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Abstract. The multifractal structure underlying a self-similar measure stems

directly from the weighted self-similar system (or weighted iterated function

system) which is used to construct the measure. This follows much in the
way that the dimension of a self-similar set, be it the Hausdorff, Minkowski,

or similarity dimension, is determined by the scaling ratios of the correspond-
ing self-similar system via Moran’s theorem. The multifractal structure allows

for our definition of scaling regularity and α-scaling zeta functions motivated

by the geometric zeta functions of [24] and, in particular, the partition zeta
functions of [9,22]. Some of the results of this paper consolidate and partially

extend the results of [9, 22] to a multifractal analysis of certain self-similar

measures supported on compact subsets of a Euclidean space. Specifically,
the α-scaling zeta functions generalize the partition zeta functions of [9,22]

when the choice of the family of partitions is given by the natural family of

partitions determined by the self-similar system in question. Moreover, in cer-
tain cases, self-similar measures can be shown to exhibit lattice or nonlattice

structure with respect to specified scaling regularity values in a sense which ex-

tends that of [24]. Additionally, in the context provided by generalized fractal
strings viewed as measures, we define generalized self-similar strings, allowing

for the examination of many of the results presented here in a specific overar-

ching context and for a connection to the results regarding the corresponding
complex dimensions as roots of Dirichlet polynomials in [24]. Furthermore,

generalized lattice strings and recursive strings are defined and shown to be
very closely related.
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1. Introduction and summary

The abscissae of convergence of the α-scaling zeta functions associated with a
self-similar measure provide a multifractal spectrum akin to the classic symbolic
multifractal spectrum called the scaling multifractal spectrum. The technique de-
scribed herein allows for partial yet extensive generalizations of the main results
on the abscissae of convergence of partition zeta functions found in [22] and es-
pecially [9]. In a variety of cases, the Hausdorff dimensions of Besicovitch subsets
of a self-similar set are recovered. In other cases, the classic symbolic multifractal
spectrum of a self-similar measure is recovered. Moran’s theorem is fully recovered
in the special case where the measure in question (supported on a given self-similar
set) is the natural mass distribution associated with a specific probability distribu-
tion.

Along with the development of α-scaling zeta functions, a generalized setting for
self-similar and lattice generalized fractal strings is developed and recursive strings
are introduced in this paper. Indeed, generalized self-similar strings provide a
framework in which one can analyze certain special cases of α-scaling zeta functions.
It is also shown that generalized lattice strings and recursive strings are intimately
related.

In terms of applications, multifractal analysis is the study of a variety of math-
ematical, physical, dynamical, probabilistic, statistical, and biological phenomena
from which families of fractals may arise. Such objects and behaviors are often
modeled by mass distributions, or measures, with highly irregular and intricate
structure. These multifractal measures, or simply multifractals, and stem from phe-
nomena such as weather, structure of lightning, turbulence, distribution of galaxies,
spatial distribution of oil and minerals, cellular growth, internet trac, and nancial
time series. See [5,6,9,12–14,25–27,29–32,34]

The structure of this paper is summarized as follows:
Section 2 provides a summary of results on classical approaches to multifractal

analysis of self-similar measures established in the literature which are most per-
tinent to the results presented in this paper. In particular, the manner in which
words are associated to the structure of self-similar measures (i.e., the way in which
symbolic dynamics is employed) is discussed. See [3,5–7,10,12–15,27–32,34] for
classical and known results on self-similar sets and multifractal analysis of self-
similar measures and other multifractal objects.

In Section 3, definitions and results regarding (generalized) fractal strings
and complex dimensions from [24] are recalled. Further, generalized self-similar
strings are defined and are shown to have, by design, complex dimensions that
are completely determined by the roots of Dirichlet polynomials, as examined
(thoroughly) in [24]. That is, generalized self-similar strings provide a context
in which the self-similar structures considered throughout the paper can be re-
lated to the study of Dirichlet polynomials performed in [24]. In addition to [24],
see [9,17–19,22,25,33] for further notions and uses of fractal strings and complex
dimensions in a variety of contexts.

In Section 4, generalized lattice strings and recursive strings are defined and
the intimate connections between them are discussed. In particular, it is shown
that every generalized lattice string is a recursive string and exhibits properties
which are determined by a naturally corresponding linear recurrence relation. It
is also shown that the complex dimensions of a recursive string are the complex
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dimensions of a naturally corresponding generalized lattice string. See [8] for a
more detailed development of the connections between generalized lattice strings,
linear recurrence relations, and recursive strings.

In Section 5, scaling regularity is used to define families of fractal strings associ-
ated with a given self-similar measure, giving rise to the definition of α-scaling zeta
functions and the notion of multifractal spectrum as the abscissae of convergence
of these zeta functions. This technique is motivated by and partially extends the
results on partition zeta functions found in [9,22,24,33].

Finally, Section 6 provides preliminary investigations of some further problems
which expand upon the results of this paper. In particular, the α-scaling zeta
functions of certain self-similar measures are shown to actually be hypergeometric
series. This relationship is central to the material studied in [11]. See [2] for more
information on hypergeometric series. Also, a family of self-similar measures which
do not satisfy any of the conditions of the theorems and corollaries in Section 5 is
investigated, motivating further research.

2. Multifractal analysis of self-similar systems

Multifractal analysis of a measure ν concerns the fractal geometry of objects
such as the sets Et of points x ∈ E for which the measure ν(B(x, r)) of the closed
ball B(x, r) with center x and radius r satisfies

lim
r→0+

log ν(B(x, r))

log r
= t,

where t ≥ 0 is the local Hölder regularity and E is the support of ν. Roughly
speaking, multifractal analysis is the study of the ways in which a Borel measure
behaves locally like rt.

2.1. Multifractal spectra. The multifractal spectra of Definitions 2.1 and
2.12 along with Proposition 2.13 below are presented as found in [32], as well as the
corresponding references therein. See especially the work of Cawley and Mauldin
in [6].

Definition 2.1. The geometric Hausdorff multifractal spectrum fg of a Borel
measure ν supported on E is given by

fg(t) := dimH(Et),

where t ≥ 0, dimH is the Hausdorff dimension, and

Et :=

{
x ∈ E : lim

r→0+

log ν(B(x, r))

log r
= t

}
.

2.2. Self-similar systems. Self-similar systems lie at the heart of many of
the results presented in this paper.

Definition 2.2. Given N ∈ N, N ≥ 2, a self-similar system Φ = {Φj}Nj=1 is a
finite family of contracting similarities on a complete metric space (X, dX). Thus,
for all x, y ∈ X and each j = 1, . . . , N we have

dX(Φj(x),Φj(y)) = rjdX(x, y),

where 0 < rj < 1 is the scaling ratio (or Lipschitz constant) of Φj for each j =
1, . . . , N .
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The attractor of Φ is the nonempty compact set F ⊂ X defined as the unique
fixed point of the contraction mapping

Φ(·) :=

N⋃
j=1

Φj(·)(1)

on the space of compact subsets of X equipped with the Hausdorff metric. That
is, F = Φ(F ). The set F is also called the self-similar set associated with Φ.

A self-similar system (or set) is lattice if there is a unique real number r and
positive integers kj such that 0 < r < 1 and rj = rkj for each j = 1, . . . , N .
Otherwise, the self-similar system (or set) is nonlattice.

Remark 2.3. For clarity of exposition, only self-similar systems on some Eu-
clidean space Rd (d ∈ N), with X ⊂ Rd, are considered.1 Furthermore, throughout
the paper we consider only self-similar systems which satisfy the open set condi-
tion. (See [6,9,12,14,24].) Recall that a self-similar system Φ satisfies the open
set condition if there is a nonempty open set V ⊂ Rd such that Φ(V ) ⊂ V and
Φj(V ) ∩ Φk(V ) = ∅ for each j, k ∈ {1, . . . , N} where j 6= k. Results presented
in [32] and [34], for example, specifically do not require the open set condition to
be satisfied.

The notion of self-similar ordinary fractal strings which are either lattice or
nonlattice as defined below follows from [24, Ch. 2]. These notions are extended
and generalized in various ways throughout this paper.

Definition 2.4. Let Φ be a self-similar system on R such that
∑N
j=1 rj < 1

and satisfying the open set condition on a compact interval I. Denote the endpoints
of I by a1 and a2, and assume that there are j1, j2 ∈ {1, . . . , N} such that a1 ∈
Φj1(I) and a2 ∈ Φj2(I). The complement of the attractor F , given by I \ F , is
a self-similar ordinary fractal string. Let Io denote the interior of I. The lengths
of the connected components of Io \ Φ(I), called the gaps of Φ, are denoted by
g = (g1, . . . , gK) ∈ (0,∞)K where K ∈ N. If, additionally, there is a unique unique
real number r and positive integers kj such that 0 < r < 1 and rj = rkj for each
j = 1, . . . , N , then I \ F is lattice. Otherwise, I \ F is nonlattice.

The following notation, which is motivated by the notation of self-similar (or-
dinary) fractal strings in [24, Ch. 2], allows for a clearer comparison between the
main results herein and the classical results found in, for instance, [6,12,14].

Notation 2.5. For each k ∈ N ∪ {0}, let Jk = {1, . . . , N}k denote the set of
all finite sequences of length k in the symbols {1, . . . , N} (i.e., words). For k = 0,
let J0 be the set consisting of the empty word. Let J = ∪∞k=0Jk; hence, J is
the set of all finite sequences (or words) in the symbols {1, . . . , N}. Let J∞ denote
the set of all one-sided infinite sequences (or words) in the symbols {1, . . . , N}. For
J ∈ J , let |J | denote number of components (i.e., the length) of J and define
|J | = ∞ if J ∈ J∞. For a word J (in either J or J∞) and each n ∈ N,
n ≤ |J |, let J |n denote the truncation of J at its nth component and let J |0 denote
the empty word. More specifically, J |n = j1j2 . . . jn if J begins with the letters
j1, j2, . . . , jn. For J ∈J , define the contracting similarity ΦJ by

ΦJ := Φj|J| ◦ Φj|J|−1
◦ · · · ◦ Φj1 .

1Throughout this paper, N denotes the set of positive intergers: N = {1, 2, 3, . . .}.
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The scaling ratio of ΦJ is given by rJ =
∏|J|
q=1 rπq(J), where πq(·) is the projection

of a word onto its qth component. For the empty word J |0, let ΦJ|0 denote the
identity map and let rJ|0 = 1. For a set E ⊂ X and a word J , let

EJ := ΦJ(E).

Finally, define τ : J∞ → Rd by {τ(J)} := ∩∞n=0EJ|n.

In Theorem 9.1 of [12], for instance, it is shown via the Contraction Mapping
Principle that (1) uniquely defines the attractor F as the fixed point of the map
Φ(·). Moreover, for any compact non-empty set E such that Φj(E) ⊂ E for each
j = 1, . . . , N , we have

F =

∞⋂
n=0

⋃
|J|=n

EJ ,

where the notation “|J | = n” indicates that, for each n ∈ N∪{0}, the corresponding
union runs over all J ∈J such that |J | = n.

For the support F , its Hausdorff dimension dimH(F ) (or, equivalently, its
Minkowski dimension denoted by dimM (F )) is given by the solution of the Moran
equation (2); see [12,14,28].

Theorem 2.6 (Moran’s Theorem). Let Φ be a self-similar system with scal-
ing ratios {rj}Nj=1 that satisfies the open set condition. Then the Hausdorff (and
Minkowski) dimension of the attractor F is given by the unique (and hence, posi-
tive) real solution D of the equation

N∑
j=1

rσj = 1, σ ∈ R.(2)

Remark 2.7. The proof of Moran’s Theorem, as presented in [12] and [14]
for instance, makes use of the mass distribution principle (see mass distribution
principle 4.2 in [12]) and the “natural mass distribution” µ which is the self-similar
measure determined, as described in the next section, by the self-similar system Φ
and the probability vector p = (rD1 , . . . , r

D
N ) and which is supported on the attractor

(or self-similar set) F .

2.3. Self-similar measures and scaling regularity. The multifractal mea-
sures in the context of this paper are constructed as follows (cf. [6,9,14]).

Let Φ = {Φj}Nj=1 be a self-similar system that satisfies the open set condition
with scaling ratios r = (r1, . . . , rN ), where 0 < rj < 1 for each j = 1, . . . , N . Let

p = (p1, . . . , pN ) be a probability vector such that 0 ≤ pj ≤ 1 (hence
∑N
j=1 pj = 1).

A self-similar measure µ supported on the attractor F of the self-similar system Φ
can be constructed via the probability vector p and the equation

µ(E) =

N∑
j=1

pj · µ(Φ−1j (E)),(3)

which holds for all compact subsets E of Rd. The self-similar measure µ is uniquely
defined as the unique fixed point of the contraction implied by (3) on the space of
regular Borel measures with unit total mass equipped with the L-metric (see [14]).
In this setting, we refer to the pair (Φ,p) as a weighted self-similar system. When
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p = (rD1 , . . . , r
D
N ), the resulting self-similar measure µ is called the natural Hausdorff

measure (or natural mass distribution) associated with the attractor F .
It is worth noting that the analysis of a given self-similar measure µ developed

below depends only on the scaling ratios r of the corresponding self-similar system
Φ and the probability distribution determined by p.

Notation 2.8. For each J ∈J , let

rJ =

|J|∏
q=1

rπq(J) and pJ =

|J|∏
q=1

pπq(J).

Thus, for J ∈J∞ and each k ∈ N we have rJ|k = rj1 · · · rjk and pJ|k = pj1 · · · pjk .

Remark 2.9. There is a reason to distinguish between the elements of J∞ and
those of J . Specifically, the classical symbolic Hausdorff multifractal spectrum of
Definition 2.12 below is defined in terms of the truncation of the elements of J∞
whereas our results, found in Section 5, are stated in terms of elements of J .

Definition 2.10. Let J ∈J . The scaling regularity of J is the value Ar,p(J)
given by

Ar,p(J) := logrJ pJ =
log pJ
log rJ

,

where rJ and pJ are defined in Notation 2.8. Alternately, Ar,p(J) is the unique
real number α defined by rαJ = pJ .

Remark 2.11. Note that the scaling regularity Ar,p depends only on the scal-
ing ratios r of Φ and the probability vector p but not on the contracting similarities
Φj ∈ Φ. Indeed, the results presented in this paper are independent of the con-
tracting similarities themselves. However, we do require, as mentioned above, that
a self-similar system Φ satisfies the open set condition. Also note that for each
J ∈ J , the scaling regularity of J coincides with the coarse Hölder regularity of
EJ ; see [6] and [9], for instance.

2.4. The symbolic Hausdorff multifractal spectrum. Self-similar mea-
sures are often called multifractal measures since, as will be discussed, whenever a
self-similar measure is not the natural Hausdorff measure of the support, it decom-
poses the support into an amagalmation of fractal sets.

Definition 2.12. Let µ be the self-similar measure determined by a weighted
self-similar system (Φ,p). The symbolic Hausdorff multifractal spectrum fs of µ is
given by

fs(t) := dimH

{
τ(J) : J ∈J∞ and lim

n→∞
Ar,p(J |n) = t

}
for t ≥ 0, where the map τ is defined at the very end of Notation 2.5. Here and
henceforth, given E ⊂ Rd, dimH(E) denotes the Hausdorff dimension of E.

The following proposition is a simplified version of a similar proposition in [6].

Proposition 2.13. Let µ be the unique self-similar measure on Rd defined by
a weighted self-similar system (Φ,p) which satisfies the open set condition. Then

fg(t) = fs(t), t ≥ 0.
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Due to Proposition 2.13 and the fact that scaling regularity plays a central
role in Section 5, for a self-similar measure µ, focus is put on the symbolic Haus-
dorff multifractal spectrum fs in the remainder of this section. A more complete
development of the properties of fs described here can be found in [6, §1].

Remark 2.14. The self-similar measure µ uniquely defined by a weighted self-
similar system (Φ,p) attains maximum and minimum scaling regularity values αmin

and αmax which, in turn, define the compact interval on which the sets Et from
Definition 2.1 are nonempty. Define αj := logrj pj for each j ∈ {1, . . . , N}. These
extreme scaling regularity values are given by

αmin = min {αj : j ∈ {1, . . . , N}} , αmax = max {αj : j ∈ {1, . . . , N}} .

If p = (rD1 , . . . , r
D
N ), where D is the Hausdorff dimension of the attractor F

of the self-similar system Φ (that is, if µ is the natural Hausdorff measure of its
support, which is the attractor F ), then αmin = αmax = D and the domain of fs is
the singleton {D}. (In general, the domain of fs is [αmin, αmax].)

Otherwise, fs is concave, f ′s near αmin and αmax is unbounded, the unique value
t1 such that t1 = fs(t1) is the information dimension of µ, and

max{fs(t) : t ∈ [αmin, αmax]} = dimH(F ) = dimM (F ),

where dimM (F ) denotes the Minkowski (or box) dimension of F ; see [12, Chs.
2 & 3] for the definition of Hausdorff and Minkowski dimension. In the context
of an ordinary fractal string Ω, we are also concerned with the inner Minkowski
dimension of its boundary ∂Ω; see [24, §1.1] and Definition 3.7 below.

The following example is also studied in the context of partition zeta functions;
see [22], [9, §5.2], and [33].

Example 2.15 (Measures on the Cantor set). The Cantor set, denoted C, is
the unique nonempty attractor of the lattice self-similar system ΦC on [0, 1] given
by the two contracting similarities ϕ1(x) = x/3 and ϕ2(x) = x/3+2/3 with scaling
ratios r = (1/3, 1, 3). The Hausdorff dimension, and equivalently the Minkowski
dimension, of C is the unique real-valued solution of the corresponding Moran
equation (cf. (2)): 2 · 3−s = 1. Thus, dimH C = dimM C = log3 2 =: DC .

When ΦC is weighted by p = (1/2, 1/2) = (1/3DC , 1/3DC ), the corresponding
self-similar measure is the natural mass distribution (i.e., the natural Hausdorff
measure) µC of the Cantor set. Such measures are used to find lower bounds on
the Hausdorff dimension of their supports; see [12, Ch. 9] and Remark 5.14 below.

When ΦC is weighted by p = (1/3, 2/3), we obtain the self-similar measure
β, called the binomial measure, which exhibits the following properties: αmin =
1 − log3 2; αmax = 1; and for t ∈ [1 − log3 2, 1], the geometric (and symbolic)
Hausdorff multifractal spectrum is given by

fg(t) = fs(t) = −
(

1− t
log3 2

)
log3

(
1− t
log3 2

)
−
(

1− 1− t
log3 2

)
log3

(
1− 1− t

log3 2

)
.

See [9, §5.2] and [33] for details.
Note that, in the case of µC , the only scaling regularity value attained by any

corresponding word J is Ar,p(J) = log3 2. However, in the case of β, the attained
scaling regularity values depend on the vector k = (k1, k2) where

∑
k := k1 + k2 =
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|J |, k1 denotes the number of times 1 appears in J , and k2 denotes the number of
times 2 appears in J . Moreover, for a fixed n ∈ N with

∑
k = n, we have

# {J ∈Jn : # {q : πq(J) = j} = kj , j ∈ {1, 2}} =
n!

k1!k2!
=:

(∑
k

k

)
,

where, in general,
(∑

k
k

)
denotes the multinomial coefficient and the projection πq

is defined in Notation 2.5.
This decomposition of the words associated with a given weighted self-similar

system via scaling regularity along with the corresponding multinomial coefficients
lies at the heart of the approach to multifractal analysis developed in Section 5
below.

The multifractal spectrum of a self-similar measure µ developed in Section 5
of this paper is determined by the abscissae of convergence of the α-scaling zeta
functions. The motivation for this approach, and the analogous approach taken
in [22] and [9], is a classic theorem of Besicovitch and Taylor and its significant
extension which is at the heart of the theory of complex dimensions of fractal strings
developed in [24]. (See Theorem 1.10 of [24] along with Theorem 3.4 below.)

2.5. Besicovitch subsets of the attractor of a self-similar system. A
probability vector can be used not only to define a self-similar measure supported
on a self-similar set, but also to decompose the support of such a measure into a
family of disjoint subsets with interesting fractal properties of their own.

Definition 2.16. Let F be the attractor of a self-similar system Φ and let
q = (q1, . . . , qN ) be a probability vector. The Besicovitch subset F (q) ⊂ F is
defined as follows:

F (q) :=

{
x ∈ F : lim

k→∞

#j(x|k)

k
= qj , j ∈ {1, . . . , N}

}
,

where x|k is the truncation of x at its k-th term in the expansion implied by Φ via
τ(J) = x and #j(x|k) is the number of times the term j appears in x|k (really, the
number of times j appears in J |k).

Remark 2.17. A little thought shows that, for a probability vector q, the
Besicovitch subset F (q) is dense in the support F . That is, F (q) = F , where

F (q) is the closure of F (q). Further, if the Minkowski dimension dimM (F ) exists
(i.e., if the upper and lower Minkowski (or box) dimensions of F coincide), then
Proposition 3.4 of [12] implies that dimM (F (q)) = dimM (F ). (Actually, the upper
and lower Minkowski dimensions of a set are always equal, respectively, to those of
its closure.) Throughout this paper, either the Minkowski or Hausdorff dimension
of a given set will be considered, depending on the context.

Care needs to be taken in the above definition. Some x ∈ F may have more
than one J ∈ J∞ where x = τ(J): however, this has no effect on the following
proposition regarding the Hausdorff dimension of a Besicovitch subset F (q). See [6]
for a proof of the following proposition, and see [3] and [10] for related classical
results.

Proposition 2.18. Let F (q) be the Besicovitch subset of the attractor F of a
self-similar system Φ with scaling ratios r = (r1, . . . , rN ) determined by a probability
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vector q. Then

dimH(F (q)) =

∑N
j=1 qj log qj∑N
j=1 qj log rj

.

3. Fractal strings and complex dimensions

The material found in this section provides a brief summary of pertinent results
from the theory of complex dimensions of fractal strings developed by Lapidus and
van Frankenhuijsen in [24].

3.1. Generalized fractal strings. For a (local) measure η on (0,∞), denote
the total variation of η by |η|. For a bounded measurable set S we have,2

|η|(S) = sup

{
m∑
k=1

|η(Sk)|

}
,

where m ∈ N and {Sk}mk=1 ranges over all finite partitions of S into disjoint measur-
able subsets of (0,∞). Recall that |η| = η if η is positive and that |η| is a positive
measure.

Definition 3.1. A generalized fractal string is either a local complex or a local
positive measure η on (0,∞) which is supported on a subset of (x0,∞) for some
x0 > 0. The dimension of η, denoted Dη, is the abscissa of convergence of the
Dirichlet integral ζ|η|(σ) =

∫∞
0
x−σ|η|(dx). That is,

Dη := inf

{
σ ∈ R |

∫ ∞
0

x−σ|η|(dx) <∞
}
.

The geometric zeta function of η is the Mellin transform of η given by

ζη(s) =

∫ ∞
0

x−sη(dx),

for Re(s) > Dη. Let W ⊂ C be a window3 on an open neighborhood of which ζη
has a meromorphic extension. By a mild abuse of notation, both the geometric zeta
function of η and its meromorphic extension are denoted by ζη. The set of (visible)
complex dimensions of η, denoted by Dη, is given by

Dη = {ω ∈W : ζη has a pole at ω} .

2A local measure η on (0,∞) is a C-valued function on the Borel σ-algebra of (0,∞) whose

restriction to any bounded subinterval is a complex measure. If η is [0,∞]-valued, then η is simply

a locally bounded positive measure on (0,∞) and it is called a local positive measure.
3As in [24], we are interested in the meromorphic extension of the geometric zeta function

ζL to suitable regions. To this end, consider the screen S as the contour

S : S(t) + it (t ∈ R),

where S(t) is a Lipschitz continuous function S : R → [−∞, DL]. Also, consider the window W

as the closed set

W = {s ∈ C : Re(s) ≥ S(Im(s))}

and assume that ζη has a meromorphic continuation to an open connected neighborhood of W

satisfying suitable polynomial growth conditions (as in [24, §5.3]).
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In the case where ζη has a meromorphic extension to W = C, the set Dη is
referred to as the complex dimensions of η.

Generalized fractal strings have two notable predecessors: fractal strings and
ordinary fractal strings.

Definition 3.2. A fractal string L = {`j}∞j=1 is a nondecreasing sequence of
positive real numbers which tend to zero. Hence, limj→∞ `j = 0.

Remark 3.3. As in [18], but unlike the classic geometric setting of [24], we do
not require

∑∞
j=1 `j < ∞. That is, in [24] an ordinary fractal string is a bounded

open subset Ω of R and L denotes the sequence of lengths of the disjoint open
intervals whose union is Ω; see, e.g., [20], [24, Chs. 1 & 2], and [18]. We note,
however, that in [21], [24, Chs. 3 & 10], and [18,19], for example, the underlying
sequence of scales is allowed to satisfy

∑∞
j=1 `j =∞.

There is a natural relationship between discrete generalized fractal strings η
and fractal strings L. Recall that the Dirac mass at x ∈ (0,∞), denoted by δ{x},
is the measure given by

δ{x}(S) :=

{
1, x ∈ S,
0, x /∈ S,

where S ⊆ R (for example). So, a fractal string

L = {`j}∞j=1 = {ln | ln has multiplicity mn, n ∈ N}
defines the generalized fractal string η as follows:

η =

∞∑
j=1

δ{`−1
j }

=

∞∑
n=1

mnδ{l−1
n }.

For such η, it immediately follows that ζL = ζη and DL = Dη.
The following theorem, which is Theorem 1.10 of [24], is a restatement of a

classical theorem of Besicovitch and Taylor (see [4]) formulated in terms of ordinary
fractal strings. (A direct proof can be found in [24], loc. cit.) For the definition of
(inner) Minkowski dimension as used below, see [24, §1.1] and Definition 3.7.

Theorem 3.4. Suppose Ω is an ordinary fractal string with infinitely many
lengths denoted by L. Then the abscissa of convergence of ζL coincides with the
(inner)Minkowski dimension of ∂Ω. That is, DL = dimM (∂Ω), where dimM (∂Ω)
denotes the (inner) Minkowski dimension of ∂Ω.4

In terms of such meromorphic extensions, a given geometric zeta function en-
countered throughout this paper falls into one of two categories: (i) the geometric
zeta function has a meromorphic extension to all of C, or (ii) the geometric zeta
function is similar to a hypergeometric series and, hence, in general, the appropri-
ate extension is yet to be determined (see Section 6 and [2,11]). For a self-similar
ordinary fractal string (see Definition 2.4), the geometric zeta function has a closed
form which allows for a meromorphic extension to all of C. This closed form is given
in the following theorem, which is Theorem 2.3 in [24]. Compare this theorem with
Theorem 3.12 below, which is a completely analogous result regarding the closed
form of the geometric zeta function of a generalized self-similar string.

4Unlike in [4], the fact that the inner Minkowski Dimension is used in [24] allows for not
requiring any additional assumptions about ∂Ω or about Ω.
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Theorem 3.5. Let Ω be a self-similar ordinary fractal string with lengths L.
Then the geometric zeta function ζL has a meromorphic continuation to the whole
complex plane, given by

ζL(s) =
Ls
∑K
k=1 g

s
k

1−
∑N
j=1 r

s
j

, s ∈ C.(4)

Here, L = ζL(1) is the total length of Ω.

Example 3.6 (The Fibonacci string). Consider the lattice self-similar system
on the interval [0, 4] given by Φ1(x) = x/2 and Φ2(x) = x/4 + 3 (i.e., r1 = 1/2 and
r2 = 1/4 = 1/22). This self-similar system generates an attractor F and a lattice
ordinary fractal string Ω = [0, 4]\F whose lengths are given by the Fibonacci string
LFib. See [24, §2.3.2]. The Fibonacci string LFib is the fractal string with distinct
lengths given by ln = 2−n occurring with multiplicity mn = Fn, where Fn is the
nth Fibonacci number and n ∈ N ∪ {0}. (Hence, F0 = F1 = 1, F2 = 2, . . ..) Via
Theorem 3.5, the geometric zeta function of LFib is given by

ζFib(s) := ζLFib
(s) =

∞∑
n=0

Fn2−ns =
1

1− 2−s − 4−s
(5)

for s ∈ C, and the dimension DFib is the unique real-valued solution of the equation

2−2s + 2−s = 1, s ∈ C.(6)

Moreover, the complex dimensions of LFib are the complex roots of (6).5 Thus, we
have

DFib = {DFib + izp : z ∈ Z} ∪ {−DFib + i(z + 1/2)p : z ∈ Z} ,(7)

where ϕ = (1 +
√

5)/2 is the Golden Ratio, DFib = log2 ϕ, and the oscillatory
period is p = 2π/ log 2.

Accordingly, the ordinary self-similar fractal string [0, 4] \ F is lattice in the
sense of Definition 2.4. Furthermore, as they are given by the Fibonacci numbers,
the multiplicities mn = Fn satisfy the linear recurrence relation for n ≥ 2 given by

Fn = Fn−1 + Fn−2,(8)

with initial conditions sFib := (F0, F1) = (1, 1).

Connections between generalized lattice strings and linear recurrence relations
are examined in Section 4.

3.2. Minkowski measurability and lattice/nonlattice dichotomy. The
following theorem is a partial restatement of Theorem 8.15 of [24] that provides a
criterion for the Minkowski measurability of an ordinary fractal string Ω satisfying
certain mild restrictions. First, we introduce a few useful tools. (See [24, §1.1]
for more information such as detailed definitions of lower and upper Minkowski
contents for ordinary fractal strings.)

Definition 3.7. Let V (ε) be the 1-dimensional Lebesgue measure of the inner
tubular neighborhood of Ω given by the set {x ∈ Ω : d(x, ∂Ω) < ε}. The inner
Minkowski dimension of ∂Ω, denoted D = DL, is given by

D = inf{t ≥ 0 : V (ε) = O(εt) as ε→ 0+}.

5These roots are obtained by solving the quadratic equation z2+z−1 = 0 with z = 2−s, s ∈ C.
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The boundary ∂Ω of an ordinary fractal string Ω is Minkowski measurable if the
limit limε→0+ V (ε)εD−1 exists in (0,∞).

In the following theorem, the equivalence of statements (2) and (3) below for
an arbitrary ordinary fractal string is established in [20] (without any conditions
on L other than DL 6= 0, 1).

Theorem 3.8 (Criterion for Minkowski measurability). Let Ω be an ordinary
fractal string whose geometric zeta function ζL has a meromorphic extension which
satisfies certain mild growth conditions.6 Then the following statements are equiv-
alent :

(i) D is the only complex dimension with real part D, and it is simple.
(ii) ∂Ω is Minkowski measurable.

(iii) `j = Lj−1/D(1 + o(1)) as j →∞, for some L > 0.

Theorem 3.8 applies to all lattice self-similar ordinary fractal strings. Specif-
ically, if Ω is a lattice string, then the mild growth conditions are satisfied by ζL
and there are no complex dimensions other than D which have real part D, so the
boundary of Ω is not Minkowski measurable. On the other hand, Theorem 3.8 does
not apply to all nonlattice self-similar strings since there are some for which ζL does
not satisfy the growth conditions for a screen of the type described in footnote 6;
see [24, Example 5.32]. Nonetheless, we have the following theorem which partially
summarizes Theorems 8.23 and 8.36 of [24].

Theorem 3.9 (Lattice/nonlattice dichotomy). A self-similar ordinary fractal
string Ω is nonlattice if and only if its boundary ∂Ω is Minkowski measurable.

Remark 3.10. An extension of a part of Theorem 3.9 for suitable classes of
self-similar tilings (and sets or systems) of higher-dimensional Euclidean spaces
is provided in [19], using results of [24, Ch. 8] and [18]. (See also the relevant
references therein.) Furthermore, an interesting study of a nonlinear analogue of
Theorem 3.9 (and related counter-examples for certain self-conformal sets) in the
real line is conducted in [16].

In the next section, we summarize (in an extended self-similar setting) some key
results on the generalized fractal strings (i.e., fractal strings viewed as measures)
of Lapidus and van Frankenhuijsen found in [24, Ch. 4].

3.3. Generalized self-similar strings. In this section, a particular form of
generalized fractal string, called generalized self-similar string, is defined. The cor-
responding complex dimensions, by design, are given by the roots of a naturally
associated Dirichlet polynomial equation; see [24, Ch. 3]. The geometric zeta func-
tion of a generalized self-similar string has a meromorphic continuation established
in Theorem 3.12 which allows for the determination of the complex dimensions of
the recursive strings defined in Section 4 and the complex dimensions of certain
scaling zeta functions in Section 5.

Definition 3.11. A discrete generalized fractal string η is self-similar, and
may be referred to as a generalized self-similar string, if there are K,N ∈ N such

6Specifically, Theorem 3.8 holds if ζL is languid (see [24, Def. 5.2]) for a screen passing
between the vertical line Re(s) = DL and all the complex dimensions of (the corresponding

fractal string) L with real part strictly less than D, and not passing through 0.
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that for some g = (g1, . . . , gK) ∈ (0,∞)K , r = (r1, . . . , rN ) ∈ (0, 1)N , and m =
(m1, . . . ,mN ) ∈ CN , we have

η =

K∑
k=1

∑
J∈J

mJδ{g−1
k r−1

J }
,

where rJ =
∏|J|
q=1 rπq(J) and mJ is defined in an identical fashion. For the empty

word J |0, we let mJ|0 = rJ|0 = 1. We refer to components of the vectors g, r,
and m (or sometimes the vectors themselves) as the gaps, initial scaling ratios, and
initial multiplicities of η, respectively.

The following theorem, which is an immediate consequence of the results of [24,
§3.3], but will be useful in the sequel, determines a closed form of the geometric zeta
function of a generalized self-similar string (cf. Theorem 3.5 above and Theorem
2.3 and Equation (3.21) in [24]). This closed form allows for the meromorphic con-
tinuation of the geometric zeta function to all of the complex plane and, therefore,
an extension of the theory of complex dimensions for self-similar strings of [24].
When the multiplicities mj are all integral and positive, this fact, along with the
detailed study (conducted in [24, Ch. 3]) of the periodic or almost periodic dis-
tribution of the complex dimensions in the lattice or nonlattice case, respectively,
was used in an essential manner in the work of [18] on tube formulas for higher-
dimensional self-similar sets and tilings. (See also the earlier papers by the first two
authors of [18] quoted therein, along with [19].) Moreover, the proof of the follow-
ing theorem is included so that one may compare and contrast with the results on
α-scaling functions presented in Section 5 below, especially the decomposition of
the corresponding multiplicities.

Theorem 3.12. Let η be a generalized self-similar string. Then the geometric
zeta function of η has a meromorphic continuation to C given by

ζη(s) =

∑K
k=1 g

s
k

1−
∑N
j=1mjrsj

, for s ∈ C.

Proof. For q = 0, J |0 is the empty word and we have mJ|0 = rJ|0 = 1. For
each q ∈ N we have

∑
J∈J :|J|=q

mJr
s
J =

N∑
ν1=1

· · ·
N∑

νq=1

mν1r
s
ν1 · · ·mνqr

s
νq =

 N∑
j=1

mjr
s
j

q

.

Now, ζη is given by

ζη(s) =

∫ ∞
0

x−sη(dx) =

K∑
k=1

∑
J∈J

mJ(gkrJ)s =

K∑
k=1

gsk

 ∞∑
q=0

 N∑
j=1

mjr
s
j

q .

If Re(s) > Dr, the series converges since |
∑N
j=1mjr

s
j | < 1. Moreover, we have

ζη(s) =

∑K
k=1 g

s
k

1−
∑N
j=1mjrsj

.

Hence, by the Principle of Analytic Continuation, ζη has a meromorphic continua-
tion to all of C given by the last formula. �
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Example 3.13 (Self-similar ordinary fractal strings). The geometric zeta func-
tion of a self-similar ordinary fractal string is given by the geometric zeta function
of an appropriately defined generalized self-similar string. Basically, an ordinary
fractal string is self-similar if it is the complement of a self-similar set with respect
to a certain type of closed interval. (See [24, Ch. 2].) For instance, the geometric
zeta function ζFib of the Fibonacci string given in (5) is the geometric zeta function
of the generalized self-similar string determined by K = g1 = 1, r = (1/2, 1/4), and
m = (1, 1). (See Example 3.6.) Another such example is the Cantor string ΩCS
which is the complement in [0, 1] of the classic Cantor set. (See [9] and [24] for
further information on the Cantor string.)

The self-similar systems which generate the Fibonacci string and the Cantor
string, respectively, are lattice. Hence, as described in Section 4, the corresponding
generalized self-similar strings are recursive strings (see Definition 4.9). We note
that in the case of the Fibonacci string, this fact is foreshadowed in the linear
recurrence relation (8).

Example 3.14 (Generalized Cantor strings). A generalized Cantor string µ is
a generalized self-similar string of the form

µ =

∞∑
n=0

bnδ{r−n},

where 0 < r < 1 and b > 0. (Note that b is not required to be an integer.) That is,
as a generalized self-similar string, µ is determined by N = K = g1 = 1, r = (r),
and m = (b). Generalized Cantor strings are studied in [24, Chs. 8 & 10], where it is
shown (among many other things) that the geometric zeta function of a generalized
Cantor string has a meromorphic extension to all of C given by

ζµ(s) =
1

1− b · rs
, s ∈ C.(9)

In the special case where b = 2−1 and r = 3−1, one obtains a generalized Cantor
string which can not be realized geometrically as an ordinary fractal string (since
b = m1 = 2−1 is nonintegral). The geometric zeta function of µ, after meromorphic
extension to C, is given by

ζµ(s) =
1

1− 2−1 · 3−s
, s ∈ C.

Note that the “dimension” Dµ = − log3 2 is negative.7 Indeed, by allowing the
“multiplicities” m 6= 0 to comprise complex numbers in Definition 3.11, one is able
to study self-similar structures with respect to measures which do not necessarily
(or rather, do not readily) correspond to geometric objects.

This section concludes with an indication of how the framework of generalized
self-similar strings ties to material elsewhere in the literature. Specifically, the scal-
ing measure and scaling zeta function of a self-similar system, as defined below, are
studied in [18] and [24]. In the setting of this paper, a scaling measure is a gen-
eralized self-similar string where mj = K = g1 = 1 for each j = 1, . . . , N , and the
scaling zeta function is the corresponding geometric zeta function. As mentioned in
Section 3.2 above, there are deep connections between the Minkowski measurability

7By “dimension”here we mean the abscissa of convergence of ζµ, as in Definition 3.1.
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of the attractor of a self-similar system and the structure of the complex dimensions
of corresponding zeta functions such as the scaling zeta function.

Definition 3.15. For a self-similar system Φ, the scaling measure is the asso-
ciated generalized fractal string given by

ηΦ :=
∑
J∈J

δ{r−1
J }

.

The scaling zeta function of Φ is given by

ζΦ(s) :=
1

1−
∑N
j=1 r

s
j

, s ∈ C.

According to Definition 3.1, it is just the geometric zeta function (i.e., the Mellin
transform) of the generalized fractal string ηΦ.

Remark 3.16. Every scaling measure ηΦ defines a generalized self-similar
string and if the self-similar system Φ is lattice, then ηΦ is a generalized lattice
string (see Definition 4.1 below).

4. Generalized lattice strings and linear recurrence relations

In this section we discuss yet another notion of lattice structure. This time, it
pertains to generalized self-similar strings. In particular, the results of this section
extend accordingly to self-similar sets which are subsets of some Euclidean space
(not just the real line) and certain cases of scaling zeta functions of self-similar
measures as discussed in Section 5.

Linear recurrence relations are also shown, in this section, to be intimately
related to the generalized lattice strings defined here.

Definition 4.1. A generalized self-similar string η is lattice if there is a unique
0 < r < 1 called the multiplicative generator of η and positive integers kj such that
rj = rkj for each j = 1, . . . , N . A lattice generalized self-similar string may also be
referred to as a generalized lattice string.

Remark 4.2. Every lattice ordinary fractal string (see Definition 2.4 and the
Fibonacci and Cantor strings in Examples 3.6 and 3.13) and every generalized
Cantor string (see Example 3.14) can be realized as a generalized lattice string.

What follows is a discussion of a connection between linear recurrence relations
and the (possibly complex) multiplicities stemming from generalized lattice strings
and lattice ordinary fractal strings.

4.1. Linear recurrence relations. A brief summary of some relevant mate-
rial on linear recurrence relations is provided in this section. For a more detailed
introduction to recurrence relations, see [1].

Definition 4.3. A sequence {sn}∞n=0 ⊂ C satisfies a linear recurrence relation
R if there exist d ∈ N and a ∈ Cd with πd(a) 6= 0 such that for all n ≥ d, we have

sn = a1sn−1 + · · ·+ adsn−d.

The positive integer d is the degree of linear recursion. The constant vector a :=
(a1, . . . , ad) is the kernel of R. The characteristic equation of R is

ϕd = a1ϕ
d−1 + · · ·+ ad, ϕ ∈ C.(10)
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For a given sequence {sn}∞n=0 which satisfies the linear recurrence relation R,
the first d terms of the sequence {sn}∞n=0 are the initial conditions, and they are
denoted by the vector s := (s0, . . . , sd−1).

Remark 4.4. Each linear recurrence relation R is completely determined by
its kernel a. Also, each sequence {sn}∞n=0 which satisfies a linear recurrence relation
R is completely determined by the corresponding kernel a and the initial conditions
s := (s0, . . . , sd−1).

Some of the properties of linear recurrence relations can be understood and
analyzed in the context of linear algebra. A brief synopsis is provided below; see [1]
and [8] for more information.

Definition 4.5. Suppose {sn}∞n=1 satisfies a linear recurrence relation R. The
kernel matrix A and the nth sequence matrix Sn are respectively given by

A :=


a1 1 · · · 0
...

...
. . .

...
ad−1 0 · · · 1
ad 0 · · · 0

 , Sn :=


s2d−2+n · · · sd−1+n
s2d−3+n · · · sd−2+n

...
. . .

...
sd−1+n · · · sn

 .(11)

Theorem 4.6. Suppose {sn}∞n=0 satisfies a linear recurrence relation R. Then
S0A

n = Sn.

Proof. For each j ∈ N we have SjA = Sj+1. Thus, for each n ∈ N we have

S0A
n = S1A

n−1 = · · · = Sn.(12)

�

Proposition 4.7. A complex number λ is an eigenvalue of the kernel matrix
A of a recurrence relation R if and only if λ is a solution of the characteristic
equation of R given by (10).

The proof is omitted as it follows immediately from the definitions and some
linear algebra.

Remark 4.8. Recursion relations in the context of measures with another
type of self-similarity property are studied in [24, §4.4.1]. There, such measures are
allowed to have mass near zero and are assumed to be absolutely continuous with
respect to dx/x, the Haar measure on the multiplicative group R∗+. These results
are compared and contrasted with the results of this paper in [8].

In the next section, linear recurrence relations extend and are related to gen-
eralized lattice strings.

4.2. Recursive strings. In this section we present a new type of generalized
fractal string, called a recursive string. Recursive strings are closely related to
generalized lattice strings as described in this section, especially via Theorems 4.11
and 4.13. See [8] for a more detailed analysis of recursive strings, linear recurrence
relations, and connections to generalized lattice strings.

Definition 4.9. Given K ∈ N, 0 < r < 1, g = (g1, . . . , gK) ∈ (0, 1)K , and a
sequence {sn}∞n=0 ⊂ C satisfying a linear recurrence relation R, the recursive string
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ηR(s; ·) is the discrete generalized fractal string given by

ηR(s; ·) =

K∑
k=1

∞∑
n=0

snδ{g−1
k r−n}(·).

The real number r is called the multiplicative generator of ηR(s; ·) and the compo-
nents of the vector g (or sometimes g itself) are(is) called the gaps of ηR(s; ·).

The geometric zeta function, dimension, and complex dimensions of a recursive
string ηR(s; ·) are denoted, respectively, by

ζR(s; ·) := ζηR(s;·), DR(s) := DηR(s;·), and DR(s) := DηR(s;·).

Remark 4.10. Since every linear recurrence relation R is completely deter-
mined by its kernel a and every sequence {sn}∞n=0 ⊂ C which satisfies R is further
determined by the initial conditions s, we have that every recursive string ηR(s; ·)
is completely determined by the kernel a, initial conditions s, gaps g, and multi-
plicative generator r.

Theorem 4.11. Every generalized lattice string η is a recursive string. That
is,

η =

∞∑
n=0

snδ{r−n},

where 0 < r < 1 and the sequence of multiplicities {sn}∞n=0 ⊂ C satisfies a linear
recurrence relation R.

Proof. Since η is lattice, there exist a self-similar system Φ with scaling ratios
r = (r1, . . . , rN ) and a unique 0 < r < 1 such that rj = rkj for some positive integer
kj and each j = 1, . . . , N . Let k = max{kj : j ∈ {1, . . . , N}}. For each q = 1, . . . , k,
define aq to be the sum of the (complex) multiplicities of rq with respect to the
self-similar system. That is, aq :=

∑
j:rj=rq

mj . Let s0 = 1 and for n ∈ N, let sn be

the multiplicity of the length rn. Since rn = rqrn−q for 1 ≤ q ≤ k, each instance of
rq will contribute sn−q to the total multiplicity of the length rn. Specifically, for
all n ≥ k,

sn =

k∑
q=1

aqsn−q = a1sn−1 + · · ·+ aksn−k.

This is the desired linear recurrence relation R. �

The following corollary provides a well-known fact regarding the Hausdorff
dimension and Minkowski dimension of a lattice self-similar system. A simple proof
is provided in part to illuminate the deep connections between generalized lattice
strings and linear recurrence relations.

Corollary 4.12. Suppose Φ is a lattice self-similar system with attractor F .
Then there is a sequence of positive integer multiplicities {sn}∞n=0 which satisfies
the linear recurrence relation R corresponding to Φ such that the scaling measure
ηΦ satisfies

ηΦ =

∞∑
n=0

snδ{r−n}.
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Moreover, the Hausdorff dimension and Minkowski dimension of F are given by

dimH(F ) = dimM (F ) = − logr ϕ,

where ϕ is the unique positive root the of characteristic equation of R.

Proof. By Theorem 2.6, dimH(F ) and dimM (F ) are given by the unique real-
valued solution D of (2). Since Φ is lattice, rj = rkj , for 0 < r < 1 and kj ∈ N.
Letting m = max{kj : j = 1, . . . , N}, aj be the multiplicity of rj , and x = r−s, (2)
becomes

1 =

m∑
j=0

ajr
js = a1x

−1 + · · ·+ amx
−m.

Multiplying through by xm yields

xm = a1x
m−1 + · · ·+ am,

which is a polynomial in x. Since the coefficients are all positive, Descarte’s Rule
of Signs implies the existence of a unique positive root ϕ. Thus, ϕ = r−D, which
implies D = − logr ϕ. �

The following theorem and its corollaries show that a recursive string is nearly a
generalized lattice string. In particular, the set of complex dimensions of a recursive
string is contained in or equal to the set of complex dimensions of a naturally related
generalized lattice string.

Theorem 4.13. Let R be a linear recurrence relation of degree d. Let ηR(s; ·)
be the recursive string determined by the kernel a of R, initial conditions s, gaps
g, and multiplicative generator 0 < r < 1. Then

ζR(s; s) = g(s) ·

d−1∑
n=0

snr
ns −

d−1∑
l=1

alr
ls
d−1−l∑
n=0

snr
ns

1−
d∑
j=1

ajr
js

(13)

for s ∈ C and g(s) :=
∑K
k=1 g

s
k.

Proof. Assume, for notational simplicity, that K = g1 = 1. Further, for
Re(s) > DR(s; ·), consider the sum

ζR(s; s)−
d−1∑
n=0

snr
ns =

∞∑
n=0

sn+dr
(n+d)s.

We then have successively:

ζR(s; s)−
d−1∑
n=0

snr
ns = a1

∞∑
n=0

sn+d−1r
(n+d)s + · · ·+ ad

∞∑
n=0

snr
(n+d)s

= a1r
s
∞∑
n=0

sn+d−1r
(n+d−1)s + · · ·+ adr

d
∞∑
n=0

snr
ns

= a1r
s

(
ζR(s; s)−

d−2∑
n=0

snr
ns

)
+ · · ·+ adr

dsζR(s; s).
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So,

ζR(s; s)

1−
d∑
j=

ajr
js

 =

d−1∑
n=0

snr
ns −

d−1∑
l=0

alr
ls
d−1−l∑
n=0

snrns.

Therefore, for Re(s) > DR(s; ·), we have

ζR(s; s) =

d−1∑
n=0

snr
ns −

d−1∑
l=1

alr
ls
d−1−l∑
n=0

snr
ns

1−
d∑
j=1

ajr
js

.(14)

Since the right-hand side of (14) defines a meromorphic function in all of C, it
follows that ζR(s; ·) is meromorphic in C and is still given by the same expression
on C.

Finally, for the case where K 6= 1 or g1 6= 1, the reasoning is exactly the same as

above except for the fact that the factor g(s) =
∑K
k=1 g

s
k would need to be included

throughout the proof, accordingly. �

As we have seen, the right-hand side of (13) allows for a meromorphic contin-
uation of ζR(s; ·) to C. This, in turn, allows for the following two results.

Corollary 4.14. Let R be a linear recurrence relation and let ηR(s; ·) be a
recursive string as in Theorem 4.13. Then there is a generalized lattice string η
and an entire function hR(s; s) such that, after meromorphic continuation, for all
s ∈ C, we have

ζR(s; s) = hR(s; s)ζη(s).(15)

Moreover, DR(s) = Dη and DR(s) ⊂ Dη.

Proof. For some d ∈ N, let R be a linear recurrence relation with kernel
a = (a1, . . . , ad). Given a recursive string ηR(s; ·) determined by the gaps g =
(g1, . . . , gK), initial conditions s = (s0, . . . , sd−1), and multiplicative generator r,
consider the generalized lattice string η′ determined by the initial multiplicities
m′ = a, initial scaling ratios r′ = (r, r2, . . . , rd) and a single gap of length 1 (i.e.,
g′ = (1)). We immediately have that DR(s) = Dη′ .

Now, define hR(s; s) by

hR(s; s) := g(s) ·

(
d−1∑
n=0

snr
ns −

d−1∑
l=1

alr
ls
d−1−l∑
n=0

snr
ns

)
,

where g(s) =
∑K
k=1 g

s
k. Then hR(s; ·) is entire, and by applying Theorems 3.12 and

4.13 to η′ and ηR(s; ·), respectively, we see that (15) holds with η := η′. Moreover,
after meromorphic continuation, (15) holds for all s ∈ C, and we conclude that
DR(s) ⊂ Dη′ . �

Note that in Corollary 4.14, we do not conclude that DR(s) = Dη′ in general.
This is due to the fact that some of the zeros of hR(s; ·) might cancel some of the
poles (of the meromorphic extension) of ζη = ζη′ .

The following corollary is an immediate consequence of the combination of
Theorems 3.8 and 4.13.
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Corollary 4.15. Let Ω be an ordinary fractal string with lengths

LR = {rn : rn has multiplicity mn, n ∈ N ∪ {0}},

where 0 < r < 1 and the multiplicities {mn} satisfy a linear recurrence relation R.
Furthermore, if none of the complex roots of hR(s; s) = 0 is also a complex root of

the Moran equation 1 =
∑d
j=1 ajr

js, then ∂Ω is not Minkowski measurable.

The discussion of recursive strings concludes with an example of a recursive
string which is not a generalized self-similar string (hence, it is also not a generalized
lattice string).

Example 4.16 (The Lucas string). Consider the recursive string ηLuc, called
the Lucas string, determined by the kernel a = (1, 1), initial conditions sLuc :=
(2, 1), a single gap determined by K = g1 = 1, and multiplicative generator r = 1/2.
The geometric zeta function of ηLuc satisfies

ζLuc(s) =

∞∑
n=0

sn2−ns,

where Re(s) is large enough and the sequence {sn}∞n=0 satisfies the linear recurrence
relation determined by a with initial conditions sLuc. That is, s0 = 2, s1 = 1, and
for n ≥ 2, sn satisfies the Fibonacci recursion relation (8). The closed form of ζLuc
given by Theorem 4.13 is

ζLuc(s) =
2− 2−s

1− 2−s − 4−s
, s ∈ C.

Note that the sequence {sn}∞n=1 = {1, 3, 4, 7, . . .} (where the index n begins at
1) is the sequence of Lucas numbers. Moreover, the Fibonacci numbers {Fn}∞n=0

and the sequence {sn}∞n=0 both satisfy the linear recurrence relation determined by
the kernel a = (1, 1), but with initial conditions sFib := (1, 1) and sLuc = (2, 1),
respectively. (See Example 3.6.) Also, note that 2− 2−s = 0 if and only if 2−s = 2,
which implies 1− 2−s − 4−s = −5 6= 0. Thus, the set of complex dimensions of the
Lucas string, denoted DLuc, coincides with DFib, the set of complex dimensions of
the Fibonacci string given by (7) and which are the roots of the Dirichlet polynomial

equation 2−s+4−s = 1. Also note that DLuc = DFib = log2 ϕ, where ϕ = (1+
√

5)/2
is the Golden Ratio.

Moreover, {sn}∞n=0 is a sequence of positive integers and ζLuc(1) is positive and
finite. Hence, ζLuc is the geometric zeta function of a suitably defined ordinary
fractal string ΩLuc. However, such a fractal string is not lattice, in the sense
that it cannot be realized as the complement of the attractor of a (lattice or even
nonlattice) self-similar system in some closed interval (see Definition 2.4). Indeed,
ζLuc can not be put into the form given in (4). Hence, Theorem 3.9 does not apply.
However, Corollary 4.15 applies and, hence, ∂ΩLuc is not Minkowksi measurable.

Example 4.17 (Recursive structure of generalized Cantor strings). Every gen-
eralized Cantor string µ is a recursive string; see Example 3.14 and [24, Chs. 8 &
10]. Indeed, we have

µ =

∞∑
n=0

snδ{r−n},
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where the sequence {sn}∞n=0 is given by sn = bn for every n and satisfies the linear
recurrence relation R determined by the kernel a = (b) with initial condition s =
(1). By Theorem 4.13, the meromorphic extension of the geometric zeta function
ζµ given in (9) is recovered as ζR(s; ·). That is,

ζµ(s) = ζR(s; s) =
1

1− b · r−s
, s ∈ C.

The technique developed in the next section is motivated by the theory of
complex dimensions of fractal strings and is designed to perform a multifractal
analysis of self-similar measures.

5. Multifractal analysis via scaling regularity and scaling zeta functions

In this section, an approach to multifractal analysis is described in which, for
a given weighted self-similar system (Φ,p), a family of fractal strings is defined
by gathering lengths (or rather, scales) according to scaling regularity values α.
Then, a family of α-scaling zeta functions is readily defined and the collection
of their abscissae of convergence provides a multifractal spectrum of dimensions,
called the scaling multifractal spectrum, which is akin to the geometric and symbolic
multifractal spectra (see Section 2.1).

The approach given in this section generalizes the results regarding partition
zeta functions found in [9, §5]. Specifically, the measures studied in [9, §5] are
limited to measures supported on subsets of [0, 1], whereas the framework provided
below allows for results on self-similar measures which are supported on self-similar
sets in Euclidean spaces of any dimension. See Section 2 as well as [14].

We refer to Section 13.3 (of the second edition) of [24] for a survey of aspects
of the theory of multifractal zeta functions (and related partition zeta functions),
as developed in [17] and [22]. We also refer to [9] and [33] where additional results
can be found.

5.1. α-scales and α-scaling zeta functions. Throughout this section, and
indeed throughout the paper, only weighted self-similar systems (Φ,p) with scaling
ratios r = {rj}Nj=1 satisfying the open set condition are considered; see Section 2.

Definition 5.1. Let (Φ,p) be a weighted self-similar system. For a scaling
regularity value α ∈ R, the sequence of α-scales, denoted Lr,p(α), is the fractal
string given by

Lr,p(α) = {rJ : J ∈J , Ar,p(J) = α} ,

where Ar,p is defined in Definition 2.10.

Alternately, the distinct α-scales are denoted by ln(α) and the corresponding
multiplicities are denoted by mn(α). Thus,

mn(α) := #{J ∈J : rJ = ln(α), Ar,p(J) = α},

and we can consider the sequence of α-scales to be given by

Lr,p(α) = {ln(α) : ln(α) has multiplicity mn(α)} .

Given that Lr,p(α) is a fractal string when there are infinitely many words
J ∈J such that Ar,p(J) = α for some α ∈ R, one define a zeta function and a set
of complex dimensions for each such α as follows.
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Definition 5.2. Consider α ∈ R such that Lr,p(α) is not empty. The α-scaling
zeta function ζr,p(α; ·) is the geometric zeta function of the sequence of α-scales
Lr,p(α). That is,

ζr,p(α; s) := ζLr,p(α)(s) =
∑

Ar,p(J)=α

rsJ ,(16)

where Re(s) > Dr,p(α) := DLr,p(α). If Lr,p(α) is empty, we set ζr,p(α; s) = 0.
The scaling mulitfractal spectrum fr,p(α) is the function given by the abscissa of
convergence of ζr,p(α; s) for each α ∈ R. That is,

fr,p(α) := max {0, inf {σ ∈ R : ζr,p(α;σ) <∞}} ,
for α ∈ R.

More precisely, fr,p(α) is the maximum of 0 and the abscissa of convergence of
the Dirichlet series which defines the α-scaling zeta function ζr,p(α; ·). Thus,
fr,p(α) ≥ 0 whenever Lr,p(α) comprises an infinite number of scales and fr,p(α) = 0
otherwise. Hence, α is nontrivial if Lr,p(α) comprises an infinite number of scales,
otherwise α is trivial (see Remark 5.3 and compare Remark 4.5 of [9]). Accordingly,
for a nontrivial scaling regularity value α, the set given by

{s ∈ C : Re(s) > fr,p(α)}
is the largest open right half-plane on which the Dirichlet series in (16) is absolutely
convergent.

Remark 5.3. Unlike in Remark 4.5 of [9], all trivial scaling regularity values α0

in the current setting generate an empty sequence of α0-scales. Thus, for any α ∈ R,
Lr,p(α) is either countably infinite or empty. See Remark 5.7 for clarification.

Definition 5.4. Let Wα ⊂ C be a window on a connected open neighborhood
of which ζr,p(α; ·) has a meromorphic extension. (Again, both the geometric zeta
function of Lr,p(α) and its meromorphic extension are denoted by ζr,p(α, ·).) The
set of (visible) α-scaling complex dimensions, denoted Dr,p(α), is the set of (visible)
complex dimensions of the sequence of α-scales Lr,p(α) given by

Dr,p(α) = {ω ∈Wα : ζL has a pole at ω} .
The tapestry of complex dimensions Tr,p with respect to the regions Wα is the
subset of R× C given by

Tr,p := {(α, ω) : α is nontrivial, ω ∈ Dr,p(α)} .
5.2. Scaling regularity values attained by self-similar measures. The

collection of all scaling regularity values Ar,p(J) attained by the words J ∈ J
with respect to a given weighted self-similar system (Φ,p) are found readily. The
following notation is used in order to facilitate the statement of the results. Note
that, as throughout the paper, only weighted self-similar systems which satisfy the
open set condition are considered.

Notation 5.5. Let N ∈ N with N ≥ 2. For a pair of N -vectors k and r with
r ∈ (0, 1)N and k ∈ (N∪{0})N , let rk := rk11 · · · r

kN
N . Furthermore, denote by gcd(k)

the greatest common divisor of the nonzero components of k. Let
∑

k :=
∑N
j=1 kj

and (∑
k

k

)
:=

(
K

k1 . . . kN

)
=

K!

k1! · · · kN !
,(17)
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where K =
∑

k.

Recall from Notation 2.5 that J denotes the collections of all finite words on
the alphabet {1, . . . , N}.

Lemma 5.6. Let (Φ,p) be a weighted self-similar system as above and let J ∈
J be a nonempty word. Then there exist a unique vector k ∈ (N ∪ {0})N with
gcd(k) = 1 and a unique positive integer n such that |J | = n

∑
k and

Ar,p(J) = α(k) := logrk pk.(18)

Moreover, for each k ∈ (N ∪ {0})N we have

#
{
J ∈J∑

k : # {q : πq(J) = j} = kj , j ∈ {1, . . . , N}
}

=

(∑
k

k

)
,

where
(∑

k
k

)
is given by (17).

Proof. The results follow immediately from basic combinatorics and the def-
initions of rJ and pJ given in Notation 2.8. �

Remark 5.7. An immediate consequence of Lemma 5.6 is that each k ∈ (N ∪
{0})N satisfying gcd(k) = 1 yields a countably infinite collection of words J ∈J
which have scaling regularity Ar,p(J) = α(k). The scales rJ associated with these
words essentially constitute the terms of the Dirichlet series which defines the α-
scaling zeta function (for α = α(k), as in (18)) in Definition 5.2.

Also, to clarify Remark 5.3, suppose α0 ∈ R. If there is a word J ∈ J such
that Ar,p(J) = α0, then by Lemma 5.6, α0 is nontrivial. Indeed, in that case,
for each n ∈ N, there is a word Hn ∈ J such that |Hn| = n|J | and Ar,p(Hn) =
Ar,p(J) = α0.

Furthermore, for each n ∈ N we have

#
{
J ∈Jn

∑
k : # {q : πq(J) = j} = nkj , j ∈ {1, . . . , N}

}
=

(
n
∑

k

nk

)
.

If there are m1,m2 ∈ (N ∪ {0})N such that gcd(m1) = gcd(m2) = 1, m1 6= m2,
and α(m1) = α(m2), then the total multiplicity of a given scale r′ is given by

the sum of all multinomial coefficients
(
n
∑

k
nk

)
where r′ = rnk. The determination

of a closed formula for such total multiplicity is, in general, a difficult problem.
However, various special cases are addressed in the remainder of this section and
in Section 6. In particular, see Theorems 5.8 and 5.11, along with Corollary 5.12.

5.3. Self-similar and lattice structures within self-similar measures.
For a weighted self-similar system (Φ,p) as above, let αj := logrj pj for each

j = 1, . . . , N denote the scaling regularity values attained with respect to (Φ,p)
by all words J such that |J | = 1. Let N0 denote the number of distinct values
among the αj . Then N0 ≤ N and we denote these distinct αj values by βq, where
q = 1, . . . , N0.

Theorem 5.8. Let (Φ,p) be a weighted self-similar system as above. Suppose
the collection of distinct scaling ratios {βq : q = 1, . . . , N0} is rationally indepen-
dent. Then, for each q ∈ {1, . . . , N0}, ζr,p(βq; ·) has a meromorphic continuation
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to all of C given by

ζr,p(βq; s) =

∑
j:αj=βq

rsj

1−
∑

j:αj=βq

rsj
, for s ∈ C.(19)

Proof. Since the βq values are rationally independent, the only words J with
regularity βq are those with components πn(J) = j where αj = βq. Thus, for each
q ∈ {1, . . . , N0}, the βq-scaling zeta function is equal to the scaling zeta function of
a self-similar system Φq whose scaling ratios are given by {rj : αj = βq} less the
first term which corresponds to the empty word. So, by Theorem 3.12 we have

ζr,p(βq; s) = ζΦq
(s)− 1 =

∑
j:αj=βq

rsj

1−
∑

j:αj=βq

rsj
.

�

Corollary 5.9. If the conditions of Theorem 5.8 are satisfied and, addition-
ally, if there exists a unique r such that 0 < r < 1 and for each j where αj = βq we
have rj = ruj for some uj ∈ N, then there is a generalized lattice string η such that

ζr,p(βq; s) = h(s)ζη(s),

where h(s) :=
∑

j:αj=βq

rujs and η := ηΦ (as in Definition 3.15).

Remark 5.10. For each q ∈ {1, . . . , N0}, the function h(s) :=
∑
j:αj=βq

rsj
in the numerator of the right-hand side of (19) is entire. Moreover, the complex
roots of h(s) = 0 are distinct from the poles of ζΦq

, so D(βq) = DΦq
. Also, note

that the hypotheses of Corollary 5.9 do not require the self-similar system Φ to
be lattice. Section 6.2 examines a self-similar measure built upon a nonlattice self-
similar system which satisfies the hypotheses of Corollary 5.9 for a particular scaling
regularity value.

The α-scaling zeta functions with respect to regularity values α which do not
fit any of the conditions required in the results presented in this section are much
harder to determine in general; see Section 6.2. However, given particular con-
straints, the full family of α-scaling zeta functions for certain weighted self-similar
systems can be determined, as we shall see in the next section.

5.4. Full families of α-scaling zeta functions. The development that fol-
lows determines the α-scaling zeta functions associated with a weighted self-similar
system (Φ,p) where the distinct regularity values βq are rationally independent
and for each q, the corresponding scaling ratios {rj : αj = βq} are given by a single
value tq such that 0 < tq < 1. In this setting, but unlike in Section 5.3, the full
family of α-scaling zeta functions as well as all of the corresponding abscissae of
convergence are determined.

Let cq = #{j : αj = βq} and c := (c1, . . . , cN0
). Then c ∈ NN0 and

∑
c = N .

For any pair of N0-vectors m and t, let tm := tm1
1 · · · t

mN0

N0
. The multinomial
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theorem implies that for each n,K ∈ N we have

Nn =
∑

∑
k=K

(
nK

nk

)
=

∑
∑

m=K

(
nK

nm

)
cnm.

As shown in the following theorem, the products of the form
(
nM
nm0

)
cnm0 , where

n ∈ N, M =
∑

m0, and gcd(m0) = 1, are the multiplicities of the α-scales of
the scaling zeta functions associated with (Φ,p) (cf. [9, §5], especially Theorem
5.2, Lemma 5.10, Proposition 5.11, and Theorem 5.12 therein). Also, the following
theorem determines the scaling zeta functions ζr,p and scaling multifractal spectrum
fr,p associated with a weighted self-similar system (Φ,p).

Theorem 5.11. Let (Φ,p) be a weighted self-similar system. For each q =
1, . . . , N0, suppose there exists a unique tq such that 0 < tq < 1 and for each

j = 1, . . . , N such that αj = βq, rj = tq. Further, suppose the collection {βq}N0
q=1

is rationally independent. Then there exists a unique vector v = (v1, . . . , vN0
) such

that βq = logtq vq, where pj = vq for each j = 1, . . . , N such that αj = βq, rj = tq
and some q ∈ 1, . . . , N0.

Furthermore, the distinct scaling regularity values attained with respect to (Φ,p)
are given by

β(m) := logtm vm,

for some m ∈ (N∪{0})N0 where gcd(m) = 1 and m 6= 0. Also, for m ∈ (N∪{0})N0

where gcd(m) = 1 and m 6= 0 and for each n ∈ N, the number of ways a scaling
regularity value β(nm) = β(m) is attained with respect to (Φ,p) at level nM , where

M :=
∑

m =
∑N0

q=1mq, is given by(
nM

nm

)
cnm.

Moreover, if m ∈ (N ∪ {0})N0 where gcd(m) = 1 and m 6= 0, then

ζr,p(β(m); s) =

∞∑
n=1

(
nM

nm

)
cnmtsnm

where M :=
∑

m, Re(s) > fr,p(β(m)), and the corresponding abscissa of conver-
gence fr,p(β(m)) of ζr,p(β(m); ·) is given by

fr,p(β(m)) = logtm

(
mm

MMcm

)
.

Proof. Fix q ∈ {1, . . . , N0}. For each j = 1, . . . , N such that αj = βq we have

pj = t
βq
q . Thus, v := (tβ1

1 , . . . , t
βN0

N0
) is the desired vector.

Let J ∈ J . By Lemma 5.6, there exist n ∈ N and k ∈ (N ∪ {0})N such that
gcd(k) = 1, |J | = n

∑
k, and AΦ,p = logrk pk.

For each q ∈ {1, . . . , N0}, let mq :=
∑
j:αj=βq

kj . Define m := (m1, . . . ,mN0).

Then
∑

m =
∑

k, tm = rk, and vm = pk. Hence AΦ,p(J) = β(m) := logtm vm.
Now, if gcd(m0) = 1, then β(m) = β(m0) if and only if there is n ∈ N such that

m = nm0 since the collection {βq}N0
q=1 is rationally independent. Moreover, for

M :=
∑

m0 we have

#{J ∈Jn
∑

m0
: AΦ,p = βm0} =

(
nM

nm0

)
cnm0 .
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Note that each J ∈ J will be taken into account since all m ∈ (N ∪ {0})N0

where m 6= 0 and gcd(m) = 1 are considered.
Now, if AΦ,p(J) = β(m), then rJ = tnm for some n ∈ N. Furthermore, for

each n ∈ N

#{J ∈Jn
∑

m0
: AΦ,p = βm0} =

(
nM

nm0

)
cnm0 .

Hence,

ζr,p(β(m); s) =

∞∑
n=1

(
nM

nm

)
cnmtsnm.

In order to determine the abscissa of convergence fr,p(β(m)), apply Stirling’s
formula and make use of the function ψ(s) for s ∈ R given by

ψ(s) =
tsmcmMM

mm
.

We have ψ′(s) < 0 since 0 < tq < 1 for q = 1, . . . , N0. Also, ψ(0) = cmMM/mm >
1 since m 6= 0, M =

∑
m, and cq > 0 for each q = 1, . . . , N0. Hence, there is a

real unique real number ρ such that ρ > 0 and

1 =
tρmcmMM

mm
.

The real number ρ will prove to be our abscissa of convergence. Indeed, for a fixed
real number s, Stirling’s formula yields(

nM

nm

)
cnmtsnm =

(nM)!

(nm1)! · · · (nmN0)
cnmtsnm

=
cnmtsnmMnM

mnm
·
√

2πnM

mnm
(1 + εn),

where εn → 0 as n→∞. Hence,[(
nM

nm

)
cnmtsnm

]1/n
=

cmtsmMM

mm
(1 + δn),

where δn → 0 as n→∞. The root test implies that the numerical series

ζr,p(β(m); s) =

∞∑
n=1

(
nM

nm

)
cnmtsnm

converges for s > ρ and diverges for s < ρ. Therefore,

fr,p(β(m)) = ρ = logtm

(
mm

cmMM

)
.

�

Corollary 5.12. If the conditions of Theorem 5.11 are satisfied and, addi-
tionally, if N0 = N , then Proposition 2.18 is recovered for scaling regularity values
α(k). Specifically, in this case we have

fr,p(α(k)) = logrk

(
kk

KK

)
=

∑N
j=1(kj/k) log kj/K∑N
j=1(kj/K) log rj

= dimH(F (k/K)),

where F (k/K) is the Besicovitch subset (as given in Definition 2.16) of the self-
similar set F .
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Remark 5.13. In addition to the recovery of Proposition 2.18, Theorem 5.11
recovers and allows for the generalization of all of the results found in Section 5
of [9] where the family of partitions is taken to be the natural family of partitions
(adapted to Φ). This generalization includes a partial recovery of the behavior of
the multifractal spectrum discussed in Remark 2.14 when N0 = 2 and t1 = t2,
as in Example 2.15. (The recovery is partial due to the restriction to a countable
collection of scaling regularity values; however, taking the concave envelope of the
resulting graph yields the entire spectrum.) Moreover, due to the use of scaling
regularity in place of coarse Hölder regularity, our results extend the results of
Section 5 of [9] to the setting of arbitrary self-similar measures supported on self-
similar subsets of some Euclidean space of any dimension, as opposed to self-similar
measures supported on subsets of the unit interval [0, 1].

Remark 5.14 (Natural Hausdorff measures). Consider a weighted self-similar
system (Φ,p), where p = (rD1 , . . . , r

D
N ) such that D is the unique real (and hence,

positive) root of the corresponding Moran equation (2). The resulting self-similar
measure µ is the natural Hausdorff measure of the underlying fractal support. Such
measures are used to find lower bounds on the Hausdorff dimension of their sup-
ports; see [12, Ch. 9]. Moreover, α = D is the only nontrivial scaling regularity
value associated with (Φ,p). One then says that µ is monofractal. On the other
hand, if p 6= (rD1 , . . . , r

D
N ), then there are countably many nontrivial regularity

values associated with (Φ,p). It follows that µ is truly multifractal in this case.
In the case of the ternary Cantor set with r = (1/3, 1/3) weighted by p =

(1/2, 1/2), the graph of the primitive of the natural Hausdorff measure µ (i.e., the
graph of µ([0, x]) is the well-known Devil’s staircase; see, [26, Plate 83, p. 83], [13,
Ch. 6], [24, §12.1.1] and Example 2.15 above. The primitive of µ is the Cantor–
Lebesgue function. Recall that this function is a nondecreasing, surjective, and
continuous function from [0, 1] to itself which has derivative zero on [0, 1] \ F ,
where F is the Cantor set.

In the next section we close the paper by proposing some preliminary ideas for
further results and future work.

6. Further results and future work

The results presented in this paper suggest several interesting problems to pur-
sue. For instance, since our results stem directly from scaling ratios and probabil-
ity vectors, one may consider interpreting analogous results on an arbitrary metric
space along with an appropriate space of measures. Also, the following conjecture,
which was originally stated (in a similar but more restrictive setting) in Conjecture
5.8 of [9], is not addressed in the rest of the present paper.

Conjecture 6.1. For a self-similar measure µ and all t ∈ [tmin, tmax], we have

f̂(t) = fg(t) = fs(t),

where f̂(t) is the concave envelope of the scaling multifractal spectrum f(α) on
[tmin, tmax], and fg and fs are the geometric and symbolic Hausdorff multifractal
spectra defined in Section 2.

Another problem worthy of study, but not addressed in this paper and yet mo-
tivated by the theory of complex of dimensions of fractal strings in [24], is the deter-
mination of the full collection of the sets of α-scaling complex dimensions Dr,p(α)
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of a weighted self-similar system (Φ,p) with respect to the nontrivial regularity
values α and, in turn, the determination of the tapestry of complex dimensions
Tr,p. Aside from weighted self-similar systems with regularity values satisfying the
conditions of Theorem 5.8 and Corollary 5.9, the α-scaling complex dimensions
associated with other regularity values, as in Theorem 5.11, are not known.

Nonetheless, the final two sections provide interesting partial results on such
further problems as well as motivation for further research.

6.1. Generalized hypergeometric series. In this section, the scaling zeta
functions found in Corollary 5.12 (of Theorem 5.11) are shown to be generalized
hypergeometric series (see [2]). Such series have been well studied and well under-
stood, and related work may provide an alternative or supplementary approach to
the theory of complex dimensions of self-similar measures.

Let b > 0, k = (k1, . . . , kN ) ∈ (N ∪ {0})N for some N ∈ N \ {0, 1}, K :=
∑

k
and B(k) := KK/kk. (It will help to keep Notation 5.5 in mind in the sequel.)

Consider the following Dirichlet series:

ζb(k; s) =

∞∑
n=1

(
nK

nk

)
b−nKs.

This form of Dirichlet series appears, indirectly, in Section 5. Indeed, if the con-
ditions of Theorem 5.11 are satisfied and, additionally, if N0 = N , then we take
b−1 = rk/K = tm/M with K = M such that r = t is the vector of scaling ratios of
the corresponding weighted self-similar system. We get

ζr,p(β(m) : s) =

∞∑
n=1

(
nM

nm

)
tsnm =

∞∑
n=1

(
nK

nk

)
b−nKs = ζb(k; s).

Now, via the formula(
nK

nk

)
=

∏K
j=1(1((j/K) + n)/1(j/K))∏N

q=1

(∏kq
j=1(1((j/kq) + n)/1(j/kq))

) · B(k)n

n!

we have

ζb(k; s) = −1 +

∞∑
n=0

∏K
j=1(1((j/K) + n)/1(j/K))∏N

q=1

(∏kq
j=1(1((j/kq) + n)/1(j/kq))

) · (B(k)b−Ks)n

n!
.(20)

The series on the right-hand side of (20) is a generalized hypergeometric series of
the form KFK−1 (see [2] for the precise definition and notation). That is, we have

ζb(k; s) = −1 +

∞∑
n=0

∏K
j=1(1((j/K) + n)/1(j/K))∏N

q=1

(∏kq
j=1(1((j/kq) + n)/1(j/kq))

) · (B(k)b−s)n

n!

= −1 +K FK−1(1/K, . . . , 1; 1/k1, . . . , (kn − 1)/kN ;B(k)b−Ks).

Thus, even though the full families of scaling zeta functions of a self-similar
measure in the general case have yet to be determined, the collection of scaling zeta
functions which are given by a hypergeometric series is primed for further analysis.
As seen in the next section, there are scaling zeta functions which are neither nearly
the zeta function of a self-similar system nor a hypergeometric series, even in the
case where the distinct scaling ratios are rationally independent.
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6.2. A self-similar system with nonlattice and lattice structure. This
last section investigates the structure of the scaling zeta functions in a special case
where the distinct scaling regularity values are rationally independent but only two
of the scaling zeta functions are known.

Consider a weighted self-similar system (Φ,p) such that Φ satisfies the open set
condition and is nonlattice with scaling ratios r ∈ (0, 1)N for some N ∈ N, N ≥ 3,
satisfying the following conditions: First, there exist t, t0 ∈ (0, 1) and t := (t, t2, t0)
such that for each j = 1, . . . , N , rj is equal to either t, t2, or t0. Second, there exists
c = (c1, c2, c0) ∈ N3 such that

∑
c = N and

c1 = #{j : rj = t, j ∈ {1, . . . , N}},
c2 = #{j : rj = t2, j ∈ {1, . . . , N}},

and

c0 = #{j : rj = t0, j ∈ {1, . . . , N}}.
Further, suppose there are a probability vector p and rationally independent real
numbers γ and γ0 such that for each j ∈ {1, . . . , N}, rj = t implies pj = tγ ; rj = t2

implies pj = t2γ ; and rj = t0 implies pj = p0 := tγ00 .
Due to Theorem 5.11, in order to determine the distinct scales ln(α) and the

corresponding multiplicities mn(α) of the sequence of α-scales Lr,p(α), it suffices
to consider the scaling regularity values α(k) where k ∈ (N ∪ {0})N , k 6= 0, and
gcd(k) = 1.

Fix k as above. Let

m :=
∑
j:rj=t

kj +
∑

j:rj=t2

kj , m0 :=
∑

j:rj=t0

kj ,

and m := (m,m0). We have

α(k) := logrk pk =
log tmγtm0γ0

0

log tmtm0
0

.

Define β(m) := log tmγtm0γ0
0 / log tmtm0

0 .
Now, for a fixed m where gcd(m) = 1 and each n ∈ N we have

ln(β(m)) = (tmtm0
0 )n.

The key difficulty here lies in determining the multiplicities mn(β(m)) of the
scales ln(β(m)), specifically, due to the fact that some initial scaling ratios are equal
to t and others are equal to t2. Thus, for instance, the γ-scale t4 is attained with
respect to some vectors k1,k2, and k3 where |k1| = 2, |k2| = 3, and |k3| = 4. More
specifically, if both nonzero components of k1 correspond to the scale t2, two of the
nonzero components of k2 correspond to t and the other corresponds to t2, and all
four nonzero components of k correspond to t, then

α(k1) = α(k2) = α(k3) = β(m) = γ

and

rk1 = rk2 = rk3 = t4.

That is, a given scale ln(β(m)) can arise in various stages with respect to (Φ,p),
making the determination of the precise form of the multiplicity mn(β(m)) difficult
in general. As a result, and although the full family of scaling zeta functions in the
setting of this section have been determined, the abscissae of convergence and the
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α-scaling complex dimensions are known for just two nontrivial scaling regularity
values.

The following notation is used repeatedly below. Let b·c denote the floor func-
tion. That is, for x ∈ R, bxc is the integer part of x given by the greatest integer
such that bxc ≤ x.

Suppose gcd(m) = 1 and set M =
∑

m. Then, for each n ∈ N,

mn(β(m)) = #{J ∈J : rJ = ln(β(m))}

=

bnM/2c∑
j=0

(∑
v(j)

v(j)

)
cv(j),(21)

with v(j) = (v1(j), v2(j), v0) where, for j = 0, . . . , bnM/2c,
v1(j) := nm− 2 bnM/2c+ 2j, v2(j) := bnM/2c − j, and v0 := nm0.

The difficulty in determining the form of the generalization of mn(β(m)) lies in
determining the relationship between the components of the generalization of the
vectors v(j). The β(m)-scaling zeta function of (Φ,p) for some m with gcd(m) = 1
is given by

ζr,p(β(m); s) =

∞∑
n=1

mn(β(m))(ln(β(m)))s,

where Re(s) is large enough.

Example 6.2. In this example, the closed forms of the scaling zeta functions
for just two nontrivial scaling regularity values, namely γ0 and γ, are known. Both
cases are the result of Corollary 5.9, thus the abscissae of convergence and the
α-scaling complex dimensions associated with just two nontrivial regularity values
can be had.

We have gcd(m) = 1 and β(m) = γ0 if and only if m = 0 and m0 = 1. In this
case, ln(γ0) = tn0 , mn(γ0) = cn0 , and by Corollary 5.9 we have, for s ∈ C,

ζr,p(γ0; s) =
c0t

s
0

1− c0ts0
.

Moreover,

Dr,p(γ0) =

{
− logt0 c0 + i

2π

log t0
z : z ∈ Z

}
.

As for scaling regularity γ, we have gcd(m) = 1 and β(m) = γ if and only if
m = 1 and m0 = 0. In this case, ln(γ) = tn and

mn(γ) =

bn/2c∑
j=0

( ⌊
n+1
2 + j

⌋
n− 2

⌊
n
2

⌋
+ 2j

)
cv(j).

However, a closed form of ζr,p(γ; s) is obtained in Corollary 5.9. That is,

ζr,p(γ; s) =
c1t

s
1 + c2t

2s
2

1− c1ts1 − c2t2s2
, s ∈ C.

Moreover, ζr,p(γ; s) = ζη(s), where η is the generalized lattice string with scaling
ratios r1 = t and r2 = t2, weights m1 = c1 and m2 = c2, and c1 gaps g1 = t and c2
gaps g2 = t2. Hence, Dr,p(γ) = Dη.
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Example 6.3. This example develops the full recovery of the Fibonacci string
as in Example 3.6 as well as the results of Example 5.16 from [9].

Consider a weighted self-similar system (Φ,p) such that Φ satisfies the open
set condition with scaling ratios r = (1/2, 1/4, 1/10). Then Φ is nonlattice. Fur-
ther, suppose the probability vector p is given by p = (1/2, 1/4, 1/4) such that
the distinct initial scaling regularity values γ = 1 and γ0 = log10 4 are rationally
independent. Moreover, in the notation given by the more general setting above,
we have t = 1/2, t0 = 1/10 and c1 = c2 = c0 = 1. As in the previous example, the
only scaling regularity values for which the scaling zeta functions are known are
γ0 = log10 4 and γ = 1, so only these two cases are discussed in this example.

First consider the simplest case of scaling regularity γ0 = log10 4. The γ0-scaling
zeta function is given by

ζr,p(γ0; s) =

∞∑
n=1

10−ns =
10−s

1− 10−s
.

Thus, the set of γ0-scaling complex dimensions is given by

Dr,p(γ0) = {izp : z ∈ Z} ,

where p = 2π/ log 10.
In this case of scaling regularity γ = 1, we nearly recover the geometric zeta

function of the Fibonacci string ζFib. The 1-scales are given by ln(1) = 2−n for
n ∈ N and the multiplicities mn(1) are given by the Fibonacci numbers. In fact, in
light of the formula for the more general mn(β(m)) in (21) and the formulas from
Example 3.6, we recover a classic formula which yields the Fibonacci numbers as
sums of particular binomial coefficients. Specifically,

mn(1) =

bn
2 c∑
j=0

( ⌊
n+1
2 + j

⌋
n− 2

⌊
n
2

⌋
+ 2j

)
= Fn+1,

where Fn+1 is the (n + 1)th Fibonacci number. See Example 3.6 above, Example
5.16 of [9], and [24, §2.3.2] for a discussion of the Fibonacci string and its geometric
zeta function ζFib.

The scaling zeta function ζr,p(1; s) is then given by

ζr,p(1; s) =

∞∑
n=1

Fn+12−ns = ζFib(s)− 1 =
2−s + 4−s

1− 2−s − 4−s
,

where ζFib is given by (5). Thus, the corresponding complex dimensions, in both
the classic sense and with respect to the scaling regularity 1, are given by (7). That
is,

DFib = Dr,p(1) = {DFib + izp : z ∈ Z} ∪ {−DFib + i(z + 1/2)p : z ∈ Z} ,

where ϕ = (1 +
√

5)/2 is the Golden Ratio, DFib = log2 ϕ, and the oscillatory
period is p = 2π/ log 2.

In closing, we mention that some next steps include the determination of the
α-scaling complex dimensions and the full tapestry of complex dimensions Tr,p as-
sociated with such self-similar measures (cf. [9, §6]). Thereafter, one may study
the implications (for the oscillatory behavior of self-similar systems and measures)
of counting functions and volume formulas associated with the nontrivial scaling
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regularity values, in the spirit of similar notions stemming from the theory of com-
plex dimensions of fractal strings developed throughout [24] (see also [18] and the
relevant references therein, for the higher-dimensional case).
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