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Abstract

Hyperbolic endomorphisms and overlap numbers for equilibrium measures µψ are studied on

lifts of invariant sets. We look into the structure of Rokhlin conditional measures of µψ, with

respect to various fiber partitions associated to the lift endomorphism Φ, and find relations be-

tween them. We prove an estimate on the box dimension of an invariant measure νψ on the limit

set, by using the overlap number of µψ. Then we compute topological overlap numbers in several

concrete cases. In particular, we obtain a large class of endomorphisms which asymptotically

are irrational-to-1. Topological overlap numbers are then used in dimension estimates.
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1 Introduction.

In this paper we give several formulas and applications of overlap numbers of equilibrium measures

for lift endomorphisms over invariant sets. Overlap numbers were introduced in [7], and represent

asymptotic averages of the numbers of generic consecutive preimages for these endomorphisms. In

particular, topological overlap numbers give information about all the preimages.

Consider a finite system S = {φi, i ∈ I}, with φi : Ū → Rd conformal and injective maps on

the closure Ū of a bounded open set U ⊂ Rd, and uniformly contracting on Ū , i.e ∃γ ∈ (0, 1)

with |φ′i| < γ, i ∈ I. Let Σ+
I be the one-sided symbolic space {ω = (ω1, ω2, . . .), ωi ∈ I, i ≥ 1},

with canonical metric and topology, and with the shift map σ : Σ+
I → Σ+

I . Let [ω1 . . . ωn] be the

cylinder {η ∈ Σ+
I , η1 = ω1, . . . , ηn = ωn}. In general denote by φi1...ip := φi1 ◦ φi2 ◦ . . . ◦ φip for

p ≥ 1, i1, . . . , ip ∈ I, and by φi1i2... the point given as intersection of the descending sets φi1...ip(U),

when p→∞. We denote by Λ the set of all points of type φi1i2..., and call it the limit set of S; so,

Λ = π(Σ+
I ),

where π : Σ+
I → Λ, π(ω) = φω1ω2..., ω ∈ Σ+

I , is the canonical projection to the limit set. Then

consider the following skew product map (see [7]), which we call the lift endomorphism of S,

Φ : Σ+
I × Λ→ Σ+

I × Λ, Φ(ω, x) = (σω, φω1(x)) for (ω, x) ∈ Σ+
I × Λ

In general, for any n ≥ 1, the n-th iterate of Φ looks like:

Φn(ω, x) = (σn(ω), φωn...ω1(x)), (ω, x) ∈ Σ+
I × Λ
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Due to the expansion of σ and the contraction of φi, i ∈ I, the skew product endomorphism Φ

has a hyperbolic behaviour and a stable foliation with leaves {ω} × Λ, ω ∈ Σ+
I . Consider now a

Hölder continuous potential ψ : Σ+
I × Λ → R. Then there exists a unique equilibrium measure µψ

on Σ+
I × Λ, (for eg [1], [4], [15]), i.e if PΦ : C(Σ+

I × Λ,R) −→ R is the pressure functional for Φ on

Σ+
I × Λ, then µψ is the unique Φ-invariant probability for which

PΦ(ψ) = hΦ(µψ)+

∫
Σ+
I ×Λ

ψ dµψ = sup{hΦ(µ)+

∫
Σ+
I ×Λ

ψ dµ, µ Φ−invariant probability on Σ+
I ×Λ},

where hΦ(µ) is the measure-theoretic entropy of µ with respect to Φ. Denote also by

νψ := π2∗µψ,

the projection of µψ on the second coordinate. Then νψ is a probability measure on the limit set

Λ, and we want to study the metric properties of this measure. Notice that, in general, νψ is not

equal to the classical projection π∗(π1∗(µψ)) of the measure µψ from Σ+
I × Λ to the limit set Λ.

For a Φ-invariant probability measure µ on Σ+
I × Λ, we define its Lyapunov exponent by,

χ(µ) =

∫
Σ+
I ×Λ
− log |φ′ω1

(x)| dµ(ω, x) > 0

Notice that since the skew product Φ is contracting in the second coordinate, the entropy of µ is

actually equal to the entropy of its projection on the first coordinate, hΦ(µ) = hσ(π1∗µ).

In [14], [13] Ruelle introduced a notion of folding entropy of a measure µ, denoted in our case

by FΦ(µ), defined as the conditional entropy Hµ(ε|Φ−1ε). If Φ−1(ε) is the measurable partition

of Σ+
I × Λ with the fibers of Φ, and if µ is an Φ-invariant probability measure on Σ+

I × Λ, then

we obtain a system of conditional measures of µ denoted by (µ(ω,x))(ω,x)∈Σ+
I ×Λ, where µ(ω,x) is a

probability supported on the finite fiber Φ−1(ω, x).

Also recall that the Jacobian of an invariant measure introduced in [8], as the local Radon-

Nikodym derivative of the push-forward with respect to the measure. If µ is a Φ-invariant measure

on Σ+
I × Λ, then we denote by JΦ(µ) its Jacobian; from definition, JΦ(µ) ≥ 1. In our case,

FΦ(µψ) =

∫
Σ+
I ×Λ

log JΦ(µ)(ω, x) dµ(ω, x) (1)

In [7] we introduced a notion of overlap number o(S, µψ) for an equilibrium measure µψ of a

Hölder continuous potential on the lift Σ+
I × Λ. This overlap number is an average asymptotic

number of the µψ-generic preimages in Λ (since the points in Λ can be covered multiple times by

the images φi1...im(Λ) if the system S has overlaps). More precisely, for an arbitrary number τ > 0

denote the set of µψ-generic preimages having the same iterates as (ω, x) by

∆n((ω, x), τ, µψ) = {(η1, . . . , ηn) ∈ In, ∃y ∈ Λ, φωn...ω1(x) = φηn...η1(y), |Snψ(η, y)

n
−
∫

Σ+
I ×Λ

ψ dµψ| < τ},

where (ω, x) ∈ Σ+
I × Λ and Snψ(η, y) is the consecutive sum of ψ with respect to Φ. Denote by

bn((ω, x), τ, µψ) := Card∆n((ω, x), τ, µψ)

2



Then, in [7] we proved that the following limit exists and defines the overlap number of µψ,

o(S, µψ) = lim
τ→0

lim
n→∞

1

n

∫
Σ+
I ×Λ

log bn((ω, x), τ, µψ) dµψ(ω, x)

A particular case is the topological overlap number o(S) := o(S, µmax), which gives information

about all the preimages, since all preimages are generic with respect to the measure of maximal

entropy µmax for Φ on Σ+
I × Λ.

In [7] we proved a connection between the overlap number and the folding entropy of µψ, namely

o(S, µψ) = exp(FΦ(µψ)) (2)

We found the following estimate for the Hausdorff dimension of the projection νψ = π2∗µψ, where

π2 : Σ+
I × Λ → Λ, π2(ω, x) = x. The measure νψ is not usually equal to the other projection

π∗(π1∗(µψ)) of µψ from Σ+
I × Λ onto the limit set Λ.

Theorem ([7]). If S is a finite conformal iterated function system as above, and if ψ : Σ+
I ×Λ→ R

is Hölder continuous with its equilibrium measure µψ, and if νψ := π2∗(µψ), then

HD(νψ) ≤ t(S, ψ),

where t(S, ψ) is the unique zero of the pressure t→ Pσ(t log |φω1(π(σω))| − log o(S, µψ)).

In the sequel, we first compare in Theorem 1 the conditional measures obtained from µψ by

taking certain special measurable partitions of the skew product Φ into fibers. We apply this to

a formula for overlap numbers, by using families of conditional measures on fibers (which may be

easier to study).

Then, in Theorem 2 we find an upper bound for the lower box dimension of νψ, with the help

of the overlap number of µψ, and using the Bounded Distortion Property for conformal systems of

contractions. We give a constructive method to find a set of large νψ-measure in Λ whose lower

box dimension is bounded with the help of overlap numbers, namely is less than

hσ(π1∗(µψ))− log o(S, µψ))

χ(µψ)

This is done by careful estimates of the proportion of the measure of generic points within the

measure of balls, and by studying Jacobians of iterates and consecutive preimages of sets.

Then, in Theorems 3 and 4, we compute/estimate topological overlap numbers in several con-

crete cases, namely for Bernoulli convolution systems associated to reciprocals of Garsia and Pisot

numbers ([3], [10]). If 1
λ is a Garsia number and λ ∈ (1

2 , 1), we prove that the topological overlap

number o(Sλ) is equal to 2λ. In particular, we obtain endomorphisms which, surprisingly, are

asymptotically irrational-to-1 on their invariant sets. More precisely, for any n ≥ 1, we obtain

systems which asymptotically are
n
√

2n−1 - to - 1.

Also, in Proposition 1, and Corollaries 2, 3 and 4, we compute topological overlap numbers for gen-

eral systems with eventual exact (or partial) overlaps. The above results are applied in Corollaries

5 and 6 to give dimension estimates for projection measures.
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2 Various conditional measures associated to the lift.

We now study several families of conditional measures associated to the lift Φ and to the equilibrium

state µ := µψ and various fiber partitions. We look at the relations between them, and find in

particular a formula for the folding entropy.

Thus let the following measurable partitions:

i) Consider the skew product map Φ : Σ+
I × Λ→ Σ+

I × Λ and its fibers Φ−1(ω, x) for (ω, x) ∈
Σ+
I × Λ. They form a partition which is clearly measurable, and according to Rokhlin ([12]) there

exists a canonical family of conditional measures of µ := µψ, so for µ-a.e (ω, x) ∈ Σ+
I × Λ, the

conditional measure µ(ω,x) is supported on the finite set Φ−1(ω, x). Notice that

Φ−1(ω, x) = {(iω, φ−1
i x), i ∈ I, if x ∈ φi(Λ)},

where we denote µ(ω,x)(i) := µ(ω,x)(iω, φ
−1
i x) if x ∈ φi(Λ), and µ(ω,x)(iω, φ

−1
i (x)) = 0 if x /∈ φi(Λ).

ii) Denote by µ+ := π1∗µ on Σ+
I , where π1 : Σ+

I × Λ → Σ+
I is the projection on the first

coordinate, π1(ω, x) = ω. Consider the partition of Σ+
I with the fibers of σ, and the associated

family of conditional measures µ+
ω on the finite set σ−1ω, for µ+-a.e ω ∈ Σ+

I . We also denote µ+
ω (iω)

by µ+
ω (i).

iii) Consider the partition of Σ+
I × Λ with the fibers of π1 : Σ+

I × Λ → Σ+
I , i.e the partition

with the leaves {ω} × Λ, ω ∈ Σ+
I , of the stable foliation of Φ. Let then the associated family of

conditional measures of µ with respect to this partition, µω on π−1
1 (ω) = {ω}×Λ, for µ-a.e ω ∈ Σ+

I .

So µω can be considered a probability measure on Λ.

From [7] we know that, for an equilibrium measure µψ on Σ+
I × Λ, the overlap number is

o(S, µψ) = exp(FΦ(µψ))

We prove now a formula, which gives FΦ(µ) (and thus o(S, µψ)) in terms of the conditional measures

µω and µ+
ω :

Theorem 1. Let Φ : Σ+
I × Λ → Σ+

I × Λ be the lift endomorphism as above, and let a Hölder

continuous potential ψ on Σ+
I × Λ with equilibrium measure µ := µψ. Then the overlap number

o(S, µ) of µψ is determined by the corresponding conditional families (µω)ω, (µ
+
ω )ω by:

log o(S, µ) = −
∑
i∈I

∫
Σ+
I ×Λ

µ+
ω (i)∑

j∈I
µ+
ω (j) · lim

A2→x

µjω(φ−1
j φiA2)

µiω(A2)

· log
( µ+

ω (i)∑
j∈I

µ+
ω (j) · lim

A2→x

µjω(φ−1
j φiA2)

µiω(A2)

) dµ(ω, x)

Proof. From the properties of conditional measures, if g̃ : Σ+
I × Λ→ R is µ-integrable, then∫

Σ+
I ×Λ

g̃(ω, x) dµ(ω, x) =

∫
Σ+
I ×Λ

∫
Φ−1(ω,x)

g̃(ω′, x′)dµ(ω,x)(ω
′, x′) dµ(ω, x)

=
∑
i∈I

∫
Σ+
I ×Λ

g̃(iω, φ−1
i x) · µ(ω,x)(i) dµ(ω, x)

(3)
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Notice that since our system has overlaps, a point x ∈ Λ may belong to several sets of type φi(Λ).

But µ also decomposes after the fibers of π1, so for any real-valued function g̃ µ-integrable on

Σ+
I × Λ, ∫

Σ+
I ×Λ

g̃(ω, x) dµ(ω, x) =

∫
Σ+
I

∫
{ω}×Λ

g̃(ω, x)dµω(x) dµ+(ω) =

∫
Σ+
I

Γ(ω)dµ+(ω)

=

∫
Σ+
I

∫
σ−1ω

Γ(ω′)dµ+
ω (ω′) dµ+(ω) =

∑
i∈I

∫
Σ+
I

Γ(iω)µ+
ω (i) dµ+(ω)

=
∑
i∈I

∫
Σ+
I ×Λ

µ+
ω (i) ·

∫
{iω}×Λ

g̃(iω, x) dµiω(x) dµ(ω, x),

(4)

where Γ(ω) :=
∫
{ω}×Λ g̃(ω, x)dµω(x). By taking g̃ such that g̃|[j] = 0 for j 6= i, we obtain from (3)

and (4) that:∫
Σ+
I ×Λ

g̃(iω, φ−1
i x)µ(ω,x)(i) dµ(ω, x) =

∫
Σ+
I ×Λ

µ+
ω (i) ·

∫
{iω}×Λ

g̃(iω, x)dµiω(x) dµ(ω, x) (5)

Let us take now g̃ = χA, where A = A1×A2 is the product of two Borelian sets, and A1 ⊂ [i] ⊂
Σ+
I . Then if iω ∈ A1, we have ∫

{iω}×Λ
g̃(iω, x)dµiω(x) = µiω(A2)

Let us denote A1(i) := {ω ∈ Σ+
I , iω ∈ A1}. Thus, with the above choice of g̃,∫

Σ+
I ×Λ

g̃(iω, φ−1
i x)µ(ω,x)(i) dµ(ω, x) =

∫
A1(i)×φi(A2)

µ(ω,x)(i) dµ(ω, x)

So from the last two displayed equalities and (5), it follows that∫
A1(i)×φi(A2)

µ(ω,x)(i) dµ(ω, x) =

∫
A1(i)×Λ

µiω(A2) · µ+
ω (i) dµ(ω, x) (6)

Since µ = µψ is the equilibrium measure of a Hölder continuous potential, and since the Bowen

balls in Σ+
I × Λ are of type [ω1 . . . ωn]× B(x, r0), it follows that µ+ is a doubling measure on Σ+

I .

Hence from Borel Density Lemma ([9]), if A1(i) is a ball around some fixed ω̄ in Σ+
I , we obtain:

1

µ+(A1(i))

∫
A1(i)

∫
φiA2

µ(ω,x)(i)dµω(x) dµ(ω) =
1

µ+(A1(i))

∫
A1(i)×φiA2

µ(ω,x)(i) dµ(ω, x)

−→
A1(i)→ω̄

∫
φi(A2)

µ(ω̄,x)(i) dµω̄(x)

(7)

But
∫
A1(i)×Λ µiω(A2) ·µ+

ω (i)dµ(ω, x) =
∫
A1(i) µiω(A2)µ+

ω (i) dµ+(ω). So from Borel Density Lemma,

1

µ+(A1(i))

∫
A1(i)

µiω(A2) · µ+
ω (i) dµ+(ω) −→

A1(i)→ω̄
µiω̄(A2) · µ+

ω̄ (i),

for µ+-a.e ω̄ ∈ Σ+
I . Therefore from (6) and (7) it follows that, for µ+-a.e ω̄ ∈ Σ+

I ,∫
φi(A2)

µ(ω̄,x)(i) dµω̄(x) = µiω̄(A2) · µ+
ω̄ (i) (8)
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On the other hand from the Φ-invariance of µ, it follows that∫
Σ+
I ×Λ

g̃(ω, x) dµ(ω, x) =

∫
Σ+
I ×Λ

g̃ ◦ Φ(ω, x)dµ(ω, x) =

∫
Σ+
I ×Λ

g̃(σω, φω1x)dµ(ω, x)

Hence using the conditional decomposition of µ along the fibers of π1,∫
Σ+
I

∫
{ω}×Λ

g̃(ω, x)dµω(x) dµ+(ω) =

∫
Σ+
I

∫
{ω}×Λ

g̃(σω, φω1x)dµω(x) dµ+(ω)

Let us take now again g̃ = χA1×A2 , and notice that σω ∈ A1 and φω1x ∈ A2, if and only if

ω ∈ σ−1A1 and x ∈ φ−1
ω1
A2. So from above,∫

A1

µω(A2) dµ+(ω) =

∫
σ−1A1

µω(φ−1
ω1
A2) dµ+(ω)

Since µ+ is σ-invariant on Σ+
I , it follows then that:∫

σ−1A1

µσω(A2) dµ+(ω) =

∫
σ−1A1

µω(φ−1
ω1
A2) dµ+(ω)

Taking A1 → ω, we obtain from above that, for any Borelian set A2 ⊂ Λ, i ∈ I and µ+-a.e ω ∈ Σ+
I ,

µω(φiA2) =
∑
j∈I

µjω(φ−1
j φi(A2)) · µ+

ω (j) (9)

But we can apply Borel Density Lemma for the measure φ∗µω on φi(Λ) in (8), and we see that

for any x ∈ φi(Λ) and any r > 0 small, B(x, r) ∩ φiΛ = φi(B(φ−1
i x, r′) ∩ Λ) for some r′ > 0 since

φi is injective. Thus by taking A2 to be a neighbourhood of x, we obtain from (7), (8), (9), that

lim
A2→x

µjω(φ−1
j φiA2)

µiω(A2) exist, and that for µ-a.e (ω, x) ∈ Σ+
I × Λ and any i ∈ I,

µ(ω,x)(i) =
µ+
ω (i)∑

j∈I
µ+
ω (j) · lim

A2→x

µjω(φ−1
j φiA2)

µiω(A2)

(10)

So from (10) and the fact that FΦ(µ) = −
∫

Σ+
I ×Λ µ(ω,x) logµ(ω,x)dµ(ω, x), we obtain the formula for

the folding entropy FΦ(µ), and thus from (27) the formula for the overlap number o(S, µ).

3 Box dimension estimates.

The notions of lower box dimension and Hausdorff dimension for sets are well-known (for eg [2],

[9]). For µ a Borel finite measure on Rd, recall ([2], [9], [11]) that the lower box dimension of µ is:

dimB(µ) = lim
δ→0

inf{dimB(Z), µ(Z) ≥ 1− δ}

Also denote the Hausdorff dimension of µ by HD(µ). The following inequality holds,

HD(µ) ≤ dimB(µ)
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Various aspects of dimensions were studied for eg in [2], [5], [6], [9], [10], [11], [16]. We are now

ready to prove the estimate for the lower box dimension of the projection νψ := π2∗(µψ); recall that

νψ is not the usual projection measure π∗π1∗µψ. The next Theorem gives a constructive method

to obtain sets Z of large νψ-measure whose box dimensions will then be estimated using overlap

numbers. In the process, we estimate also the maximal number of disjoint balls of radius r with

centers in Z.

Theorem 2. Consider the conformal system S = {φi, i ∈ I} wih limit set Λ, and the Hölder

continuous potential ψ : Σ+
I ×Λ→ R, with its equilibrium measure µψ, and let νψ := π2∗µψ. Then,

dimB(νψ) ≤
hσ(π1∗(µψ))− log o(S, µψ))

χ(µψ)

Proof. Recall that by definition, χ(µψ) > 0. For n ≥ 1, let Snψ(ω, x) := ψ(ω, x) + ψ(Φ(ω, x)) +

. . . + ψ(Φn−1(ω, x)). For all (ω, x) ∈ Σ+
I × Λ, Φn(ω, x) = (σn(ω), φωn...ω1(x)). From Chain Rule,

JΦn(µψ)(ω, x) = JΦ(µψ)(ω, x) . . . JΦ(µψ)(Φn−1(ω, x)). We know from the Birkhoff Ergodic Theo-

rem, from the formula for folding entropy (1) and the fact that µψ is ergodic that,

1

n
log |φ′ωn...ω1

(x)| →
n→∞

∫
Σ+
I ×Λ

log |φ′ω1
(x)|dµψ(ω, x), and

1

n
log JΦn(µψ)(ω, x) →

n→∞
FΦ(µψ), and

1

n
Snψ(ω, x) →

n→∞

∫
Σ+
I ×Λ

ψ(ω, x)dµψ(ω, x)

For an integer n ≥ 1 and an arbitrary number τ > 0, consider therefore the Borelian set

Dn(τ) := {(ω, x) ∈ Σ+
I × Λ,with |1

p
log JΦp(µψ)(ω, x)− FΦ(µψ)| < τ, and

|1
p

log |φ′ωp...ω1
(x)| −

∫
log |φ′ω1

|(x)dµψ(ω, x)| < τ, |1
p
Spψ(ω, x)−

∫
ψdµψ| < τ, ∀p ≥ n}

From above, µψ(Dn(τ)) →
n→∞

1 for all τ > 0, and moreover,

D1(τ) ⊂ . . . ⊂ Dn(τ) ⊂ Dn+1(τ) ⊂ . . . (11)

On the other hand, notice that a Bowen ball in Σ+
I × Λ has the form [ω1 . . . ωn] × B(x, r0), and

from the estimates of equilibrium measures on Bowen balls (for eg [4]), we have:

µψ([ω1 . . . ωn]×B(x, r0)) ≈ exp(Snψ(ω, x)− nPΦ(ψ)), n ≥ 1,

where≈means that the two quantities are comparable with a comparability constant which depends

only on ψ and is independent of n, x, ω. Now, if ω′ ∈ [ω1 . . . ωn] and if (η, y) ∈ Φ−nΦn(ω, x), then

(η, y) ∈ Φ−nΦn(ω′, x), and viceversa. But we proved in [7] that for µψ-a.e (ω, x) ∈ Σ+
I × Λ,

JΦn(µψ)(ω, x) ≈

∑
(η,y)∈Φ−nΦn(ω,x)

eSnψ(η,y)

eSnψ(ω,x)
, (12)

with comparability constant independent of ω, x, n. Therefore, if ω′ ∈ [ω1 . . . ωn], it follows from

(12) that there exists a constant C > 0 so that for µψ-a.e (ω, x) and all n ≥ 1,
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1

C
JΦn(µψ)(ω′, x) ≤ JΦn(µψ)(ω, x) ≤ CJΦn(µψ)(ω′, x) (13)

This means that Dn(τ) is basically a product set, or more precisely that there exists a set En(τ) ⊂ Λ

such that Dn(τ/2) ⊂ [ω1 . . . ωn]× En(τ) ⊂ Dn(τ). Notice now that the map Φn is injective on the

set [ω1 . . . ωn] × B(x, r0), for some fixed r0, since the composition map φωn...ω1 is injective on U .

Thus from the properties of Jacobians of measures on sets of injectivity, we get

µψ(Φn([ω1 . . . ωn]×B(x, r0) ∩Dn(τ))) =

∫
[ω1...ωn]×B(x,r0)∩Dn(τ)

JΦn(µψ)(η, y) dµψ(η, y)

≥ Cen(FΦ(µψ)−τ) · µψ
(
[ω1 . . . ωn]×B(x, r0) ∩Dn(τ)

) (14)

We now want to estimate µψ
(
[ω1 . . . ωn]×B(x, r0)∩Dn(τ)

)
. First notice that, since ψ is Hölder

continuous, the consecutive sum Snψ(ω, x) with respect to Φ, does not really depend on x, but

only on ω. So there exists a constant C > 0 such that for any x, y ∈ Λ, ω ∈ Σ+
I ,

|Snψ(ω, x)− Snψ(ω, y)| ≤ C

Thus one can fix y = x0 above in Λ. We want to show that for any Borel set A ⊂ Λ and any n,

µψ([ω1 . . . ωn]×A) ≈ eSnψ(ω,x0)−nPΦ(ψ) · νψ(A), (15)

with comparability constants independent of ω, n,A. Since µψ is a Borel measure, it is enough to

show (15) for open balls A = B(y, r). Let us also recall that all the contractions φi are conformal,

thus we have a Bounded Distortion property, namely there exist constants C > 0, 0 < r0 < 1, such

that for any x, y ∈ Λ with d(x, y) < r0, any integer n and any sequence i ∈ Σ+
I ,

C−1φ′i1...in(x) ≤ φ′i1...in(y) ≤ Cφ′i1...in(x) (16)

By using this Bounded Distortion property, we take the backward iterates of B(y, r) along vari-

ous prehistories until reaching diameter r0 for the respective preimage. We consider such maxi-

mal prehistories with φ−1
η1...ηpB(y, r) = B(z(y, η1, . . . , ηp), r0), for some preimage in Λ denoted by

z(y, η1, . . . , ηp). We do this for all prehistories of order p, then if one of the preimages φ−1
η1...ηpB(y, r)

has diameter smaller than r0, we continue the process to order p+ q, where q is the largest integer

such that φ−1
η1...ηp...ηp+qB(y, r) has diameter smaller than r0. Assume without loss of generality that

η1, . . . , ηp is such a maximal trajectory (this can happen for various p’s). Since µψ is Φ-invariant,

we can add succesively the measures of the maximal preimages [ηp . . . η1]×φ−1
η1...ηpB(y, r), first those

with p = 1, then with p = 2, etc. These measures sum up to the measure of Σ+
I ×B(y, r), so∑

p≥1, η1...ηp maximal

µψ
(
[ηp . . . η1]×B(z(η1, . . . , ηp), r0)

)
= µψ(Σ+

I ×B(y, r)) = νψ(B(y, r)) (17)

We get a similar formula for µψ([ηp . . . η1ω1 . . . ωn] × B(y, r)), since the pulling back along prehis-

tories of B(y, r) does not depend on ω1, . . . , ωn. Hence by using maximal prehistories as above,∑
p≥1, η1...ηp maximal

µψ
(
[ηp . . . η1ω1 . . . ωn]×B(z(η1, . . . , ηp), r0)

)
= µψ([ω1 . . . ωn]×B(y, r)) (18)
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Now the Bowen balls for the map Φ are sets of type [ω1 . . . ωn]×B(z, r0). Then from the estimates

of equilibrium measures on Bowen balls ([4]),

µψ([ηp . . . η1ω1 . . . ωn]×B(z, r0)) ≈ eSn+pψ(ηp...η1ω1...ωn,z)−(n+p)PΦ(ψ), (19)

where the comparability constants do not depend on z, ω, η, n, p. We write also Snψ(ω1 . . . ωn) for

Snψ(ω, x0), since by Hölder continuity this sum does not depend on x0, modulo a constant. But

eSn+pψ(ηp...η1ω1...ωn,z)−(n+p)PΦ(ψ) = eSpψ(ηp...η1)+Snψ(ω1...ωn)−(n+p)PΦ(ψ) =

= eSpψ(ηp...η1)−pPΦ(ψ) · eSnψ(ω1...ωn)−nPΦ(ψ)

Hence from the last displayed formula and (19), we see that for any z,

µψ([ηp . . . η1ω1 . . . ωn]×B(z, r0)) ≈ µψ([ηp . . . η1]×B(z, r0)) · eSnψ(ω1...ωn)−nPΦ(ψ)

So this last formula together with (17) and (18) imply that there exists a constant C > 0 indepen-

dent of n, x, y, r, ω, such that

1

C
νψ(B(y, r))eSnψ(ω,x0)−nPΦ(ψ) ≤ µψ([ω1 . . . ωn]×B(y, r)) ≤ Cνψ(B(y, r))eSnψ(ω,x0)−nPΦ(ψ)

This proves (15), by replacing any Borel set A with a union of disjoint balls of type B(y, r).

Now recall that µψ(Dn(τ))→ 1 when n→∞; hence for any δ > 0 small, there exists n(δ) ≥ 1

such that µψ(Dn(τ)) ≥ 1− δ for all n ≥ n(δ); hence from the Φ-invariance of µψ, µψ(Φn(Dn(τ))) ≥
1−δ. Moreover there exists a strictly increasing sequence of integers (kn)n, with kn ≥ n, such that,

µψ(Dkn) ≥ 1− αn, and
∑
n≥1

αn <∞ (20)

Denote now by Yn(τ) := π2Dn(τ) ⊂ Λ. We want to apply a version of Borel Density Lemma

([9] pg 293), in order to estimate the portion of the νψ-measure of the intersection between a ball

and Yn(τ). Indeed for any δ > 0 it follows that for any n ≥ n(δ), there exists a borelian subset

Ỹn(τ) ⊂ Yn(τ) and ρn > 0, such that νψ(Ỹn(τ)) ≥ 1− 2δ, and for any x ∈ Ỹn(τ) and any r ≤ ρn,

νψ(B(x, r) ∩ Yn(τ)) ≥ 1

2
νψ(B(x, r)) (21)

Let Zn(τ) := π2Φn(Dn(τ)) and Z̃n(τ) :=
⋂
`≥n

Zk`(τ), for n ≥ 1. Then, since µψ(Φn(Dn(τ))) ≥

µψ(Dn(τ)), it follows from (20) that

νψ(Z̃n(τ)) ≥ 1−
∑
m≥n

αm, and νψ(Z̃n(τ)) →
n→∞

1

Given the radius ρn above, we can find an integer sn ≥ n, such that any ball B(y, ρn2 ) with y ∈ Λ,

intersects the set Ỹsn(τ). This is true since νψ(Ỹn(τ))→ 1, and since µψ is the equilibrium measure

of a Hölder continuous potential, thus it is positive on balls of radius ρn/2. Denote now

rn := en(−χ(µψ)+τ), n ≥ 1
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Consider an arbitrary family Fk` of mutually disjoint balls of radii ρnrk` with centers in

π2Φk`(Dk`(τ)), for ` ≥ sn, and assume the balls in Fk` contain images of type φik` ...i1(B(z, ρn))

for z in a family of centers Fk` . But from above, for all ` ≥ sn and z ∈ Fk` , the ball B(z, ρn/2)

must contain a point ξz ∈ Ỹsn(τ). Hence B(ξz, ρn/2) ⊂ B(z, ρn), and thus φik` ...i1(B(ξz, ρn/2)) ⊂
φik` ...i1(B(z, ρn)) for all z ∈ Fk` . So we obtain a family Gk` of disjoint sets φik` ...i1(B(ξz, ρn/2)), z ∈
Fk` . From our construction,

N(Gk`) := Card(Gk`) = N(Fk`) := Card(Fk`)

However Ỹsn(τ) ⊂ Ysn(τ) ⊂ π2Dk`(τ), if ` ≥ sn ≥ n, so from the above properties of the set Ỹsn(τ)

and (21), it follows that νψ(Ỹsn(τ)) ≥ 1− 2δ and,

νψ(B(ξz, ρn/2) ∩ Ysn(τ)) ≥ 1

2
νψ(B(ξz, ρn/2))

But now from (11), Ysn(τ) ⊂ Yk(τ) = π2Dk(τ) for all k ≥ sn, and recall ` ≥ sn ≥ n; hence from

the last inequality,

νψ(B(ξz, ρn/2) ∩ Yk`(τ)) ≥ 1

2
νψ(B(ξz, ρn/2)) (22)

Let us estimate now the νψ-measure of a set from Gk` , for ` ≥ sn. Since Φk` is injective on

[i1 . . . ik` ] × Λ, we obtain from (15) and (22),

νψ(φik` ...i1B(ξz, ρn/2) ∩ Yk`(τ)) = µψ(Φk`([i1 . . . ik` ]×B(ξz, ρ/2) ∩Dk`)) =

=

∫
[i1...ik` ]×(B(ξz ,ρn/2)∩Yk` (τ))

JΦk` (µψ)(ω, x) dµψ(ω, x)

≥ C exp(k`(FΦ(µψ)− τ)) · exp(Sk`ψ(ω, x0)− k`PΦ(ψ)) · νψ(B(ξz, ρn/2) ∩ Yk`)

≥ C̃n exp(k`(FΦ(µψ)− τ) · exp(k`(−hΦ(µψ)− τ)) = C̃n exp(k`(FΦ(µψ)− hΦ(µψ)− 2τ)),

(23)

for some constants Cn, C̃n > 0, where we used the estimate on the Jacobian of Φk` on Dk` , the

estimate on the equilibrium measure µψ of a Bowen ball [i1 . . . ik` ]×B(ξz, ρn/2), and the behaviour

of Sk`ψ on the generic points from Dk` . Since the balls in Fk` are disjoint, and each of them

contains a set of type φik` ...i1B(ξz, ρn/2) ∩ Yk` , it follows that for all integers ` ≥ sn,∑
ξz∈Gk`

νψ(φik` ...i1B(ξz, ρn/2) ∩ Yk`(τ)) ≤ 1

Thus, using (23) and the fact that N(Gk`) = N(Fk`), we obtain for any family Fk` as above,

N(Fk`) ≤ C
−1
n exp(−k`(FΦ(µψ)− hΦ(µψ)− 2τ)) (24)

So if for some ` ≥ sn we take a disjointed family W of balls of radii ρn · rk` with centers in

Z̃sn(τ) =
⋂
`≥sn

π2Φk`Dk`(τ), then its cardinality N(W) is less than the cardinality of some family

Fk` from above, hence from (24) we obtain an estimate for the lower box dimension,

dimB(Z̃sn(τ)) ≤
hΦ(µψ)− FΦ(µψ) + 2τ

χ(µψ)− τ
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But on the other hand, we know from construction that νψ(Z̃sn(τ)) ≥ 1 −
∑
j≥sn

αj → 1, when

n→∞. So from the above, using the definition of lower box dimension of a measure, it follows

dimB(νψ) ≤
hΦ(µψ)− FΦ(µψ) + 2τ

χ(µψ)− τ
,

for any small number τ > 0, and thus the conclusion follows, namely dimB(νψ) ≤ hΦ(µψ)−FΦ(µψ)
χ(µψ) .

4 Formulas and computation of topological overlap numbers.

In this section we compute the topological overlap number in several concrete significant cases.

Then, these formulas are applied to box dimension estimates. The topological overlap number of a

conformal system S = {φi, i ∈ I} is defined (see [7]) in relation to the lift endomorphism Φ, as the

overlap number of the measure of maximal entropy µmax for Φ on Σ+
I ×Λ, and is denoted by o(S),

o(S) = o(S, µmax)

Consider now a probabilistic vector p = (p1, . . . ,p|I|) and its associated Bernoulli measure µ+
p on

Σ+
I . Then the classical projection of µ+

p on the limit set Λ of S is π∗µ
+
p . The Bernoulli measure µ+

p is

the equilibrium measure with respect to σ of the potential g : Σ+
I → R, g(ω) = log pω1 , ω ∈ Σ+

I . Let

ψ := g ◦ π1 : Σ+
I × Λ→ R, and µψ be its equilibrium measures with respect to the endomorphism

Φ. Then we proved in [7] that for this choice of ψ, π2∗µψ = π∗π1∗µψ. But from estimates of

equilibrium measures on Bowen balls, it follows that for a constant r0, µψ([ω1 . . . ωn]×B(x, r0)) ≈
eSnψ(ω,x)−nPΦ(ψ), where the comparability constant is independent of n, x, ω. Thus by summing up,

µψ([ω1 . . . ωn]× Λ) ≈ eSng(ω)−nPσ(g),

since Φ is contracting in the second coordinate and since ψ depends only on ω. Denote µg◦π1 by µp,

which can be considered a lift of µ+
p to Σ+

I ×Λ. So π1∗µp satisfies the same estimates on cylinders

as the Bernoulli measure µ+
p , and thus from above, we obtain π1∗µp = µ+

p . Therefore,

π2∗µp = π∗µ
+
p (25)

In particular, if µ+
max denotes the measure of maximal entropy for the shift on Σ+

I , i.e the Bernoulli

measure associated to the probability vector ( 1
|I| , . . . ,

1
|I|)), we obtain

π2∗µmax = π∗µ
+
max (26)

We showed in [7] that, if π : Σ+
I → Λ is the canonical projection to the limit set of S and if

βn(x) := Card{(η1, . . . , ηn) ∈ In, x ∈ φη1...ηn(Λ)}, n ≥ 1,

then the topological overlap number of S is given by the formula:

o(S) = exp
(

lim
n→∞

1

n

∫
Σ+
I

log βn(πω) dµ+
max(ω)

)
(27)
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3.1. Consider the system Sλ = {φ−1, φ1}, where φ−1(x) = λx − 1, φ1(x) = λx + 1. When

λ ∈ (1
2 , 1) this system has overlaps, and its limit set is the interval Iλ = [− 1

1−λ ,
1

1−λ ]. When there

is no confusion about λ, this limit set will also be denoted by Λ. We consider then the measure of

maximal entropy µmax for Φ on Σ+
2 × Λ.

3.1a. Let us look first at reciprocals of Garsia numbers. A number γ is called a Garsia

number if it is an algebraic integer in (1, 2) whose minimal polynomial has constant coefficient

±2 and so that γ and all of its conjugates have absolute value strictly greater than 1 (see [3]).

Examples of such minimal polynomials are xn+p − xn − 2 for n, p ≥ 1, with max{p, n} ≥ 2. For

instance 2
1
n , n ≥ 2, are Garsia numbers.

Theorem 3. The topological overlap number o(Sλ) of the system Sλ for λ ∈ (1
2 , 1) with 1

λ a Garsia

number, is equal to 2λ.

Proof. Recall that the limit set of Sλ is the interval Iλ = [− 1
1−λ ,

1
1−λ ]. From [3] it follows that, if λ

is the reciprocal of a Garsia number, then all 2n sums of type
n−1∑

0
±λk are distinct and at least C

2n

apart, for some constant C > 0. Let us order increasingly these 2n numbers
n−1∑

0
±λk, and denote

them by ζ1, . . . , ζ2n . Hence from [3] these points ζi are distinct, and

|ζi − ζj | ≥
C

2n
, i 6= j (28)

Since there are 2n points ζj in the interval Iλ, there is a constant C ′ > 0 so that, for any i 6= j,

C ′

2n
≥ |ζi − ζj | ≥

C

2n

Now the numbers of type ζj +
∑
k≥n

rkλ
k, where ζj =

∑
0≤k≤n−1

ωkλ
k and ωk ∈ {−1, 1}, form the inter-

val Ij := π([ω0, . . . ωn−1]. The length of Ij is C1λ
n, for some fixed constant C1 > 0. Since λ > 1

2 ,

it follows from (28) that any interval Ij contains at least C2(2λ)n points ζj and at most C3(2λ)n

points ζj , for some constants C3 > C2 > 0. With the possible exception of an interval J1 of length

C4λ
n with left endpoint − 1

1−λ (i.e the left endpoint of Iλ), and an interval J2 of same length with

right endpoint 1
1−λ (i.e the right endpoint of Iλ), we see that any point x belongs to at least C5(2λ)n

intervals Ij and to at most C6(2λ)n intervals Ij , where the constants C1, . . . , C6 do not depend on n.

Recall that Ij = π([ω0, . . . , ωn−1] for some ωk ∈ {−1, 1}, 0 ≤ k ≤ n−1, and that µ+
max([ω0, . . . , ωn−1]) =

1
2n , where µ+

max is the measure of maximal entropy on Σ+
2 . From above (27) we know that,

o(Sλ) = exp(lim
n

1

n

∫
Σ+

2

log βn(πω) dµ+
max(ω)),

where βn(x) := Card{(η0, . . . , ηn−1) ∈ {−1, 1}n, x ∈ φη0...ηn−1(Λλ)} for x ∈ Λλ and n ≥ 1. But

from above, we see that for x outside the intervals J1, J2 of length C4λ
n at the endpoints of Iλ,

C5(2λ)n ≤ βn(x) ≤ C6(2λ)n

12



Thus from the last estimate on βn(x) on the complement of J1∪J2, and using that µmax([ω0, . . . , ωn−1]) =
1

2n , we obtain that for some constant C7 > 0 (independent of n),

(2n − C7(2λ)n) · n log(2λ)
1

2n
≤
∫

Σ+
2

log βn(πω) dµ+
max(ω) ≤ 2n · n log(2λ) · 1

2n
= n log(2λ)

Therefore o(Sλ) = 2λ, since from the last displayed inequalities it follows that,

lim
n→∞

1

n

∫
Σ+

2

log βn(πω) dµ+
max(ω) = log(2λ)

Since for any n ≥ 1, 2
1
n is a Garsia number (see [3]), we then obtain from Theorem 3 a system

which asymptotically is
n
√

2n−1 -to-1. For these examples the projection π∗µ
+
max is absolutely

continuous ([3]), and π∗µ
+
max = π2∗µmax from (26), hence:

Corollary 1. For the system Sλ with λ = 2−
1
n , the topological overlap number is o(Sλ) =

n
√

2n−1,

and the measure π2∗µmax is absolutely continuous.

3.1b. The second example is of Bernoulli convolutions with λ being the reciprocal of a Pisot

number. A Pisot number is by definition an algebraic integer all of whose conjugates are strictly

less than 1 in absolute value (for eg [3], [10]). We prove the following.

Theorem 4. The topological overlap number of Sλ for λ ∈ (1
2 , 1) with 1

λ a Pisot number, satisfies

o(Sλ) ≥ 2λ > 1

Proof. If 1
λ is a Pisot number, the distance between any two different polynomial sums of type

P (ω, λ, n) =
n−1∑
i=0

ωiλ
i for ω ∈ Σ+

2 = {−1, 1}∞, is at least Cλn, for some constant C > 0, which

follows from the algebraic properties of 1
λ (see [3], [10]). Then the number q(n) of all possible values

of such polynomials P (ω, λ, n), when n, λ are fixed, satisfies

q(n) ≤ C1λ
−n, (29)

for some constant C1 independent of n. Since there are 2n tuples (ω0, . . . , ωn−1) ∈ {−1, 1}n, but

only at most C1λ
−n values for polynomials P (ω, λ, n), and since λ > 1

2 , there must be many

equalities between such values. Denote by Vn(λ) the set of values of polynomials P (ω, λ, n),

Vn(λ) = {α1, . . . , αq(n)}, where α1 < . . . < αq(n), (30)

where q(n) satisfies (29). We know that

π([ω0, . . . , ωn−1]) = {P (ω, λ, n) +
∞∑
i=n

ωiλ
i, ωi ∈ {−1, 1}, i ≥ n},

13



so π([ω0, . . . , ωn−1]) is an interval in Λλ of length between λn and 2λn (depending on its location).

Denote by Ni := Card{(ω0, . . . , ωn−1) ∈ {−1, 1}n, P (ω, λ, n) = αi}, 1 ≤ i ≤ q(n). From (29)

recall that |αi−αj | ≥ C1λ
n if i 6= j. Since each value αi is taken Ni times by polynomials P (ω, λ, n),

1 ≤ i, j ≤ q(n), it follows that there exists a constant C2 > 0 so that for all n ≥ 1,

βn(πω) ≥ C2Ni, whenever P (ω, λ, n) = αi, 1 ≤ i ≤ q(n) (31)

For the measure of maximal entropy µ+
max on Σ+

2 we have µ+
max([ω0, . . . , ωn−1]) = 1

2n , so from (31),

∫
Σ+

2

log βn(πω) dµ+
max(ω) ≥

q(n)∑
j=1

(logC2Nj) ·
Nj

2n
= log 2n +

q(n)∑
j=1

Nj

2n
log

Nj

2n
+ logC2 (32)

However in general for any probability vector (p1, . . . , pm), one has the upper bound (for eg [15]),

−
m∑
i=1

pi log pi ≤ logm

From (30), we know N1 + . . . Nq(n) = 2n, so we can take the probability vector (N1
2n , . . . ,

Nq(n)

2n ), and

from (32) it follows that:

1

n
log

∫
Σ+

2

log βn(πω) dµ+
max(ω) ≥ log 2− logC1λ

−n

n
+

logC2

n

This implies then from (27) that o(Sλ) ≥ 2λ, hence o(Sλ) > 1 since λ > 1
2 .

3.2. We now look at examples with eventual exact or at least substantial overlaps, in which

case the topological overlap number will be estimated, or even computed exactly. We consider first

the case when there are exact overlaps, i.e. when:

φi1...ip(Λ) = φj1...jp(Λ),

for certain maximal tuples (i1, . . . , ip), (j1, . . . , jp). Exact overlaps may appear after certain number

of iterates, but for simplicity we look first at the case p = 1; the generalization is straightforward.

So consider the system S = {φi, 1 ≤ i ≤ m} of conformal injective contractions, and assume we

have the blocks

φ1 = . . . = φk1 , φk1+1 = . . . = φk2 , . . . , φkp = φm, (33)

where there are no overlaps between the different blocks, i.e the system {φki , 1 ≤ i ≤ p} satisfies

the Open Set Condition.

Let µ+
max be the measure of maximal entropy on Σ+

m, and denote the measure of maximal

entropy for Φ on Σ+
m×Λ by µmax. Then, the topological overlap number o(S) := o(S, µmax) takes

in consideration all preimages of Φ, and we proved in [7] that

o(S) = exp
(

lim
n→∞

1

n

∫
Σ+
m

log βn(πω) dµ+
max(ω)

)
, (34)
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where βn(x) := Card{(η1, . . . , ηn) ∈ In, x ∈ φη1...ηn(Λ)}. In this case, if x ∈ φj1...jn(Λ) and if

ki`−1 + 1 ≤ j` ≤ ki` , then for x = πω and ω = (j1j2 . . .), we have:

βn(x) = (ki1 − ki1−1) · . . . · (kin − kin−1), (35)

where if i` = 1, then the factor (ki`−ki`−1) is replaced by k1. Let us take the function Ψ : Σ+
m → R,

Ψ(ω) := log k1 for 1 ≤ ω1 ≤ k1, and Ψ(ω) := log(ki − ki−1) for ki−1 + 1 ≤ ω1 ≤ ki. If ω, η are close

enough in Σ+
m, then ω1 = η1, hence Ψ is Hölder continuous on Σ+

m.

Notice that, if ω ∈ [j1 . . . jn] and kis−1 + 1 ≤ js ≤ kis if is > 1, or 1 ≤ j1 ≤ k1 if is = 1, then

Ψ(ω) = log(ki1 − ki1−1), Ψ(σω) = log(ki2 − ki2−1), . . .

However from above,∫
Σ+
m

log βn(πω) dµ+
max(ω) =

∑
s=1,...n

∑
kis−1+1≤js≤kis

∫
[j1...jn]

log(ki1−ki1−1)+. . . log(kin−kin−1) dµ+
max(ω)

Thus, if SnΨ denotes the consecutive sum of Ψ with respect to σ, we obtain∫
Σ+
m

log βn(πω) dµ+
max(ω) =

∫
Σ+
m

SnΨ(ω) dµ+
max(ω) (36)

Hence from (36), by Birkhoff Egodic Theorem for the measure of maximal entropy µ+
max on Σ+

m,

1

n

∫
log βn(πω) dµ+

max(ω) =
1

n

∫
Σ+
m

SnΨ(ω) dµ+
max(ω) −→

n→∞

∫
Σ+
m

Ψ(ω) dµ+
max(ω)

We have thus proved the following:

Proposition 1. In the above setting from (33), the topological overlap number of the system S is

given by,

o(S) = o(S, µmax) = exp
(k1 log k1 + (k2 − k1) log(k2 − k1) + . . .+ (kp − kp−1) log(kp − kp−1)

m

)
As in Corollary 5, the above estimates can be extended for the p-iterated system Sp = {φi1...ip , ij ∈

I, 1 ≤ j ≤ p}, and thus we obtain:

Corollary 2. Assume we have the system of conformal injective contractions S = {φi, i ∈ I} with

|I| = m, and let Λ be its limit set. Assume also that there exists a family F ⊂ Ip of p-tuples such

that φip...i1(Λ) = φjp...j1(Λ) for (i1, . . . , ip), (j1, . . . , jp) ∈ F , and denote Card(F) = N(F). Then

o(S) ≥ exp
(N(F) logN(F)

mp

)
However, á priori there may exist only partial overlaps at the level of p-iterates, which comprise

a positive proportion of the measure. In particular the next Corollaries apply well for Bernoulli

convolutions systems Sλ, since in this case the limit set is an interval Λ = Iλ and we can numerically

estimate the proportion of overlaps at some iterate p. As above we obtain.
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Corollary 3. In the above setting assume that there is a family F ⊂ Ip of p-tuples and k ≥ 1 so

that for any (i1, . . . , ip) ∈ F , there exists (j1 . . . jk) ∈ Ik such that

φi1...ipj1...jk(Λ) ⊂ ∩
(`1,...`p)∈F

φ`1...`p(Λ)

Then if N(F) denotes the cardinality of F , we obtain:

o(S) ≥ exp
(N(F) logN(F)

mp+k

)
More generally we have the following:

Corollary 4. In the above setting assume that there are families F1, . . . ,Fs ⊂ Ip of p-tuples and

positive integers k1, . . . , ks such that, for any 1 ≤ j ≤ s and for any (ij1, . . . , ijp) ∈ Fj there exists

some kj-tuple (j1, . . . , jkj ) ∈ Ikj with

φij1...ijpj1...jkj (Λ) ⊂ ∩
(`1,...,`p)∈Fj

φ`1...`p(Λ)

Then if N(Fj) := CardFj , 1 ≤ j ≤ s, we obtain:

o(S) ≥ exp
(N(F1) logN(F1)

mp+k1
+ . . .+

N(Fs) logN(Fs)
mp+ks

)
Recall now from (25) that for Bernoulli measures we have the equality of the two projectional

measures, i.e π2∗µp = π∗µ
+
p . Also recall that µmax is the measure of maximal entropy for Φ on

Σ+
I × Λ, and µ+

max is the measure of maximal entropy for the shift on Σ+
I .

Then, from Proposition 1, Theorem 2 and Corollaries 2, 3 and 4, we obtain the following

dimension estimates:

Corollary 5. Assume we have the system of conformal injective contractions S = {φi, i ∈ I}
with |I| = m, and let Λ be its limit set, and denote by µmax the measure of maximal entropy on

Σ+
I × Λ. Assume also that there exists a family F of p-tuples such that φip...i1(Λ) = φjp...j1(Λ) for

(i1, . . . , ip), (j1, . . . , jp) ∈ F , and denote Card(F) = N(F). Then o(S) ≥ exp
(N(F) logN(F)

mp

)
, and

dimB(π2∗µmax) = dimB(π∗µ
+
max) ≤

p · hσ(µ+
max)− N(F) logN(F)

mp

p · χ(µmax)

Corollary 6. In the above setting assume there are families F1, . . . ,Fs ⊂ Ip of p-tuples and

k1, . . . , ks ≥ 1 so that, for any 1 ≤ j ≤ s and any (ij1, . . . , ijp) ∈ Fj there exists some kj-tuple

(j1, . . . , jkj ) ∈ Ikj , with

φij1...ijpj1...jkj (Λ) ⊂ ∩
(`1,...,`p)∈Fj

φ`1...`p(Λ)

Then if N(Fj) := CardFj , 1 ≤ j ≤ s, we obtain:

dimB(π2∗µmax) = dimB(π∗µ
+
max) ≤

p · hσ(µ+
max)− N(F1) logN(F1)

mp+k1
− . . .− N(Fs) logN(Fs)

mp+ks

p · χ(µmax)
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