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Abstract. In [GS15], Goncharov and Shen introduce a family of mapping class
group invariant regular functions on their A-moduli space to explicitly formu-
late a particular homological mirror symmetry conjecture. Using these regular
functions, we obtain McShane identities general rank positive surface group rep-
resentations with loxodromic boundary monodromy and (non-strict) McShane-
type inequalities for general rank positive representations with unipotent bound-
ary monodromy. Our identities are expressed in terms of projective invariants,
and we study these invariants: we establish boundedness and Fuchsian rigidity
results for triple ratios. Moreover, we obtain McShane identities for finite-area
cusped convex real projective surfaces by generalizing the Birman–Series geo-
desic scarcity theorem. We apply our identities to derive the simple spectral
discreteness of unipotent bordered positive representations, collar lemmas, and
generalizations of the Thurston metric.

1. Introduction

The aim of this paper is to generalize McShane identities for higher Teichmüller
theory, a goal previously considered by Labourie and McShane in [LM09].

The starting point for our McShane identity is the Goncharov–Shen potential (Def-
inition 2.9): a family of mapping class group invariant regular functions on the
higher Teichmüller space ASLn,S, first introduced by Goncharov and Shen in
[GS15]. They utilize these potentials to formulate a precise homological mir-
ror symmetry conjecture between Fock–Goncharov higher Teichmüller theoretic
objects [GS15, Conjecture 1.16]. Goncharov–Shen potentials conjecturally corre-
spond to Landau-Ginzburg partial potentials and contains data tantamount to spec-
ifying a compactification for the underlying space of the mirror dual. They are
a natural higher rank generalization of horocycle length, and decomposing them
leads to our family of McShane identities for positive surface group representa-
tions into PGLn R.

Our McShane identities are expressed in terms of geometric quantities such as
simple root lengths and triple ratios, and naturally generalize those employed by
Mirzakhani in her stunning proof [Mir07b] of the Witten–Kontsevich theorem. We
establish geometric applications for our identities, yielding properties of simple
root lengths and triple ratios along the way. We hope that this paper serves as an
invitation for the community to further unravel the geometry underlying higher
Teichmüller theory.

Date: May 19, 2019.
2010 Mathematics Subject Classification. Primary 57M50, Secondary 32G15.
Key words and phrases. Mcshane’s identity, Fock–Goncharov A moduli space, Goncharov-Shen

potential.
1



2 YI HUANG AND ZHE SUN

1.1. The McShane identity. Given a 1-cusped hyperbolic torus Σ, let C1,1 denote
the collection of unoriented simple closed geodesics γ̄ on Σ and let `γ̄(Σ) denote
the length of the (unoriented) simple closed geodesic γ̄ on Σ. In his doctoral
dissertation, McShane [McS91] established that:∑

γ̄∈C1,1

2
1 + e`Σ(γ̄)

= 1.(1)

McShane’s prototypical identity has led to an ever-growing class of variant and
generalized identities, including identities for the following hyperbolic manifolds:

• hyperbolic surfaces with differing topology and boundary monodromy
[Hua15, McS98, Mir07a, Nor08, TWZ06],

• various hyperbolic 3-manifolds structures [AMS04, AMS06, Bow98, Bow97,
Hua18, LS13, TWZ08],

not to mention the closely related Basmajian identity [Bas93], Bridgeman-Kahn
identity [Bri11, BK10] and the Luo-Tan dilogarithm identity [LT11].

1.2. Cusped convex real projective surfaces. The theory of convex real projec-
tive surfaces is the simplest geometric example of a non-Fuchsian higher (rank)
Teichmüller theory, and generalizes the Beltrami-Klein approach to hyperbolic
surfaces. The monodromy representation ρ : π1(Σ) → PGL3(R) for a convex
real projective surface Σ allows for multiple notions of geodesic length: an ori-
ented closed geodesic γ on Σ corresponds to a conjugacy class in the fundamental
group, and ratios of eigenvalues for ρ(γ) are well-defined. Index the eigenvalues
for ρ(γ) so that λ1(ρ(γ))

λ2(ρ(γ))
, λ2(ρ(γ))
λ3(ρ(γ))

> 1 and define the simple root lengths

`1(γ) := log
(
λ1(ρ(γ))
λ2(ρ(γ))

)
and `2(γ) := log

(
λ2(ρ(γ))
λ3(ρ(γ))

)
= `1(γ

−1).

Throughout this article, we use γ̄ to denote the unoriented geodesic underly-
ing an oriented geodesic γ or γ−1. Whereas simple root lengths are defined for
oriented geodesics, the Hilbert length, given by

`(γ̄) = `(γ) = `(γ−1) = `1(γ) + `2(γ),

is well-defined for unoriented geodesics.

Ideal triangles are fundamental building pieces for hyperbolic and convex real
projective surfaces. It is well-known that any two hyperbolic ideal triangles are
isometric. In contrast, oriented convex real projective ideal triangles are geometri-
cally richer and are classified by their triple ratios T (Figure 1) [FG06], which vary
over R>0. We denote the logarithm of the triple ratio by τ(∆) := log(T(∆)) ∈ R,
and refer to this quantity as the triangle invariant [BD14, BD17].

In Section 7, we establish McShane identities for finite-area cusped convex real
projective surfaces (Theorem 7.1). For 1-cusped tori, our result takes the form:

Theorem 1.1 (McShane identity for 1-cusped tori). Given a finite area convex real
projective 1-cusped torus Σ, let C1,1 be the set of oriented simple closed geodesics on Σ.
Then ∑

γ∈C1,1

1
1 + e`1(γ)+τ(γ)

= 1,(2)
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Figure 1. The triple ratio of the anticlockwise-oriented ideal tri-
angle 4 inside a convex domain Ω ⊂ R2 ⊂ RP2, such as the
universal cover of a convex real projective surface, is T = s1s2s3

r1r2r3
.

where τ(γ) is the triangle invariant for either of the two embedded ideal triangles on Σ
which has one side being the unique ideal geodesic disjoint from γ and the other two sides
spiraling parallel to γ (see Figure 2).

Figure 2. Cutting the shaded pair of half-pants on the left figure
along the spiraling geodesic depicted (left figure) produces an
ideal triangle 4γ, and we use it to define τ(γ) = τ(4γ). The
right figure depicts a single lift (p̃,γ·p̃,γ+) of4γ to the universal
cover of Σ, here γ denotes both the closed geodesic γ as well as
an homotopy class representative chosen so that γ̃ is its invariant
axis.

Remark 1.2. Triple ratios for ideal triangles on hyperbolic surfaces always equal 1. The
Fuchsian case for the above identity therefore recovers the classical McShane identity after
catering for the canonical 2 : 1 orientation-forgetting map between C1,1 and C1,1.

1.3. McShane identity proof strategy. Each summand in the classical McShane
identity is the probability that a geodesic shot out from the cusp p on Σ self-
intersects before hitting γ̄. This probability measure is the horocycle length mea-
sure induced from identifying the length 1 horocycle around p with the set of all
directions emanating from p. The following two steps establish the identity:

Step 1:: one needs to show that there is 0 probability that a geodesic ema-
nating from p is simple. This is due to the Birman–Series theorem [BS85].
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Step 2:: the complement of the (uncountable) set of points on the length 1
horocycle corresponding to simple geodesics emanating from p is a count-
able union of open intervals. One needs to express the length of each
interval in terms of geometric quantities intrinsic to the surface Σ.

For convex real projective surfaces, the probability measure we decompose is the
ratio ( 4.13) derived from the Goncharov–Shen potential — an additive character in-
troduced by Goncharov and Shen in [GS15]. The Goncharov–Shen potential mea-
sure can be manipulated and computed via Fock and Gocharov’s A-coordinates
[FG06], and is perfectly suited for Step 2.

We further show that the probability measure induced by the Goncharov-Shen
potential is a C1-rescaling of the horocycle length probability measure, thus en-
abling us to use the following generalization of the Birman–Series theorem:

Theorem 1.3. Given a finite-area convex real projective surface Σ, the Birman–Series
set defined as

BS(Σ) := {x ∈ Σ | x lies on a complete simple geodesic on Σ}

is nowhere dense, closed and has 0 area.

1.4. Fock–Goncharov higher Teichmüller theory. In [Hit92], Hitchin discovered
a special contractible component of Hom(π1(S), PGLn(R)/PGLn(R), called Hitchin
component. It then becomes into the central object of higher Teichmüller theory.
Labourie [Lab06] characterized the Hitchin components dynamically. Meanwhile
Fock and Goncharov [FG06] characterized the Hitchin components algebraically,
using the notion of positivity. In this paper, we concentrate on the Fock and
Goncharov’s approach to higher Teichmüller theory.Z: Added this paragraph for his-

tory background. Positive representations ρ : π1(S) → PGLn(R) are central objects underpinning
Fock and Goncharov’s higher rank generalization of Teichmüller theory [FG06].
In particular, the composition of any Fuchsian representation with an irreducible
representation from PGL2(R) to PGLn(R) is a positive representation. We refer
to such representations as n-Fuchsian representations. When n = 3, positive rep-
resentations correspond precisely to monodromy representations for finite area
cusped convex real projective surfaces and loxodromic bordered convex real pro-
jective surfaces [G90][CG93][FG07]. For rank n positive representations, there are
n − 1 linearly independent simple root lengths: one for each i = 1, . . . ,n − 1. The
i-th simple root length for γ is given by:

`i(γ) := log
(
λi(ρ(γ))
λi+1(ρ(γ))

)
,(3)

here we again index eigenvalues by decreasing (absolute) value.

In [FG06], Fock and Goncharov describe the A-moduli space and the X-moduli
space. These two “moduli spaces” are higher Teichmüller spaces in the following
sense: the A-moduli space and the X-moduli space respectively generalize Pen-
ner’s decorated Teichmüller space [Pen87] and Thurston’s enhanced Teichmüller
space [Bon96]. The A-moduli space is associated with positive representations
with unipotent boundary monodromy, whereas the X-moduli space allows both
unipotent and loxodromic boundary monodromy.

Fock–Goncharov A-coordinates parametrize the A-moduli space and generalize
Penner’s λ-length coordinates. On the other hand, the X-moduli space is coordi-
natized by edge functions and triple ratios ([BD14] for closed surface case). Edge
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functions naturally generalize Thurston’s shearing length coordinates, whereas
triple ratios parameterize ideal triangles: precisely

(
n−1

2

)
triple ratios are needed

to specify each ideal triangle. In [SWZ17, SZ17, WZ18], starting from the ele-
mentary deformation of edge functions and triple ratios, Wienhard and Zhang
and the second author provide a Darboux coordinate system for closed surface
of genus g > 1.

1.5. Triple ratio boundedness and rigidity. We have hitherto only considered
triple ratios as coordinates, i.e.: triple ratios for ideal triangles in ideal triangula-
tions. We introduced triple ratios for convex real projective surfaces, and we see
that they generalize to (Section 2.19):

• Frenet curves in RPn−1 (including limit curves of positive representations)
• and strictly convex domains in Rn−1 ⊂ RPn−1.

In [AC15], Adeboye–Cooper show that triangle invariants and Hilbert areas are
related by the following inequality:

Theorem 1.4 ([AC15, Proposition 0.3]). Given an embedded ideal triangle 4 ⊂ Σ on
a finite-area convex real projective surface Σ, the Hilbert area AreaH(4) of 4 satisfies:

AreaH(4) > 1
8 (π

2 + τ(4)2).

An immediate consequence of this result is that the triangle invariant τ = log(T)
of any embedded ideal triangle on Σ is necessarily bounded between

±2
√

2AreaH(Σ) − π2|χ(Σ)|.

We show, using topological arguments, that triple ratio/triangle-invariant bound-
eness is true for positive representations in general:

Theorem 1.5 (Triple ratio boundedness, Theorem 3.4). The set consisting of all triple
ratios of all embedded ideal triangles for a (general rank) positive representation is
bounded within some interval [Tρmin, Tρmax].

Remark 1.6. Our proof for the above result is essentially topological and holds also
for surfaces with quasihyperbolic boundary monodromy, for which it is known that im-
mersed ideal triangles may have arbitrarily large triangle invariant. Furthermore, For
finite-area convex real projective surfaces, it is possible to promote Theorem 1.5 to assert
boundedness for all immersed ideal triangles using [BH13, Proposition 3.1].

Remark 1.7. In [Kim18], Kim shows that a strictly convex real projective surface has
bounded triple ratio spectrum if and only if it has finite Hilbert area. One can derive
Kim’s claim for triangle invariants by combining Adeboye–Cooper’s inequality with the
last Corollary in Zhang’s introduction [Zha15]. The issue that the formers uses Hilbert
area and the latter uses the Busemann measure is resolved thanks (again) to [BH13,
Proposition 3.1].

Theorem 1.8 (Fuchsian rigidity for n = 3, 4, 5, 6, Theorem 3.10). A positive repre-
sentation ρ is Fuchsian if and only if every triple ratio X-coordinate (i.e.: with respect to
every ideal triangulation of the underlying surface) is equal to 1.

Remark 1.9. This is equivalent to the (a. priori weaker) claim: a positive representation
ρ is n-Fuchsian iff. every triple ratio for every embedded ideal triangle for ρ is equal to 1.
The equivalence is because the set of ideal triangles which constitute an ideal triangulation
is dense in the space of all ideal triangles.
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Remark 1.10. We also obtain a similar rigidity criterion for edge functions (Theo-
rem 3.12), namely that all edge functions along ideal geodesics being equal classifies
n-Fuchsian representations.

Theorem 1.11 (Fuchsian rigidity for general rank). A positive representation ρ :
π1(S) → PGLn(R) without loxodromic boundary monodromy (including S being a
closed surface) is Fuchsian if and only if the triple ratio of every immersed ideal triangle
is equal to 1.

The following immediate corollary is somewhat unrelated to the theme of our
paper. We state it due to independent interest: ellipsoid characterization is a
classical area of research with over a century’s worth of history (see [Guo13] for
a survey).

Corollary 1.12 (Ellipsoid characterization). A k-dimensional open convex set in Rk
is a k-dimensional ellipsoid iff all of its triple ratios are equal to 1.

1.6. Goncharov–Shen potentials and their ratios. For each cusp p of S, there
are n − 1 independent Goncharov–Shen potentials Pp1 , . . . ,Ppn−1 on the A-moduli
space ASLn,S. Altogether, these potentials generate the ring of regular functions
on the A-moduli space [GS15, Theorem 10.7]. The Goncharov–Shen potential is a
central object of this paper, and we dedicate Sections 4 and 5 to its study.

Goncharov–Shen potentials are defined for A-moduli space and not X-moduli
space. They require, as input, decoration data in the same way that horocycle
lengths in Penner’s decorated Teichmüller theory necessitate the choice of deco-
rating points in the Minkowski light cone [Pen87].

A change in decoration for cusp p rescales each Goncharov–Shen potential Ppi by
a constant factor. Therefore, ratios (see Definition 4.13) of potentials, of the same
level i, of immersed subsurfaces containing p are decoration independent (Propo-
sition 4.14). These ratios provide geometrically meaningful data about the under-
lying positive representation. In Proposition 4.16, we show that the exponentiated
simple root lengths of a geodesic γ are equal to the ratio of the Goncharov–Shen
potentials for a particular pair of ideal triangles related by Dehn twist in γ. We
use the following quantity in the half-pants-based summation form of our Mc-
Shane identities/inequality for unipotent bordered positive representations.

Definition 1.13 (Half-pants ratio). let µ̄ ⊂ S be a pair of half-pants containing cusp p.
We define the i-th half-pants ratio Bpi (µ̄) by

Bi(µ̄) :=
Pµ̄i
Ppi

,(4)

where Pµ̄i is the i-th Goncharov–Shen potential at the unique cusp p of the half-pants µ̄.
We refer to Bi(µ̄) as the i-th half-pants ratio for µ̄.

Remark 1.14. When S is not the once-punctured torus, pairs of half-pants µ̄ are uniquely
specified by its (unoriented) cuff γ̄ and its (unoriented) seam γ̄p (see Figure 3). In these
cases, we may write Bi(µ̄) as Bi(γ̄, γ̄p) or even as Bi(γ,γp).
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Figure 3. Cutting a surface S which is topologically a pair of
pants into two pairs of half-pants µ̄ = (γ̄, γ̄p) and (β̄, γ̄p).

1.7. Series for higher rank unipotent bordered representations. Benoist-Hulin
show that the cusp geometry of finite-area convex real projective surfaces limits
to a constant negative curve cusp as one penetrates deeper into the cusp [BH13,
Proposition 3.1]. This fact is key to our proof of the Birman–Series theorem,
enabling us to obtain our n = 3 identity (Theorem 7.1).

For higher rank positive representations with unipotent boundary monodromy,
we currently lack an appropriate generalization of this key proposition, and in-
stead obtain a McShane-type (non-strict) inequality. We first state the punctured
torus result due to its relative simplicity:

Theorem 1.15 (General rank inequality for 1-cusped tori). Consider a once-punctured
torus S, and let ρ : π1(S)→ PGLn(R) be a positive representation with unipotent bound-
ary monodromy. For each i = 1, . . . ,n− 1, we have the following inequality:∑

γ∈C1,1

1
1 + e`i(γ)+κi(γ)

6 1,(5)

where the term κi(γ) is the logarithm of a positive rational function of triple-ratios (see
Theorem 1.17) of marked ideal triangles associated to 4γ (see Figure 2).

We require different summation indices for surfaces topologically different to a
1-cusped torus. One corollary of [Hua14, Theorem 4.5] is an expression for the
McShane identity summed over the set Hp of embedded pairs of (ideal) half-
pants µ̄ containing p.

We introduce a refinement of this summation index by introducing orientations
on the boundary geodesics. In particular, we require the oriented boundaries γ
and γp to be parallel in the sense that orientations agree with respect to isotopy
on the annulus µ̄ ∪ {p} (see Figure 4) .

Definition 1.16 (Boundary-parallel half-pants). An embedded boundary-parallel
pair of half-pants µ containing p is an ordered pair (γ,γp) consisting of an oriented
simple geodesic γ and an oriented simple bi-infinite geodesic γp so that γ̄, γ̄p bound a pair
of half-pants on S and γ is parallel to γp. We denote the collection of all boundary-parallel
pairs of half-pants on S containing p by Hp.
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Figure 4. Cutting along the spiraling geodesic on the boundary-
parallel pair of half-pants (γ,γp) (left figure) results in an ideal
triangle 4 := 4γ,γp oriented so that the marked triangle 4̃ =
(p̃,γ · p̃,γ+) is a lift of 4 (right figure).

For each pair of boundary-parallel half-pants µ = (γ,γp), the unique simple bi-
infinite geodesic which shoots out from p and spirals towards γ parallel to its
orientation (see Figure 4) cuts the underlying pair of pants µ̄ = (γ̄, γ̄p) into an
ideal triangle 4γ,γp . We adopt the notation

T(γ,γp) := T(4γ,γp) and τ(γ,γp) := τ(4γ,γp).(6)

We emphasize that one needs to mark 4 so that it is the projection of the triangle
4̃ = (p̃,γ · p̃,γ+) in the universal cover (Figure 4).

Theorem 1.17 (General rank inequality for cusped surfaces). Let ρ : π1(S) →
PGLn(R) be a positive representation with unipotent boundary monodromy, and let p be
a distinguished boundary of S. Then, for each i = 1, . . . ,n − 1, we have the following
inequality: ∑

(γ,γp)∈Hp

Bi(γ,γp)
1 + e`i(γ)+κi(γ,γp)

6 1,(7)

the term κi(γ,γp) is the logarithm of a positive rational function (see Theorem 8.5) of
triple ratios of marked ideal triangles associated to 4γ,γp .

Remark 1.18. The above formula is an equality for n = 3 positive representations.

1.8. Pair of pants summation. Our previous half-pants summation formula is
a finer series than the classical McShane identity [McS98]. Which, in turn, is
summed over the set

Pp :=

{
(isotopy classes of) embedded pairs of pants Ȳ on S

which contain cusp p as a boundary

}
.

Here it is often convenient to denote a pair of pants Ȳ ∈ Pp by its cuffs {β̄, γ̄}.

We also have an identity summed over pairs of pants, but with oriented cuffs
β,γ. Moreover, we need the orientations on β and γ to be parallel in the sense
that their orientations agree with respect to isotopy on the annulus Ȳ ∪ {p} (see
Figure 5).
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Figure 5. Cutting along the spiraling geodesics on the boundary-
parallel pair of pants {β,γ} (left figure) results in an ideal quadri-
lateral whose lift is the marked quadrilateral (p̃,β+,β · p̃ =
γ · p̃,γ+) (right figure).

Definition 1.19 (Boundary-parallel pairs of pants). An embedded boundary-parallel
pairs of pants Y containing p is an unordered pair {β,γ} of (disjoint) oriented geodesics
so that p, β̄, γ̄ bound a pair of pants on S and β is parallel to γ. We denote the collection
of all boundary-parallel pairs of pants on S containing p by Pp. Similar definition for Pα
where p is replaced by a boundary component α.

Theorem 1.20 (Pants summation form). Given a positive representation ρ : π1(S)→
PGLn(R) with unipotent boundary monodromy, then∑

{β,γ}∈Pp

(
1 +

cosh( 1
2d2(β,γ))

cosh( 1
2d1(β,γ)) · e

1
2 (`i(β)+κi(β,δp)+`i(γ)+κi(γ,δp))

)−1
6 1, where(8)

• δp ⊂ Ȳ = {β̄, γ̄} is the unique oriented simple ideal geodesic on the pair of pants
Ȳ with both ends tending to p and oriented so that it is parallel to β and γ;

• and the di(β,γ) = logDi(p̃,γ · p̃,β+,γ+) are logarithms of (limiting) edge
functions evaluated on the embedded ideal quadrilateral obtained from cutting Ȳ
along the two simple bi-infinite geodesics which emanate from p and respectively
spiral towards β and γ (see Figure 5).

In particular, the above (non-strict) inequality is an equality for n = 3, and the summand
in this case takes the form:(

1 +
cosh d2(β,γ)

2

cosh d1(β,γ)

2

· e
1
2 (τ(γ,δp)+`1(γ)+τ(β,δp)+`1(β))

)−1

(9)

Remark 1.21. [Kim18, Theorem 1.2] shows that given a n = 3 positive representation

ρ, the quantities cosh( 1
2d2(β,γ))

cosh( 1
2d1(β,γ)) are bounded as one varies over {β,γ} ∈ Pp.

1.9. Simple spectra discreteness. One immediate corollary to triple ratio bound-
edness (Theorem 1.5) and our general rank inequality for 1-cusped tori (Theo-
rem 1.15) is the discreteness of the simple root length spectrum of the simple
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curves for a given unipotent bordered representation. For surfaces of general
topological type, this is not immediate, because the Bi(γ,γp) terms in (7) can
(and do) become arbitrarily small. In Section 7.2, we show that:

Theorem 1.22 (Simple spectral discreteness). Let ρ : π1(S)→ PGLn(R) be a positive
representation with unipotent boundary monodromy. Then the simple `i-spectra and the
simple Hilbert length spectrum for ρ are both discrete.

The above theorem is also proved in [Kim19] using a different method. For posi-
tive representations with (only) loxodromic boundary monodromy, the above re-
sult can be obtained via the Anosov property. However, positive representations
with unipotent boundary monodromy are not Anosov. We emphasize that our
proof requires only the cluster algebra structure of the Fock–Gocharov A-moduli
space.

For n = 3 positive representations, we can say something stronger: our proof
of the Birman–Series theorem implies that the simple Hilbert length spectrum
grows at least polynomially. In order to extend this claim to simple root lengths,
we require the following comparison result.

Theorem 1.23 (Hilbert vs. simple root length comparison). For any positive repre-
sentation ρ : π1(S) → PGL3(R), there exists Kρ > 1 such that for every simple closed
curve γ on S, we have:

`1(γ) < `(γ) < Kρ · `1(γ).(10)

We believe that the above result is due to Benoist-Hulin, and may be obtained
by combining the proof of Benoist’s [Ben01, Corollary 5.3] with Proposition 6.9.
This is also proved in [Kim19]. Nonetheless, we provide a proof for this fact in
Appendix A (just in case).

1.10. McShane indentities for loxodromic bordered representations. For higher
rank positive representations with loxodromic boundaries, Labourie-McShane in-
troduce a powerful and general machinery for establishing McShane-type identi-
ties via the language of cross-ratios [LM09]. We require a mild generalization of
their work to allow for “asymmetric” versions of cross-ratios.

Definition 1.24 (Ratio). Consider the following space of 4-tuples of of ideal points

∂∞π1(S)
4∗ =

{
(x,y, z, t) ∈ ∂∞π1(S)

4 | x 6= t and y 6= z
}

.

A ratio B : ∂∞π1(S)
4∗ → R is a π1(S)-invariant Hölder function function satisfying the

following axioms:
(1) (normalization): B(x,y, z, t) = 0 iff. y = t,
(2) (normalization): B(x,y, z, t) = 1 iff. z = t,
(3) (cocycle): B(x,y, z, t) = B(x,y, z,w) · B(x,y,w, t),

An ordered ratio is a ratio B on S which satisfies the condition that for any four distinct
ideal points x,y, z, t ∈ ∂∞π1(S):

(1) if z, t lie on the same side of xy, then B(x,y, z, t) > 0,
(2) if x,y, z, t are cyclically ordered, then B(x,y, z, t) > 1.

We also require a new summation index for our:
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Definition 1.25. Let Hα denotes the collection of (embedded) boundary-parallel pairs
of half-pants on Sg,m with both ends of its seam emanating from α− (see Figure 6).
Moreover, let H∂α ⊂ Hα denote the subset of half-pants with a peripheral cuff.

Figure 6. An example of a boundary-parallel pair of pants
(γ,γp) with both ends of the seam γ̄p emanating from p where
p = α− denotes the repelling fixed point of α.

Remark 1.26. Given a boundary-parallel pair of half-pants (γ,γα−
) ∈ H∂α, there is a

unique boundary-parallel pair of pants in Pα that contains (γ,γα−
) and agrees with its

boundary orientations. We thereby identify H∂α with the subset P∂α ⊂ Pα of boundary-
parallel pairs of pants with a peripheral cuff.

Proposition 1.27 (A variation of [LM09, Theorem 5.1.1]). Let α be a distinguished
boundary component for S = Sg,m, we have the following identity:

`B(α) =
∑

(γ,γα−)∈Hα

∣∣logB(α−,α+,γ(α−),γ+)
∣∣+ ∑

(γ,γα−)∈H∂α

logB(α−,α+,γ−,γ+).

We now state the explicit form that these summands take, but only for Sg,1 — this
is for simplicity as there are no H∂α summands.

Theorem 1.28 (half-pants summation identity). Consider a positive representation
ρ : π1(Sg,1) → PGLn(R), and let α be a distinguished boundary component of Sg,m.
Then we have the following pants summation form of the McShane identity:

`i(α) =
∑

(γ,γα−)∈Hα

∣∣∣∣log
(
eRi(γ,γα−)·`i(α) + e`i(γ)+κi(γ,γα−)

1 + e`i(γ)+κi(γ,γα−)

)∣∣∣∣ .(11)

Note that we show that these summands limit to the punctured case (Theo-
rem 1.17) summands as one deforms from a positive representation with loxo-
dromic boundary monodromy to one with unipotent boundary monodromy. We
also obtain the pants summation form of the above identity:

Theorem 1.29 (pants summation identity). Consider a positive representation ρ :
π1(Sg,1) → PGLn(R), and let α be a distinguished boundary component of Sg,1. Then



12 YI HUANG AND ZHE SUN

we have the following half-pants summation form of the McShane identity:

`i(α) =
∑

{β,γ}∈Pα

log

 e
1
2 `i(α) +

cosh d2(β,γ)

2

cosh d1(β,γ)

2

· e 1
2 (κi(γ,γα−)+`i(γ)+κi(β,βα−)+`i(β))

e−
1
2 `i(α) +

cosh d2(β,γ)

2

cosh d1(β,γ)

2

· e 1
2 (κi(γ,γα−)+`i(γ)+κi(β,βα−)+`i(β))

 .

(12)

Remark 1.30. The pants summation identities more apparently generalize Mirzakhani
and Tan-Wong-Zhang’s bordered hyperbolic surface identities. Whereas the half-pants
summations are more convenient for our applications.

Notation 1.31. At various points in this paper we alternate between topological, geo-
metric and representation theoretic vernacular, and we shall adapt our notation to these
varying contexts. For example, the set Cg,m of oriented simple closed geodesics γ on a
genus g surface with m cusps is equivalent to the set of conjugacy classes of homotopy
classes in π1(Sg,n) with simple curve representatives. In geometric contexts, we might
use γ to denote a simple closed geodesic, whereas in representation theoretic contexts we
use γ to denote a particular representative γ ∈ π1(Sg,m) of the conjugacy class. The
level of notational flexibility extends also to notation for pairs of pants: we use {β,γ} in
geometric contexts versus (α,β−1,γ) ∈ π1(Sg,m)3 in representation theoretic contexts
when it is convenient to have the precise homotopy classes of α,β and γ.

1.11. Applications. We are aware of the following applications for McShane-type
identities in the literature:

• various authors [AMS04, AMS06, Bow98, Bow97, Hua18, LS13] use them
to study the geometry of the convex core or the cuspidal tori for various
hyperbolic 3-manifolds;

• Miyachi uses them to bound the Teichmüller distance between two marked
surfaces [Miy05];

• and most spectacularly, Mirzakhani [Mir07a] uses them to derive a recur-
sive algorithm for computing moduli space volumes.

We illustrate several novel applications of the McShane identity. We see in Sec-
tion 7.2 that even McShane inequalities give us useful information: simple length
spectrum discreteness. In fact, the inequality also allows us to derive the follow-
ing useful fact:

Theorem 1.32 (Collar lemma [LZ17], Theorem 7.7). Given any finite-area convex
projective surface Σ, any two intersecting simple closed geodesics β,γ satisfy the following
inequality:

(e
1
2 `(β) − 1)(e

1
2 `(γ) − 1) > 4.(13)

The remaining applications are all related to asymmetric ratio metrics on various
Teichmüller spaces. These results require the full strength of the McShane identity
and not just an inequality. We begin with our results for Fuchsian representations:

Theorem 1.33 (Fuchsian non-domination). Given two marked hyperbolic surfaces
Σ1,Σ2 ∈ Teichg,m(L1, . . . ,Lm) with fixed boundary lengths L1, . . . ,Ln > 0. Then the
marked simple geodesic spectrum for Σ1 dominates the marked simple geodesic spectrum
Σ2 if and only if Σ1 = Σ2.



MCSHANE IDENTITIES FOR HIGHER TEICHMÜLLER THEORY AND THE GONCHAROV-SHEN POTENTIAL13

Non-domination fails when the boundary length is allowed to vary [PT10], mean-
ing that the naive generalization of Thurston’s length ratio metric does not satisfy
positivity (compare with [Thu98, Theorem 3.1]). Liu–Papadopoulos–Su–Théret
resolve this by introducing the arc metric. We do so by fixing the boundary
length:

Corollary 1.34 (Length ratio metric for fixed bordered surfaces). The non-negative
real function dTh : Teichg,m(L1, . . . ,Lm)× Teichg,m(L1, . . . ,Lm)→ R>0 defined by

dTh(Σ1,Σ2) := log sup
γ̄∈C(Sg,m)

`Σ1(γ̄)

`Σ2(γ̄)
,(14)

is a mapping class group invariant asymmetric metric on the Teichmüller space Teichg,m
(L1, . . . ,Lm) of genus g surfaces with m boundaries of fixed lengths L1, . . . ,Lm.

Non-domination is also a problem for convex real projective surfaces. We propose
the following candidate for a metric on the space Conv∗1,1 of finite-area convex real
projective 1-cusped tori:

dGap(Σ1,Σ2) := log sup
γ∈C1,1

log(1 + e`
Σ1
1 (γ)+τΣ1(γ))

log(1 + e`
Σ2
1 (γ)+τΣ2(γ))

.(15)

Theorem 1.35 (Gap metric for Conv∗1,1). The non-negative function dGap defines a
mapping class group invariant aymmetric metric on Conv∗1,1. Moreover, the restriction of
the metric dGap to the Fuchsian locus of Conv∗1,1 is equal to the Thurston metric.

We also generalize the notion of a gap metric to include finite-area cusped convex
real projective surfaces of general topological type (Definitions 7.16 and 7.17). The
resulting asymmetric metric is mapping class group invariant, but we are unsure
if it is a strictly larger distance function than the Thurston metric on the Fuchsian
locus.

1.12. Section overview and reading guide. This paper consists of the following
sections:

Section 2: Fock–Goncharov moduli spaces and coordinates. We construct Fock
and Goncharov’s higher Teichmüller spaces (Definitions 2.6 and 2.9), before defin-
ing coordinates (Definitions 2.15 and 2.21) and explicit coordinate transforms
(Definition 2.24) for them. We conclude by defining the positive subset of the
Fock–Goncharov moduli spaces and positive representations (Definition 2.27) —
these are the central object of our studies.

Section 3: Properties of X-coordinates. We study the set of all triple ratios and
edge functions for any given positive representation. We use topological argu-
ments to show that the set of triple ratios is bounded (Theorem 3.4). We then
employ algebraic and geometric techniques to show that triple ratios all being
equal to 1 or edge functions along the same edge being all the same are char-
acterizing properties for n-Fuchsian representations (Theorem 3.10 for n = 3, 4,
Theorem 3.12 for n = 3 and Theorem 3.16 for general n with no loxodromic
boundaries).

Section 4: Goncharov–Shen potentials. We define and study Goncharov–Shen
potentials. In particular, we show that ratios of Goncharov–Shen potentials are
projective invariants (Proposition 4.14), and we dub these objects i-ratios and
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relate them to weak cross ratios (Corollary 4.15) and simple root lengths (Propo-
sition 4.19).

Section 5: Goncharov–Shen splitting technique. We compute the behavior of
A-coordinates under Dehn-twists (Proposition 5.4). We combine this with the
Goncharov–Shen potential splitting mechanism to compute McShane identity
summands. We derive two variant McShane–type inequalities: the half-pants
summation form (Theorem 5.9) and the pants summation form (Theorem 5.10).

Section 6: Geodesic sparsity for convex real projective surfaces. We give an
introduction to the theory of convex real projective surfaces before proving a
Birman–Series geodesic sparsity theorem for convex real projective surfaces (The-
orem 6.11).

Section 7: McShane identities for convex real projective surfaces and applica-
tions. We utilize the Birman–Series geodesic sparsity theorem obtained in Sec-
tion 6 to show that the McShane-type inequality we obtained in Section 5 is in
fact an equality (Theorem 7.1). We then employ these identities to show the dis-
creteness of simple length spectra (Theorem 7.4), to demonstrate the collar lemma
(Theorem 7.7) and to generalize the Thurston metric (Theorem 7.14 and Defini-
tion 7.16) for convex real projective surfaces.

Section 8: McShane–type identities for higher Teichmüller space. We adapt
(Theorem 8.4) Labourie and McShane’s ideas from [LM09] to derive McShane
identities for loxodromic bordered positive representations of arbitrary rank (The-
orems 8.17 and 8.20). We conclude by deforming these identities from loxodromic
bordered representations to unipotent bordered ones to obtain a McShane-type
inequality for unipotent bordered positive representations of arbitrary rank (8.5).

Remark 1.36. Readers mainly interested in convex real projective surfaces may wish to
focus on Sections 6 and 7. On the other hand, those with background in and predomi-
nantly interested in (arbitrary rank) Fock–Goncharov higher Teichmüller theory may be
primarily interested in Sections 3, 4, 5 and 8, with secondary interests in our McShane
identity applications in Section 7.
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2. Fock–Goncharov moduli spaces and coordinates

Fock and Goncharov’s version of higher Teichmüller theory [FG06] is deep and
applies to a very broad context. We do not require the full force of their machinery,
and concern ourselves with higher Teichmüller spaces of the form XPGLn,Sg,m and
ASLn,Sg,m , where Sg,m is a negative Euler characteristic (open) Riemann surface
of genus g with m > 1 holes. We either regard the boundaries of Sg,m as:

• holes, often when dealing with XPGLn,Sg,m ;
• punctures, often when dealing with ASLn,Sg,m .

2.1. A reductionist approach: ideal triangles and flags. Since our surface has
m > 1 punctures, the negative Euler characteristic condition allows for ideal
triangulations:

Definition 2.1 (Ideal triangulations). Let mp denote the set of punctures of Sg,m, re-
garded as a punctured surface. An ideal triangulation T of Sg,m is a maximal collection
of (unoriented) essential arcs which join the elements of mp, such that these arcs are:

• pairwise disjoint on the interior of Sg,m and
• non-homotopic with respect to homotopies of Sg,m.

We regard ideal triangulations up to isotopy. Moreover, we identify an ideal triangulation
T with the graph (VT ,ET), where VT = mp is the set of vertices of T and ET is the set of
(unoriented) edges of T.

Ideal triangulations are key to both Thurston’s enhanced Teichmüller theory
and Penner’s decorated Teichmüller theory [Pen87] — the respective classical
archetypes for Fock–Goncharov’s XPGLn,Sg,m and ASLn,Sg,m moduli space theory.
The central idea is that surface representations may be described in terms of:

(1) data specifying the representation at the level of each ideal triangle;
(2) data specifying how to reconstitute the above data together into a higher

rank surface representation.
Crucially, Fock and Gocharov realized that all of these necessary data may be
stored in terms of flags (and decorated flags) assigned to the ideal vertices of
ideal triangles.

We consider a vector space E and endow it with a distinguished volume form Ω.
We generally take E = Rn and Ω to be the standard Euclidean form.

Definition 2.2 (Flags and the decorated flags). A flag F in E is a maximal filtration
of vector subspaces of E:

{0} = F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = E, dim Fi = i.

A basis for a flag F is an ordered basis (f1, . . . , fn) for the vector space E such that the
first i basis vectors form a basis for Fi, for i = 1, . . . ,n.

A decorated flag (F,ϕ) is pair consisting of a flag F and a collection ϕ of (n − 1)
non-zero vectors

ϕ =
{
f̌i ∈ Fi/Fi−1

}
i=1,...,n−1 .

A basis for a decorated flag (F,ϕ) is an ordered basis (f1, . . . , fn) for the vector space E
such that

fi + Fi−1 = f̌i ∈ Fi/Fi−1 for i = 1, . . . ,n− 1.
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We refer to the set B of flags on E as the flag variety and the set A of decorated flags on
E as the principal affine space. We note the obvious “forgetful" projection map

(16) π : A→ B, (F,ϕ) 7→ F.

Notation 2.3. Given a basis (f1, . . . , fn), we use fi to denote:

fi := f1 ∧ f2 ∧ · · ·∧ fi−1 ∧ fi.

In particular, we set f0 = 1 by convention.

Definition 2.4 (generic position). We say that triple X, Y,Z of flags are in generic
position if for any non-negative integers i, j,k satisfying i + j + k 6 n, the sum Xi +
Yj + Zk is direct. Likewise, a triple of decorated flags are in generic position if their
underlying flags are in generic position.

2.2. Fock–Goncharov moduli spaces XPGLn,Sg,m and ASLn,Sg,m . We now fix a col-
lection of m (based-)homotopy classes α1, . . . ,αm, respectively winding the punc-
tures p1, . . . ,pm ∈ mp.

Notation 2.5. In latter sections of this paper, we perform computations involving objects
determined by ideal points (e.g.: ideal triangles), and we shall find it convenient to canon-
ically identify p1, . . . ,pm with the subset in ∂∞π1(Sg,m) consisting of the respective fixed
points of α1, . . . ,αm. This allows us to adopt notation such as (p,γp,γ+) that is more
convenient for explicit computation.

Definition 2.6 ([FG06, Definition 2.1] X-moduli space XPGLn,Sg,m ). A framed PGLn
local system on Sg,m is a pair (ρ, ξ) consisting of

• a representation ρ ∈ Hom(π1(Sg,m), PGLn), and
• a map ξ : mp → B, such that ρ(αi) fixes the flag ξ(pi) ∈ B for each i =

1, . . . ,m.
Two framed PGLn-local systems (ρ1, ξ1), (ρ2, ξ2) are equivalent iff. there exists some
g ∈ PGLn such that ρ2 = gρ1g

−1 and ξ2 = gξ1. We denote the moduli space (ie.: space
of equivalence classes) of all framed PGLn-local systems on Sg,m by XPGLn,Sg,m .

Remark 2.7. Although the elements of the X-moduli space XPGLn,Sg,m are equivalence
classes, we choose to conflate notation and denote them by (ρ, ξ). We also adopt this
convention later for the elements of the A-moduli space.

Definition 2.8 (Farey set). Let us assume for the moment that surface S = Sg,m is
cusped, and let m̃p denote the set consisting of all the lifts m̃p ofmp in the ideal boundary
of the universal cover S̃ of S. We refer to m̃p as the Farey set. The data contained in
(ρ, ξ) ∈ XPGLn,Sg,m is equivalent to that contained in the map ξρ : m̃p → B induced by
deck-transformation (ρ-action) applied to ξ.

The analogous definition for the A-moduli space is slightly more involved. Let
T 1S denote the unit tangent bundle over S and fix an arbitrary point x̂ ∈ T 1

xS ⊂
T 1S over x ∈ S. Consider the short exact sequence for the unit tangent bundle
fibration:

1→ π1(T
1
xS) = Z = 〈σS〉 → π1(T

1S, x̂)→ π1(S, x),

where σS is either of the two generators for π1(T
1
xS). Define the quotient group

π̄1(S) = π̄1(S, x) := π1(T
1S, x̂)/〈σ2

S〉, and observe that π̄1(S) is a 2 : 1 cover-
ing group for π1(S, x). We fix lifts α̂1, . . . , α̂m ∈ π̄1(S, x) respectively covering
α1, . . . ,αm.
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Definition 2.9 ( [FG06, Definition 2.4, page 38] A-moduli space ASLn,Sg,m ). A
decorated twisted SLn-local system on Sg,m is a pair (ρ̄, ξ̄) consisting of

• a representation ρ̄ ∈ Hom(π̄1(Sg,m), SLn) with unipotent boundary monodromy
for each boundary, such that ρ̄(σ̄S) = (−1)n−1Idn×n, and

• a map ξ̄ : mp → A, such that each ρ̄(α̂i) fixes the decorated flag ξ̄(pi) ∈ A.
Two decorated twisted SLn-local systems (ρ̄1, ξ̄1), (ρ̄2, ξ̄2) are equivalent iff. there exists
some g ∈ SLn such that ρ̄2 = gρ̄1g

−1 and ξ̄2 = gξ̄1. We denote the moduli space of all
decorated twisted SLn-local systems on Sg,m by ASLn,Sg,m .

Remark 2.10. We refer to the unique representation ρ : π1(Sg,m) → SLn which lifts to
ρ̄ as the monodromy representation underlying (ρ̄, ξ̄).

Remark 2.11. By deck transformation, the data in a pair (ρ̄, ξ̄) is equivalent to a map
ξ̄ρ̄ from all 2 : 1 double cover of m̃p in the double cover ∂∞π̄1(S) of the ideal boundary
∂∞π1(S) into the principle affine space A. Note that π ◦ ξ̄ρ̄ is equal to the map ξρ associ-
ated to (ρ, ξ) := (ρ,π ◦ ξ̄), and this in turn induces a map from ASLn,Sg,m to XPGLn,Sg,m

whose image consists of all points (ρ, ξ) with unipotent boundary monodromy.

We now introduce coordinate for the X and A-moduli spaces. Going forward, we
only consider ξρ which satisfy the following generic position condition: any pair-
wise distinct triple (x,y, z) ∈ (∂∞π1(Sg,m))3 is mapped to a triple (ξρ(x), ξρ(y), ξρ(z))
of flags (decorated flags resp.) in generic position (Definition 2.4).

2.3. Fock–Goncharov A-coordinates.

Definition 2.12 (n-Triangulations). Given an ideal triangulation T = (VT ,ET) of
Sg,m, we define the n-triangulation Tn of T to be the triangulation of Sg,m obtained by
subdividing each triangle of T into n2 triangles (as per Figure 7). We also identify Tn
with the graph (VTn ,ETn), just as we did for ideal triangulations.

Notation 2.13 (vertex notation). We define the following vertex sets.

In :=
{
V ∈ VTn \ VT V lies on an edge e ∈ ET

}
and Jn := VTn \ (VT ∪ In) .

We also adopt the following vertex labeling conventions:
• we denote a vertex V ∈ In ∈ In on an oriented ideal edge (x,y) by vx,y

i,n−i =

vy,x
n−i,i, where i > 1 is the least number of ETn edges from V to x (see Figure 7).

• we denote a vertex V ∈ In ∪ Jn on a triangle (x,y, z) by vx,y,z
i,j,k , where i > 0,

j > 0 and k = n − i − j > 0 respectively denote: the least number of ETn edges
from V to yz, from V to xz and from V to xy (see Figure 7).

Definition 2.14 (Quivers). Consider the largest subgraph of Tn with vertex set In∪Jn.
By placing orientations on this graph as per Figure 7, we obtain a quiver ΓTn .

Quivers are combinatorially useful both in defining Fock–Goncharov coordinates,
as well as in describing their coordinate transformations. We now describe Fock–
Goncharov A-coordinates.

Definition 2.15 ([FG06, Section 9] Fock–Goncharov A-coordinates). Fix an ideal
triangulation T of Sg,m and its n-triangulation Tn. Given a vertex V ∈ In ∪ Jn, let
(f,g,h) denote the ideal vertices of an idea triangle in T̃ containing a lift of V = vi,j,k.
For (ρ̄, ξ̄) ∈ ASLn,Sg,m , choose bases

(f1, ..., fn), (g1, ...,gn), (h1, ...,hn)
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Figure 7. Left: an ideal triangulation for S1,1. Right: a (lift of a)
3-triangulation T3 for S1,1, with opposite edges identified. Edges
endowed with arrows constitute edges of the quiver ΓT3 . The
edge vertices vx,y

1,2 and vz,t
2,1 identify to the same vertex b when

projected to S1,1. The interior vertices vx,y,t
1,1,1 and vy,z,t

1,1,1 respectively
correspond to the vertices d and e.

for the respective decorated flags ξ̄ρ̄(f̄), ξ̄ρ̄(ḡ), ξ̄ρ̄(h̄), where f̄, ḡ, h̄ are lifts of f,g,h
consecutivealong ∂∞π̄1(S). The vertex function ∆V is defined by

∆V := ∆
(
fi ∧ gj ∧ hk

)
.

The Fock–Goncharov A-coordinate AV is equal to ∆V up to sign.

Remark 2.16. The choice of sign for AV is technical and dependent upon a choice of spin
structure on Sg,m [FG06].

2.4. Fock–Goncharov X-coordinates.

Notation 2.17. We henceforth adopt the following notation conventions:
• xy denotes the unoriented edge between x and y;
• xyz denotes an unoriented triangle;
• xyz denotes an oriented triangle;
• (x,y) denotes the oriented edge from x to y;
• (x,y, z) denotes a marked triangle;
• X̃ denotes the union of all the lifts of a set X ⊂ S to the universal cover S̃ of S.

We continue to use this notation throughout the paper except when explicitly stated oth-
erwise, especially when carrying out computations.

Definition 2.18 (Edge functions). Let (X, Y,Z, T) be quadruple of flags in generic
position, choose their bases

(x1, · · · , xn), (y1, · · · ,yn), (z1, · · · , zn), (t1, · · · , tn).

For the positive integer i < n, the edge function defined by

Di(X, Y,Z, T) :=
∆
(
xn−i ∧ yi−1 ∧ z1

)
∆ (xn−i−1 ∧ yi ∧ z1)

·
∆
(
xn−i−1 ∧ yi ∧ t1

)
∆ (xn−i ∧ yi−1 ∧ t1)

is a projective invariant.
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Definition 2.19 (triple ratios). Consider a triple of flags (F,G,H) in generic position,
with bases

(f1, · · · , fn), (g1, · · · ,gn), (h1, · · · ,hn).
Then for any triple of non-negative integers (i, j,k) with i + j + k = n, the triple ratio
Ti,j,k(F,G,H) is defined by:

Ti,j,k(F,G,H) :=
∆
(
fi+1 ∧ gj ∧ hk−1

)
∆
(
fi−1 ∧ gj+1 ∧ hk

)
∆
(
fi ∧ gj−1 ∧ hk+1

)
∆ (fi+1 ∧ gj−1 ∧ hk)∆ (fi ∧ gj+1 ∧ hk−1)∆ (fi−1 ∧ gj ∧ hk+1)

.

Remark 2.20. For n = 3, the triple (i, j,k) is necessarily equal to (1, 1, 1), so we often
omit the indices and simply write T(F,G,H).

There are two types of Fock–Goncharov X coordinates respectively corresponding
to edge functions and triple ratios. The former are labeled by vertices in In,
correspond to degree four vertices in the quiver ΓTn , and generalize Thurston’s
shear coordinate [Thu98]. The latter are labeled by vertices in Jn and are degree
6 vertices in ΓTn .

Definition 2.21 ([FG06, Section 9] X-coordinates). We define one X-coordinate for
each vertex in Tn ∪ Jn. For a vertex V ∈ In, let (x,y) denote an (oriented) edge in
E
T̃

containing a lift Ṽ = vn−i,ix,y of V . Further let xyz and xty denote the two anti-
clockwise oriented ideal triangles in T̃ which contain the edge xy. The Fock–Goncharov
X-coordinate XV , evaluated at (ρ, ξ) ∈ XPGLn,Sg,m , is defined as the edge function:

XV := Di(x,y, z, t) := Di(ξρ(x), ξρ(y), ξρ(z), ξρ(t)).

For a vertex V ∈ Jn, let (f,g,h) denote an ideal triangle in T̃ containing a lift Ṽ = vf,g,h
i,j,k

of V . The Fock–Goncharov X-coordinate XV , evaluated at (ρ, ξ) ∈ XPGLn,Sg,m , is
defined as the triple ratio:

XV := Ti,j,k(f,g,h) := Ti,j,k(ξρ(f), ξρ(g), ξρ(h)).

Fock–Goncharov X-coordinates are crucial examples of projective invariants for
higher rank surface representations, they are rational functions of A-coordinates
and define rational functions on the X-moduli space. Before moving on, we give
an alternative interpretation for the triple ratio which is more geometric in flavor:

Remark 2.22 ([FG07] Geometric definition for the triple ratio). Consider three flags

A = (a,L1),B = (b,L2),C = (c,L3)

in RP2 in generic position. Let u = L2∩L3, v = L1∩L3, w = L1∩L2 (see Figure 8), and
let | · | denote the Euclidean distance. We stated in the introduction that the triple ratio
T ≡ T1,1,1 function is given by

T(A,B,C) :=
|wb| · |uc| · |va|
|bu| · |cv| · |aw|

,(17)

To interpret triple ratios for flags A,B,C ∈ B in higher rank contexts, we project E down
to the following 3-dimensional vector space

E/ (Ai−1 ⊕ Bj−1 ⊕ Ck−1)

and then use the previous (i.e.: n = 3) interpretation for T(A,B,C) := Ti,j,k(A,B,C).

Remark 2.23. Ceva’s theorem asserts that T(A,B,C) = 1 iff. the lines au, bv, cw
intersect at one point.
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Figure 8. Triple ratio.

2.5. Coordinate transformations and the cluster ensemble structure. One key
advantage of the Fock–Goncharov approach to higher Teichmüller theory is that
we can explicitly write down rational functions specifying the transition maps
between coordinate patches. Moreover, this aspect of the story is an example of
the powerful theory of cluster ensembles:

Definition 2.24 ([FG06, Section 10] Cluster ensemble structure for (X,A)). A seed
for (XPGLn,Sg,m ,ASLn,Sg,m) is a pair

I = (In ∪ Jn, ε),

where ε is a skew-symmetric function(
In ∪ Jn

)
×
(
In ∪ Jn

)
→ Z

defined by the following equation:

εVW = # { arrows from V to W }− # { arrows from W to V }

for V ,W ∈ In ∪ Jn. A mutation at V ∈ In ∪ Jn changes the seed I to a new one
I ′ = (In ∪ Jn, ε ′), where we identify the new vertex V ′ with V and

ε ′I,J =

{
−εI,J, V ∈ {I, J};
εI,J + [εI,V ]+ · [εV ,J]+ − [−εI,V ]+ · [−εV ,J]+, V /∈ {I, J},

where [x]+ = max{x, 0}.

A cluster transformation is a composition of mutations at In ∪ Jn and permutations
of In ∪ Jn. And the cluster modular group is the collection of cluster transformations
that preserve the quiver ΓTn .

We assign the split torus XI (AI resp.) parameterized by the Fock–Goncharov coordinates
{XI}I∈In∪Jn ({AI}I∈In∪Jn resp.) to the seed I. The transition map µXV : XI → XI′

corresponds to a mutation at V ∈ In ∪ Jn, with map µX∗V : Q(XI′)→ Q(XI) given by

µX∗V (X ′I) =

{
XIX

[εI,V ]+
V (1 + XV)

−εI,V , I 6= V ;
X−1
V , I = V .

The transition map µAV : AI → AI′ corresponds to a mutation at V ∈ I ′n ∪ Jn, with map
µA∗V : Q(AI′)→ Q(AI) given by

µA∗V (A ′I) =

{
AI, I 6= V ;
A−1
V (
∏
J|εV ,J>0A

εV ,J
J +

∏
J|εV ,J<0A

−εV ,J
J ), I = V .
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The coordinate transformations given in Definition 2.24 are crucial in our deriva-
tion of our McShane identities — especially the A-coordinate transformations.

Definition 2.25 (Flip). Consider two adjacent ideal triangles xyt and yzt sharing a
common edge yt. A flip along yt produces a new triangulation by replacing yt with xz.

The corresponding coordinate change for a flip is a sequence of (n − 1) suc-
cessive mutations ([FG06, Section 10.3, pg. 147]). We write out the n = 3
(Figure 9) computation explicitly in Figure 9 as an example: denote the Fock–
Goncharov A-coordinates for ASL3,S1,1 by {a,b, c,d, r, s,q,w}. After successive
mutations at the vertices corresponding to r, s,p,q, we obtain new coordinates
{a,b, c,d, r ′, s ′,q ′,w ′} given by:

r ′ = bq+cw
r

, s ′ = aw+dq
s

, w ′ = as′+cr′

w
, q ′ = br′+ds′

q
.

Figure 9. For ASL3,S1,1 , given an ideal triangulation T with VT =

{x,y, z, t} and ET = {xy,yt, tx,yz, zt}, we have its n-triangulation
Tn.

Remark 2.26. Note that these are all degree four mutations: two vertices point toward
the mutating vertex, and the mutation vertex points out at two vertices. Each of these
mutations comes from a Plücker relation for (n×n) determinants. These Plücker relations
are also known as Ptolemy relations in certain geometric contexts [Pen87].

2.6. Positivity. The moduli space XPGLn,Sg,m (ASLn,Sg,m resp.) is birationally equiv-
alent to the cluster X (A resp.) variety obtained by gluing all the possible algebraic
tori XI (AI resp.) according to the above transition maps. These transition maps
are all positive in sense that transition functions send positive coordinates to pos-
itive coordinates.

Definition 2.27 (Positive higher Teichmüller spaces). The positive Fock–Goncharov
higher Techmüller space ASLn,Sg,m(R>0) and XPGLn,Sg,m(R>0) are the respective subsets
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of ASLn,Sg,m and XPGLn,Sg,m consisting of points which are positive in every coordinates
with respect to some A or X coordinate chart. We refer to monodromy representations for
positive points of either the X or A moduli space as positive representations.

Positivity is more than just an algebraic condition, but has geometric conse-
quences. One important geometric property of positive representations is that
their respective associated maps ξρ : m̃p → B (Definition 2.8) extend to Frenet
maps (see Definition 3.13). More precisely, for a positive representation with
only unipotent boundary monodromy, there exists a unique Frenet map ξ :
∂∞π1(Sg,m) → B which restricts to ξρ on m̃p ⊂ ∂∞π1(Sg,m). The uniqueness
here owes to the fact that m̃p is dense in ∂∞π1(Sg,m), in particular, this also as-
serts that ξ is ρ-equivariant.

For positive representations with at least one loxodromic boundary, let dS de-
note the topological double of Sg,m along all of its loxodromic boundaries, then
there exists a Frenet map dξ : ∂∞π1(dS) → B which restricts to ξρ on m̃p ⊂
∂∞π1(Sg,m) ⊂ ∂∞ß1(dS). Note that the set of map satisfying this restriction con-
dition is not unique, but dξ can be made canonical if considers the associated
restriction condition to do with the Hitchin double representation dρ [LM09, Def-
inition 9.2.2.3].
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3. Properties of X-coordinates

3.1. Uniform boundedness of the triple ratio. Given a surface S with hyperbolic
fundamental group π1(S), we denote its boundary at infinity or its ideal boundary
by ∂∞π1(S) (see, for example, [LM09, Section 2, pg. 284]).

• When S is a closed or punctured, its boundary at infinity ∂∞π1(S) is home-
omorphic to S1;

• when S has holes (with or without punctures), its boundary at infinity is
homeomorphic to the Cantor set of ends of any Cayley graph of π1(S).

Whichever the case, the orientation of S imposes a canonical anti-clockwise or-
dering on ∂∞π1(S).

Definition 3.1 (marked ideal triangles). We define the set of marked (oriented)
ideal triangles on the universal cover S̃ of S as:

Tri(S̃) :=
{
(a,b, c) ∈ (∂∞π1(S))

3 a,b, c are distinct elements arranged
in anticlockwise order along ∂∞π1(S).

}
The ideal boundary ∂∞π1(S) is naturally endowed with a (diagonal) π1(S)-action, and
we define the set of ideal triangles on S as

Tri(S) := Tri(S̃)/π1(S).

Moreover, we denote the π1(S) orbit of (a,b, c) representing an element in Tri(S) by
[a,b, c]S. We regard each [a,b, c]S as an immersed ideal triangle on S and denote its
sides by [a,b]S, [b, c]S and [c,a]S.

Fact 3.2 (e.g.: [BCS18, Section 4.1, pg. 7]). When S is closed or cusped, the set Tri(S)
of (oriented) marked ideal triangles on S is homeomorphic to the unit tangent bundle T 1S
on S.

Definition 3.3 (k-intersecting ideal triangle). Let Σ be a model hyperbolic surface for
S, we say that an ideal triangle [a,b, c]S on S is k-intersecting if the (unique) geodesic
representatives on Σ of each of the three sides [a,b]S, [b, c]S, [c,a]S of [a,b, c]S have:

• at most k self-intersections, and
• at most k pairwise intersections.

We denote the set of k-intersecting ideal triangle on S by Trik(S) and the set of lifts of
k-intersecting ideal triangles to the universal cover S̃ is denoted by Trik(∂∞(π1(S))).

The goal of this subsection is to prove the following result:

Theorem 3.4. Let ρ : π1(S) → PGLn(R) be a positive representation, and fix a triple
ratio function Tρ : Tri(S̃)→ R>0 of the form:

Tρ(x,y, z) = Tρi,j,k(x,y, z), for i+ j+ k = n.(18)

Then the restriction of Tρ(·) to the set of k-intersecting ideal triangles on S̃, is bounded
within some interval [Tρmin,k, Tρmax,k] ⊂ R>0.

We first consider the special case when S is closed. We learned the following
argument from François Labourie and Tengren Zhang (independently):

Proposition 3.5 (Labourie, Zhang). When S is a closed surface, the triple ratio function
Tρ is bounded within some interval [Tρmin, Tρmax] ⊂ R>0.
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Proof. The function Tρ is π1(S)-invariant and hence descends to a continuous
function on Tri(S) ∼= T 1S. The rest follows from the compactness of T 1S. �

We now turn to the case when S = Sb has boundary holes and punctures. Our
proof in this case is also based on compactness, with the adjustment that the role
of Tri(S) is supplanted by Trik(Sb). We first establish the following:

Proposition 3.6. The set Trik(Sb) of k-intersecting ideal triangles on Sb is a compact
subset of Tri(Sb).

Proof. The case when all the boundary components of Sb are holes is straight-
forward. Let dSb denote the closed double of Sb, then the embedding

ι : Sb ↪→ dSb

of surfaces induces an embedding of ideal triangles ι∗ : Tri(Sb) ↪→ Tri(dSb). Ob-
serve that ι∗(Tri(Sb)) is precisely the set of ideal triangles on dSb which lie com-
pletely on ι(Sb). Both the property of being contained on ι(Sb) and the property
of being a k-intersecting ideal triangle are closed conditions. Therefore Trik(Sb)
is compact.

When all of the boundary components of Sb are all punctures, we remove small
disjoint horocycle-bounded neighborhoods around each puncture and reuniformize
the resulting surface to obtain a surface Sh where all of its boundary components
are holes. This gives us a smooth embedding map

unif : Sh ↪→ Sb

given by the inclusion function.

Figure 10. An example of the map unif : Sh → Sb, geodesic
boundaries are mapped to horocycles.

This in turn induces a map on the level of the fundamental group and hence on
the ideal boundaries:

u : ∂∞π1(Sh)→ ∂∞π1(Sb).

First observe that u identifies the two end points of every lift of the boundary
geodesics of Sh to S̃h to obtain the lift of a cuspidal ideal point in S̃b, because
every geodesic boundary of Sh maps to some horocycle on Sb. In fact, we see
that there are no other identifications by combining the following facts:

• the induced ordering on u(∂∞π1(Sh)) and the ordering on ∂∞π1(Sb) agree;
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• ideal points in ∂∞π1(Sh) which are not endpoints to some peripheral ge-
odesic cannot map to cuspidal ideal points in ∂∞π1(Sb) — this is because
such ideal points correspond ideal limit points of (lifts of) leaves of (inte-
rior) geodesic laminations and laminations on Sh map to laminations on
Sb (up to isotopy).

The (continuous) identification map u in turn induces a continuous map u∗ :
Trik(Sh) → Trik(Sb). It is important to note that u∗ is well-defined but does not
extend to a map Tri(Sh)→ Tri(Sb). This is because

u∗([a,b, c]Sh) = [u(a),u(b),u(c)]Sb
does not produce a triangle if u(a),u(b) and u(c) are not pairwise distinct. This
cannot happen to a triangle [a,b, c]Sh ∈ Trik(Sh): if (without loss of generality)
a and b are the two endpoints of a lift of a boundary geodesic of Sh, then the
geodesics [b, c]Sh and [c,a]Shspiral toward the same boundary in opposite direc-
tions and hence intersect infinitely often.

Further observe that u∗ is a surjective map which is at most 8 to 1. The preimage
of a triangle 4 ∈ ∂∞π1(Sh) has 2j pre-images if the ideal vertices of 4 are based
at j distinct cusps. Since Trik(Sb) is the image of a compact set, it is compact.

Finally, if Sb has a combination of boundary holes and punctures, we double Sb
to a surface dSb with punctures only. Then by our punctured case argument,
the set of ideal triangles Trik(dSb) on dSb is compact. And by our holed case
argument, the set of ideal triangles Trik(Sb) is homeomorphic to a closed subset
of Trik(dSb) and is hence compact. �

Theorem 3.4, surfaces with both boundary holes and cusps case. The triple ratio func-
tion Tρ : Tri(Sb) → R>0 restricts to a positive continous function Tρ|Trik(Sb) de-
fined over the compact set Trik(Sb). We then take Tρmin(k) and Tρmax(k) to be the
respective minimum and the maximum for the restricted function Tρ|Trik(Sb). �

Remark 3.7. Our proof is sufficiently topological that Theorem 3.4 holds true even for
convex real projective surface with quasihyperbolic boundary monodromy (see [Mar12])
— note that the area of the surface is infinite in this case.

3.2. n-Fuchsian rigidity conditions. We now shift from the study of triple ratio
boundedness to that of fuchsian rigidity. Our goal in this section is to prove two
characterizing conditions for a positive point (ρ, ξ) ∈ XPGLn,Sg,m(R>0) to lie on
the n-Fuchsian locus.

Definition 3.8. The two proposed n-Fuchsian-characterizing conditions are:
(1) every triple ratio coordinate is equal to 1.
(2) for every edge, the edge function coordinates along that edge are all equal.

We say that triple ratio rigidity holds if condition 1 is a characterizing condition for
the n-Fuchsian locus, and we say that edge function rigidity holds if condition 2 is a
characterizing condition.

Remark 3.9. It is well-known that all triple ratio coordinates being equal to 1 is a neces-
sary condition. Conversely, these two properties combine to give the defining equations for
n-Fuchsian slice of the relevant positive X-moduli space (including the universal higher
Teichmüller space X+

PGLn ). Therefore, to show that triple ratio rigidity holds, we need only
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show that the triple ratio equal 1 condition implies the equal edge function condition. Vice
versa for edge function rigidity.

We begin in lower rank examples, where direct computation yields algebraic
proofs. The advantage of such a proof is not merely in simplicity, but also in
their extensibility to the universal higher Teichmüller space context [FG07, Defi-
nition 1.9] and also to general coefficient fields. .

Theorem 3.10 (Triple ratio rigidity for n = 3, 4). For n = 3, 4, the triple ratio rigidity
condition characterizes when a positive point (ρ, ξ) ∈ XPGLn,Sg,m(R>0) is n-Fuchsian.

Proof. We invoke Remark 3.9, and also lift our discussion to the universal cover to
avoid dealing with different cases involving topologically distinct triangulations
of the surface. Given any ideal triangulation T, consider an ideal edge xz common
to two ideal triangles (x,y, z) and (x, z, t) in T̃ as depicted in Figure 11.

Figure 11. flip at xz

We compute X ′
v1,1,n−2
t,y,z

after flipping at edge xz via the cluster transformation for-

mula in Definition 2.24:
X ′
vt,y,z

1,1,n−2

Xvx,y,z
1,1,n−2

=
1 + Xvx,z

2,n−2
+ Xvx,z,t

1,n−2,1
Xvx,z

2,n−2
+ Xvx,z

1,n−1
Xvx,z,t

1,n−2,1
Xvx,z

2,n−2

1 + Xvx,z
1,n−1

+ Xvx,y,z
1,1,n−2

Xvx,z
1,n−1

+ Xvx,z
2,n−2

Xvx,y,z
1,1,n−2

Xvx,z
1,n−1

.(19)

By assumption, triple ratios are all equal to 1, and the equation above tells us that

Xvx,z
2,n−2

= Xvx,z
1,n−1

.(20)

By symmetry, we also have

Xvx,z
n−2,2

= Xvx,z
n−1,1

.(21)

For n = 3, 4 there are at most 3 coordinates along xz, and hence must all be equal.
Since this applies to any arbitrary edge, we see that ρ is n-Fuchsian. �

Remark 3.11. For n = 5, 6, we can express Xvt,y,z
i,1,n−i−1

in the Fock–Goncharov coor-
dinates for the n-triangulation of Figure 11 (left). By explicit computation, we obtain
Xvx,z

3,n−3
= Xvx,z

2,n−2
and symmetry again ensures that Xvx,z

n−3,3
= Xvx,z

n−2,2
. However, the

number of mutations needed to compute flips increases significantly as n increases and
this is a stumbling block for extend this strategy for all ranks.
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Theorem 3.12 (Edge function rigidity for n = 3). For n = 3, the edge function
rigidity condition characterizes when a positive point (ρ, ξ) ∈ XPGLn,Sg,m(R>0) is n-
Fuchsian.

Proof. We again invoke Remark 3.9, and we again work in the universal cover (see
Figure 11). By assumption, we have Xvx,z

1,2
= Xvx,z

2,1
. After flipping the edge xz, we

obtain

X ′vx,y
1,2

=
Xvx,y

1,2
Xvx,y,z

1,1,1
Xvx,z

1,2
(1 + Xvx,z

1,2
)

1 + Xvx,z
1,2

+ Xvx,z
1,2
Xvx,y,z

1,1,1
+ Xvx,z

1,2
Xvx,y,z

1,1,1
Xvx,z

1,2

=
Xvx,y

1,2
Xvx,y,z

1,1,1
Xvx,z

1,2

1 + Xvx,y,z
1,1,1

Xvx,z
1,2

,(22)

and

X ′vx,y
2,1

=
Xvx,y

2,1
Xvx,z

2,1

1 + Xvx,z
2,1

=
Xvx,y

1,2
Xvx,z

1,2

1 + Xvx,z
1,2

,(23)

which satisfies X ′
vx,y

1,2
= X ′

vx,y
2,1

by asumption. Solving for Xvx,y,z
1,1,1

yields Xvx,y,z
1,1,1

= 1
as desired. �

We now turn to the geometry of Frenet curves to help establish these rigidity
conditions.

Definition 3.13 (Frenet curves and osculating curves). A curve ξ1 : S1 → RPn−1 is
called a Frenet curve if there is an curve ξ = (ξ1, . . . , ξn) : S1 → B such that

• For every ordered partition (n1, . . . ,nk) of n and every k-tuple of distinct points
x1, . . . , xk ∈ S1, the following sum is direct:

k⊕
i=1

ξni(xi) = Rn.

• For every ordered partition (j1, . . . , jk) of a positive integer j 6 n, and for every
x ∈ S1, then:

lim
(xi)→x

k⊕
i=1

ξji(xi) = ξ
j(x),

where the limit is taken over k-tuples (x1, . . . , xk) of pairwise distinct points xi.
We refer to ξ = (ξ1, . . . , ξn) as the osculating curve for the Frenet curve ξ1.

To begin with, we note that (for n = 3) the Fuchsian-characterizing nature of
simultaneously having both the triple ratio unicity and the edge function equality
properties applies to the entire higher Teichmüller space, and not just on the
subspace of positive points. This is of independent interest to our aims in this
subsection.

Remark 3.14. For n = 3, we demonstrate that if an ideal quadrilateral satisfies the
properties that the two edge functions on its cross-edges are equal and all triple ratios
for the ideal triangles constituting this ideal quadrilateral equal 1 is equivalent to having
the four vertices x1, x2, x3, x4 being on the sam ellipse. Since T(ξ(x1), ξ(x2), ξ(x3)) =
1, there is a unique projective transformation sending the flags ξ(x1), ξ(x2), ξ(x3) to
(A, lEF), (B, lFG), (C, lEG) arranged as per Figure 12 with EFG equilateral and with
A,B,C being midpoints. Further let ξ(x4) = (D, lD), H = AD ∩ BE, I = AC ∩ BE,
L = BD ∩AG and M = BC ∩AG. Then the edge function equality

C1(ξ(x1), ξ(x2), ξ(x3), ξ(x4)) = C2(ξ(x1), ξ(x2), ξ(x3), ξ(x4))(24)
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is equivalent to

−
|EH|

|BH|
= −

|EH| · |BI|
|BH| · |EI|

= −
|AL| · |GM|

|GL| · |AM|
= −

|AL|

|GL|
.(25)

Combined with |EI| = |IB| = |AM| = |MG|, we get |HI| = |LM|. Since |AI| = |BM|,
AI ⊥ HI and BM ⊥ML, and we obtain ∠α = ∠β and hence A,B,C,D lie on the same
circle as ∠α and ∠β are angles subtended on the same arc.

Figure 12. Normalized position

We now present a different approach for establishing triple ratio or edge func-
tion rigidity via the geometry of the Frenet curves. The method allows us to
establish triple ratio rigidity to arbitrary rank positive representations of closed
surfaces and punctured surfaces (i.e.: positive representations with unipotent
monodromy). The limitation is that this method does not apply for arbitrary
Frenet curves (i.e.: elements of universal higher Teichmüller space) or if there is
a loxodromic boundary component.

The following lemma is key to our proof strategy:

Lemma 3.15. Consider the restricted osculating curve ξ = (ξ1, ξ2) : [0, 1] → B for the
subarc ξ1 of a Frenet curve. If the triple ratio T(ξ(0), ξ(1), ξ(s)) is equal to 1 for every
s ∈ (0, 1), then the image of ξ1 in RP2 is the subarc of an ellipse.

Proof. We first observe that we may freely apply PGL3(R) to ξ without affecting
the smoothness of ξ or its triples ratios. Therefore, we may assume without loss
of generality that

(1) the subarc maps to R2 = {(x,y)} = {[x,y : 1]t ∈ RP2} ⊂ RP2;
(2) ξ1(0) and ξ1(1) are respectively positioned at (0, 0) and (0, 1);
(3) ξ2(0) and ξ2(1) are vertical lines;
(4) and ξ1 is parameterized so that ξ1(s) = (s, f(s)) for some C1 function f(s).

This final condition is possible because Frenet curves are necessarily hyperconvex.
The triple ratio

T(ξ(0), ξ(1), ξ(s)) = 1.
Explicitly writing out this condition for a C1 curve (t, f(t)) yields the following:

(1 − s)(f(s) − sf ′(s))

s(f(s) + (1 − s)f ′(s))
= 1.
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The family of half-ellipses of the form y2 = Ax(1 − x) constitute the full set of
possible solutions for this ODE. �

We are now well-prepared to prove the following:

Theorem 3.16. Triple ratio rigidity holds for positive points (ρ, ξ) ∈ XPGLn,Sg,m(R>0)
for which the boundaries (if any) of Sg,m are all unipotent.

Proof. The statement is trivially true for n = 2, so consider n > 3. Our goal is
to show that the Frenet curve for (ρ, ξ) has smooth image and thus invoke [PS17,
Theorem D] (or [Ben01, Proposition 6.1] for the n = 3 case) to conclude that ρ is n-
Fuchsian. To demonstrate the desired smoothness, we compute the projection (a
smooth lift) of the Frenet curve into 3-dimensional subspaces for which a certain
set of ideal triangles retain their triple ratios and then apply Lemma 3.15.

Let X : [0, 1] → RPn−1 be a subarc of ξ1. By applying the action of PGLn(R), we
assume without loss of generality that:

• the (ordered) standard basis (e1, e2, . . . , en) is a basis for the flag ξ(0);
• the reversed standard basis (en, en−1, . . . , e1) is a basis for the flag ξ(1).

We identify X(t) with the following lift to Rn:

X(t) = x1(t)e1 + . . . + xn−1(t)en−1 + xn(t)en.

The first axiom for Frenet curves (Definition 3.13) ensures that:
• xn(t) 6= 0 for t 6= 0;
• xi(t) and xi+1(t) cannot simultaneously equal 0 for t 6= 0, 1;
• and xi(t) cannot identically zero.

We renormalize X(t) by setting xn(t) = t.

Step 1: we know from the given assumption that Tn−2,1,1(X(0),X(1),X(t)) = 1.
Remark 2.22 tells us that these triple ratios are still equal to 1 after projecting X(t)
into the orthogonal complement V⊥1 of

V1 := Span{e1, e2, . . . , en−3}.(26)

By Lemma 3.15, the projected image

projV⊥1 (X(t)) = xn−2(t)en−2 + xn−1(t)en−1 + xn(t)en, where xn(t) = t,(27)

defines a subsegment of an ellipse when further projected into RP2. Thus there
is a reparametrization s : [0, 1]→ [0, 1] of t such that xn−2(t(s))

t(s) , xn−1(t(s))
t(s) are both

real analytic functions in s. We also observe that it at least one of xn−2(t), xn−1(t)
needs to be non-zero or else the projected image of X(t) in RP2 would just be
a single point. Analyticity further asserts that xn−2(t) and xn−1(t) either have
finitely many zeroes, as they cannot be identically zero. We now show that
xn−k−1(t(s))/t(s) is real analytic in s, inductively over k = 2, . . . ,n− 2.

Step k: we know from the given assumption that the triple ratios

Tn−1−k,k,1(X(0),X(1),X(t)) = 1 for all t

and remain equal to 1 after projecting into the orthogonal complement V⊥k of

Vk := Span{e1, e2, . . . , en−k−2, en−k+2, . . . , en}.(28)
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The projected image of X(t) is given by

projV⊥k (X(t)) = xn−k−1(t)en−k−1 + xn−k(t)en−k + xn−k+1(t)en−k+1.(29)

Further projecting in the en−k−1, en−k direction, Lemma 3.15 ensures that xn−k+1
xn−k

is real analytic with respective to some reparametrization tk of t. However, we
already know that this quantity is real analytic with respect to s, which implies
that tk and s are real analytically compatible reparametrizations of t. Hence, the
functions xn−k−1(t(s))

xn−k(t(s))
is a real analytic function in s, and

xn−k−1(t(s))
t(s) = xn−k−1(t(s))

xn−k(t(s))
· xn−k(t(s))

t(s)

is also real analytic with respect to s. Note that this argument applies when
xn−k−1(t(s))
xn−k(t(s))

is well-defined. For the remaining finitely many points where xn−k(t(s))
equals 0, we may project projV⊥k (X(t)) in the en−k−1, en−k+1 direction and run the
same argument. This is always doable because xn−k(t) and xn−k+1(t) cannot
simultaneously equal 0.

We have now shown that x1(t(s))
t(s) , . . . , xn−1(t(s))

t(s) are real analytic functions in s,
and hence X(t) has smooth image in RPn−1. �



MCSHANE IDENTITIES FOR HIGHER TEICHMÜLLER THEORY AND THE GONCHAROV-SHEN POTENTIAL31

4. Goncharov–Shen potentials

The A-moduli space ASL2,S1,1(R>0) is equivalent to Penner’s decorated Teich-
müller space, whose element correspond to marked hyperbolic surfaces deco-
rated with a horocycle around its solitary cusp. Penner showed that the length P
of this horocycle is a rational function of his λ-length coordinates (λx, λy, λz) for
ASL2,S1,1(R>0). In particular, it takes the form:

(30) P = 2
(
λx

λyλz
+

λy

λzλx
+

λz

λxλy

)
.

Moreover, choosing the length P = 6 horocycle yields the Markoff equation.

Goncharov and Shen generalize this construct to ASLn,Sg,m in [GS15]. Their con-
struction is based on the following key observation:

Fact 4.1. For any triple of decorated flags (F,G,H) ∈ A3 if (F,G,H) are in generic
position, there is a unique upper triangular unipotent matrix g, upper triangular with
respect to any basis for F, such that (F,π(G)) · g = (F,π(H)).

Definition 4.2 (i-th Character). Let the above linear transformation g take the form
(gij) with respect to any basis for the decorated flag F. For i = 1, · · · ,n− 1, we define
the i-th character

Pi(F;G,H) of (F,G,H) to be gn−i,n−i+1.
The i-th character satisfies the following additive properties:

Pi(F;G,H) = Pi(F;G,W) + Pi(F;W,H);

Pi(F;G,H) = −Pi(F;H,G).

Consider (ρ, ξ) ∈ ASLn,Sg,m and an ideal triangulation T of Sg,m. For any marked
triangle (f,g,h) in T̃ (T resp.), we denote the i-th character Pi(ξρ(f); ξρ(g), ξρ(h))
(Pi(ξ(f); ξ(g), ξ(h)) resp.) by Pi(f;g,h).

Remark 4.3. Given (ρ, ξ) ∈ ASLn,Sg,m(R>0) and the ideal triangulation T,
(1) for any anticlockwise oriented (e, f,g,h), these additive characters satisfy the

following positivity property:
Pi(e; f,g)
Pi(e;g,h)

> 0;

(2) by the above definition, for any marked ideal triangle (x,y, z) and any δ ∈
π1(Sg,m), we have

Pi(x;y, z) = Pi(δx; δy, δz).

For general XPGLn,Sg,m(R>0), we have Proposition 4.16 instead.

Definition 4.4 ([GS15] Goncharov–Shen potential). Given (ρ̄, ξ̄) ∈ ASLn,Sg,m , we fix
an ideal triangulation T of Sg,m and fix one fundamental domainΩ of T̃ composed of ideal
triangles in T̃. Given p ∈ mp, let Θp denote the set of marked anticlockwise-oriented
ideal triangles (f,g,h) in Ω with f being a lift of p. For each i = 1, · · · ,n − 1, the i-th
Goncharov–Shen potential at p, denoted by Ppi , on the A-moduli space ASLn,Sg,m is
given by:

Ppi :=
∑

(f,g,h)∈Θp

Pi(f;g,h).(31)
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For [µ] ∈ Hp (Recall Definition 1.16), let Θµ be a subset of Θp that contained in a lift of
µ. We define (µ, i)-Goncharov–Shen potential to be

Pµi := Pµ̄i :=
∑

(f,g,h)∈Θµ

Pi(f,g,h).(32)

For the case (n,g,m) = (2, 1, 1), the Goncharov–Shen potential Pp1 is the same as P
in Equation (30). Goncharov and Shen show that Ppi is well-defined, independent
of the chosen ideal triangulation T and hence mapping class group invariant.
They further demonstrate the following beautiful fact:

Theorem 4.5 ([GS15, Theorem 10.7]). These m(n − 1) Goncharov–Shen potentials
{Ppi }p,i generate the algebra of mapping class group invariant regular functions on the
moduli space ASLn,Sg,m .

Remark 4.6. Goncharov and Shen refer to their potentials as Landau–Ginzberg partial
potentials because an important aspect of their hitherto unproven homological mirror
symmetry conjecture asserts that their potentials should correspond to Landau–Ginzburg
partial potentials from Landau-Ginzburg theory. We opt to refer to their potentials as
Goncharov–Shen potentials both to acknowledge their contribution in discovering this
geometrically fascinating object, as well as to avoid implying the open conjecture that
Goncharov–Shen potentials are Landau-Ginzburg partial potentials.

We now give explicit algebraic manipulations of Pi(F;G,H). This is essentially
taken from [GS15, Section 3], but is included both for expositional completeness
and because many of our computations and derivations depend upon these foun-
dational computations.

Remark 4.7. The following computation differs from Goncharov–Shen’s: we are comput-
ing g such that (F,π(G))·g = (F,π(H)), they are computing g ′ such that (F,π(H))·g ′ =
(F,π(G)). This accounts for the difference in sign in Lemma 4.8.

Consider a triple of decorated flags (F,G,H) ∈ A3 is in generic position with
respective bases (f1, · · · , fn), (g1, · · · ,gn), and (h1, · · · ,hn). For any non-negative
integers a,b, c with a+ b+ c = n, define a one dimensional vector space

Lb,c
a := Fa+1 ∩ (Gb ⊕Hc),

and choose eb,c
a ∈ Lb,c

a such that eb,c
a − fa+1 ∈ Fa. Define αF;G,H

a,b,c ∈ R so that

eb−1,c+1
a − eb,c

a = αF;G,H
a,b,c · e

b,c+1
a−1 .(33)

Lemma 4.8 ([GS15, Lemma 3.1]).

αF;G,H
a,b,c =

∆
(
fa−1 ∧ hc+1 ∧ gb

)
· ∆
(
fa+1 ∧ hc ∧ gb−1

)
∆ (fa ∧ hc ∧ gb) · ∆ (fa ∧ hc+1 ∧ gb−1)

.(34)

Notation 4.9. By definition ei,n−i0 = f1 for every i = 0, · · · ,n.

Equation (33) tells us that there is a change of (ordered) bases(
ea+b−1,c+1

0 , · · · , eb,c+1
a−1 , eb,c

a , eb−1,c
a+1 , · · · , e1,c

a+b−1, e0,c
a+b, · · · , e0,1

n−1

)
·Na(αF;G,H

a,b,c )

=
(
ea+b−1,c+1

0 , · · · , eb,c+1
a−1 , eb−1,c+1

a , eb−1,c
a+1 , · · · , e1,c

a+b−1, e0,c
a+b, · · · , e0,1

n−1

)
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encoded by unipotent matrices of the form

Na(x) =


Ida−1 0 0 0

0 1 x 0
0 0 1 0
0 0 0 Idb+c−1

 .

For c = 0, using the above transformation n− 1 times, we have(
f1, en−1,0

1 , · · · , e1,0
n−1

)
·N1(α

F;G,H
1,n−1,0) · · ·Nn−1(α

F;G,H
n−1,1,0) =

(
f1, en−2,1

1 , · · · , e0,1
n−1

)
.

For 1 6 c = k 6 n − 2, applying the above transformation n − 1 − k times, we
have(

f1, en−1−k,k
1 , · · · , e1,k

n−k−1, e0,k
n−k, · · · , e0,1

n−1

)
·N1(α

F;G,H
1,n−1−k,k) · · ·Nn−1−k(α

F;G,H
n−1−k,1,k)

=
(
f1, en−2−k,k+1

1 , · · · , e0,k+1
n−k−1, e0,k

n−k, · · · , e0,1
n−1

)
.

Composing the above n− 1 transformations, starting from c = 0, we get:(
en,0

0 , en−1,0
1 , · · · , e1,0

n−1

)
· g =

(
e0,n

0 , e0,n−1
1 , · · · , e0,1

n−1

)
.

We refer to the unipotent matrix

g =

n−2∏
c=0

n−c−1∏
a=1

Na(α
F;G,H
a,b,c ), as the rotation matrix.(35)

Observe that (F,π(G)) · g = (F,π(H)). Since g may be explicitly written out, and
satisfies the criterion for Fact 4.1, we see that:

Pi(F;G,H) =
i−1∑
c=0

αF;G,H
n−i,i−c,c.(36)

Example 4.10. When n = 3 (see Figure 13), we denote αF;G,H
2,1,0 by Rfg,h, αF;G,H

1,2,0 by Sfg,h,
αF;G,H

1,1,1 by Tfg,h. By Equation (35), we obtain

g = N1(S
f
g,h) ·N2(R

f
g,h) ·N1(T

f
g,h) =

 1 Sfg,h + Tfg,h Sfg,hR
f
g,h

0 1 Rfg,h
0 0 1

 ,(37)

and hence P1(F;G,H) = Rfg,h and P2(F;G,H) = Sfg,h + Tfg,h.

By direct computation, we obtain the following relationships among the quanti-
ties αF;G,H

a,b,c , Pi(F;G,H) and Ti,j,k(F,G,H).

Lemma 4.11. For positive integers a,b, c with a+ b+ c = n, we have

αF;G,H
a,b+1,c−1

αF;G,H
a,b,c

= Ta,b,c(F,G,H).(38)

Proposition 4.12.

Pi(F;G,H) = αF;G,H
n−i,i,0

1 +

i−1∑
c=1

c∏
j=1

1
Tn−i,i−j,j(F,G,H)

 .(39)
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Figure 13. The above figures encodes how one constructs the
unipotent matrix taking (F,π(G)) to (F,π(H)). Basis 1 is blue,
basis 2 is mangenta, basis 3 is red, and basis 4 is green.

Proof. Iteratively applying Lemma 4.11 c times, we obtain

αF;G,H
n−i,i−c,c = α

F;G,H
n−i,i,0 ·

c∏
j=1

1
Tn−i,i−j,j(F,G,H)

.(40)

Re-expressing Equation (36), we get:

Pi(F;G,H) =
i−1∑
c=0

αF;G,H
n−i,i−c,c = α

F;G,H
n−i,i,0

1 +

i−1∑
c=1

c∏
j=1

1
Tn−i,i−j,j(F,G,H)

 .(41)

�

The i-th character Pi(f;g,h) depends on the choice of basis for F. For elements
of A-moduli space, this is canonically assigned, but not so for XPGLn,Sg,m(R>0).
To resolve this issue, we consider taking ratios of two i-th characters, thereby
providing a well-defined regular function on XPGLn,Sg,m(R>0). This is an idea
previously used in [Sun15] in considering the ratio of two (n× n) determinants.

Definition 4.13 (i-th ratio). Given (ρ, ξ) ∈ XPGLn,Sg,m(R>0) and x,y, z, t ∈ m̃p, sup-
pose that (ξρ(x), ξρ(y), ξρ(z)) and (ξρ(x), ξρ(y), ξρ(t)) are in generic position. Choose
respective bases

(x1, · · · , xn), (y1, · · · ,yn), (z1, · · · , zn), (t1, · · · , tn)
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for (ξρ(x), ξρ(y), ξρ(z), ξρ(t)) and fix a lift X of ξρ(x) to A. We define the i-th ratio of
(x,y, z, t) as:

Bi(x;y, z, t) :=
Pi(x;y, t)
Pi(x;y, z)

:=
Pi(X; ξρ(y), ξρ(t))
Pi(X; ξρ(y), ξρ(z))

.(42)

We show (Proposition 4.14) that the i-th ratio is independent of the choice of X.

The well-definedness of i-th ratio also insures that Pi(x;w,t)
Pi(x;y,z) is also well defined if

(ξρ(x), ξρ(w), ξρ(t)) is in generic position.

Proposition 4.14. The i-th ratio Bi(x;y, z, t) is expressed as follows:

Bi (x;y, z, t) =
1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,t)

1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,z)

·Di(x,y, z, t),(43)

and the i-th ratio does not depend on the lift X of ξρ(x).

Proof. By Proposition 4.12, we have

Pi(x;y, t) = αx;y,t
n−i,i,0

1 +

i−1∑
c=1

c∏
j=1

1
Tn−i,i−j,j(x,y, t)

 ,(44)

and

Pi(x;y, z) = αx;y,z
n−i,i,0

1 +

i−1∑
c=1

c∏
j=1

1
Tn−i,i−j,j(x,y, z)

 .(45)

Moreover, by Lemma 4.8, we get

αx;y,t
n−i,i,0

αx;y,z
n−i,i,0

=

∆(xn−i−1∧t1∧yi)·∆(xn−i+1∧yi−1)
∆(xn−i∧yi)·∆(xn−i∧t1∧yi−1)

∆(xn−i−1∧z1∧yi)·∆(xn−i+1∧yi−1)
∆(xn−i∧yi)·∆(xn−i∧z1∧yi−1)

=
∆
(
xn−i−1 ∧ t1 ∧ yi

)
∆ (xn−i ∧ t1 ∧ yi−1)

·
∆
(
xn−i ∧ z1 ∧ yi−1

)
∆ (xn−i−1 ∧ z1 ∧ yi)

= Di(x,y, z, t).

(46)

Thus we obtain

Bi (x;y, z, t) =
Pi(x;y, t)
Pi(x;y, z)

=
1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,t)

1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,z)

·
αx;y,t
n−i,i,0

αx;y,z
n−i,i,0

=
1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,t)

1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,z)

·Di(x,y, z, t).

(47)

Since edge functions and triple ratios are projective invariants, we conclude that
Bi (x;y, z, t) is independent of the lift X of ξρ(x). �

Recall the weak cross ratio in [LM09, Theorem 10.3.1]

(48) B(x,y, z, t) :=
∆
(
xn−1 ∧ z1

)
∆ (xn−1 ∧ t1)

·
∆
(
yn−1 ∧ t1

)
∆ (yn−1 ∧ z1)

.
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By Proposition 4.14, we have

(49)

B(x,y, z, t) =
n−1∏
i=1

∆
(
xn−i−1 ∧ t1 ∧ yi

)
∆ (xn−i ∧ t1 ∧ yi−1)

·
∆
(
xn−i ∧ z1 ∧ yi−1

)
∆ (xn−i−1 ∧ z1 ∧ yi)

=

n−1∏
i=1

Di(x,y, z, t)

=

n−1∏
i=1

(
Bi(x,y, z, t) ·

1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,z)

1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,t)

)
.

We therefore obtain:

Corollary 4.15. The weak cross-ratio and the i-th ratio is related by:

(50) B(x,y, z, t) =
n−1∏
i=1

Bi(x,y, z, t) ·
n−1∏
i=1

(
1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,z)

1 +
∑i−1
c=1
∏c
j=1

1
Tn−i,i−j,j(x,y,t)

)
.

The above corollary allows us to relate Labourie–McShane’s identities [LM09] to
the McShane-type identities/inequalities in this paper.

Proposition 4.16. Consider an element (ρ, ξ) ∈ XPGLn,Sg,m(R>0) and its associated
osculating map ξρ. Suppose that for any homotopy class γ ∈ π1(Sg,m) representing
a closed curve with loxodromic monodromy, there exist a lift of ρ(γ) into SLn with
eigenvectors δ1, · · · , δn and positive eigenvalues λ1, · · · , λn respectively. Further let
δ+, δ− respectively denote the attracting and repelling fixed points of δ. Suppose that
(δ1, · · · , δn) ((δn, · · · , δ1) resp.) is the basis of the flag ξρ(δ+) (ξρ(δ−) resp.). Now,
given a marked ideal triangle (x,y, z), (arbitrarily) fix respective bases

(x1, · · · , xn), (y1, · · · ,yn) and (z1, · · · , zn)

for ξρ(x), ξρ(y), ξρ(z). Then, for integers a,b > 1 and c = n−a−b > 0, the following
ratio is indepent of our basis choice and satisfies

αx;y,z
a,b,c

αx;δy,δz
a,b,c

=

{
λa+1
λa

if x = δ+
λn−a

λn−a+1
if x = δ−.

(51)

In addition, we also obtain that:

Pn−a(δ
+;y, z)

Pn−a(δ+; δy, δz)
=
λa+1

λa
and

Pa(δ
−;y, z)

Pa(δ−; δy, δz)
=

λa

λa+1
.(52)

Proof. We only derive the δ+ case, the other is essentially the same. Recall the
notation xa := x1 ∧ · · ·∧ xa. For any non-negative integer u, v with a+u+ v = n,
we obtain

∆(δa ∧ zu ∧ yv) = ∆(ρ(δ)δa ∧ ρ(δ)zu ∧ ρ(δ)yv)(53)

= λ1 · · · λa · ∆(δa ∧ (δz)u ∧ (δy)v).(54)
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Then

αδ
+;y,z
a,b,c =

∆
(
δa−1 ∧ zc+1 ∧ yb

)
· ∆
(
δa+1 ∧ zc ∧ yb−1

)
∆ (δa ∧ zc ∧ yb) · ∆ (δa ∧ zc+1 ∧ yb−1)

(55)

=
λa+1 · ∆

(
δa−1 ∧ (δz)c+1 ∧ (δy)b

)
· ∆
(
δa+1 ∧ (δz)c ∧ (δy)b−1

)
λa · ∆ (δa ∧ (δz)c ∧ (δy)b) · ∆ (δa ∧ (δz)c+1 ∧ (δy)b−1)

(56)

=
λa+1

λa
· αδ

+;δy,δz
a,b,c .(57)

This lets us obtain that αδ
+ ;y,z
a,b,c

αδ
+ ;δy,δz
a,b,c

= λa+1
λa

. The basis-independence of λa+1
λa

again

ensures that our initial choice of bases is irrelevant. To further obtain that
Pn−a(δ

+;y, z)
Pn−a(δ+; δy, δz)

=
λa+1

λa
,

we apply Proposition 4.14 with the observation that

(δ+, δx, δy) = δ · (δ+, x,y)

and the fact that triple ratios are projective invariants. �

Definition 4.17 (Canonical lift). For any positive ρ ∈ Hom(π1(Sg,m), PGLn)/PGLn
with loxodromic monodromy around each boundary component, there is a canonical lift
(ρ, ξ) into XPGLn,Sg,m(R>0) such that for any homotopy class δ ∈ π1(Sg,m) representing
a boundary component of Sg,m, there exist a lift of ρ(δ) into SLn with eigenvectors
δ1, · · · , δn and eigenvalues λ1, · · · , λn respectively satisfying λ1 > . . . > λn > 0, and
(δ1, · · · , δn) ((δn, · · · , δ1) resp.) is a basis for the flag ξρ(δ+) (ξρ(δ−) resp.).

Remark 4.18. We use δi to represent an eigenvector only here. Later in Section 8, we
use δi := δ1 ∧ · · ·∧ δi for computation as in Proposition 4.16 and avoid using δi.

Proposition 4.19. With respect to the canonical lift (ρ, ξ) of a loxodromic bordered pos-
itive representation ρ, the i-th period of α is the i-th simple root length of α:

logBi
(
α−;α+,α(y),y

)
= log λi(ρ(α))

λi+1(ρ(α))
= `i(α), for y 6= α±.(58)

Proof. Apply Proposition 4.16. �
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5. Goncharov–Shen potential splitting technique

5.1. The ASL3,S1,1(R>0) Case. The goal of this section is to prove the following
McShane-type inequality, before we promote it to an equality in Section 7.

Remark 5.1. For (ρ̄, ξ̄) ∈ ASL3,Sg,m(R>0), the representation of the twist σSg,m is iden-
tity by Definition 2.9. Thus we use (ρ, ξ̄) ∈ ASL3,Sg,m(R>0) instead.

Theorem 5.2. Given (ρ, ξ̄) ∈ ASL3,S1,1(R>0), let p be the puncture of S1,1, let C1,1 be the
collection of oriented simple closed curves up to homotopy on S1,1. Then∑

γ∈C1,1

1
1 + e`1(γ)+τ(γ)

6 1,(59)

where τ(γ) is defined in the description of Figure 2.

We obtain the above result by splitting the Goncharov–Shen potential Pp1 . As
such, we first explain the splitting procedure..

Let (ρ, ξ̄) ∈ ASL3,S1,1(R>0). Given an ideal triangulation T of S1,1, we lift T into the
universal cover T̃. We denote the Fock–Goncharov A coordinates as in Figure 9.
Same as the case of ASL2,S1,1(R>0), the flips along the edges yt, tx, xy generate the
extended mapping class group of S1,1. Such dynamic is described by an infinite
tree with degree three for each vertex expanding to infinity starting from one
vertex. For ASL3,S1,1(R>0), the flip at the edge yt is composed of four successive
cluster mutations. This is shown in the description adjacent to Figure 9.

By Equation (36), we have

Pp1 =
w

br
+
w

ds
+
w

ac
+
q

cr
+
q

bd
+
q

as
,(60)

Pp2 =
bc

aw
+
rd

ws
+
bs

wr
+
ad

wc
+
ar

bw
+
cs

dw

+
ar

sq
+
cb

dq
+
dr

cq
+
bs

aq
+
ad

bq
+
cs

rq
.

(61)

For Pp1 and Pp2 , we have similar combining and splitting properties given by mu-
tations as that of Markoff equation: flips cause a third of the summands each to
split into two new summands, whilst for the remaining two-thirds pairs of sum-
mands reconsistute to form new summands. This phenomenon is easily checked
by explicitly computing the mutation formulas (see Figure 9). We adopt to use
additivity of i-th character as follows.

Lemma 5.3. Set up as in Figure 9, we have

P1(y; z, t) + P1(y; t, x) =
w

br
+
q

cr
=
r ′

bc
= P1(y; z, x),(62)

P1(t; x,y) + P1(t;y, z) =
q

sa
+
w

ds
=
s ′

ad
= P1(t; x, z),(63)

P1(z; t,y) =
w

ac
=

s ′

cw ′
+

r ′

aw ′
= P1(z; , t, x) + P1(z; , x,y),(64)
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P1(x;y, t) =
q

bd
=

r ′

dq ′
+
s ′

bq ′
= P1(x;y, z) + P1(x; z, t).(65)

These formulas generalize the splitting of horocycle length for a hyperbolic structure.
Similarly, we have formulas for P2.

5.2. Asymptotic behavior. For each oriented simple closed geodesic γ, we study
the effect of arbitrarily iterated Dehn twists along γ on functions such as i-ratios
and triple ratios.

Given (ρ, ξ̄) ∈ ASL3,S1,1(R>0), recall the continuous map ξρ into the flag variety
defined with respect to (ρ, ξ = π ◦ ξ̄). Given an oriented closed geodesic γ and
the corresponding γp, let T0 be an ideal triangulation that contains γp as an ideal
edge. In one fundamental domain of T̃0, suppose x,y0, t0, t are the vertices of the
fundamental domain where x = p̃ is a lift of p such that ξ(p) = ξρ(x) and (x, t)
is a lift of γp. After doing Dehn twist k (k ∈ Z) times around γ on T0, suppose Tk

is the resulting ideal triangulation. The fundamental domain of T̃k is shown in
Figure 14 left with the vertices x,yk, tk, t. Let (x1, x2), (yk,1,yk,2), (zk,1, zk,2), (t1, t2)
be the bases of the images of x,yk, zk, t under ξρ respectively, which induce the
Fock–Goncharov A coordinates (a1,a2,bk−1, ck−1, ck,bk,dk−1, ek−1).

Figure 14. flip at ykt

Then as shown in Figure 14, the Dehn twist twγ induces the map from VTk to
VTk+1

{x,yk, zk, t}→ {x,γyk,γzk, t},

the corresponding map for the Fock–Goncharov A coordinates gives:

(a1,a2,bk−1, ck−1, ck,bk,dk−1, ek−1)→ (a1,a2,bk, ck, ck+1,bk+1,dk, ek).

Let fk be the flip around the edge tyk. Let ΓTk3 be the quiver for Tk3 . Then
twγ(ΓTk3 ) = (ykzk) ◦ fk(ΓTk3 ) = ΓTk+1

3
, where (ykzk) is the permutation of the

vertices in ΓTk3 corresponding to permutation of yk, zk in Tk. Moreover, fk+1◦fk =

tw2
γ.
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In [Hua14], for ASL2,S1,1 , each gap of the McShane identity is interpreted as the
limit of λb

λaλc
under the sequence {twkγ}

+∞
k=−∞. Since we can express Pp1 as a pos-

itive rational function of Fock–Goncharov A-coordinates, we begin by studying
the asymptotic behavior of these coordinates under the Dehn twists.

Proposition 5.4. Suppose that the eigenvalues of ρ(γ) satisfying λ1(ρ(γ)) > λ2(ρ(γ)) >
λ3(ρ(γ)) > 0. Under the sequence {twkγ}

+∞
k=−∞, we have:

lim
k→+∞

bk+1

bk
= lim
k→+∞

dk+1

dk
= lim
k→−∞

ck

ck+1
= lim
k→−∞

ek

ek+1
= λ1(ρ(γ)),(66)

and conversely, we have:

lim
k→+∞

ck+1

ck
= lim
k→+∞

ek+1

ek
= lim
k→−∞

bk

bk+1
= lim
k→−∞

dk

dk+1
= λ1(ρ(γ

−1)).(67)

Moreover, the following limits exist:

lim
k→+∞

bk

dk
, lim
k→−∞

bk

dk
, lim
k→+∞

ck

ek
, lim
k→−∞

ck

ek
.(68)

Proof. When k = 0 in Figure 14, suppose that y0 = βx where β ∈ π1(S1,1). For
k ∈ Z in general, by definition, t = γ · x, yk = γkβ · x, zk = γk+1β · x. Let the
bases of the flag ξρ(x) be (x1, x2, x3). Since ξρ is ρ-equivariant, we have

dk+1

dk
=

∣∣∣∣∣∆
(
x1 ∧ ρ(γ

k+1β)x1 ∧ ρ(γ)x1
)

∆ (x1 ∧ ρ(γkβ)x1 ∧ ρ(γ)x1)

∣∣∣∣∣ .
It is the ratio of the length of two vectors ρ(γ) · ρ(γkβ)x1, ρ(γkβ)x1 projecting
down to the plan spanned by x1, ρ(γ)x1 When k converges to +∞, ρ(γkβ)x1

converge to the attracting fix point γ+. The ratio dk+1
dk

is then converge to λ1(ρ(γ)).
Suppose v1, v2, v3 are eigenvectors of λ1(ρ(γ)) > λ2(ρ(γ)) > λ3(ρ(γ)) respectively.
We have

lim
k→+∞

bk

dk
= lim
k→+∞

∣∣∣∣∣ ∆
(
x1 ∧ x2 ∧ ρ(γ

kβ)x1
)

∆ (x1 ∧ ρ(γkβ)x1 ∧ ρ(γ)x1)

∣∣∣∣∣ =
∣∣∣∣ ∆ (x1 ∧ x2 ∧ v1)

∆ (x1 ∧ v1 ∧ ρ(γ)x1)

∣∣∣∣ ,
which does not depend on the eigenvector v1 that we choose in the eigenspace.
Thus limk→+∞ bk

dk
exists.

The proof of the other cases in Equations (66), (67) and (68) are similar, we leave
them to the reader. �

Monodromy computation We compute hw0 explicitly in [GS15, Section 6.2] using
formulas in [GS15, page 566], then we have

(ξρ(zk),π(ξρ(yk))) ·

 0 0 1
a2

0 −a2
a1

0
a1 0 0

 = (ξρ(yk),π(ξρ(zk))).
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Remark 5.5 (monodromy). The monodromy matrix g, in the conjugacy class of ρ(γ),
such that (ξρ(zk),π(ξρ(t))) · g = (ξρ(yk),π(ξρ(x))) is

 1 Szkt,yk + T
zk
t,yk Szkt,ykR

zk
t,yk

0 1 Rzkt,yk
0 0 1

 0 0 1
a2

0 −a2
a1

0
a1 0 0

 1 Sykzk,x + T
yk
zk,x Sykzk,xR

yk
zk,x

0 1 Rykzk,x
0 0 1

 ,

=

 1 bk−1ck
bkek−1

+ a2ck−1
a1ek−1

bk−1
a2bk

0 1 ek−1
a2ck

0 0 1

 0 0 1
a2

0 −a2
a1

0
a1 0 0

 1 a1ck+1
a2ek

+ bk+1ck
bkek

ck+1
a2ck

0 1 ek
a1ck

0 0 1

 .

(69)

And

Tr(g) = −
a2

a1
+ a1 · (Rzkt,ykS

zk
t,yk + R

yk
zk,xS

yk
zk,x + R

zk
t,ykS

yk
zk,x + R

zk
t,ykT

yk
zk,x),(70)

Tr(g−1) = −
a1

a2
+ a2 · (Rykzk,xS

zk
t,yk + R

zk
t,ykT

zk
t,yk + R

yk
zk,xT

zk
t,yk + R

yk
zk,xT

yk
zk,x).(71)

5.3. Goncharov–Shen potential for half pants.

Remark 5.6. Given (ρ, ξ̄) ∈ ASL3,S1,1 , as in Figure 14, the surface S1,1 is cut into two
half pairs of pants µ and µ ′ along γ and γp. Recall the (µ, i)-Goncharov–Shen potential
in Definition 4.4. By the additivity of i-th character, we have Pµi and Pµ

′

i are invariant
under the Dehn twist around γ. More explicitly, we have

Pµ1 = Rxyk,t + R
t
x,zk =

dk−1

bka1
+

dk

bka2
,

Pµ
′

1 = Rzkt,yk + R
yk
zk,x =

ek−1

cka2
+

ek

cka1
,

Pµ2 = Sxyk,t + T
x
yk,t + S

t
x,zk + T

t
x,zk =

bkck−1

ckdk−1
+
a1bk−1

dk−1a2
+
a2bk+1

a1dk
+
bkck+1

dkck
,

Pµ
′

2 = Szkt,yk + T
zk
t,yk + S

yk
zk,x + T

yk
zk,x =

ckbk−1

bkek−1
+
a2ck−1

a1ek−1
+
a1ck+1

a2ek
+
ckbk+1

ekbk
,

do not depend on k ∈ Z.

Proof of Theorem 5.2. McShane’s identity [McS91] is established by dividing up a
horocycle into countable many disjoint open intervals and a Cantor set. Each
such interval takes the form as shown in Figure 15, and there is a canonical
2 : 1 correspondence between these open intervals and oriented simple closed
geodesics on S1,1. Specifically, the intervals I1, I2 correspond to γ ∈ C1,1 and the
intervals I3 ∪ I4 correspond to γ−1. This correspondence is purely topological,
and applies also to the higher rank context.

For ASL3,S1,1(R>0), the role of the horocycle is supplanted by the Goncharov–Shen
potential Pp1 . Using the Fock–Goncharov A coordinates in Figure 14, we compute
the gap terms for I1, I2, thereby allowing us to obtain∑

γ∈C1,1

(
lim
k→+∞

dk−1

bka1
+ lim
k→−∞

ek

cka1

)
6 Pp1 ,(72)

where the inequality is due to the potential measure theoretic contribution of the
remnant Cantor set.



42 YI HUANG AND ZHE SUN

Figure 15. The red and yellow simple curves spiral around the
left side hole to the infinity in two different directions, while the
blue and the green simple curves spiral around the right side
hole to the infinity.

Renormalizing this summation by dividing through by Pp1 , Proposition 5.4 tells
us that we have

lim
k→+∞

dk−1

bka1P
p
1
= lim
k→+∞

dk−1
bka1

dk−1
bka1

+ dk
bka2

·
Pµ1
Pp1

= lim
k→+∞

1
1 + a1dk

a2dk−1

·
Pµ1
Pp1

=
1

1 + a1
a2
λ1(ρ(γ))

·
Pµ1
Pp1

.

(73)

Similarly,

lim
k→−∞

ek

cka1P
p
1
=

1
1 + a1

a2
λ1(ρ(γ))

·
Pµ
′

1

Pp1
.(74)

Since Pp1 = Pµ1 + Pµ
′

1 , we obtain

1 >
∑
γ∈C1,1

(
lim
k→+∞

dk−1

bka1P
p
1
+ lim
k→−∞

ek

cka1P
p
1

)

=
∑
γ∈C1,1

1

1 +
a1(γp)
a2(γp)

λ1(ρ(γ))
.

(75)

Moreover, by Proposition 5.4, observe that

T(p̃,γp̃,γ+) = lim
k→+∞

a1bk−1ck

a2ck−1bk
=
a1(γp)λ2(ρ(γ))

a2(γp)
.(76)
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Thus ∑
γ∈C1,1

1

1 + T(p̃,γp̃,γ+) · λ1(ρ(γ))
λ2(ρ(γ))

6 1,(77)

and hence: ∑
γ∈C1,1

1
1 + eτ(γ)+`1(γ)

6 1.(78)

�

5.4. Symmetry in the ASL3,S1,1(R>0) case. For (ρ, ξ̄) ∈ ASL3,S1,1(R>0), we have the
following symmetry between objects related to Pp1 and Pp2 :

Lemma 5.7. Given k ∈ Z in Figure 14, we have
(79)
Sxyk,t + T

x
yk,t

Rzkt,yk
=
Szkt,yk + T

zk
t,yk

Rxyk,t
=
Stx,zk + T

t
x,zk

Rykzk,x
=
Sykzk,x + T

yk
zk,x

Rtx,zk
=
Pµ2

Pµ
′

1

=
Pµ
′

2

Pµ1
=
Pp2
Pp1

.

Proof. Firstly, we have

(Sxyk,t + T
x
yk,t)R

x
yk,t =

(
bkck−1

ckdk−1
+
a1bk−1

a2dk−1

)
dk−1

a1bk

=
ck−1

cka1
+
bk−1

a2bk

=

(
a2ck−1

a1ek−1
+
ckbk−1

ek−1bk

)
ek−1

a2ck
= (Szkt,yk + T

zk
t,yk)R

zk
t,yk ,

(80)

thus
Sxyk ,t+T

x
yk ,t

R
zk
t,yk

=
S
zk
t,yk

+T
zk
t,yk

Rxyk ,t
. By similar computation, we obtain

Stx,zk
+Ttx,zk

R
yk
zk ,x

=

S
yk
zk ,x+T

yk
zk ,x

Rtx,zk
.

To prove that
S
zk
t,yk

+T
zk
t,yk

Rxyk ,t
=
Stx,zk

+Ttx,zk

R
yk
zk ,x

, it is equivalent to prove

a2ekck−1

a2
1ckek−1

+
ekbk−1

a1bkek−1
=
a2dk−1bk+1

a2
1bkdk

+
dk−1ck+1

a1ckdk
.(81)

By mutation formulas, in the above formula, we replace bk+1 by bkdk+a1ek
dk−1

, re-
place ck+1 by ekck+dka2

ek−1
and replace ekck−1 by ckek−1 + a1dk−1. Equation (81) is

then equivalent to

bk−1dk = a2ek−1 + bkdk−1,(82)

which is exactly the mutation formula at dk, thus

Szkt,yk + T
zk
t,yk

Rxyk,t
=
Stx,zk + T

t
x,zk

Rykzk,x
.

The rest is based on the fact that a
b
= c
d
= a+c
b+d . For example

Sxyk,t + T
x
yk,t

Rzkt,yk
=
Stx,zk + T

t
x,zk

Rykzk,x
=
Pµ2

Pµ
′

1

.
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Figure 16. The embedded boundary-parallel pair of half-pants
µ is glued to another embedded boundary-parallel pair of half-
pants µ̂.

We conclude that

Sxyk,t + T
x
yk,t

Rzkt,yk
=
Szkt,yk + T

zk
t,yk

Rxyk,t
=
Stx,zk + T

t
x,zk

Rykzk,x
=
Sykzk,x + T

yk
zk,x

Rtx,zk
=
Pµ2

Pµ
′

1

=
Pµ
′

2

Pµ1
=
Pp2
Pp1

.

�

Proposition 5.8. For (ρ, ξ̄) ∈ ASL3,S1,1(R>0), the Pp2 gap terms are equivalent to those
obtained via Pp1 , and thus any subsequently derived McShane identities are equivalent up
to index relabeling.

Proof. By the above lemma, we obtain

lim
k→+∞(Sxyk,t + T

x
yk,t) =

Pp2
Pp1

lim
k→+∞Rzkt,yk , lim

k→+∞(Szkt,yk + Tzkt,yk) =
Pp2
Pp1

lim
k→+∞Rxyk,t,

lim
k→−∞(Stx,zk + T

t
x,zk) =

Pp2
Pp1

lim
k→−∞Rykzk,x, lim

k→−∞(Sykzk,x + T
yk
zk,x) =

Pp2
Pp1

lim
k→−∞Rtx,zk .

�

5.5. General punctured convex real projective surfaces. We prove the McShane–
type inequality on ASL3,Sg,m(R>0) for Pp1 . We leave the similar proof for Pp2 to the
readers. Notice that there is no symmetry between Pp1 and Pp2 when (g,m) 6=
(1, 1).

Theorem 5.9. Given (ρ, ξ̄) ∈ ASL3,Sg,m(R>0). Let p be the puncture in mp. Recall the
collection of all boundary-parallel pairs of half-pants Hp in Definition 1.16 and B1(γ,γp)
in Remark 1.14. Then ∑

[γ,γp]∈Hp

(
B1(γ,γp)

1 + e`1(γ)+τ(γ,γp)

)
6 1.(83)
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Proof. As in Figure 15, the gap term for an embedded boundary-parallel pair of
half-pants µ = (γ,γp) corresponds to I1. As in right hand side of Figure 16,
assume µ̂ is another embedded half pair of pants patching with µ along γ. Then
we denote the Fock–Goncharov A coordinates after k-th Dehn twist along γ as in
the left hand side of Figure 16. Then we have

1 >
∑

[γ,γp]∈Hp

(
lim
k→+∞

dk−1

bka1P
p
1

)
.(84)

When we do Dehn twists along γ, the situation here is different from the case of
S1,1 in Figure 14, but quite similar. Here we have t = γx, yk = γky0, zk = γk+1y0.
By similar arguments in Proposition 5.4, we still have

lim
k→+∞

dk

dk−1
= λ1(ρ(γ)).(85)

Recall that B1(γ,γp) =
Pµ1
Pp1

. Hence we obtain∑
[γ,γp]∈Hp

(
lim
k→+∞

dk−1

bka1P
p
1

)

=
∑

[γ,γp]∈Hp

(
B1(γ,γp) lim

k→∞
dk−1

bka1P
µ
1

)

=
∑

[γ,γp]∈Hp

(
B1(γ,γp) ·

(
1 +

a1

a2
· lim
k→∞

dk

dk−1

)−1
)

=
∑

[γ,γp]∈Hp

(
B1(γ,γp) ·

1
1 + a1

a2
· λ1(ρ(γ))

)

=
∑

[γ,γp]∈Hp

 B1(γ,γp)

1 + T(p,γp,γ+) · λ1(ρ(γ))
λ2(ρ(γ))

 .

(86)

Finally, we conclude that ∑
[γ,γp]∈Hp

(
B1(γ,γp)

1 + eτ(γ)+`1(γ)

)
6 1.

�

Recall the set Pp in Definition 1.19. We can write the above inequality in the
summation of the collection Pp of all boundary-parallel pairs of pants.

Theorem 5.10. Given (ρ, ξ̄) ∈ ASL3,Sg,m(R>0) and a distinguished puncture p ∈ mp.
Then

∑
{β,γ}∈Pp

 1

1 +
cosh d2(β,γ)

2

cosh d1(β,γ)

2

· e 1
2 (τ(γ,δp)+`1(γ)+τ(β,δp)+`1(β))

 6 1,(87)

where d1(β,γ) = logD1(x,γx,β+,γ+) and d2(β,γ) = logD2(x,γx,β+,γ+) and δp
is the unique simple bi-infinite geodesic on the pair of pants {β̄, γ̄} with both ends going up
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Figure 17. The embedded boundary-parallel pair of half-pants µ
is glued to µ̂ and µ ′ is glued to µ̂ ′.

p. In particular, (β, δp) and (γ, δp) are boundary-parallel half-pants. Refer to Equation
6 for τ(γ, δp) and τ(β, δp).

Proof. As in Figure 15, the gap term for the boundary-parallel pairs of pants [β,γ]
corresponds to I1 ∪ I2. Then we use the splitting technique for both I1 and I2 in
Equation (86) at the same time. Figure 17 shows the resulting Fock–Goncharov A

coordinates under (twβ · twγ)k.
Firstly, we express Pp1 corresponding to two arcs at x and γx in the left hand side
of Figure 17:

(88) Pp1 =
bkqk−1 + dkhk−1

a1bkdk
+
bkqk + dkhk
a2bkdk

for simplifying our computation. Then we have

∑
{β,γ}∈Pp

lim
k→+∞

(
hk−1

bka1P
p
1
+

qk−1

dka1P
p
1

)

=
∑

{β,γ}∈Pp

lim
k→+∞

bkqk−1+dkhk−1
a1bkdk

bkqk−1+dkhk−1
a1bkdk

+ bkqk+dkhk
a2bkdk

=
∑

{β,γ}∈Pp

lim
k→+∞

bkqk−1+dkhk−1
a1bkdk

bkqk−1+dkhk−1
a1bkdk

+ bk−1qk−1+dk−1hk−1
a2bk−1dk−1

=
∑

{β,γ}∈Pp

lim
k→+∞

1

1 + a1dk
a2dk−1

·
1+
hk−1dk−1
bk−1qk−1

1+
dkhk−1
bkqk−1

(89)
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After taking the limit, we obtain the above sum equals to∑
{β,γ}∈Pp

1

1 + a1λ1(ρ(β))
a2

·
1+ 1
D2(x,γx,β+ ,γ+)

1+D1(x,γx,β+,γ+)

=
∑

{β,γ}∈Pp

1

1 + a1λ1(ρ(β))
a2

· e−
d1(β,γ)

2 −
d2(β,γ)

2 · cosh d2(β,γ)

2

cosh d1(β,γ)

2

(90)

By Equation (76) and

D1(x,γx,β+,γ+) ·D2(x,γx,β+,γ+) =
λ1(ρ(β))

λ1(ρ(γ))
,

the above sum equals to∑
{β,γ}∈Pp

1

1 +
√
a1λ1(ρ(β))

a2

√
a1λ1(ρ(γ))

a2
· cosh d2(β,γ)

2

cosh d1(β,γ)

2

=
∑

{β,γ}∈Pp

1

1 +
cosh d2(β,γ)

2

cosh d1(β,γ)

2

· e 1
2 (τ(γ,δp)+`1(γ)+τ(β,δp)+`1(β))

.
(91)

�

In the Fuchsian locus, d1(β,γ) = d2(β,γ) and all the triple ratios equals to 1, thus
we recover the original McShane’s identity.
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6. Geodesic sparsity for convex real projective surfaces

The study of positive PGL3(R) representations is equivalent to the study of marked
convex real projective surfaces, and this geometric correspondence provides ad-
ditional tools for us to work with.

We first give some background for convex real projective surfaces, before mov-
ing onto our main goal of this chapter: to generalize the Birman-Series geodesic
sparsity theorem to the context of finite-area convex real projective surface con-
text. Our proof is fundamentally geometric topological in nature, and we adjust
our language accordingly. This complements the primarily algebraic treatment
we give in the previous chapters via Fock–Goncharov coordinates.

6.1. Convex real projective surfaces.

Definition 6.1 (convex sets). A set Ω ⊂ RP2 is called convex if the intersection of Ω
with every line in R2 is connected. Furthermore, a convex set Ω is called

• properly convex, if the closure Ω is convex and contained within the comple-
ment R2 = RP2 − RP1 of some RP1 linearly embedded in RP2;

• strictly convex, if the boundary ∂Ω of Ω contains no line segments.

Definition 6.2 (convex real projective surface). A real projective surface Σ is a
topological surface S equipped with an atlas {(U,ϕ : U→ RP2)}, with

• coordinate patches U embedded as open sets in RP2 and
• transition maps that are (restrictions of) projective linear transformations PGL3(R)

acting on RP2.
A convex real projective surface Σ = (S, {(U,ϕ)}) is the quotient of a properly convex
open subset Ω by a discrete subgroup of PGL3(R) which is isomorphic to π1(S).

Since convex sets are contractible, every convex real projective surface Σ inherits
a universal cover Ω ⊂ RP2 from its developing map. Every such Ω lies within
some copy of R2 linearly embedded in RP2.

The fact that Σ is equal to the quotient of Ω by a discrete subgroup Γ of PGL3(R)
means that there is a discrete faithful representation

ρ : π1(S)→ PGL3(R).
We refer to ρ as a monodromy representation for Σ. For any two compatible
universal covers for Σ, one can show that their respective monodromy represen-
tations must be equal, up to conjugation.

Definition 6.3 (projective equivalence). We say that two convex real projective sur-
faces Σ1 and Σ2 are projectively equivalent if, given their respective associated universal
covers Ω1,Ω2 ⊂ RP2, there is a projective linear transformation f̃ ∈ PGL3(R) such that
f maps Ω1 to Ω2. The map f descends to a map between f : Σ1 → Σ2, and we say that f
is a projective equivalence between Σ1 and Σ2.

Goldman-Choi [CG93, G90] studied the space of marked (finite area) convex real
projective structures on a smooth surface S

Conv(Σ) :=
{
(Σ, f) | f : S→ Σ is a C1 homeomorphism

}
/ ∼conv,

where (Σ1, f1) ∼conv (Σ2, f2) if and only if f2 ◦ f−1
1 is homotopy equivalent to a pro-

jective equivalence between Σ1 and Σ2. In particular, they show that the space
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Conv(Σ) of marked convex real projective structures for a closed surface S is
equivalent to the Hitchin moduli space — defined as the space of all Hitchin
PGL3(R) representations of π1(S), up to conjugation.

6.2. The geometry of convex real projective surfaces.

Definition 6.4 (Hilbert distance). Given any two distinct points x,y ∈ Ω ⊂ R2,
extend the straight line segment running between x and y to a segment running between
boundary points px,py ∈ ∂Ω, where px is closer to x and py is closer to y. We define
the Hilbert distance to be

d(x,y) := log
|x− py| · |y− px|

|y− py| · |x− px|
,

where |u − v| denotes the Euclidean length of the distance between u, v ∈ Ω ⊂ R2. The
Hilbert distance is invariant under projective linear transformations and hence descends
to a distance metric on Σ. We refer to both the metric d on Ω and the metric dΣ on Σ as
the Hilbert metric.

Every convex real projective surface Σ = Ω/ρ(π1(S)) inherits a Hilbert distance
metric dΣ from its (properly convex) universal cover Ω. In the special case when
Σ is a hyperbolic surface, its universal coverΩ is an ellipse, and the Hilbert metric
on Ω is twice the usual hyperbolic metric on Ω with respect to the Klein model.

Remark 6.5. The Hilbert metric on any convex domainΩ is, in fact, Finsler. The Finsler
metric (i.e.: the Minkowski functional) on each tangent space TxΣ is given by:

‖(x, v)‖Ω :=

(
1

|x− x+|
+

1
|x− x−|

)
|v|, where:(92)

• (x, v) ∈ TxΣ is a tangent vector,
• x+ denotes the point on ∂Ω intersected by the ray x+ tv, for t > 0
• and x− denotes the point on ∂Ω intersected by the ray x− tv, for t > 0.

Remark 6.6. The Hilbert distance may be written as the sum of two positive components:

d(x,y) = log
|x− py|

|y− py|
+ log

|y− px|

|x− px|
.(93)

Each of these two terms defines an asymmetric metric on Ω. The left term is referred to as
the Funk metric [Bus74], and the right term is referred to as the reverse Funk metric
[PT14]. These are (generally) distinct quantities, and the Funk metric is an asymmetric
metric.

Definition 6.7 (Finsler area). The Finsler area (also known as the Busemann measure)
on (Ω,dΩ) is defined as the Borel measure on Ω with density

1
Area(BdΩ(x, 1))

, where:(94)

• BdΩ(x, 1) denotes the unit Hilbert distance ball centered x,
• Area(·) denotes any a. priori chosen Lebesgue measure on Ω ⊂ Rn.
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6.3. Boundary regularity and convexity of ∂Ω. We primarily deal with convex
real projective surfaces Σ with finite area, and by the work of Marquis [Mar12],
we know that the universal cover Ω for such a surface Σ is necessarily strictly
convex and hence has C1 boundary regularity.

Definition 6.8 ([Ben01, Definitions 4.1 and 4.3] Boundary regularity and convex-
ity). Let Ω ⊂ R2 be a convex open subset of R2 ⊂ RP2 and fix an arbitrary Euclidean
metric dE on R2. We say that ∂Ω is Cα regular, for α ∈ (1, 2], if for every compact
subset K ⊂ ∂Ω, there exists a constant CK > 0 such that, for all p,q ∈ K, we have:

dE(q, Tp∂Ω) 6 CK · dE(q,p)α;(95)

and we say that ∂Ω is β-convex, for β ∈ [2,∞), if there exists a constant C > 0 such
that for all p,q ∈ ∂Ω, we have:

dE(q, Tp∂Ω) > C−1 · dE(q,p)β.(96)

When Ω covers a compact surface Σ, the boundary regularity of ∂Ω may be
extended to CαΣ regularity, for some αΣ ∈ (1, 2] [Ben01, Proposition 4.6]. Using
an argument taught to us by Benoist, we show that this is also true when Σ is a
finite area cusped convex projective surface:

Proposition 6.9 (Benoist-Hulin). The boundary ∂Ω forΩ universally covering a finite
area cusped convex projective surface Σ satisfies:

• CαΣ -regularity for αΣ ∈ (1, 2],
• and βΣ convexity for βΣ ∈ [2,∞).

Proof. The proof of this fact relies on another famous metric for convex projective
sets in R2: Yau-Cheng’s [CY77] Blaschke metric (also known as the affine metric)
for strictly convex domains. This is a negatively curved Riemannian metric on Ω.
Proposition 3.1 of [BH13] tells us that the curvature on Σ approaches a negative
constant as one heads deeper into a cusp, and hence is bounded away from 0 on
the entire surface. Combining this with [BH14, Corollary 4.7] then shows that Σ
(and henceΩ) is Gromov-hyperbolic with respect to the Hilbert metric. Hence, by
[Ben03, Corollary 1.5], the ideal boundary ∂Ω satisfies the desired CαΣ -regularity
and βΣ-convexity. �

Benoist communicated to us the proof for Lemma 6.10 below, and it is a key
estimate in our proof of the Birman-Series geodesic sparsity theorem for finite
area convex real projective surfaces.

Lemma 6.10 (Exponentially shrinking balls). Fix a point O ∈ Ω = Σ̃ and a number
R ∈ R>0. For any u ∈ Ω, let B(u,R) ⊂ Ω denote the ball of (Hilbert) radius R about
u, and for any bounded set U ⊂ R2 let diamE(U) denote the Euclidean diameter of U.
Then there exists a positive constant c = cΩ,O,R such that

diamE(B(u,R)) < ce
−d(u,O)

c .(97)

Proof. We show that for the geodesic ray {tO + (1 − t)p | 0 < t 6 1} shooting out
from O to an arbitrary boundary point p ∈ ∂Ω, there exists a constant c(p) > 0
such that for any point u along the ray,

diamE(B(u,R)) < c(p)e−
d(u,O)
c(p) .(98)
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In particular, we shall construct c(p) in such a way that c(·) is a function that
continuously varies with respect to p ∈ ∂Ω. Then, we may use the compactness
of ∂Ω to take

cΩ,O,R := max
p∈∂Ω

c(p).(99)

Let us consider the radius R ball B(u,R) based at u, where u is a point along
the geodesic ray from O to p ∈ ∂Ω. By applying an affine (Euclidean) isometry
on R2, we assume without loss of generality that p is placed at the origin in R2

and that the tangent line Tp∂Ω is the x-axis in R2. Let u = (x0,y0) with respect
to this parametrization, and let p1 and p2 respectively denote the left and right
intersection points of the line y = y0 with ∂Ω. Further let D denote the (closed)
sector of Ω below y = y0. (see Figure 18).

Figure 18. D is the shaded region below the y = y0 horizontal line.

Any complete geodesic going through u consists of two geodesic rays, at least
one of which lies in D. The Euclidean length of any such geodesic ray must then
be less than diamE(D), which is in turn less than:

diamE(D ∩ {x 6 0}) + diamE(D ∩ {x > 0}) = dE(p,p1) + dE(p,p2).(100)

Now invoking the β-convexity of ∂Ω, we see that:

dE(p,p1) + dE(p,p2) 6 2(Cy0)
1
β 6 2(C · dE(u,p))

1
β .(101)

We are now equipped to estimate the Euclidean diameter of B(u,R). The triangle
inequality tells us that diamE(B(u,R)) is at most 2 times the Euclidean length r
of the longest geodesic segment σ joining u and the boundary of B(u,R). Such
a geodesic segment lies on the unique complete geodesic in Ω joining u and
some ideal boundary point q ∈ D ∩ ∂Ω. If σ lies on the geodesic ray uq, then
Equation (93) tells us that

R > log
(

dE(u,q)
dE(u,q) − r

)
, and hence r < (1 − e−R)dE(u,q).(102)
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Similarly, if σ lies on the geodesic ray complementary to uq, then

R > log
(
dE(u,q) + r
dE(u,q)

)
, and hence r < (eR − 1)dE(u,q).(103)

Therefore, the diameter of B(u,R) is bounded above by

2r < 2(eR − 1)dE(u,q) < 2eR(dE(p,p1) + dE(p,p2)) 6 4eR(C · dE(u,p))
1
β .(104)

We substitute in the Hilbert length

d(u,O) = log
(
dE(O,p) · dE(u, p̂)
dE(u,p) · dE(O, p̂))

)
,(105)

where p̂ is the “antipodal" ideal point to p on the opposite side of O (i.e.: p, p̂ and

O are collinear). This then gives us diamE(B(u,R)) < c(p)e−
d(u,O)
c(p) , with

c(p) := max

{
β, 4eR

(
C · dE(O,p) · dE(u, p̂)

dE(O, p̂))

) 1
β

}
.(106)

Since p̂ varies continuously with respect to p, we conclude that c(·) is a continu-
ous function, as required. �

6.4. Geodesic Sparsity for finite-area convex projective surfaces. Let Σ be a
finite-area convex real projective surface, and let:

• Ik denote the collection of complete geodesics on Σ with at most k (geo-
metric) self-intersections (counted with multiplicity);

• |Ik| denote the subset of Σ consisting of every single point which lies on
(at least one) complete geodesic in the collection Ik of geodesics with at
most k self-intersections.

The goal of this subsection is to prove the following claim:

Theorem 6.11 (Geodesic sparsity). The Finsler area of |Ik| is 0 and the Hausdorff
dimension of |Ik| is 1.

When the surface Σ is hyperbolic, the above result is referred to as the Birman–
Series theorem [BS85]. They construct a descending filtration of subsets of Σ such
that:

• each subset covers |Ik|,
• each subset is a union of finitely many convex geodesic quadrilaterals,
• the number of convex quadrilaterals at the k-th level of the filtration

asymptotically grows as a polynomial in k,
• the Euclidean area of the quadrilaterals shrinks exponentially in k.

The polynomial growth in the number of quadrilaterals versus the exponential
shrinkage their area gives us the requisite Finsler area 0 conclusion. The fact that
these quadrilaterals become exponentially thin then gives the desired Hausdorff
dimension 1 conclusion.

Much of the proof is topological, and we use Birman-Series’ original arguments.
However, we introduce the following tweaks:

• insteading of encoding geodesics as segments on a single geodesically
bordered fundamental domain (such as a Ford domain), we use geodesic
triangulations (Fact 6.12). This is to avoid justifying why finitely sided
geodesic fundamental domains exist, to highlight the flexibility of the



MCSHANE IDENTITIES FOR HIGHER TEICHMÜLLER THEORY AND THE GONCHAROV-SHEN POTENTIAL53

Birman-Series construction and partially to use convexity to replace tra-
ditional hyperbolic geometric arguments (such as in Lemma 6.15).

• we require Lemma 6.10 to show that Hilbert radius R balls shrink uni-
formly exponentially as one approaches the ideal boundary.

Fact 6.12. Any finite-area strictly convex real projective surface Σ decomposes into a
finite collection of (convex) geodesic triangles {41, . . . ,4l} glued along a finite collection
of geodesic edges Γ .

For the remainder of this subsection, we fix one such collection {41, . . . ,4l} of
geodesic triangles for Σ glued along Γ as described by Fact 6.12.

6.5. Polynomial growth of the number of k-diagrams.

Definition 6.13 (k-diagrams). Let Jk denote the set of geodesic arcs on Σ which:

• start and end on Γ and/or cusps,
• have at most k self-intersections.

Further let Jk(N) denote the subset of geodesic arcs in Jk that are cut up into N geodesic
segments by Γ . Also let [Jk] denote the equivalence classes of geodesic arcs in Jk with
respect to isotopies of Σ which preserve Γ as a set. Similarly define [Jk(N)]. We refer to
the elements of [Jk] as k-diagrams and the elements of [J0] as simple diagrams.

Lemma 6.14. The cardinality of [Jk(N)] is bounded above by a polynomial Pk(N) in N.

Proof. Every k-diagram [γ] ∈ [Jk(N)] may be encoded as the ordered sequence
σ1, . . . ,σN of elements of [J0(1)] obtained from cutting [γ] along Γ . The key ob-
servation is that we do not need to retain the entire ordering of the sequence
to recover a k-diagram: any simple diagram [γ] ∈ [J0(N)] may be completely
recovered from the following data:

• the (unordered) multiset of N segments in [J0(1)] constitute [γ];
• the starting and ending segments for [γ] (including the direction of the

starting and ending segment).

This efficient encoding is used in the original proof of the Birman–Series theorem
([BS85, Lemma 2.1]).

The consequence of this encoding is that

Card[J0(N)] 6 N2 ·
(

Card[J0(1)] +N− 1
N− 1

)
=: P0(N).(107)

For general k-diagrams [γ], we need to introduce additional data to specify the
intersection loci. Since two segments may intersect at most once, the degree of
freedom introduced by this intersection data is bounded above by the number
of ways of designating at most k unordered pairs of segments to denote the
intersections out of all possible unordered pairs of segments. Therefore:

Card[Jk(N)] 6 P0(N) ·

[((N
2

)
0

)
+ . . . +

((N
2

)
k

)]
=: Pk(N).(108)

�
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6.6. Topological versus geometric length. We have so far introduced k-diagrams,
which afford us topological control over geodesics with k self-intersections. We
now show that the number of segments constituting a k-diagram is proportional
to the Hilbert length of the segment it encodes. This promotes our topological
control to geometric control.

Lemma 6.15. For any finite-area convex real projective surface Σ, there exists a positive
constant αΣ,Γ > 0 so that for any complete geodesic γ̂ with at most k self-intersections,
the length of any geodesic subarc γ ⊂ γ̂, such that γ is an element of Jk(N), grows at
least linearly in N for N large enough. That is: there exists an integer NΣ,Γ > 0 such
that the Hilbert length

`γ > αΣ,Γ ·N for all γ ∈ Jk(N), where N > NΣ,Γ .

Proof of Lemma 6.15 for compact Σ. We first prove this for compact Σ. Fix a disjoint
collection of embedded open balls Bri(xi) around every vertex xi of Γ . Let NΣ,Γ
be 3l+1 (recall here that l is the number of geodesic triangles constituting Σ) and
let αΣ,Γ > 0 be `min

2NΣ,Γ
, where `min is the length of the shortest geodesic arc in J0(1)

with end points on Γ\ ∪ Bri(xi). The fact that `min is well-defined is because the
subset of J0(1) with end points on Γ\ ∪ Bri(xi) is a compact set. To be precise:
it is the disjoint union of 3l closed (solid) rectangles. Moreover, we know that
`min > 0 because segments have starting and ending points on distinct edges and
hence cannot be of length 0.

Next observe that Γ cuts each Bri(xi) into at most 3l convex sectors. Since the
intersection of convex sets is convex and hence contractible, the intersection of
any contiguous subarc of γ with Bri(xi) may meet each sector at most once.
This means that we may have at most 3l consecutive segments of γ lying within
Bri(xi) and hence any 3l+ 1 consecutive segments on γ must have length strictly
greater than `min. This in turn gives us our choice of NΣ,Γ and αΣ,Γ when Σ is
compact. �

We now look to the situation when Σ is a (finite-area) cusped strictly convex
real projective surface. We show that geodesics with k self-intersections cannot
penetrate arbitrarily far into a cusp (unless it goes straight into the cusp), thus
effectively reducing the analysis to being on a compact subset of the surface:

Proposition 6.16 (Cuspidal collar neighborhood). Fix a finite-area (cusped) convex
real projective surface Σ and some integer k > 0. There is a compact subset K ⊂ Σ which
contains all (complete) compactly-supported geodesics on Σ which self-intersect at most k
times when counted with multiplicity.

Remark 6.17. The complement of this compact subset K in Σ consists of annular neigh-
borhoods around cusps and we refer to them as cuspidal collar neighborhoods — our
nomenclature alludes to collar neighborhoods.

Proof. Consider a length R embedded horocycle ηR bounding an annular neigh-
borhood CR of a given cusp. Now choose an even shorter horocycle ηr bounding
a smaller cuspidal annular neighborhood Cr ⊂ CR, so that the minimal distance
between ηr and ηR is at least R(k+1)

2 (this is always possible since CR is infinitely
long). We claim that no geodesic arc γ ∈ Jk enters and then exits Cr, that is: Cr
is a cuspidal collar neighborhood.
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Assume otherwise that γ enters and exits Cr. The complete geodesic extension
γ̂ is the union of two overlapping geodesic rays γ̂+ and γ̂− with overlap given
by a subarc of γ lying within Cr and with end points on ηr. In order for the ray
γ̂± to lie completely within CR, the ideal end point of any lift of γ̂± would need
to be the unique ideal boundary point of the horodisk in the universal cover of
Σ covering Cr. This in turn characterizes γ̂± as a geodesic going straight up the
cusp, and therefore hitting every horocycle at most once. This is a contradiction
as γ̂± meets Cr in two places. Therefore, both γ̂+ and γ̂− leave Cr at some point
and hence there is a geodesic subarc γ̄ of γ̂ which:

• lies completely within CR;
• has both its endpoints on ηR;
• enters and exits Cr.

Since γ̄ joins ηr and ηR along two subarcs, it has length at least R(k + 1). On the
other hand, the geodesic arc γ̄ is (endpoint-fixing) homotopy equivalent to a horo-
cyclic path along ηR which wraps around ηR at most k times (this can be shown
by unwrapping CR to a k-fold cover of CR that undoes the self-intersections of γ̄).
This in turn means that the length of γ̄ must be strictly less than R(k+1), leading
to a contradiction. Therefore, no geodesic arc γ ∈ Jk which extends to a complete
geodesic γ̂ with at most k self-intersections may enter Cr. �

We now return to the proof of Lemma 6.15, but addressing the cusped case.

Proof of Lemma 6.15 for cusped Σ. Finally, we complete our proof for the cusped
case as follows: fix a horocyclic neighborhood Cr for each cusp on Σ and take
NΣ,Γ = 1 and αΣ,Γ > 0 to be the length (in the closed interval [0,∞] rather than
R>0) of the shortest geodesic arc in J0(1) with endpoints outside of the horocyclic
regions. Again, such a length exists due to compactness and is finite. These
choices for constants clearly work because every segment on γ lies outside of Cr
and hence must be at least of length αΣ,Γ . �

6.7. Geodesic sparsity: area 0. We are now prepared to prove the geodesic spar-
sity theorem for finite-area convex projective surfaces. Fix a fundamental domain
F ⊂ Σ̃ =: Ω made up of lifts of the triangles41, . . . ,4l decomposing Σ. Represent
Ω as a subset of R2 ⊂ RP2, and let F denote the closure of F in R2. Define the
following collection of geodesic arcs

Îk := {σ = γ̃ ∩4i | for some i = 1, . . . , l and where γ̃ is a lift of γ ∈ Jk} ,

and further define |Îk| ⊂ F to be the collection of points lying on geodesic arcs σ
in Îk. Our goal is to show that |Îk|∩F has zero Finsler area. However, since Finsler
area on Ω is definitionally in the same measure class as the Lebesgue measure,
we see that we just need to show that |Îk| occupies zero Euclidean area.

Proof of Theorem 6.11 for compact Σ – area 0. We first consider the case when Σ is
compact. For each N > NΣ,Γ , we partition Îk using the fact that any geodesic arc1

σ is uniquely expressible as the middle (i.e.: (N + 1)st) segment of a lift of some
representative of [γ] ∈ Jk(2N + 1). This gives us a partition of Îk into at most
Pk(2N+ 1) sets.

1We may ignore the case when σ is a vertex of F as it does not affect the measure or the Hausdorff
dimension of |Îk|.
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We next show that the Euclidean area occupied by all the lifts of representatives
of [γ] ∈ [Jk(2N + 1)] with the middle segment in F is exponentially decreasing
in N. Consider an arbitrary lift γ of a representative of [γ] positioned so that its
middle segment is in F and let the endspoints of γ lie on F ′ and F ′′ — two deck
transformation translates of the fundamental domain F. By the unique path lifting
property, every such γ necessarily ends on the same F ′ and F ′′ pair. In particular,
this means that the union of every such representative of [γ] is contained within
the convex hull of F ′ ∪ F ′′. We know from Lemma 6.15 that both F ′ and F ′′ are at
least distance αΣ,ΓN away from F. We now use this fact to control the Euclidean
area for the convex hull of F ′ ∪ F ′′.

Let O be an arbitrary point on the interior of F. Since F̄ is compact, for some R > 0
the domain F ⊂ B(0,R). The domains F ′ and F ′′ are deck transform translates of F
and the corresponding translated points x ′ ∈ F ′ and x ′′ ∈ F ′′ of O ∈ F satisfy that
d(x ′,O),d(x ′′,O) > αΣ,ΓN. Therefore, the Euclidean diameters of F ′ and F ′′ must

both be less than ce
−αΣ,ΓN

c . This in turn means that the convex hull of F ′∪F ′′ may

be covered by an Euclidean rectangle of width ce
−αΣ,ΓN

c and length diamE(Ω).
We absorb diamE(Ω) into c and ignore it henceforth.

We next note that the convex hull of F ′∪F ′′ necessarily covers every representative
geodesic segment in [γ] ∈ [Jk(2N + 1)]. Since there are fewer than Pk(2N + 1)
homotopy classes [γ] constituting [Jk(2N + 1)] and each class is covered by a

rectangle of area ce
−αΣ,ΓN

c , this means that the set |Îk| has Euclidean area less

than Pk(2N+ 1) · ce
−αΣ,ΓN

c . Since N may be set to be arbitrarily large, this means
that |Îk| has zero Euclidean area and hence zero Finsler area. Finally observe that
|Îk| is the lift of |Ik| to F (except for perhaps finitely many closed geodesics lying
completely on Γ ) and hence |Ik| ∩ F has zero Finsler area. �

Proof of Theorem 6.11 for cusped Σ – area 0. We now turn to the case when Σ is non-
compact, that is: we are dealing with a cusped convex real projective surface.
Given a geodesic segment σ ∈ Îk, when we try to geodesically extend σ using
deck transform translates of segments in Îk, one of the following three things
occurs:

(1) σ can be extended by N segments in both directions, this produces a
geodesic arc in Jk(2N+ 1);

(2) σ can be extended by N segments in one direction and hits a cusp in the
other direction, this produces an arc in Jk(M), for M 6 2N;

(3) σ cannot be extended by N segments in either direction and hits a cusp in
the both directions, this produces an arc in Jk(M), for M 6 2N− 1;

This behavioral classification allows us to partition Îk into the following three
classes of objects:

(1) σ is the middle (i.e.: (N + 1)st) segment of a lift of some representative of
[γ] ∈ Jk(2N+ 1);

(2) σ is a segment of a lift of some representative γ of [γ] ∈ Jk(M), for M 6
2N, where γ is a geodesic ray (i.e.: one of the ends of γ is a cuspidal ideal
point) and σ is the ith segment, for 1 6 i 6M−(N+ 1), indexed from the
cuspidal end;
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(3) σ is a segment of a lift of the unique representative γ of [γ] ∈ Jk(M), for
M 6 2N−1, where γ is a bi-infinite geodesic (i.e.: both end points of γ are
cuspidal ideal points) and σ has index (strictly) less than N + 1 indexed
from both ends of γ.

Case 1 is identical to the previous compact Σ analysis, and each homotopy class

[γ] may be covered by a Euclidean rectangle of Euclidean area ce
−αΣ,ΓN

c . For
Case 2, note that one end of γ is a single cuspidal ideal point on ∂Ω, and there-

fore [γ] may be covered by a Euclidean trapezium with area less than ce
−αΣ,ΓN

c .
Case 3 concerns bi-infinite geodesics joining two cuspidal ideal points and may be
covered by a single line. This means that |Îk| may be covered by a finite collection
of quadrilaterals (and lines) of total area less than

ce
−αΣ,ΓN

c (Pk(2N+ 1) + Pk(2N) + . . . + Pk(1)) < ce
−αΣ,ΓN

c ·N · Pk(2N+ 1).(109)

Once again, by taking N to be arbitrarily large, we see that the Euclidean area of
|Îk| is zero and hence Finsler area of |Ik| is zero. �

6.8. Geodesic sparsity: Hausdorff dimension 1. Finally, we show that |Ik|, or
equivalently Îk, has Hausdorff dimension 1.

Proof of Theorem 6.11 – Hausdorff dimension 1. ConsiderΩ equipped with the Hilbert
(Finsler) metric d in comparison with Ω endowed with the Euclidean metric dE
(but regarded as a Finsler manifold). The Finsler metric for (Ω,d) is a C1 rescal-
ing of the “Finsler metric" for (Ω,dE) due to the dependence on the boundary
smoothness (which we know is at least C1). This means that, for any (possibly
non-compact) subset K of a compact subset ofΩ, the identity map between (Ω,d)
and (Ω,dE) restricts to a bi-Lipschitz map between (K,d) and (K,dE). Combined
with the fact that Hausdorff dimension is preserved under bi-Lipschitz maps,
this means that when Σ (and hence F) is compact the Hausdorff dimension of
(|Ik|,d) and (|Îk|,dE) are the same. Combined with the further fact that the Haus-
dorff dimension is preserved with respect to taking countable unions of sets with
the same Hausdorff dimension, the equivalence in Hausdorff dimension between
(|Ik|,d) and (|Îk|,dE) is true when Σ is cusped.

We have reduced our Hausdorff dimension derivation problem to that of (|Ik|,dE).
We first show that the (1 + ε)-dimensional Hausdorff content of (|Ik|,dE) is 0
for every ε > 0. Recall from earlier in this proof that for every N > NΣ,Γ ,
there we may cover|Ik| with fewer than N · Pk(2N + 1) Euclidean rectangles of

length diamE(Ω) and width ce
−αΣ,ΓN

c . Each such rectangle may be covered by⌈
diamE(Ω)

ce
−αΣ,ΓN

c

⌉
Euclidean balls of radius 3

2ce
−αΣ,ΓN

c . The (1 + ε)-dimensional Haus-

dorff content of (|Îk|,dE) is 0, because:

lim
N→∞N · Pk(2N+ 1) ·

⌈
diamE(Ω)

ce
−αΣ,ΓN

c

⌉
·
(

3
2
ce

−αΣ,ΓN
c

)1+ε

= 0.(110)

This means that the Hausdorff dimension of (|Ik|,d) is at most 1. On the other
hand, since |Ik| contains geodesic arcs, it necessarily has Hausdorff dimension at
least 1. �
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7. McShane identities for convex projective surfaces and applications

We are now well-placed to prove our McShane identity for finite-area convex pro-
jective surfaces. We first consider a half-pants summation version of the McShane
identity coming from Proposition 4.4 combined with Equation (3.7) of [Hua14].

7.1. McShane identity for finite-area convex projective surfaces.

Theorem 7.1. Let ρ : π1(Sg,m)→ PGL3(R) be a positive representation with unipotent
boundary monodromy and let p be a distinguished cusp on Sg,m. Then,∑

(γ,γp)∈Hp

B1(γ,γp)
1 + e`1(γ)+τ(γ,γp)

= 1.(111)

Proof. We begin with an overview of the general strategy for proving McShane’s
identity in the hyperbolic case. For our arguments we fix an arbitrary point
(ρ, ξ̄) ∈ ASLn,Sg,m(R>0) with ξ = π ◦ ξ̄.

(1) decomposing the length 1 horocycle η based at cusp p into a countable
collection of open horocylic intervals referred to as gaps, as well as a com-
plementary set consisting of a Cantor set and a countable set;

(2) observing that the Birman-Series geodesic sparsity theorem ensures that
the latter complementary set is measure 0;

(3) computing the horocyclic length measure of each gap interval in the for-
mer collection via the position of two ideal boundary points (which we
denote by q0 and q1) of the two complete geodesics respectively connect-
ing p and the two end points of the given horocyclic gap interval (see
Figure 19));

(4) summing the measures of these gaps gives the measure of the total horo-
cycle (i.e.: length 1). Using the fact that the horocyclic gaps are in 2 to 1
correspondence with pairs of half-pants containing cusp p, we index our
McShane identity over Hp.

Figure 19. The lighter grey lines specify a C1 identification be-
tween η̃ and ∂Ω− {p̃}.

The strategy of proof for convex projective surfaces is essentially the same, but
with the following adjustments for each step:

(1) instead of decomposing the length of η, we induce a C1 measure on η ob-
tained by representation theoretically interpreting Goncharov-Shen (par-
tial) potentials as a Goncharov-Shen potential measure;



MCSHANE IDENTITIES FOR HIGHER TEICHMÜLLER THEORY AND THE GONCHAROV-SHEN POTENTIAL59

(2) we use our generalization of the Birman-Series theorem (Theorem 6.11)
to ensure that the gap-complement set has measure 0, with respect to the
aforementioned Goncharov–Shen potential measure;

(3) we compute the Goncharov–Shen potential measure for each of these gaps
in Section 5 using the data of sequences of flags;

(4) this step remains largely unchanged, but it is worth noting that the two
summands associated to each pair of half-pants are generally not equal, in
contrast with what occurs in the hyperbolic case. The richness of convex
real projective structures forces this symmetry-breaking. We resolve this
by replacing Hp with the 2 : 1 covering set Hp (Definition 1.16).

We now go through each of these steps, furnishing the necessary details.

Step 1. Let p̃ ∈ ∂Ω be a lift of the cusp p such that ξρ(p̃) = ξ(p) and the decorated
flag 2 Xp̃ = ξ̄(p) is used to define the A-coordinates for ρ. Now let q0 ∈ ∂Ω be an
arbitrarily chosen ideal point distinct from p̃ and let q1 ∈ ∂Ω be the point on ∂Ω
obtained from translating q0 by a single iteration of the monodromy matrix action
of the loop around p. We know from Fact 4.1 that there is a unique unipotent
matrix M that takes (Xp̃, ξρ(q0)) to (Xp̃, ξρ(q1)). When expressed with respect to
any basis for Xp̃, the matrix M takes the form:

M :=

 1 P2 ∗
0 1 P1
0 0 1

 .(112)

More generally, let M(t) denote the path of unipotent matrices

M(t) :=

 1 m12(t) m13(t)
0 1 tP1
0 0 1

 ,(113)

such that the parametrized path M(t) · q0 traces out the interval [q0,q1] on ∂Ω
in such a way that M(t) takes the tangent space Tq0∂Ω to TM(t)·q0∂Ω. Let η be
the length 1 horocycle based at p, and consider the homemorphism between the
lifted horocycle η̃ based at p̃ and the boundary ∂Ω given by geodesic projection
from p̃ (see Figure 19).

This lets us pullback the M(t) · q0 parametrization of ∂Ω − {p̃} onto η. Notice
that this is a C1 reparametrization of η (with respect to horocyclic length) because
∂Ω is C1-smooth. However, the t ∈ [0, 1] parameter precisely parametrizes the
length of partial potentials (divided by P1) and therefore this C1 reparametrized
length of η induces a Goncharov–Shen measure on η in the same measure class as
horocyclic length. We decompose this probability measure to obtain McShane’s
identity.

As a final part of the first step, we show that η naturally decomposes into a
countable union of open sets, a Cantor set C and well as a countable set A. The
structure of this decomposition is well-understood in the Fuchsian case ([McS91,
McS98, Mir07a, Hua18]), and induces a topological partition of ∂∞π1(S)\{p̃} via
identification with a horocycle lift η̃ based at p̃. Since ∂∞π1(S) ∼= ∂Ω is indepen-
dant of the geometric structure Σ imposes on S, this decomposition applies also
to horocycles on convex projective surfaces. In particular, the interpretation of

2In fact, any decorated flag over ξρ(p̃) suffices.
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A ∪ C as the collection of points on η which lie on simple (possibly non-closed)
geodesics still applies.

Step 2. We showed in Theorem 6.11 that the set of simple geodesics occupies zero
area on Σ. This implies that the set of points on an annular neighborhood of η
which lie on simple geodesics occupies zero area. Since the annular neighborhood
of takes the form of a product of η×(−ε, ε) and the Finsler area of Σ is in the same
measure class as the product measure on this annular neighborhood, this tells us
that A ∪ C occupies horocyclic length measure on η. Since the Goncharov–Shen
potential measure on η is equal to the horocyclic length measure weighted by a
C1 function, the contribution of A ∪ C to the Goncharov–Shen potential measure
must be 0. This allows us to carry out Step 4 as per usual.

Step 3. We make the observation that the gap Goncharov–Shen potential measure
computed in Section 5 depends purely on the geometry of the pair of half-pants
(γ,γp) bounding the horocyclic gap. Therefore, the gap has measure:

B1(γ,γp)
1 + e`1(γ)+τ(γ,γp)

.(114)

Step 4. As noted previously in step 2, the complement of the gap intervals on η
contribute zero measure to the Goncharov–Shen potential measure, and thus the
sum of the measures of all the gap intervals comes to 1. In [McS91], we see that
there is a 4 : 1 correspondence between the collection of such gap intervals and
the set of (unoriented) bi-infinite ideal geodesics with both ends up p. Two of
these intervals lie on each of the two pairs of half-pants lying on each side of the
aforementioned ideal geodesic (Figure 15), which creates a 2 : 1 correspondence
between the gaps and the collection of half-pants on Σ based at p. Finally, intro-
ducing orientation on the boundaries of half-pants gives us the bijection between
the set of gaps and Hp. �

7.2. Simple spectral discreteness.

Definition 7.2 (simple spectra). Let Σ be a finite-area convex projective surface Σ with
monodromy representation ρ : π1(S) → PGLn(R), and let C(S) denote the collection of
oriented simple closed geodesics on S. We define the following spectra:

(1) the simple `i-spectrum:{
`ρi (γ) | γ ∈ C(S)

}
,

(2) the simple largest-eigenvalue spectrum:{
λ1(ρ(γ)) | γ ∈ C(S)

}
,

(3) and the simple (Hilbert) length spectrum:{
`ρ(γ) | γ ∈ C(S)

}
.

Note here that each spectra is (possibly) a multiset, that is: repeated values coming from
distinct simple closed geodesics are counted as distinct elements in the spectrum.

Our goal in this subsection is to prove that the above simple spectra are discrete
for any finite-area convex projective surface Σ. Our proof relies on the McShane
identity (Theorem 7.1). Let Hp(γ) denote the subset of Hp consisting of all half-
pants with γ as its oriented cuff.
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Lemma 7.3. Given a positive representation ρ with unipotent boundary monodromy
around p, there is a universal constant bρ > 0 such that for every oriented simple closed
curve γ ∈ C(S), there exists an embedded pair of half-pants (γ,γp) ∈ Hp(γ) such that:

Bρ1 (γ,γp) > bρ.(115)

Proof. Much like the proof of the boundedness of triple ratios (Theorem 1.5), we
rely on a compactness argument. Fix an arbitrarily chosen cusped hyperbolic
surface Σ with topological type S. The length 1 horocycle ηp around cusp p
separates Σ into two connected components: an (open) annular cuspidal neigh-
borhood Cp ⊂ Σ as well as a (closed) homotopy retract Σ(p) := Σ − Cp. Also let
Σ>1 ⊂ Σ(p) ⊂ Σ denote the compact subsurface of Σ obtained from truncating
every cusp of Σ at its length 1 horocycle.

Consider the following subset of the unit tangent bundle T 1Σ:

Ξ :=

(x, v) ∈ T 1Σ

x is a point lying in Σ>1 and the geodesic ray σ(x,v)
shooting out from x with initial vector v is simple,
approaches the cusp p, and the arc σ(x,v) ∩ Σ>1

realizes the distance between x and ηp

 .

(116)

We now show that Ξ is a closed subset of the restricted unit tangent bundle T 1Σ>1

of T 1Σ to Σ>1, and is hence compact. Consider a sequence {(xn, vn) ∈ Ξ} which
converges to a point (x∞, v∞). Since Σ>1 is a closed subset of Σ, the limiting
base point x∞ must lie on Σ>1. Next, to show that the geodesic ray σ(x∞,v∞)
approaches the cusp p, choose a fundamental domain F for Σ containing a lift
x̃∞ of x∞ in the interior. The lifts to F of a sufficiently high subscript tail of the
sequence {(xn, vn)} necessarily all induce rays which shoot into the same lift p̃
of the cusp p, and hence σ(x∞,v∞) also shoots into p. Finally observe that the
distance realization property stated for Ξ is also a closed condition, and hence Ξ
is a compact set.

Now, since σ(x,v) shoots into cusp p, the corresponding subset to Ξ in

Tri(S) ∼= Tri(Σ) ∼= T 1Σ

is a compact subset with every point of the form [p̃,b, c]S, where p̃ is a lift of
p. In particular, this means that the (strictly) positive function Bρ1 (·) given in
Definition 4.13 is well-defined and continuous on a compact set and achieves its
minimum. We denote this minimum by bρ > 0.

Now, given an arbitrary oriented (essential) simple closed curve γ ∈ C(S), let γ
denote its geodesic realization on Σ. Further let x0 ∈ γ be the point on γ closest
to ηp, let σ be one of the geodesic arcs realizing the distance between x0 and ηp,
and let v0 denote the initial vector of σ. By construction, the geodesic ray σ(x0,v0)

contains σ. Since σ is a distance minimizing arc, it must meet ηp perpendicularly
and hence σ(x0.v0) shoot up straight into cusp p after passing ηp. Moreover, the
arc σ must also be simple (so as to be distance minimizing), and hence σ(x0,v0)

is the concatenation of σ and a simple geodesic ray which lies in Cp (and hence
cannot intersect σ) and is thus simple. Therefore, we see that (x0, v0) ∈ Ξ. We
denote its corresponding point in Tri(S) by [p̃,b0, c0]S. Let (γ̄, γ̄p) ∈ Hp denote
the unique embedded pair of half pants on S containing γ̄ ∪ σ(x0,v0) (Figure 20).
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Figure 20. The pair of half-pants (γ̄, γ̄p) is the unique embedded
pair of half-pants that contains γ̄ and σ(x0, v0) ⊃ σ.

We also know that σ is perpendicular to γ, and by possibly replacing p̃ with a
different lift of p, the point b0 must be of one of the two fixed points of ρ(γ). This
in turn means that Bρ1 (γ,γp) > Bρ1 ([p̃,b0, c0]S) > bρ, thereby demonstrating the
desired lower bound. �

Theorem 7.4. Let ρ : π1(S) → PGL3(R) be a positive representation with unipotent
boundary monodromy. Then the simple `i-spectrum, the simple largest eigenvalue spec-
trum and the simple length spectrum for ρ are all discrete.

Proof. We begin by rearranging the inequality (Theorem 5.9) given by McShane’s
identity to obtain the following expression:

∑
γ∈C(S)

∑
(γ,γp)∈Hp(γ)

B(γ,γp)
1 + e`1(γ)+τ(γ,γp)

6 1.(117)

Invoking Theorem 3.4 to assert that there exists some τSmax such that τ(γ,γp) 6
τSmax, we obtain:

∑
γ∈C(S)

 1
1 + e`1(γ)+τSmax

∑
(γ,γp)∈Hp(γ)

B(γ,γp)

 6 1(118)

Further invoking Lemma 7.3 to uniformly bound∑
(γ,γp)∈Hp(γ)

B1(γ,γp) > sup
(γ,γp)∈Hp(γ)

B(γ,γp) > bρ.(119)

Hence: ∑
γ∈C(S)

bρ

1 + e`1(γ)+τSmax
61.(120)



MCSHANE IDENTITIES FOR HIGHER TEICHMÜLLER THEORY AND THE GONCHAROV-SHEN POTENTIAL63

This suffices to ensure the discreteness of the simple `1-spectrum, which is in turn
equivalent to the discreteness of the simple `2-spectrum because

e`1(γ) =
λ1(ρ(γ))

λ2(ρ(γ))
=
λ2(ρ(γ

−1))

λ3(ρ(γ−1))
= e`2(γ

−1).

Furthermore, the fact that
λ1

λ2
<
λ1

λ2
· 1
λ3

= λ2
1

then ensures that the simple largest-eigenvalue spectrum is also discrete; the fact
that the Hilbert length of a geodesic γ satisfies

`(γ̄) = `(γ) = `1(γ) + `1(γ
−1)

then suffices to ensure that the simple length spectrum is also discrete. �

7.3. The collar lemma. As a first application of our McShane identity, we estab-
lish a collar lemma. This is, in some sense, slghtly premature as we also require
our McShane identity for convex real projective 1-holed tori, which is established
in Section 8. Note also that we do not need the full force of the McShane identity,
and only require the inequality.

Lemma 7.5. Consider an arbitrary finite-area marked cusped convex projective 1-cusped
torus Σ1,1 with monodromy representation ρ. For distinct (oriented) simple closed geodesics
β,γ ∈ C(Σ1,1), let

u1 = T(β)λ1(ρ(β))
λ2(ρ(β))

, u2 = T(β−1)λ1(ρ(β
−1))

λ2(ρ(β−1))
,

u3 = T(γ)λ1(ρ(γ))
λ2(ρ(γ))

, u4 = T(γ−1)λ1(ρ(γ
−1))

λ2(ρ(γ−1))
.

Then, for any configuration of {i, j,k, l} = {1, 2, 3, 4}, we have:(
(uiuj)

1
2 − 1

)
·
(
(ukul)

1
2 − 1

)
> 4.(121)

Proof. By Theorem 5.2, we have:
4∑
s=1

1
1 + us

<
∑
δ∈C1,1

1

1 + T(δ)λ1(ρ(δ))
λ2(ρ(δ))

6 1.(122)

Multiplying both sides by
∏

(1 + us)
−1 and rearranging the resulting terms, we

obtain:

3 + 2
4∑
i=s

us +
∑
s<t

usut <

4∏
s=1

us.(123)

Further adding (1 − uiuj − ukul) to both sides, we get:

(2 + ui + uj)(2 + uk + ul) < (1 − uiuj)(1 − ukul).(124)

By the algebraic mean-geometric mean inequality, we obtain:

(2 + 2(uiuj)
1
2 )(2 + 2(ukul)

1
2 ) < (1 − uiuj)(1 − ukul),(125)

and hence: (
(uiuj)

1
2 − 1

)
·
(
(ukul)

1
2 − 1

)
> 4.(126)

�
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Recall that for an oriented curve β, we use β̄ to denote the same curve without
orientation.

Proposition 7.6. Given any finite area convex projective structure Σ on S1,1, the Hilbert
lengths of any two distinct unoriented simple closed geodesics β̄ and γ̄ satisfy the follow-
ing inequality:

(e
1
2 `(β̄) − 1)(e

1
2 `(γ̄) − 1) > 4.(127)

Proof. The finite area condition means that Σ either has unipotent or loxodromic
boundary monodromy. We first consider the unipotent case. Recall from Equa-
tion (76) that

T(δ) = T(p̃, δp̃, δ+) = lim
k→∞ a1bk−1ck

a2ck−1bk
= a1
a2
λ2(ρ(δ)), and

T(δ−1) = T(p̃, δ−1p̃, δ−) = lim
k→−∞ a2ck−1bk

a1bk−1ck
= a2
a1
λ2(ρ(δ

−1)).

Thus

T(p, δp, δ+) · T(p, δ−1p, δ−) = 1.(128)

This means that the product terms u1u2 and u3u4 satisfy

u1u2 = λ1(ρ(β))
λ3(ρ(β))

= e`(β̄) and u3u4 = λ1(ρ(γ))
λ3(ρ(γ))

= e`(γ̄),

and hence we obtain Equation (127) as desired.

We now turn to the case where the boundary monodromy of Σ is loxodromic. For
any simple closed geodesic δ on Σ, let µδ1 ,µδ2 ∈ Hα denote two boundary-parallel
pairs of half-pants which have δ as its oriented cuff such that their underlying
half-pants are distinct. Recall Definition 8.10, we have

(129) R1(µ
δ
1 ) + R2(µ

δ
2 ) = 1.

We consider two gap terms in Theorem 8.17 associated to one pair of half-pants.
We require the following fact:

XY > 1⇒ (1 + X2)−1 + (1 + Y2)−1 > 2(1 + XY)−1.(130)

By taking X = e−R1(µ
δ
i )L+`1(δ)+τ(δ) and Y = eR1(µ

δ
i )L+`1(δ

−1)+τ(δ−1), we obtain:

2R1(µ
δ
i )

1 + e
1
2 `(δ̄)

<
R1(µ

δ
i )e

R1(µ
δ
i )L

eR1(µδi )L + e`1(δ)+τ(δ)
+

R1(µ
δ
i )e

−R1(µ
δ
i )L

e−R1(µδi )L + e`1(δ−1)+τ(δ−1)
.(131)

The above inequality in turn leads to the following comparison: for L > 0,

2R1(µ
δ
i )L

1 + e
1
2 `(δ̄)

< log

(
eR1(µ

δ
i )L + e`1(δ)+τ(δ)

1 + e`1(δ)+τ(δ)

)
+ log

(
1 + e`1(δ

−1)+τ(δ−1)

e−R1(µδi )L + e`1(δ−1)+τ(δ−1)

)
.

(132)

To see this, note that Equation (132) is an obvious equality when L = 0 and its
derivative with respect to L satisfies Equation (131) for L > 0. Further replacing L
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with the simple root length `1(α) of the boundary α of Σ, we see that:

2R1(µ
δ
i )

1 + e
1
2 `(δ̄)

<
1

`1(α)
log

(
eR1(µ

δ
i )`1(α) + e`1(δ)+τ(δ)

1 + e`1(δ)+τ(δ)

)
(133)

+
1

`1(α)
log

(
1 + e`1(δ

−1)+τ(δ−1)

e−R1(µδi )`1(α) + e`1(δ−1)+τ(δ−1)

)
.(134)

There is one inequality of the same form as Equation (133) for each choice of
δ = β,γ and i = 1 or 2. This makes a total of four such inequalities, and hence
eight right-hand side terms. Crucially, these eight terms are distinct summands
of the McShane identity for convex real projective 1-holed tori (Theorem 1.28),
and hence:

2R1(µ
β
1 )

1 + e
1
2 `(β̄)

+
2R1(µ

β
2 )

1 + e
1
2 `(β̄)

+
2R1(µ

γ
1 )

1 + e
1
2 `(γ̄)

+
2R1(µ

γ
2 )

1 + e
1
2 `(γ̄)

< 1.

By Equation (129), we then obtain

2

1 + e
1
2 `(β̄)

+
2

1 + e
1
2 `(γ̄)

< 1,

which rearranges to give Equation (127) as desired. �

Theorem 7.7 (Collar lemma). Given any finite-area convex projective surface Σ, any
two intersecting simple closed geodesics β,γ satisfy the following inequality:

(e
1
2 `(β̄) − 1)(e

1
2 `(γ̄) − 1) > 4.(135)

Proof. We first note that Proposition 7.6, coupled with the fact that the Hilbert
length `(δ̄) of a curve δ is equal to

`(δ̄) = `(δ) = `1(δ) + `2(δ),

tells us that Equation (135) is true if the convex hull of β ∪ γ is a 1-holed torus.
Furthermore, whenever the convex-hull of β∪γ is a 4-holed sphere Σ0,4, then Σ0,4
is the quotient of a 4-holed torus Σ1,4 with respect to the action of an isometric
involution (see Figure 21):
The curve β lifts to two simple connected geodesics β1,β2 in Σ1,4, each of length
equal to β. Likewise, the curve γ also lifts to γ1 and γ2. The convex hull of β1∪γ1
is a 1-holed torus, and hence we once again obtain Equation (135).

The above cases cover all possibilities where there are two or fewer (geometric)
intersection points between β and γ. We now turn to the case when there are at
least three intersections. Let us assume without loss of generality that β is shorter
than or equal to γ. We also assume that the intersection points β ∩ γ are generic,
our arguments still apply when there are non-generic intersection points with the
small caveat that some of the geodesic segments we concatenate may be of length
zero.

Consider the now the geodesic subarcs {σ} on γ with ends in β ∩ γ, but not
interior points. Note that this collection of subarcs may be bipartitioned into
those whose endpoint tangent directions point to the same side of β (left hand
side of Figure 22) and those whose endpoint directions point to opposite sides
(right hand side of Figure 22). We refer to the former as a type-A arc and the latter
as a type-B arc.
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Figure 21. The left 4-holed torus double covers the right 4-holed
sphere, with identification given by π-rotation about the central
vertical axis. The curves β1,γ1 respectively cover β,γ precisely
once and the convex hull of β1 ∪ γ1 is a 1-holed torus.

Figure 22. A type-A arc (left) versus a type-B arc (right).

Case 1: ∃ type-A arc σ on γ of length `(σ̄) 6 1
2 `(γ̄). Join the two ends of σ

with the shorter of the two subarcs of β traversing between the endpoints of σ.
The resulting concatenated broken geodesic shortens to a unique simple closed
geodesic γ ′ which intersects β precisely once. The Hilbert length of γ ′ satisfies:

`(γ ′) 6 1
2 (`(β̄) + `(γ̄)) 6 `(γ̄),

and the convex hull of β ∪ γ ′ is a 1-holed torus. Therefore:

(e
1
2 `(β̄) − 1)(e

1
2 `(γ̄) − 1) > (e

1
2 `(β̄) − 1)(e

1
2 `(γ

′) − 1) > 4,(136)

as desired.

Case 2: no type-A arcs on γ. Let N denote the number of intersection points
in β ∩ γ (non-generic intersection points are counted with multiplicity). The no
type-A arcs condition forces N to be even. Hence, there are N > 4 type-B arcs
σ1, . . . ,σN which concatenate to form γ. Consider the N geodesic arcs of the form
σi ∗ σi+1 (and σN ∗ σ1) obtained from concatenating consecutive type-B arcs. The
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total sum of the lengths of these concatenated arcs is 2`(γ̄), and the pigeonhole
principle tells us that at least one has length shorter than 2`(γ̄)

N
6 `(γ̄)

2 .

Let σ denote one such `(γ̄)
2 -short concatenated arc and consider the closed broken

geodesic formed by joining the endpoints of σ with the shorter of the two arcs on
β adjoining the endpoints of σ, and denote its geodesic representative by γ ′. The
curve γ ′ is either simple or may have one self-intersection. In the former case, we
have two simple closed geodesics β and γ ′ with geometric intersection number
equal to 2 but algebraic intersection number equal to 0. Hence β ∪ γ ′ lies on a
4-holed sphere, and we once again obtain Equation (136). In the latter case, the
convex hull of γ ′ is a pair of pants. and precisely one of the two ways of resolving
the intersection point on γ ′ produces an essential simple closed geodesic γ ′′ (see
Figure 23). In particular, since Hilbert length is a distance metric, the triangle
inequality ensures that resolving crossings results in shorter rectifiable curves
with even shorter geodesic representatives. Thus, we replace γ ′ with γ ′′, and
wind up with the former case.

In either of the two cases as in Figure 23,

Figure 23. An example of the how the arc σ (left) is used to
produce curves γ ′ (center) and γ ′′ (right).

Case 3: ∃ type-A arc b on γ of length `(b̄) > 1
2 `(γ̄). Our argument here is similar

to Case 2. Let N again denote the number of intersection points β∩γ. By assum-
ing disjointness from Case 1, we may assume without loss of generality that there
are N − 1 consecutive type-B arcs σ1, . . . ,σN−1 which, along with b, concatenate
to form γ. The sum of the length of the following list of N concatenated arcs

σ1 ∗ σ2, . . . ,σi ∗ σi+1, . . . ,σN−2 ∗ σN−1,σN−1 ∗ b,b ∗ σ1

is equal to 2`(γ̄). By the pigeonhole principle, there must be at least one concate-
nated arc of the form σ = σk ∗ σk+1 of length shorter than

2`(γ̄) − `(σ̄N−1 ∗ b̄) − `(b̄) ∗ σ̄1)

N− 2
<

2`(γ̄) − 2`(b̄)
N− 2

<
`(γ̄)

N− 2
.

If N > 3, the above inequality ensures that `(σ̄) < `(γ̄)
2 . If N = 3, then σ must

be σ1 ∗ σ2, and is the complementary arc to b̄. Hence σ is again of length less
than `(γ̄)

2 . We may now run the latter half of the argument for Case 3 to obtain
equation (135). �
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Remark 7.8. Multiply both sides of Equation (135) by (4e
`(β̄)

4 e
`(γ̄)

4 )−1 and we obtain

sinh
( 1

4 `(β̄)
)
· sinh

( 1
4 `(γ̄)

)
> e−

`(β̄)+`(γ̄)
4 .(137)

Our choice of convention for Hilbert length is double hyperbolic length, and therefore our
inequality is weaker than the “sharp" inequality described in [LZ17, Conjecture 3.8].

7.4. Thurston-type ratio metrics. Thurston showed in [Thu98, Theorem 3.1] that
it is impossible for the simple marked length spectrum of one hyperbolic struc-
ture on a closed surface S to dominate that of another. This non-domination
ensures that Thurston’s simple length ratio metric on Teich(S) is positive.

Non-domination breaks down for bordered hyperbolic surfaces, and it is possible
to map from a bordered surface to one where every geodesic is shorter [PT10].
The way that Papadopoulous and Théret resolve this issue is to introduce ortho-
geodesic arcs into the collection of objects that one takes length ratios over. We
show using McShane identities that the naïve length ratio metric suffices provided
that one fixes all boundary lengths.

Theorem 7.9. Given marked hyperbolic surfaces Σ1,Σ2 ∈ Teichg,m(L1, . . . ,Lm) with
fixed boundary lengths L1, . . . ,Ln > 0. Then the marked simple geodesic spectrum for Σ1
dominates the marked simple geodesic spectrum Σ2 if and only if Σ1 = Σ2.

Proof. Assume without loss of generality that the simple length spectrum of Σ1
dominates that of Σ2. We first consider the case where at least one of the bound-
aries Li is strictly greater than 0. The summands in the McShane identities for
bordered surface [Mir07a, TWZ06] have summands which are strictly decreasing
with respect to increasing the lengths of (interior) simple closed geodesics. Since
the simple length spectrum of Σ1 dominates that of Σ2, this forces each pair of
corresponding summands in the McShane identities for Σ1 and Σ2 to be equal.
This forces the length of multicurves `Σ1(β)+ `Σ1(γ) to be equal to `Σ2(β)+ `Σ2(γ),
and domination then tells us that

`Σ1(β) = `Σ2(β) and `Σ1(γ) = `Σ2(γ).

Therefore, the marked simple length spectra for Σ1 and Σ2 are equal and Σ1 = Σ2.

The remaining case is where every boundary is length 0 is classically due to
Thurston [Thu98], but can also be demonstrated by applying the same arguments
to McShane’s identities for cusped surfaces [McS98]. �

The above non-domination result immediately implies the following:

Corollary 7.10 (Thurston metric for bordered surfaces). The non-negative real func-
tion d : Teichg,m(L1, . . . ,Lm)× Teichg,m(L1, . . . ,Lm)→ R>0 defined by

dTh(Σ1,Σ2) := log sup
γ̄∈C(Sg,m)

`Σ2(γ̄)

`Σ1(γ̄)
,(138)

is a mapping class group invariant asymmetric Thurston-type length ratio metric on the
Teichmüller space Teichg,m(L1, . . . ,Lm) of surfaces with fixed boundary lengths L1, . . . ,Lm.

For any (3-)Fuchsian representation ρ, Tholozan [Tho17] showed that it is always
possible to find a (marked) convex projective surface whose simple Hilbert length
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spectrum dominates that of ρ. Thus, the naïve length ratio expression for the
Thurston metric, when extended to the space

Conv∗1,1 := {Σ ∈ Conv(S1,1) | Σ has unipotent boundary monodromy}

of cusped convex real project tori, results in a function which may be negative.
To deal with this, we reverse engineer our McShane identities-based proof for the
non-negativity of the length ratio metric (Theorem 7.9) and propose the following
candidate for a metric on Conv∗1,1:

dGap(Σ1,Σ2) := log sup
γ∈C1,1

(
log(1 + e`

Σ2
1 (γ)+τΣ2(γ))

log(1 + e`
Σ1
1 (γ)+τΣ1(γ))

)
(139)

To show that this is a well-defined function, we use the following comparison:

Theorem 7.11 ([Ben01, Corollary 5.3] Hilbert vs. simple root length comparison).
For any positive representation ρ : π1(S) → PGL3(R), there exists Kρ > 1 such that for
every simple closed curve γ on S, we have:

`1(γ) < `(γ̄) < Kρ · `1(γ).(140)

Remark 7.12. Although [Ben01, Corollary 5.3] is stated for compact surfaces, we be-
lieve that Benoist’s proof combined with Proposition 6.9 suffices to extend this result to
finite-area convex real projective surfaces. As an added insurance, we provide a proof in
Appendix A.

Proposition 7.13. The gap metric dGap is well-defined.

Proof. We need to show that the supremum in (139) is bounded. If the supre-
mum is realized by some simple geodesic γ, then obviously the gap metric is
well-defined. If not, then there is a sequence of distinct geodesics {γk} for which
the expression in (139) tends to the supremum. Then, by the discreteness of the
simple length spectrum (Theorem 7.4) and the uniform boundedness of triple ra-
tios (Theorem 3.4), showing that the supremum exists is equivalent the existence
of the following supremum:

sup
γ∈C1,1

`Σ2
1 (γ)

`Σ1
1 (γ)

6 KΣ1 · sup
γ∈C1,1

`Σ2(γ̄)

`Σ1(γ̄)
,(141)

where the KΣ1 in the right hand side is the coefficient in Theorem 7.11. However,
we know from [Thu16, Theorem 2] that the Hilbert lengths `Σ1(·) and `Σ2(·) ex-
tend continuously to the space of (compactly supported) measured laminations
on S1,1. In particular, the homogeneity of these length functions on multicurves
means that they must be homogeneous over all of measured lamination space,
and hence `Σ2/`Σ1 defines a continuous function on the space of (compactly sup-
ported) projective measured laminations. This is a compact codomain, and hence
must be bounded above. Therefore, the left-hand side supremum in (141) exists
and dGap is well-defined. �

Theorem 7.14 (Gap metric for Conv∗1,1). The non-negative function dGap defines a
mapping class group invariant aymmetric metric on Conv∗1,1.
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Proof. It is clear that dGap is mapping class group invariant and satisfies the tri-
angle inequality. The McShane identity (Theorem 1.1) tells us that the gap sum-
mands of for Σ1 cannot dominate those for Σ2, and this gives us the requisite
non-negativity.

All that remains is to show that dGap(Σ1,Σ2) = 0 iff Σ1 = Σ2. One way is obvious.
For the converse, assume that dGap(Σ1,Σ2) = 0, then the McShane identity tells us
that corresponding gap summands must each be equal, and hence

∀γ ∈ C1,1, `Σ1
1 (γ) + τΣ1(γ) = `Σ2

1 (γ) + τΣ2(γ).(142)

Consider the sequence of curves {βγk}k∈Z obtained from applying Dehn-twists
along γ to a β which once-intersects γ. The eigenvalues for the monodromy for
two matrices are minimal/maximal when they are simultaneously diagonaliz-
able, and hence we obtain the bounds:

k`1(γ) + log λ3(β) − log λ1(β) = k`1(γ) − `(β̄) < `1(βγ
k) and(143)

k`1(γ) + log λ1(β) − log λ3(β) = k`1(γ) + `(β̄) > `1(βγ
k).(144)

Hence we see that

`1(γ) = lim
k→∞ 1

k
`1(βγ

k).(145)

Which in turn implies that:

`Σ2
1 (γ)

`Σ1
1 (γ)

= lim
k→∞

1
k
`1
βγk

(Σ2)

1
k
`1
βγk

(Σ1)
= lim
k→∞

1
k
(`Σ2

1 (βγk) + τΣ2(βγk))
1
k
(`Σ1

1 (βγk) + τΣ1(βγk))
= 1.(146)

Therefore, the marked simple `1 (and `2) spectra for Σi ∈ Conv∗1,1 must be congru-
ent. Which means that the simple marked λ1 spectra for Σ1 and Σ2 must be equal.
By [BCL17], this means that Σ1 = Σ2. �

Proposition 7.15. The restriction of the metric dGap to the Fuchsian locus of Conv∗1,1 is
precisely the Thurston metric dTh.

Proof. We first note that on the Fuchsian locus, triple ratios are all equal to 1,
and the simple root length `1(γ) of every geodesic γ is equal to 1

2 `(γ̄). Since
f(x) = log(1 + x)/ log(x) is a monotonically decreasing for x > 0, whenever
`Σ2

1 (γ) > `Σ1
1 (γ), we have

log(1 + e`
Σ2
1 (γ))

log(1 + e`
Σ1
1 (γ))

<
log(e`

Σ2
1 (γ))

log(e`
Σ1
1 (γ))

=
`Σ2

1 (γ)

`Σ1
1 (γ)

=
`Σ2(γ)

`Σ1(γ)
.

Therefore dGap 6 dTh. On the other hand, equation (145) gives us the converse
comparison dGap > dTh, hence allowing us to conclude that the two metrics are
equal on the Fuchsian locus. �

7.4.1. Two generalizations to Sg,m. We now turn to the space Conv∗g,m of (finite-
area) marked cusped convex real projective surfaces with genus g and m cusps.
We consider two possible generalizations, The first is equal to the Thurston metric
on the Fuchsian slice and is conjecturally generalizable for rank n > 4 positive
representations.
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Definition 7.16 (Pants-gap metric for cusped real convex projective surfaces). We
define the pants gap function for PGapΣ(β,γ) a pair of pants [β,γ] on a marked cusped
convex real projective surface Σ ∈ Conv∗g,m with cusps p1, . . . ,pm as the McShane iden-
tity summand corresponding to [β,γ]:

PGapΣ(β,γ) :=
(

1 +
cosh d2

2

cosh d1
2

· e
1
2 (τ(γ,δp)+`1(γ)+τ(β,δp)+`1(β))

)−1

.(147)

We define the pants gap metric as:

dPGap(Σ1,Σ2) := log sup
[β,γ]∈P

− log(PGapΣ1(β,γ))
− log(PGapΣ2(β,γ))

,(148)

where [β,γ] varies over the set P = Pp1 ∪ . . . ∪ Ppm of all boundary-parallel pairs of
pants on Sg,m.

Definition 7.17 (Total gap metric for cusped real convex projective surfaces). De-
fine the total gap function for a marked convex real projective surface Σ ∈ Conv∗g,m
with cusps p1, . . . ,pm as:

TGapΣ(γ) :=
1
m

m∑
j=1

 ∑
[γ,γp]∈Hpj(γ)

B1(γ,γp)
1 + e`1(γ)+τ(γ,γp)

 .(149)

We define the total gap metric as:

dTGap(Σ1,Σ2) := log sup
[γ]∈Cg,m

− log(TGapΣ2(γ))

− log(TGapΣ1(γ))
.(150)

Remark 7.18. When (g,m) = (1, 1), both of these two metrics agree with the gap metric
we defined for 1-cusped convex real projective tori.

Remark 7.19. The proof that the pants gap metric and the total gap metric are both
mapping class group invariant, asymmetric metrics on Conv∗g,m is essentially the same
as for the Conv∗1,1 case. We leave it as an exercise to show that these two metrics are
well-defined. For the pants gap metric, this uses [Kim18, Theorem 1.2], which shows

that the quantity cosh( 1
2d2(β,γ))

cosh( 1
2d1(β,γ)) is bounded as one varies over [β,γ] ∈ P. For the total

gap metric, it helps to use Lemma 7.3 and the following observation:∑
[γ,γp]∈Hp(γ)

Bi(γ,γp) 6 1.(151)

Equation (151) comes from interpreting the left hand side of the above inequality as a
probability with respect to the Goncharov-Shen potential measure. Specifically, it is the
probability that the portion of a geodesic launched from cusp p up to its first point of
self-intersection will either:

• intersect γ, or
• be completely contained on a pair of half-pants with γ̄ as its cuff.

Proposition 7.20. The restriction of the pants gap metric dPGap to the Fuchsian locus is
equal to the classical Thurston metric.
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Proof. The proof is essentially identical to the proof of Proposition 7.15, provided
that one uses the following fact:

dTh(Σ1,Σ2) = log sup
[β̄,γ̄]∈Pp

`Σ2(β̄, γ̄)
`Σ1(β̄, γ̄)

,(152)

which comes from the fact that the projection of Pp, regarded as a set of multic-
urves, in projective measured lamination space is dense. �

Remark 7.21. It is unclear whether the restriction of the total gap metric dTGap to the
Fuchsian locus is the Thurston metric, although it is fairly straight-forward to show that
dTGap > dTh.

It is also possible to extend the pants gap metric over the set of (marked) convex
real projective surfaces Σ with loxodromic boundaries.

Definition 7.22 (Pants gap metric for bordered convex real projective surfaces).
Let Σ denote a convex real projective surface with loxodromic boundaries α1, . . . ,αm. We
adopt the following notation: P∂α denotes the set of boundary-parallel pairs of pants in Pα
which have two borders being boundary components of Sg,m.

• For any [β,γ] ∈ Pα \ P∂α we set PGapΣ(β,γ) to be 1
`1(α)

times the i = 1
McShane identity summand in Equation (12);

• for any [Y] ∈ P∂α, we set PGapΣ(Y) to be be 1
`1(α)

times the i = 1 summand in
Equation (203).

The pants gap metric dPGap(Σ1,Σ2) is defined as:

log max
j=1,...,m

 sup
[β,γ]∈Pαj\Pαj

− log(PGapΣ1(β,γ))
− log(PGapΣ2(β,γ))

, sup
[Y]∈P∂αj

− log(PGapΣ1(Y))

− log(PGapΣ2(Y))

 .

(153)

The proof that this is a well-defined metric is essentially the same as for the
cusped case and we again require [Kim18, Theorem 1.2].

Remark 7.23. We expect [Kim18, Theorem 1.2] to generalize to all rank n. Provided
that this can be demonstrated, it is possible to generalize the pants gap metric to define
asymmetric metrics on the character variety of loxodromic-bordered positive representa-
tions of arbitrary rank. Moreover, the (n − 1) different McShane identities we obtain
induces a (n− 1)-dimensional positive “quadrant” of such metrics.
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8. McShane–type identities for higher Teichmüller space

We begin by establishing McShane identities for general rank positive represen-
tations with loxodromic boundary monodromy.

8.1. Ordered ratios and simple root length decomposition. We introduce a mild
generalization of ordered cross ratios [LM09], called ordered ratios.

Definition 8.1 (Ratio). Consider the following collection of 4-tuples

∂∞π1(Sg,m)4∗∗ =
{
(x,y, z, t) ∈ ∂∞π1(Sg,m)4 | x 6= y, x 6= z, x 6= t,y 6= z

}
.

A ratio B : ∂∞π1(Sg,m)4∗∗ → R is a π1(Sg,m)-invariant continuous real function which
satisfies the following three ratio conditions:

(1) (normalization): B(x,y, z, t) = 0 iff y = t,
(2) (normalization): B(x,y, z, t) = 1 iff z = t,
(3) (cocycle): B(x,y, z, t) = B(x,y, z,w) · B(x,y,w, t),

An ordered ratio is a ratio B on Sg,m which satisfies two order conditions: for four
different points x,y, z, t ∈ ∂∞π1(Sg,m):

(1) B(x,y, z, t) > 0 if z, t are on the same side of xy,
(2) B(x,y, z, t) > 1 if x,y, z, t are cyclically ordered.

Definition 8.2 (Periods for ratios). For non-trivial α ∈ π1(Sg,m) and y 6= α−,α+,
the period of α for the ordered ratio B is

`B(α) := logB
(
α−,α+,α(y),y

)
,

As with periods for cross ratios, periods for ratios are also independent of the
choice of y. For any z ∈ ∂∞π1(Sg,m)\{α−,α+}, by

• π1(Sg,m)-invariance: B (α−,α+,α(y),α(z)) = B (α−,α+,y, z),
• and the cocycle identity for the ordered ratios,

we obtain that:

B
(
α−,α+,α(y),y

)
=B
(
α−,α+,α(y),α(z)

)
· B
(
α−,α+,α(z), z

)
· B
(
α−,α+, z,y

)
=B
(
α−,α+,y, z

)
· B
(
α−,α+,α(z), z

)
· B
(
α−,α+, z,y

)
=B
(
α−,α+,α(z), z

)
.

Ordered ratios satisfy one fewer (cocycle) axiom than ordered cross ratios. As a
consequence periods `B of an ordered ratio B do not necessarily satisfy `B(γ) 6=
`B(γ−1). One immediate advantage of ordered ratios is that simple root lengths
can now be periods. In fact, we have already seen an ordered ratio in the guise
of the ratio of two i-th characters (Definition 4.13).

Remark 8.3 (i-th ratio). Given (ρ, ξ) ∈ XPGLn,Sg,m(R>0), the i-th ratio:

B(x,y, z, t) = Bi (x;y, z, t) :=
Pi(x;y, t)
Pi(x;y, z)

,(154)

is indeed an ordered ratio. By Proposition 4.14, we have that Bi is π1(Sg,m)-invariant. It
is easy to check the three ratio conditions. Positivity implies the two ordered conditions.

Splitting the i-th ratio using essentially the same process as in Section 5, we obtain
(n− 1) identities for each boundary component α.
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Theorem 8.4 (McShane identity for loxodromic bordered positive representa-
tions). For positive representation ρ with loxodromic monodromy around every bound-
ary component, define its i-th ratios via its canonical lift (ρ, ξ) ∈ XPGLn,Sg,m(R>0) (as
per Definition 4.17). Given a distinguished boundary component α of Sg,m, for each
i = 1, · · · ,n− 1, we have the equality:

`i(α) =
∑

[δ,δα− ]∈Hα

∣∣logBi
(
α−;α+, δ(α−), δ+

)∣∣+ ∑
[γ,γα− ]∈H∂α

logBi
(
α−;α+,γ−,γ+

)
.

(155)

Figure 24. The pair of pants Y has the boundary components α,
β, γ with αβ−1γ = 1 and Y is cut into µ,µ ′ along the simple
curve γα− = βα− (check Figure 6 for details around α). Here ∂µ
contains γα− and γ, and ∂µ ′ contains γα− and β.

Proof. Using the cocycle property of i-th ratio and Hölder property of the limit
curve ξρ, we follow the proof presented in [LM09] almost line by line and replace
the ordered cross ratio B by the ordered ratio Bi. We extend Definition 1.19 to
Pα, Then we obtain

`i(α) =
∑

{β,γ}∈Pα

(
logBi

(
α−;α+,γ+,γ(α−)

)
+ logBi

(
α−;α+,β(α−),β+

))
+
∑

[Y]∈P∂α

logBi
(
α−;α+,γ−,γ+

)
=

∑
[δ,δα− ]∈Hα

∣∣logBi
(
α−;α+, δ(α−), δ+

)∣∣+ ∑
[γ,γα− ]∈H∂α

logBi
(
α−;α+,γ−,γ+

)
.

(156)

�

As is, the identity is not expressed in terms of explicit geometric/projective in-
variants attached to the representation ρ. We do this crucial step later in this
section.
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8.2. McShane-type inequalities for unipotent bordered positive representations.
We in fact have two strategies for deriving McShane-type inequalities for unipo-
tent bordered positive representations. The first is to follow the Goncharov-Shen
potential splitting idea we employed in Section 5. The second is to take the
loxodromic bordered identities we just obtained and to consider them under de-
formation to the unipotent bordered locus in the character variety. We choose
to illustrate the second strategy; the necessary ingredients for computing via the
first strategy is nevertheless contained in what follows.

Theorem 8.5 (McShane-type inequality for unipotent bordered positive represen-
tations). Consider a positive representation ρ with unipotent boundary monodromy and
let p ∈ mp be a distinguished puncture/cusp on Sg,m. Then, for i = 1, · · · ,n − 1, we
have

∑
[δ,δp]∈Hp

 Bi(δ, δp)

1 + Ki(δ, δp) · λi(ρ(δ))λi+1(ρ(δ))

 6 1,(157)

where γ is the oriented cuff for µ and γp is the oriented seam for µ, and

Ki(δ, δp) =
1 +
∑i−1
c=1
∏c
j=1 Tn−i,j,i−j(δp, δ+,p)

1 +
∑i−1
c=1
∏c
j=1 Tn−i,j,i−j(p, δp, δ+)

·
∏n−i−1
j=1 Tn−i−j,j,i(p, δp, δ+)∏i−1
j=1 Tj,n−i,i−j(p, δp, δ+)

.

(158)

Definition 8.6 (path l). For (ρ, ξ) ∈ XPGLn,Sg,m(R>0) with (purely) loxodromic bor-
dered monodromy representation ρ, we choose an analytic path l in XPGLn,Sg,m(R>0)
satisfying the following conditions:

(1) l(0) = (ρ, ξ);
(2) every element of l([0, 1)) ⊂ XPGLn,Sg,m(R>0) has loxodromic monodromy around

all of its boundary components;
(3) l(1) = (ρ ′, ξ ′) ∈ XPGLn,Sg,m(R>0) has unipotent monodromy around all of its

boundary components, also arising from an element of ASLn,Sg,m(R>0).

We denote the limit converges to l(1) along the path l by limhyp→para. Along the path l,
the simple root length `i of each boundary component converges to 0 for i = 1, · · · ,n−1.
Geometrically speaking, this is tantamount to the boundary α of Sg,m deforms to a cusp
p.

Proposition 8.7. For any [µ] ∈ H∂α with its cuff a boundary component γ, as γ deforms
to a unipotent boundary, we have:

lim
hyp→para

logBi (α−;α+,γ−,γ+)
`i(α)

= 0.(159)

Proof. We have

lim
hyp→para

logBi (α−;α+,γ−,γ+)
`i(α)

= lim
hyp→para

Pi(α
−;α+,γ+)

Pi(α−;α+,γ−) − 1
Pi(α−;α+,α−1(γ−))
Pi(α−;α+,γ−) − 1

(160)

= lim
hyp→para

Pi(α
−;γ−,γ+)

Pi(α−;γ−,α−1(γ−))
.(161)
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Since γ is another boundary component which converges to a cusp along the path
l, we get Pi(α−;γ−,γ+) = 0 for l(1). Hence we obtain

lim
hyp→para

Pi(α
−;γ−,γ+)

Pi(α−;γ−,α−1(γ−))
= 0.(162)

�

Remark 8.8. The previous result explains why there are no H∂α summands in the unipo-
tent bordered McShane identity.

Lemma 8.9. For δ ∈ {β,β−1,γ,γ−1} as in Figure 24, we obtain the formula

Bi
(
α−;α+, δ(α−), δ+

)
=
Bi
(
α−;α+, δ(α−), δ−1(α−)

)
− Bi

(
α−; δ+, δ(α−), δ−1(α−)

)
1 − Bi (α−; δ+, δ(α−), δ−1(α−))

.

(163)

Proof. Using additivity of the i-th character, we simplify the right hand side as
follows:

Bi
(
α−;α+, δ(α−), δ−1(α−)

)
− Bi

(
α−; δ+, δ(α−), δ−1(α−)

)
1 − Bi (α−; δ+, δ(α−), δ−1(α−))

=

(
Pi(α

−;α+, δ−1(α−))

Pi(α−;α+, δ(α−))
−
Pi(α

−; δ+, δ−1(α−))

Pi(α−; δ+, δ(α−))

)/(
1 −

Pi(α
−; δ+, δ−1(α−))

Pi(α−; δ+, δ(α−))

)
=
Pi(α

−;α+, δ−1(α−)) · Pi(α−; δ+, δ(α−)) − Pi(α
−; δ+, δ−1(α−)) · Pi(α−;α+, δ(α−))

Pi(α−;α+, δ(α−)) · (Pi(α−; δ+, δ(α−)) − Pi(α−; δ+, δ−1(α−)))

=
[(
Pi(α

−;α+, δ(α−)) + Pi(α
−; δ(α−), δ−1(α−))

) (
Pi(α

−; δ+, δ−1(α−)) + Pi(α
−; δ−1(α−), δ(α−))

)
−

Pi(α
−; δ+, δ−1(α−))Pi(α

−;α+, δ(α−))
]/(

Pi(α
−;α+, δ(α−)) · Pi(α−; δ−1(α−), δ(α−))

)
=
Pi(α

−;α+, δ(α−))Pi(α
−; δ−1(α−), δ(α−)) + Pi(α

−; δ(α−), δ−1(α−))Pi(α
−; δ+, δ(α−))

Pi(α−;α+, δ(α−))Pi(α−; δ−1(α−), δ(α−))

=
Pi(α

−;α+, δ+)Pi(α−; δ−1(α−), δ(α−))

Pi(α−;α+, δ(α−))Pi(α−; δ−1(α−), δ(α−))
=

Pi(α
−;α+, δ+)

Pi(α−;α+, δ(α−))

= Bi
(
α−;α+, δ(α−), δ+

)
.

(164)

�

Definition 8.10. In the pair of pants of Figure 24, we obtain

Bi
(
α−;α+,γ−1(α−),γ(α−)

)
> 1, Bi

(
α−;α+,β(α−),β−1(α−)

)
> 1(165)

and

Bi
(
α−;α+,γ−1(α−),γ(α−)

)
· Bi

(
α−;α+,β(α−),β−1(α−)

)
= e`i(α).(166)

When we take the limit limhyp→para along the path l, we have e`i(α) converges to 1. Thus
both Bi

(
α−;α+,γ−1(α−),γ(α−)

)
and Bi

(
α−;α+,β(α−),β−1(α−)

)
converge to 1.

For δ ∈ {β,β−1,γ,γ−1}, we define

Ri(δ, δα−) :=

∣∣logBi(α−;α+, δ(α−), δ−1(α−))
∣∣

`i(α)
.(167)
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Then we have

Ri(δ, δα−) = Ri(δ
−1, δ−1

α−) > 0,(168)

and

Ri(γ,γα−) + Ri(β,βα−) = 1.(169)

In the case Sg,m = S1,1, for [µ] ∈ Hα, we denote Ri(µ) instead.

Remark 8.11. Actually R1(δ, δα−) has a geometric interpretation. With respect to the
basis given by ξρ(α−) and ξρ(α+), consider the diagonal matrix (gi,j) that fixes ξρ(α−)
and ξρ(α+) and translate ξ1

ρ(δ(α
−)) to ξ1

ρ(δ
−1(α−)). Then

R1(δ, δα−) =

∣∣∣∣ loggn−1,n−1 − loggn,n

`1(α)

∣∣∣∣ .(170)

By a choice of fundamental domain, we define the normalized (µ, i)-Goncharov–
Shen potential for the boundary case.

Definition 8.12. For (ρ, ξ) ∈ XPGLn,Sg,m(R>0) that is a canonical lift of ρ ∈ Hn(Sg,m)

with the loxodromic monodromy around each boundary component, for any [Y] ∈ Pα and
a choice of its fundamental domain as in Figure 24. Choose a lift X of ξ(α−) into the
decorated flag variety A. Then we define

Bi(γ,γα−) :=
Pi(α

−;γ−1(α−),γ(α−))

Pi(α−;γ−1(α−),β−1(α−))
,(171)

Bi(β,βα−) :=
Pi(α

−;β(α−),β−1(α−))

Pi(α−;γ−1(α−),β−1(α−))
.(172)

It is easy to see that

Bi(γ,γα−) + Bi(β,βα−) = 1(173)

When we take the limit limhyp→para along the path l, α− converges to p, the ratio
Bi(δ, δα−) converges to Bi(δ, δp) for δ ∈ {β,γ}. Actually Bi(δ, δp) does not depend
on the fundamental domain that we choose.

The following lemma provides the relation between Ri(δ, δα−) and Bi(δ, δα−).

Lemma 8.13. We have

eRi(γ,γα−)·`i(α) − 1
e`i(α) − 1

= Bi(γ,γα−).(174)

eRi(β,βα−)·`i(α) − 1
e`i(α) − 1

=
Bi(β,βα−)

Bi(β,βα−) + Bi(γ,γα−) · e`i(α)
.(175)
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Proof. By direct computation

Bi
(
α−;α+,β(α−),β−1(α−)

)
− 1

e`i(α) − 1
=

Pi(α
−;α+,β−1(α−))−Pi(α

−;α+,β(α−))
Pi(α−;α+,β(α−))

e`i(α) − 1

=
Pi(α

−;β(α−),β−1(α−))

(e`i(α) − 1) · Pi(α−;α+,β(α−))

=
Pi(α

−;β(α−),β−1(α−))

Pi(α−;α+,α−1β(α−)) − Pi(α−;α+,β(α−))

=
Pi(α

−;β(α−),β−1(α−))

Pi(α−;β(α−),β−1(α−)) + Pi(α−;β−1(α−),α−1β(α−))

=
Pi(α

−;β(α−),β−1(α−))

Pi(α−;β(α−),β−1(α−)) + e`i(α) · Pi(α−;γ−1(α−),γ(α−))

=
Bi(β,βα−)

Bi(β,βα−) + Bi(γ,γα−) · e`i(α)
.

(176)

Similarly for the other formula. �

Then Lemma 8.9 and Lemma 8.13 allow us to compute the gap term in Theorem
8.4 as follows.

Lemma 8.14. Evaluating the function f(A) = eA−1
e`i(α)−1

at the four gap terms for Hα in
Figure 24, we get:

(1)

Bi
(
α−;α+,γ−1(α−),γ−

)
− 1

e`i(α) − 1
= Bi(γ,γα−) · 1

1 + Pi(α−;γ−,γ(α−))
Pi(α−;γ−1(α−),γ−)

;(177)

(2)

Bi (α
−;α+,γ+,γ(α−)) − 1
e`i(α) − 1

= Bi(γ,γα−) · 1

1 + eRi(γ,γα−)·`i(α) · Pi(α
−;γ+,γ−1(α−))

Pi(α−;γ(α−),γ+)

;

(178)

(3)

Bi (α
−;α+,β(α−),β+) − 1
e`i(α) − 1

=
Bi(β,βα−)

Bi(β,βα−) + Bi(γ,γα−) · e`i(α)
· 1

1 + Pi(α−;β+,β−1(α−))
Pi(α−;β(α−),γ−)

;
(179)

(4)

Bi
(
α−;α+,β−,β−1(α−)

)
− 1

e`i(α) − 1

=
Bi(β,βα−)

Bi(β,βα−) + Bi(γ,γα−) · e`i(α)
· 1

1 + eRi(β,βα−)·`i(α) · Pi(α
−;β−,β(α−))

Pi(α−;β−1(α−),β−)

.

(180)
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Proof. By direct compuation, we have

Bi
(
α−;α+,γ−1(α−),γ−

)
− 1

e`i(α) − 1

=

Bi(α−;α+,γ−1(α−),γ(α−))−Bi(α−;γ−,γ−1(α−),γ(α−))
1−Bi(α−;γ−,γ−1(α−),γ(α−))

− 1

e`i(α) − 1
by Lemma 8.9

=
Bi
(
α−;α+,γ−1(α−),γ(α−)

)
− 1

e`i(α) − 1
· 1

1 − Bi (α−;γ−,γ−1(α−),γ(α−))

=
Bi(γ,γα−)

1 + Pi(α−;γ−,γ(α−))
Pi(α−;γ−1(α−),γ−)

by Lemma 8.13 .

(181)

Similarly for the other cases. �

A direct consequence of Lemma 8.14 is the following.

Proposition 8.15. Suppose δ ∈ {β,β−1,γ,γ−1}. For the four cases in Lemma 8.14, we
have

lim
hyp→para

|logBi (α−;α+, δ(α−), δ+)|
`i(α)

=
Bi(δ, δp)

1 + Pi(p;δ+,δ−1p)
Pi(p;δp,δ+)

.(182)

Lemma 8.16. Suppose δ ∈ {β,β−1,γ,γ−1}. For both puncture case x = p and boundary
case x = α−, we have

Pi(x; δ+, δ−1x)

Pi(x; δx, δ+)
= Ki(δ, δx) ·

λi(ρ(δ))

λi+1(ρ(δ))
,(183)

where

Ki(δ, δx) =
1 +
∑i−1
c=1
∏c
j=1 Tn−i,j,i−j(δx, δ+, x)

1 +
∑i−1
c=1
∏c
j=1 Tn−i,j,i−j(x, δx, δ+)

·
∏n−i−1
j=1 Tn−i−j,j,i(x, δx, δ+)∏i−1
j=1 Tj,n−i,i−j(x, δx, δ+)

.

(184)

Proof. Firstly, we have

Pi(x; δ+, δ−1(x))

Pi(x; δx, δ+)
=
Pi(δx; δ+, x)
Pi(x; δx, δ+)

.(185)

We compute the right hand side of the above equation instead. By Proposition
4.12, we have

Pix;δ+,δx = αx;δ+,δx
n−i,i,0

1 +

i−1∑
c=1

c∏
j=1

Tn−i,j,i−j(x, δx, δ+)

 ,(186)

Piδx;x,δ+ = αδx;x,δ+
n−i,i,0

1 +

i−1∑
c=1

c∏
j=1

Tn−i,j,i−j(δx, δ+, x)

 .(187)
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Figure 25. We draw αx;δ+,δx
i,j,k , αδx;x,δ+

i,j,k , αδ
+;δx,x
i,j,k to illustrate our computation.

Then

Pi(δx; δ+, x)
Pi(x; δx, δ+)

=
Pi(δx; x, δ+)
Pi(x; δ+, δx)

=
1 +
∑i−1
c=1
∏c
j=1 Tn−i,j,i−j(δx, δ+, x)

1 +
∑i−1
c=1
∏c
j=1 Tn−i,j,i−j(x, δx, δ+)

·
αδx;x,δ+
n−i,i,0

αx;δ+,δx
n−i,i,0

.

(188)

Observe Figure 25, we obtain

αδx;x,δ+
n−i,i,0

αx;δ+,δx
n−i,i,0

=
αδx;x,δ+
n−i,i,0

αδx;x,δ+
n−i,1,i−1

·
αδ

+;δx,x
i,1,n−i−1

αδ
+;δx,x
i,n−i,0

·
αδx;x,δ+
n−i,1,i−1α

δ+;δx,x
i,n−i,0

αδ
+;δx,x
i,1,n−i−1α

x;δ+,δx
n−i,i,0

=

i−1∏
j=1

Tn−i,j,i−j(δx, x, δ+) · 1∏n−i−1
j=1 Ti,j,n−i−j(δ+, δx, x)

·
αδx;x,δ+
n−i,1,i−1α

δ+;δx,x
i,n−i,0

αδ
+;δx,x
i,1,n−i−1α

x;δ+,δx
n−i,i,0

=

∏n−i−1
j=1 Tn−i−j,j,i(x, δx, δ+)∏i−1
j=1 Tj,n−i,i−j(x, δx, δ+)

·
αδx;x,δ+
n−i,1,i−1α

δ+;δx,x
i,n−i,0

αδ
+;δx,x
i,1,n−i−1α

x;δ+,δx
n−i,i,0

.

(189)
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By Lemma 4.8, we get

αδx;x,δ+
n−i,1,i−1α

δ+;δx,x
i,n−i,0

αδ
+;δx,x
i,1,n−i−1α

x;δ+,δx
n−i,i,0

=

∆((δx)n−i+1∧δi−1)·∆((δx)n−i−1∧δi∧x1)
∆((δx)n−i∧δi−1∧x1)·∆((δx)n−i∧δi)

· ∆(δ
i+1∧(δx)n−i−1)·∆(δi−1∧x1∧(δx)n−i)
∆(δi∧x1∧(δx)n−i−1)·∆(δi∧(δx)n−i)

∆(δi+1∧xn−i−1)·∆(δi−1∧xn−i∧(δx)1)
∆(δi∧xn−i−1∧(δx)1)·∆(δi∧xn−i)

· ∆(xn−i+1∧δi−1)·∆(xn−i−1∧(δx)1∧δi)
∆(xn−i∧δi)·∆(xn−i∧(δx)1∧δi−1)

=

∆((δx)n−i+1∧δi−1)
∆(xn−i+1∧δi−1)

· ∆(δ
i+1∧(δx)n−i−1)

∆(δi+1∧xn−i−1)

∆((δx)n−i∧δi)
∆(xn−i∧δi)

· ∆(δi∧(δx)n−i)
∆(δi∧xn−i)

=

1
λ1···λi−1(ρ(δ))

· 1
λ1···λi+1(ρ(δ))

1
λ1···λi(ρ(δ)) ·

1
λ1···λi(ρ(δ))

=
λi(ρ(δ))

λi+1(ρ(δ))
.

(190)

We conclude that
Pi(x; δ+, δ−1(x))

Pi(x; δx, δ+)
= Ki(δ, δx) ·

λi(ρ(δ))

λi+1(ρ(δ))
.(191)

�

Proof of Theorem 8.5. For any [δ, δα− ] ∈ Hα, when we take the limit limhyp→para
in Definition 8.6 along the path l, by Proposition 8.15 and Lemma 8.16, for δ ∈
{β,β−1,γ,γ−1}, the gap term |logBi (α−;α+, δ(α−), δ+)| over `i(α) in Theorem 8.4
deforms to

Bi(δ, δp)

1 + Ki(δ, δp) · λi(ρ(δ))λi+1(ρ(δ))

.(192)

For any [µ] ∈ H∂α, by Proposition 8.7, when we take the limit limhyp→para, the gap
term logBi (α−;α+,γ−,γ+) over `i(α) is 0. We conclude that

∑
[δ,δp]∈Hp

 Bi(δ, δp)

1 + Ki(δ, δp) · λi(ρ(δ))λi+1(ρ(δ))

 6 1.(193)

�

8.3. Expressing the hyperbolic bordered McShane identity summand. The fol-
lowing corollary gives a geometric expression of the gap term in the summation
Hα of Theorem 8.4. Let us define

κi(δ, δx) := logKi(δ, δx).(194)

Theorem 8.17. In Theorem 8.4, the gap terms in Hα for Figure 24 are geometrically
expressed in the following form: for δ ∈ {β,β−1,γ,γ−1}, we have∣∣logBi

(
α−;α+, δ(α−), δ+

)∣∣ = ∣∣∣∣log
eRi(δ,δα−)·`i(α) + eκi(δ,δα−)+`i(δ)

1 + eκi(δ,δα−)+`i(δ)

∣∣∣∣ .(195)

Proof. Directly derive from Lemma 8.9 and Lemma 8.16. �
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Definition 8.18. We generalize d1 and d2 in Theorem 5.10 using i-th ratios:

d1 := log
Pi(α

−;γ+,γ(α−))

Pi(α−;β(α−),β+)
, d2 := log

Pi(α
−;γ−1(β+),γ−1(α−))

Pi(α−;γ−1(α−),γ+)
.(196)

Let

ed :=
cosh d2

2

cosh d1
2

.(197)

Lemma 8.19.

e`i(α) · Pi(α−;γ(β+),γ+)
Pi(α−;γ+,β+)

=
cosh d2

2

cosh d1
2

· e
1
2 (κi(γ,γα−)+`i(γ)+κi(β,βα−)+`i(β)+`i(α)).

(198)

Proof. By Lemma 8.16 we have

ed1+d2+κi(γ,γα−)+`i(γ)

=
Pi(α

−;γ+,γ(α−))

Pi(α−;β(α−),β+)
· Pi(α

−;γ−1(β+),γ−1(α−))

Pi(α−;γ−1(α−),γ+)
· Pi(α

−;γ+,γ−1(α−))

Pi(α−;γ(α−),γ+)

=
Pi(α

−;γ−1(β+),γ−1(α−))

Pi(α−;β(α−),β+)
.

(199)

By α−1γ−1 = β−1 and Proposition 4.16, the above equation equals to

e−`i(α) · Pi(α−;β+,β−1(α−))

Pi(α−;β(α−),β+)
= eκi(β,βα−)+`i(β)−`i(α).(200)

Thus

cosh d2
2

cosh d1
2

· e
1
2 (κi(γ,γα−)+`i(γ)+κi(β,βα−)+`i(β)+`i(α)) =

1 + e−d2

1 + ed1
· eκi(β,βα−)+`i(β)

=

Pi(α
−;γ−1(β+),γ+)

Pi(α−;γ−1(β+),γ−1(α−))

Pi(α−;γ+,β+)
Pi(α−;β(α−),β+)

· Pi(α
−;β+,β−1(α−))

Pi(α−;β(α−),β+)
=
e`i(α) · Pi(α−;γ−1(β+),γ+)

Pi(α−;γ+,β+)
.

(201)

�

Theorem 8.20. In Figure 24, the gap term for one {β,γ} ∈ Pα is expressed geometrically
in the following way:

logBi
(
α−;α+,γ+,β+

)
(202)

= log

e`i(α) + cosh d2
2

cosh d1
2

· e 1
2 (κi(γ,γα−)+`i(γ)+κi(β,βα−)+`i(β)+`i(α))

1 +
cosh d2

2

cosh d1
2

· e 1
2 (κi(γ,γα−)+`i(γ)+κi(β,βα−)+`i(β)+`i(α))

 .(203)

Remark 8.21. The relation between the ordered cross ratio B used in Labourie–McShane
identity [LM09] and the i-th ratio is provided by Corollary 4.15. Combing with Theo-
rem 8.20, we also have geometrical expression for the Labourie–McShane identities.

Proof. We show two sides of the above equation are equal by evaluating two sides
at the strictly increasing function f(A) = eA−1

e`i(α)−1
. Then the left side becomes into
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Pi(α
−;γ+,β+)

Pi(α−;α+,γ+)·(e`i(α)−1)
, and the right side becomes into 1

1+ e
`i(α)·Pi(α− ;γ−1(β+),γ+)

Pi(α
− ;γ+ ,β+)

by Lemma 8.19. By Proposition 4.16, we have

Pi(α
−;α+,γ+) · (e`i(α) − 1)

=Pi(α
−;α+,α−1(γ+)) − Pi(α

−;α+,γ+)

=Pi(α
−;γ+,α−1(γ+)).

(204)

Then this theorem is equivalent to show

Pi(α
−;γ+,α−1(γ+)) = e`i(α) · Pi(α−;γ−1(β+),γ+) + Pi(α−;γ+,β+),(205)

or equivalently

Pi(α
−;β+,α−1(γ+)) = e`i(α) · Pi(α−;γ−1(β+),γ+),(206)

which is a consequence of Proposition 4.16. �

Proposition 8.22. In Figure 24, the gap term for one [Y] ∈ H∂α is expressed geometrically
in the following way:
Let

d ′1 := log
Pi(α

−;γ−,γ(α−))

Pi(α−;β(α−),β+)
, d ′2 := log

Pi(α
−;γ−1(β+),γ−1(α−))

Pi(α−;γ−1(α−),γ−)
.(207)

Let

ed
′
:=

cosh d′2
2

cosh d′1
2

.(208)

Then

(209) logBi
(
α−;α+,γ−,γ+

)
= log

(
cosh 1

4A+ cosh 1
4B

cosh 1
4A+ cosh 1

4C

)
,

where
(210)
A = 2κi(β,βα−) + 2`i(β) + κi(γ,γα−) + `i(γ) − κi(γ

−1,γ−1
α−) − `i(γ

−1) + 2d+ 2d ′,

(211) B = 2`i(α) + κi(γ,γα−) + `i(γ) + κi(γ
−1,γ−1

α−) + `i(γ
−1) + 2d− 2d ′,

(212) C = −2`i(α) + κi(γ,γα−) + `i(γ) + κi(γ
−1,γ−1

α−) + `i(γ
−1) + 2d− 2d ′.

Proof. Similar to the prove of Theorem 8.20, we have

(213)

logBi
(
α−;α+,γ−,β+

)
= log

e
`i(α) +

cosh
d′2

2

cosh
d′1

2

· e
1
2 (−κi(γ−1,γ−1

α−)−`i(γ
−1)+κi(β,βα−)+`i(β)+`i(α))

1 +
cosh

d′2
2

cosh
d′1

2

· e
1
2 (−κi(γ−1,γ−1

α−)−`i(γ−1)+κi(β,βα−)+`i(β)+`i(α))

 .
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Then the formula is obtained through

logBi
(
α−;α+,γ−,γ+

)
= logBi

(
α−;α+,γ−,β+

)
− logBi

(
α−;α+,γ+,β+

)
.

(214)

�

8.4. A strategy for establishing the unipotent bordered McShane identity.

Theorem 8.23 (equality under assumption). Assume that we have the following prop-
erty, denoted by (*):
For ρ on the path l with the loxodromic monodromy around each boundary
component, let Di(N, ρ) = #{[δ] ∈ Cg,m | log λi(ρ(δ))

λi+1(ρ(δ))
6 N} where Cg,m is the set

of free homotopy classes of simple closed curves on Sg,m, or equivalently, the set
of π1(Sg,m) conjugacy classes of simple homotopy classes. Then

Di(N, ρ) = c(ρ) ·N6g−6+2m + o(N6g−6+2m),(215)

where c(ρ) is a continuous function.
Then the inequality in theorem 8.5 is an equality.

Remark 8.24. The assumption generalizes Mirzakhani’s result for Teichmüller space into
the PGL(n,R)-Hitchin component.

Proof. Given (ρ ′, ξ ′) ∈ ASLn,Sg,m(R>0), let l be the path in Definition 8.6 such that
l(1) = (ρ ′, ξ ′). Since the path l is compact, we have the following bounds in the
path l:

(1) the limit of e
`i(α)−1
`i(α)

under limhyp→para is 1, so e`i(α)−1
`i(α)

is upper bounded
by a constant C0 > 0;

(2) by Theorem 3.4, the triple ratios in the mapping class group orbit in the
closed path l is bounded away from 0, thus K(δ, δα−) is lower bounded
by a constant K > 0.

Moreover, fix δ ∈ π1(Sg,m), the sum over different δα− :

∑
[δ,δα− ]∈Hα

Bi(δ, δα−) 6 1
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for any l(s) ∈ XPGLn,Sg,m(R>0). Thus we get∑
[δ,δα− ]∈Hα

|logBi (α−;α+, δ(α−), δ+)|
`i(α)

6
e`i(α) − 1
`i(α)

·
∑

[δ,δα− ]∈Hα

(
Bi(δ, δα−)

1 + Ki(δ, δα−) · e`i(δ)

)
Lemma 8.14

6C0 ·
∑

[δ]∈Cg,m

∑
[δ,δα− ]∈Hα

(
Bi(δ, δα−)

1 + Ki(δ, δα−) · e`i(δ)

)

6C0 ·
∑

[δ]∈Cg,m

∑
[δ,δα− ]∈Hα

(
Bi(δ, δα−)

1 + K · e`i(δ)

)

6C0 ·
∑

[δ]∈Cg,m

1
K · e`i(δ)

6C0 ·
+∞∑
t=1

(Di(t, ρ) −Di(t− 1, ρ))
K · et

.

(216)

Since the continuous function c(ρ) is also bounded by a constant Q > 0 in the
path l, we have C0 ·

∑+∞
t=1

(Di(t,ρ)−Di(t−1,ρ))
C1·K·et is uniform convergent. Thus∑

[δ,δα− ]∈Hα

|logBi (α−;α+, δ(α−), δ+)|
`i(α)

(217)

converges uniformly to 1 on the path l. Thus on l(1), we conclude that

∑
[δ,δα− ]∈Hp

 Bi(δ, δp)

1 + Ki(δ, δp) · λi(ρ(δ))λi+1(ρ(δ))

 = 1.(218)

�
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Appendix A. Hilbert length versus simple root length comparison

This is a proof of Theorem 7.11:

Theorem A.1 (Hilbert vs. simple root length comparison). For any positive repre-
sentation ρ : π1(S) → PGL3(R), there exists Kρ > 1 such that for every simple closed
curve γ on S, we have:

`1(γ) < `(γ) < Kρ · `1(γ).(219)

Proof. The left inequality is obvious. For the right inequality, we first consider the
case when S is closed. In this case, let Kρ be the supremum of the ratio between
the infinitesimal expansion rates for the Hilbert length flow and the simple root
length flow [BCLS18] for ρ. The fact that Kρ exists is due to the compactness
of the unit tangent space T 1S. When S has boundary components, we double
[Lab07] ρ along its hyperbolic boundaries to a positive representation dρ on a
doubled surface dS. If dS is closed, we invoke the previous argument, and thus
we have reduced ourselves to the case when every boundary of ρ is unipotent.

Consider a positive representation ρwith (only) unipotent boundary monodromy,
and let {γk} denote a sequence of simple closed curves for which `ρ(γk)/`

ρ
1 (γk)

tends to the supremum of `ρ(·)/`ρ1 (·). The compactness of PML(S1,1) means that
we may replace {γk} with a subsequence such that there are lifts γ̃k in the uni-
versal cover Ω for the cusped convex real projective surface Σ with monodromy
representation ρ converge to an (oriented) lifted leaf γ̃∞ of some geodesic lami-
nation on Σ. By possibly conjugating ρ, we assume without loss of generality that
the flag at γ̃+∞ is given by

U1 = Span
{[

1
0
1

]}
⊂ U2 = Span

{[
1
0
1

]
,
[

0
0
1

]}
⊂ U3 = R3

and the flag at γ̃−∞ is given by

V1 = Span
{[

0
1
1

]}
⊂ V2 = Span

{[
0
1
1

]
,
[

0
0
1

]}
⊂ V3 = R3.

We also fix an arbitrary point [x : y : 1]t ∈ ∂Ω which is somewhere below the
geodesic from γ̃−∞ to γ̃+∞. Note in particular that x+ y ∈ (0, 1). Now consider the
sequence of (unique) projective linear transformations Mk ∈ PGL3(R) which

• maps the flag at γ̃+k to U1 ⊂ U2 ⊂ U3,
• maps the flag at γ̃−k to V1 ⊂ V2 ⊂ V3,
• and fixes [x : y : 1]t ∈ ∂Ω.

We observe that k tends to infinity, the matrices Mk approach the identity matrix.

We know from Proposition 6.9 that Ω satisfies βρ-regularity for some (finite)
βρ > 2. This means that there exists C > 0 such that for all p,q ∈ ∂Ω, we have:

dE(q, Tp∂Ω) > C−1 · dE(q,p)βρ .
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The regularity coefficient βρ is preserved under projective linear transformations,
and by applying Mk sufficiently close to the identity matrix (i.e.: for all k suffi-
ciently high) to with p = γ̃+k , we have:

dE(Mk · q,U2) > (2C)−1 · dE(Mk · q,U1)
βρ .(220)

Explicit computation shows that Mk · ρ(γk) ·M−1
k acts as the matrix λ1(γk) 0 0

0 λ2(γ3) 0
λ1(γk) − λ2(γk) λ3(γk) − λ2(γk) λ2(γk)

 ,(221)

and hence Mk · ρ(γk) · [x : y : 1]t =Mk · ρ(γk) ·M−1
k · [x : y : 1]t is equal to[

xλ1
x(λ1−λ2)+y(λ3−λ2)+λ2

: yλ3
x(λ1−λ2)+y(λ3−λ2)+λ2

: 1
]t

.(222)

We now consider equation (220) after taking q = ρ(γk) · [x : y : 1]t in. The left
hand side of the inequality satisfies

dE(Mk · q,U2) =
yλ3

x(λ1−λ2)+y(λ3−λ2)+λ2
<

2yλ3(γk)
xλ1(γk)

, for sufficiently large k.(223)

Similarly, the right hand side term dE(Mk · q,U1) satisfies

dE(Mk · q,U1) >1 − xλ1
x(λ1−λ2)+y(λ3−λ2)+λ2

= −xλ2+y(λ3−λ2)+λ2
x(λ1−λ2)+y(λ3−λ2)+λ2

(224)

>
(1−x−y)λ2(γk)

2xλ1(γk)
, for sufficiently large k.(225)

Putting all of this together, we obtain that:

2yλ3
xλ1

>
(1−x−y)βρλβρ2

2C(2x)βρλβρ1

,(226)

and therefore βρ`1(γk) > `(γk) − log(C ′) for some constant C ′. Since

βρ > lim
k→∞

`(γk) − log(C ′)
`1(γk)

= lim
k→∞

`(γk)

`1(γk)
,(227)

we see that Kρ not only exists, but is bounded above by βρ. �
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