(0) = 0

ṡ = −s + c(s + K − λ) s(0) = 1
(6)

It is exactly similar to (1) and the resolution strategy sketched above yields

V ≡ dp

dt
= Vmax

(

s

Keq + s

)

Vmax = kcat e0 Keq =
k′

k
(7)

In other situations, it is enough to reparameterize the evolution equation or make an appro-
priate change of variable to get rid of the singularity [28]. These methods, respectively of strained
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parameters and strained coordinates, are reminiscent of the notion of effective parameters and they
can be seen as an instance of renormalization [5].

More generally, scale-separation is a strong argument to eliminate fast variables, either by
considering that they rapidly reach a stationary value, if any, else by averaging their oscillations.
This is an instance of a more general philosophy intending to reduce the dimension of the com-
plete description and extract a relevant macroscopic description, describing only a reduced set of
macroscopic variables (in particular, variables varying only at macroscopic scales) [5, 14]. An often
efficient clue is to consider the evolution of space or time average quantities, either the moments
of the microscopic variables [6] or aggregated variables describing a coarse-grained version of the
initial model [2, 13].

5 Top-down approaches: effective inputs

Another way of tackling multiscale approaches is to investigate top-down relationships, namely
how macroscopic inputs, structures and constraints might affect the elementary processes and the
features of the basic constitutive elements. Again effective quantities are useful to encapsulate in
a low-dimensional expression (e.g. a field, a force, an energy landscape, a source term or boundary
conditions) involving only a few parameters, a wealth of top-down influences. When external
constraints arise via boundary conditions, it might be useful to “process” these conditions into
local prescriptions at work inside the system; for instance, an external concentration (e.g. of
oxygen) should be replaced after suitable computations involving assumptions on the intra-cellular
medium diffusivity by an actual distribution inside the cell. As in more general contexts (see
Subsec. 3.2), effective noise terms can be introduce to account for a variety of ill-identified external
influences; e.g. an high-dimensional input that we do not want to describe in detail: what matters
is only the resulting influence on the system at the chosen level of description

A purely physical but nevertheless inspiring example of top-down influences is fully developed
turbulence, in which energy injected at a macroscopic scale L cascades down to the microscopic
scale ld at which viscous dissipation becomes efficient. In between, the energy transfer allows
the development of nested eddies and other complex structures, exhibiting a statistical scaling
behavior (e.g. the power spectrum follows a power-law dependence in the so-called inertial range
1/L < k < 1/ld. It has been proposed for capturing the essential scaling behavior and the long-
distance universality (namely the insensitivity of the exponents with respect to details of the energy
injection) to revert the bottom-up renormalization-group into a top-down inverse renormalization-

group; namely, to integrate out the large-scale shells (or equivalently small-wave-vector cells), and
to encapsulate their influence at lower scale (equivalently onto mode with a larger wave vector)
into effective parameters [10].

Let us underline that an important advantage of effective descriptions, either bottom-up or
top-down ones, is their parcimony, hence greater structural stability and significance: the resulting
models involve only a few parameters and a few measurable variables. It is precisely because neither
the microscopic details nor the macroscopic conditions are fully known, often not even all identified,
that the models should involve only a coarse description, so as to avoid over-interpretation or
spurious sensitivity of the results to the precise knowledge taken for granted in devising the model.
This requirement of parcimony does not intend to mean that the biological reality is bound to be
that simple, but that our description has to be unbiased and robust with respect to an additional
detail or to the intrinsic variability observed between several identical biological systems, e.g. cells
within a clonal population.
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6 Basic classification: plain, critical and living systems

At this point, we can see an essential distinction in the multiscale logic of physical and biological
systems, and accordingly in their respective multiscale analysis and modeling. In plain (mostly
physical) systems, microscopic fluctuations average out and macroscopic observables can be identi-
fied with averaged quantities; they reduce to deterministic continuous fields that obey ordinary, par-
tial or integro-differential equations with no mention of an underlying microscopic level. Standard
examples are classical mechanics, hydrodynamics (Navier-Stokes equations) or chemical kinetics
(mass action law). In striking but less frequently encountered critical phenomena, fluctuations are
enhanced by long-range correlations and they persist at all scales up to macroscopic ones; they will
qualitatively modify average behaviors, typically leading to anomalous laws. In biological systems,
situation is yet different. Microscopic fluctuations are either buffered by regulatory circuits (even
at relatively small scales where statistical laws not yet ensure an averaging out), either exploited
and possibly amplified as a source of variability feeding selection-driven adaptation mechanisms.
In the latter case, microscopic fluctuations potentially have repercussions at all scales while in the
former case, discussed from the modeling viewpoint in the next section, they are controlled “from
above” by means of feedback circuits that adapt the microscopic ingredients so as to get the proper
macroscopic regime and ensure its maintenance.

This tripartite categorization has a parallel formulation in terms of number of degrees of free-
dom. In plain physical systems, a few collective variables, defined as averages over the microscopic
degrees of freedom, are sufficient to describe the macroscopic behavior. Both critical systems and
biological systems depart from this simple case by exhibiting very many coupled degrees of freedom.
Averaging is no longer efficient to bring out the essential behavior. In case of critical systems, the
efficient strategy is a recursive integration (renormalization-group methods) [5]. In biological sys-
tems, dimensional reduction will rather be achieved jointly at all scales in a self-consistent way,
replacing at each level several degrees of freedom by a few effective terms; the observed robust
achievement of the biological function provides a guideline to select the essential variables and to
match the different levels together.

7 Circular causation and self-consistent approaches

A basic example of complex systems are assemblies of elements that modify their surroundings,
enough to modify the features and behavior of the very elements, hence in turn changing the col-
lective behavior of the assembly. Any such instance where collective features directly or indirectly
affect their own element is termed circular causality. A physical macroscopic example is sand dune
[16]; biological examples are ecosystems, bacterial colonies and possibly cell assemblies during can-
cerogenesis or development. We here encounter an instance of emergence, more precisely termed
top-down causation [9]. In a word, self-organization and emergence are observed when bottom-up
and top-down relationships are coupled, leading to co-evolution and adaptation.

We are thus led to the issue of bridging in a consistent way the bottom-up and top-down
approaches to multiscale modeling. This kind of chick-and-egg problem can be properly formulated
as self-consistent equations, expressing the identity of the macroscopic quantity M , influencing
the state and properties x of each element, and the collective quantity MN [x1(M), . . . , xN (M)]
resulting from the conjunction of N elements, in the limit1 N → ∞

M = lim
N→∞

MN [x1(M), . . . , xN (M)] (8)

It has thus the mathematical expression of a fixed-point equation

M = Φ(M) (9)

1This limit might induce important qualitative features and even generate serious difficulties; typically, the
limiting quantity might be asingular function of M , e.g. exhibiting a transition between two smooth functions
Φ1(M) and Φ2(M) in some value Mc.
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In practice, the resolution of a fixed-point equation M = Φ(M) can be done recursively, given an
initial value M0 and computing Mn+1 = Φ(Mn), provided the recursive scheme converges and the
result does not depend sensitively of the choice of the starting value M0.

An acknowledged example of self-consistent method is provided by mean-field approaches, in
which the collective influence of microscopic elements on a given one can be expressed as a function
of some quantity averages over all the elements (called an order parameter) and applies identically
onto each element. Let us consider for the sake of simplicity the historical example of a spin
system with pairwise interactions. The resulting influence on a given spin ~s of all its neighbors
will be replaced by that of a mean field heff (M) = aM depending on the average magnetization
M = 〈~s〉. The spins ~s thus experience an external field h0 and, instead of their pair-wise interaction,
a mean field heff (M); they henceforth can be formally considered as independent spins, whose
average magnetization M is given by a simple formula M = B(h). Plugging in the field expression
h = h0 + heff (M) yields a fixed-point equation M = B(h0 + aM), whose solution accounts
in an average way of the spin pairwise interactions. Nevertheless, this approach is in general
only an approximated one (local fluctuations are neglected), whose validity fails in case of long-
range correlations generating relevant fluctuations at all scales; in such critical situations, more
sophisticated renormalization-group approaches are to be developed [5, 21].

Self-consistent approaches extend beyond mean-field approximation. The general idea is to
exploit the formal computation at a given scale of a quantity M that also appears as a parameter
tuning the basic ingredients on which the computation relies. Another related method, arising
for instance in matched perturbation expansion, is to compute several macroscopic features all
depending on an unknown effective parameter X that is determined from a consistency condition
between the computed feature, a global conservation law, or symmetry arguments. An example is
provided by the topological constraints experienced by an elastic rod, for instance DNA molecules
or elastic fiber, when its ends are anchored [24]. Its linking number Lk is thus conserved and it
is a feature of the molecualr assembly. The overall conformation of the rod determines its writhe
Wr, and Lk − Wr prescribes its total twist. Any local modification within the rod, e.g. a local
structural change induced by some protein binding or by ions should be compensated so as to
ensure the conservation of Lk. Top-down constraints here arise in the expression at microscopic
scale of a global conservation law (conservation of a macroscopic quantity). Given the total linking
number Lk, we might compute the writhe Wr and the twist Tw, depending on some feature M of
the elastic rod, then write Lk = Wr(M) + Tw(M) to determine M .

More generally, the presence of a global constraint (e.g. a fixed resource of a conservation
law, as above) induces effective interactions between the elements. Such a global constraint might
arise from the presence of a collective structure; it thus turns statistical correlations between the
elements into effective couplings. It makes the whole behavior essentially non linear (even if the
underlying microscopic dynamics is linear) with striking observable consequences like for instance
a localization of the activity, in case of competitive effective interactions, or a synchronization, in
case of positive interactions. It is indeed to underline that collective effects do not always reflect
in large scale structures or behaviors: one possible consequence of a collective effect within an
assembly of elements (particles, cells, individuals) could be the spontaneous emergence of very
localized structures or events, typically resulting from non trivial correlations between microscopic
fluctuations jointly with a positive feedback loop (self-activated reaction or any self-reinforcement
mechanism) and a global constraint [25].
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Figure 1: Determination of causal loops with microscopic (individual-based models or

cellular automata) and macroscopic (ordinary or partial differential equations) models of

biofilms

Let us illustrate this general analysis in the context of biofilms. A challenge comes from
the fact that emergent properties of the bacterial population and the biofilm it produces might
exert feedbacks on the very behavior of individuals. Accordingly, the modeling approach has
to bridge a bottom-up description, in which emergent features are derived from a microscopic
model, for instance an IBM simulation, with a top-down approach in which the global features
are integrated as parameters controlling the IBM evolution. Equivalently, the focus could be
put on an effective description at the macroscopic scale, in which standard differential equations
describing the dynamics of the biofilm at the population level are fed with closure relations derived
from the IBM study, itself constrained by macroscopic conditions (see Fig. 1). Obviously, we
are faced to an instance of the above-mentioned circular causality in which individuals, their
interactions and joint behavior modify their microenvironment which itself strongly constrains
individual states and dynamics, in the spirit of multiscale simulations proposed in [7, 8]. We
aim at deriving then solving self-consistent equations expressing the self-consistency of the multi-
level organization and dynamics of the biofilm. The multiscale interplay of bacteria with the
environment they generate can formally be described as follows (see Fig. 1). Population dynamics,
with microscopic parameters r, modifies the environmental (macroscopic) features x, e.g. the
temperature or nutrient concentration, according to a relationship x = X(r) to be determined by
means of IBM implementation. In turn, the state of the environment modifies the parameters r
of the dynamics (e.g. growth rate) according to a relationship r = R(x), to be established from
experimental observations. We then look of a consistent equilibrium state at the macroscopic level:

X[R(x)] = x (10)

or, at the microscopic level:
R[X(r)] = r (11)

Alternatively, we can rather focus on transient behavior and write recursive equations describing
a slow adaptation of the biofilm at the macroscopic level:

xn+1 = X[R(xn)] (12)

or, at the microscopic level:
rn+1 = R[X(rn)] (13)
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Such a multiscale approach should allow to account for remarkable behavior such as coexistence of
species (whereas the macroscopic mean-field equations predict the persistence of a single species
and exclusion of the other ones), functional differentiation, spatial segregation and other complex
behaviors of the bacterial population.

8 Conclusion

The first aim of a multiscale analysis is to articulate experimental data and models available at
different levels. It allows to bridge observations at different scales, to confront observations with
mechanisms envisioned at another scale, and to integrate partial models into a consistent and
explanatory account of the whole biological function or biological system under study.

An important preliminary step in multiscale analysis is to have recourse to minimal models,
accounting at a given level only for the essential variables and parameters, that is, those having
an impact at other scales and playing a significant role in the multiscale structure and dynamics
[30]. Moreover, a minimal model is more sound on epistemological grounds when only a partial
knowledge is available on the system. Indeed, it is important to avoid over-interpretation, for
instance giving a role to some details while ignoring other details acting with an impact similar
in strength and scope. Considering effective quantities (parameters, fields, inputs) has the same
advantage, since it allows to encapsulate in tunable quantities a wealth of mechanisms without
having to describe them explicitly nor even to have an exhaustive list. The use of effective models
enlightens that the nature of the models should not be confused with the nature of the system.
For instance, a statistical description is not necessarily associated to a random evolution low or
spatial disorder. It can be chosen as the most efficient and economic way to account for the system
features in case of a high-dimensional or chaotic underlying dynamics.

In all analyses, the structural stability of the results should be performed. It first covers
an investigation of the significance of the results, whether they depend sensitively or not of a
change in the model parameters or the accounting of an additional term. But beyond this quality
assessment of the study, it meets a sensitivity analysis of the phenomenon itself, whether it requires
or not finely tuned parameter values, and whether it is or not destroyed by the involvement
an additional factor or interaction. In particular, it is meaningful to investigate the impact of
statistical fluctuations (internal noise) on first model structural stability and, second, on processes
themselves. Indeed, multiscale modeling often involves averaging quantities and thus raises the
issue of the impact of statistical fluctuations on the resulting models and predicted behaviors. These
statistical fluctuations, also termed internal noise, arise from the finite number N of microscopic
elements actually present in the system, causing a departure from the deterministic asymptotic
behavior predicted by the limit theorems. The actual behavior is still random, as the relative
fluctuations scale as 1/

√
N (unless some long-range correlations or other statistical pathology

induces an anomalous scaling behavior). The issue is to determine whether this internal noise
has a qualitative impact on the dominant behavior observed at macroscopic scale. A related issue
is to investigate the functional impact of disorder, of compartmentalization, or of the intrinsic
stochasticity of binding or chemical reactions.

The second aim is to unravel the multiscale logic of living systems; a main guideline is the
inter-level consistency following from co-evolution, meaning that selection and ensuing adaptation
occurred jointly at all levels of organization. What is striking in living systems and should be
reflected in the multiscale analysis is the consistent multilevel organization with mutual influences
between the different scales. Collective effects might have as a whole a feedback on the very
properties of elementary ingredients, endowing them with new functionalities, that is a strong
instance of emergence. This circular causality is typical in all complex systems and could even be
taken as a definition of what is a complex system. Biological functions moreover rely on concerted
evens at different scales, e.g. molecular events regulated at a macroscopic scale. Hence a multiscale
approach is essential to capture the logical architecture of biological functions and regulation.
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A practical guideline is the inter-level consistency and co-adaptation resulting from co-evolution
under selection pressure. Accordingly, by contrast to plain physical systems2, relevant multiscale
analysis of biological systems makes use not only of effective parameters encapsulating at a given
scale lower-level details (bottom-up reduction) but also of effective inputs encapsulating at the
same scale the influences and constraints coming from super-structures at higher levels (top-down
reduction) and write the self-consistency at the considered scale ( a scale that is possibly arbitrary
or prescribed by the observation means).

We finally underline that the very notion and use of a model prevent from devising an “all-
purposes” model that would allow to replace system study by questions addressed on the model.
To be fruitful, a model should be specific to the investigated issue, ignoring details and degrees of
freedom irrelevant as regards to this question and devised at the relevant scale (e.g. accounting for
the available knowledge and experimental access. Similarly, a multiscale model should not intend
to keep track of all details at all scales but only of the relevant details, whatever their scales, to
unravel a biological function and regulation.
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