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Abstract
A simple, seven-parameter trial function is proposed for a description of the ground state of the
Lithium atom. It includes both spin functions. Inter-electronic distances appear in exponential
form as well as in a pre-exponential factor, and the necessary energy matrix elements are evaluated
by numerical integration in the space of the relative coordinates. Encouragingly accurate values of

the energy and the cusp parameters as well as for some expectation values are obtained.
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I. INTRODUCTION

It is well-known that the standard quantum chemistry approaches to calculation of the
energies of the low-lying states of few-electron atoms are characterized by slow convergence.
This convergence problem was demonstrated in a discouragingly explicit way for the case of
the Helium atom in recent studies by Korobov [1] (using a sort of exponential Hylleraas basis)
and by Schwartz [2] (using various trial functions that included correlated exponentials,
pre-exponential integer and fractional powers of both nuclear-electron and electron-electron
distances, as well as logarithmic terms). An unpleasant drawback of these studies is an
absence of confidence that high accuracy obtained for the energy guarantees a comparable
accuracy in expectation values [18] This question is vital when relativistic corrections are
studied, particularly in view of the fact that some of these corrections are defined by the
expectation values of singular and/or local quantities (for a discussion see e.g. [3]). Recent
advances in experimental techniques have now led to experimental data whose understanding
requires an accurate knowledge of the relativistic corrections [5]. As one of possible ways to
handle this situation, one of the present authors (FEH) has proposed to look for simple, few-
parameter "ultra-compact” trial functions which guarantee reasonably high overall accuracy.
One way of characterizing this approach is to describe it as a search for the most accurate
few-parameter trial functions. This line of endeavor is illustrated by work on the Hy molecule
6], for which a nearly optimum 14-parameter function was reported, and by work on the
He isoelectronic series [7], where optimum wavefunctions of up to four configurations were
generated.

The present contribution deals with a search for an optimum ultra-compact wavefunction
for the ground state of the Li atom. An important issue for such a study is how to determine
the overall quality of a trial function. The viewpoint taken in the present work is to use
as a quality measure the error in the cusp parameters obtained from the trial function
(residues arising from the Coulomb singularities of the potential). Of course, this criterion
becomes reasonable only if the cusp conditions are not artificially fixed to their exact values
by the choice of form for the trial function. We note that the most popular methods for
atomic computations use Gaussian-type orbitals, and that while such bases can provide
extremely accurate energies, they usually lead to vanishing cusp parameters and thereby

have significant drawbacks for the description of relativistic and other local effects.



In the work reported here, the trial functions that were examined consist of exponentials
in all the relative coordinates, in some cases multiplied by pre-exponential factors dependent
linearly on the interparticle distances. The matrix elements that arise have been evaluated

numerically by methods used previously by one of the authors [8].

II. WAVEFUNCTION AND VARIATIONAL METHOD

The nonrelativistic Hamiltonian for the Lithium atom under the Born-Oppenheimer ap-
proximation of zero order, i.e. with the Li nucleus assumed to be of infinite mass, is (in

Hartree atomic units)
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where V; is the 3-vector of the momentum of the ¢th electron, Z is the nuclear charge
(here Z=3), r; is the distance between the ith electron and the Li nucleus, and r;; are the
interelectron distances. The kinetic energy part of H is conveniently written in terms of the
distance coordinates r; and wy, = 15,k # 1 # j [9, 10],
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as long as the wave function has no explicit angular dependence. The summation P runs
over 7, j, k which are the six permutations of 1,2, 3.

The variational method is used to study the ground state of the Lithium atom. Physical
relevance arguments are followed to choose the trial function (see, e.g. Turbiner [11]). In
particular, we construct wavefunctions which allow us to reproduce both the Coulomb sin-
gularities in 7; and in r;; and the correct asymptotic behavior of large distances. As a result

the wavefunction of the 25, /2 Li ground state is written in the particular form

¥ =A[p(r, 72, 73)X] (3)

with
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where the pre-exponential factor is a linear function of its arguments, while o; and o; are

(non-linear) parameters. A is the three-particle antisymmetrizer
A=1— Py — Pizg— Po3+ Pozi + Psio . (5)

Here P;; represents the permutation ¢ < j and F;;;, stands for the permutation of 123 into
ijk. In Eq. (3), x denotes a doublet spin eigenfunction (S = 1/2) expressed as a linear

combination
X = X1+ Bxo (6)

of two linearly independent spin functions spanning the doublet spin space of quantum

numbers S = 1/2, M, =1/2:

x1 =272 [a(1)B(2)a(3) - B(1)a(2)a(3)], (7)

and
X2 =677 2a(1)a(2)3(3) — B(1)a(2)a(3) — (1) B(2)x(3)]. (8)

In Eq. (6), B is a parameter which can be used to obtain the optimum spin function, and
a(1), (i) are spin up,down functions of electron . In total, the function ¢ of Eq. (3) is
characterized by seven parameters, plus any that may occur in the pre-exponential factor f.

The matrix elements of H can be written as integrals over the nine dimensions repre-
sented by 7, 75, 73. Integrations over three dimensions describing overall orientation are
easily performed, and we end up with six-dimensional integrals over the relative coordinates
(r1,72,73, 712,713, 23). While it is in principle possible to reduce these integrals analytically
to one-dimensional integration: to expressions involving dilogarithm functions, as first shown
by Fromm and Hill [12], the analytic properties of the resulting expressions were found to
be quite complicated (see Harris [13]). For that reason, the primary method used in the
present research was direct six-dimensional numerical integration.

These numerical integrations were carried out using a suitable partitioning of the R® to
subdomains based on a profile of the integrand (for details, see e.g. Turbiner and Lopez [8]).
In each subdomain the numerical integration is done with a relative accuracy of ~ 107> to
107% by use of the adaptive DO1FCF routine from NAG-LIB [14] in a parallel manner. Due
to the complicated profiles of the integrands the numerical calculations are very difficult and

if not done with great care can lead to a serious loss of accuracy. By comparing numerical



and analytical evaluations of some of the simpler matrix elements, it was verified that the
numerical methods were reliable at least to six significant digits.

Minimization of the energy with respect to the nonlinear parameters was performed using

the minimization package MINUIT from CERN-LIB [15].

III. RESULTS

The Li ground-state energies obtained for optimized variational wavefunctions of the form
given in Eqs. (3) and (4) are displayed in Table I; the corresponding optimized variational
parameters are given in Table II. Each of the first seven rows of Table I describes a wave-
function with a different pre-exponential factor; the last row of the table reports the energy
obtained from the most accurate existent Li ground-state calculation [3], a result extrapo-
lated from a 9576-term wavefunction of Hylleraas type and probably accurate to within 10~
a.u. Using these wave functions we calculated the variational energies and also the values

of the cusp parameters:
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[cf. [16], Eq. (18)], which for the exact wavefunction should be equal to —3 when 7 = 7 (the

C:

electron-nuclear cusp).

All the wavefunctions described in Table II display the expected electronic shell structure;
electrons 1 and 2 correspond to a 1s? pair, with an average exponential parameter that
exhibits only a small degree of screening relative to the bare-nucleus value a@ = 3. Significant
energy improvement has been achieved by the “split-shell” description of this electron pair
(with oy > 3 > ). Electron 3 (to zero order the 2s electron) is not optimally described
by a pure exponential, and great improvement is obtained by giving it a Slater-type orbital
(STO) description, as in 19, or even a hydrogenic 2s form, as in ¢;. Note that the sign of the
pre-factor parameter (3; produces the node characteristic for a 2s orbital. The data for 3
and 15 show that inclusion of a linear interelectron distance improves the variational energy
(as indeed it must), but the improvement is not as striking as that associated with the factor
r3. Incidentally, most of the improvement associated with the insertion of the factor r13 in
13 simply reflects the fact that with high probability, r13 is similar in magnitude to r3. This
observation becomes evident when one notes that the r; distribution is 1s-like and far more

localized than is the 2s-like r3 distribution. Further flexibility, as in 1 (the best three-term



TABLE I: Li ground-state energy F, cusp parameter C.n [see Eq. (9)] and the expectation values

<ri_jl>, (ri;) for the trial function in Eq. (3) with various pre-factors f.

flri,ra,r3, 12,713, 123) E (au) —Cen <ri;1> (riz)
U 1 —7.4547 2.953  2.1732 10.0046
Yo r3 —7.4712 2.958 2.1965 8.9553
U3 713 —7.4682 2.955  2.1922 8.9457
Py (I14+pB1r3) —7.4727 2958 22091 8.6552
Vs (1+ 1 r13) b —7.4686 2.955 2.1990 8.8953
s (1+ By r3 +71 713) © 74451 2901 22501  8.7688
g (14 B1 rs+ 71 r13) d —7.4729 2.961  2.2027 8.7330
‘Exact’ —7.47806¢ 3.0 2.19827  8.66847

¢ B = —2.44486

b~y = 9.53316

¢ B = —3.82716, v, = —0.47333
4B, = —2.77713, v = —0.26645
¢ from Ref. [3] (rounded)

! from Ref. [4] (rounded).

prefactor) gives little additional gain over that already achieved in 4. All the wavefunctions
also exhibit small negative values of the interelectron screening parameters c;, thereby
improving the description of the repulsive electron-electron correlation. However, neglecting
this screening by setting all a;; = 0 (see the function ¢, Table II) worsens significantly the
variational energy as well as the cusp parameter, see Table I. Note that a function of this
type was used in [3], yielding the most accurate variational energy thus far obtained, but at
the expense of a very long expansion.

All the results reported in this paper use the doublet spin function that optimizes the
trial energy for the given spatial function. From the small values of B in Table II, we see
that in every case the dominant contributor to the spin state is (as expected) that which
couples the 1s and 15’ spatial functions into a spin singlet. However, inclusion of the other

member of the spin basis does influence the energy to some extent; for 1); (the trial function



TABLE II: Variational parameters a; and «;; in [a.u.]”" and B (dimensionless) for some trial

functions from Table I.

1 () (o Vg (o5
aq 3.2892 3.3065 3.3038 3.3051 3.3044
o) 2.3343 2.3291 2.3519 2.0657 2.3603
as 0.4336 0.7004 0.7473 0.6690 0.7327
12 —0.2108 —0.2050 —0.2150 0. —0.2218
Q13 —0.0411 —0.0311 —0.0194 0. —0.0227
Q93 —0.0404 —0.0316 —0.0313 0. —0.0276
B 0.06295 0.01416 —0.00201 0.00277 —0.00202

with the largest optimum B), use of the second spin state lowers the trial energy by about
0.001 a.u.

Recently, it was shown by one of the authors [17] that a correct treatment of the domain of
WKB asymptotics of the wavefunction at large distances is very important for getting a high
quality trial function. Usually, the large-distance asymptotic expansion of the exponential
phase of the wavefunction contains several terms that grow as the distance increases. All
these terms should be reproduced in a trial function, otherwise exponential deviation from

the exact function at large distances occurs. In the case of Lithium it can be verified that
o = —logy = airs+aslogrs+ O(1), r3— o0, 12 fixed, (10)

where a; 2 are constants. These two terms in the expansion are the only terms that grow
as rsg increases, and failure to reproduce them in the trial function can lead to an expo-
nentially large deviation of the trial function from the exact eigenfunction at large (and
intermediate) distances r3. All six of the functions we study reproduce at least the linear
term in Eq. (10) and all but ¢4 reproduce both terms. This observation might be considered
as an explanation why 1, gives worse results for energy than the other wavefunctions (see
Table I). Unfortunately, at this time a complete analysis of the asymptotic behavior of the
exponential phase at large distances (in different directions in 6D r-space) is missing; such

an analysis would be helpful for the identification of adequate trial functions.
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Following the above analysis, it is not surprising that the function ¢, gives the largest
deviation from the exact values in both the energy (~ 0.5%) and the cusp parameter C,y
(~ 1.6%), while for the most accurate function s these deviations are respectively ~ 0.01%
and ~ 1.3%. It is worth noting that for the functions v¢;_g an increase of the accuracy in
energy corresponds to a decrease of the error in the cusp parameter C.y (see Table I). A
similar situation occurs for the expectation value (r;;) in comparison with the value reported
in [4]. For (r;;') the largest deviation from the result from [4] occurs for the function ¢ which
also provides the largest deviation for energy, cusp parameter and (r;;). We must emphasize
that all deviations in energy as well as in the expectation values occur systematically at the

third significant digit.

IV. CONCLUSION

Simple and compact few-parameter trial functions are presented for the ground state
of the Lithium atom. These already provide a very accurate ground state energy. These
functions 11 _g are the most accurate among existent few-parameter trial functions. However,
the presented analysis does not seem final since one could explore the more extended pre-

factor

f(r1,ma, 73,712,713, 723) = (L + 01 m1+ B ra + B3 3 + 71 723 + Y2 T13 + 73 T12)

which seems beyond the computer resources presently available to us.
The wavefunctions used in the present work can be easily modified to study excited states

of the Lithium atom.
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as pointed out in [3] the only accuracy measure usually identified is the energy. Moreover, there
are explicit examples in which a straightforward extrapolation of the variational energy (and

expectation values) to the exact energy leads to inaccurate results (see e.g. discussion in [4]).
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