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AN INDEX BOUND FOR UMBILIC POINTS
ON SMOOTH CONVEX SURFACES

BRENDAN GUILFOYLE AND WILHELM KLINGENBERG

ABSTRACT. We prove that the Z/2-valued index of an isolated umbilic point
on a C3t%smooth convex surface in Euclidean 3-space is less than 2. This
follows from a localization of the authors’ proof of the global Carathéodory
conjecture.

The link between the two is a semi-local technique that we term totally real
blow-up. Topologically, given a real surface in a complex surface, the totally
real blow-up is the connect sum of the real surface with an embedded real
projective plane. We show that this increases the sum of the complex indices
of the real surface by 1, and hence cancels isolated hyperbolic complex points.

This leads to a reduction of the local result to the global result (the non-
existence of embedded Lagrangian surfaces with a single complex point), which
proves that the umbilic index for smooth surfaces is less than 2.

Comparison of our smooth result with that of Hans Hamburger in the real
analytic case (stating that the index of an isolated umbilic point on a real
analytic convex surface is less than or equal to 1) suggests the existence of
“exotic” umbilic points of index 3/2.
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In this paper the authors’ proof of the global Carathéodory conjecture [4] is
extended to prove the following local index bound:

Main Theorem:
The index of any isolated umbilic point on a C3T-smooth convex surface S in
FEuclidean 8-space is less than 2.

Here the index (an element of Z/2) is the winding number of the principal fo-
liation about the isolated umbilic point, and C3+? is the usual Holder space with
a € (0,1). This bound does not preclude the existence of a smooth umbilic of
index 3/2, which is ruled out by the work of Hamburger in the real analytic case
[5], and points to a difference between the smooth and real analytic categories for
surfaces in R3. The proof depends upon the reformulation of questions regarding
umbilic points on convex surfaces in R? to questions regarding complex points on
Lagrangian sections in 7'S? with its canonical neutral Kéhler structure. Thus, the
result is equivalent to:

Main Theorem (Reformulation):
The index of any isolated complex point on a C*t*-smooth Lagrangian section
Y of TS? is less than 4.

The section ¥ is the set of oriented normal lines to the surface S, considered as
a surface (with a loss of one derivative) in the 4-manifold 7'S? of all oriented lines
in Fuclidean 3-space.

The Main Theorem is proven as follows. Suppose for the sake of contradiction
that there exists a C?T®-smooth Lagrangian section of T'S? containing an isolated
complex point of index 4+k for £ > 0. Join a neighbourhood containing the complex
point to a totally real Lagrangian hemisphere by the addition of a Lagrangian
annulus (for an explicit example of such a hemisphere see [4]).

Generically, this annulus contains isolated elliptic and hyperbolic complex points,
where the complex index is +1 and —1, respectively. By Lai’s index formula (see
[2]) the sum of the complex indices on ¥ is x(TX) + x(NX) = 4, and so the sum of
the hyperbolic and elliptic indices is —k.

A straight-forward application of the h-principle proves that elliptic and hyper-
bolic complex points can be cancelled pair-wise in the Lagrangian category, leaving
exactly k hyperbolic points in the annulus. Denote the resulting Lagrangian section
by ¥'. A corresponding surface in R? that is orthogonal to the oriented lines of ¥’
is shown schematically below with its umbilics and their indices.

i=2+k/2

Umbilic-free
hemisphere
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A key step in the transition from the global Carathéodory conjecture to the local
index bound is to connect sum the Lagrangian section ¥/ with k copies of RP2,
thereby removing hyperbolic complex points. This construction can be applied to
remove hyperbolic complex points on any real surface in a complex surface. The
analogy with blowing-up in algebraic geometry motivates us to call it a totally
real blow-up, where, in contrast to the standard notion of blowing up, the ambient
complex surface is left unchanged by our operation.

Removal of the hyperbolic points yields ¥; = X/#EkRP? C TS?, a compact
embedded surface containing a single complex point and a totally real Lagrangian
hemisphere. The proof now follows the global argument used in [4]. On the one
hand, the existence of holomorphic discs with boundary lying on the totally real
Lagrangian hemisphere implies that the co-kernel of the d-operator is non-zero.
On the other hand, the infinite dimensional Sard-Smale theorem for surfaces with
a single complex point implies that the co-kernel is zero. This contradiction implies
that a Lagrangian section containing a complex point of index 4 + k cannot exist.

In the next section we summarize the background geometry required to prove
the Main Theorem. In section 2 we show how to remove hyperbolic complex points
by connect sum with embedded real projective planes. Section 3 contains the proof
of the Main Theorem and the final section briefly discusses the result.

1. BACKGROUND

In this section we summarize the geometry of neutral Kihler 7'S?. Further
details can be found in [3] and references therein.

The space of oriented lines in R® can be identified with 7'S? by noting that an
oriented line can be identified with a pair of orthogonal vectors (U' ,V), the first of
which is a unit vector (the direction of the oriented line):

{(UV)eR*xR?||U|=1 U-V=0}=T5%

By lifting the standard complex coordinate £ (obtained by stereographic projection
from the south pole on S?) we get complex coordinates (&,7) on 71082 = T'S%. In
particular, identify (&,7) € C? with the vector

_0 2
nag +176€-€T55 .
In other words, the coordinate & represents the direction vector U of the oriented
line, while 17 determines the perpendicular distance vector V. The canonical pro-
jection 7 : TS? — S2, 7(&,n) = &, maps an oriented line to its direction.

The neutral Kihler structure on T'S? consists of a complex structure J for which
these coordinates are holomorphic:

0 0 0 0
“”(ag)”as J(an>:zan’

together with a compatible symplectic 2-form 2 and a metric G of signature (2, 2),

which have the following local expressions in (£, n)-coordinates:
— _ 2577 _
Q=41+ 2R (d A dE — _d /\d),
(146) "R dn A d€ — = zde A de
G = 4(1 + &£)2Im (dﬁdg + 25—77_d§d§_) .
1+
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Consider now a real surface 3 in T'S?. A point v is said to be complex if the
complex structure of T'S? preserves the tangent space of ¥ at v: J : % —T,%.
In coordinates, a point v on 3 given by v — ({(v,v),n(v, 7)) is complex iff

OndE — ool = 0.

On the other hand a surface ¥ is Lagrangian at a point v if Qs = 0 at v. A
Lagrangian surface is a surface which is Lagrangian at all of its points.

Proposition 1.1. Let S be a convex surface in R® and ¥ C T.S? be the surface
formed by the oriented normals to S. Then ¥ is a Lagrangian section of w : T.S? —
S2.
Conversely, if 2 is a Lagrangian section, then there exists a 1-parameter family
of convex surfaces in R3 which are orthogonal to the oriented lines of X.
Moreover, p € S is umbilic iff the oriented normal to S through p is a complex
point on the surface 2 formed by the oriented normals of S.

Of particular importance are the surfaces in 7'S? that arise as a graph of a section
of the projection 7 : T'S? — S2:

Proposition 1.2. A section & — (§,n = F(§,€)) is Lagrangian iff there exists
a real function (called the support function of the corresponding surface in R3)

r:S% — R such that _
or 2F
08 (1+&6)%
where the support function is defined up tor — r+C' (which yields parallel surfaces).
A point is complex iff at the point OF = 0.
A point on a Lagrangian section is complex iff the corresponding point on an
orthogonal surface in R? is umbilic.

An isolated umbilic point p on a convex surface S is a singularity of the principal
foliation of the surface and, as such, has an index i(p) € Z/2 (a half-integer because
the foliation may not be orientable).

On the other hand, an isolated complex point v on a real surface ¥ in a complex
surface also has an index I(v) € Z, see [2]. In our case, these are related by

Proposition 1.3. Let S be a conver surface in R® containing an isolated umbilic
point p and let ¥ C T'S? be the surface determined by the oriented normal lines of
S with corresponding isolated complex point . Then

I(7) = 2i(p).
Following the standard convention for complex points we adopt the terminology:

Definition 1.4. An isolated complex point on a real surface is elliptic if the index
is equal to 1, and is hyperbolic if the index is equal to —1.

2. ToraLLy REAL BLOow-UP

Consider the connected sum of a real surface ¥ in 7'S? with a copy of RP?.
That is, remove discs from ¥ and RP? and identify the boundary circles. A copy
of the real projective plane with a disc removed is called a cross-cap. It can also be
viewed as an annulus with the inner boundary curve antipodally identified.
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We term this operation totally real blow-up: “blow-up” because, at the topolog-
ical level, it is the real analogue of complex blowing-up (connect sum of a complex
surface with W), and “totally real” because it removes certain types of complex
points. Exactly which type can be removed is established in the next result:

Proposition 2.1. Let X C M be an embedded real surface in a compler surface
with a single hyperbolic complex point v € X. Then the surface > = S#RP? given
by removing a neighbourhood of v and joining a cross-cap can be smoothed so that
Y is totally real and embedded.

Proof. Choose local holomorphic coordinates (£,7) on M so that the surface in the
neighbourhood of the complex point at & = 0 is given by

1= a€? + BEE + o(|E),
for complex numbers a, 8. As the complex point is hyperbolic we have that |a| >
2|5] (see [2]) and so by a compactly supported deformation this can be reduced to
the form
n=aé’,
without the creation of any further complex points.

Fix constants ¢ and Ry such that 1 — e < Ry < 1, and consider the surface )
defined by

E= (1—vi)v for 1—-e<|y| <1,
a(l —vi)?i? for 1—e€<|v| <Ry,
77 =
ala+b(1 —vi) +c(l —v)2)p?  for Ry <|v| < 1.
This surface is C'-smooth for the following choice of constants a and b:
a=(c-D)A-R)? b=201-c)1-R),

and ¢ to be determined. Moreover, it is the connected sum ¥ = L#RP? and is
easily seen to be embedded.

We now show that for certain values of the constant ¢, the surface X is totally
real. Recall, a point v on a real surface is complex iff

OnoE — Ond¢l, = 0.
Computing this for the surface above, we find that for 1 — e < |v| < Ry there are
no complex points, while for Ry < |v| < 1 we have
ONOE — OndE = —2[1 + (c — )R — (¢(3 +2R2)R% + (5 + 2R2)(1 — R?))vw
+ (5(1 = R}) + ¢(2 + 5R))v°v* + 3c/’ v’ .
This is zero when v = 0, which is outside of the range for the parameter, so we

exclude this value.
Consider then the other factor with z = v and y = R%:

9(@,y) == 14+ (c=1)y" = (c(3+2y)y+ (5+2y) (1 —y))z+(5(1 —y) +c(2+5y))2° +3ca
The function g has the following properties:

(1) ¢(1,1) =0,
(2) 02911y =0 and 9yg|(1,1) =0,
(3) 92gla1) =4c, 9591 = 2(c — 1) and 0,9y9|1,1) = —3(c — 1).
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Thus 029929 — (8:0,9)*|(1,1) = (9 — ¢)(c — 1) and so (1,1) is local minimum for
g if 1 < ¢ < 9. Thus for this range of ¢, there exists € > 0 s.t. g(z,y) > 0 for
1—e<y?<1land Ry < 22 < 1. For c outside of this range, circles of complex
points occur which contribute zero to the total complex index and may be removed
by a generic perturbation.

We conclude that ¥ is totally real. |

Note 2.2. To get a picture of the totally real blow-up of a hyperbolic point in
terms of oriented lines in R3, consider the real surface in 7'S? given by the section
s (6, = (14 €£)%€?). Tt is easily checked that this surface is Lagrangian and
has a single hyperbolic complex point at £ = 0:

4 0 an ‘ Lo [To (On )
I e ((1 +5€>2> =0 O =0 1=l | <3n> V=2
where ¢ = Re'®. Thus it must correspond to a 1-parameter family of convex surfaces
in R? which contain an isolated umbilic point of index —1/2. Let us construct these

surfaces explicitly.
The support function is found by integrating the defining equation in Proposition
and the result is
r=2+8&)+C.
To reconstruct these surfaces recall the fundamental correspondence relation [4] in

Euclidean coordinates (x!, 22, 23):
Vo 20— 7€) +26(1+EE)r 5 —2(n€+ 7€) + (1 - &)
s T v T T G+eer

Therefore the 1-parameter family of convex surfaces, parameterized by the inverse
of their Gauss maps, is

2(38% — ¢ +566° —36%¢) | 2c€

1, 2
v 3(1 1 &6) T
G MO ErO( 2D el -]

3(1+¢&¢) 1+&€

Below is a plot of one of these surfaces with curves indicating the images of
|¢]=constant and of arg(£)=constant.

Viifttr=
| A,

Umbilic of index -1/,
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Let us now construct the cross-cap. Consider the map h : [Rg, 1] x St — T'S?,
which takes v = Re® to

E=(1—-vo)v n =0’

This an embedded cross-cap since the image of {1} x S* is a circle with antipodal
points identified.

These two surfaces can be joined along a circle by fixing a constant Gauss radius
Ry such that 372 < Ry < 1, and defining the surface & = S#RP?2 by

E=(1—-vo)v for 373 < lv| <1,

(14 (1 —vo)2wi)2(1 — )20 for 372 < |v| < Ry,
(a+b(1—vi)+c(l—vp)?)? for Ry < |y <1.
This surface is C?-smooth for the following choice of constants

a=—(1—R2)*5+2R2 — 46R4s + 54RS — 21RS),
b=—2(1—R%3(6 —51Ry + 61R — 24RY),

c=—6+18R3 + 42R; — 180R§ + 225R5 — 126 R;” + 28 Ry?.

Moreover, it is easily seen to be totally real and may be smoothed to C?+2.

In R3, this surface can be visualized as a 2-parameter family of oriented lines,
or a 1-parameter family of ruled surfaces which doubly covers a cylinder. On the
following page we illustrate a sequence of ruled surfaces corresponding to circles of
constant Gauss radius |¢| on the cross-cap.

Note 2.3. Removing the hyperbolic complex point means that the sum of the
indices of the complex points v; on ¥ has increased by 1. This can be seen in R3
as follows.

Recall Lai’s formula for this sum:

3 1() = X(TE) + X(N2)

Adding a cross-cap reduces x(TX) by 1 and so a totally real blow-up must increase
X(NX) by 2.

To see that this is indeed the case, note that x(NX) can be identified with the
number of intersection points of ¥ with a small perturbation of X. Perturbing the
cross-cap by a translation in R? orthogonal to the central cylinder (addition of a
certain quadratic holomorphic section in 7'S?), the ruling of the cylinder and its
perturbation coincide at exactly 2 lines. The rest of the cross-cap does not intersect
its perturbation and so, replacing the disc by the cross-cap increases x(NX) by 2,
as claimed.
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3. PROOF OF THE MAIN THEOREM

3.1. Reformulation. Suppose, for the sake of contradiction, that there exists an
open O3+ convex surface containing an isolated umbilic point of index i = 2+k/2,
for k > 0. Close up the surface to form a closed convex surface S by joining it to
an umbilic-free hemisphere. Here hemisphere refers to the range of the Gauss map
of the surface mg : S — S? and umbilic-free hemispheres are simple to construct
(for an explicit example see [4]).

This closed surface S will have umbilic points in the annulus, which are generi-
cally isolated and whose indices sum to —k/2. In fact, these generic umbilic points
will be those classified by Darboux in 1896 [I], what we term elliptic umbilic points
of index 1/2 and hyperbolic umbilic points of index —1/2 (in-line with the complex
terminology).

The reformulation outlined in Section 1 means that the set of oriented normal
lines to this surface form a global Lagrangian section ¥ in 7'S? with 1 complex
point of index I = 4+ k, and isolated elliptic and hyperbolic complex points whose
indices sum to —k.

3.2. Cancellation of Complex Points. By a small deformation of ¥ we can-
cel the elliptic complex points so that k hyperbolic complex points remain. Such
cancellation can be carried out in general for complex points on real surfaces in a
complex surface (see for example Corollary 9.5.2 in [2]). However, in our case we
want to ensure that the deformation remains Lagrangian. This follows from:

Lemma 3.1. Let ¥ be a smooth simply connected Lagrangian section with non-
empty totally real boundary. Suppose that the sum of the complex indices on X is
zero. Then there exists a smooth Lagrangian section X' with the following properties:

(1) =% on X — K for K a compact set in the interior of ¥,
(2) X is totally real.

Proof. Let U = w(X) and pull back the jet-bundles over ¥ to ones over U.
In particular, the support function r : U — R gives a section in the 2-jet bundle
of R® Hom(R,R) ® Hom(R?,R?) over U. This section is locally given by the map

Er (7‘, 7’1,7’277"11,7‘12,7”2177"22),

where we set & = x! + iz? and a subscript denotes differentiation. Sections that
arise in such a manner are called holonomic - see for example [§]. A non-holonomic
section is of the form
§ = (r, X1, Xo, Y1, Y2, Y3, Yy),
for functions {X;},{Y;} on U. The boundary is totally real and so [99r|> # 0 on
OU. Note that
|00r > = (r11 — ra2)® + (r12 +721)%.

Since the index sum is zero, the winding number of d9r around the boundary is
zero. Thus there exists a non-holonomic section of this bundle such that (Y; —Y;)?+
(Ya + Y3)% # 0 on U which agrees with the original section in a neighbourhood of
the boundary.

Consider the differential relation (Y; — Yy)? + (Y + Y3)? # 0. The convex hull
of the complement of this relation is the full fibre (i.e. the relation is ample) and
so by the relative h-principle, there exists a holonomic section X’ which is totally
real and agrees with the original section on the boundary.
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The surface ¥’ has the properties (1) to (2) above.
d

Using this Lemma we can cancel pairs of hyperbolic and elliptic complex points
by a perturbation. We thus arrive at a Lagrangian section X/ with an isolated
complex point of index 4 + k and %k hyperbolic complex points, which also contains
a totally real Lagrangian hemisphere.

3.3. Removal of Hyperbolic Points. Now remove the complex points of index
—1 from the surface by totally real blow-up, as described in Proposition That
is, we modify X’ by removing a small disc containing the complex point of index
—1, and attaching RP? with a disc removed (a cross-cap).

Removing each of the k complex points yields a closed embedded surface ¥ =
Y'#kRP? containing a single isolated complex point (of index I = 4 + k), which is
Lagrangian outside of the k copies of RP2.

In summary, the sum of the indices of the complex points 7; on ¥; is

}:Hw):xﬂfﬂ+x@@0

= X(T(S'#kRP?)) + x (N (Z'#kRP?))
=x(TY) — k+ x(NY') + 2k
=4+k,

which is the index of the single complex point on X.

3.4. Global Argument. A minor modification of the global arguments of [4] can
now be applied to ;. We sketch the arguments.

Definition 3.2. Let
So = {X | ¥ € T'S? embedded C?T* surface containing the point (0,0) }
and the space of sections
Lo(J(T%) ={veTJ(TR)) | ve ™, v(y)=0, }.

Let X1 = X/#kRP? be the closed surface in 7'S? with a single complex point of
index 4 4 k obtained as above, and by a translation and rotation suppose that the
complex point lies at (0,0) € T'S2.

The neighbourhood of ¥; in Sy can be modeled by the sections T'y:

Proposition 3.3. There exists € > 0 and ® : B.(0) C T'y(J(T%1)) = U C Sp so
that U = ®(B.(0)) is a Banach manifold.

Proof. The proof follows along the lines of the arguments in section 2.2 of [4]. O
In fact, we are interested in Lagrangian variations of 3.

Definition 3.4. Let
T8 (p(Tn)) = {v e TUT)) | ve O+, v(y) =0, d(J(v).Q)=0}.

Proposition 3.5. F(l)ag(J(Tﬁl)) C T'oy(J(TX1)) is a Banach subspace.
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Corollary 3.6. There exists € > 0 and P : Belag(O) C F(l)ag(J(TEl)) —ulag cy
so that U9 = @(leag(O)) is a Banach submanifold.

Now the argument proceeds as in [4]. Namely we conclude that for an open

dense set of 1128 , the co-kernel of the Cauchy-Riemann operator is zero. However,
by mean curvature flow we can construct holomorphic discs whose boundary lie
on any totally real Lagrangian hemisphere, contradicting the surjectivity of the
5-0perator.

Thus no C?** Lagrangian surface with an isolated complex point of index I =
4 4k for k > 0 exists. Equivalently, there does not exist a C3+* convex surface
containing an isolated umbilic point of index i = 2 + k/2 for k > 0.

4. DISCUSSION

Since the early 1920’s, attempts to prove the global Conjecture have sought to
establish a local index bound, usually with the inclusion of the assumption of real
analyticity on the surface (originally due to Hamburger [5] and more recently by
Ivanov [6]). Conflating this bound with a much later conjecture of Loewner (related
to [7]), the umbilic index bound most often sought is i < 1.

The Main Theorem represents a reversal of these historical attempts. That is,
the results in this paper establish a local index bound as a consequence of global
restrictions on the d-operator. Remarkably, this opens up a gap between what we
claim is a sharp result in the smooth category (umbilic index less than 2) with
Hamburger’s result in the real analytic category (umbilic index less than or equal
to 1).

Thus, we are led to the possibility of isolated umbilic points of index 3/2 on
smooth, non-real analytic surfaces. The existence and implications of such ezotic
umbilic points will be considered in a future paper.
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