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ABSTRACT. In [GS15], Goncharov and Shen introduce a family of mapping class
group invariant regular functions on their A-moduli space to explicitly formu-
late a particular homological mirror symmetry conjecture. Using these regular
functions, we obtain McShane identities general rank positive surface group rep-
resentations with loxodromic boundary monodromy and (non-strict) McShane-
type inequalities for general rank positive representations with unipotent bound-
ary monodromy. Our identities are expressed in terms of projective invariants,
and we study these invariants: we establish boundedness and Fuchsian rigidity
results for triple ratios. Moreover, we obtain McShane identities for finite-area
cusped convex real projective surfaces by generalizing the Birman—Series geo-
desic scarcity theorem. We apply our identities to derive the simple spectral
discreteness of unipotent bordered positive representations, collar lemmas, and
generalizations of the Thurston metric.

1. INTRODUCTION

The aim of this paper is to generalize McShane identities for higher Teichmiiller
theory, a goal previously considered by Labourie and McShane in [LM09].

The starting point for our McShane identity is the Goncharov-Shen potential (Def-
inition 2.9): a family of mapping class group invariant regular functions on the
higher Teichmitiller space Agy, s, first introduced by Goncharov and Shen in
[GS15]. They utilize these potentials to formulate a precise homological mir-
ror symmetry conjecture between Fock—Goncharov higher Teichmiiller theoretic
objects [GS15, Conjecture 1.16]. Goncharov-Shen potentials conjecturally corre-
spond to Landau-Ginzburg partial potentials and contains data tantamount to spec-
ifying a compactification for the underlying space of the mirror dual. They are
a natural higher rank generalization of horocycle length, and decomposing them
leads to our family of McShane identities for positive surface group representa-
tions into PGL,, R.

Our McShane identities are expressed in terms of geometric quantities such as
simple root lengths and triple ratios, and naturally generalize those employed by
Mirzakhani in her stunning proof [Mir07b] of the Witten—Kontsevich theorem. We
establish geometric applications for our identities, yielding properties of simple
root lengths and triple ratios along the way. We hope that this paper serves as an
invitation for the community to further unravel the geometry underlying higher
Teichmdiller theory.
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1.1. The McShane identity. Given a 1-cusped hyperbolic torus Z, let €;; denote
the collection of unoriented simple closed geodesics ¥ on L and let {y(X) denote
the length of the (unoriented) simple closed geodesic ¥ on L. In his doctoral
dissertation, McShane [McS91] established that:

2
M 2 Trem =L

Y€C11

McShane’s prototypical identity has led to an ever-growing class of variant and
generalized identities, including identities for the following hyperbolic manifolds:

o hyperbolic surfaces with differing topology and boundary monodromy
[Hual5, McS98, Mir07a, Nor08, TWZ06],

o various hyperbolic 3-manifolds structures [AMS04, AMS06, Bow98, Bow97,
Hual8, LS13, TWZ08],

not to mention the closely related Basmajian identity [Bas93], Bridgeman-Kahn
identity [Brill, BK10] and the Luo-Tan dilogarithm identity [LT11].

1.2. Cusped convex real projective surfaces. The theory of convex real projec-
tive surfaces is the simplest geometric example of a non-Fuchsian higher (rank)
Teichmiiller theory, and generalizes the Beltrami-Klein approach to hyperbolic
surfaces. The monodromy representation p : m (L) — PGL3(R) for a convex
real projective surface L allows for multiple notions of geodesic length: an ori-
ented closed geodesic y on X corresponds to a conjugacy class in the fundamental
group, and ratios of eigenvalues for p(y) are well-defined. Index the eigenvalues

for p(y) so that ilggm;, nggmi > 1 and define the simple root lengths

1 (9) = log (R42020) and tiy) o= tog (34220) ~ ity ).

Throughout this article, we use y to denote the unoriented geodesic underly-
ing an oriented geodesic v or Y. Whereas simple root lengths are defined for
oriented geodesics, the Hilbert length, given by

(y)=ty) =ty ) =tly)+ L),

is well-defined for unoriented geodesics.

Ideal triangles are fundamental building pieces for hyperbolic and convex real
projective surfaces. It is well-known that any two hyperbolic ideal triangles are
isometric. In contrast, oriented convex real projective ideal triangles are geometri-
cally richer and are classified by their triple ratios T (Figure 1) [FG06], which vary
over R.o. We denote the logarithm of the triple ratio by T(A) = log(T(A)) € R,
and refer to this quantity as the triangle invariant [BD14, BD17].

In Section 7, we establish McShane identities for finite-area cusped convex real
projective surfaces (Theorem 7.1). For 1-cusped tori, our result takes the form:

Theorem 1.1 (McShane identity for 1-cusped tori). Given a finite area convex real

projective 1-cusped torus L, let @1,1 be the set of oriented simple closed geodesics on L.
Then

1
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F1GURE 1. The triple ratio of the anticlockwise-oriented ideal tri-
angle A inside a convex domain Q C R? C RP?, such as the

universal cover of a convex real projective surface, is T = 12222,

where T(7v) is the triangle invariant for either of the two embedded ideal triangles on =
which has one side being the unique ideal geodesic disjoint from y and the other two sides
spiraling parallel to vy (see Figure 2).

F1GURE 2. Cutting the shaded pair of half-pants on the left figure
along the spiraling geodesic depicted (left figure) produces an
ideal triangle A, and we use it to define t(y) = t(A,). The
right figure depicts a single lift (p,y-p,y*) of A, to the universal
cover of ¥, here 'y denotes both the closed geodesic v as well as
an homotopy class representative chosen so that ¥ is its invariant
axis.

Remark 1.2. Triple ratios for ideal triangles on hyperbolic surfaces always equal 1. The
Fuchsian case for the above identity therefore recovers the classical McShane identity after

catering for the canonical 2 : 1 orientation-forgetting map between ém and Cy .

1.3. McShane identity proof strategy. Each summand in the classical McShane
identity is the probability that a geodesic shot out from the cusp p on I self-
intersects before hitting y. This probability measure is the horocycle length mea-
sure induced from identifying the length 1 horocycle around p with the set of all
directions emanating from p. The following two steps establish the identity:

Step 1:: one needs to show that there is 0 probability that a geodesic ema-
nating from p is simple. This is due to the Birman-Series theorem [BS85].
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Step 2:: the complement of the (uncountable) set of points on the length 1
horocycle corresponding to simple geodesics emanating from p is a count-
able union of open intervals. One needs to express the length of each
interval in terms of geometric quantities intrinsic to the surface .

For convex real projective surfaces, the probability measure we decompose is the
ratio ( 4.13) derived from the Goncharov-Shen potential — an additive character in-
troduced by Goncharov and Shen in [GS15]. The Goncharov-Shen potential mea-
sure can be manipulated and computed via Fock and Gocharov’s A-coordinates
[FGO06], and is perfectly suited for Step 2.

We further show that the probability measure induced by the Goncharov-Shen
potential is a C!-rescaling of the horocycle length probability measure, thus en-
abling us to use the following generalization of the Birman—Series theorem:

Theorem 1.3. Given a finite-area convex real projective surface =, the Birman—Series
set defined as

BS(L) :={x € Z | x lies on a complete simple geodesic on L}
is nowhere dense, closed and has 0 area.

1.4. Fock-Goncharov higher Teichmiiller theory. In [Hit92], Hitchin discovered
a special contractible component of Hom(; (S), PGL (R)/ PGL,, (R), called Hitchin
component. It then becomes into the central object of higher Teichmiiller theory.
Labourie [Lab06] characterized the Hitchin components dynamically. Meanwhile
Fock and Goncharov [FG06] characterized the Hitchin components algebraically,
using the notion of positivity. In this paper, we concentrate on the Fock and
Goncharov’s approach to higher Teichmiiller theory.

Positive representations p : m(S) — PGL,(R) are central objects underpinning
Fock and Goncharov’s higher rank generalization of Teichmiiller theory [FGO06].
In particular, the composition of any Fuchsian representation with an irreducible
representation from PGL,(R) to PGL, (R) is a positive representation. We refer
to such representations as n-Fuchsian representations. When n = 3, positive rep-
resentations correspond precisely to monodromy representations for finite area
cusped convex real projective surfaces and loxodromic bordered convex real pro-
jective surfaces [G90][CGI3][FGO7]. For rank n positive representations, there are
n — 1 linearly independent simple root lengths: one for eachi =1,...,n — 1. The
i-th simple root length for vy is given by:

Ai
® ) = log (24555 ).
here we again index eigenvalues by decreasing (absolute) value.

In [FG06], Fock and Goncharov describe the A-moduli space and the X-moduli
space. These two “moduli spaces” are higher Teichmiiller spaces in the following
sense: the A-moduli space and the X-moduli space respectively generalize Pen-
ner’s decorated Teichmiiller space [Pen87] and Thurston’s enhanced Teichmdiller
space [Bon96]. The A-moduli space is associated with positive representations
with unipotent boundary monodromy, whereas the X-moduli space allows both
unipotent and loxodromic boundary monodromy.

Fock-Goncharov A-coordinates parametrize the A-moduli space and generalize
Penner’s A-length coordinates. On the other hand, the X-moduli space is coordi-
natized by edge functions and triple ratios ([BD14] for closed surface case). Edge
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functions naturally generalize Thurston’s shearing length coordinates, whereas
triple ratios parameterize ideal triangles: precisely (“;1) triple ratios are needed
to specify each ideal triangle. In [SWZ17, SZ17, WZ18], starting from the ele-
mentary deformation of edge functions and triple ratios, Wienhard and Zhang
and the second author provide a Darboux coordinate system for closed surface
of genus g > 1.

1.5. Triple ratio boundedness and rigidity. We have hitherto only considered
triple ratios as coordinates, i.e.: triple ratios for ideal triangles in ideal triangula-
tions. We introduced triple ratios for convex real projective surfaces, and we see
that they generalize to (Section 2.19):

e Frenet curves in RP™ ! (including limit curves of positive representations)
e and strictly convex domains in R"~! ¢ RP™ 1.
In [AC15], Adeboye—Cooper show that triangle invariants and Hilbert areas are
related by the following inequality:

Theorem 1.4 ([AC15, Proposition 0.3]). Given an embedded ideal triangle A C X on
a finite-area convex real projective surface L, the Hilbert area Areay () of A satisfies:

Areap(A) = $(72 + T(L)?).

An immediate consequence of this result is that the triangle invariant T = log(T)
of any embedded ideal triangle on X is necessarily bounded between

iz\/?_AreaH(Z) — 2y (Z)].

We show, using topological arguments, that triple ratio/triangle-invariant bound-
eness is true for positive representations in general:

Theorem 1.5 (Triple ratio boundedness, Theorem 3.4). The set consisting of all triple
ratios of all embedded ideal triangles for a (general rank) positive representation is
bounded within some interval [T, Toal.

Remark 1.6. Our proof for the above result is essentially topological and holds also
for surfaces with quasihyperbolic boundary monodromy, for which it is known that im-
mersed ideal triangles may have arbitrarily large triangle invariant. Furthermore, For
finite-area convex real projective surfaces, it is possible to promote Theorem 1.5 to assert
boundedness for all immersed ideal triangles using [BH13, Proposition 3.1].

Remark 1.7. In [Kim18], Kim shows that a strictly convex real projective surface has
bounded triple ratio spectrum if and only if it has finite Hilbert area. One can derive
Kim’s claim for triangle invariants by combining Adeboye—Cooper’s inequality with the
last Corollary in Zhang's introduction [Zhal5]. The issue that the formers uses Hilbert
area and the latter uses the Busemann measure is resolved thanks (again) to [BH13,
Proposition 3.1].

Theorem 1.8 (Fuchsian rigidity for n = 3,4, 5,6, Theorem 3.10). A positive repre-
sentation p is Fuchsian if and only if every triple ratio X-coordinate (i.e.: with respect to
every ideal triangulation of the underlying surface) is equal to 1.

Remark 1.9. This is equivalent to the (a. priori weaker) claim: a positive representation
p is n-Fuchsian iff. every triple ratio for every embedded ideal triangle for p is equal to 1.
The equivalence is because the set of ideal triangles which constitute an ideal triangulation
is dense in the space of all ideal triangles.
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Remark 1.10. We also obtain a similar rigidity criterion for edge functions (Theo-
rem 3.12), namely that all edge functions along ideal geodesics being equal classifies
n-Fuchsian representations.

Theorem 1.11 (Fuchsian rigidity for general rank). A positive representation p :
m(S) — PGL,(R) without loxodromic boundary monodromy (including S being a
closed surface) is Fuchsian if and only if the triple ratio of every immersed ideal triangle
is equal to 1.

The following immediate corollary is somewhat unrelated to the theme of our
paper. We state it due to independent interest: ellipsoid characterization is a
classical area of research with over a century’s worth of history (see [Guo13] for
a survey).

Corollary 1.12 (Ellipsoid characterization). A k-dimensional open convex set in R*
is a k-dimensional ellipsoid iff all of its triple ratios are equal to 1.

1.6. Goncharov-Shen potentials and their ratios. For each cusp p of S, there
are n — 1 independent Goncharov—Shen potentials P}, ..., PF | on the A-moduli
space Agy, s. Altogether, these potentials generate the ring of regular functions
on the A-moduli space [GS15, Theorem 10.7]. The Goncharov-Shen potential is a
central object of this paper, and we dedicate Sections 4 and 5 to its study.

Goncharov-Shen potentials are defined for A-moduli space and not X-moduli
space. They require, as input, decoration data in the same way that horocycle
lengths in Penner’s decorated Teichmiiller theory necessitate the choice of deco-
rating points in the Minkowski light cone [Pen87].

A change in decoration for cusp p rescales each Goncharov-Shen potential PY by
a constant factor. Therefore, ratios (see Definition 4.13) of potentials, of the same
level i, of immersed subsurfaces containing p are decoration independent (Propo-
sition 4.14). These ratios provide geometrically meaningful data about the under-
lying positive representation. In Proposition 4.16, we show that the exponentiated
simple root lengths of a geodesic vy are equal to the ratio of the Goncharov-Shen
potentials for a particular pair of ideal triangles related by Dehn twist in y. We
use the following quantity in the half-pants-based summation form of our Mc-
Shane identities/inequality for unipotent bordered positive representations.

Definition 1.13 (Half-pants ratio). let i C S be a pair of half-pants containing cusp p.
We define the i-th half-pants ratio BY (i) by

i
) By(f) = oL

PP’
where P is the i-th Goncharov-Shen potential at the unique cusp p of the half-pants .
We refer to Bi(f1) as the i-th half-pants ratio for fi.

Remark 1.14. When S is not the once-punctured torus, pairs of half-pants {i are uniquely
specified by its (unoriented) cuff v and its (unoriented) seam v, (see Figure 3). In these
cases, we may write Bi({i) as Bi(y,¥p) or even as Bi(y, vp)-
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FiGure 3. Cutting a surface S which is topologically a pair of
pants into two pairs of half-pants i = (y,V;) and (B, ¥p).

1.7. Series for higher rank unipotent bordered representations. Benoist-Hulin
show that the cusp geometry of finite-area convex real projective surfaces limits
to a constant negative curve cusp as one penetrates deeper into the cusp [BH13,
Proposition 3.1]. This fact is key to our proof of the Birman-Series theorem,
enabling us to obtain our n = 3 identity (Theorem 7.1).

For higher rank positive representations with unipotent boundary monodromy,
we currently lack an appropriate generalization of this key proposition, and in-
stead obtain a McShane-type (non-strict) inequality. We first state the punctured
torus result due to its relative simplicity:

Theorem 1.15 (General rank inequality for 1-cusped tori). Consider a once-punctured
torus S, and let p : 11 (S) — PGLy (R) be a positive representation with unipotent bound-
ary monodromy. For eachi=1,...,n — 1, we have the following inequality:

1
5) 2 Treammm S b
Y€€

where the term ki (y) is the logarithm of a positive rational function of triple-ratios (see
Theorem 1.17) of marked ideal triangles associated to /., (see Figure 2).

We require different summation indices for surfaces topologically different to a
1-cusped torus. One corollary of [Hual4, Theorem 4.5] is an expression for the
McShane identity summed over the set J{,, of embedded pairs of (ideal) half-
pants [i containing p.

We introduce a refinement of this summation index by introducing orientations
on the boundary geodesics. In particular, we require the oriented boundaries y
and vy, to be parallel in the sense that orientations agree with respect to isotopy
on the annulus fi U{p} (see Figure 4) .

Definition 1.16 (Boundary-parallel half-pants). An embedded boundary-parallel
pair of half-pants u containing p is an ordered pair (y,yyp) consisting of an oriented
simple geodesic 'y and an oriented simple bi-infinite geodesic 'y, so that v, vy bound a pair
of half-pants on S and vy is parallel to y,,. We denote the collection of all boundary-parallel
pairs of half-pants on S containing p by fT{p.
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FIGURE 4. Cutting along the spiraling geodesic on the boundary-
parallel pair of half-pants (y,y,) (left figure) results in an ideal
triangle A := A, oriented so that the marked triangle A =
(P, v-P,v") is a lift of A (right figure).

For each pair of boundary-parallel half-pants p = (v,v,), the unique simple bi-
infinite geodesic which shoots out from p and spirals towards y parallel to its
orientation (see Figure 4) cuts the underlying pair of pants i = (y,y,) into an
ideal triangle A,y . We adopt the notation

(6) T(v, Yp) = T(Av,vp) and T(y, Vp) = T(Ay,yp ).

We emphasize that one needs to mark A so that it is the projection of the triangle
A =(p,v-p,v") in the universal cover (Figure 4).

Theorem 1.17 (General rank inequality for cusped surfaces). Let p : m(S) —
PGL (R) be a positive representation with unipotent boundary monodromy, and let p be
a distinguished boundary of S. Then, for each i = 1,...,n — 1, we have the following
inequality:

@ )3 Bi(v,v?) <1

14+ eliy)+rilvvyp)

—

(YrYp )eg{p

the term ki(y,vp) is the logarithm of a positive rational function (see Theorem 8.5) of
triple ratios of marked ideal triangles associated to A, .

Remark 1.18. The above formula is an equality for n = 3 positive representations.

1.8. Pair of pants summation. Our previous half-pants summation formula is
a finer series than the classical McShane identity [McS98]. Which, in turn, is
summed over the set
(isotopy classes of) embedded pairs of pants YonS$S
Pp = . ] .
which contain cusp p as a boundary

Here it is often convenient to denote a pair of pants Y € P, by its cuffs {B,v}.

We also have an identity summed over pairs of pants, but with oriented cuffs
f3,7v. Moreover, we need the orientations on 3 and vy to be parallel in the sense
that their orientations agree with respect to isotopy on the annulus Y U {p} (see
Figure 5).
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BT B-p=v-p

Ficure 5. Cutting along the spiraling geodesics on the boundary-
parallel pair of pants {3, v} (left figure) results in an ideal quadri-
lateral whose lift is the marked quadrilateral (p,p*,p -p =
Y -p,v") (right figure).

Definition 1.19 (Boundary-parallel pairs of pants). An embedded boundary-parallel
pairs of pants Y containing p is an unordered pair {3, v} of (disjoint) oriented geodesics
so that p, B,y bound a pair of pants on S and B is parallel to y. We denote the collection

of all boundary-parallel pairs of pants on S containing p by ﬁp. Similar definition for Po
where p is replaced by a boundary component o.

Theorem 1.20 (Pants summation form). Given a positive representation p : 71 (S) —
PGL,, (R) with unipotent boundary monodromy, then

-1
®) y (1+605h%§f5§,'1;§ ,e%(ei(s)m(fs,sp)+ei(v)+m(v,z’>p))) < 1, where
Lai(p,
(BY)EPp

e 5, C Y ={pB,V}is the unique oriented simple ideal geodesic on the pair of pants
Y with both ends tending to p and oriented so that it is parallel to 3 and y;

o and the di(B,v) = logDi(p,y - P, BT, y") are logarithms of (limiting) edge
functions evaluated on the embedded ideal quadrilateral obtained from cutting Y
along the two simple bi-infinite geodesics which emanate from p and respectively
spiral towards {3 and vy (see Figure 5).

In particular, the above (non-strict) inequality is an equality for n = 3, and the summand
in this case takes the form:

-1
©) (1 cosh 20327 .e;(T(v,sp)+elw)+1(fs,sp>+zl(rsn>

cosh L?’”

Remark 1.21. [Kim18, Theorem 1.2] shows that given a n = 3 positive representation
cosh(3da(B,v))

cosh(1d: (B)) are bounded as one varies over {3, v} € Pyp.

p, the quantities

1.9. Simple spectra discreteness. One immediate corollary to triple ratio bound-
edness (Theorem 1.5) and our general rank inequality for 1-cusped tori (Theo-
rem 1.15) is the discreteness of the simple root length spectrum of the simple
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curves for a given unipotent bordered representation. For surfaces of general
topological type, this is not immediate, because the Bi(y,vyp) terms in (7) can
(and do) become arbitrarily small. In Section 7.2, we show that:

Theorem 1.22 (Simple spectral discreteness). Let p : 11 (S) — PGL,, (R) be a positive
representation with unipotent boundary monodromy. Then the simple {;-spectra and the
simple Hilbert length spectrum for p are both discrete.

The above theorem is also proved in [Kim19] using a different method. For posi-
tive representations with (only) loxodromic boundary monodromy, the above re-
sult can be obtained via the Anosov property. However, positive representations
with unipotent boundary monodromy are not Anosov. We emphasize that our
proof requires only the cluster algebra structure of the Fock-Gocharov A-moduli
space.

For n = 3 positive representations, we can say something stronger: our proof
of the Birman-Series theorem implies that the simple Hilbert length spectrum
grows at least polynomially. In order to extend this claim to simple root lengths,
we require the following comparison result.

Theorem 1.23 (Hilbert vs. simple root length comparison). For any positive repre-
sentation p : m(S) — PGL3(R), there exists K, > 1 such that for every simple closed
curve y on S, we have:

(10) bly) <tly) <Kp-bify).

We believe that the above result is due to Benoist-Hulin, and may be obtained
by combining the proof of Benoist’s [Ben01, Corollary 5.3] with Proposition 6.9.
This is also proved in [Kim19]. Nonetheless, we provide a proof for this fact in
Appendix A (just in case).

1.10. McShane indentities for loxodromic bordered representations. For higher
rank positive representations with loxodromic boundaries, Labourie-McShane in-
troduce a powerful and general machinery for establishing McShane-type identi-
ties via the language of cross-ratios [LM09]. We require a mild generalization of
their work to allow for “asymmetric” versions of cross-ratios.

Definition 1.24 (Ratio). Consider the following space of 4-tuples of of ideal points
I (S)* = {(x,y,2,t) € doom(S)* [ x A tand y #z}.
A ratio B : 00011 (S)** — R is a 7 (S)-invariant Holder function function satisfying the

following axioms:

(1) (normalization): B(x,y,z,t) =0iff y=1t,

(2) (normalization): B(x,y,z,t) =1iff. z=t,

(3) (cocycle): B(x,y,z,t) = B(x,y,z,w) - B(x,y,w, t),
An ordered ratio is a ratio B on S which satisfies the condition that for any four distinct
ideal points x,y,z,t € 00om (S):

(1) if z, t lie on the same side of xy, then B(x,y,z,t) >0,

(2) if x,y, z, t are cyclically ordered, then B(x,y,z,t) > 1.

We also require a new summation index for our:
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Definition 1.25. Let H,, denotes the collection of (embedded) boundary-parallel pairs
of half-pants on Sg . with both ends of its seam emanating from o~ (see Figure 6).

Moreover, let T{S‘ C Ho denote the subset of half-pants with a peripheral cuff.

FIGURE 6. An example of a boundary-parallel pair of pants
(v, vp) with both ends of the seam Yy, emanating from p where
p = o~ denotes the repelling fixed point of o.

Remark 1.26. Given a boundary-parallel pair of half-pants (v, v« ) € ﬁg, there is a
unique boundary-parallel pair of pants in P that contains (v,vs ) and agrees with its

boundary orientations. We thereby identify T{g with the subset (ﬁ?x C P of boundary-
parallel pairs of pants with a peripheral cuff.

Proposition 1.27 (A variation of [LM09, Theorem 5.1.1]). Let o be a distinguished
boundary component for S = Sy m, we have the following identity:

sl = > |logBla ot y(a ), ¥+ D> logBla, &,y ,vY).
(VYo )EH (VY o—)EFS

We now state the explicit form that these summands take, but only for Sy ; — this
is for simplicity as there are no 3% summands.

Theorem 1.28 (half-pants summation identity). Consider a positive representation
p: m(Sg1) = PGL(R), and let « be a distinguished boundary component of Sgm.
Then we have the following pants summation form of the McShane identity:

) eRilvvo—)ti(a) o oli(v)+Kily,ye—)
08 1+ elt T (v ves)

1 b=

(VY o—)EH

Note that we show that these summands limit to the punctured case (Theo-
rem 1.17) summands as one deforms from a positive representation with loxo-
dromic boundary monodromy to one with unipotent boundary monodromy. We
also obtain the pants summation form of the above identity:

Theorem 1.29 (pants summation identity). Consider a positive representation p :
71(Sq,1) = PGLL(R), and let « be a distinguished boundary component of Sy1. Then
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we have the following half-pants summation form of the McShane identity:
(12)

1) coshijjig’:: e (VY o )V (BB o)+ (B))
() = E log cosh O
- —1e () M. Lki (VYo ) (V) +Ki (BB o —)+Ei(B))
ByIePu € 2 ey €2 o o
cosh ——5"—

Remark 1.30. The pants summation identities more apparently generalize Mirzakhani
and Tan-Wong-Zhang’s bordered hyperbolic surface identities. Whereas the half-pants
summations are more convenient for our applications.

Notation 1.31. At various points in this paper we alternate between topological, geo-
metric and representation theoretic vernacular, and we shall adapt our notation to these

varying contexts. For example, the set @g,m of oriented simple closed geodesics y on a
genus g surface with m cusps is equivalent to the set of conjugacy classes of homotopy
classes in m1(Sgyrn) with simple curve representatives. In geometric contexts, we might
use y to denote a simple closed geodesic, whereas in representation theoretic contexts we
use 'y to denote a particular representative y € m(Sqm) of the conjugacy class. The
level of notational flexibility extends also to notation for pairs of pants: we use {f3,v} in
geometric contexts versus (o, p~1,y) € 7'[1(59,111)3 in representation theoretic contexts
when it is convenient to have the precise homotopy classes of o, 3 and y.

1.11. Applications. We are aware of the following applications for McShane-type
identities in the literature:

e various authors [AMS04, AMS06, Bow98, Bow97, Hual8, LS13] use them
to study the geometry of the convex core or the cuspidal tori for various
hyperbolic 3-manifolds;

e Miyachi uses them to bound the Teichmidiller distance between two marked
surfaces [Miy05];

o and most spectacularly, Mirzakhani [Mir07a] uses them to derive a recur-
sive algorithm for computing moduli space volumes.

We illustrate several novel applications of the McShane identity. We see in Sec-
tion 7.2 that even McShane inequalities give us useful information: simple length
spectrum discreteness. In fact, the inequality also allows us to derive the follow-
ing useful fact:

Theorem 1.32 (Collar lemma [LZ17], Theorem 7.7). Given any finite-area convex
projective surface L, any two intersecting simple closed geodesics 3,y satisfy the following
inequality:

(13) (e2t®) —1)(e2!™) —1) > 4,

The remaining applications are all related to asymmetric ratio metrics on various
Teichmuiller spaces. These results require the full strength of the McShane identity
and not just an inequality. We begin with our results for Fuchsian representations:

Theorem 1.33 (Fuchsian non-domination). Given two marked hyperbolic surfaces
21,5 € Teichgm(Ly,..., L) with fixed boundary lengths Ly,..., L, > 0. Then the
marked simple geodesic spectrum for L, dominates the marked simple geodesic spectrum
Ly ifand only if L1 = X;.
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Non-domination fails when the boundary length is allowed to vary [PT10], mean-
ing that the naive generalization of Thurston’s length ratio metric does not satisfy
positivity (compare with [Thu98, Theorem 3.1]). Liu-Papadopoulos-Su-Théret
resolve this by introducing the arc metric. We do so by fixing the boundary
length:

Corollary 1.34 (Length ratio metric for fixed bordered surfaces). The non-negative
real function dry, : Teichgm(L1,..., L) x Teichg m(Ly, ..., L) = Ry defined by
(y)
(14) dm(Z1,X2) :=log sup _=——,
veesym) (V)

is a mapping class group invariant asymmetric metric on the Teichmiiller space Teichgm
(Li,...,Lm) of genus g surfaces with m boundaries of fixed lengths Ly, ..., L.

Non-domination is also a problem for convex real projective surfaces. We propose
the following candidate for a metric on the space Convy ; of finite-area convex real
projective 1-cusped tori:

log(1 + et (V+771(v))
log(1 + et” (V)+e=2(v))’

(15) dgap(Z1, L2) :=log sup

=
Y€€

Theorem 1.35 (Gap metric for Convy,). The non-negative function dg,, defines a
mapping class group invariant aymmetric metric on Convy 1. Moreover, the restriction of
the metric dg,p to the Fuchsian locus of Convy ; is equal to the Thurston metric.

We also generalize the notion of a gap metric to include finite-area cusped convex
real projective surfaces of general topological type (Definitions 7.16 and 7.17). The
resulting asymmetric metric is mapping class group invariant, but we are unsure
if it is a strictly larger distance function than the Thurston metric on the Fuchsian
locus.

1.12. Section overview and reading guide. This paper consists of the following
sections:

Section 2: Fock—-Goncharov moduli spaces and coordinates. We construct Fock
and Goncharov’s higher Teichmiiller spaces (Definitions 2.6 and 2.9), before defin-
ing coordinates (Definitions 2.15 and 2.21) and explicit coordinate transforms
(Definition 2.24) for them. We conclude by defining the positive subset of the
Fock-Goncharov moduli spaces and positive representations (Definition 2.27) —
these are the central object of our studies.

Section 3: Properties of X-coordinates. We study the set of all triple ratios and
edge functions for any given positive representation. We use topological argu-
ments to show that the set of triple ratios is bounded (Theorem 3.4). We then
employ algebraic and geometric techniques to show that triple ratios all being
equal to 1 or edge functions along the same edge being all the same are char-
acterizing properties for n-Fuchsian representations (Theorem 3.10 for n = 3,4,
Theorem 3.12 for n = 3 and Theorem 3.16 for general n with no loxodromic
boundaries).

Section 4: Goncharov—Shen potentials. We define and study Goncharov-Shen
potentials. In particular, we show that ratios of Goncharov-Shen potentials are
projective invariants (Proposition 4.14), and we dub these objects i-ratios and
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relate them to weak cross ratios (Corollary 4.15) and simple root lengths (Propo-
sition 4.19).

Section 5: Goncharov-Shen splitting technique. We compute the behavior of
A-coordinates under Dehn-twists (Proposition 5.4). We combine this with the
Goncharov-Shen potential splitting mechanism to compute McShane identity
summands. We derive two variant McShane-type inequalities: the half-pants
summation form (Theorem 5.9) and the pants summation form (Theorem 5.10).

Section 6: Geodesic sparsity for convex real projective surfaces. We give an
introduction to the theory of convex real projective surfaces before proving a
Birman-Series geodesic sparsity theorem for convex real projective surfaces (The-
orem 6.11).

Section 7: McShane identities for convex real projective surfaces and applica-
tions. We utilize the Birman-Series geodesic sparsity theorem obtained in Sec-
tion 6 to show that the McShane-type inequality we obtained in Section 5 is in
fact an equality (Theorem 7.1). We then employ these identities to show the dis-
creteness of simple length spectra (Theorem 7.4), to demonstrate the collar lemma
(Theorem 7.7) and to generalize the Thurston metric (Theorem 7.14 and Defini-
tion 7.16) for convex real projective surfaces.

Section 8: McShane-type identities for higher Teichmiiller space. We adapt
(Theorem 8.4) Labourie and McShane’s ideas from [LM09] to derive McShane
identities for loxodromic bordered positive representations of arbitrary rank (The-
orems 8.17 and 8.20). We conclude by deforming these identities from loxodromic
bordered representations to unipotent bordered ones to obtain a McShane-type
inequality for unipotent bordered positive representations of arbitrary rank (8.5).

Remark 1.36. Readers mainly interested in convex real projective surfaces may wish to
focus on Sections 6 and 7. On the other hand, those with background in and predomi-
nantly interested in (arbitrary rank) Fock—Goncharov higher Teichmiiller theory may be
primarily interested in Sections 3, 4, 5 and 8, with secondary interests in our McShane
identity applications in Section 7.
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2. Fock—GONCHAROV MODULI SPACES AND COORDINATES

Fock and Goncharov’s version of higher Teichmiiller theory [FG06] is deep and
applies to a very broad context. We do not require the full force of their machinery,
and concern ourselves with higher Teichmiiller spaces of the form XpgL, s, ,, and

AsL, ,Sm, Where Sg i is a negative Euler characteristic (open) Riemann surface
of genus g with m > 1 holes. We either regard the boundaries of Sy ,, as:

e holes, often when dealing with XpgL,, s, ./
e punctures, often when dealing with Ag, s

gm”*

2.1. A reductionist approach: ideal triangles and flags. Since our surface has
m > 1 punctures, the negative Euler characteristic condition allows for ideal
triangulations:

Definition 2.1 (Ideal triangulations). Let m,, denote the set of punctures of Sq m, re-
garded as a punctured surface. An ideal triangulation T of Sq,m is a maximal collection
of (unoriented) essential arcs which join the elements of my,, such that these arcs are:

o pairwise disjoint on the interior of Sgm and
o non-homotopic with respect to homotopies of Sgm.

We regard ideal triangulations up to isotopy. Moreover, we identify an ideal triangulation
T with the graph (Vy, Eg), where Vo = m,, is the set of vertices of T and Eq is the set of
(unoriented) edges of 7.

Ideal triangulations are key to both Thurston’s enhanced Teichmiiller theory
and Penner’s decorated Teichmiiller theory [Pen87] — the respective classical
archetypes for Fock-Goncharov’s XpgL, s, ,, and AsL, s, . moduli space theory.
The central idea is that surface representations may be described in terms of:

(1) data specifying the representation at the level of each ideal triangle;

(2) data specifying how to reconstitute the above data together into a higher

rank surface representation.

Crucially, Fock and Gocharov realized that all of these necessary data may be
stored in terms of flags (and decorated flags) assigned to the ideal vertices of
ideal triangles.

We consider a vector space E and endow it with a distinguished volume form Q.
We generally take E = R™ and Q to be the standard Euclidean form.

Definition 2.2 (Flags and the decorated flags). A flag F in E is a maximal filtration
of vector subspaces of E:

{0l=FhCcHC---CFh1 CFr=E, dimF; =1

A basis for a flag F is an ordered basis (f1,...,fn) for the vector space E such that the
first i basis vectors form a basis for Fy, fori=1,...,n.

A decorated flag (F, @) is pair consisting of a flag F and a collection ¢ of (n — 1)
non-zero vectors

A basis for a decorated flag (F, @) is an ordered basis (f1,...,fn) for the vector space E
such that

fi+Fa=fieF/Fiq for i=1,...,n—1
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We refer to the set B of flags on E as the flag variety and the set A of decorated flags on
E as the principal affine space. We note the obvious “forgetful” projection map

(16) n:A—B,(F,¢e)—F
Notation 2.3. Given a basis (fy,...,fn), we use f* to denote:

o= Afa A Afiog Afi
In particular, we set f* =1 by convention.

Definition 2.4 (generic position). We say that triple X,Y,Z of flags are in generic
position if for any non-negative integers i,j, k satisfying i +j +k < n, the sum X; +
Y; + Zy is direct. Likewise, a triple of decorated flags are in generic position if their
underlying flags are in generic position.

2.2. Fock-Goncharov moduli spaces XpcL, s, ,, and AgL, s, ... We now fix a col-
lection of m (based-)homotopy classes «j, ..., xm, respectively winding the punc-
tures p1,...,pm € Mp.

Notation 2.5. In latter sections of this paper, we perform computations involving objects
determined by ideal points (e.g.: ideal triangles), and we shall find it convenient to canon-
ically identify p1,..., pm with the subset in 0,711 (S g,m ) consisting of the respective fixed
points of &1, ..., om. This allows us to adopt notation such as (p,yp,y™) that is more
convenient for explicit computation.

Definition 2.6 ([FG06, Definition 2.1] X-moduli space XpgL,, s, ,,)- A framed PGL,,
local system on Sy, is a pair (p, &) consisting of

e a representation p € Hom(m((Sgym ), PGL,), and

o amap & : my, — B, such that p(xi) fixes the flag &(pi) € B for each i =

1,...,m.

Two framed PGLy-local systems (p1,&1), (p2, &2) are equivalent iff. there exists some
g € PGLy, such that py = gp1g~! and & = g&;. We denote the moduli space (ie.: space
of equivalence classes) of all framed PGLy,-local systems on Sqm by XpgL,, s

gm’

Remark 2.7. Although the elements of the X-moduli space XpqL, s, ,, are equivalence
classes, we choose to conflate notation and denote them by (p,&). We also adopt this
convention later for the elements of the A-moduli space.

Definition 2.8 (Farey set). Let us assume for the moment that surface S = Sgm is
cusped, and let m,, denote the set consisting of all the lifts m, of my, in the ideal boundary
of the universal cover S of S. We refer to my, as the Farey set. The data contained in
(p, &) € XpGL,,S,.. is equivalent to that contained in the map & : my, — B induced by
deck-transformation (p-action) applied to E.

The analogous definition for the A-moduli space is slightly more involved. Let
TS denote the unit tangent bundle over S and fix an arbitrary point & € T.S C
T!S over x € S. Consider the short exact sequence for the unit tangent bundle
fibration:

1 —m(T.S) =Z = (os) = m(T'S,%) = m(S,x),
where o5 is either of the two generators for 7;(T.S). Define the quotient group
(S) = m(S,x) = m(T'S,R)/(0%), and observe that 7;(S) is a 2 : 1 cover-
ing group for m(S,x). We fix lifts &;,..., &m € (S, x) respectively covering
X1, oo e, K
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Definition 2.9 ( [FG06, Definition 2.4, page 38] A-moduli space AsL, s, ) A

decorated twisted SL,-local system on Sy v, is a pair (p, &) consisting of
o arepresentation p € Hom (7 (Sg,m), SLy) with unipotent boundary monodromy
for each boundary, such that p(ds) = (—1)™ dyxn, and
o amap &:m, — A, such that each p(&;) fixes the decorated flag &E(p;) € A.
Two decorated twisted SLy-local systems (p1,&1), (P2, &2) are equivalent iff. there exists
some g € SLy, such that py = gp1g~ ! and & = g&;. We denote the moduli space of all
decorated twisted SLy,-local systems on Sgm by AsL,, s, .-

Remark 2.10. We refer to the unique representation p : 11(Sgm) — SLy which lifts to

p as the monodromy representation underlying (p, &).

Remark 2.11. By deck transformation, the data in a pair (p,&) is equivalent to a map
& from all 2 : 1 double cover of W, in the double cover doo7t1 (S) of the ideal boundary
000711 (S) into the principle affine space A. Note that 1o &5 is equal to the map &, associ-
ated to (p, &) == (p, 1o &), and this in turn induces a map from Asr, s, . t0 XpGL,,S,
whose image consists of all points (p, &) with unipotent boundary monodromy.

We now introduce coordinate for the X and A-moduli spaces. Going forward, we
only consider &, which satisfy the following generic position condition: any pair-
wise distinct triple (x,y,z) € (30071 (Sg,m))? is mapped to a triple (&,(x), &0 (y), &p(2))
of flags (decorated flags resp.) in generic position (Definition 2.4).

2.3. Fock—-Goncharov A-coordinates.

Definition 2.12 (n-Triangulations). Given an ideal triangulation T = (Vg,Eqg) of
Sg,m, we define the n-triangulation Ty, of T to be the triangulation of Sy obtained by
subdividing each triangle of T into n? triangles (as per Figure 7). We also identify T,
with the graph (Vg , B ), just as we did for ideal triangulations.

Notation 2.13 (vertex notation). We define the following vertex sets.
Jn:={ VeVy \ Vg | Viiesonanedge e € Ex } and Jp := Vo, \ (Vo UTy).
We also adopt the following vertex labeling conventions:
e we denote a vertex V € Iy, € Iy, on an oriented ideal edge (x,y) by vi"? . =

in—i
VI, o where i > 1is the least number of Eg, edges from V to x (see Figure 7).
o we denote a vertex V € I, U Jn on a triangle (x,y,z) by v’f”j‘f{f, where 1 > 0,
j = 0and k =n—1—j > 0 respectively denote: the least number of Eg, edges
from V to Yz, from V to Xz and from V to Xy (see Figure 7).

Definition 2.14 (Quivers). Consider the largest subgraph of Tr, with vertex set I, Ugn.
By placing orientations on this graph as per Figure 7, we obtain a quiver Iy, .

Quivers are combinatorially useful both in defining Fock-Goncharov coordinates,
as well as in describing their coordinate transformations. We now describe Fock—
Goncharov A-coordinates.

Definition 2.15 ([FG06, Section 9] Fock—Goncharov A-coordinates). Fix an ideal
triangulation T of Sgm and its n-triangulation T,. Given a vertex V € Jn U Jy, let
(f, g, h) denote the ideal vertices of an idea triangle in T containing a lift of V = vy x.
For (p, &) € AsL, s, ., Choose bases

(flr sy fn)r (91/ sey gn)/ (hll sy hnj
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FIGURE 7. Left: an ideal triangulation for S;;. Right: a (lift of a)
3-triangulation T3 for S;1, with opposite edges identified. Edges
endowed with arrows constitute edges of the quiver I'y,. The
edge vertices v, and v“ identify to the same vertex b when
projected to Sy,1. The interior vertices \)1,1,1 and vl,l,l respectively
correspond to the vertices d and e.

for the respective decorated flags &5(f), €5(g), &p(R), where f,g,h are lifts of f,g,h
consecutivealong 00,71 (S). The vertex function Ay is defined by

Av ::A(fi/\gj /\hk) .
The Fock-Goncharov A-coordinate Ay is equal to Ay up to sign.

Remark 2.16. The choice of sign for A is technical and dependent upon a choice of spin
structure on Sy m [FGO6].

2.4. Fock—-Goncharov X-coordinates.

Notation 2.17. We henceforth adopt the following notation conventions:

e Xy denotes the unoriented edge between x and y;

Xyz denotes an unoriented triangle;

XYz denotes an oriented triangle;

(x,y) denotes the oriented edge from x to y;

(x,y,z) denotes a marked triangle;

X denotes the union of all the lifts of a set X C S to the universal cover S of S.

We continue to use this notation throughout the paper except when explicitly stated oth-
erwise, especially when carrying out computations.

Definition 2.18 (Edge functions). Let (X,Y,Z,T) be quadruple of flags in generic
position, choose their bases
(x1,- %), (Y, ,un), (21, ,zn), (t,--,tn).
For the positive integer i < n, the edge function defined by
AXTEAYTIAZY) D AGTETAYEAT)

Di ,Y, ,T = - - . - -
(X Z ) A(Xn—l—l /\yl /\Zl) A(XTL—I /\yl—l /\tl)

is a projective invariant.
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Definition 2.19 (triple ratios). Consider a triple of flags (F, G, H) in generic position,
with bases

(fll' o /fn)r (gll Tty gn)r (hlr e /hn)'
Then for any triple of non-negative integers (i,j,k) with i+ j + k = n, the triple ratio
Tijx(F, G, H) is defined by:
A (fi+1 A gj A hkfl) A (fifl A gj+1 A hk) A (fi A gjfl A hk+1)
AFHTAGT AR A(fEA gitT AR A (fiT A gl ARKH)
Remark 2.20. For n = 3, the triple (i,j,k) is necessarily equal to (1,1,1), so we often
omit the indices and simply write T(F, G, H).

T (F, G H) =

There are two types of Fock—-Goncharov X coordinates respectively corresponding
to edge functions and triple ratios. The former are labeled by vertices in I,
correspond to degree four vertices in the quiver 'y, , and generalize Thurston’s
shear coordinate [Thu98]. The latter are labeled by vertices in J,, and are degree
6 vertices in I'y_.

Definition 2.21 ([FG06, Section 9] X-coordinates). We define one X-coordinate for
each vertex in Tn U Jn. For a vertex V € Iy, let (x,y) denote an (oriented) edge in
E; containing a lift V = v of V. Further let Xyz and Xty denote the two anti-
clockwise oriented ideal triangles in T which contain the edge xy. The Fock—-Goncharov

X-coordinate Xv/, evaluated at (p, &) € XPGLy,S g m s 1S defined as the edge function:
XV = Di(xl y/ Z/ t) = Di(ap (X)/ Ep (y)/ (tvp (Z)/ E,p (t))
f,g,h

For avertex V € Jy, let (f, g, h) denote an ideal triangle in T containing a lift V = Vi
of V. The Fock-Goncharov X-coordinate Xy, evaluated at (p,&) € XpgL, s,/ IS
defined as the triple ratio:

Xv :=Tyjx(f,9,h) :=Tijk(&(f), Ep(g), Ep(h)).

Fock-Goncharov X-coordinates are crucial examples of projective invariants for
higher rank surface representations, they are rational functions of .A-coordinates
and define rational functions on the X-moduli space. Before moving on, we give
an alternative interpretation for the triple ratio which is more geometric in flavor:

Remark 2.22 ([FG07] Geometric definition for the triple ratio). Comnsider three flags
A =(a,L),B=(bL),C=(cLs)
in RP? in generic position. Let u =L, NL3, v=L;NLs, w =Ly NL; (see Figure §), and

let | - | denote the Euclidean distance. We stated in the introduction that the triple ratio
T = Ty1,1 function is given by
bl - .
17) T(A,B,C) i (WOl fucl-val
[oul - |ev] - [aw|
To interpret triple ratios for flags A, B, C € B in higher rank contexts, we project E down
to the following 3-dimensional vector space
E/(Ai-1®Bj_1® Cr1)
and then use the previous (i.e.: n = 3) interpretation for T(A, B, C) == Ty ; x (A, B, C).
Remark 2.23. Ceva’s theorem asserts that T(A,B,C) = 1 iff. the lines au, bv, W
intersect at one point.
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w b u

F1Gure 8. Triple ratio.

2.5. Coordinate transformations and the cluster ensemble structure. One key
advantage of the Fock-Goncharov approach to higher Teichmiiller theory is that
we can explicitly write down rational functions specifying the transition maps
between coordinate patches. Moreover, this aspect of the story is an example of
the powerful theory of cluster ensembles:

Definition 2.24 ([FG06, Section 10] Cluster ensemble structure for (X, A)). A seed
for (DCPGLn,sg'm,ASngglm) is a pair
I=(0nUdn, ¢),
where ¢ is a skew-symmetric function
(TnUdn) x (InUdn) = Z
defined by the following equation:
evw = #{ arrows from V to W } — #{ arrows from W to V }

for V,W € J,, Udn. A mutation at V € I, U Jy, changes the seed 1 to a new one
I’ = (Jn U dn, '), where we identify the new vertex V' with V and

, {—eu, Ve (L]

where [x] . = max{x, 0}.

A cluster transformation is a composition of mutations at Jn, U gn and permutations
of Jn U dn. And the cluster modular group is the collection of cluster transformations
that preserve the quiver Ty, .

We assign the split torus Xy (Ay resp.) parameterized by the Fock—-Goncharov coordinates
Xiheg,ug, {Athes,ug, resp.) to the seed 1. The transition map p@(/ X — Xp
corresponds to a mutation at V € I U Jrn, with map ué* 1 Q(Xy) — Q(Xy) given by

2 = VLX), AV
Xy, I=V.
The transition map () : Ay — Ay corresponds to a mutation at V € 3, U gy, with map
wy* : Q(Ar) — Q(Ar) given by

He*(Af) = {AI,1 ev,] —Ev,] : 7& v
Ay (H]\av,,>o Ay +H]\sv,,<0 Ay ), IT=V.
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The coordinate transformations given in Definition 2.24 are crucial in our deriva-
tion of our McShane identities — especially the A-coordinate transformations.

Definition 2.25 (Flip). Consider two adjacent ideal triangles xyt and yzt sharing a
common edge yt. A flip along yt produces a new triangulation by replacing yt with Xz.

The corresponding coordinate change for a flip is a sequence of (n — 1) suc-
cessive mutations ([FG06, Section 10.3, pg. 147]). We write out the n = 3
(Figure 9) computation explicitly in Figure 9 as an example: denote the Fock—
Goncharov A-coordinates for Asy,s,, by {a,b,c,d,1,s,q,w} After successive
mutations at the vertices corresponding to 1,s,p, q, we obtain new coordinates
{a,b,c,d,7',s’,q’,w'} given by:

’ ’ ’ ’
= bq+cw, s/ = aw+dq, w'! = as’ter / _ br'+ds .

w 4 q q

FIGURE 9. For Agy, s, ,, given an ideal triangulation T with Vo =
{x,y,z t} and Es = {Xy, yt, tx, Yz, zt}, we have its n-triangulation
Th.

Remark 2.26. Note that these are all degree four mutations: two vertices point toward
the mutating vertex, and the mutation vertex points out at two vertices. Each of these
mutations comes from a Pliicker relation for (nxn) determinants. These Pliicker relations
are also known as Ptolemy relations in certain geometric contexts [Pen87].

2.6. Positivity. The moduli space XpcL,,s,,, (AsL, s, T€SP-) is birationally equiv-
alent to the cluster X (A resp.) variety obtained by gluing all the possible algebraic
tori Xy (Ag resp.) according to the above transition maps. These transition maps
are all positive in sense that transition functions send positive coordinates to pos-
itive coordinates.

Definition 2.27 (Positive higher Teichmdiller spaces). The positive Fock-Goncharov
higher Techmiiller space AsL, s, .. (R=0) and XpecL,, s, . (R>0) are the respective subsets
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of AsL,,,S g m @1d XpGL, s, ,, CONSisting of points which are positive in every coordinates
with respect to some A or X coordinate chart. We refer to monodromy representations for
positive points of either the X or A moduli space as positive representations.

Positivity is more than just an algebraic condition, but has geometric conse-
quences. One important geometric property of positive representations is that
their respective associated maps &, : m, — B (Definition 2.8) extend to Frenet
maps (see Definition 3.13). More precisely, for a positive representation with
only unipotent boundary monodromy, there exists a unique Frenet map ¢ :
05071 (Sg,m) — B which restricts to &, on M, C 0,71(Sg,m). The uniqueness
here owes to the fact that M, is dense in 9,7 (Sg,m), in particular, this also as-
serts that & is p-equivariant.

For positive representations with at least one loxodromic boundary, let dS de-
note the topological double of Sy ., along all of its loxodromic boundaries, then
there exists a Frenet map d& : 9,,7(dS) — B which restricts to £, on W, C
05071 (Sg,m) C 05081(dS). Note that the set of map satisfying this restriction con-
dition is not unique, but d can be made canonical if considers the associated
restriction condition to do with the Hitchin double representation dp [LM09, Def-
inition 9.2.2.3].
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3. PROPERTIES OF X-COORDINATES

3.1. Uniform boundedness of the triple ratio. Given a surface S with hyperbolic
fundamental group 71;(S), we denote its boundary at infinity or its ideal boundary
by 9,71 (S) (see, for example, [LM09, Section 2, pg. 284]).

e When S is a closed or punctured, its boundary at infinity 0.,711(S) is home-
omorphic to S;

e when S has holes (with or without punctures), its boundary at infinity is
homeomorphic to the Cantor set of ends of any Cayley graph of 7 (S).

Whichever the case, the orientation of S imposes a canonical anti-clockwise or-
dering on 0,7 (S).

Definition 3.1 (marked ideal triangles). We define the set of marked (oriented)
ideal triangles on the universal cover S of S as:

Ti(3) - {(a b,c) € (0w ()P a, b, ¢ are distinct elements arranged }
= 7 Yy oo/l1

in anticlockwise order along 9,7 (S).

The ideal boundary 0., (S) is naturally endowed with a (diagonal) 1 (S)-action, and
we define the set of ideal triangles on S as

Tri(S) := Tri(S) /m1 (S).

Moreover, we denote the m(S) orbit of (a,b,c) representing an element in Tri(S) by
la,b,cls. We regard each [a,b,cls as an immersed ideal triangle on S and denote its
sides by [a, bls, [b, cls and [c, als.

Fact 3.2 (e.g.: [BCS18, Section 4.1, pg. 7]). When S is closed or cusped, the set Tri(S)
of (oriented) marked ideal triangles on S is homeomorphic to the unit tangent bundle T'S
onS.

Definition 3.3 (k-intersecting ideal triangle). Let X be a model hyperbolic surface for
S, we say that an ideal triangle [a, b, c]s on S is k-intersecting if the (unique) geodesic
representatives on L of each of the three sides [a, bls, [b, cls, [c, als of [a, b, c]s have:

o at most k self-intersections, and

o at most k pairwise intersections.
We denote the set of k-intersecting ideal triangle on S by Tri\(S) and the set of lifts of
k-intersecting ideal triangles to the universal cover S is denoted by Triy (oo (11(S))).

The goal of this subsection is to prove the following result:

Theorem 3.4. Let p : 71(S) — PGLn (R) be a positive representation, and fix a triple

ratio function TP : Tri(S) — R~ of the form:
(18) T°(x,y,2) =T (0, y,2), fori+j+k=n

Then the restriction of TP(-) to the set of k-intersecting ideal triangles on S, is bounded

within some interval [Trﬁin,krTrgax,k] C Roo.

We first consider the special case when S is closed. We learned the following
argument from Francois Labourie and Tengren Zhang (independently):

Proposition 3.5 (Labourie, Zhang). When S is a closed surface, the triple ratio function

T° is bounded within some interval [T°. Tl C R=.
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Proof. The function T° is m;(S)-invariant and hence descends to a continuous
function on Tri(S) = T!S. The rest follows from the compactness of T'S. a

We now turn to the case when S = Sy, has boundary holes and punctures. Our
proof in this case is also based on compactness, with the adjustment that the role
of Tri(S) is supplanted by Trix(Sv). We first establish the following:

Proposition 3.6. The set Triy(Sv) of k-intersecting ideal triangles on Sy is a compact
subset of Tri(Sy).

Proof. The case when all the boundary components of Sy, are holes is straight-
forward. Let dSy, denote the closed double of Sy, then the embedding

L:Sb‘—>dsb

of surfaces induces an embedding of ideal triangles t, : Tri(Sy) < Tri(dSy). Ob-
serve that 1, (Tri(Sy)) is precisely the set of ideal triangles on dSy which lie com-
pletely on 1(Sy). Both the property of being contained on (Sy ) and the property
of being a k-intersecting ideal triangle are closed conditions. Therefore Triy (Sv)
is compact.

When all of the boundary components of Sy are all punctures, we remove small
disjoint horocycle-bounded neighborhoods around each puncture and reuniformize
the resulting surface to obtain a surface Sy, where all of its boundary components
are holes. This gives us a smooth embedding map

unif:Sh — Sb

given by the inclusion function.

FiGure 10. An example of the map unif : S, — Sp, geodesic
boundaries are mapped to horocycles.

This in turn induces a map on the level of the fundamental group and hence on
the ideal boundaries:

U2 00071 (Sn) = Ooo1(Sp).
First observe that u identifies the two end points of every lift of the boundary
geodesics of Sy, to Sy, to obtain the lift of a cuspidal ideal point in Sy, because
every geodesic boundary of Sy, maps to some horocycle on Sy. In fact, we see
that there are no other identifications by combining the following facts:

o the induced ordering on u(09,,7 (St)) and the ordering on 0,71 (Sy ) agree;
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e ideal points in 9,711 (S,) which are not endpoints to some peripheral ge-
odesic cannot map to cuspidal ideal points in 9,7 (Sy, ) — this is because
such ideal points correspond ideal limit points of (lifts of) leaves of (inte-
rior) geodesic laminations and laminations on Sy, map to laminations on
Su (up to isotopy).

The (continuous) identification map u in turn induces a continuous map u, :
Trix(Sn) — Trix(Sv). It is important to note that u, is well-defined but does not
extend to a map Tri(Sw) — Tri(Sp). This is because

uy(la,b,cls,. ) = [u(a),u(b),u(c)ls,

does not produce a triangle if u(a), u(b) and u(c) are not pairwise distinct. This
cannot happen to a triangle [a, b, cls, € Trix(Sn): if (without loss of generality)
a and b are the two endpoints of a lift of a boundary geodesic of Sy, then the
geodesics [b, c]s, and [c, als, spiral toward the same boundary in opposite direc-
tions and hence intersect infinitely often.

Further observe that u, is a surjective map which is at most 8 to 1. The preimage
of a triangle A\ € o711 (Sk) has 27 pre-images if the ideal vertices of A are based
at j distinct cusps. Since Triy (Sy) is the image of a compact set, it is compact.

Finally, if Sy has a combination of boundary holes and punctures, we double Sy
to a surface dSy, with punctures only. Then by our punctured case argument,
the set of ideal triangles Trix(dSy) on dSp is compact. And by our holed case
argument, the set of ideal triangles Trix (Sp) is homeomorphic to a closed subset
of Trix(dSp) and is hence compact. O

Theorem 3.4, surfaces with both boundary holes and cusps case. The triple ratio func-
tion TP : Tri(Sy) — R restricts to a positive continous function T°|g;, (s, ) de-
fined over the compact set Trix(Sp). We then take TP, (k) and Th.x(k) to be the
respective minimum and the maximum for the restricted function T°|g;, (s,). O
Remark 3.7. Our proof is sufficiently topological that Theorem 3.4 holds true even for
convex real projective surface with quasihyperbolic boundary monodromy (see [Mar12])
— note that the area of the surface is infinite in this case.

3.2. n-Fuchsian rigidity conditions. We now shift from the study of triple ratio
boundedness to that of fuchsian rigidity. Our goal in this section is to prove two
characterizing conditions for a positive point (p,&) € Xpgr,,s,,., (R>0) to lie on
the n-Fuchsian locus.

Definition 3.8. The two proposed n-Fuchsian-characterizing conditions are:

(1) every triple ratio coordinate is equal to 1.
(2) for every edge, the edge function coordinates along that edge are all equal.

We say that triple ratio rigidity holds if condition 1 is a characterizing condition for
the n-Fuchsian locus, and we say that edge function rigidity holds if condition 2 is a
characterizing condition.

Remark 3.9. It is well-known that all triple ratio coordinates being equal to 1 is a neces-
sary condition. Conversely, these two properties combine to give the defining equations for
n-Fuchsian slice of the relevant positive X-moduli space (including the universal higher
Teichmiiller space X, ). Therefore, to show that triple ratio rigidity holds, we need only
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show that the triple ratio equal 1 condition implies the equal edge function condition. Vice
versa for edge function rigidity.

We begin in lower rank examples, where direct computation yields algebraic
proofs. The advantage of such a proof is not merely in simplicity, but also in
their extensibility to the universal higher Teichmdiiller space context [FG07, Defi-
nition 1.9] and also to general coefficient fields. .

Theorem 3.10 (Triple ratio rigidity for n = 3,4). For n = 3,4, the triple ratio rigidity
condition characterizes when a positive point (p, &) € XpaL,, s, . (R>0) is n-Fuchsian.

Proof. We invoke Remark 3.9, and also lift our discussion to the universal cover to
avoid dealing with different cases involving topologically distinct triangulations
of the surface. Given any ideal triangulation 7, consider an ideal edge Xz common

to two ideal triangles (x,y, z) and (x,z,t) in T as depicted in Figure 11.

x X

e oS

Ficure 11. flip at Xz

We compute X’ pin 2 after flipping at edge Xz via the cluster transformation for-

mula in Def1n1t10n 2.24:

X/
Vltlyrx272 1 + Xv;,,rffz + X"i‘/:iuxvzrrffz + vaffl XV?'Z ¢ XV;rf 2
(19) X 11X X X Xorr Xovme X
Vi T Xz RAGuE Aoz FRupE Ropue Aoxe

2 WVih

By assumption, triple ratios are all equal to 1, and the equation above tells us that
(20) X X,z = X X,z

Von—2 Vin—1"

By symmetry, we also have
(21) Xyxz, = Xyrz

—11°

For n = 3,4 there are at most 3 coordinates along Xz, and hence must all be equal.
Since this applies to any arbitrary edge, we see that p is n-Fuchsian. O
Remark 3.11. For n = 5,6, we can express X vv=  in the Fock-Goncharov coor-

111171

dinates for the n-triangulation of Figure 11 (left). By explicit computation, we obtain
Xyye , = Xypz , and symmetry again ensures that Xx= =~ = Xx= . However, the
number of mutatlons needed to compute flips increases szgnzﬁcuntly as n increases and
this is a stumbling block for extend this strategy for all ranks.
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Theorem 3.12 (Edge function rigidity for n = 3). For n = 3, the edge function
rigidity condition characterizes when a positive point (p,&) € XpgL, s, . (R>0) is n-
Fuchsian.

Proof. We again invoke Remark 3.9, and we again work in the universal cover (see
Figure 11). By assumption, we have X~z = X,x-. After flipping the edge Xz, we
obtain '

(22) X L va,zy X"fi‘,Jl'z va{‘ (1 + vaf ) _ X"f'zy X"i‘,i?l'l va,{‘
B T X X X X X X T Xy Xy

and

o Ko = s Xy Xons

Rl T Xy T4 X
which satisfies X/ = X s by asumption. Solving for X,xu= yields X,xy= =1
as desired. O

We now turn to the geometry of Frenet curves to help establish these rigidity
conditions.

Definition 3.13 (Frenet curves and osculating curves). A curve &' : St — RP™ 1 s
called a Frenet curve if there is an curve & = (&!,..., &™) : St — B such that
o For every ordered partition (n4, ..., ") of n and every k-tuple of distinct points
X1,...,%Xc €S, the following sum is direct:

k
@ M (xi) =R™.
i=1
o For every ordered partition (j1,...,jx) of a positive integer j < n, and for every
x € SY, then:
K
i Ji(x:) = &
im EE (i) = & (),

where the limit is taken over k-tuples (x1,...,xx) of pairwise distinct points x;.
We refer to & = (EY,..., &™) as the osculating curve for the Frenet curve &L

To begin with, we note that (for n = 3) the Fuchsian-characterizing nature of
simultaneously having both the triple ratio unicity and the edge function equality
properties applies to the entire higher Teichmiiller space, and not just on the
subspace of positive points. This is of independent interest to our aims in this
subsection.

Remark 3.14. For n = 3, we demonstrate that if an ideal quadrilateral satisfies the
properties that the two edge functions on its cross-edges are equal and all triple ratios
for the ideal triangles constituting this ideal quadrilateral equal 1 is equivalent to having
the four vertices x1,%2,X3,%4 being on the sam ellipse. Since T(&(x1),E(x2), E(x3)) =
1, there is a unique projective transformation sending the flags &(x1), &(x2), &(x3) to
(A, ler), (B,lkg), (C,leg) arranged as per Figure 12 with EFG equilateral and with
A, B, C being midpoints. Further let £(x4) = (D,1lp), H=AD N BE, I = ACN BE,
L=BDNAGand M = BC N AG. Then the edge function equality

(24) C1(&(x1), &(x2), &(x3), &E(x4)) = Ca(&(x1), E(x2), E(x3), E(x4))
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is equivalent to
_|EH] _ [EH[-[BI] _ |ALI-IGM| _ |AL|

IBH| ~ [BH[-[EI]  [GL|-|AM|  [GL[’
Combined with |EI| = |IB| = |AM| = IMG]|, we get |HI| = |[LM|. Since |All = |BM|,
Al L HI and BM L ML, and we obtain /o« = £ and hence A, B, C, D lie on the same
circle as Zov and Z3 are angles subtended on the same arc.

(25)

P 5 G
F1Gure 12. Normalized position

We now present a different approach for establishing triple ratio or edge func-
tion rigidity via the geometry of the Frenet curves. The method allows us to
establish triple ratio rigidity to arbitrary rank positive representations of closed
surfaces and punctured surfaces (i.e.: positive representations with unipotent
monodromy). The limitation is that this method does not apply for arbitrary
Frenet curves (i.e.: elements of universal higher Teichmiiller space) or if there is
a loxodromic boundary component.

The following lemma is key to our proof strategy:

Lemma 3.15. Consider the restricted osculating curve & = (&1,&2) : [0,1] — B for the
subarc &' of a Frenet curve. If the triple ratio T(&(0),&(1),&(s)) is equal to 1 for every
s € (0,1), then the image of &' in RP? is the subarc of an ellipse.

Proof. We first observe that we may freely apply PGL3(R) to & without affecting
the smoothness of  or its triples ratios. Therefore, we may assume without loss
of generality that

(1) the subarc maps to R? ={(x,y)} = {[x,y : 1]* € RP?} C RP%;

(2) £1(0) and £'(1) are respectively positioned at (0,0) and (0, 1);

(3) &%(0) and &2(1) are vertical lines;

(4) and &' is parameterized so that £!(s) = (s, f(s)) for some C! function f(s).
This final condition is possible because Frenet curves are necessarily hyperconvex.
The triple ratio

T(&(0),&(1),&(s)) =1
Explicitly writing out this condition for a C! curve (t, f(t)) yields the following:

(1—s)(f(s) — sf'(s))

ST 1 (19 (s) -
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The family of half-ellipses of the form y? = Ax(1 — x) constitute the full set of
possible solutions for this ODE. O

We are now well-prepared to prove the following:

Theorem 3.16. Triple ratio rigidity holds for positive points (p, &) € XpaL,,s,, . (R>0)
for which the boundaries (if any) of Sq m are all unipotent.

Proof. The statement is trivially true for n = 2, so consider n > 3. Our goal is
to show that the Frenet curve for (p, £) has smooth image and thus invoke [PS17,
Theorem D] (or [Ben01, Proposition 6.1] for the n = 3 case) to conclude that p is n-
Fuchsian. To demonstrate the desired smoothness, we compute the projection (a
smooth lift) of the Frenet curve into 3-dimensional subspaces for which a certain
set of ideal triangles retain their triple ratios and then apply Lemma 3.15.

Let X : [0,1] — RP™! be a subarc of £'. By applying the action of PGL,, (R), we
assume without loss of generality that:

o the (ordered) standard basis (e1, e, ..., exn) is a basis for the flag (0);
o the reversed standard basis (en, en—1,...,€1) is a basis for the flag £(1).
We identify X(t) with the following lift to R™:

Xt)=x1(t)er +... + xn_1(t)en_1 + xn(t)en.

The first axiom for Frenet curves (Definition 3.13) ensures that:
e x,(t) #0fort #0;
o x;(t) and xi1(t) cannot simultaneously equal 0 for t # 0, 1;
e and x;(t) cannot identically zero.

We renormalize X(t) by setting x, (t) = t.

Step 1: we know from the given assumption that T,_p11(X(0), X(1),X(t)) = 1.
Remark 2.22 tells us that these triple ratios are still equal to 1 after projecting X(t)
into the orthogonal complement Vi~ of

(26) V1 :=Span{e;, ey, ..., en_3}
By Lemma 3.15, the projected image
(27) Projvll (X(t)) =Xn-2 (t)en72 + anl(t)enfl + Xn(t) en, Where x, (t) =t,

defines a subsegment of an ellipse when further projected into RP?. Thus there

is a reparametrization s : [0,1] — [0,1] of t such that X"if((:)(s)) , X“*tl((:)(s)) are both
real analytic functions in s. We also observe that it at least one of xn_»(t), Xn—1(t)
needs to be non-zero or else the projected image of X(t) in RP? would just be
a single point. Analyticity further asserts that x,_»(t) and xn_1(t) either have
finitely many zeroes, as they cannot be identically zero. We now show that

Xn—k—1(t(s))/t(s) is real analytic in s, inductively over k =2,...,n — 2.

Step k: we know from the given assumption that the triple ratios
To 1101 (X(0), X(1),X(£) = 1 for all t
and remain equal to 1 after projecting into the orthogonal complement Vi of

(28) Vk = Span{el/ 62/ crcy en7k72/ en7k+2/ cecy en}-
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The projected image of X(t) is given by

(29) P”OJ'VL (X(t)) = Xn—k—1 (t)en—k—l =+ Xn—k(t)en—k + Xn—k+1 (t) €n—k+1-
Further projecting in the e, _x_1, en—_i direction, Lemma 3.15 ensures that X" k)jl
is real analytic with respective to some reparametrization ty of t. However we

already know that this quantity is real analytic with respect to s, which implies
that t; and s are real analytically compatible reparametrizations of t. Hence, the

functions X“fkim is a real analytic function in s, and
Xn—k—1(t(s)) _ xn—k-a(t(s))  xn—k(t(s))
t(s) T xn—k(t(s)) t(s)

is also real analytic with respect to s. Note that this argument applies when
X;‘nkki(lt((()))] is well-defined. For the remaining finitely many points where x, i (t(s))
equals 0, we may project projy, L (X(t)) in the e, _x_1, en_x+1 direction and run the
same argument. This is always doable because xn_i(t) and xn_x41(t) cannot
simultaneously equal 0.

X SS)), e, x“*tl((st)(s)) are real analytic functions in s,

and hence X(t) has smooth image in RP™ L. O

We have now shown that
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4. GONCHAROV—SHEN POTENTIALS

The A-moduli space Agy,s,,(R~o) is equivalent to Penner’s decorated Teich-
miiller space, whose element correspond to marked hyperbolic surfaces deco-
rated with a horocycle around its solitary cusp. Penner showed that the length P
of this horocycle is a rational function of his A-length coordinates (A, Ay,A;) for
Ast,,s,, (Rsp). In particular, it takes the form:

A A A
P=2(-—2 J — .
(30) (Ay Az * AzAx * ?\x?\y>
Moreover, choosing the length P = 6 horocycle yields the Markoff equation.

Goncharov and Shen generalize this construct to Asp, s, ,, in [GS15]. Their con-
struction is based on the following key observation:

Fact 4.1. For any triple of decorated flags (F,G,H) € A3 if (F,G,H) are in generic
position, there is a unique upper triangular unipotent matrix g, upper triangular with
respect to any basis for F, such that (F,n(G)) - g = (F, m(H)).

Definition 4.2 (i-th Character). Let the above linear transformation g take the form
(gi;) with respect to any basis for the decorated flag F. Fori=1,--- ,n — 1, we define
the i-th character
PI(F/ G/ H) Of (F/ G/ H) to be Jn—in—i+1-
The i-th character satisfies the following additive properties:
Pi(F; G, H) =Pi(F;, G, W) + Pi(F; W, H);
Pi(F;G,H) = —Pi(F;H, G).
Consider (p,&) € AsvL,,s,,. and an ideal triangulation T of Sq . For any marked
triangle (f,g,h) in T (T resp.), we denote the i-th character Pi(&,(f); & (g), &p(h))
(Pi(&(f); &(9), E(N)) resp.) by Pi(f; g, h).
Remark 4.3. Given (p, &) € AsL, s, . (R=o) and the ideal triangulation T,
(1) for any anticlockwise oriented (e, f, g, h), these additive characters satisfy the
following positivity property:
Pi(e; f/ g)
Pi(e;g,h)
(2) by the above definition, for any marked ideal triangle (x,y,z) and any & €
1 (Sg,m), we have

> 0;

Pi(x;y,z) = Pi(6x; by, 0z).

For general XpgL,, s R~), we have Proposition 4.16 instead.

g,hl(

Definition 4.4 ([GS15] Goncharov-Shen potential). Given (p,¢&) € Agp, s

S gm/ W fiX
an ideal triangulation T of S 4 m and fix one fundamental domain Q) of T composed of ideal
triangles in T. Given p € my, let ©, denote the set of marked anticlockwise-oriented
ideal triangles (f, g, h) in Q with f being a lift of p. For eachi=1,--- ,n —1, the i-th
Goncharov-Shen potential at p, denoted by PY, on the A-moduli space Asy, s, . i
given by:

31) PPi= > Pilf;gh).
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For [u] € ﬁp (Recall Definition 1.16), let ©,, be a subset of ©,, that contained in a lift of
w. We define (p,1)-Goncharov-Shen potential to be

(32) P=Pl:= >  Pif,gh).
(f,gh)e®,

For the case (n, g, m) = (2,1, 1), the Goncharov-Shen potential Pf is the same as P
in Equation (30). Goncharov and Shen show that P? is well-defined, independent
of the chosen ideal triangulation 7 and hence mapping class group invariant.
They further demonstrate the following beautiful fact:

Theorem 4.5 ([GS15, Theorem 10.7]). These m(n — 1) Goncharov-Shen potentials
{PP},1 generate the algebra of mapping class group invariant regular functions on the
moduli space Agr,,, s

gm’

Remark 4.6. Goncharov and Shen refer to their potentials as Landau—Ginzberg partial
potentials because an important aspect of their hitherto unproven homological mirror
symmetry conjecture asserts that their potentials should correspond to Landau—Ginzburg
partial potentials from Landau-Ginzburg theory. We opt to refer to their potentials as
Goncharov-Shen potentials both to acknowledge their contribution in discovering this
geometrically fascinating object, as well as to avoid implying the open conjecture that
Goncharov-Shen potentials are Landau-Ginzburg partial potentials.

We now give explicit algebraic manipulations of P;(F; G, H). This is essentially
taken from [GS15, Section 3], but is included both for expositional completeness
and because many of our computations and derivations depend upon these foun-
dational computations.

Remark 4.7. The following computation differs from Goncharov-Shen’s: we are comput-
ing g such that (F,n(G))-g = (F, (H)), they are computing g’ such that (F,t(H))-g’ =
(F, (G)). This accounts for the difference in sign in Lemma 4.8.

Consider a triple of decorated flags (F,G,H) € A% is in generic position with
respective bases (f1, - ,fn), (g1,- -+, gn), and (hy,--- , hy). For any non-negative
integers a,b,c with a + b 4 ¢ = n, define a one dimensional vector space

Ly =F"N(G* @ He),

and choose e%¢ € L5 such that e5¢ — fq 1 € F. Define al/¢t' € R so that

b—1,c+1 b,e _ FEGH b,c+1
(33) €a —€d = Xipe "€d1 -

Lemma 4.8 ([GS15, Lemma 3.1]).
FEGH A (fafl /\hc+1 A gb) A (fa+1 AhS A 9bfl)
abe = TA(fa AhC AgP) - A(fe AhSTT A goT)

(34)

Notation 4.9. By definition eé’nfi =fy foreveryi=0,--- ,n.
Equation (33) tells us that there is a change of (ordered) bases

a+b—1,c+1 b,c+1 _b,c ,b—1.c 1,c 0,c 0,1 F,G,H
(eo 7ttt €1 1€ €y s € b17Ca b /€ ) “Nalotgpe)

- a+b—1,c+1 b,c+1 _b-1,c+1 ,b—1.c 1,c 0,c 0,1
= (eo 7 r€q 1 s€q 1€a+1 7 7 Catb—1/Catbr T ’en71>
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encoded by unipotent matrices of the form

Idg ; 0 0 0

0 1 x 0
Na(x) = 0 0 1 0

0 0 0 Idpict

For ¢ = 0, using the above transformation n — 1 times, we have
en—10 ol0 F;G,H F;G,H n-2,1 01
(flr PR - 1) Nl((xln 10) anl((xn 110) (fllel PR S 1)

For 1 < ¢ = k < n —2, applying the above transformation n — 1 — k times, we
have

n—1-kk 1k 0k 01 FGH FGH
(flfel 7 e k1 Gk s 1) N1 (0g 70 ger) - N (071 4 1)
n—2—kk+1 0k+1 0k 01
(flr e k1 kT ’en71> .

Composing the above n — 1 transformations, starting from c = 0, we get:

n0 n—1,0 10 omn 0On—1 0,1
(60 ,el Lo, ) g_(eo ,el ,...len71>_

We refer to the unipotent matrix

n—2n—
(35) g= H H zg M), as the rotation matrix.

Observe that (F,n(G)) - g = (F,t(H)). Since g may be explicitly written out, and
satisfies the criterion for Fact 4.1, we see that:

(36) «(F;G,H) ZocF /G,H

n—ii—c,c*

Example 4.10. When n = 3 (see Figure 13), we denote oc;;l by R o o on by S
oc1 1 SH by T; w- By Equation (35), we obtain

1 S +TH SELRE
(37) — Ny(ST ) - Na(RE ) -Ny(TF )= [ 0 oh 7o SenTen
9= N1ogn) - M2lRgn) - Nillgn) = 0 0 %h ,

and hence P1(F; G, H) = Rg/h and P»(F; G, H) = S;/h + T;h.

By direct computation, we obtain the following relationships among the quanti-
ties 7S P(F;G,H) and T} ix(F, G, H).

a,b,c’

Lemma 4.11. For positive integers a, b, c with a +b + ¢ =n, we have

O(F;G’H
,b+1,c—1
(38) ﬁ = Tap,c(F, G H).
a,b,c
Proposition 4.12.
39 Pi(F;G,H) = «CGH 1
39) i( ) =% +ZHTn o F )

c=1j=1
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Ficure 13. The above figures encodes how one constructs the
unipotent matrix taking (F,7t(G)) to (F,mt(H)). Basis 1 is blue,
basis 2 is mangenta, basis 3 is red, and basis 4 is green.

Proof. Iteratively applying Lemma 4.11 c times, we obtain

F,G,H FGH
(40) (ani,ifcc_ n—i,i,0 HTn i JJ F G,H)

Re-expressing Equation (36), we get:

i— Cc

1
41) Pi(F;G,H) FGH BGH
@ Zocn vimee = Snouin +c 1j= T Tnie ;;(F G,H)

The i-th character P;(f; g, h) depends on the choice of basis for F. For elements

of A-moduli space, this is canonically assigned, but not so for XpgL, s, .

To resolve this issue, we consider taking ratios of two i-th characters, thereby
providing a well-defined regular function on Xpcgt,, s, (R>0). This is an idea
previously used in [Sun15] in considering the ratio of two (n x n) determinants.

Definition 4.13 (i-th ratio). Given (p, &) € XpcL,,s,,., (R>0) and x,y,z,t € m,,, sup-
pose that (&,(x), &0 (Y), &p(2)) and (&,(x), & (y), &p(t)) are in generic position. Choose

respective bases

(Xll' o /XTL)/ (91/' o /yn)/ (2’1/' o /Zn)/ (tll' o /tn)
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for (Ep(x),Ep(Y), Ep(2), Ep (1)) and fix a lift X of £, (x) to A. We define the i-th ratio of
(x,y,z,t) as:

Pilsy,t) _ PilX&p(y), & (1)
42 Bi(x;y,z,t) = = .
) Y by, T Py Epl2)
We show (Proposition 4.14) that the i-th ratio is independent of the choice of X.

The well-definedness of i-th ratio also insures that © ((X e A)

(Ep(x), Ep(W), Ep (1)) is in generic position.

is also well defined if

Proposition 4.14. The i-th ratio By (X’y,z,t) is expressed as follows:
1

L+ Y [ mo e
i—-1 1

1 Zc:l =1 T )

and the i-th ratio does not depend on the lift X of £,(x)

(43) Bi (X;y/Z/ t)

: Di(x/y/ zZ, t)/

Proof. By Proposition 4.12, we have

i—-1 ¢
- _ Xyt _
(4:4:) Pl(XrU/t) - ocnfi,i,o T+ Z H Tn 1i—j,j X y,t)
c=1j=1
and
i—-1 ¢
45 Pi(xy,z) = ¥ o [ 1+ T xuz
(45) %y, z) n—i,i,0 ;)1_]1:1-“ 1i-jj(% Y, z)

Moreover, by Lemma 4.8, we get

A(aniflAtlAyi),A(aniwbl/\yi—])

xy,t - . - -
“nfi,i,o o A(anl/\yl),A(xnfl/\tl/\ylfl]
“X;E’-Z- 0 - A(Xniii?/\ll_/\yi)'A()‘(nii+l/\>yi71)

n—1i, A(xnfl/\yl),A(anl/\zl/\ylfl)

(46) B A (anifl A t1 /\yl) A (ani A Zl /\yifl)

TANIAL Ayt ’ A (x" T AZL Ay

=Dilxy,z1).
Thus we obtain
1 .
Pi(x;y,t) 1+Z J 1 Th i, 00y,0) Vi
B (X;y/Z/t) = P (x; ) 1 ) x;y,;fi -
47) e 1+ Z J 1 Th—ii—, (0y,2) %n=ii0
1+ T
J Tn—tiz ;](th) -Di(X;U,Z,t).
JEES R pFpe————
Since edge functions and triple ratios are projective invariants, we conclude that
Bi (x;y,z,t) is independent of the lift X of &,(x). |

Recall the weak cross ratio in [LM09, Theorem 10.3.1]
A(TAZY) A@YTTAL)

(48) IB%(x,y,z,t) = A (xn—1T At ' A (yn—l Azl) ’
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By Proposition 4.14, we have

B t)—ﬁA(X“‘i‘lAtlAyi) AT A AYTY
FOEE T LA G AT AYET) AT T AZ Ay

n—1
(49) = || Di(x,y,21)
i=1
n—1 1+Z I
= (Bi(X,y,Z,t) - TTn i ;](xyz] .
=t (RIS NI oo

We therefore obtain:

Corollary 4.15. The weak cross-ratio and the i-th ratio is related by:

n—1 n—1 1+Z 1T 1
n— 11 (Xyz‘)
(50) B(x,y,zt) Bi(x,y,zt ] B .
E 1 )11 T 1

i=1 J =1 Thiim,; ey )

The above corollary allows us to relate Labourie-McShane’s identities [LM09] to
the McShane-type identities/inequalities in this paper.

Proposition 4.16. Consider an element (p,&) € XpGL,,s, .. (R>0) and its associated
osculating map &,. Suppose that for any homotopy class v € m(Sqm) representing
a closed curve with loxodromic monodromy, there exist a lift of p(y) into SL, with
eigenvectors 81, -+ , by and positive eigenvalues A, --- , Ay respectively. Further let
dF, 87 respectively denote the attracting and repelling fixed points of 5. Suppose that
(81, ,0n) ((dn, -+ ,01) resp.) is the basis of the flag &,(57) (£,(87) resp.). Now,
given a marked ideal triangle (x,y,z), (arbitrarily) fix respective bases

(Xll' o /Xn)/ (91/' o /yn) and (le' o /Zn)

for &5(x), &0 (y), Ep(2). Then, for integers a,b > 1and c =n—a—b > 0, the following
ratio is indepent of our basis choice and satisfies

XY,z Aat1 iy 8+
(51) (‘Xa,b,c o )\GT le =95

x;0y,0z An_a ifX =5

a,b,c An—a+1 :

In addition, we also obtain that:

Pnfa(é_‘_;yrz) :}\a+1 and Pa(5_}y/Z) _ Aa
Pnfa(‘SJrr' 59/ 62) }\a Pa(éi; 69/ ‘SZ) }\a+1 '

(52)

Proof. We only derive the 5 case, the other is essentially the same. Recall the
notation x“ :=x; A\ - - Ax4. For any non-negative integer u,v with a+u+v =mn,
we obtain

(53) AR Nz AYY) = A(p(8)8° A p(8)z" A p(d)y”)
(54) =M Aa - ABEA (82) A (5y)Y).
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Then
(55) Stz A (5(171 /\ZC+1 /\yb) A (6a+1 A z© /\ybfl)
Yabe T TTA(5a Az AyP) - A (6% AzeT AyPT)
(56) B Aatr1- A (6‘1_1 A (8z)¢ A (Sy)b) -A (6“+1 A (6z)¢ N (5y)b_1)
o Aa - A(BENA(82) A (dy)P) - A(8a A (6z)tI A (Sy)b—1)

Aa .5y 52

(57) =S ane
Gt Aews

This lets us obtain that —$%—+ = =**. The basis-independence of % again
o5y, N a

ensures that our initial choice of bases is irrelevant. To further obtain that
Prna(6%5y,2)  Aan
Pn_a(8F;0y,062) Ao
we apply Proposition 4.14 with the observation that
(8%,8x,8y) =6-(8",%,y)
and the fact that triple ratios are projective invariants. O

Definition 4.17 (Canonical lift). For any positive p € Hom(7m;(Sgm), PGL,)/PGL,,
with loxodromic monodromy around each boundary component, there is a canonical lift
(p, &) into XpGL,, s, . (R=0) such that for any homotopy class & € 11 (Sg,m) representing
a boundary component of Sqm, there exist a lift of p(d) into SL,, with eigenvectors
81,- -+, 0n and eigenvalues A1, - - - , Ay respectively satisfying Ay > ... > Ay > 0, and
(81, ,0n) ((On, -+, 1) resp.) is a basis for the flag &,(dF) (£,(57) resp.).

Remark 4.18. We use b; to represent an eigenvector only here. Later in Section 8, we
use 8% := 81 /\ -+ - A\ &; for computation as in Proposition 4.16 and avoid using &;.

Proposition 4.19. With respect to the canonical lift (p, &) of a loxodromic bordered pos-
itive representation p, the i-th period of o is the i-th simple root length of «:

(58) logBi (¢ a*, x(y),y) =log % =li(a), fory# ot

Proof. Apply Proposition 4.16. O



38 YI HUANG AND ZHE SUN

5. GONCHAROV-SHEN POTENTIAL SPLITTING TECHNIQUE

5.1. The Agy,s,,(R~o) Case. The goal of this section is to prove the following
McShane-type inequality, before we promote it to an equality in Section 7.

Remark 5.1. For (p, &) € Asi, s, .. (R=o), the representation of the twist o . is iden-

tity by Definition 2.9. Thus we use (p, &) € AsL, s, ,, (R>o) instead.

Theorem 5.2. Given (p, &) € Asi,,s,, (Rxo), let p be the puncture of S11, let @1,1 be the
collection of oriented simple closed curves up to homotopy on Sy 1. Then

1
(59) ; 1+ ebt(y)+Tlv) <L

Y€€

where () is defined in the description of Figure 2.

We obtain the above result by splitting the Goncharov-Shen potential PT. As
such, we first explain the splitting procedure..

Let (p, &) € Ast,,s,, (R=). Given an ideal triangulation T of S 1, we lift T into the

universal cover J. We denote the Fock-Goncharov A coordinates as in Figure 9.
Same as the case of Agy, s,, (R~0), the flips along the edges yt, tx, Xy generate the
extended mapping class group of S;;. Such dynamic is described by an infinite
tree with degree three for each vertex expanding to infinity starting from one
vertex. For Agp, s, (R~o), the flip at the edge yt is composed of four successive
cluster mutations. This is shown in the description adjacent to Figure 9.

By Equation (36), we have

p_wW_ w . w_ a4 . 49_ 49
(60) =t g T ac T er T oa T as’
bc rd  bs ad ar = cs
=— et —F—+—+— + —
aw  ws wr wc bw dw
ar ¢cb dr bs ad cs
=t —+—+—+—.
sq dg cq aq Dbqg Tq
For P} and P}, we have similar combining and splitting properties given by mu-
tations as that of Markoff equation: flips cause a third of the summands each to
split into two new summands, whilst for the remaining two-thirds pairs of sum-
mands reconsistute to form new summands. This phenomenon is easily checked
by explicitly computing the mutation formulas (see Figure 9). We adopt to use
additivity of i-th character as follows.

Pl
(61)

Lemma 5.3. Set up as in Figure 9, we have

/

w o q T
62 P ; /t P /t/ - - = :P 7 Z, 7
(62) iz t) + Pyt x) = =+ = - =Pily;z,x)

q w s’

P M P M = — _—=— :P M
(63) 1(t1X/1J)+ 1(t/UrZ) sa+ds ad 1(tIXIZ‘)I
/ /

(64) PlztY) = — = — + —— = Pi(z;,4,%) + Pi(z;,%,Y),

ac  cw’  aw’
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q 1./ S/

“bd dq’ M bq’
These formulas generalize the splitting of horocycle length for a hyperbolic structure.
Similarly, we have formulas for P,.

(65) P1(xy,t) =Pi(x;y,2) + P1(x; 2, t).

5.2. Asymptotic behavior. For each oriented simple closed geodesic v, we study
the effect of arbitrarily iterated Dehn twists along y on functions such as i-ratios
and triple ratios.

Given (p, &) € Asy,s,, (R=g), recall the continuous map &, into the flag variety
defined with respect to (p, & = 7o &). Given an oriented closed geodesic y and
the corresponding v, let 7° be an ideal triangulation that contains y,, as an ideal
edge. In one fundamental domain of 70, suppose X, Yo, to, t are the vertices of the
fundamental domain where x = P is a lift of p such that &(p) = &,(x) and (x,t)
is a lift of y,,. After doing Dehn twist k (k € Z) times around y on T°, suppose T*
is the resulting ideal triangulation. The fundamental domain of T* is shown in
Figure 14 left with the vertices x, yx, ti, t. Let (x1,%2), (Uk,1, Yk 2), (zk1, 2k 2), (1, 12)
be the bases of the images of x, yx, zx, t under &, respectively, which induce the
Fock—-Goncharov A coordinates (aq, ap, bx—1,Cx—1, Ck, bi, di—1, €x—1).

x
b ay
&3 —1 a9
Yk
Cl 1 t
a
1 bk
a2,
Ck
2k Zk

FIGURE 14. flip at yit

Then as shown in Figure 14, the Dehn twist tw, induces the map from Vg« to
Vi

xyw, zi, th = (% Yy, vae, th
the corresponding map for the Fock—-Goncharov A coordinates gives:

(a1, az, by_1, cx—1, Cx, by, dx—1, ex—1) = (a1, az, by, i, Cxt1, bry1, di, ex).

Let fi be the flip around the edge tyx. Let I'yx be the quiver for T¥. Then
twy(l}sk) = (yxzx) © fk(l};) = Ty, where (yxzi) is the permutation of the

vertices in l}; corresponding to permutation of yy, zx in T%. Moreover, frrrofy =

2

twy.
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In [Hual4], for Asp,s,,, each gap of the McShane identity is interpreted as the
limit of 5% under the sequence {twk}/> _. Since we can express P} as a pos-
itive rational function of Fock—-Goncharov A-coordinates, we begin by studying

the asymptotic behavior of these coordinates under the Dehn twists.

Proposition 5.4. Suppose that the eigenvalues of p(y) satisfying A1 (p(v)) > A2 (p(y)) >
As(p(v)) > 0. Under the sequence {tw%‘,}“o we have:

k=—00’

. b o . Cx , ex
(66) Kot br | kodse dr | Koo Crer | Koihe e 1(p(v)),

and conversely, we have:

. Ckyl g €kgl o by . die 1
(67) k1—1>IJrrloo Ck 7k1—1>1:rkloo €x 7kl—l>Izloo bk+1 7kgr£loo dk+1 7A1(p(‘y ))
Moreover, the following limits exist:
b b
(68) im -5 lim —%, lim %, lim <.

k—+o0o di k—=—oo dx k—+oo €1 k——00 €)

Proof. When k = 0 in Figure 14, suppose that yo = fx where 3 € m;(S1,1). For
k € Z in general, by definition, t = v - x, yx = Y*B - x, z. = Y*"1B - x. Let the
bases of the flag &,(x) be (x1,x2,x3). Since &, is p-equivariant, we have

A (a Ap(Y*B)x1 A p(y)xa)
A(xa Ap(y*B)x1 Ap(y)x1)

dict1
dy

It is the ratio of the length of two vectors p(y) - p(v*B)x1, p(v*B)x1 projecting
down to the plan spanned by x1,p(y)x; When k converges to +o0o, p(v*B)x
converge to the attracting fix point y*. The ratio dg—k“ is then converge to A1 (p(y)).

Suppose v1,V;,v3 are eigenvectors of A1(p(v)) > A2(p(v)) > As(p(y)) respectively.
We have

A (x1 Axa A p(Y*B)x1)
A(xg A p(v*B)xi Ap(y)xi)

A(Xl /\Xz/\\ll)

lim ﬁ = lim ‘
B A(x1 Avi Ap(y)xi)|”

k—+oo A k—+oo

which does not depend on the eigenvector v; that we choose in the eigenspace.
Thus limy_, ; « 3—‘; exists.

The proof of the other cases in Equations (66), (67) and (68) are similar, we leave
them to the reader. O

Monodromy computation We compute hwy explicitly in [GS15, Section 6.2] using
formulas in [GS15, page 566], then we have

0 0

1
(Eplzi), m(Ep(yr))) - | O —3 0 | = (Eplyi) nlEp(zi))).
a 0 0
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Remark 5.5 (monodromy). The monodromy matrix g, in the conjugacy class of p(y),
such that (&, (z), (& (1)) - g = (&p(yk), m(Ep (X)) is

(69)
1Sy, + T, sigkjo;Jk N 1T STEx+Tak SEEXRIEX
0 1 REY 0 -2 0 0 1 RY:
0 0 1 a 0 0 0 0 1
br_ic axCi— b 1 ac b c c
L pet tae:  ao 0 0 3 L St ke aen
— 0 1 €x—1 0 _ 0 €k
asCyk ag aicCyg
0 0 1 a; 0 0 0 0
And

(70) TT(Q):—%-F(M-(RZK §Zk | RUK QUK 4 RZk QUK | RZk TUk )

a tyx“tyx Z1, XY ZK,X tyk Y zix tyk zk,x

(71) T‘r(g—l) = _% +ap- (Rg;xsi‘;k 4 RZk T2k 4+ RYx Tz 4+ RYx_TYxk )
2

tyk "tyx Zr,X "tyk Zx,X "Zy, X/
5.3. Goncharov-Shen potential for half pants.

Remark 5.6. Given (p, &) € AsL,,s,,, as in Figure 14, the surface Sy is cut into two
half pairs of pants wand w' along vy and y,,. Recall the (u,1i)-Goncharov—Shen potential
in Definition 4.4. By the additivity of i-th character, we have P! and P{L/ are invariant
under the Dehn twist around y. More explicitly, we have
di— d
PE =R (+RE, =14 =~

xX,zZx

bra;  byay’

ex_ e
W pzi yr _ €k—1 k
Pl - Rt,yk + Rzk,x - + ’
CrQaz Cra1
PR _ gx T gt Tt bick—1  aibx—1 | asbyyr | brCip
2 T Yyt + Kt + X,Zk + XZk d d d d ’
Crdx—1 k—102 aidx kCk
PR _gTk L TEk 4 QUK L UK — ckbr_1 | @ack—1  aicky1 |, Ckbrsr
2 t,yk+ t Yy + Zk,x+ Z,X b + b’
k€k—1 aj€x—1 azex €x Dk

do not depend on k € Z.

Proof of Theorem 5.2. McShane’s identity [McS91] is established by dividing up a
horocycle into countable many disjoint open intervals and a Cantor set. Each
such interval takes the form as shown in Figure 15, and there is a canonical
2 : 1 correspondence between these open intervals and oriented simple closed

geodesics on S11. Specifically, the intervals Ij, I, correspond to y € él,l and the

intervals I3 U Iy correspond to y~!. This correspondence is purely topological,
and applies also to the higher rank context.

For Asp, s, (R~0), the role of the horocycle is supplanted by the Goncharov-Shen
potential P{. Using the Fock-Goncharov A coordinates in Figure 14, we compute
the gap terms for I3, I, thereby allowing us to obtain

(72) > ( lim Sl iy Sk )ng,

k—+o00 bk(ll k——o0 CrQq

Y€€

where the inequality is due to the potential measure theoretic contribution of the
remnant Cantor set.

7
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Ficure 15. The red and yellow simple curves spiral around the
left side hole to the infinity in two different directions, while the
blue and the green simple curves spiral around the right side
hole to the infinity.

Renormalizing this summation by dividing through by P}, Proposition 5.4 tells
us that we have

dy_
im dic1 — lim %.Pﬁ?: im ¥P71u
- P oo Qi d 3 - ad P
gy bkl e g gle P e L i P
_ 1 P
1+ Sn(p(y) P
Similarly,
1 pH’
(74) lim —ok _ — 1

koo ck@PY 1+ 2 (p(y)) PP

Since P} = P}" + P*' we obtain

. dy 1 . ex
1> 1 1
Z (k—1>IJrrloo brag P}) * k—1>Izloo Ckaq Pf

v€Cia
7 ,
" B p—
B ai(vp) :
Yeél,l 1 a;(yp))\l(P(Y))

Moreover, by Proposition 5.4, observe that

. . arbrc  ar(yp)Aa(ply))
76 T®,vp,v") = lim = p .
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Thus
1
(77) > < <1,
P (p(v))
yea11+’“p’””y+)'thyn
and hence:
1
(78) ; 14+ et(¥)+a(y) <l
Y€€

O

5.4. Symmetry in the Asp, s, (R-o) case. For (p, &) € Agy, s, (R-o), we have the
following symmetry between objects related to P{ and P}

Lemma 5.7. Given k € Z in Figure 14, we have

(79)
x x zx Zx t t n p’
Syk,t +Tyk,t _ Stryk + Tt,yk _ SX/Zk +TX/Zk _ Sglf/x JrTgkk,X _ PZ _ PZ _ P;
Zy - x - Yk - t - 7T pH T ppP-
Rt,yk Ryk,t lerx RX/Zk Plu Pl Pl

Proof. Firstly, we have

brcrk1 | artbr 1\ di1
SX TX RX —
Syt Ty IRyt (dek—l + azdk—l) arby

Ck—1  br—
80 = —
( ) Cxay + azbk

_ by _
_ <(120k 1 +Ck k 1) €k—1 :(Szk i )RZ“

aiex—1  ex—1bx/ axck b b Ty
SY L HTY Stk +Tok .. . . SL, +T¢
thus Yk —Yee — —t¥t¥e By similar computation, we obtain ==k =
Rt,yk Yt Rzyx
STk +TIE,
R;,Zk '
STk, 4Tk St T ., . .
To prove that t'”}gx Sk — TRk MR it §s equivalent to prove
Yyt Rzk,x
(81) aerCi 1 exbx—1  axdk—1brt1 | dk—1Ck+1
2 = 2 .
ajCrex—1 a1bk€k71 albkdk alckdk
By mutation formulas, in the above formula, we replace by by W{%, re-

place cx41 by %jkaz and replace excik—1 by cxex—1 + ajdx—1. Equation (81) is
then equivalent to

(82) bx_1dx = azex_1 + brdx_1,

which is exactly the mutation formula at dy, thus

Zyx Zyx t t
St/yk + Tt/yk — SX,Zk + Tx,zk
k
Rﬁk/t ng,x

: — ¢ _ at
The rest is based on the fact that § = § = ¢--5- For example
t t
Sgk,t + T‘;(k/t _ SX,Zk + TX,Zk _ PZP'

Zi Ui =L
Riy, RZ{x P}
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b
k a
Cr, 1
a2
Yk /" CiA 1
t
e
i L
by,
B
Ck,
2k

FiGure 16. The embedded boundary-parallel pair of half-pants
u is glued to another embedded boundary-parallel pair of half-
pants [1.

We conclude that

x x Zk Zk t t Yk Yk n i P
SUk,t + Tyk,t _ Stryk + Tt,yk _ SX,Zk + TX,Zk _ SZk,X + Tzk,x _ PZ _ PZ _ P72
Zk - x - Yk - t - ’ T pH T pP*
Rt,yk Ryk,t Rzer Rx,zk Plu Pl Pl
[l

Proposition 5.8. For (p,&) € Agi,s,, (R=o), the P} gap terms are equivalent to those
obtained via PY, and thus any subsequently derived McShane identities are equivalent up
to index relabeling.

Proof. By the above lemma, we obtain
PP P
+ Ty 1) =55 lim R ==

klirfoo(sgk,t Y P}j k— o0 t'yk’kliTm(sika +th’§k) - P{) klj)Too ng'tl
lim (St +Tf )= A lim RY% , lim (SY< 4 TYx )—i lim Rt
K —o00 X,Zx x,zx’/ P‘lp K —o0o Zyx, X7 Ko —o00 Zx,X Zx,Xx’) T P}J ko —o00 X,Zx "
([l

5.5. General punctured convex real projective surfaces. We prove the McShane-
type inequality on As, s, . (R~o) for P}. We leave the similar proof for P} to the
readers. Notice that there is no symmetry between P} and P} when (g, m) #
(1,1).

Theorem 5.9. Given (p,&) € Asi,s, .. (R=o). Let p be the puncture in my,. Recall the

collection of all boundary-parallel pairs of half-pants i?{p in Definition 1.16 and B1(y,vp)
in Remark 1.14. Then

B1(v,vp)
(83) ZH (1 4+ eti(M+Tlvve) sl

[Y/Yp ] eg{p
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Proof. As in Figure 15, the gap term for an embedded boundary-parallel pair of
half-pants p = (y,vp) corresponds to I;. As in right hand side of Figure 16,
assume fi is another embedded half pair of pants patching with u along y. Then
we denote the Fock—-Goncharov A coordinates after k-th Dehn twist along vy as in
the left hand side of Figure 16. Then we have

dx—1
>
(84) 1 = Z*) (kg+m bkale)

[y, ypleH,

When we do Dehn twists along v, the situation here is different from the case of

S1,1 in Figure 14, but quite similar. Here we have t = yx, yx = v*yo, zx = v*"yo.
By similar arguments in Proposition 5.4, we still have
. d
(85) lim — =\i(p(y)).
k—+oo dp_1
Recall that B (y,vp) = i—?. Hence we obtain
lim dic1
. k—+o00 bkale
ly Yp]eg{p
di 1
= B4
( (‘Y”YP)klglgo bk(llp )
lyvpleF,
dy
, 1 — - 1i
(86) ZH ( 'Y 'Yp + ar kgrc}o dk 1) >
v, ypled,
> ([ ;
YY) T )
by, YpJG P
Z ( Bl Y/Y‘p)
+ (P(Y))
lyvpleF, 1+ T, vp,vH) - 2(p(v))
Finally, we conclude that
Bi(v,vp)
. (1+eT )+ (v) < 1
[y, ypledH,
O

Recall the set ﬁp in Definition 1.19. We can write the above inequality in the
summation of the collection P, of all boundary-parallel pairs of pants.

Theorem 5.10. Given (p, &) € Asi, s om (R0) and a distinguished puncture p € my,.
Then

1
(87) > T <1,
h aby) 1
(BIET, z:hdw ce2 (T(vdp )+ (v)+T(B,0p )+ (B))
where dl ( B/Y) = 108 Dl (X/ YX, BJr/ er) and dZ(B/ Y) = 108 DZ(XIVXI B+/ Y+) and 5P
is the unique simple bi-infinite geodesic on the pair of pants {B, v} with both ends going up
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Zk Wy,

Ficure 17. The embedded boundary-parallel pair of half-pants p
is glued to ft and p’ is glued to {i'.

p. In particular, (3,5y,) and (v, dp) are boundary-parallel half-pants. Refer to Equation
6 for (v, dp) and T(B, 5p).

Proof. As in Figure 15, the gap term for the boundary-parallel pairs of pants [[3, V]
corresponds to I U I,. Then we use the splitting technique for both I; and I, in
Equation (86) at the same time. Figure 17 shows the resulting Fock-Goncharov A
coordinates under (twpg - tw)¥.

Firstly, we express P} corresponding to two arcs at x and yx in the left hand side
of Figure 17:

biqr—1 + dihk—1  brqi + dihi
ai;brdy asbydy

(88) Pl =

for simplifying our computation. Then we have

. hi 1 qr—1
1
Zﬁ kﬁu}rloo (bkale + dkale
{ﬁ/Y}ETp

brgqrktdihk

= Y lim arbids
kS too Prdratdihk g + brqr+dihy
{B,Y}Gg?p (11bkdk Clzbkdk

(89) brgrat+dihk—

— Y lim a1 by dy
ko +oo Lrdi—1t+dihi + brx_1qx—1t+dkhik
{B,y}e?ﬁp arbrdg arby 1dik-1

. 1

= Z lim My 1di
- koo 1 ajdy 1+bk71qk71
{BYIEP, + od : L
2o oo




MCSHANE IDENTITIES FOR HIGHER TEICHMULLER THEORY AND THE GONCHAROV-SHEN POTENTIAL
After taking the limit, we obtain the above sum equals to

1
Z 1+ :

a1 (p(B)) D,y (v x,B vy 1)

(BVIEP, T+ az " IHDi (v BT T)
(%) ) )
o . aiAr(p(B)) 41 (By)  da(By) coshw
{BYIEP) T+= 1112 "€ ’ ’ ' cosh@
By Equation (76) and
A1(p(B))
Dl(X/VX, B+/Y+) : DZ(X,'YX, B+/Y+) = 3 7\
AM(p(y))
the above sum equals to
1
S 14 \/aﬂ\l(p(ﬁ)) \/al?\l(p(v))  cosh “2(2)
1) Pty E o con ST
1
N cosh 220 1 (e, )40 () T(B,5p )+ (B))
(By1ed, 1+ oo, By S €2 e
2

O

In the Fuchsian locus, d;(B,v) = da2(3,v) and all the triple ratios equals to 1, thus
we recover the original McShane’s identity.
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6. GEODESIC SPARSITY FOR CONVEX REAL PROJECTIVE SURFACES

The study of positive PGL3(R) representations is equivalent to the study of marked
convex real projective surfaces, and this geometric correspondence provides ad-
ditional tools for us to work with.

We first give some background for convex real projective surfaces, before mov-
ing onto our main goal of this chapter: to generalize the Birman-Series geodesic
sparsity theorem to the context of finite-area convex real projective surface con-
text. Our proof is fundamentally geometric topological in nature, and we adjust
our language accordingly. This complements the primarily algebraic treatment
we give in the previous chapters via Fock-Goncharov coordinates.

6.1. Convex real projective surfaces.

Definition 6.1 (convex sets). A set Q C RP? is called convex if the intersection of Q
with every line in R? is connected. Furthermore, a convex set Q is called

e properly convex, if the closure Q) is convex and contained within the comple-
ment R? = RP? — RP! of some RP! linearly embedded in RP%;
o strictly convex, if the boundary 0Q) of () contains no line segments.

Definition 6.2 (convex real projective surface). A real projective surface L is a
topological surface S equipped with an atlas {(U, @ : U — RP?)}, with
e coordinate patches U embedded as open sets in RP? and
o transition maps that are (restrictions of) projective linear transformations PGL3(R)
acting on RP2.
A convex real projective surface L = (S,{(U, ¢)}) is the quotient of a properly convex
open subset Q) by a discrete subgroup of PGL3(R) which is isomorphic to 1 (S).

Since convex sets are contractible, every convex real projective surface X inherits
a universal cover Q C RP? from its developing map. Every such Q lies within
some copy of R? linearly embedded in RP2.

The fact that X is equal to the quotient of Q by a discrete subgroup I' of PGL3(RR)
means that there is a discrete faithful representation

p:m(S) — PGL3(R).

We refer to p as a monodromy representation for . For any two compatible
universal covers for L, one can show that their respective monodromy represen-
tations must be equal, up to conjugation.

Definition 6.3 (projective equivalence). We say that two convex real projective sur-
faces X1 and X, are projectively equivalent if, given their respective associated universal
covers Qq,Qy C RP2, there is a projective linear transformation f € PGL3(R) such that
f maps Q1 to Qy. The map f descends to a map between f : X1 — X, and we say that f
is a projective equivalence between X and X,.

Goldman-Choi [CG93, G90] studied the space of marked (finite area) convex real
projective structures on a smooth surface S

Conv(L) == {(L,f)| f: S — L is a C' homeomorphism} / ~conv,

where (X1, f1) ~conv (X2, 2) if and only if f; o ffl is homotopy equivalent to a pro-
jective equivalence between X; and X,. In particular, they show that the space
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Conv(X) of marked convex real projective structures for a closed surface S is
equivalent to the Hitchin moduli space — defined as the space of all Hitchin
PGL;3(R) representations of 71 (S), up to conjugation.

6.2. The geometry of convex real projective surfaces.

Definition 6.4 (Hilbert distance). Given any two distinct points x,y € Q C R?,
extend the straight line segment running between x and y to a segment running between
boundary points py, py € 0Q), where py is closer to x and py is closer to y. We define
the Hilbert distance to be

x —pyl-ly —p«l
d(x,y) :=1o Y ,
(e y) gm—pu-m—pq

where [w — v| denotes the Euclidean length of the distance between u,v € Q C R2. The
Hilbert distance is invariant under projective linear transformations and hence descends
to a distance metric on L. We refer to both the metric d on Q and the metric ds on L as
the Hilbert metric.

Every convex real projective surface £ = Q/p(m(S)) inherits a Hilbert distance
metric dx from its (properly convex) universal cover Q. In the special case when
L is a hyperbolic surface, its universal cover Q) is an ellipse, and the Hilbert metric
on Q) is twice the usual hyperbolic metric on Q with respect to the Klein model.

Remark 6.5. The Hilbert metric on any convex domain Q) is, in fact, Finsler. The Finsler
metric (i.e.: the Minkowski functional) on each tangent space Ty X is given by:

1
x —x*|

1
(92) [, V)a = ( + — ) Iv|, where:
x —x~|
o (x,v) € T, X is a tangent vector,
e x " denotes the point on Q) intersected by the ray x + tv, for t > 0
o and x~ denotes the point on 9Q) intersected by the ray x — tv, for t > 0.

Remark 6.6. The Hilbert distance may be written as the sum of two positive components:

Ix —pyl

Iy — pxl
(93) d(x,y) =1lo )
k & Iy — pyl

|X*px|

+log

Each of these two terms defines an asymmetric metric on Q. The left term is referred to as
the Funk metric [Bus74], and the right term is referred to as the reverse Funk metric
[PT14]. These are (generally) distinct quantities, and the Funk metric is an asymmetric
metric.

Definition 6.7 (Finsler area). The Finsler area (also known as the Busemann measure)
on (Q, dq) is defined as the Borel measure on Q with density

1
94 ——————, where:
G4 Area(Bay (1)
e By, (x,1) denotes the unit Hilbert distance ball centered x,
o Area(-) denotes any a. priori chosen Lebesgue measure on O C R™.
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6.3. Boundary regularity and convexity of 0Q). We primarily deal with convex
real projective surfaces Z with finite area, and by the work of Marquis [Mar12],
we know that the universal cover Q for such a surface I is necessarily strictly
convex and hence has C! boundary regularity.

Definition 6.8 ([Ben(1, Definitions 4.1 and 4.3] Boundary regularity and convex-
ity). Let Q C R? be a convex open subset of R* C RP? and fix an arbitrary Euclidean
metric dg on R% We say that Q) is C* regular, for o € (1,2], if for every compact
subset K C 90, there exists a constant Cx > 0 such that, for all p, q € K, we have:

(95) de(q, T,0Q) < Cx - delq,p)%;

and we say that 0Q) is B-convex, for B € [2,00), if there exists a constant C > 0 such
that for all p, q € 0Q), we have:

(96) dE(q/TPaQ) 2 Cil . dE(qu)B

When Q covers a compact surface X, the boundary regularity of 9Q may be
extended to C** regularity, for some «y € (1,2] [Ben01, Proposition 4.6]. Using
an argument taught to us by Benoist, we show that this is also true when X is a
finite area cusped convex projective surface:

Proposition 6.9 (Benoist-Hulin). The boundary 0Q for Q universally covering a finite
area cusped convex projective surface L satisfies:

o C*r-regularity for as € (1,2],

e and (5 convexity for Bs € [2,00).

Proof. The proof of this fact relies on another famous metric for convex projective
sets in R?: Yau-Cheng’s [CY77] Blaschke metric (also known as the affine metric)
for strictly convex domains. This is a negatively curved Riemannian metric on Q.
Proposition 3.1 of [BH13] tells us that the curvature on X approaches a negative
constant as one heads deeper into a cusp, and hence is bounded away from 0 on
the entire surface. Combining this with [BH14, Corollary 4.7] then shows that *
(and hence Q) is Gromov-hyperbolic with respect to the Hilbert metric. Hence, by
[Ben03, Corollary 1.5], the ideal boundary 9.0 satisfies the desired C*>-regularity
and (35 -convexity. O

Benoist communicated to us the proof for Lemma 6.10 below, and it is a key
estimate in our proof of the Birman-Series geodesic sparsity theorem for finite
area convex real projective surfaces.

Lemma 6.10 (Exponentially shrinking balls). Fix a point O € Q = £ and a number
R € Ryy. Forany u € Q, let B(u,R) C Q denote the ball of (Hilbert) radius R about
u, and for any bounded set U C R? let diameg (U) denote the Euclidean diameter of U.
Then there exists a positive constant ¢ = co,o,r Such that

97) diame (B(w,R)) < ce

Proof. We show that for the geodesic ray {tO + (1 —t)p | 0 < t < 1} shooting out
from O to an arbitrary boundary point p € 0Q), there exists a constant c(p) > 0
such that for any point u along the ray,

_ d(w0)

(98) diamg (B(w, R)) < c(p)e” < .
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In particular, we shall construct c(p) in such a way that c(-) is a function that
continuously varies with respect to p € 9Q. Then, we may use the compactness
of 0Q) to take

(99) co,0R = max c(p).

Let us consider the radius R ball B(u, R) based at u, where u is a point along
the geodesic ray from O to p € 9Q). By applying an affine (Euclidean) isometry
on R?, we assume without loss of generality that p is placed at the origin in R?
and that the tangent line T,0Q) is the x-axis in R2. Let u = (xo,yo) with respect
to this parametrization, and let p; and p, respectively denote the left and right
intersection points of the line y = yo with Q. Further let D denote the (closed)
sector of Q) below y = yo. (see Figure 18).

Ficure 18. D is the shaded region below the y = yo horizontal line.

Any complete geodesic going through u consists of two geodesic rays, at least
one of which lies in D. The Euclidean length of any such geodesic ray must then
be less than diamg (D), which is in turn less than:

(100)  diame (D N {x < 0) + diame (D N {x > 0}) = de (p, p1) + de (p, p2).

Now invoking the 3-convexity of 0Q), we see that:

(101) de(p,p1) + de (p,p2) < 2(Cyo)¥ < 2(C- de(u,p))?.

We are now equipped to estimate the Euclidean diameter of B(u, R). The triangle
inequality tells us that diamg (B(u, R)) is at most 2 times the Euclidean length r
of the longest geodesic segment o joining u and the boundary of B(u, R). Such
a geodesic segment lies on the unique complete geodesic in Q joining u and
some ideal boundary point ¢ € D N 9Q. If o lies on the geodesic ray 1tq, then
Equation (93) tells us that

de(u, q)

) ,and hence r < (1 —e ®)dg(u, q).
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Similarly, if o lies on the geodesic ray complementary to iq, then
de(u,q)+r
de(w, q)

Therefore, the diameter of B(u, R) is bounded above by
(104) 2r < 2(e® —1)de(u, q) < 2e®(de(p, p1) + de(p, p2)) < 4e¥(C - de(w,p)) .
We substitute in the Hilbert length

(103) R > log ( > , and hence r < (e? —1)dg (u, q).

(105) d(w,0) = log ( de(0O,p) - de(u, p) )

de (w,p) - de (O, p))
where P is the “antipodal” ideal point to p on the opposite side of O (i.e.: p,p and

)

O are collinear). This then gives us diamg (B(u, R)) < c(p)e” <™, with

1
C- dE(Orp) . dE(ulﬁ) o
106 c(p) := max< B, 4eR ( — .
(10 i {B dc(0,5))
Since p varies continuously with respect to p, we conclude that c(-) is a continu-

ous function, as required. O

6.4. Geodesic Sparsity for finite-area convex projective surfaces. Let ~ be a
finite-area convex real projective surface, and let:

o Iy denote the collection of complete geodesics on X with at most k (geo-
metric) self-intersections (counted with multiplicity);

e |I| denote the subset of L consisting of every single point which lies on
(at least one) complete geodesic in the collection Iy of geodesics with at
most k self-intersections.

The goal of this subsection is to prove the following claim:

Theorem 6.11 (Geodesic sparsity). The Finsler area of |Ix| is 0 and the Hausdorff
dimension of |Iy| is 1.

When the surface ¥ is hyperbolic, the above result is referred to as the Birman-
Series theorem [BS85]. They construct a descending filtration of subsets of X such
that:

e each subset covers |Iy|,

e each subset is a union of finitely many convex geodesic quadrilaterals,

o the number of convex quadrilaterals at the k-th level of the filtration

asymptotically grows as a polynomial in k,

o the Euclidean area of the quadrilaterals shrinks exponentially in k.
The polynomial growth in the number of quadrilaterals versus the exponential
shrinkage their area gives us the requisite Finsler area 0 conclusion. The fact that
these quadrilaterals become exponentially thin then gives the desired Hausdorff
dimension 1 conclusion.

Much of the proof is topological, and we use Birman-Series” original arguments.
However, we introduce the following tweaks:

o insteading of encoding geodesics as segments on a single geodesically
bordered fundamental domain (such as a Ford domain), we use geodesic
triangulations (Fact 6.12). This is to avoid justifying why finitely sided
geodesic fundamental domains exist, to highlight the flexibility of the
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Birman-Series construction and partially to use convexity to replace tra-
ditional hyperbolic geometric arguments (such as in Lemma 6.15).

e we require Lemma 6.10 to show that Hilbert radius R balls shrink uni-
formly exponentially as one approaches the ideal boundary.

Fact 6.12. Any finite-area strictly convex real projective surface X decomposes into a
finite collection of (convex) geodesic triangles {1, ..., A} glued along a finite collection
of geodesic edges T.

For the remainder of this subsection, we fix one such collection {A4,...,/A\} of
geodesic triangles for I glued along I" as described by Fact 6.12.

6.5. Polynomial growth of the number of k-diagrams.

Definition 6.13 (k-diagrams). Let Ji denote the set of geodesic arcs on & which:

o start and end on T and/or cusps,
o have at most k self-intersections.

Further let ]\ (N) denote the subset of geodesic arcs in ]y that are cut up into N geodesic
segments by T. Also let []i] denote the equivalence classes of geodesic arcs in i with
respect to isotopies of £ which preserve T" as a set. Similarly define [Jx (N)]. We refer to
the elements of [Ji] as k-diagrams and the elements of [Jo] as simple diagrams.

Lemma 6.14. The cardinality of [Jx (N)] is bounded above by a polynomial Py.(N) in N.

Proof. Every k-diagram [y] € [Jx(N)] may be encoded as the ordered sequence
01,...,0n of elements of [Jo(1)] obtained from cutting [y] along I'. The key ob-
servation is that we do not need to retain the entire ordering of the sequence
to recover a k-diagram: any simple diagram [y] € [Jo(N)] may be completely
recovered from the following data:

o the (unordered) multiset of N segments in [Jo(1)] constitute [y];
o the starting and ending segments for [y] (including the direction of the
starting and ending segment).

This efficient encoding is used in the original proof of the Birman-Series theorem
([BS85, Lemma 2.1]).

The consequence of this encoding is that

Card[Jo(1)]+ N —1

107) Card[Jo(N)] < N2 < -

) = Po(N)

For general k-diagrams [y], we need to introduce additional data to specify the
intersection loci. Since two segments may intersect at most once, the degree of
freedom introduced by this intersection data is bounded above by the number
of ways of designating at most k unordered pairs of segments to denote the
intersections out of all possible unordered pairs of segments. Therefore:

<(g)> +...+ <(E>>] =: P(N).

(108) Card[Jx(N)] < Po(N) -
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6.6. Topological versus geometric length. We have so far introduced k-diagrams,
which afford us topological control over geodesics with k self-intersections. We
now show that the number of segments constituting a k-diagram is proportional
to the Hilbert length of the segment it encodes. This promotes our topological
control to geometric control.

Lemma 6.15. For any finite-area convex real projective surface L, there exists a positive
constant os r > 0 so that for any complete geodesic ¥ with at most k self-intersections,
the length of any geodesic subarc y C ¥, such that vy is an element of Ji(N), grows at
least linearly in N for N large enough. That is: there exists an integer Nz r > 0 such
that the Hilbert length

¢, > asr-Nforally € i (N), where N > Ngr.

Proof of Lemma 6.15 for compact L. We first prove this for compact Z. Fix a disjoint
collection of embedded open balls B, (xi) around every vertex x; of I'. Let Nz
be 31+ 1 (recall here that 1 is the number of geodesic triangles constituting ¥) and
let oes,r > 0 be 2Tz\|m;“r , where (i, is the length of the shortest geodesic arc in Jo(1)
with end points on M\ U By, (xi). The fact that {min is well-defined is because the
subset of Jo(1) with end points on I'\ U By, (xi) is a compact set. To be precise:
it is the disjoint union of 31 closed (solid) rectangles. Moreover, we know that
{min > 0 because segments have starting and ending points on distinct edges and
hence cannot be of length 0.

Next observe that I' cuts each B, (x;) into at most 3l convex sectors. Since the
intersection of convex sets is convex and hence contractible, the intersection of
any contiguous subarc of y with B, (xi) may meet each sector at most once.
This means that we may have at most 31 consecutive segments of y lying within
B, (xi) and hence any 31+ 1 consecutive segments on y must have length strictly
greater than {nin. This in turn gives us our choice of Ny r and o5y r when X is
compact. (|

We now look to the situation when I is a (finite-area) cusped strictly convex
real projective surface. We show that geodesics with k self-intersections cannot
penetrate arbitrarily far into a cusp (unless it goes straight into the cusp), thus
effectively reducing the analysis to being on a compact subset of the surface:

Proposition 6.16 (Cuspidal collar neighborhood). Fix a finite-area (cusped) convex
real projective surface L and some integer k > 0. There is a compact subset K C X which
contains all (complete) compactly-supported geodesics on L which self-intersect at most k
times when counted with multiplicity.

Remark 6.17. The complement of this compact subset K in L consists of annular neigh-
borhoods around cusps and we refer to them as cuspidal collar neighborhoods — our
nomenclature alludes to collar neighborhoods.

Proof. Consider a length R embedded horocycle nr bounding an annular neigh-
borhood Ck of a given cusp. Now choose an even shorter horocycle 1, bounding
a smaller cuspidal annular neighborhood C; C Cg, so that the minimal distance
between 1), and ny is at least w (this is always possible since Cg is infinitely
long). We claim that no geodesic arc v € Jx enters and then exits C,, that is: C.

is a cuspidal collar neighborhood.
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Assume otherwise that y enters and exits C;. The complete geodesic extension
¥ is the union of two overlapping geodesic rays ¥* and ¥~ with overlap given
by a subarc of y lying within C, and with end points on 1. In order for the ray
9% to lie completely within Cg, the ideal end point of any lift of = would need
to be the unique ideal boundary point of the horodisk in the universal cover of
T covering C,. This in turn characterizes §* as a geodesic going straight up the
cusp, and therefore hitting every horocycle at most once. This is a contradiction
as ¥+ meets C, in two places. Therefore, both ¥+ and ¥~ leave C, at some point
and hence there is a geodesic subarc y of ¥ which:

o lies completely within Cg;
¢ has both its endpoints on ng;
e enters and exits C,.

Since ¥ joins 1 and nr along two subarcs, it has length at least R(k + 1). On the
other hand, the geodesic arc ¥ is (endpoint-fixing) homotopy equivalent to a horo-
cyclic path along nr which wraps around nr at most k times (this can be shown
by unwrapping Cr to a k-fold cover of Cr that undoes the self-intersections of v).
This in turn means that the length of ¥ must be strictly less than R(k +1), leading
to a contradiction. Therefore, no geodesic arc vy € Jx which extends to a complete
geodesic ¥ with at most k self-intersections may enter C.. O

We now return to the proof of Lemma 6.15, but addressing the cusped case.

Proof of Lemma 6.15 for cusped L. Finally, we complete our proof for the cusped
case as follows: fix a horocyclic neighborhood C, for each cusp on X and take
Nz r =1and as,r > 0 to be the length (in the closed interval [0, co] rather than
R-) of the shortest geodesic arc in Jo(1) with endpoints outside of the horocyclic
regions. Again, such a length exists due to compactness and is finite. These
choices for constants clearly work because every segment on v lies outside of C,
and hence must be at least of length o r. O

6.7. Geodesic sparsity: area 0. We are now prepared to prove the geodesic spar-
sity theorem for finite-area convex projective surfaces. Fix a fundamental domain
F C £ =: QO made up of lifts of the triangles A1, ..., A; decomposing L. Represent
Q as a subset of R2 ¢ RP?, and let F denote the closure of F in R2. Define the
following collection of geodesic arcs

Ik :={c=9NA;|forsomei=1,...,1and where ¥ is a lift of y € Tk},

and further define |I,| C F to be the collection of points lying on geodesic arcs ¢
in Iy. Our goal is to show that [Tx|NF has zero Finsler area. However, since Finsler
area on Q is definitionally in the same measure class as the Lebesgue measure,
we see that we just need to show that Tyl occupies zero Euclidean area.

Proof of Theorem 6.11 for compact £ — area 0. We first consider the case when X is
compact. For each N > Ny , we partition I, using the fact that any geodesic arc'
o is uniquely expressible as the middle (i.e.: (N + 1)%) segment of a lift of some
representative of [y] € Ji(2N + 1). This gives us a partition of Iy into at most
Pr(2N + 1) sets.

Twe may ignore the case when o is a vertex of F as it does not affect the measure or the Hausdorff
dimension of |I/.
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We next show that the Euclidean area occupied by all the lifts of representatives
of [yl € [Jx(2N + 1)] with the middle segment in F is exponentially decreasing
in N. Consider an arbitrary lift v of a representative of [y] positioned so that its
middle segment is in F and let the endspoints of y lie on F/ and F” — two deck
transformation translates of the fundamental domain F. By the unique path lifting
property, every such y necessarily ends on the same F/ and F” pair. In particular,
this means that the union of every such representative of [y] is contained within
the convex hull of F/ U F”. We know from Lemma 6.15 that both F and F” are at
least distance «z N away from F. We now use this fact to control the Euclidean
area for the convex hull of F/ UF”.

Let O be an arbitrary point on the interior of F. Since F is compact, for some R > 0
the domain F ¢ B(0, R). The domains F’ and F” are deck transform translates of F
and the corresponding translated points x’ € F/ and x” € F” of O € F satisfy that
d(x’,0),d(x"”,0) > as rN. Therefore, the Euclidean diameters of F’ and F” must

o N
both be less than ce — < . This in turn means that the convex hull of F/ UF” may

be covered by an Euclidean rectangle of width ce— ¥ and length diamg (Q).
We absorb diame (Q) into ¢ and ignore it henceforth.

We next note that the convex hull of F'UF” necessarily covers every representative

geodesic segment in [y] € [Jx(2N + 1)]. Since there are fewer than Py (2N + 1)

homotopy classes [y] constituting [Ji(2N + 1)] and each class is covered by a
N

rectangle of area ce —t , this means that the set |Ix| has Euclidean area less

than Py (2N +1) - ce . Since N may be set to be arbitrarily large, this means
that |T,| has zero Euclidean area and hence zero Finsler area. Finally observe that
|Tx| is the lift of |Iy| to F (except for perhaps finitely many closed geodesics lying
completely on ') and hence |Ix| N F has zero Finsler area. O

Proof of Theorem 6.11 for cusped X — area 0. We now turn to the case when X is non-
compact, that is: we are dealing with a cusped convex real projective surface.
Given a geodesic segment ¢ € Iy, when we try to geodesically extend o using
deck transform translates of segments in Iy, one of the following three things
occurs:

(1) o can be extended by N segments in both directions, this produces a
geodesic arc in Ji (2N + 1);

(2) o can be extended by N segments in one direction and hits a cusp in the
other direction, this produces an arc in Jx (M), for M < 2N;

(3) o cannot be extended by N segments in either direction and hits a cusp in
the both directions, this produces an arc in Jx (M), for M < 2N —1;

This behavioral classification allows us to partition I, into the following three
classes of objects:

(1) o is the middle (i.e.: (N + 1)) segment of a lift of some representative of
vl € Jx(2N +1);

(2) o is a segment of a lift of some representative y of [y] € Jx(M), for M <
2N, where 7y is a geodesic ray (i.e.: one of the ends of v is a cuspidal ideal
point) and o is the ith segment, for 1 <i < M —(N+1), indexed from the
cuspidal end;
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(3) o is a segment of a lift of the unique representative y of [y] € Jx(M), for
M < 2N —1, where 7y is a bi-infinite geodesic (i.e.: both end points of y are
cuspidal ideal points) and o has index (strictly) less than N + 1 indexed
from both ends of .

Case 1 is identical to the previous compact X analysis, and each homotopy class
—x N
[y] may be covered by a Euclidean rectangle of Euclidean area ce . For

Case 2, note that one end of v is a single cuspidal ideal point on 9Q), and there-
— N

fore [y] may be covered by a Euclidean trapezium with area less than ce o
Case 3 concerns bi-infinite geodesics joining two cuspidal ideal points and may be
covered by a single line. This means that [Tyl may be covered by a finite collection
of quadrilaterals (and lines) of total area less than

—x N — N

(109) ce ™ < (Pe(2N +1) + Pr(2N) +...+ Pe(1)) <ce < -N-Pg(2N +1).
Once again, by taking N to be arbitrarily large, we see that the Euclidean area of
1. is zero and hence Finsler area of |Ii| is zero. O

6.8. Geodesic sparsity: Hausdorff dimension 1. Finally, we show that |Ix|, or
equivalently 1, has Hausdorff dimension 1.

Proof of Theorem 6.11 — Hausdorff dimension 1. Consider Q equipped with the Hilbert
(Finsler) metric d in comparison with Q) endowed with the Euclidean metric dg
(but regarded as a Finsler manifold). The Finsler metric for (Q, d) is a C! rescal-
ing of the “Finsler metric" for (Q, dg) due to the dependence on the boundary
smoothness (which we know is at least C!). This means that, for any (possibly
non-compact) subset K of a compact subset of (), the identity map between (Q, d)
and (0, dg) restricts to a bi-Lipschitz map between (K, d) and (K, dg). Combined
with the fact that Hausdorff dimension is preserved under bi-Lipschitz maps,
this means that when £ (and hence F) is compact the Hausdorff dimension of
(|Ixl,d) and (|1x], dg) are the same. Combined with the further fact that the Haus-
dorff dimension is preserved with respect to taking countable unions of sets with
the same Hausdorff dimension, the equivalence in Hausdorff dimension between
(IIkl,d) and (|Ix|, dg) is true when I is cusped.

We have reduced our Hausdorff dimension derivation problem to that of (|Iy], dg).
We first show that the (1 + €)-dimensional Hausdorff content of (|Ix|,dg) is O
for every € > 0. Recall from earlier in this proof that for every N > Ny,
there we may cover|Ix| with fewer than N - P (2N + 1) Euclidean rectangles of

length diame (Q) and width ce— . Each such rectangle may be covered by

[%—‘ Euclidean balls of radius %cey. The (1 + €)-dimensional Haus-
ce ¢
dorff content of (|Ix|, de) is 0, because:
di Q _— 1+e
(110) lim NP (2N +1)- [mE(NW : (3(;6%”) —o0.
N—o0 ce %'r 2

This means that the Hausdorff dimension of (|Ix|,d) is at most 1. On the other
hand, since |Ix| contains geodesic arcs, it necessarily has Hausdorff dimension at
least 1. O
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7. MCSHANE IDENTITIES FOR CONVEX PROJECTIVE SURFACES AND APPLICATIONS

We are now well-placed to prove our McShane identity for finite-area convex pro-
jective surfaces. We first consider a half-pants summation version of the McShane
identity coming from Proposition 4.4 combined with Equation (3.7) of [Hual4].

7.1. McShane identity for finite-area convex projective surfaces.

Theorem 7.1. Let p : 11(Sg,m) — PGL3(RR) be a positive representation with unipotent
boundary monodromy and let p be a distinguished cusp on Sy . Then,

(111) Z Bi(v,vp)

14 e T
(Y/Yp)eg'cp

Proof. We begin with an overview of the general strategy for proving McShane’s
identity in the hyperbolic case. For our arguments we fix an arbitrary point
(P, &) € AsL, 5, (Ro0) with & =m0 &,

(1) decomposing the length 1 horocycle 1 based at cusp p into a countable
collection of open horocylic intervals referred to as gaps, as well as a com-
plementary set consisting of a Cantor set and a countable set;

(2) observing that the Birman-Series geodesic sparsity theorem ensures that
the latter complementary set is measure 0;

(3) computing the horocyclic length measure of each gap interval in the for-
mer collection via the position of two ideal boundary points (which we
denote by qo and q;) of the two complete geodesics respectively connect-
ing p and the two end points of the given horocyclic gap interval (see
Figure 19));

(4) summing the measures of these gaps gives the measure of the total horo-
cycle (i.e.: length 1). Using the fact that the horocyclic gaps are in 2 to 1
correspondence with pairs of half-pants containing cusp p, we index our
McShane identity over J,,.

9o q1
M(t) - qo

FiGure 19. The lighter grey lines specify a C! identification be-
tween 7} and 0Q — {p}.

The strategy of proof for convex projective surfaces is essentially the same, but
with the following adjustments for each step:

(1) instead of decomposing the length of 1, we induce a C! measure on 1 ob-
tained by representation theoretically interpreting Goncharov-Shen (par-
tial) potentials as a Goncharov-Shen potential measure;
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(2) we use our generalization of the Birman-Series theorem (Theorem 6.11)
to ensure that the gap-complement set has measure 0, with respect to the
aforementioned Goncharov-Shen potential measure;

(3) we compute the Goncharov-Shen potential measure for each of these gaps
in Section 5 using the data of sequences of flags;

(4) this step remains largely unchanged, but it is worth noting that the two
summands associated to each pair of half-pants are generally not equal, in
contrast with what occurs in the hyperbolic case. The richness of convex
real projective structures forces this symmetry-breaking. We resolve this

by replacing J{,, with the 2 : 1 covering set T{p (Definition 1.16).
We now go through each of these steps, furnishing the necessary details.

Step 1. Let p € 0Q) be a lift of the cusp p such that &,(p) = &(p) and the decorated
flag 2 X5 = &(p) is used to define the A-coordinates for p. Now let qo € 9Q be an
arbitrarily chosen ideal point distinct from p and let q; € 9Q be the point on 0Q
obtained from translating qo by a single iteration of the monodromy matrix action
of the loop around p. We know from Fact 4.1 that there is a unique unipotent
matrix M that takes (X;, £,(qo)) to (Xp, Ep(q1)). When expressed with respect to
any basis for Xz, the matrix M takes the form:

1 P2 *
(112) M:=|0 1 P
0 0 1

More generally, let M(t) denote the path of unipotent matrices

1 mp(t) mas(t)
(113) M(t) := 0 1 tPy ,
0 0 1

such that the parametrized path M(t) - qo traces out the interval [qo, q1] on 0Q
in such a way that M(t) takes the tangent space Tq,0Q to Ty (t).q,0Q. Letn be
the length 1 horocycle based at p, and consider the homemorphism between the
lifted horocycle 7 based at p and the boundary 9Q) given by geodesic projection
from P (see Figure 19).

This lets us pullback the M(t) - qp parametrization of 0Q — {p} onto 1. Notice
that this is a C! reparametrization of n (with respect to horocyclic length) because
9Q is Cl-smooth. However, the t € [0,1] parameter precisely parametrizes the
length of partial potentials (divided by P;) and therefore this C! reparametrized
length of 1 induces a Goncharov—Shen measure on 11 in the same measure class as
horocyclic length. We decompose this probability measure to obtain McShane’s
identity.

As a final part of the first step, we show that 1 naturally decomposes into a
countable union of open sets, a Cantor set ¢ and well as a countable set 2. The
structure of this decomposition is well-understood in the Fuchsian case ([McS91,
McS98, Mir07a, Hual8]), and induces a topological partition of 9. (S)\{p} via
identification with a horocycle lift 7] based at p. Since 0,711 (S) = 0Q is indepen-
dant of the geometric structure Z imposes on S, this decomposition applies also
to horocycles on convex projective surfaces. In particular, the interpretation of

’In fact, any decorated flag over &, (P) suffices.
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2 U € as the collection of points on n which lie on simple (possibly non-closed)
geodesics still applies.

Step 2. We showed in Theorem 6.11 that the set of simple geodesics occupies zero
area on X. This implies that the set of points on an annular neighborhood of 1
which lie on simple geodesics occupies zero area. Since the annular neighborhood
of takes the form of a product of 1 x (—e¢, €) and the Finsler area of X is in the same
measure class as the product measure on this annular neighborhood, this tells us
that 20 U € occupies horocyclic length measure on 1. Since the Goncharov—-Shen
potential measure on 1 is equal to the horocyclic length measure weighted by a
C! function, the contribution of 21 U € to the Goncharov-Shen potential measure
must be 0. This allows us to carry out Step 4 as per usual.

Step 3. We make the observation that the gap Goncharov-Shen potential measure
computed in Section 5 depends purely on the geometry of the pair of half-pants
(v, vp) bounding the horocyclic gap. Therefore, the gap has measure:

B1(v,vp)
1+ ebW+tlvive)”

(114)

Step 4. As noted previously in step 2, the complement of the gap intervals on 1
contribute zero measure to the Goncharov-Shen potential measure, and thus the
sum of the measures of all the gap intervals comes to 1. In [McS91], we see that
there is a 4 : 1 correspondence between the collection of such gap intervals and
the set of (unoriented) bi-infinite ideal geodesics with both ends up p. Two of
these intervals lie on each of the two pairs of half-pants lying on each side of the
aforementioned ideal geodesic (Figure 15), which creates a 2 : 1 correspondence
between the gaps and the collection of half-pants on X based at p. Finally, intro-
ducing orientation on the boundaries of half-pants gives us the bijection between

the set of gaps and iT-Cp. O
7.2. Simple spectral discreteness.

Definition 7.2 (simple spectra). Let X be a finite-area convex projective surface X with

monodromy representation p : m1(S) — PGLy (R), and let @(S) denote the collection of
oriented simple closed geodesics on S. We define the following spectra:

(1) the simple {;-spectrum:
{em1veds)},

(2) the simple largest-eigenvalue spectrum:

{Mle) v e€s)},
(3) and the simple (Hilbert) length spectrum:

{tmlyeds)}.

Note here that each spectra is (possibly) a multiset, that is: repeated values coming from
distinct simple closed geodesics are counted as distinct elements in the spectrum.

Our goal in this subsection is to prove that the above simple spectra are discrete
for any finite-area convex projective surface X. Our proof relies on the McShane

identity (Theorem 7.1). Let f?-fp (v) denote the subset of ?{p consisting of all half-
pants with v as its oriented cuff.
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Lemma 7.3. Given a positive representation p with unipotent boundary monodromy
around p, there is a universal constant b? > 0 such that for every oriented simple closed

curvey € @(S), there exists an embedded pair of half-pants (y,vy) € T{p (v) such that:
(115) BY (v, vp) = bP.

Proof. Much like the proof of the boundedness of triple ratios (Theorem 1.5), we
rely on a compactness argument. Fix an arbitrarily chosen cusped hyperbolic
surface & with topological type S. The length 1 horocycle 1, around cusp p
separates X into two connected components: an (open) annular cuspidal neigh-
borhood C,, C £ as well as a (closed) homotopy retract £P) := £ — C,,. Also let
21 ¢ £P) ¢ £ denote the compact subsurface of £ obtained from truncating
every cusp of X at its length 1 horocycle.

Consider the following subset of the unit tangent bundle T'%:

(116)

x is a point lying in £2! and the geodesic ray o(y.)
shooting out from x with initial vector v is simple,
approaches the cusp p, and the arc o(,,) N Z=!
realizes the distance between x and 1,

We now show that = is a closed subset of the restricted unit tangent bundle T!2>!
of T'Z to £2!, and is hence compact. Consider a sequence {(xn,vy) € =} which
converges to a point (Xe, Veo). Since v2! is a closed subset of L, the limiting
base point x, must lie on £2!. Next, to show that the geodesic ray o(,_..)
approaches the cusp p, choose a fundamental domain F for Z containing a lift
Roo Of X in the interior. The lifts to F of a sufficiently high subscript tail of the
sequence {(xn,Vvn)} necessarily all induce rays which shoot into the same lift p
of the cusp p, and hence o(,_, ) also shoots into p. Finally observe that the
distance realization property stated for = is also a closed condition, and hence =
is a compact set.

Now, since 0, shoots into cusp p, the corresponding subset to = in
Tri(S) = Tri(Z) = T'x

is a compact subset with every point of the form [p,b,cls, where P is a lift of
p. In particular, this means that the (strictly) positive function Bf(-) given in
Definition 4.13 is well-defined and continuous on a compact set and achieves its
minimum. We denote this minimum by b® > 0.

Now, given an arbitrary oriented (essential) simple closed curve y € é(S), let vy
denote its geodesic realization on . Further let xy € v be the point on y closest
to 1p, let o be one of the geodesic arcs realizing the distance between xy and 7,
and let vy denote the initial vector of 0. By construction, the geodesic ray oy, ,)
contains o. Since ¢ is a distance minimizing arc, it must meet 1, perpendicularly
and hence o, ,) shoot up straight into cusp p after passing n,. Moreover, the
arc 0 must also be simple (so as to be distance minimizing), and hence oy, )
is the concatenation of o and a simple geodesic ray which lies in C,, (and hence
cannot intersect o) and is thus simple. Therefore, we see that (xg,vo) € =. We
denote its corresponding point in Tri(S) by [p, bo, cols. Let (v,Vp) € I, denote
the unique embedded pair of half pants on S containing ¥ U (4, ,) (Figure 20).
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F1GURE 20. The pair of half-pants (y, v} ) is the unique embedded
pair of half-pants that contains ¥ and o(xo, vo) D o.

We also know that o is perpendicular to y, and by possibly replacing p with a
different lift of p, the point by must be of one of the two fixed points of p(y). This
in turn means that Bf (y,v,) > BY ([P, bo, cols) > bP, thereby demonstrating the
desired lower bound. |

Theorem 7.4. Let p : 71(S) — PGL3(R) be a positive representation with unipotent
boundary monodromy. Then the simple {;-spectrum, the simple largest eigenvalue spec-
trum and the simple length spectrum for p are all discrete.

Proof. We begin by rearranging the inequality (Theorem 5.9) given by McShane’s
identity to obtain the following expression:

B(v,vp)
(117) g Zﬁ 1+ ea(¥)+t(v,vp) <1
YEC(S) (v, ¥p)EH, (v)
Invoking Theorem 3.4 to assert that there exists some T3, such that t(y,vp) <
TS5 .x, We obtain:
118 1 B <1
(118) 2 | e _ Bvm) | <
YEC(S) (vyp)EX, (v)
Further invoking Lemma 7.3 to uniformly bound
(119) > Bilv,vp)>  sup  Bly,yp) =D
(Vovp) €T (¥) Vel ()
Hence:
bP
(120) Z 1 + eel (‘Y)_’_Trﬁax <1'

ve€(s)
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This suffices to ensure the discreteness of the simple ¢;-spectrum, which is in turn
equivalent to the discreteness of the simple {,-spectrum because

4(y) Al(p(Y)) _ )\Z(p(yil)) - elz(yﬂ)

M) Aslp(y )
Furthermore, the fact that

AN
Y
A A A3
then ensures that the simple largest-eigenvalue spectrum is also discrete; the fact

that the Hilbert length of a geodesic 'y satisfies

V) =ty) =ty +uly™
then suffices to ensure that the simple length spectrum is also discrete. O

7.3. The collar lemma. As a first application of our McShane identity, we estab-
lish a collar lemma. This is, in some sense, slghtly premature as we also require
our McShane identity for convex real projective 1-holed tori, which is established
in Section 8. Note also that we do not need the full force of the McShane identity,
and only require the inequality.

Lemma 7.5. Consider an arbitrary finite-area marked cusped convex projective 1-cusped
torus X11 with monodromy representation p. For distinct (oriented) simple closed geodesics

B,y € €(L1y), let

1\ A —1
w = T(B)REE w = T(B ) ReE=
)

—1
us = T(Y) B, w =Ty el
Then, for any configuration of {i,j,k, 1} ={1, 2, 3,4}, we have:

1 1
121) ((uiuj)z . 1) : ((ukul)z . 1) >4,
Proof. By Theorem 5.2, we have:

4
(122) — <L
;1+us ; 1+T(s p(an

p(B
A(p(y))
20p (v

Multiplying both sides by [](1 + u,) ! and rearranging the resulting terms, we
obtain:

(123) 3+ZZus+Zusut<Hus

s<t

Further adding (1 —uju; — ukul) to both sides, we get:

(124) (24w + 1) (2 +we +w) < (1T —uiyy) (1 —wauwy).
By the algebraic mean-geometric mean inequality, we obtain:

(125) 2+ 2(wiy)2) (2 + 2(waw)?) < (1= uiy)(1— waw),
and hence:

(126) ((wiw)? =1) - (waw)? —1) > 4.
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Recall that for an oriented curve {3, we use P to denote the same curve without
orientation.

Proposition 7.6. Given any finite area convex projective structure ¥ on Sq,1, the Hilbert
lengths of any two distinct unoriented simple closed geodesics B and  satisfy the follow-
ing inequality:

(127) (e2tB) —1)(ez!™) 1) > 4.

Proof. The finite area condition means that X either has unipotent or loxodromic
boundary monodromy. We first consider the unipotent case. Recall from Equa-
tion (76) that
Lo . by
T(8) = T(p,5p,67) = lim SLimtes — 81y, (p(5)), and

oo @2CKk—1bik

T =T(p,67'p,87) = lim FZoe=tee = Eny(p(571).

o ab e
Thus

(128) T(p,op,8%) - T(p, 5 p,67) =1.
This means that the product terms uju, and usuy satisfy

_ Me(B)) _ e(B) _ M) _ St(¥y)
W2 = 3 0506)) = © and  uzuy = =e'\V)

As(p(v))

and hence we obtain Equation (127) as desired.

We now turn to the case where the boundary monodromy of X is loxodromic. For

any simple closed geodesic 5 on Z, let 15, u$ € H, denote two boundary-parallel
pairs of half-pants which have 6 as its oriented cuff such that their underlying
half-pants are distinct. Recall Definition 8.10, we have

(129) Ri(ud) + Ro(n3) = 1.

We consider two gap terms in Theorem 8.17 associated to one pair of half-pants.
We require the following fact:

(130) XY>1=(1+X)1+1+Y)t>200+XY)7L

By taking X = e Ri(m0)L+6(3)+7(8) ang ¥ = eRi(kDL+G( ) +7(3 ) we obtain:

(131)

W) _ Ri(peliit Ripf)e 0t
1 + e%e(s) eRl(FHBJL + ezl(é)JrT((S) e*Rl(Hg)L -+ 681(571)+T(571) ’

The above inequality in turn leads to the following comparison: for L > 0,

(132)

2Ry ()L ] eRi(kdL 4 ela(8)+7(3) | 14+ b8 H+r(s )
1+ edt® <108 14 et(8)+7(3) +log e—Ri(ndL oty (61)+(6-1) | °

To see this, note that Equation (132) is an obvious equality when L = 0 and its
derivative with respect to L satisfies Equation (131) for L > 0. Further replacing L
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with the simple root length {; () of the boundary « of X, we see that:

2Ry (1) - | eRi(ud)li(x) 4 oti(8)+7(8)
L elt®) “h(a) OB 11 eti(3)+t(3)

1 1_1_621(571)-0-1’(571)
(134) A log<eR1(u§)em)+eel(é DESTETN

There is one inequality of the same form as Equation (133) for each choice of
b =B,vyand i =1 or 2. This makes a total of four such inequalities, and hence
eight right-hand side terms. Crucially, these eight terms are distinct summands
of the McShane identity for convex real projective 1-holed tori (Theorem 1.28),
and hence:

(133)

Ri(uf) | 2Ri) L 2Ri(w) L 2Ri()
1—‘1-6%“6) 1+e%5(5) 1—‘1-6%“7) 1+e%4’-(ﬁ7) ’
By Equation (129), we then obtain
2 2
1+ ezt(B) - 1+ e2t(¥) <l
which rearranges to give Equation (127) as desired. O

Theorem 7.7 (Collar lemma). Given any finite-area convex projective surface X, any
two intersecting simple closed geodesics (3,7 satisfy the following inequality:

(135) (2! _1)(e2*™V) —1) > 4.

Proof. We first note that Proposition 7.6, coupled with the fact that the Hilbert
length {(§) of a curve § is equal to

£(8) = £(8) = €1(8) + £2(3),

tells us that Equation (135) is true if the convex hull of 3 Uy is a 1-holed torus.
Furthermore, whenever the convex-hull of 3 Uy is a 4-holed sphere 24, then X4
is the quotient of a 4-holed torus ;4 with respect to the action of an isometric
involution (see Figure 21):

The curve f lifts to two simple connected geodesics 31, 32 in X; 4, each of length
equal to . Likewise, the curve v also lifts to y; and y,. The convex hull of 31 Uvy;
is a 1-holed torus, and hence we once again obtain Equation (135).

The above cases cover all possibilities where there are two or fewer (geometric)
intersection points between 3 and y. We now turn to the case when there are at
least three intersections. Let us assume without loss of generality that {3 is shorter
than or equal to y. We also assume that the intersection points 3 Ny are generic,
our arguments still apply when there are non-generic intersection points with the
small caveat that some of the geodesic segments we concatenate may be of length
zero.

Consider the now the geodesic subarcs {0} on y with ends in 3 Ny, but not
interior points. Note that this collection of subarcs may be bipartitioned into
those whose endpoint tangent directions point to the same side of § (left hand
side of Figure 22) and those whose endpoint directions point to opposite sides
(right hand side of Figure 22). We refer to the former as a type-A arc and the latter
as a type-B arc.
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F1Gure 21. The left 4-holed torus double covers the right 4-holed
sphere, with identification given by m-rotation about the central
vertical axis. The curves [31,v1 respectively cover 3,y precisely
once and the convex hull of 1 Uy is a 1-holed torus.

FIGURE 22. A type-A arc (left) versus a type-B arc (right).

Case 1: 3 type-A arc o on vy of length {(6) < %6(1‘/). Join the two ends of o
with the shorter of the two subarcs of 3 traversing between the endpoints of o.
The resulting concatenated broken geodesic shortens to a unique simple closed
geodesic v’ which intersects 3 precisely once. The Hilbert length of v’ satisfies:

(") < 3B +L(¥) < UY),
and the convex hull of § Uy’ is a 1-holed torus. Therefore:
(136) (ext®) —1)(e2!™) —1) > (e2'P) —1)(eztY) —1) > 4,
as desired.

Case 2: no type-A arcs on y. Let N denote the number of intersection points
in 3 Ny (non-generic intersection points are counted with multiplicity). The no
type-A arcs condition forces N to be even. Hence, there are N > 4 type-B arcs
01,...,0N Which concatenate to form y. Consider the N geodesic arcs of the form
0; * 0341 (and on * 01) obtained from concatenating consecutive type-B arcs. The
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total sum of the lengths of these concatenated arcs is 2¢(y), and the pigeonhole
principle tells us that at least one has length shorter than % < UZ—Y)

Let o denote one such @—short concatenated arc and consider the closed broken
geodesic formed by joining the endpoints of o with the shorter of the two arcs on
B adjoining the endpoints of o, and denote its geodesic representative by y’. The
curve vy’ is either simple or may have one self-intersection. In the former case, we
have two simple closed geodesics f and vy’ with geometric intersection number
equal to 2 but algebraic intersection number equal to 0. Hence 3 Uy’ lies on a
4-holed sphere, and we once again obtain Equation (136). In the latter case, the
convex hull of y’ is a pair of pants. and precisely one of the two ways of resolving
the intersection point on vy’ produces an essential simple closed geodesic y” (see
Figure 23). In particular, since Hilbert length is a distance metric, the triangle
inequality ensures that resolving crossings results in shorter rectifiable curves
with even shorter geodesic representatives. Thus, we replace v’ with y”, and
wind up with the former case.

In either of the two cases as in Figure 23,

FIGURE 23. An example of the how the arc o (left) is used to
produce curves vy’ (center) and y” (right).

Case 3: J type-A arc b on v of length {(b) > %B(T/). Our argument here is similar
to Case 2. Let N again denote the number of intersection points 3 Ny. By assum-
ing disjointness from Case 1, we may assume without loss of generality that there
are N — 1 consecutive type-B arcs oy, ..., on—1 wWhich, along with b, concatenate
to form y. The sum of the length of the following list of N concatenated arcs

01%02,...,0{% 0i41,...,0N_2* ON_1,0N_1 * b, b x 07

is equal to 2£(y). By the pigeonhole principle, there must be at least one concate-
nated arc of the form o = oy * o)1 of length shorter than

20(y) —ton_1 D) b+ o1) _ 2(¥y) —2(b) _ (Y]
N-—2 N-—2 N-2

If N > 3, the above inequality ensures that {(5) < @ If N = 3, then o must
be o1 * 0y, and is the complementary arc to b. Hence o is again of length less
than @ We may now run the latter half of the argument for Case 3 to obtain
equation (135). O
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e(p) L)

Remark 7.8. Multiply both sides of Equation (135) by (4de + e 2 )~! and we obtain

(137) sinh (1¢(B)) - sinh (1e(y)) > e~
Our choice of convention for Hilbert length is double hyperbolic length, and therefore our
inequality is weaker than the “sharp” inequality described in [LZ17, Conjecture 3.8].

7.4. Thurston-type ratio metrics. Thurston showed in [Thu98, Theorem 3.1] that
it is impossible for the simple marked length spectrum of one hyperbolic struc-
ture on a closed surface S to dominate that of another. This non-domination
ensures that Thurston’s simple length ratio metric on Teich(S) is positive.

Non-domination breaks down for bordered hyperbolic surfaces, and it is possible
to map from a bordered surface to one where every geodesic is shorter [PT10].
The way that Papadopoulous and Théret resolve this issue is to introduce ortho-
geodesic arcs into the collection of objects that one takes length ratios over. We
show using McShane identities that the naive length ratio metric suffices provided
that one fixes all boundary lengths.

Theorem 7.9. Given marked hyperbolic surfaces £1,Z, € Teichgm(Ly,..., L) with
fixed boundary lengths Ly, ..., Ly > 0. Then the marked simple geodesic spectrum for £,
dominates the marked simple geodesic spectrum X, if and only if X1 = Z,.

Proof. Assume without loss of generality that the simple length spectrum of X;
dominates that of X,. We first consider the case where at least one of the bound-
aries Ly is strictly greater than 0. The summands in the McShane identities for
bordered surface [Mir07a, TWZ06] have summands which are strictly decreasing
with respect to increasing the lengths of (interior) simple closed geodesics. Since
the simple length spectrum of ¥; dominates that of X, this forces each pair of
corresponding summands in the McShane identities for X; and X, to be equal.
This forces the length of multicurves ¢*1()+ (% (y) to be equal to £*2(B)+(*2(y),
and domination then tells us that

¢71(B) = 0*2(B) and €7 (y) = €2 (y).
Therefore, the marked simple length spectra for £; and X, are equal and X; = Z,.

The remaining case is where every boundary is length 0 is classically due to
Thurston [Thu98], but can also be demonstrated by applying the same arguments
to McShane’s identities for cusped surfaces [McS98]. O

The above non-domination result immediately implies the following:
Corollary 7.10 (Thurston metric for bordered surfaces). The non-negative real func-
tion d : Teichgm (L1, ..., L) x Teichgm(Ly,...,Lin) — Rxo defined by

(138) dm(Zy,Xp) :=1log sup ()
(&1, 22) = —
vee(sym) (7]

is a mapping class group invariant asymmetric Thurston-type length ratio metric on the
Teichmiiller space Teichg m (Ly, . .., L) of surfaces with fixed boundary lengths Ly, ..., Ly,.

For any (3-)Fuchsian representation p, Tholozan [Thol7] showed that it is always
possible to find a (marked) convex projective surface whose simple Hilbert length
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spectrum dominates that of p. Thus, the naive length ratio expression for the
Thurston metric, when extended to the space

Convyy :={Z € Conv(S1,1) | £ has unipotent boundary monodromy?}

of cusped convex real project tori, results in a function which may be negative.
To deal with this, we reverse engineer our McShane identities-based proof for the
non-negativity of the length ratio metric (Theorem 7.9) and propose the following
candidate for a metric on Convy ;:

Iy b
log(1 + eli”(V)+72(v)
(139) dcap(Z1,Z2) == log SuP( B = 5 :
VE@l,l log(l""el (v)+e W))

To show that this is a well-defined function, we use the following comparison:

Theorem 7.11 ([Ben01, Corollary 5.3] Hilbert vs. simple root length comparison).
For any positive representation p : 7 (S) — PGL3(R), there exists K, > 1 such that for
every simple closed curve y on S, we have:

(140) biy) <y) <Kp-4(y).

Remark 7.12. Although [Ben01, Corollary 5.3] is stated for compact surfaces, we be-
lieve that Benoist’s proof combined with Proposition 6.9 suffices to extend this result to
finite-area convex real projective surfaces. As an added insurance, we provide a proof in
Appendix A.

Proposition 7.13. The gap metric dg,p is well-defined.

Proof. We need to show that the supremum in (139) is bounded. If the supre-
mum is realized by some simple geodesic v, then obviously the gap metric is
well-defined. If not, then there is a sequence of distinct geodesics {yy} for which
the expression in (139) tends to the supremum. Then, by the discreteness of the
simple length spectrum (Theorem 7.4) and the uniform boundedness of triple ra-
tios (Theorem 3.4), showing that the supremum exists is equivalent the existence
of the following supremum:

o) e(y)
(141) sup —+— <Kg, - sup =)
VG@H 1 (Y) Yeél,l Y

where the Ky, in the right hand side is the coefficient in Theorem 7.11. However,
we know from [Thul6, Theorem 2] that the Hilbert lengths (*1(-) and €*2(-) ex-
tend continuously to the space of (compactly supported) measured laminations
on Si;. In particular, the homogeneity of these length functions on multicurves
means that they must be homogeneous over all of measured lamination space,
and hence *2/¢*! defines a continuous function on the space of (compactly sup-
ported) projective measured laminations. This is a compact codomain, and hence
must be bounded above. Therefore, the left-hand side supremum in (141) exists
and dg, is well-defined. O

Theorem 7.14 (Gap metric for Convy,). The non-negative function dg,, defines a
mapping class group invariant aymmetric metric on Convy ;.
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Proof. It is clear that dg, is mapping class group invariant and satisfies the tri-
angle inequality. The McShane identity (Theorem 1.1) tells us that the gap sum-
mands of for ¥; cannot dominate those for Z,, and this gives us the requisite
non-negativity.

All that remains is to show that dg,y(Z1, Z2) = 0 iff £; = X,. One way is obvious.
For the converse, assume that dgs(Z1, Z2) = 0, then the McShane identity tells us
that corresponding gap summands must each be equal, and hence

(142) Vy €€y, O(y) + TR (y) = 2 (y) + T2 (y).

Consider the sequence of curves {By*}xez obtained from applying Dehn-twists
along vy to a 3 which once-intersects y. The eigenvalues for the monodromy for
two matrices are minimal/maximal when they are simultaneously diagonaliz-
able, and hence we obtain the bounds:

(143) ki1 (y) +1ogAs(B) —logAi(B) = kb (y) — ¢
(144) kb1 (v) +logA(B) —logAs(B) = kb1 (y) + ¢

Hence we see that

(145) ty) = lim LU (BY*).

(B) < &(BY*) and
(B) > ti(BY").

=l

Which in turn implies that:
)l ®) L (BYS) + T (BYY))
= lim y——— = lim - YT 5 -
il —oo S (6 (BYF) + T (BY¥))
Therefore, the marked simple ¢; (and {,) spectra for £; € Conv;y; must be congru-

1

(v) oot (5)
ent. Which means that the simple marked A; spectra for £; and X, must be equal.
By [BCL17], this means that Z; = X,. [l

(146)

Proposition 7.15. The restriction of the metric dga, to the Fuchsian locus of Convy  is
precisely the Thurston metric dry,.

Proof. We first note that on the Fuchsian locus, triple ratios are all equal to 1,
and the simple root length {;(y) of every geodesic vy is equal to %fh‘/). Since
f(x) = log(1l + x)/log(x) is a monotonically decreasing for x > 0, whenever
ffz(y) > (’,{:1 (v), we have

log(1+e"™) _log(e“" ) _ ((y) _ ()
log(l—&-e“lzl(y)) log(eelzlm) y) )

Therefore dg; < dry. On the other hand, equation (145) gives us the converse
comparison dg;, > dr;, hence allowing us to conclude that the two metrics are
equal on the Fuchsian locus. O

*

7.4.1. Two generalizations to Sgm. We now turn to the space Convy ., of (finite-
area) marked cusped convex real projective surfaces with genus g and m cusps.
We consider two possible generalizations, The first is equal to the Thurston metric
on the Fuchsian slice and is conjecturally generalizable for rank n > 4 positive
representations.
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Definition 7.16 (Pants-gap metric for cusped real convex projective surfaces). We
define the pants gap function for PGap™(B,) a pair of pants [B,v] on a marked cusped
convex real projective surface £ € Convy ,, with cusps p1,...,pm as the McShane iden-
tity summand corresponding to [f3,v]:

—1
(147) PGap*(B,v) == <1 L -e%“(%év)”lm”(ﬁréwWﬂﬁ))) .

cosh %
We define the pants gap metric as:

)
)

(148) dpcap(Z1, L) :=1log sup
(ByleF log(PGa

7

— log(PGapZl (B,v
p™ (B, Y

—

where [B,y) varies over the set P = §p1 U...u ﬂﬁpm of all boundary-parallel pairs of
pants on Sy m.

Definition 7.17 (Total gap metric for cusped real convex projective surfaces). De-
fine the total gap function for a marked convex real projective surface L € Convy ..,
with cusps p1,...,Ppm as:

= Bl(v,vp)
(149) TGﬂP = Z Z 1+ e& Y+ (v, vp)
= =,

j= v vpledty; (v)

_ 1
m

We define the total gap metric as:

—log(TGap™*
(150) dTGap(Zl,Zz) = log sup Og( ’ZPZl (v)) .
1B, —108(TGap™ (v))

Remark 7.18. When (g, m) = (1, 1), both of these two metrics agree with the gap metric
we defined for 1-cusped convex real projective tori.

Remark 7.19. The proof that the pants gap metric and the total gap metric are both
mapping class group invariant, asymmetric metrics on Convg ., is essentially the same
as for the Convy case. We leave it as an exercise to show that these two metrics are
well-defined. For the pants gap metric, this uses [Kim18, Theorem 1.2], which shows

that the quantity % is bounded as one varies over [,y] € P. For the total
gap metric, it helps to use Lemma 7.3 and the following observation:
(151) > Bilvvp) <L

v vpl€Fp (v)

Equation (151) comes from interpreting the left hand side of the above inequality as a
probability with respect to the Goncharov-Shen potential measure. Specifically, it is the
probability that the portion of a geodesic launched from cusp p up to its first point of
self-intersection will either:

e intersect vy, or
o be completely contained on a pair of half-pants with v as its cuff.

Proposition 7.20. The restriction of the pants gap metric dpgap to the Fuchsian locus is
equal to the classical Thurston metric.
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Proof. The proof is essentially identical to the proof of Proposition 7.15, provided
that one uses the following fact:

=2(B,y)

X (

(152) dm(Zy,X) =log sup 7

(ByleP,
which comes from the fact that the projection of P}, regarded as a set of multic-
urves, in projective measured lamination space is dense. O

RI| TR

Remark 7.21. It is unclear whether the restriction of the total gap metric drgay to the
Fuchsian locus is the Thurston metric, although it is fairly straight-forward to show that
drGap = dm-

It is also possible to extend the pants gap metric over the set of (marked) convex
real projective surfaces & with loxodromic boundaries.

Definition 7.22 (Pants gap metric for bordered convex real projective surfaces).
Let X denote a convex real projective surface with loxodromic boundaries 1, ..., otm. We

adopt the following notation: 52‘ denotes the set of boundary-parallel pairs of pants in Po
which have two borders being boundary components of Sg m.

o For any [B,v] € 50( \ CT’EL we set PGapz([S,y) to be ﬁ times the 1 = 1
McShane identity summand in Equation (12);
o for any [Y] € PY, we set PGap™(Y) to be be s times the i = 1 summand in
Equation (203).
The pants gap metric dpgay(Z1, L2) is defined as:
(153)

_ b _ P
loggnax sup log(PGap ([3,1/))’ sup log(PGap='(Y))

L T —log(PGap™ (B, V)" (vjepy, —log(PGap™(Y))

The proof that this is a well-defined metric is essentially the same as for the
cusped case and we again require [Kim18, Theorem 1.2].

Remark 7.23. We expect [Kim18, Theorem 1.2] to generalize to all rank n. Provided
that this can be demonstrated, it is possible to generalize the pants gap metric to define
asymmetric metrics on the character variety of loxodromic-bordered positive representa-
tions of arbitrary rank. Moreover, the (n — 1) different McShane identities we obtain
induces a (n — 1)-dimensional positive “quadrant” of such metrics.
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8. MCSHANE-TYPE IDENTITIES FOR HIGHER TEICHMULLER SPACE

We begin by establishing McShane identities for general rank positive represen-
tations with loxodromic boundary monodromy.

8.1. Ordered ratios and simple root length decomposition. We introduce a mild
generalization of ordered cross ratios [LM09], called ordered ratios.

Definition 8.1 (Ratio). Consider the following collection of 4-tuples

3ot (Sgm )™ = {(x,Y,2,t) € 0o (Sgm)* | X #Y,x £z, x £ty #z}.

A ratio B : 9,,m (Sg,m)“** — Ris a m(Sg,m)-invariant continuous real function which
satisfies the following three ratio conditions:

(1) (normalization): B(x,y,z,t) =0iffy =t

(2) (mormalization): B(x,y,z,t) =1liffz=t,

(3) (cocycle): B(x,y,z,t) = B(x,y,z,w) - B(x,y,w, ),
An ordered ratio is a ratio B on Sy which satisfies two order conditions: for four
different points x,Y,z,t € 001 (Sgm):

(1) B(x,y,zt) > 0if z, t are on the same side of xy,

(2) B(x,y,z,t) > 1ifx,y,ztare cyclically ordered.
Definition 8.2 (Periods for ratios). For non-trivial « € m(Sgm) and y # «, oct,
the period of « for the ordered ratio B is

% () :=1log B (o, ™t at(y),y),
As with periods for cross ratios, periods for ratios are also independent of the
choice of y. For any z € 0571 (Sg,m)\{& ™, «*}, by
e 7 (Sg,m)-invariance: B (™, «™, x(y), x(z)) =B (™, ™, y,2),
¢ and the cocycle identity for the ordered ratios,
we obtain that:

o« at,aly),y)

B ( (y)
=B (o, a", aly), «(z)) - B (¢, ", x(2),2) - B (™, ", 2,y)
=B (a ", a",y,z) B (o, ", (z),2) - B (o, ", 2,y)

=B («~, o, «(z),2) .

Ordered ratios satisfy one fewer (cocycle) axiom than ordered cross ratios. As a
consequence periods (® of an ordered ratio B do not necessarily satisfy (B (y) #
€8 (y~1). One immediate advantage of ordered ratios is that simple root lengths

can now be periods. In fact, we have already seen an ordered ratio in the guise
of the ratio of two i-th characters (Definition 4.13).

Remark 8.3 (i-th ratio). Given (p, &) € XpgL,,s, . (R>0), the i-th ratio:
Pi(x;y,t)
Pi(x;y,z)’

is indeed an ordered ratio. By Proposition 4.14, we have that B; is 711 (S g,m )-invariant. It
is easy to check the three ratio conditions. Positivity implies the two ordered conditions.

(154) B(x,y,z,t) =By (x;y,z,t) :==

Splitting the i-th ratio using essentially the same process as in Section 5, we obtain
(n — 1) identities for each boundary component «.
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Theorem 8.4 (McShane identity for loxodromic bordered positive representa-
tions). For positive representation p with loxodromic monodromy around every bound-
ary component, define its i-th ratios via its canonical lift (p,&) € XpcL, s, (R>0) (as
per Definition 4.17). Given a distinguished boundary component « of Sy, for each
i=1,---,n—1, we have the equality:

(155)

(o) = Z llog Bi (o ;™,8(c ), 8%)] + Z logB; (o ;v ,v").

(6,6, 1€H v,y o ]EF?

= pla7)

F1GURE 24. The pair of pants Y has the boundary components «,
B, v with o~y = 1 and Y is cut into p, n’ along the simple
curve Yo = B« (check Figure 6 for details around o). Here op
contains y4— and vy, and o’ contains y,— and B.

Proof. Using the cocycle property of i-th ratio and Holder property of the limit
curve &,, we follow the proof presented in [LM09] almost line by line and replace
the ordered cross ratio B by the ordered ratio B;. We extend Definition 1.19 to

ix, Then we obtain

(156)
ti(a)= Y  (logBi (oo™, v, v(a)) +1logB; (™, Bla™), B))
(B YIE€P
+ Z logBi (o« v, v")
[YlePd
= Z llog Bi (o ;™, 8(),8%)| + Z log By (o 0, v, v").
(6,8 1€« (Vv o 1€5C2

O

As is, the identity is not expressed in terms of explicit geometric/projective in-
variants attached to the representation p. We do this crucial step later in this
section.
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8.2. McShane-type inequalities for unipotent bordered positive representations.
We in fact have two strategies for deriving McShane-type inequalities for unipo-
tent bordered positive representations. The first is to follow the Goncharov-Shen
potential splitting idea we employed in Section 5. The second is to take the
loxodromic bordered identities we just obtained and to consider them under de-
formation to the unipotent bordered locus in the character variety. We choose
to illustrate the second strategy; the necessary ingredients for computing via the
first strategy is nevertheless contained in what follows.

Theorem 8.5 (McShane-type inequality for unipotent bordered positive represen-
tations). Consider a positive representation p with unipotent boundary monodromy and
let p € my, be a distinguished puncture/cusp on Sgr. Then, fori=1,--- ,n —1, we
have

(157) > Bi(8,8) <1,

Ai(p(8))
L+ Ki(8,8p) 505y

(5,6,1€5C,
where 7y is the oriented cuff for w and vy, is the oriented seam for u, and

(158)

Ki(5,50) = - YTl Taii(8p,6%,p) TS Taoigiilp, 8p,87)
1 7 — o . — )
" 1+ 23:11 ]._chzl Tnfi,j,ifj (p,op, 61) ]._‘[j:% Tj,nfi,ifj (p, &p, 6+)

Definition 8.6 (path 1). For (p,&) € XpaL, s, .. (R=0) with (purely) loxodromic bor-
dered monodromy representation p, we choose an analytic path 1 in XpgL, s, . (R>0)
satisfying the following conditions: ‘
(1) U0) = (p, &)
(2) every element of 1([0,1)) C Xpcr, s
all of its boundary components;
(3) U1) = (p',&') € XpGL,,54.m (R=0) has unipotent monodromy around all of its
boundary components, also arising from an element of AgL,. s, .. (R~0).

(R~¢) has loxodromic monodromy around

gm

We denote the limit converges to (1) along the path 1 by limnyp para- Along the path 1,
the simple root length {; of each boundary component converges to 0 fori=1,--- ,n—1.
Geometrically speaking, this is tantamount to the boundary « of Sg m deforms to a cusp

.

Proposition 8.7. For any [u] € ﬁg with its cuff a boundary component vy, as y deforms
to a unipotent boundary, we have:

logBi (¢ ; ™, vy, v")

159 li =0.

( > ) hypglg‘}am ei((x)

Proof. We have
Pi(x st yH)

logB; (a0t , v, v+ AL 1
(160) TR L G A% v 4 R VN G i B
hyp—para ei((x) hyp—para Pi(oe ;oo t(y ) -1
Pi(o 0, y™)
P: — ey +

hyp—para Pi(ac; v, a (y7))
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Since 7y is another boundary component which converges to a cusp along the path
1, we get Pi(a—;y—,y") =0 for 1(1). Hence we obtain

P:(ox:v— . vt
(162) lim oy v')

=0.
hyp—spara Pi(oc=;y~, =1 (y™))

O

Remark 8.8. The previous result explains why there are no T{g summands in the unipo-

tent bordered McShane identity.

Lemma 8.9. For & € {B, B, v,y '} as in Figure 24, we obtain the formula

(163)

Bi (oo, 8(a), 8 (7)) — By (o587, 8(x ™), 8 )
1—Bi (a8, 8(cc), 6 (o)) '

Proof. Using additivity of the i-th character, we simplify the right hand side as
follows:

(164)
Bi (oo™, (), 8 o)) — By (7587, 8(x™), 8 (7))
1—Bi(a;8%,8(c ), 07 )

_(Pi(oc;oﬁ,él(oc)) Pi(oc;6+,61(oc))> (1 Pi(“}5+/61(“)))

“\ Pila ot 8(a)) Py 87, 8(a)) ~ Pilo 8%, 8(a )

~ Pilo o, 8 (o)) - Pl 5871, 8(0c ) — Pifor ;81,8 (o)) - Pl o, 8o )

B Pi(oc—; ot 8(ox™)) - (Pi(oc—; 8%, 8(0c)) — Py 6+, 67 (a™)))

= [(Pila 5ot 8(a7)) + Pi(a;8(e ), 6 (o)) (Pilor ;87,8 (7)) + Pilo ;8 (o), 8(a7))) —

Bi (o ;o 8(ax),8%) =

Pi(oc;6+,51(oc))Pi(oc;oﬁ,é(cx))}/(Pi(oc;oﬁ,é(cx))-Pi(oc;él(oc),é(oc)))

Pi(a o, 8(o )P ;8 (), 8(x)) + Py ;8(e ), 8 (o ))Pior; 8%, 8(ax))
Pi(a—; o, 8(oc))Pi(ax; 87 (or), 8(0c7))

o Piloat, 8T)Pi(a ;0 (), 8(a ) Pifo;at, 0T

C Pl ot 8(a )P 8 (o), 8(e))  Pifa ot 8(a))

=B (¢ ;" 8(x),87).

Definition 8.10. In the pair of pants of Figure 24, we obtain

(165)  Bi(a ;v Ha),v(a)) >1, By (o, Bla), B (a)) > 1

and

(166) By (o, v o), v(a)) - By (st o), B (o)) = et
When we take the limit limy,,_, par, along the path 1, we have elile) converges to 1. Thus
both By (o« ",y Ha™), y(«™)) and By (o ; o, Blo™), B~ ew™)) converge to 1.
For 8 € {B,B L, v, v 1}, we define

~ Jlog Bi(oc; o, 8(oc), 67 (7))

(167) Ri(8,80 ) : o]
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Then we have

(168) Ri(8,80—) =Ri(671,8,1) >0,
and
(169) Ri('Yr'Yoc*) + Ri(B/ Boc*) =1

In the case Sy m = S11, for [u] € ﬁa, we denote Ry (W) instead.

Remark 8.11. Actually Ry(5, 64 ) has a geometric interpretation. With respect to the
basis given by &, (™) and &, (™), consider the diagonal matrix (g ;) that fixes &g (o)
and &,(«*) and translate £} (8(a)) to £ (8 (o). Then

log gn—1,n—1 —log gnn

(170) R1(5,64—) = (o)

By a choice of fundamental domain, we define the normalized (p, i)-Goncharov—
Shen potential for the boundary case.

Definition 8.12. For (p, &) € XpgL, s, ., (R>0) that is a canonical lift of p € Hn(Sg,m)

with the loxodromic monodromy around each boundary component, for any [Y] € P and
a choice of its fundamental domain as in Figure 24. Choose a lift X of £(oc™) into the
decorated flag variety A. Then we define

(v ™ —
o Bilvya )= P‘i’(ﬁ%;;ﬁl(fx"j)’)'{g"‘a{))),

. —. — —1 _
(172) Bu(p, P ) im it Bla) B (a7))

Piloc;y o), B (7))
It is easy to see that
(173) Bi(‘Y/‘Ych) + Bi(B/ ch*) =1

When we take the limit limyyp_pera along the path 1, o~ converges to p, the ratio
Bi(0, 04— ) converges to Bi(d,8,) for & € {B,v}. Actually Bi(,06,) does not depend
on the fundamental domain that we choose.

The following lemma provides the relation between R;(§,5—) and Bi (5, d4—).

Lemma 8.13. We have

eRilvvo—)tila) _ 1

(174) S0 1 =Bilv,va )

RulB B, 1) g Bi(B, B )
elile) —1 Bi(B, Boc*)‘f'Bi(YrYoc*) et

(175)
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Proof. By direct computation

_ N Pl ot (a))—P i (asat,B (o))
Bi (a0, Blo), p M) —1 Pl Bla))
elile) —1 elila) —1

Pi(o;Blax), B (7))
(et(0) —1) - Py o, Blax™))
_ Pua;Bla 1,p o)
(176) Pi(a; o, 1B (™)) — Py at, Bax))
-~ Pi(o; Bl )[3 o))
Pi(o; Blam), B am)) + Pila; B~ (Oé) o 1B ()
Pi(a;B(a), B!
Piloc; Blom), B o)) + elil
Bi(ﬁrﬁcx*)
Bi(B, B )+ Bily, o) elil®)’

Similarly for the other formula. O

"‘@

Then Lemma 8.9 and Lemma 8.13 allow us to compute the gap term in Theorem
8.4 as follows.

Lemma 8.14. Evaluating the function f(A) = ﬁ at the four gap terms for He in
Figure 24, we get:

1)
Bi (0o, y o), y) — 1 1
(177) e“i(“)—l :Bi(’Y/’Yocf)' 1+ Py y(ax)) ’
Pi(oe—y ™),y —)
2)
(178)
Bi (¢ ;at ,v Foyla)) -1 — Bi(y,va)- 1 )
T — = Pl Ve : Y2 Poloc vty o))’
et 1 1+ eRilvva—)ti(x) . Pl?oc VV(V e
3)
Bi (o o" (3( x ), BM) —
elile) — 1
(179) ((5 Bo ) . 1 ,
(o) Pilo BB ()’
Bi(B, Bo) + Bilv, yor) el g 4 PilesB P lo
4)
(180)
Bi (o ; (5’ B a)) -1
elila) — 1
_ 1(6/60(7) . 1
: N : Y. el PP )li(a) . Pila— BBl ))
Bi(B, B« )"‘BL(VIYDL ) - etilx 1+ eRi(BBa—)ti(a) Pi(a*ﬁfl[ocj;ﬁ*)
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Proof. By direct compuation, we have

(181)

Bi (OC_, 0C+/Y_1( _),Y_) -1
elile) — 1

Bi(oc ;o y o ) 1(0671/71/71(0‘ )/Y(‘Xf)) 1
- 1= B( iy e )yl ) by Lemma 8.9
e 1(0‘)—
~ Bi(a” cx*,yloc,(oc) 1
elila) — 1 11— By (a; v, vy a), y(a))
B _
= NATS) by Lemma 8.13 .
1—|— (o iy (e ))
(oc v e )y )
Similarly for the other cases. O

A direct consequence of Lemma 8.14 is the following.

Proposition 8.15. Suppose & € {B,B1,v, vy '}. For the four cases in Lemma 8.14, we

have
(182) i MogBi (oot 8(a), 87) _ Bi(8,8y)
hyp—para fi(O() 1+ %}m

Lemma 8.16. Suppose & € {B,B1,v,v'}. For both puncture case x = p and boundary
case x = o, we have

Pi(x; 87,867 1x) Ai(p(8))
183 ——————— =Ki(,0«) - — 5,
(183) Piloox,5t) O X o))
where
(184)
n—i—1
Ki((s, (SX) 1+ Z J -1 Tho ij,i— ](6X ot X) ) Hj:l Tnfifj,j,i(xr dx, 6+)

1+ Z J 1 T iji— ](X/ ox,8%) H;;} Tj,nfi,ifj (x,0x,06T)
Proof. Firstly, we have

Pi(x; 87,871 (x))  Pi(d%;87,x)

185 = )
(185) Pi(x; &%, 57) Pi(x; 6x,6%)

We compute the right hand side of the above equation instead. By Proposition
4.12, we have

i—-1 ¢

(186) Ploiox =00 (14 Y T Tniiis(x8%,8%) |,
c=1j=1
i—1 ¢

(187) Ploxor = o000 (14 T Taoiiioi(8%,6%,%)

c=1j=1
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x;07,0%

FIGURE 25. We draw X &

5x;x, 6+ 5+;8%x,x
i,j,k 7 3,k

to illustrate our computation.

Then
(188)
i—1 c + 5x;%,87
Pi(ox;8%,x)  Pi(dx;x,87) 1+ 2 T q Tnoiisi(0%,07,x) a7y
o +Y T P~ S+ - i—1 c TTXe e
Pi(x;6x%,61) Pi(x; 0%, 0x) 1 +Zc:1 =1 Tn,i,j,ifj (x,6%,0%) X140
Observe Figure 25, we obtain
Sx;x,8
n—1i,1,0
x;07,0%
n—1i,1,0
5x;x, 6+ 5;8%,x 5x;x,6 5+;8%,x
o (xnfi,i,() . 1,In—i—1 . n—1i,1,i—1"1{,n—1,0
O exx, 0t 5+;8%x,x 5+;8%,x x;071,0%
189 ocnfi,l,ifl in—i,0 1,In—1—1"n—1,i,0
( ) i1 5x;%x,67 571;8%,x
_ T '(5X X 5+). 1 . (xnfi,l,ifl in—1i,0
- l l n=uji-) (e n—i—1 5+;0%,x x;0F,8x
. (St S0X, ;07,
j=1 Hj:l Tijn—i—j(0F,0x,x) Xi1n—i-1%n—110

—i-1 Sx%,8™"
IS Tyl 0%, 87) o

5+;8%,x
n—1i,1,i—1""1{,n—1,0

i1 TS hoNx x;0T,0x
. J. + 7 ’ ’ ’
Hj:l Tin-1i-j(x0x8") « X 4,10

1,1n—i-1
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By Lemma 4.8, we get

(190)
Sx;x,56F 5+;8%x,x
n—i,1,i—1""1{,n—1,0
51;0%,x x;07+,0x

i,In—i—1%n—1i,i,0
A((BX)MTHASTILA((53)™TIASTAXY)  A(STHIA(SX) ) A(STTIAXIA(SX) )

ALY A TIAX)-A((0X)"—TA8Y) AT AXIAGX) T 1) .A(STA(6x)—1)
AGTHAXT 1) AT IAXT A (5x)]) AP HIASI 1) A(x" 1A (5x)L A1)
ABIAXT T IAN(BX))-A(STAXT 1) T A(x"IASY)-A(xM tA(6x)IASLT)
A((Sx)nfiJfl/\sifl) A(&i«kl/\(éx)nfifl)
A TTHIAGTT) T TA(BTH Ax )
A((Sx)—ETASY)  A(SIA(Sx)M 1)
A(x™mTASY) : A(GTAX™ 1)
1 ) 1
A A 1(9(5)) A A (p(9))
- 1
(P 5)) " AiA(p(d))
_ ( ( ))
N1 (p(8))
We conclude that
Pi(x; 61,567 1(x Ai(p(8
o) i () _ 5,5 . OO
Pi(x; 8, 8%) Aiv1(p(0))

O

Proof of Theorem 8.5. For any [5,04] € fT-C“, when we take the limit limpyp s para
in Definition 8.6 along the path 1, by Proposition 8.15 and Lemma 8.16, for 6 €
{B,BL,v,v 1}, the gap term [log B; (a—; ™, 8(x™), 8 )| over £i (o) in Theorem 8.4
deforms to

Bi(5,0p)

192) .
( 1+Ki(8,8p) - bbb

For any [u] € fT-Cg, by Proposition 8.7, when we take the limit limpyp para, the gap
term log Bi (o« —; ot,v~,y*") over {;(«) is 0. We conclude that

Bi(5,5p)
193) <1
( 2 1+Ki(8,8p) - silelols

(8)
(5,651, i11(p(3))

O

8.3. Expressing the hyperbolic bordered McShane identity summand. The fol-
lowing corollary gives a geometric expression of the gap term in the summation

iT-foc of Theorem 8.4. Let us define
(194) Ki (8, 0x) :=log Ki(8, dx).

Theorem 8.17. In Theorem 8.4, the gap terms in He for Figure 24 are geometrically
expressed in the following form: for & € {B,p 1, v, v}, we have

eRu(8,8,—)lilo) | oKil(8,8,—)+Ei(8)
1+eKl 0 « )+ (3)

Proof. Directly derive from Lemma 8.9 and Lemma 8.16. O

(195)  |logB; (o at,8(x™),87)| = |log
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Definition 8.18. We generalize d; and d, in Theorem 5.10 using i-th ratios:
(o vt — A xy—-~—1(R+ —1(4—
(196)  di:=1lo Pilo v, y(a)) dy =1 Pila 5y (B7), vy (x7))

, =1lo
Piloc;Bloc), BT & Pila sy o))
Let
do
a. cosh7
(197) eti=— 1
2
Lemma 8.19.
(198)
. _ d
et () Pulay(BF),v") _ COSh G )ty 1t ) (BB (B ()

Pi(a;v*, BF) ~ cosh 4t
Proof. By Lemma 8.16 we have

editdatri (v, v — )+ (y)

_Pila vyt y(a)) Pila vy T(BT), v (o)) Pile sy, y )
199)  Pifa; B ), BH) Pi(oc ;v Ho),vH) Pi(o; (), vT)
Pila 5y (BH), vy )
Pi(a; Blac™), BT)

By a'y~! = B! and Proposition 4.16, the above equation equals to

7Zi . — 71 -
(200) e (. Pi(a; BT, B (o)) — eXi(BB o)+ (B)—ti ()
Y .
Pi.((x ,[5(0( )/[5 )
Thus
(201)
4 —d
COSH G bk (rve 1+ (s (BB (Bt () _ LHE (B, )rei(p)
coshQ 1+ed
Pi(la 5y "B H) _ 1 ) _
e w0y ) CPila BT, BT () et P(ay T (B, v )
B Pi(a—y*t,BH) Pi(oc—;B(oc),BT) Pi(a; v+, B+
B B ila; Blec), BT) il vt BY)

O

Theorem 8.20. In Figure 24, the gap term for one {p, v} € P is expressed geometrically
in the following way:

(202) logBi (o ;o v*, BT)

eli(0) L SN L (ki (1, v+ (V) + (BB o)+ (B ()
cosh =

(203) = log

0sh b (7 o FE () (B o )8 (B) ()
cosh =

Remark 8.21. The relation between the ordered cross ratio B used in Labourie—McShane
identity [LMO9] and the i-th ratio is provided by Corollary 4.15. Combing with Theo-
rem 8.20, we also have geometrical expression for the Labourie-McShane identities.

Proof. We show two sides of the above equation are equal by evaluating two sides
er—1

at the strictly increasing function f(A) = 7. Then the left side becomes into
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Pi(a v *,BH)
Pi(a oty t)-(efile)—1)7

1
4 il p (a—y—1(BH) v +H)
Pi(x—y T+, 1)

and the right side becomes into
1

by Lemma 8.19. By Proposition 4.16, we have
Pilac o,y ) - (e —1)

(204) =Pi(a ;o (y") = Pila s, v )

=Pi(a vt o (y"))
Then this theorem is equivalent to show
(205)  Pila vyt o (yh)) = et Piay T (BT), v )+ Pila sy, BT,
or equivalently
(206) Pila ;BT a (y")) = et Pila;y (BT, Y,
which is a consequence of Proposition 4.16. O
Proposition 8.22. In Figure 24, the gap term for one [Y] € ¥ 8 is expressed geometrically

in the following way:
Let

Pi(a™ v, v(a™)) Pi(a vy 1 (BT), y o))

207 d:=1o , dj:=1lo
@7 =108 aee), By 2T T B (a T v
Let

, h %
(208) ed = 22

cosh =
Then
cosh 1A + cosh 1B

209 logB; (o ;v ,v") =1 4 i,
(209) 8 (‘X x v) Og(cosh}lA—i-costh)
where
(210)

A =2ki(B, Ba) +20(B) +kily, Yo ) +L(v) — ki(y Ly h) — iy ) +2d+2d/,
@11) B =24(c) + (v, Vo) + G(y) + ki(y v h) + Gy ) +2d —2d,

(212)  C=—20i() + ki(V, Vo )+ G(¥) + iy Ly h) + Gy ! +2d —2d".

Proof. Similar to the prove of Theorem 8.20, we have

logB; (a5t v, BY)

’

etile) 4 Oh (i (T ) (T (B o ) () ()
(213) _ costhll
=8 coshd—z/ l(, v Ly L) =t (v ! : 0 0 ( ))
1 + 2, ez KilYy /V‘xf) 1(Y )+K1(B/r‘})[x )+ L(B)+ il

d 7
cosh -+
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Then the formula is obtained through

(214)
logBi (o ;0 v, v") =logB; (50", v, p") —logBi (« v, BT).

8.4. A strategy for establishing the unipotent bordered McShane identity.

Theorem 8.23 (equality under assumption). Assume that we have the following prop-
erty, denoted by (*):
For p on the path 1 with the loxodromic monodromy around each boundary

component, let D;(N, p) = #{[3] @g,m | log % < N} where ég,m is the set

pl(
of free homotopy classes of simple closed curves on Sy, or equivalently, the set

of 71 (Sg,m) conjugacy classes of simple homotopy classes. Then
(215) Di(N/ p) = C(p) . N6976+2m + O(N6976+2m),

where c(p) is a continuous function.
Then the inequality in theorem 8.5 is an equality.

Remark 8.24. The assumption generalizes Mirzakhani’s result for Teichmiiller space into
the PGL(n, R)-Hitchin component.

Proof. Given (p’,&') € AsL,, s, .. (R>0), let L be the path in Definition 8.6 such that
(1) = (p’,&’). Since the path 1 is compact, we have the following bounds in the
path L

elile) 1
€ (o)

(1) the limit of ezg:a;l under limyyp_,para is 1, 50
by a constant Cy > 0;

(2) by Theorem 3.4, the triple ratios in the mapping class group orbit in the
closed path 1 is bounded away from 0, thus K(8,5 ) is lower bounded
by a constant K > 0.

is upper bounded

Moreover, fix 6 € m(Sg,m), the sum over different

2 Bildda)<1

(5,6, —1€Fq
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for any l(s) € XpgL, s, . (R>0). Thus we get

Z llog Bi (ox; xt, (o), 8]

- €y (o)
[6,0,—1€EH«
it Bi(5, 8o)
ST ’ L 8.14
0 () Zﬁ (1+Ki(5,5“) 'eei(5)> emma
[0,0,—1€H«

Bi(éréoc*)
g,
Bi(éléoc*)
<Co- ) ) (1+K-ew>
Cq,

(216)

Since the continuous function c(p) is also bounded by a constant Q > 0 in the
+oo (Di(t,p)—Di(t=1p))

path 1, we have Cy - } [} CRet is uniform convergent. Thus
log B (o ; oct, 8(c),8%)
217
317) 2 tlw
[8,6 i —1€H &

converges uniformly to 1 on the path 1. Thus on 1(1), we conclude that

Bi(5,5p)
19 2 N\ Tikwe, e | 7t
(5,6, €3, P EPT T A (p(9)
U
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APPENDIX A. HILBERT LENGTH VERSUS SIMPLE ROOT LENGTH COMPARISON
This is a proof of Theorem 7.11:

Theorem A.1 (Hilbert vs. simple root length comparison). For any positive repre-
sentation p : m1(S) — PGL3(R), there exists K, > 1 such that for every simple closed
curve y on S, we have:

(219) by) <tly) <Kp-bly).

Proof. The left inequality is obvious. For the right inequality, we first consider the
case when § is closed. In this case, let K, be the supremum of the ratio between
the infinitesimal expansion rates for the Hilbert length flow and the simple root
length flow [BCLS18] for p. The fact that K, exists is due to the compactness
of the unit tangent space T'S. When S has boundary components, we double
[Lab07] p along its hyperbolic boundaries to a positive representation dp on a
doubled surface dS. If dS is closed, we invoke the previous argument, and thus
we have reduced ourselves to the case when every boundary of p is unipotent.

Consider a positive representation p with (only) unipotent boundary monodromy,
and let {yy} denote a sequence of simple closed curves for which €° (yy)/¢f (v«)
tends to the supremum of €°(-)/¢7(-). The compactness of PML(S11) means that
we may replace {yi} with a subsequence such that there are lifts ¥y in the uni-
versal cover Q for the cusped convex real projective surface ~ with monodromy
representation p converge to an (oriented) lifted leaf ¥, of some geodesic lami-
nation on Z. By possibly conjugating p, we assume without loss of generality that
the flag at ¥, is given by
1

=y {[{]} < =span { [ [{]} c o=

and the flag at ¥ is given by

= {[1]} s =spn 1] [§]} =%

We also fix an arbitrary point [x : y : 1]* € 0Q which is somewhere below the
geodesic from ¥, to 7. Note in particular that x +y € (0,1). Now consider the
sequence of (unique) projective linear transformations My € PGL3(R) which

e maps the flag at ¥ to U; C U, C U,

e maps the flag at . to V1 C Vo C V3,

e and fixes [x:y: 1]' € Q.
We observe that k tends to infinity, the matrices My approach the identity matrix.

We know from Proposition 6.9 that Q satisfies 3,-regularity for some (finite)
o > 2. This means that there exists C > 0 such that for all p, q € 0Q), we have:

de(q,Tp0Q) > C ' de(q,p)Pe.
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The regularity coefficient 3, is preserved under projective linear transformations,
and by applying M, sufficiently close to the identity matrix (i.e.: for all k suffi-
ciently high) to with p = ¥}, we have:

(220) de(My - q,Up) > (2C) 7" - dg(My - q, Uyp)Pe.

Explicit computation shows that My - p(yi) - M;l acts as the matrix
A1(v) 0 0

(221) 0 A2(vs) 0 ,

At(vi) = A2(ve)  Aslva) —Aalvi)  A2(vi)

and hence My - p(vi) - bx 1y : 118 = My - plyi) - Mt - [x sy : 1]% is equal to
[ XA1 . YAs -1 ¢
X(A1=A2) Y (As—A2)+A2 * x(A1—A2)+yY(Az—A2)+Az *

(222)

We now consider equation (220) after taking q = p(yx) - [x : y : 1]* in. The left
hand side of the inequality satisfies

A 2yAs (vi) -
(223) de(My - q, W) = x(7\1—7\z)+yy S < 3)\13(3]5 , for sufficiently large k.
Similarly, the right hand side term dg (M - q, U;) satisfies

XA x4y (Az—A2)+A
(224) de (M - a W) >1— x(A1—=A2)+y (])\3*7\z)+7\2 - X()\1*72\2]+yz7\3*27\2]+2)\2
(225) >%W, for sufficiently large k.
Putting all of this together, we obtain that:
2yAs o (I—x—y)PeaAfe

(226) xXA1 ZC(ZX]B"?\PP ’

and therefore 3,¢1(vx) > £(yk) —log(C’) for some constant C’. Since

. lyx) —log(C’) . v)
227 > lim ———2— - = lim ,
27 = A TN B & A
we see that K, not only exists, but is bounded above by f3,. O
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