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Abstract

Hyperbolic endomorphisms and overlap numbers for equilibrium measures i, are studied on
lifts of invariant sets. We look into the structure of Rokhlin conditional measures of ji,,, with
respect to various fiber partitions associated to the lift endomorphism @, and find relations be-
tween them. We prove an estimate on the box dimension of an invariant measure v, on the limit
set, by using the overlap number of p,,. Then we compute topological overlap numbers in several
concrete cases. In particular, we obtain a large class of endomorphisms which asymptotically

are irrational-to-1. Topological overlap numbers are then used in dimension estimates.
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1 Introduction.

In this paper we give several formulas and applications of overlap numbers of equilibrium measures
for lift endomorphisms over invariant sets. Overlap numbers were introduced in [7], and represent
asymptotic averages of the numbers of generic consecutive preimages for these endomorphisms. In
particular, topological overlap numbers give information about all the preimages.

Consider a finite system S = {¢;,i € I}, with ¢; : U — R? conformal and injective maps on
the closure U of a bounded open set U C R? and uniformly contracting on U, i.e 3y € (0,1)
with |¢}| < v,i € I. Let ] be the one-sided symbolic space {w = (w1,ws,...),w; € I,i > 1},
with canonical metric and topology, and with the shift map o : Z? — E;F. Let [wy...wp,] be the
cylinder {n € E}r,m = W1,...,Mp = wp}. In general denote by ¢;,..i, := ¢i; © i, 0 ... 0 ¢y, for
p > 1,i1,...,i, € I, and by ¢;,4,... the point given as intersection of the descending sets ¢;,..;,(U),
when p — co. We denote by A the set of all points of type ¢;,q,..., and call it the limit set of S; so,

A= W(E}"),

where 7 : E? — A, (W) = Puywy.., w € BT, is the canonical projection to the limit set. Then

consider the following skew product map (see [7]), which we call the lift endomorphism of S,
P:Yf x A= 7 x A, O(w, ) = (0w, g, (x)) for (w,z) € TF x A
In general, for any n > 1, the n-th iterate of ® looks like:

(1w, 2) = (0"(), a0 (), (@,7) € TF x A



Due to the expansion of o and the contraction of ¢;,7 € I, the skew product endomorphism &
has a hyperbolic behaviour and a stable foliation with leaves {w} x A, w € X}. Consider now a
Hoélder continuous potential v : Z}r x A — R. Then there exists a unique equilibrium measure fi,,
on T x A, (for eg [1], [4], [15]), i.e if Pp : C(XF x A,R) — R is the pressure functional for ® on
E}”‘ x A, then pi, is the unique ®-invariant probability for which

Po(w) = holyss)+ |

37X

Y dpy = sup{ho (,u)—i—/ ¥ du, p ®—invariant probability on X7 x A},
A 2 xA
where hg(u) is the measure-theoretic entropy of p with respect to ®. Denote also by

Vap 1= T2x [y

the projection of p, on the second coordinate. Then v, is a probability measure on the limit set
A, and we want to study the metric properties of this measure. Notice that, in general, vy, is not
equal to the classical projection 7 (m14(py)) of the measure py from XF x A to the limit set A.

For a ®-invariant probability measure p on E? x A, we define its Lyapunov exponent by,
)= [ ~loglel, (@)] du(w,z) >0
2 xA

Notice that since the skew product ® is contracting in the second coordinate, the entropy of u is
actually equal to the entropy of its projection on the first coordinate, he (1) = ho(m1.p).

In [14], [13] Ruelle introduced a notion of folding entropy of a measure p, denoted in our case
by Fo(p), defined as the conditional entropy H,(e[® 1e). If @7!() is the measurable partition
of E}' x A with the fibers of ®, and if p is an ®-invariant probability measure on E}”‘ x A, then
we obtain a system of conditional measures of y denoted by (/“‘(w,x))(w,z)ezfxm where fi(, z) 1S a
probability supported on the finite fiber ®~!(w, z).

Also recall that the Jacobian of an invariant measure introduced in [8], as the local Radon-
Nikodym derivative of the push-forward with respect to the measure. If i is a ®-invariant measure

on X} x A, then we denote by Jo(u) its Jacobian; from definition, Jg(p) > 1. In our case,
Fol) = [ 1og Jalp) @) die. ) &
E?XA

In [7] we introduced a notion of overlap number o(S, ) for an equilibrium measure p, of a
Hoélder continuous potential on the lift E? x A. This overlap number is an average asymptotic
number of the ju-generic preimages in A (since the points in A can be covered multiple times by
the images ¢;, 4, (A) if the system S has overlaps). More precisely, for an arbitrary number 7 > 0

denote the set of i-generic preimages having the same iterates as (w, ) by

Spp(n,
B9, 1) = (11 10) € 17,30 € Ay @) = Dm0, 122D [ g < 7,

where (w,x) € Z}r x A and S,1)(n,y) is the consecutive sum of 1) with respect to ®. Denote by

bn((w, @), 7, ) := CardA,((w, ), 7, pyp)



Then, in [7] we proved that the following limit exists and defines the overlap number of fiy,

1
O(Svudl) = lim lim / logbn((w,m),v', udJ) d:u’w(wvx)
SFxA

T—0n—oco N

A particular case is the topological overlap number o(S) := o(S, tmaz), Which gives information
about all the preimages, since all preimages are generic with respect to the measure of maximal
entropy fmaz for ® on Z;r x A.

In [7] we proved a connection between the overlap number and the folding entropy of ji,,, namely

o(S, pry) = exp(Fo(p1y)) (2)

We found the following estimate for the Hausdorff dimension of the projection vy, = mafiy, Where
m X7 x A = A, ma(w,r) = z. The measure vy is not usually equal to the other projection

(14 (1)) of py from £F x A onto the limit set A.

Theorem ([7]). IfS is a finite conformal iterated function system as above, and if ¢ : ¥ x A — R

is Holder continuous with its equilibrium measure fuy, and if vy := Tox(f1y), then
HD(vy) < (S, v),
where t(S,1)) is the unique zero of the pressure t — Py (tlog |¢u, (m(ow))| —logo(S, ).

In the sequel, we first compare in Theorem 1 the conditional measures obtained from i, by
taking certain special measurable partitions of the skew product ® into fibers. We apply this to
a formula for overlap numbers, by using families of conditional measures on fibers (which may be
easier to study).

Then, in Theorem 2 we find an upper bound for the lower box dimension of v, with the help
of the overlap number of y,, and using the Bounded Distortion Property for conformal systems of
contractions. We give a constructive method to find a set of large v-measure in A whose lower

box dimension is bounded with the help of overlap numbers, namely is less than

ho(m1(py)) — log o(S, py))
X (#p)

This is done by careful estimates of the proportion of the measure of generic points within the

measure of balls, and by studying Jacobians of iterates and consecutive preimages of sets.

Then, in Theorems 3 and 4, we compute/estimate topological overlap numbers in several con-
crete cases, namely for Bernoulli convolution systems associated to reciprocals of Garsia and Pisot
numbers ([3], [10]). If § is a Garsia number and A € (3,1), we prove that the topological overlap
number o(S)) is equal to 2\. In particular, we obtain endomorphisms which, surprisingly, are
asymptotically irrational-to-1 on their invariant sets. More precisely, for any n > 1, we obtain
systems which asymptotically are Vo1 - to - 1.

Also, in Proposition 1, and Corollaries 2, 3 and 4, we compute topological overlap numbers for gen-
eral systems with eventual exact (or partial) overlaps. The above results are applied in Corollaries

5 and 6 to give dimension estimates for projection measures.



2 Various conditional measures associated to the lift.

We now study several families of conditional measures associated to the lift ® and to the equilibrium
state p := py and various fiber partitions. We look at the relations between them, and find in
particular a formula for the folding entropy.
Thus let the following measurable partitions:

i) Consider the skew product map ® : X} x A — X7 x A and its fibers @71 (w, z) for (w,x) €
%7 x A. They form a partition which is clearly measurable, and according to Rokhlin ([12]) there
exists a canonical family of conditional measures of p := py, so for p-a.e (w,z) € E}F x A, the

conditional measure p, ;) is supported on the finite set ®~!(w, ). Notice that
O N w,z) = {(iw, ¢, 'x), i € I, if x € ¢;(A)},

where we denote p x)( i) 1= () (1w, ¢; 'x) if x € ¢;(A), and H(w,) (1w, o7 H(x)) = 0if = & ¢;(A).

ii) Denote by ut := m.u on X7, where 7 : E;F XA — E}“ is the projection on the first
coordinate, m(w,z) = w. Consider the partition of Z? with the fibers of o, and the associated
family of conditional measures p; on the finite set o~ 1w, for pT-a.ew € E;r. We also denote 1 (iw)
by pgf (i)

iii) Consider the partition of E}F x A with the fibers of 7 : E}F XA — Z?, i.e the partition
with the leaves {w} x A, w € U7, of the stable foliation of ®. Let then the associated family of
conditional measures of u with respect to this partition, y, on m; '(w) = {w} x A, for p-a.e w € X7

So i, can be considered a probability measure on A.

From [7] we know that, for an equilibrium measure 4, on 7 x A, the overlap number is

o(S, py) = exp(Fa(uy))
We prove now a formula, which gives Fg () (and thus o(S, py)) in terms of the conditional measures
fieo and pf:

Theorem 1. Let ¢ : E}*‘ x A — Z}F x A be the lift endomorphism as above, and let a Hdélder
continuous potential Y on E}r x N with equilibrium measure ji := . Then the overlap number

o(S, i) of py is determined by the corresponding conditional families (fiy)w, (11w by:

+(; L
Ho (z) 240
log oS, 1 ;
]EIM Ag—)x Hiw(42) j€eIl B lJ Ags—x /M'w(AQ)

Proof. From the properties of conditional measures, if g : Z}F x A — R is p-integrable, then

/E;FXAg(W7x) dpafw, ) = /E+XA/_ o) g(w/vx')dﬂ(w,x)(w@w’) dp(w, x)
=3 [ 30907 i) dies )

el



Notice that since our system has overlaps, a point € A may belong to several sets of type ¢;(A).
But p also decomposes after the fibers of 71, so for any real-valued function § p-integrable on
ST x A,

. 9w ) dp(w, ) = | gw, 2)dpy(z) dp*(w) = | T(w)du" ()
/2, XA /z /w}xA /z+

I

// Nt (w Z/ (iw) it (7) dp* (w) (4)

el
- Z/+ w / g(lwal‘) d/JJZw(CL') du(w,x),
ier VB XA {iw}xA
where T'(w f{w}XA g(w, x)dp,(x). By taking g such that glj; = 0 for j # 4, we obtain from (3)

and (4) that
/2fo G(iw, &7 @) (o0 (1) dp(w, ) = /E?XAM:(i)./{iw}x/\g(m’x)dﬂiw(x) dp(w,z)  (5)

Let us take now g = x4, where A = A; X A is the product of two Borelian sets, and A; C [i] C
E}*‘. Then if iw € A;, we have

/ i, 2)dpti() = pin(As2)
{iw}x A

Let us denote A;(i) := {w € X}, iw € Ay}. Thus, with the above choice of g,

W dp(w i) dp(w
Lo 0 D) i) = [ ) dun)

So from the last two displayed equalities and (5), it follows that

[ @ i) = [ () i) dute ) ()
A1(i)x¢i(Az2) A1 (§)x A

Since p = py is the equilibrium measure of a Holder continuous potential, and since the Bowen
balls in X} x A are of type [w ...wy] X B(z,70), it follows that x4 is a doubling measure on 7.

Hence from Borel Density Lemma ([9]), if A1(i) is a ball around some fixed @ in X}, we obtain:

iy o [ e @) due) = s [ () dute )

— / oo (1) dta(®)
¢i(A2)

Aq(i)—w

(7)

But fAl(i)xA piw(A2) - put () du(w, ) = fAl(i) iw(A2)pf (i) dut(w). So from Borel Density Lemma,

B
p(Ax(d))

for yt-a.e w € XF. Therefore from (6) and (7) it follows that, for pT-a.e @ € I7,

Aq(i)—@

/ io(A2) - () dut (@) — pia(As) - 13 (),
Aq(3)

/ o) (0) dpin(x) = pin(As) - 13 (1) (8)
¢i(A2)
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On the other hand from the ®-invariance of u, it follows that
/ g(w,x) dp(w,x) = / go ®(w,x)du(w,z) = / g(ow, puyx)dp(w, x)
ST xA E?xA E}"XA

Hence using the conditional decomposition of u along the fibers of 7,

/z+ /{wm ez (w) du™{ /E /M §(0w, G )dp(v) dp* ()

Let us take now again § = Xa,x4,, and notice that ow € A; and ¢, & € Ag, if and only if
weEo A and z € qﬁ;llAg. So from above,

[ omatite) dut@) = [ p(oniA) dut @)
Al U_lAl
Since pt is o-invariant on X7, it follows then that:
[ e dit @) = [ (i) dut @)
o—1A; o 1A,

Taking A; — w, we obtain from above that, for any Borelian set As C A, i € I and p™-a.ew € Z}',

w(@iA2) = (] 0i(A2)) - i () (9)

jelI

But we can apply Borel Density Lemma for the measure ¢.pu, on ¢;(A) in (8), and we see that
for any = € ¢;(A) and any r > 0 small, B(z,r) N ¢;A = ¢;(B(¢; *z,r’) N A) for some ' > 0 since
¢; is injective. Thus by taking As to be a neighbourhood of x, we obtain from (7), (8), (9), that

lim ij(¢;1¢iA2)

A Ay exist, and that for p-a.e (w,z) €XF x A and any i € I,
2T i

+ .
. M (2
N(w,x)(z) = ( ) 1, (10)
Z J,-(]) . lim :U‘Jw((bj ¢1A2)
jeluw Ag—a Hiw(42)

So from (10) and the fact that Fp(u) = — ij{xA [ (w,2) 108 H(e 2y dpi(w, ), we obtain the formula for
the folding entropy Fg(u), and thus from (27) the formula for the overlap number o(S, ). O
3 Box dimension estimates.

The notions of lower box dimension and Hausdorff dimension for sets are well-known (for eg [2],

[9]). For u a Borel finite measure on R?, recall (2], [9], [11]) that the lower box dimension of  is:
dim () = lim i {dimp(2),p(2) > 1~ 6)
—
Also denote the Hausdorff dimension of p by HD(u). The following inequality holds,

HD(p) < dimp(p)



Various aspects of dimensions were studied for eg in [2], [5], [6], [9], [10], [11], [16]. We are now
ready to prove the estimate for the lower box dimension of the projection vy := ma,(1y); recall that
vy is mot the usual projection measure m,m14ity. The next Theorem gives a constructive method
to obtain sets Z of large v-measure whose box dimensions will then be estimated using overlap
numbers. In the process, we estimate also the maximal number of disjoint balls of radius r with

centers in Z.

Theorem 2. Consider the conformal system S = {¢;,i € I} wih limit set A, and the Hoélder

continuous potential 1 : Z‘}r X A — R, with its equilibrium measure iy, and let vy, = mo.puy. Then,

ho (14 (1)) — log o(S, py))

X (1)
Proof. Recall that by definition, x(uy) > 0. For n > 1, let Sp9(w,z) = Y(w,x) + Y(P(w,x)) +
o+ (@ (w, x)). For all (w,z) € XF x A, ®"(w,z) = (6™(W), Pun..ccn (). From Chain Rule,
Jon (1) (w, ) = Jo(py) (W, @) ... Jo(py) (" (w,z)). We know from the Birkhoff Ergodic Theo-
rem, from the formula for folding entropy (1) and the fact that s, is ergodic that,

dimp(vy) <

1 1
—log |9, (@) log |6, ()|dpy (w, ), and —log Jan (py)(w,x) = Fe(py), and

n—oo E}'—XA
1
— — d

For an integer n > 1 and an arbitrary number 7 > 0, consider therefore the Borelian set

1
Dy (1) := {(w,z) € =F x A, with |Z;log Jor (pyp)(w, ) — Fo(py)| < 7, and

1 1
2 10816L,. ()] = [ og el [ @)y )] < 7, |- Syis(ena) = [ iyl < 7, Vp 2 m)

From above, p;(Dy(7)) — 1 for all 7 > 0, and moreover,
n—oo

Di(1) C...C Dy(1) C Dpya(7) C ... (11)

On the other hand, notice that a Bowen ball in ] x A has the form [w; ...wy] X B(z,7), and

from the estimates of equilibrium measures on Bowen balls (for eg [4]), we have:

oy ([w1 - .. wn] X B(x,10)) = exp(Sptp(w, x) — nPo()),n > 1,

where ~ means that the two quantities are comparable with a comparability constant which depends
only on v and is independent of n,z,w. Now, if W’ € [wy...w,] and if (n,y) € P7"P"(w,x), then
(n,y) € @7"®"(w', ), and viceversa. But we proved in [7] that for py-a.e (w,z) € T} x A,

eSn¥(n,y)

(ny)e® e (w.x)
o (:U“w)(wa'r) oSnt(w,z) > ( )

with comparability constant independent of w,z,n. Therefore, if W' € [wy ...wy], it follows from
(12) that there exists a constant C' > 0 so that for py-a.e (w,z) and all n > 1,

7



T (1) (7, 2) S i () (7)< Ol ) () (13)

This means that D,,(7) is basically a product set, or more precisely that there exists a set E,(7) C A
such that Dy, (7/2) C w1 ...wp] X En(7) C Dy(7). Notice now that the map ®" is injective on the
set (w1 ...wp] X B(x,19), for some fixed g, since the composition map ¢, ., is injective on U.

Thus from the properties of Jacobians of measures on sets of injectivity, we get

pyp (@™ ([w1 - .. wp] X B(x,7m0) N Dn(7))) = Jon (1) (0,y) dpay (1, )

~/[w1...wn]><B(J:,r0)ﬂDn(T) (14)
> CeFelne) =) . tiy ([w1 - .- wn] x B(x, ) N Dy(7))

We now want to estimate juy([ws ... wp) x B(z,79) N Dy(7)). First notice that, since ¢ is Hélder
continuous, the consecutive sum S, (w,z) with respect to ®, does not really depend on z, but

only on w. So there exists a constant C' > 0 such that for any =,y € A, w € X7,

’Snw(‘*)?x) - Sn1/}<w7y)| < C

Thus one can fix y = zg above in A. We want to show that for any Borel set A C A and any n,
fp([wr - - - wn] X A) & eSn¥@mo)nPe() (A (15)

with comparability constants independent of w,n, A. Since p,, is a Borel measure, it is enough to
show (15) for open balls A = B(y,r). Let us also recall that all the contractions ¢; are conformal,
thus we have a Bounded Distortion property, namely there exist constants C' > 0,0 < ro < 1, such
that for any z,y € A with d(x,y) < r¢, any integer n and any sequence i € E}*‘,

O, i (2) < ¢l 4, () < O, () (16)

By using this Bounded Distortion property, we take the backward iterates of B(y,r) along vari-
ous prehistories until reaching diameter ry for the respective preimage. We consider such maxi-
mal prehistories with qﬁ;llman(y,r) = B(z(y,m,...,np),r0), for some preimage in A denoted by
2(y,m, . ..,mp). We do this for all prehistories of order p, then if one of the preimages ¢;11”,77PB(y, T)
has diameter smaller than ry, we continue the process to order p + ¢, where ¢ is the largest integer
such that qb;llm,npmnp .,B(y,r) has diameter smaller than ry. Assume without loss of generality that
M, ...,"Np is such a maximal trajectory (this can happen for various p’s). Since p,, is ®-invariant,
we can add succesively the measures of the maximal preimages [, ... 1] X ¢, 11”.an((7;, 1), first those

with p = 1, then with p = 2, etc. These measures sum up to the measure of E}r x B(y,r), so
> p ([ - -] X B(z(m, - mp),m0)) = pp(EF % By, 7)) = vy(B(y,r))  (17)
p>1, n1...mp maximal

We get a similar formula for gy ([n, ... mw1 ...wy] X B(y,r)), since the pulling back along prehis-

tories of B(y,r) does not depend on wy,...,w,. Hence by using maximal prehistories as above,

Z Mw([%---"?lwl coowp] X B(z(n1, ... ,np),ro)) = py([wi .. .wn] x B(y,r)) (18)

p>1, n1...mp maximal



Now the Bowen balls for the map ® are sets of type [w; ...wy] X B(z,7r9). Then from the estimates

of equilibrium measures on Bowen balls ([4]),
g ([Mp - - w1« .. wn] X B(z,70)) & Sntp¥(lp---Mw1...on,2)—(ntp) Pa (v) (19)

where the comparability constants do not depend on z,w,n,n,p. We write also Sy (w; .. .wy) for

Sp(w, xo), since by Holder continuity this sum does not depend on zp, modulo a constant. But
€Sn+p1/’(77p~~~771"-’1~--wn72)*(”+p)P¢>(¢) _ espw(nme]l)JFSnT/’("-’l~--wn)*(”+P)P<I>(1/’) —

— ¥ () =pPa(¥) | pSnt(wi...wn)—nPa ()

Hence from the last displayed formula and (19), we see that for any z,

pp([p - - mwr - - wn] X B(2,70)) & ([ - - -m] X B(z,70)) - ¥ @1wn) ()

So this last formula together with (17) and (18) imply that there exists a constant C' > 0 indepen-

dent of n,z,y,r,w, such that

! - w,z0)—n
6V¢(B(y’r))esnw(w,$0) Pd)(¢) S sz([wl . WTL] X B(y’ ,,4)) S Cyw(B(y’ r))esn¢( s 0) P@(?/})

This proves (15), by replacing any Borel set A with a union of disjoint balls of type B(y,r).

Now recall that fi(Dy (7)) — 1 when n — oo; hence for any ¢ > 0 small, there exists n(d) > 1
such that fi,(Dy (7)) > 1 =6 for all n > n(6); hence from the ®-invariance of py, py(P"(Dp(7))) >

1—40. Moreover there exists a strictly increasing sequence of integers (ky,),, with k,, > n, such that,

pp (D) > 1= ag, and Y o, < 00 (20)
n>1
Denote now by Y, (7) := maD,(7) C A. We want to apply a version of Borel Density Lemma
(9] pg 293), in order to estimate the portion of the vy-measure of the intersection between a ball
and Y, (7). Indeed for any § > 0 it follows that for any n > n(é), there exists a borelian subset
V(1) C Yo(7) and py, > 0, such that vy(Yy (7)) > 1 — 26, and for any z € Y,,(7) and any r < p,,

vo(B(r,r) A Ya(r) > Svo(Bla,r) (21)

Let Z,(1) := m®"(Dy(r)) and Z,(1) := () Zk,(7), for n > 1. Then, since ,(®"(D,(1))) >
>n
iy (D (7)), it follows from (20) that

vy(Zn(7)) 2 1= ) aum, and yw(Zn(T))njoo 1

Given the radius p, above, we can find an integer s, > n, such that any ball B(y, &) with y € A,
intersects the set Yy, (7). This is true since 1, (Y;,(7)) — 1, and since py; is the equilibrium measure

of a Holder continuous potential, thus it is positive on balls of radius p, /2. Denote now

= e XW)ET) oy >



Consider an arbitrary family Fj, of mutually disjoint balls of radii p,ry, with centers in
mo®k¢(Dy, (7)), for £ > s,,, and assume the balls in F, contain images of type i, ...ir (B(2, pn))
for z in a family of centers Fy,. But from above, for all £ > s, and z € Fj,, the ball B(z, p,/2)
must contain a point &, € Y, (7). Hence B(£,, pn/2) C B(z, pn), and thus iyt (B(&z5pn/2)) C
gbik[“il (B(z,pn)) for all z € Fy,. So we obtain a family Gy, of disjoint sets qbz-k[“il(B(fz, mm/2)), z €

F},. From our construction,
N(Gy,) == Card(Gy,) = N(F,) = Card(Fy,)

However Y, (1) C Y, (1) C 2Dy, (1), if £ > s, > n, so from the above properties of the set Yy, ()

and (21), it follows that vy (Y, (7)) > 1 — 26 and,

(Bl pn/2) N Yo (7)) 2 S0a(B(Ees pn2)

But now from (11), Ys, (1) C Yi(7) = maDy(7) for all k > s,, and recall £ > s, > n; hence from
the last inequality,

(B pn/2) O Vi (7)) > v (B(Eer pn/2) (22)

Let us estimate now the vy-measure of a set from Gy, for £ > s,. Since d*¢ is injective on
[i1...4k,] x A, we obtain from (15) and (22),

V(i s BEz, pn/2) N Y, (7)) = g (@7 ([i1 .. in, ] x B(E2, p/2) N D)) =

/ Joke (1) (@, @) dpry(w, )
[i1. ik, ] X (B(E2,0n /2)NY5, (7))

> Cexp(ke(Fo(py) — 7)) - exp(Sk,¢(w, w0) — kePo () - vy(B(&z, pn/2) N Yy,)
> Cp exp(ke(Fo (i) — 7) - exp(ke(—ha(ny) — 7)) = Cr exp(ke(Fa (1) — ha(py) — 27)),
(23)
for some constants C,,, C,, > 0, where we used the estimate on the Jacobian of ®*¢ on Dy, , the
estimate on the equilibrium measure p,, of a Bowen ball [iy ... ix,] X B(&, pn/2), and the behaviour
of S, on the generic points from Dy,. Since the balls in Fj, are disjoint, and each of them

contains a set of type qﬁikemilB(fz, pn/2) NYy,, it follows that for all integers £ > sy,
Z Vi/)(¢ike---ilB(527pn/2) N Yke (T>) <1
£z€le

Thus, using (23) and the fact that N(Gy,) = N(F,), we obtain for any family Fj, as above,

N(Fi,) < Cexp(—ke(Fo(uy) — ho(uy) — 27)) (24)

So if for some ¢ > s, we take a disjointed family W of balls of radii p,, - r;, with centers in

Zs, (1) = ) m®%Dy,(7), then its cardinality N(W) is less than the cardinality of some family
£>5n

Fi, from above, hence from (24) we obtain an estimate for the lower box dimension,

ho () — Fo(py) + 27
X(pp) =7

dimp(Zs, (7)) <

10



But on the other hand, we know from construction that vy (Zs, (7)) > 1 — > «; — 1, when
Jj=sn
n — 00. So from the above, using the definition of lower box dimension of a measure, it follows

hao(py) — Fa(py) + 27
X(py) =7

9

dimp(1y) <

for any small number 7 > 0, and thus the conclusion follows, namely dimpg(vy) <

4 Formulas and computation of topological overlap numbers.

In this section we compute the topological overlap number in several concrete significant cases.
Then, these formulas are applied to box dimension estimates. The topological overlap number of a
conformal system S = {¢;,i € I} is defined (see [7]) in relation to the lift endomorphism ®, as the

overlap number of the measure of maximal entropy pmqs, for ® on Z}' x A, and is denoted by o(S),
o(S) = o(S, pmax)

Consider now a probabilistic vector p = (p1,...,py) and its associated Bernoulli measure u; on
7. Then the classical projection of yuf; on the limit set A of S is m, ). The Bernoulli measure p is
the equilibrium measure with respect to o of the potential g : E}F =R, g(w) =logpy,,, we E}'. Let
Pi=gom : E;r x A — R, and py be its equilibrium measures with respect to the endomorphism
®. Then we proved in [7] that for this choice of 1), mo.jty = TeT14pty. But from estimates of
equilibrium measures on Bowen balls, it follows that for a constant 7o, py([wi ... wy] X B(z,70)) =

eSn¥(@.w)=nPe(¥) where the comparability constant is independent of n, z,w. Thus by summing up,
,uw([wl .. -wn] X A) ~ eS’ng(w)—nPo—(g)7

since @ is contracting in the second coordinate and since ¢» depends only on w. Denote jigor, by fip,
which can be considered a lift of ,u;f to E? X A. So Ti.pp satisfies the same estimates on cylinders

as the Bernoulli measure pf, and thus from above, we obtain my.up = 5. Therefore,

Touflp = Tufl]) (25)
In particular, if i} . denotes the measure of maximal entropy for the shift on 7, i.e the Bernoulli
measure associated to the probability vector (T}\’ ceey ‘—}')), we obtain
= Tufirh 26
T2x maz = TxMmar ( )

We showed in [7] that, if 7 : £7 — A is the canonical projection to the limit set of S and if

Bn(x) := Card{(m,...,m) €I",2 € ¢y, (A)}, n > 1,

then the topological overlap number of S is given by the formula:

of8) = exp (Jim ~ [ 108 Au(m) dife() (27)

n—oo N
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3.1. Consider the system Sy = {¢_1,¢1}, where ¢_1(x) = Az — 1, qbl( ) = Ax + 1. When
A € (3,1) this system has overlaps, and its limit set is the interval I = [—t15, t25]. When there
is no confusion about A, this limit set will also be denoted by A. We consider then the measure of

maximal entropy pmaz for ® on Z; x A.

3.1a. Let us look first at reciprocals of Garsia numbers. A number v is called a Garsia
number if it is an algebraic integer in (1,2) whose minimal polynomial has constant coefficient
+2 and so that v and all of its conjugates have absolute value strictly greater than 1 (see [3]).
Examples of such minimal polynomials are z"*? — 2" — 2 for n,p > 1, with max{p,n} > 2. For

. 1 .
instance 2= ,n > 2, are Garsia numbers.

Theorem 3. The topological overlap number o(Sy) of the system Sy for A € (% 1) with % a Garsia

number, is equal to 2.

Proof. Recall that the limit set of Sy is the interval I = [—15, i] From [3] it follows that, if A
n—
is the reciprocal of a Garsia number, then all 2" sums of type Z k are distinct and at least 2Q
0
n—1
apart, for some constant C' > 0. Let us order increasingly these 2" numbers ) +)* and denote
0

them by (1,...,Cn. Hence from [3] these points Q are distinct, and

G — ¢l = 2n i FE ] (28)

Since there are 2" points (; in the interval I, there is a constant C’ > 0 so that, for any i # j,
c’ C
on 26— Gl =z o

Now the numbers of type ¢; + > rpA¥, where (; = > wpA¥ and wy, € {—1,1}, form the inter-
k>n 0<k<n—1

val I; := m([wo, ... wn—1]. The length of I; is C1 A", for some fixed constant C; > 0. Since A > %,
it follows from (28) that any interval I; contains at least C3(2))" points (; and at most C3(2X)"
points (j, for some constants C3 > Cz > 0. With the possible exception of an interval J; of length
Cy4A™ with left endpoint —ﬁ (i.e the left endpoint of Iy), and an interval Jo of same length with
right endpoint ﬁ (i.e the right endpoint of I ), we see that any point = belongs to at least C5(2\)™
intervals I; and to at most C(2X)™ intervals I, where the constants C1, ..., Cs do not depend on n.

Recall that I; = 7([wo, . . ., wp—1] for some wy, € {—1,1},0 < k < n—1, and that p . ((wo, ..., wn—1])

1

5w, where p1f . is the measure of maximal entropy on ¥3. From above (27) we know that,

o(Sy\) = exp(lirrgl % /E;r log B, (mw) dut .. (W),

where fy(x) := Card{(no,...,mm-1) € {—1,1}", 2 € ¢ny..n,_,(A\)} for x € Ay and n > 1. But
from above, we see that for x outside the intervals Jq, Jo of length C4A\™ at the endpoints of I},

C5(2A)" < B(z) < Co(2A)"

12



Thus from the last estimate on /3, (z) on the complement of J;U.Jo, and using that fmaz ([wo, - - . ,wn—1]) =
2%, we obtain that for some constant C7 > 0 (independent of n),

(2" —C7(2N)") - nlog(2/\)2in < /+ log B, (7w) dut .. (w) < 2™ - nlog(2)) - Qin = nlog(2))
)

2
Therefore o(Sy) = 2, since from the last displayed inequalities it follows that,

1
i [ log 5a(mw) ditfu() = log(2)
E2

n—oo n
]

Since for any n > 1, 24 is a Garsia number (see [3]), we then obtain from Theorem 3 a system
which asymptotically is V27~ -to-1. For these examples the projection m.u} . is absolutely

continuous ([3]), and i, = Toxplmaz from (26), hence:

Corollary 1. For the system Sy with A = 2_%, the topological overlap number is o(Sy) = V2n—1,

and the measure Toxfimax 1S absolutely continuous.

3.1b. The second example is of Bernoulli convolutions with A being the reciprocal of a Pisot
number. A Pisot number is by definition an algebraic integer all of whose conjugates are strictly

less than 1 in absolute value (for eg [3], [10]). We prove the following.

Theorem 4. The topological overlap number of Sy for \ € (%, 1) with % a Pisot number, satisfies
o(Sy) >2xA>1

Proof. 1f % is a Pisot number, the distance between any two different polynomial sums of type
n—1 .
P(w,\,n) = Y wi\! for w € X5 = {~1,1}, is at least CA\", for some constant C' > 0, which

=0
follows from the algebraic properties of % (see [3], [10]). Then the number ¢(n) of all possible values

of such polynomials P(w, A\,n), when n, \ are fixed, satisfies
q(n) < C1A™", (29)

for some constant C independent of n. Since there are 2™ tuples (wo,...,w,—1) € {—1,1}", but
3
equalities between such values. Denote by V,(\) the set of values of polynomials P(w, A, n),

only at most C1A\™" values for polynomials P(w,\,n), and since A > there must be many

Va(A) ={a1,. .., aqm)}, where an < ... <« (30)

q(n)»

where ¢(n) satisfies (29). We know that

w([wo, - wno1]) = {P(w, A n) + Y wid', wi € {~1,1},i > n},

i=n

13



so m([wo, - ..,wn—1]) is an interval in Ay of length between A" and 2\" (depending on its location).
Denote by N; := Card{(wo,...,wn—1) € {—1,1}", P(w,\,n) = a;}, 1 < i < g(n). From (29)
recall that |o; —aj| > C1A™ if i # j. Since each value o is taken IV; times by polynomials P(w, A, n),
1 <i,j5 < q(n), it follows that there exists a constant Cy > 0 so that for all n > 1,

Bn(mw) > CyN;, whenever P(w, \,n) = a;,1 <i < q(n) (31)
For the measure of maximal entropy i}, on $3 we have 11}, ([wo, . . ,wn—1]) = 5, so from (31),
(n) q(n N,
/+ log B (mw) dut (W Z log C2N;) = log 2" + Z N log - +1og C2 (32)
55 j=1

However in general for any probability vector (pi,...,pm), one has the upper bound (for eg [15]),

m

—> pilogp; <logm

i=1

From (30), we know N1+ ... Ny, = 2", so we can take the probability vector (%, cel, %), and

from (32) it follows that:

log C;;)\_” n log Co

n

1
—log / 1og fn (W) dptyy,qq(w) > log2 —
n 22+

This implies then from (27) that o(Sy) > 2A, hence o(S)) > 1 since A > 1.
O

3.2. We now look at examples with eventual exact or at least substantial overlaps, in which
case the topological overlap number will be estimated, or even computed exactly. We consider first

the case when there are exact overlaps, i.e. when:

Giy..i,(A) = @jy.j, (A),

for certain maximal tuples (i1,...,14p), (j1,...,Jp). Exact overlaps may appear after certain number
of iterates, but for simplicity we look first at the case p = 1; the generalization is straightforward.
So consider the system S = {¢;,1 < i < m} of conformal injective contractions, and assume we

have the blocks
¢1:--':¢k17 ¢k1+l:-~-:¢k27"'7¢kp:¢m7 (33)

where there are no overlaps between the different blocks, i.e the system {¢,,1 < ¢ < p} satisfies
the Open Set Condition.

Let pt,, be the measure of maximal entropy on ¥, and denote the measure of maximal
entropy for ® on X X A by fimaz. Then, the topological overlap number o(S) := 0o(S, fmaz) takes
in consideration all preimages of ®, and we proved in [7] that

o(S) = exp ( lim /E 108 B (1) e (), (34)

n—oo N
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where B, (z) := Card{(m,...,m) € I", © € ¢y, 5, (A)}. In this case, if z € ¢;,.;,(A) and if
ki,—1 +1 < j; < kj,, then for z = 7w and w = (j1j2...), we have:

Bn($) = (kn — k‘il_l) LI (l{izn — kin—l)a (35)

where if i, = 1, then the factor (k;, —k;,—1) is replaced by k1. Let us take the function ¥ : ¥ — R,
U(w) :=logky for 1 <wy < ky, and ¥(w) :=log(k; — ki—1) for ki1 +1 < wy < k;. If w,n are close
enough in ¥ then w; = n;, hence ¥ is Holder continuous on X .

Notice that, if w € [j1...Jn] and kj,—1 + 1 < js < k;, if is > 1, 0or 1 < j; < ky if iy =1, then

U(w) = log(kiy, — ki,—1), ¥(ow) = log(ki, — kiy—1), - -

However from above,

/ log (1) it () = / log (s, ki1 )+ . . log ks, —ki,—1) dies ()
E;; Jl ]n]

521,.. 1+1<]5<k

Thus, if S, ¥ denotes the consecutive sum of ¥ with respect to o, we obtain
[, 108 B(me) dii() = [ S.90) difnle) (36)
Hence from (36), by Birkhoff Egodic Theorem for the measure of maximal entropy p,! .. on Xt

o o8 Bntre) ditna() = 1[S00 i) [ 9 dithn (@)

n—oo fydt
We have thus proved the following:

Proposition 1. In the above setting from (33), the topological overlap number of the system S is
given by,

0(8) _ O(S,/Lmag;) — exp (kl log k1 + (kg — kl) log(kg — k‘l);- R (k}p — kp_l) log(kp — kp_l))

As in Corollary 5, the above estimates can be extended for the p-iterated system SP = {¢;,..i,, @
I,1 < j <p}, and thus we obtain:

Corollary 2. Assume we have the system of conformal injective contractions S = {¢;,i € I} with
[I| =m, and let A be its limit set. Assume also that there exists a family F C IP of p-tuples such
that ¢i,..iy(A) = ¢j,..5, (A) for (i1,...,ip), (J1,---,Jp) € F, and denote Card(F) = N(F). Then

N(F)log N(F)

o(S) > exp ( s )

However, & priori there may exist only partial overlaps at the level of p-iterates, which comprise
a positive proportion of the measure. In particular the next Corollaries apply well for Bernoulli
convolutions systems Sy, since in this case the limit set is an interval A = I, and we can numerically

estimate the proportion of overlaps at some iterate p. As above we obtain.
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Corollary 3. In the above setting assume that there is a family F C IP of p-tuples and k > 1 so
that for any (i1, ...,i,) € F, there exists (j1...ji) € I* such that

Biy...ipjr.gu (N) C (th?p)ef bey..0,(A)

Then if N(F) denotes the cardinality of F, we obtain:

N(F) logN(}'))
mptk

o(8) > exp (
More generally we have the following:

Corollary 4. In the above setting assume that there are families Fi,...,Fs C IP of p-tuples and
positive integers ki, ..., ks such that, for any 1 < j <s and for any (ij1,...,1;p) € F; there exists
some kj-tuple (j1,...,jk,;) € Ik with

Py ijpir.gn; (A) C - bey..., ()

N
(517--~7@p)€
Then if N(F;) := CardF;, 1 < j <s, we obtain:

N(F)ogN(F) |, N(F)logN(F)

o(S) > exp( ey ey )

Recall now from (25) that for Bernoulli measures we have the equality of the two projectional
measures, i.e moxllp = TF*/L;;. Also recall that pi,mg, is the measure of maximal entropy for @ on

7 x A, and g, is the measure of maximal entropy for the shift on X7 .

Then, from Proposition 1, Theorem 2 and Corollaries 2, 3 and 4, we obtain the following

dimension estimates:

Corollary 5. Assume we have the system of conformal injective contractions S = {¢;,i € I}
with |I| = m, and let A be its limit set, and denote by pimaz the measure of maximal entropy on
7 x A. Assume also that there exists a family F of p-tuples such that Giy...i(N) = @j,..5, (A) for
(11,5 ip), (41, .-+, Jp) € F, and denote Card(F) = N(F). Then o(S) > exp (%), and

P o (1) — M ENE)

p- X(,U/ma:c)
Corollary 6. In the above setting assume there are families Fi,...,Fs C IP of p-tuples and

diﬂB(ﬂ?*ﬂm(u’) = diﬂB(W*ﬂ;gaz) <

ki,...,ks > 1 so that, for any 1 < j < s and any (ij1,...,4jp) € F; there exists some k;j-tuple
(J1s-- s dn;) € %, with

¢ij1"~ijpj1-~~jkj (A) C (Kly-uy?p)e]'—j d)h...ﬁp (A)
Then if N(F;) := CardF;, 1 < j <s, we obtain:
N(F1)log N(F N(Fs)log N(Fs
dim (71'2,U ):dzm (ﬂ—lﬁ_ ) p'ho(ﬂgmam)—%—,..—%
weliv p *Mmax Qoilt B\« maxr) > Y X(Mmax)

Acknowledgements: This work was supported by grant PN-III-P4-ID-PCE-2016-0823 from
UEFISCDLI.

16



References

1]

2]
[3]

[4]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture
Notes in Mathematics, 470, Springer 1975.

K. Falconer, Techniques in Fractal Geometry, Wiley, 1997.
A. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. AMS, 102, 1962, 409-432.

A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cam-
bridge Univ. Press, London-New York, 1995.

E. Mihailescu, Unstable directions and fractal dimension for a class of skew products with
overlaps in fibers, Math Zeitschrift, 269, 2011, 733-750.

E. Mihailescu, On a class of stable conditional measures, Ergod Th Dyn Syst 31, 2011, 1499-15.

E. Mihailescu, M. Urbanski, Overlap functions for measures in conformal iterated function
systems, J. Statistical Physics, 162, 2016, 43-62.

W. Parry, Entropy and Generators in Ergodic Theory, W. A Benjamin, New York, 1969.
Y. Pesin, Dimension Theory in Dynamical Systems, Chicago Lectures in Mathematics, 1997.

F. Przytycki, M. Urbanski, On Hausdorff dimension of some fractal sets, Studia Math. 93,
155-186, 1989.

F. Przytycki, M. Urbarski, Conformal Fractals - Ergodic Theory Methods, Cambridge Uni-
versity Press, 2010.

V. A. Rokhlin, Lectures on the theory of entropy of transformations with invariant measures,
Russian Math. Surveys, 22, 1967, 1-54.

D. Ruelle, Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics,
J. Statistical Physics 95, 1999, 393-468.

D. Ruelle, Positivity of entropy production in nonequilibrium statistical mechanics, J. Statis-
tical Physics 85, 1/2, 1996, 1-23.

P. Walters, An Introduction to Ergodic Theory (2nd edition), Springer New York, 2000.

L.S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Th Dynam Syst, 2, 109-124,
1982.

Address: Institute of Mathematics “Simion Stoilow “ of the Romanian Academy,
Calea Grivitei 21, P.O. Box 1-764, RO 014700, Bucharest, Romania.
Eugen.Mihailescu@imar.ro

www.imar.ro/~mihailes

17



