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This chapter confronts renormalization used in quantum field theory and
that used in critical phenomena studies in statistical mechanics or dy-
namical systems theory. Regularization that cures spurious divergences
is distinguished from renormalization transformations allowing to com-
pute actual physical divergences. The former generates a group, and is
also encountered in singular perturbation analyses in nonlinear physics.
The latter generates a semi-group, and is implemented as a flow in a
space of models; its analysis, focusing on fixed points and their neigh-
borhood, allows to determine asymptotic scaling behavior, to delineate
universality classes and to assess model structural stability (or instabil-
ity, i.e. crossovers). The renormalization group can be seen as a sym-
metry group and a general covariant formulation is proposed. Aspects
presented here show that renormalization theory has emulated a shift of
focus from the investigation of outcomes of a given model to the analysis
of models themselves, by relating models of the same system at different
scales or grouping models of different systems exhibiting the same large-
scale behavior. So doing, not only (subjective and partial) models are
distinguished from underlying physical systems, but also intrinsic phys-
ical features can be derived from model comparison and classification.

1 Introduction

A first motivation of the present chapter is to investigate the relations between renormalization
techniques encountered in very different domains of theoretical physics. The use of one and the
same term of “renormalization” seems confusing when comparing its contents in quantum field
theory (QFT) with renormalization methods exploited for studying critical phenomena in statistical
mechanics or the onset of chaos in dynamical systems theory. They respectively involve cutoffs
or local averages, without or with rescaling, a single transformation or a transformation iterated
to infinity with relevant large-scale information lying in the limiting behavior of the ensuing flow
in a space of models®. The approach is perturbative in QFT whereas it is non perturbative in
statistical mechanics and dynamical systems theory. The associated ‘renormalization group’ (RG)
has a different structure, being respectively a group (in general non commutative) or a semi-group
(in general commutative). Finally, the divergences asking for renormalization differ in nature,

1To appear in E. J. Theor. Phys., special issue “Observers and particles in QFT and new trends in quantiza-
tionObservers and particles in QFT and new trends in quantization” edited by I. Licata, World Scientific (2008).

2Permanent address: Laboratoire de Physique Théorique de la Matiére Condensée, Université Pierre et Marie
Curie-Paris 6, 4 place Jussieu, F-75252 Paris Cedex 05, France.

3Note that one speaks of a ‘theory’ in QFT and of a ‘model’ in statistical mechanics.



being in short either spurious ultra-violet (UV) divergences of the theory (to be cured) or actual
infra-red (IR) divergences observed experimentally (to be computed); they come respectively from
unphysical features of the theory at very small scales or from the presence of fluctuations and
correlations at all scales that build up an anomalous macroscopic behavior. I here propose to
distinguish:

— renormalization understood in the sense of regularization, used mainly in quantum field theory
to cure UV divergences,

— renormalization implemented as a remormalization flow, used to investigate critical phenomena
and universal scaling properties.

But there are also conceptual and historical links between the different renormalization ap-
proaches, e.g. they all rely on the computation of effective (‘renormalized’) parameters and exhibit
a group structure related to some scale invariance property. The relation between QFT and critical
phenomena and their respective renormalizations has been already discussed by K.G. Wilson[51],
after he had successfully applied renormalization to understand Kondo effect (effect of a magnetic
impurity in a non magnetic metal). I shall discuss in this paper several additional points:

— the distinction between regularization and renormalization flow (§ 2);

— QFT-inspired renormalization to manage with singular perturbations and singular dependence
in initial or boundary conditions (§ 3);

— principles of real-space RG generating a flow in a space of models (§ 4);

— RG flow seen as a ‘generalized dynamical system’ where the rescaling factor (or number of
iterations) plays the role of time; its analysis around renormalization fixed points allows to compute
the critical exponents. Remarkably, its global analysis achieves a partition of the space of models
into universality classes, identifies the possible origins of crossovers, and provides a systematic way
for investigating model structural stability (§ 5);

— mathematical structures of RG (e.g. Lie group and symmetry group), that I propose to extend
into a general covariant formulation (§ 6);

— change of scope associated with RG, shifting the investigations from the phase space of a given
model to a space of models (§ 7).

2 Renormalization as a way of regularization

2.1 Historical background

The first meaning of renormalization, encountered in hydrodynamics more than a century ago,
refers to a method in which some indirect, external or spurious effects are dealt with through a
redefinition of the parameters of the model. This idea originates in the renormalization of the
mass of a moving body into a moving fluid [17, 9]. The adjective “renormalized” here describes a
coefficient or a quantity computed by adding to its actual value (‘bare’ value) in the initial model
M of the system* S some contributions of the same dimension, coming from additional phenomena
taking place in S or from interactions between S and its environment.

A typical instance where this basic renormalization is fruitful is the case where some parame-
ters of the initial theoretical model have no experimental reality: their values are affected by the
inadequacies of the model (e.g. they diverge) due to an unavoidable lack of information on small
scale mechanisms, and they should be replaced by effective ones in order to reproduce correctly the
observed reality: the measured values correspond to these effective parameters. An acknowledged
example is the renormalization of the mass of the classical electron. In classical electrodynamics,
the electromagnetic mass M, is defined by m.,c?=U where U is the total electromagnetic energy

4We here meet a leitmotiv of the present chapter, that renormalization methods underlined and exploited in a
deep way: the careful distinction between the system S and its models, observer-dependent insofar as constructing
a model M requires to choose a theoretical framework, hence to introduce minimum scales under which another
theory has to be used [1].



of the electron; me, diverges in the limit where the electron is described as a point-like charge®.
Renormalization here appears as a formal operation aiming at reestablishing the operational valid-
ity of the point-like model. It consists in compensating the divergence of m, by an infinite mass
m’ in order to obtain an effective finite mass meyy = Mmoo, — m’, giving the experimental value of
the mass. mess can rather be termed a regularized quantity in which the spurious divergence due
to the model inadequacy at infinitely small scales has been discarded.

2.2 Ultra-violet divergences and cutoffs

In QFT, renormalization mainly refers to a procedure intending to eliminate the so-called “UV
divergences” arising in perturbative calculations with respect to interaction terms (the zero order
being the free-field theory). The adjective “ultra-violet” refers to high-energy and large-momentum
domain in the conjugate space, corresponding to structures and mechanisms with short charac-
teristic lengths and times. As in the above examples, § 2.1, the origin of UV divergences is the
inadequacy of the explicit microscopic description that encompasses an unlimited number of inter-
actions of arbitrarily small scale and high energy (e.g. arbitrarily fast creation and annihilation of
electron-positon pairs®). The occurrence of ultra-violet divergences thus appears as a feature of the
theory. Regularization intends to compensate the unphysical infinite contributions in perturbative
expansions by adequately modifying the initial model, so as to obtain finite contributions and, all
things considered, a regular model.

A standard way to implement regularization is to introduce an UV cutoff A = (A4, Ay,) and to
ignore large-momentum and large-frequency components with ¢ = [|¢]] > A4 and |w| > A,, (those
producing unphysical divergences). Mechanisms involving these components, i.e. high energy
processes, are no longer described explicitly but taken into account by introducing additional low-
momentum and low-frequency contributions. By construction, the effective model thus obtained
has only components with ¢ < A, and |w| < A,, (hence no longer UV divergences) and it induces
the same observable consequences as the initial model; this is the very prescription defining what
the additional terms should be, the obvious difficulty being to explicitly determine the terms that
fulfill this requirement.

UV cutoffs are here used to circumvent ill-defined small-scale mechanisms and stick to a well-
controlled effective theory; we shall see in § 3.2 that they are also useful to reduce the number of
microscopic degrees of freedom (replaced by a smaller number of effective degrees of freedom) and
are centrally involved in renormalization-group studies in statistical physics.

2.3 Renormalizability

In quantum electrodynamics, a theory is said to be renormalizable if its regularization, that is,
adding effective terms to counterbalance apparent divergences due to the inadequacy of the theory
at high energies, amounts to a modification of the coupling constants (charges) and masses into
“renormalized” ones[6]. When regularization is implemented with an UV cutoff, renormalizability
means that the overall influence of the modes left aside by the cutoff can be reproduced by changing
the parameters which control the equations for the remaining modes. Renormalizability appears

5An intuitive understanding of the problem can be grasped by considering the model where the charge Q is
described as a homogeneous distribution in a sphere of radius a, hence involving a uniform charge density pq (7) = pq
if r < a else 0, such that Q = 47rpaa3/3. Letting the scale a — 0 corresponds to a mathematical idealization
extending artificially the model beyond its natural range of validity, from which the divergence of p, as a — 0
originates. The mathematical theory of ‘generalized functions’ has been precisely devised by L. Schwartz and others
to handle such singular situations: the charge density is properly written as a distribution pgs—o(7) = Q4(7). What
makes sense physically is not the infinite value of p,—,0 at the point-charge location ¥ = 0 but the integrated
distribution over an observation sphere of radius rqg since fr<m pa—0(7)d7 = @Q (independently of 7o, that plays the
role of a cutoff, as in § 2.2).

6 A similar difficulty would arise in chemistry, associated with the lack of knowledge about elementary reactions,
involving transient species of arbitrarily short lifetimes.



as a kind of internal consistency of the theory, as its space-time scales can be bounded from
below without increasing the dimension of the parameter space. It is still discussed whether
renormalizability has to be prescribed as a criterion of validity when constructing a quantum field
theory.

2.4 Emergence of the notion of renormalization group

The so-called renormalization group has been introduced in 1953 by Stueckelberg and Petermann[49]
to relate one to another the different regularized models M obtained with different UV cutoffs A.
One may indeed introduce a transformation R, A, relating the regularized models My, and Maj,
according to Ma, = Ra,.a, [Ma,]. In other words, the various possible regularizations [Ra o]0,
each associated with a cutoff parameter A, are formally related through Ra, cc = Ra,,A; © Ray,00-
Obvious transitivity (the models are regularized versions of the same theory) implies that the set
of operators R has a group-theoretic structure Ra, A, © Ra,,A; = Ras,a, Which explains the term
“renormalization group”. In case when the transformation Rj, o, depends only on the ratio’
A1 /Mg, namely Ra, a, = ﬁAl/Az, the constructive relation Ry [Ma] = My, implies the simpler
group-theoretic relation ﬁkl o 75;€2 = ﬁklkz.

Soon after, a similar method was exploited by Gell-Mann and Low|[28] to study the behavior
of quantum electrodynamics at small space-time scales. They first pointed out the relevance of
using different effective parameters according to the scale k of the description, which led them to
introduce apparent charges (e.), for the electron. Again, the breakthrough was to relate one to
another the different values (e ),, more precisely their square Eg = (e, \/@)2, by a renormalization
transformation:

RiqlEqQ] = Eqi, (1)

A non-commutative group-like structure shows up in the relation

Ry, q/ky © Biy @ = Riika @ (2)

Commutativity fails as Ry, q/k, © Rry,@ = Riy,0/ks © Rky,@ # Riy,@ © Riyq/k, (in fact, the right-
hand-side is not defined, and the structure is not a group but a groupoid in which the internal
composition law is not total). Such a renormalization group is said to be non-autonomous because
the associated renormalization equation, obtained by differentiating the relation Ry [Eq] = Eq/k
with respect to k and taking k = 1, appears to be a non-autonomous dynamical system:

dEQ de Q ’ITL2
@ (@)@ (5),, = (g :
e (@) &) [Eq)] 5 (3)
where m is the mass of the electron, or equivalently:
de? m?
2 K 2
oz T v <6"“’ /12> )

(note that the right-hand-side depends explicitly on ). The difficult step is to compute the func-
tion 9 from the quantum electrodynamic description of the electron. @ contains the information
required to determine the correspondence k +— e,. The limiting case e,, corresponds to the bare
charge that appears in the initial theory; it does not correspond to a physical (i.e. measurable)
quantity because the electron cannot be removed from the electromagnetic field and its charge
measured in a bare situation. By contrast, any renormalized charge e, is a physical quantity
corresponding to the charge measured at a k-dependent energy level.

"For simplicity, we here use a shortcut in the notation: being a bound on 4-vectors, A hence k have 4 components,
and the ratio Aj/A2 should be considered component-wise.



2.5 Renormalization equations

Scale consistency of the regularization expresses in the renormalization group-structure (2) or
equivalently in its differential form (3-4) called a renormalization equation. It ensures basically
that the arbitrary cutoff choice has no impact on the investigated physical features and in fact
contains all the information to determine them. A change of notation Ry g[Eg] = g(k,Q, Eq)
translates the group relation (2) into the equations derived by Bogoliubov and Shirkov(3]:

9(x,y,9) = glz/k,y/k,g(k,y,9)] (5)

expressing the functional self-similarity of the regularization. Derivation with respect to kin k = 1
yields the so-called Callan-Symanzik equations[46]:

0 0 01 _ _
x(‘?_:r+y8_y —B(y,g)a—g g(z,y,9) =0 (6)
where oo
_ 99, _
By, g) = 8x(x 1,y,9) (7)

These first advances, now fifty years old, have been followed by a huge amount of developments,
giving rise to new issues and new viewpoints on renormalization, for which I refer, among others, to
papers by Rivasseau[44], Ebrahimi-Fard and Kreimer[20] or Connes[14], and a book of proceedings
edited by Duplantier and Rivasseau[18].

3 Renormalization to compute singular limits

3.1 Renormalization to handle non-commuting limits

A common feature of all renormalization techniques is to deal with singular limits. In QFT,
an ill-defined small-scale limit lim,_oms(a) = oo is regularized, currently using a cutoff A, so
that m(a) remains finite (and independent of the scale a) as ¢ — 0; one would like here to
compute limy o ma. In statistical physics, the issue is to compute the temperature dependence of a
thermodynamic limit® (size N — oo at constant density) and its critical behavior limp_7, limy_ o
(differing from limy_, oo limpr—7 ). In dynamical systems theory, similar non commuting limits
arise in computing the parameter p dependence of the asymptotic behavior (infinite time) and its
bifurcating behavior lim,,_,,, lim; ...

The idea of renormalization is to evidence an invariant behavior when the limits are performed
jointly, the parameter being gradually renormalized as 1/A, N or t goes to infinity. The unique way
to get a non trivial limiting behavior expresses through renormalization equation and the point is
that it contains all the desired information on the investigated behavior.

3.2 Renormalization approach to singular perturbations

Singular perturbations refer to situations depending on a small dimensionless parameter € in such
a way that the behavior for ¢ = 0 differs qualitatively from the limiting behavior ¢ — 0. Ac-
knowledged examples are anharmonic oscillators (Duffing and Van der Pol oscillators) where the
damping goes to 0 with e, hydrodynamics in the inviscid limit (viscosity v ~ ¢ — 0), differ-
ential equations where € is a factor in front of the highest-order derivative, or secular diver-
gences (originally in celestial mechanics) where a resonance between the perturbation and the
unperturbed system builds up a slow unbounded drift (we here face again non commuting limits
lim,_,o lims—, 00 # lim; o lim._,0). As in critical phenomena, divergences arise at large scales and

8Indeed, Lee-Yang theorem assessed that phase transitions are well-defined only in the thermodynamic limit (as
free energy singularities) and have no rigorous meaning in a finite system [54, 36].



correspond to a real feature; but perturbation series asking for regularization are quite similar to
QFT divergences issues.

Let us denote 6 a control parameter and investigate the #-dependence of the asymptotic behavior
of the solution f(e, 6,t) of an e-dependent dynamical system. The singularity reflects in the lack
of uniform convergence of the straightforward perturbation series:

Fle,0,8) = € ful6,t) (8)
n=0

for instance lim;_,, f,(0,t) = oo at fixed n and 0. It means that the perturbation, although of small
amplitude and controlled over any finite time, is amplified and propagated up to have macroscopic
non perturbative consequences, that makes the e-expansion inconsistent at long times: the relative
order of the successive terms is not preserved along the time. It is thus impossible to investigate
the asymptotic behavior ¢ — oo using the plain expansion (8). The principle of the renormalization
approach is to integrate diverging contributions in a reparametrization:

fle, 0,t) = gle, O(e,0,1),1] (9)

where the renormalized parameter ©(e, 6,t) is such that the expansion of g(e, ©,¢) in powers of €
is uniformly convergent with respect to © and t. This prescription requires a solubility condition,
expressing the multi-scale consistency of the renormalized perturbation expansion, to be satisfied:
the fast components should actually be fast, meaning that they have no slowly evolving conse-
quences, and slow modes should involve slow variables only. In this way, the asymptotic behavior
can be faithfully captured at finite orders of the e-expansion of g(e, ©,¢)[10]. The solubility condi-
tion appears as a renormalization equation, thus bridging this approach with QFT renormalization
(§ 2.5). Other common features with QFT regularization are that a single step § — © will be in
general sufficient, no rescaling is involved, and the procedure is not intended to be iterated to
infinity.

3.3 Singular dependence to initial conditions

A formal identity can be drawn between the QFT renormalization equations, § 2.5, and the regu-
larization of the solution f(t;to, fo) of a differential equation that depends in a singular way on the
initial condition (fo,to) with f(to;to, fo) = fo. Namely, fo tends to oo as one tries to let tg — —oo:
some cutoff or regularization is thus required, as in QFT.

Let us note z = €', zg = e® and f(t;to, fo) = F(2; 20, fo). The group structure of the solution
(a temporal flow) implies that

F(z; 20, fo) = Flz; 21, F(21; 20, fo)] (10)

When F(z; 2o, fo) = 9(2/ 20, fo), it comes g(z, fo) = glz/k, g(k, fo)] to be compared to the homo-
geneous (y-independent) version of (6). The same functional self-similarity is observed, expressing
here the consistency relation between the initial conditions at different times required to describe
one and the same solution. It will be exploited to replace the singular initial condition in zy = 0 by
a finite one at some z; > 0. This intermediary z; plays the role of a cutoff and its specific value is
of no importance provided the corresponding initial condition is chosen according to (10), namely
f1 = F(z1;20, fo). This procedure for regularizing a singular dependence to initial condition has
been successfully applied to anomalous diffusion equation[29] and several other partial differential
equations[30, 11]. Let us underline that renormalization is here applied only once, and to the
solution itself; it thus strongly differs from the RG procedure applied to the evolution rules that
will be discussed in the next section, § 4.2.



4 Renormalization of critical phenomena

4.1 From QFT to critical phenomena

In the context of critical phenomena, RG approaches have been developed to compute large-scale
behaviors, singular insofar as scaling exponents computed by mean-field methods dramatically
differ from the measured ones; one also speaks of anomalous exponents. The discrepancy clearly
originates in the very notion of criticality: the system exhibits long-range correlations; accordingly,
the slightest fluctuations are able to have a macroscopic impact and never self-average out[29, 37].
Denoting £ the correlation length and a a typical molecular length scale, all the fluctuations in the
range [a, &] matter (with £ — oo at the critical point whereas & is of the same order than a far away
from the critical point). Experimental signatures are the divergences at the critical temperature T
of susceptibilities, transport coefficients and other response functions, and singularities at T' = T, of
thermodynamic functions, e.g. free energy or order parameter; in the critical region where £(t) > a,
all these quantities satisfy scaling laws with respect to T'— T, with anomalous exponents|38].

The conceptual unity of RG across different domains of theoretical physics has already been
underlined, by bridging RG principles and techniques between QFT and statistical physics[52,
55, 25] but also between statistical physics and dynamical systems (analogy between spatial and
temporal settings)[29, 37] and even probability theory, understanding criticality as a statistical
pathology departing from the central limit theorem range of validity[34, 10]. Focusing here on
the passage from QFT to statistical physics, several common features can be underlined, mainly
UV cutoffs and the computation of effective parameters. But there are also deep differences,
already mentioned in the introduction, § 1, that we shall now detail; they are mainly related to
the systematic exploitation of the renormalization (semi)group-structure insofar as it generates a
flow in the space of models.

4.2 Principles of renormalization-group analysis

The issue in critical phenomena studies is to account for the macroscopic impact of fluctuations at
all scales. Renormalization proceeds by dividing the correlation range into subranges that can be
recursively managed with by means of coarse-graining’, that is, by integrating out the smallest-
scale degrees of freedom and interactions, and capturing their overall influence through effective
terms at higher scales. When the model is expressed in the conjugate space, a coarse-graining
corresponds to a UV cutoff integrating out modes with large wave vectors, as in QFT. However, it
is usually assumed!® in (classical) statistical physics that the model exhibits a minimal length scale
a =2m/A,, e.g. the cell size in spin lattice models or more generally some molecular length scale.
Contrary to regularizing cutoffs in QFT, cutoffs involved in statistical physics are finite ones, in
the sense that they integrate out modes in a finite window A,/k < ¢ < A, for some scale factor
k > 1. In real space, coarse-graining is implemented through a local average over cells of linear size
ka. Considering the coarse-grained cells as the elementary units in the renormalized description
reduces the number N of elements by a factor k¢ where d is the space dimension.

Another departure from QFT renormalization is to supplement the coarse-graining (equivalently
the cutoff) with rescalings intending to make the renormalized configurations the most similar
possible to the original ones. The lattice cell size a (equivalently the upper bound Ag) is preserved
by means of a rescaling of all lengths by the factor k. Other rescalings, in the first place of the local

91n one case, namely fully developed turbulence driven by an energy input at a macroscopic scale, the relevant
renormalization scheme is to integrate out the influence of large scale onto smaller ones, traveling the Richardson
cascade downwards, down to dissipation scale; indeed, criticality here appears when the dissipation scale tends to
0, since then small-scale singularities develop in finite time, whereas the macroscopic scales are prescribed in the
setting, e.g. the size of an obstacle or the scale at which energy is injected. This unique situation is known as
inverse renormalization-group[27].

10We mean that investigations start directly with a lattice or finite-resolution model, without working out its
derivation from more fundamental (e.g. quantum) physics.



state variable § (e.g. the spin value in case of spin lattice models) might be needed to preserve
physical invariants.

The central step of renormalization is to describe how the model should change when we
change the description level in order to correspond to the same real system. It expresses as a
transformation ¢ — R of the model rule ¢, that is a “microscopic” state function (defined on
the microscopic phase space of the model) which thoroughly determines the microscopic behavior:
think of a reduced Hamiltonian ¢ = H/kgT where T is the temperature and kp the Boltzmann
constant; other examples of model rules are the action in a quantum field theory, the evolution
map for a discrete dynamical system, the vector-field for a continuous dynamical system, or the
transition probabilities for a diffusion process. In summary (details and case studies can be found in
literature[8, 10, 22, 23, 29, 37, 52]) the renormalization procedure acts jointly on several quantities:

N — Nk~ which defines the rescaling factor k,

7 — 7k in the real space,

q— kq in the conjugate space,

§— §/k* (suitable rescaling to preserve physical invariants),
¢ — Rio (renormalization operator) with Ry, 0 R, = R ky-

It makes sense to compare the initial model with the renormalized one since they have the same
(apparent) resolution. A single renormalization is already fruitful since it achieves dimensional
reduction, as well as regularization insofar as the correlation length £ is reduced due to space
rescaling: &(Ri¢) = £(¢)/k hence the model is less critical. But renormalization becomes really
fruitful when iterated. A renormalized model of size N (e.g. with N elements) corresponds to an
original model of size Ny = kN the larger the original system, the more times its model at a given
scale a could be renormalized. At fixed N, limg_,o0 (Ri@)(IN) describes the thermodynamic limit
of the model ruled by ¢. This idea of iterated coarse-grainings has been proposed by Kadanoff[35],
and it amounts to consider the degrees of freedom not all at once but hierarchically and recursively.
In case of critical phenomena, renormalization should be iterated indefinitely to take into account
fluctuations and correlations at all scales.

As can be guessed from the equivalence between coarse-grainings and cutoffs, renormalization
can be implemented either in real space or in conjugate space. Real-space RG[7] is intuitively
meaningful hence easier to devise; it is preferable for systems where real-space geometry plays a
central role, e.g. for percolation and polymer conformation studies[16]. RG implemented in the
conjugate space is technically more efficient; in particular, the space dimension d appears as a
numerical parameter, that allows to implement a perturbation approach with respect to e =4 —d
(critical exponents take their mean-field values for'' d > d. = 4), the so-called e-expansion[53].

Renormalization can also be exploited to investigate critical dynamics, replacing coarse-graining
in real space by a local time averaging over k time steps, while the flow analysis follows the same
steps. RG methods have for instance been very fruitful to investigate universal scaling at the onset
of chaos in the period-doubling scenario[21, 15, 13, 37]. Spatio-temporal extension as well has
been developed to investigate dynamic critical phenomena[32]. RG can also be seen as an iter-
ated multiscale approach allowing to derive in a rigorous, systematic and constructive way effective
low-dimensional equations describing large-scale behavior of the system under consideration; an ex-
ample is the derivation of Navier-Stokes hydrodynamic equations from Boltzmann kinetic equation
[31, 10].

4.3 RG computation of critical exponents

Let us now unravel the ‘magic of the renormalization-group’[26] leading from general principles to
numerical values for the critical exponents. Having devised the renormalization operator Ry, the
next step is the determination of its fixed points ¢* satisfying the fixed-point equation Ry¢* = ¢*

For d = d. = 4, the critical exponents still take their mean-field values but additional logarithmic terms slightly
modify the scaling laws.



Figure 1: Renormalization flow around an hyperbolic fixed-point ¢* in the space of model rules
{¢}. The critical manifold coincides with the stable manifold ¥*. The critical scaling of a one-
parameter family (¢x)x is obtained by determining the critical point K. such that ¢x, € X* and
identifying the renormalization action on the family with its action along the unstable manifold
3%, A universality class is thus associated with each hyperbolic fixed point. Relevant directions are
the unstable ones (along >*) while contributions to ¢ along ¥° have no large-scale consequences.

and corresponding to exact self-similarity. Since {[Ri(¢)] = &(¢)/k, the correlation length £* =
&(¢*) satisfies £* =&* /k hence either £* =0 (trivial fixed point corresponding to an uncorrelated
system) or £* = oo, associated with criticality. Critical fixed points are those having moreover
both stable and unstable directions (‘hyperbolic’ fixed points). The operators Ry are precisely
designed to extract the universal large-scale behavior of a critical system. Each renormalization
eliminates the specific small-scale details in order to highlight the self-similar properties common
to all the models of the same universality class: all models converging to the same fixed point ¢*
upon the action of Ry exhibit the same large-scale features: those of ¢*. The stable manifold ¥
of ¢* is thus the location of the critical systems:

Ve X, lim Rj;,¢ = lim Ry = ¢’ (11)
n—oo — 00

To grasp the principle of RG computation of critical exponents, we shall consider a model rule ¢
depending on a control parameter K, and assume (at the cost of some approximations to be checked
afterwards) that renormalization action can be transferred onto a transformation K — 7, (K), i.e.
Ridx =~ ¢r, (k). The critical point is determined by r(K.) ~ K., with ¢x, € X° (see Fig. 1).
Plugging the investigated scaling law &(¢x) ~ |K — K |7" for the correlation length into the
equation £(Rrdr) = &(¢x)/k expressing the renormalization action on & yields |ry(K) — K |7¥ ~
|K—K.|7"/k. Then, the first order approximation r(K)— K. ~ ri(K)—ri(K.) = r (K.)[K — K]
yields k = |r} (K.)|” from which follows the value of the exponent:

Ink
_ 12
TV o) -
The next and last step is to show that |} (K,)| coincides with the largest eigenvalue of DRy (¢*).
Expanding Ry¢x ~ ¢, (k) around K = K, yields:
TS

DRy (¢k.) - W(KC) (K- K.~

ok

W(Kf) T;«(Kc) . (K - Kc) (13)



Provided ¢, is enough close to ¢*, this equation reduces to:

0K _ 09k
" 0K oK
Applying the projection P* onto the unstable direction of DRy (¢*) to this equation evidences

the ‘transversality condition’ P* [%‘%?(KC)] # 0 required for the validity of the analysis and finally
yields the equality 7} (K.) = k7 where k' is the most unstable eigenvalue of DRy (¢*).

In case when the renormalization operator involves m > 1 rescaling factors (ki, ..., k), there
is in general a unique one-parameter family k = (k*1, k%2, ... k®m) leading to a non trivial limit
as k — oo, and this very fact brings a lot of information on the scaling exponents describing the
asymptotic behavior. Let us consider the example of diffusion processes. Aiming at determining
the leading behavior at large scales of a random walk in R, renormalization procedure is defined
by the action on the transition probability p(7,t) (probability density of being in 7 at time ¢ when
starting from the origin at time ¢ = 0) of a family [Ry x]rx>1,x>1 of operators

[Ri.ic (p)(7, 1) = k* p(k, Kt) (15)

—

The mean-square displacement D(p, t) = ((7(t)—7(0))?) is transformed according to k** D[R} rp,t] =
D(p, K™t) after n iterations. In case of normal diffusion, only the iteration of Ry —j> leads to
a non trivial limit[37, 10], yielding the asymptotic diffusion law D(p,t) ~ Dt (for t — o0) of the
process. Starting with different assumptions on the statistics of the elementary steps (e.g. Lévy
distributed), the non trivial limit is obtained with K = k®, yielding D(p, t) ~ [t|*/ for t — co.

5 Structural stability and universality classes

5.1 Renormalization as a flow in a space of models

The above technical steps in fact lead to a huge methodological shift: instead of studying the
outcome of a given model M, for example computing the value of state functions and their vari-
ations with respect to variables and parameters changes, renormalization analysis focuses on the
transformation of the model following a change in the description scale and on the renormaliza-
tion flow it generates. In other words, renormalization defines a dynamical system in the space
of model rules {¢}: either a discrete one if only an isolated map R is defined and iterated, the
number of iterations being the analog of (discrete) time; either a continuous one if Ry depends
smoothly on a continuous rescaling factor k. In this latter case, denoting x = Ink and 7%,{ = Ry,
the renormalization group structure is that of a one-parameter flow ¢(x; ko; Po) = Ri—roPo- In its
differential form, the dynamical system writes

do

dr
As we shall see, a trajectory represents the relation between models of the same system at different
scales, whereas comparing different trajectories allows to investigate model structural stability and
universality classes.

‘”i“ (r=0) (16)

(k) = L[¢(k)] with L=

5.2 Relevant and irrelevant contributions

Due to the renormalization group structure, the eigenvectors (h;);>1 of DRy(¢*) do not depend
on k and the eigenvalues have the form k7, where v > 0 for the unstable directions and v < 0 for
the stable ones'?. A parametrization of the model rules is available in the neighborhood of ¢*:

$=¢"+> 0ihj+0(@*) = Rud=0"+> k¥p;h;+0(p?) (17)
j=1 j=1

12Complex eigenvalues would generate oscillatory corrections to scaling.
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where the labeling j — ¢; is chosen according to the ordering v; >«;4+1. Hence, renormalization
reduces in the linear approximation to a scale transformation r; acting component-wise according
to rV )(goj) = k% ¢;. The scaling behavior of any state function A follows. Indeed, denoting
k% the rescaling factor for the values of A (e.g. o = 1 if A is a length or & = 2w if A is the
correlation function of the local state variable 3), its transformation upon renormalization writes
exactly A(N, Ry¢) = k~*A(Nk?, $) and in the linear approximation

AIN, (p;)j1] = k* A[NE™?, (K @) 1] (18)

The signs of the exponents (7;);>1 are crucial. The direction associated to v; is said to be: relevant
if v; > 0, marginal if v; = 0, rrelevant if 7; < 0. Let us explain this terminology in case when
Y1 > v2 > 3 = 0 > 4. The coefficient 1, associated to the maximal exponent v; > 0, appears
to be the control parameter of the phenomenon; in particular, critical behavior is observed for
p1 — 0. Taking k = (plfl/ﬁ“ (if o1 > 0) leads to:

A1, 02,03, 04) = 01" AL 0207 03,00 07 (19)
The value of ¢4 does not play any role on the limiting behaviorigol — 0, hence @4 is an irrelevant
parameter. Typically, A(1, z, p3,0) behaves as a power law |z|~ for 2z tending to o0, hence the
leading behavior when 7 — 07 writes A(p1, 02, 3, ¢4) ~ @] " where:

o if Y2 = 07 A((p1707 ©3, 904) ~ (pF @O(@?’) hence n= %’
—(aty)uT + +
o if ©2 > 0) A((,Dh Y2, ¥3, 804) ~ ¥ " SD'; ®+(903) hence n= a+7/f# ;
—(atyo)p™ _ _
o if ©2 <07 A(Solv Y2, L3, @4) ~ Y1 " |302|M 67(903) hence n= a+:ny“ ’

where ©°, ©F and ©~ are regular functions of their arguments. Similar scaling laws are deduced for
the various derivatives of A. Hence the relevant directions control the values of critical exponents. A
crossover between different scaling laws is observed when 5 varies from negative values to positive
ones, passing through ¢ = 0 (other instances of crossover are investigated in the next subsection).
The marginal directions do not affect the exponent values but intervene in the prefactors. The
irrelevant directions have no influence at all on the leading scaling behavior; they only provide
corrections to the asymptotic scaling behavior. Additional corrections come from the nonlinear
terms in the renormalization action.

Let us illustrate the above discussion with the ferromagnetic transition: we have o1 =T, — T
and o = h (magnetic field). Taking for A the magnetization m, we have in zero field m(T, h =
0) ~ (T, — T)? with 8 = —a/v; (here a < 0 hence 3 > 0). In non-vanishing magnetic field, the
behavior of the magnetization with respect to T, — T is regular: this corresponds to u* = —a/v,
so that m(T = T., h) ~ |h|® with 6 = —a/v, (hence § > 0). Taking now for A the correlation
length, with o = 1, we get (T, h = 0) ~ |T —T.|7" with v = 1/~;: we recover the expression (12),
namely v = Ink/In k7.

5.3 Crossovers

A crossover refers to the failure to reach the scaling regime prescribed by the action of R along the
most unstable direction of the critical fixed point ¢*. Different origins can be distinguished, that
will put forward related notions: crossover exponent, crossover scale and crossover parameter.

(i) The underlying system is of finite size L that prevents it to reach the asymptotic universal
regime. We then observe finite-size scaling: a scaling law A(K) ~ |K — K.|~* becomes A(L, K) ~
LPF[L|K — K.|"] where v is the exponent of the correlation length ¢(K) ~ |K — K |™". Indeed,
&(K) is the unique other characteristic length of the system, hence a scaling argument implies
that F' depends on the unique variable L/¢(K). The behavior of the scaling function should be
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F(z) ~ 27%/Y as z — 0 so as to recover the infinite-size scaling as L — oo, from which follows
8 = a/v. In renormalization terms, the finite size of the system is directly related to the number
of renormalizations that can be performed starting from the initial model, i.e. to the length of the
trajectory in the space of model rules.

(ii) DR(¢*) has more than one unstable direction hence more than one relevant control parameter,
say K and h (think of a ferromagnetic system where K is related to the temperature and h
is the magnetic field); we then observe bi-critical scaling[41]. RG arguments that related critical
exponents to the unstable eigenvalue of DR (¢*) extend to the situation where there is two unstable
eigenvalues, as exposed above in § 5.2. Bi-critical scaling and finite-size scaling in fact express
through very analogous scaling relations, the role of L being played by 1/h where h = 0 recovers
the standard scaling. In the case of a ferromagnet[38, 29], the joint scaling of the magnetization
with respect to the magnetic field h and the temperature difference T' — T, write m(h,T) ~
|T — T.|° M (h|T — T.|*) with a finite value M (0) and M(z — c0) ~ z~#/2; in a similar way, the
singular part of the free energy writes fsing(h,T) ~ |T — T.|>*"“F(h|T — T.|*) with F(0) finite
and F(z — 00) ~ 2~ (2=9)/A For |n|.|T — T.|* < 1, the leading order describes the behavior with
respect to T at h =0, e.g. fsing(h = 0,T) ~ |T — T.|>~“. For |h|.|T — T.|* > 1, what dominates
is the behavior with respect to h at T = T, namely m(h, T,) ~ |h|7?/2. The exponent A is called
the crossover exponent with A = —[3/§ so as to recover the scaling law m(h, T.) ~ |h|°.

(iii) R has several critical fixed points, say ¢} and ¢5. In the generic case, ¢4 does not belong
to X%(¢%) (see Fig. 1) hence the fixed point that influences the trajectory upon the action of R
depends on the initial condition ¢ but also dramatically on the number n of iterations of R. Each
fixed point describes a different form of collective behavior observed when R"™¢ comes close to
the corresponding fixed point. The number n is directly related to the observation scale, i.e. the
system or sample size L according to k™a ~ L if a is the resolution at which the initial model and
its rule ¢ describe the real system. Two scaling behaviors will thus be observed according to the
system size, that evidence a crossover scale L™ at which occurs a fixed-point dominance exchange
(L* ~ k™ a such that R™ ¢ becomes more sensitive to @3 than to ¢7). Detailed understanding
of such a crossover requires a global analysis of the renormalization flow. An example is the
behavior of the sum (divided by N) of N independent random variables distributed according to a
truncated Lévy distribution: at moderately large values of N, the dominant behavior is described
by the anomalous central limit theorem for Lévy distributions while at very large values of N, the
standard central limit theorem applies since the random variables have a finite variance[48]. We
see that such a crossover might be avoided in a system of finite size L < L* where the ultimate
influence of the second fixed point ¢35 will never been felt.

(iv) R has several critical fixed points that have disjoint basins of attraction; in this case, the
crossover is sharper than in (iii) and the initial location ¢ in the space of models fully determines
to which critical fixed point the trajectory R™¢ converges upon the renormalization action, i.e.
which one determines its universality class and critical exponents. Such a crossover is observed
if the rule depends on a parameter € (the crossover parameter) determining to which basin of
attraction it belongs: the system belongs to different universality classes for different values of .
An example has been proposed by Fisher[22], considering a spin lattice with a pair Hamiltonian

H(3,5) = K(s18] + sash + 5385) + €K (825, + 5355) (20)
where § = (s1, $2,83). For e = 0, critical exponents are those of Heisenberg spins with 3 compo-
nents; for ¢ = —1, those of Ising spins with 1 component; for ¢ = oo, those of XY-spins with 2
components.

(v) Disorder, noise or random terms qualitatively affect the asymptotic scaling behavior[33]: the
degrees of freedom associated with randomness might generate additional unstable directions or
even a novel fixed-point. A well-known example is the random field Ising model where the presence
of quenched randomness induces a new critical behavior[45, 40]. Renormalization methods are
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well-suited to investigate the structural stability of the renormalization flow itself with respect to
disorder or noise; a relevant framework to appreciate the relative influence of the different unstable
directions is random dynamical systems and large deviations theory[2, 13, 4].

5.4 Mapping spaces of models: universality classes

Strictly speaking, the basin of attraction of the fixed point ¢* upon renormalization action is
embedded in the stable manifold ¥%(¢*) (also called the critical manifold). Its universality class is
composed of one-parameter families (¢ )i crossing transversally the stable manifold in K = K,
and exhibiting the same critical behavior for K — K_.; indeed, as exposed in § 4.3, this behavior
can be mapped onto the action of R along the unstable manifold ¥%(¢*). Accordingly, all real
systems whose critical behavior involves a transverse one-parameter family of models will exhibit
the same critical exponents related to the eigenvalues of DR(¢*). By expressing the relationship
between models at different scales, the renormalized flow picture allows to describe quantitatively
the actual physical divergences arising at critical points in infinite size (i.e., in the thermodynamic
limit or in the asymptotic regime) and to prove their universality. The full non linear analysis, if
tractable, would yield a partition of the space of models into universality classes, each associated
with an ideally critical and self-similar model (a renormalization fixed point) and grouping both
models at different scales of the same system (along a RG trajectory) and models at a given scale
of different systems sharing the same critical behavior.

5.5 Renormalization and structural stability

By shifting the study from the phase space to a space of models, renormalization offers a way to
investigate structural stability issues: two models differing in a relevant parameter will see their
difference increases upon renormalization while differences in irrelevant terms are damped out,
corresponding to structural stability. Renormalization can be exploited to check the robustness of
a model, as regards the asymptotic scaling behavior, with respect to enlarging both the parameter
space (adding new terms to the model rule ¢) or the phase space of the model (e.g. passing from
a discrete to a continuous space of states[47]). Renormalization is also efficient to appreciate the
influence of disorder on phase transitions[33, 45, 40], of noise on the onset of chaos[2, 13], or of
a stochastic forcing term on the large-scale behavior of the solutions of partial differential equa-
tions, e.g. Landau-Ginzburg equation[5], hydrodynamic equations (Navier-Stokes equations|[24]) or
equations describing the growth of an interface (Kardar-Parisi-Zhang equation[50]); the stochastic
term can represent an external noise or the influence of degrees of freedom not explicitly accounted
for in the model. Renormalization approaches, allowing to discriminate essential noise terms for
irrelevant ones, thus offer a constructive and qualitative way to investigate the structural stability
of deterministic models and the robustness of their prediction with respect to external or internal
noise.

6 Mathematical structures of renormalization

A common feature of renormalization methods presented in § 3 and § 4 is the semi-group structure
of the renormalization flow. It expresses jointly at several levels (variables, state functions, fields,
model rules) and leads to technical simplifications in case of a continuous structure (Lie group).
Investigating the renormalization group structure moreover evidences its relations with symmetry
groups and hints at possible generalizations.

6.1 Renormalization group structure and action

Let us denote z = (21, ..., z;m) a set of independent extensive variables of the model, typically cho-
sen among the numbers of particles, linear sizes, durations, maximal amplitudes, time and space
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variable; k = (k1,..., k) the associated rescaling factors (with k; > 1); and Rj the renormal-
ization operator acting on the model rules ¢. Internal consistency requires that renormalization
procedures associated with the same rescalings coincide:

R, © R, = Rit, xks (x being performed pairwise) (21)

1

The set {Rg,k1>1,...,ky >1} of renormalization operators is thus endowed with a multiplica-
tive semi-group structure!® homomorphic to ([1,00]™, x); it would be additive, homomorphic to
([0,00]™, +) by replacing k; with x; = Ink;. This homomorphism ensures that the renormalization
group is commutative. Rescalings involved in Ry, should be performed so as to satisfy the group
relation when iterated: for instance, rescaling a function x — f(x) writes (k- f)(z) = kf(x/k) so
that (ki1kz) - f = k1 - (k2 - f). Internal consistency also prescribes the rescaling of related variables
so as to preserve physical invariants; for instance, linear size, distances and space positions are
rescaled by the same factor, say ki, whereas the number of particles is rescaled by the factor k¢
in dimension d and the local state variable § by a factor k3’ (see § 4.2). More generally, we shall
YN = N,
and by definition of the variables z of reference, Af—:i)zi = z;/k;. For any variable z, the set [Al(f)],;
has the same multiplicative semi-group structure; in particular, in case of a single independent

denote Af—:) the rescaling factor acting on the quantity x, e.g. A](;)F = 7/ky and A

rescaling factor k, it simply writes Agf) = k=) where the exponent a(z) depends on the physical

nature of z, e.g. AECG) = k~2¥ for the correlation function G(7) = (5(0).5(r)). Physical quantities
are transformed upon renormalization according to:

ARz, 2) =AY A(g,kx 2) or ARz, AP z) =AY A(g,2) (22)

and more generally, A(Rz¢, A%E)E,A’(;)F, Ag—f)x) = A](;A) A(¢,z,7,x) for a field A(7,z). These
relations define a transformation Ry according to:

R;[A(9)] = A(Ry9) (23)

so that (RzA) (Ag—:)i, Al(—j)F, A%E)x) = A]%A) A(z,7,x). Consistency ensures an homomorphic semi-
group structure Ry, o Ry, = Ry, «j,. Invariance upon renormalization simply writes Rp¢* = ¢x,
hence

R;A* = A*

where A* = A(¢*), and corresponds to self-similarity. In this framework, renormalizability means
that it is possible to transfer the renormalization ¢ — Rg¢ of the model rule ¢, hence of all the
state variables A, onto a transformation K — rz(K) of its parameters. It comes:

Rilo(K)] = ¢lrp(K)]  and  Rz[A(K)] = Alry(K)] (24)

Again, consistency ensures a semi-group structure 75, o rg, = Tk, xk,-

6.2 Renormalization group as a Lie group

Focusing on the semi-group structure is of special interest when it is a continuous semi-group
endowed with a differentiable structure, namely a Lie semi-group. In this case, the whole analysis
can be performed in the Lie algebra generated by the infinitesimal renormalization operators. Let
us first consider the case of a one-dimensional Lie semi-group (Rj)r>1. This semi-group and its
action can be thoroughly described in terms of the properties of the infinitesimal generator

_ dRg

= —Ek=1) (25)

13Regularization, § 2, has a group structure; by contrast, the set of renormalization transformations has generically
a semi-group structure, since coarse-graining occurs with a loss of information and only rescaling factors k; > 1 are
relevant (or k; < 1 for conjugate variables, e.g. § — kg (wave vector) whereas ¥ — 7/k (position) with k > 1).
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acting locally in scales. Fixed-point equations [Vk > 1, Rx¢* = ¢*| equivalently express in a
compact way: L¢* = 0. Linear analysis of the renormalization action around ¢* can be performed
on L, according to:

Vk>1, DRik(¢")(p) =k ¢] <= DL )(p)=7¢ (26)

All the operators [DR(¢*)]x>1 commute, hence have the same eigenvectors, that are also eigen-
vectors of DL(¢*). Due to the group structure, any eigenvalue of DRy (¢*) is necessarily of the
form k7, where the exponent ~y is independent of k and can be determined from the spectrum of

DL(¢").
The formulas extend straightforwardly to the case when the renormalization transformation
involves m > 1 rescaling factors k = (k1,...,kn). The associated Lie algebra is m-dimensional

and it is generated by m infinitesimal renormalization operators £; = (9R;/0k;)(ko) where ko =
(1...1). It is to note that Rz =[], Ok, where Qi =Ry, . k,..1. These operators (Qk,)j=1...m
commute so that £; = (dQy, /dkj)(k‘j =1). The m operators (£;);j=1..m commute hence have the
same eigenvectors, which coincide with the eigenvectors of any Ry being thus k-independent.

Note that although the different generators £; commute, the limits k; — oo (or at the level of
the model, the limits z; — 0o0) do not commute. Typically, there is a unique way of performing
joint rescalings, namely a unique direction Z;n:l viLj=7- L in the multidimensional Lie algebra,
such that the iterates under renormalization action converge to a non trivial limit. The remarkable
point is that this direction 7 - £ gives access to the critical exponents characterizing the asymptotic
behavior. Let us consider again the RG study of diffusion processes, § 4.3. The infinitesimal
generators associated to (15) write[37, 10]:

By = (dR1,k/dK)(K = 1) [Bopl(t,7) = t(9ip)(t, T)

! (27)
Bi = (0Ry,1/0k;)(ki = 1) [Bip)(t, ™) = [(1 + 2:.V;)p](¢,7)

showing explicitly the commutative character of the Lie group. But the limits ¢t — oo and x — oo
do not commute. The renormalization iterates converge towards a non trivial limit only for a special
relation k., = k}* between the rescaling factors, corresponding to a single direction A; + ¥.A7 in
the Lie algebra, where 7; =« is the anomalous exponent (7(¢)?) ~ t27.

6.3 Renormalization groups and symmetry groups

Renormalization action and symmetries are described in the same formalism of group theory. RG
is besides nothing but a special symmetry group expressing the system scale invariance. Since the
renormalization operator R acts upon the representations of the system (that is, its models) while
preserving the system itself (that is, its physical reality), it should also preserve its symmetries. In
order that the original model and its renormalized versions share the same symmetries properties,
the renormalization operator has to commute with all symmetry transformations that leave the
system (and its model) invariant. Accordingly, symmetries appear as additional constraints, but
also as a guideline in defining R and the relevant subspace of models in which to consider its action.

Let us note that a marginal direction of the RG is in most cases associated to a continuous
symmetry (Sg)a>0 of the system. If (S,),s0 is a one-parameter'* symmetry group (with S, 0 Sy =
Sap) and ¢* a fixed point of R, then [Va > 0, R(S.¢*) = S,¢*]. Either ¢* is symmetric, i.e.
invariant under the action of the symmetry group [Va >0, S,¢* = ¢*]. Either its orbit under the
action of the symmetry group is non trivial and defines a one-parameter family of renormalization
fixed points (Se¢™)a>0, and 0q[S.¢*](a=1) is a marginal direction of DR(¢*) associated with the
eigenvalue 1 (it corresponds to a displacement along the curve (S,¢*)4>0 of fixed points in the
space of models). Moreover, in this latter case, the eigenvalues of DR(S,¢*) are obtained through

14 This case fully extends to continuous symmetry groups of higher dimension; the assertions that do not involve
the derivative 045, remain valid for a discrete symmetry group.
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the action of DS, (¢*) from those of DR(¢*). In other words, we get a set of fixed points and a
corresponding set of eigenspaces fibered over the symmetry group.

An important correlate is the symmetry properties of universality classes. Models belonging to
the same universality class are related by renormalization-group action to the same renormalization
fixed-point ¢*. If ¢* is invariant under all symmetries that are preserved by renormalization,
so is the universality class, meaning that either the models of the class are symmetric or their
images under the action of the symmetry group belong to the same universality class. If ¢* is
not symmetric, the image of the class under the action of a symmetry transformation S is the
universality class associated with the image S¢*.

6.4 Covariant formulation of renormalization

Renormalization group can be seen as a symmetry group: we are going to show that RG action
on state functions formally parallels the basic covariance properties of tensors upon the action of
the group of rotations. The transformation upon a rotation © in real space of a vector field A(.)
writes

OA(F) = O[A(O7'F)] or equivalently @ A(O7F) = O[A()] (28)
More generally, the transformation of a tensor field A(.) of order m writes
(@A), i (F) = Y ©ijy .05, Aj 5. (071F) (29)
J1seeesdm

We have seen in § 6.1 a similar consistency requirement between the transformation upon renor-
malization of variables (e.g. space position 7 and size ) state functions or fields, and model rule
¢, leading to define for each quantity A a transformation Ry such that

R;[A(9)] = A(Ry9) (30)
or more explicitly . .
RAAD 2 AV 7 A ) = AW Az, 7 2) (31)

The nonlinear dependence of Rz A with respect to A is quite weak: it is involved in the value of
the rescaling factor A%A), that is identical for all quantities of the same physical nature, i.e. of the
same dimension.

Isotropy of the tensor field, meaning its invariance upon rotation simply expresses @ A = A for
any rotation 6. In a similar way, scale invariance writes R; A = A for any set of rescaling factors
k. Note that if the model rule is a renormalization fixed point ¢*, i.e. Rp¢* = ¢*, then all state
functions are invariant upon renormalization; but a state function could be scale invariant, i.e.
Rz A = A, in a model that is not fully invariant upon renormalization. In the same way, the trivial
vector field everywhere equal to 0 is isotropic whatever the system is, whereas the system has to be
itself isotropic in order that all vector fields are invariant upon any rotation. For example, if there is
a single independent rescaling factor k and A]%A) =k~ scale invariance writes: k* A(7) = A(k7);
if A(r) is the mass contained in a sample of radius r of the scale invariant system, « is its fractal
dimension. Renormalization thus expresses a covariance property, with scale invariance replacing
Galilean invariance and fractal geometry replacing Euclidean geometry.

Roughly, a representation describes a set of observable consequences of the group action. The
relation R;[A(¢)] = A(Rj;¢) defines a representation Rj +— Ry of the renormalization group
in the space of state functions. The consistency of renormalization, acting at the same time on
the variables (time, space), the state (configuration, field) and the functional that rules the system
equation or evolution (action, Hamiltonian, vector field, transition probabilities), expresses through
commutative diagrams:
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¢ — Rio ¢ —  Ri¢
| ! T T (32)
A — RzA K — ri(K)

Accordingly, RG could be naturally embedded in the framework of category theory. The simplest
explicit example is the temporal RG for the period-doubling scenario[21, 15, 37]. The variable is
here the time ¢, and Rt = t/2 (namely k = 2). The state is here the position z in the phase space
[-1,1] and Rxz = Az where the rescaling factor A involves the evolution law f according to A\ =
f(t =1,z = 1). Finally, the renormalization writes (Rf)(t,x) = Af(2t,z/)\) = R[f(R~'t,R™12)].
These multi-level renormalization transformations can be summarized under the form of a com-
mutative diagram as follows:

t,z) - f(t,2)

(R,R) | I R

(Rt,Rz) L R[f(t,z)] = Rf(Rt, Ra)

The general structure of RG can finally be formulated as follows. It acts on a fiber bundle
(Fg)geg over an arbitrary set G, possibly ordered or even partly ordered. The renormalization
operator Ry, 4, is a transformation from F,, to F,, that satisfies the semi-group relation Rg,q, o
Rgigo = Ryag, for any triplet go, g1 and g2 in G and possibly a constraint go > g1 > go (the chain
rule being ill-defined if there is no ordering or an inconsistent ordering between go, g1 and g¢3), and
Rgq(¢) = ¢ for any g € G and ¢ € F,. Moreover, the chain rule consistency imposes a constraint
on the domains and images: Im[Rg, 4,] C Dom[Rg,4,] C Fy,. These operators R define a parallel
transport on the fiber bundle. The semi-group structure of this extended RG is homomorphic to
the semi-group structure embedded in ' = G X G, with (g2, 91) X (91, 90) = (g2, go) and the ordering
consistency. The RG is actually a group if and only if the transformations Ry, 4, are invertible,
with inverse R4, ; it is then homomorphic to the full group I'.

7 Conclusion: a deep epistemological shift

The usual approach in theoretical physics is to consider a given model and try to extract as much
information as possible by studying the solution (evolution, equilibrium state) ruled by this model.
But such an approach is unavoidably flawed by the idealizations and approximations involved in
devising the model, that is, a limited representation of the real system involving arbitrary choice
of description scales and keeping some degrees of freedom while ignoring other details. Renor-
malization approach is totally different. In focusing on the dependence on the observation scale
and expressing how our models and theories change when we change the scale of our description,
renormalization gives access to a more objective knowledge about the system. An illustration of
this idea is a fractal curve: its length [(a) is a quantity depending on the observation scale a; by
contrast, the relation I(ka) = k'~P71(a) between the lengths I(a) and I(ka) measured at different
scales a and ka involves an intrinsic quantity Dy, namely the fractal dimension of the curve.
Replacing the study of a given model by the study of the renormalization flow is naturally suited
to investigate structural stability of the models and robustness of their predictions. This allows
to split this space into universality classes grouping models at different scales of a given system,
and also, at a given scale, models of different systems exhibiting the same large-scale behavior. In
this way, RG is able to transform qualitative information (the belonging to the same universality
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class) into quantitative information (the values of the critical exponents and expression of scaling
functions); conversely, it enlarges the scope of numerical computation of the critical exponents
by assessing their universality and the structural stability of the model used in the computation.
RG has thus a deep impact on the epistemological level, changing our way to consider and devise
models, hence changing our very theoretical approach of real systems.

RG theory today offers several perspectives[42] and novel directions to be further explored. It
seems promising to investigate the physical interpretation of RG flow features other than hyperbolic
fixed points. Asymptotic behavior of renormalization trajectories more complicated than the con-
vergence towards a fixed point, e.g. a limit cycle or a chaotic behavior, are indeed possible[53, 39].
Renormalization group analysis could be generalized using recent extensions of Lie group theory,
e.g. local group structures that would allow to extend RG into an assembly of local versions'® in
the spirit of gauge theories extending global symmetries into space-dependent local versions. One
could envision RG based on other symmetries than scale invariance, e.g. to handle any pair of non
commuting limits (without necessarily one being associated to time or size); renormalization would
then relate models of the same system along another parameter axis than space or time scales.
Another direction could be to develop RG extensions on the basis of general covariance properties
within the framework of category theory. Let us finally mention recent and promising insights into
the mathematical structures of renormalization in QFT: the Feynman graphs describing the suc-
cessive contributions to the perturbation expansion form an Hopf algebra, with expected relations
to non commutative geometry [9], and the RG appears as a one-parameter subgroup of a larger
group with a rich mathematical structure related to Galois theory|[20, 14].
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