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Abstract

The notion of superconnection devised by Quillen in 1985 and used
in gauge-Higgs field theory in the 1990’s is applied to the spin factors
(finite-dimensional euclidean Jordan algebras) recently considered as rep-
resenting the finite quantum geometry of one generation of fermions in
the Standard Model of particle physics.
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1 Introduction

It is natural to expect that the finite spectrum of fundamental particles of mat-
ter corresponds to representations of a finite-dimensional algebra of quantum
observables endowed with some further structure. On the basis of the spec-
tral theory needed for quantum mechanics, these finite-dimensional algebras of
quantum observables have been identified as the finite-dimensional euclidean
(or formally real) Jordan algebras [23], [24] and have been classified [25]. These
algebras are the quantum analogues of the finite-dimensional algebras of real
functions, it is convenient to consider them as algebras of “real functions” on
virtual “finite quantum spaces”. We will use freely this analogy by refering
to “the finite quantum space” corresponding to a finite-dimensional euclidean
Jordan algebra. Any finite-dimensional euclidean Jordan algebra has a unit
and is the direct sum of a finite number of simple ideals and the simple finite-
dimensional euclidean Jordan algebras fall into 3 classes :

1. The hermitian n x n-matrices J! = H,(R), J2 = H,(C) and J} =
H.,,(H) over the reals, the complexes and the quaternions, for n > 3 and

R (= H1(R) = 5 (C) = Ha(H)).
2. The spin factors J§ = JSpin,+1 (n > 1).

3. The exceptional Jordan algebra of hermitian 3 x 3-matrices J§ = Hz(Q)
over the octonions.

The Jordan algebra J§ is exceptional in the sense that it cannot be realized
as a subspace of an associative algebra stable under the symmetrized product
[1]. The classes 1 and 2 contain only special (i.e. non exceptional) Jordan al-
gebras. However there is an important difference between Class 1 and Class
2. Namely the Jordan algebras which belong to Class 1 are the real subspaces
of all hermitian elements of associative x-algebras while in the case of Class 2,
the spin factors JSpin, are only Jordan subalgebras of the Jordan algebras of
all hermitian elements of the Clifford algebras C¢(n,0) or of their complex -
algebra versions C/¢,, which are strict (and small) Jordan subalgebras except for
the cases n = 2 and n = 3 where JSpiny = H2(R) with C¥(2,0) = My(R) and
JSping = Ha(C) with C4(3,0) = M(C) and in the case n = 5 where one has
JSpins = Ho(H) but then C¥(5,0) = My(H) @ My(H). Thus, in general, there
is a non trivial envelop J§ of J§ = JSpin,41 which is the euclidean Jordan
algebra of hermitian elements of C'¢(n+1,0) or of its complex *-algebra version
Cly41 (see Section 4 of [16]).

The Jordan algebra approach to the finite quantum geometry of particle
physics models was originally developed [14], [16] in the context of the excep-
tional Jordan algebra J§ = H3(0). It was realized in [33], [32], [16] that the
quantum geometry of one generation is captured by a special Jordan algebra —
the 10-dimensional spin factor

J5 = JSping = Ho(0)(C J3), (1.1)



i.e. the 2 x 2 hermitian matrices with octonionic entries. The gauge symmetry
group of the Standard Model (SM) of particle physics,

SU(3) x SU(2) x U(1)

Gsm = S(U) xU(2)) = Zo

(1.2)

is the subgroup of the automorphism group Spin(9) of J§ that preserves the
splitting
0=CecC? (1.3)

and acts C-linearly on C3.

The splitting is preserved by the subgroup SU(3) of the automorphism
group G of the octonions which was identified long ago to the colour symmetry
of quarks by Giirsey and Giinaydin [19], [20]. From the point of view of physics
(1.3) corresponds to the quark-lepton symmetry. Conversely it was shown in
[14] that the unitarity and the unimodularity of SU(3) lead directly to a unital
algebra structure on C & C? which is isomorphic to O as real algebra, SU(3)
being then the group of C-linear automorphisms. In other words, this associates
the quark-lepton symmetry to the unimodularity of the colour group and selects
the euclidean Jordan algebras J§ = H2(0) and J§5 = H3(0) endowed with their
automorphisms preserving the splitting (1.3), (notice that H;(0Q) = R and that
the H,(QO) for n > 4 are not Jordan algebras).

The resulting characterization of Ggy was recently commented in [26] where
the action of Spin(9) on a pair of octonions (that spans the spinor representation
16 ~ O? of Spin(9) and appear in the 27-dimensional algebra J§) is exploited.
A Jordan algebra modification of Connes’ non-commutative geometry approach
to the SM,[8], [7] is developed in [5].

The aim of the present paper is to further develop the J§ approach to the
internal space of the Standard Model (for one generation) by using the notion
of superconnection, introduced by Quillen et al. [29], [27] and applied to the
Higgs mechanism within the Weinberg-Salam model in [9], [28], [30], [2].

As noted in [I4] and elaborated in [26] one can similarly derive the elec-
troweak subgroup U(2) of the gauge group Ggy of the SM from the automor-
phism group Spin(5) of the spin factor Ji = Ha(H):

Aut(J3) = Spin(5) = U(2,H), Jy = Ho(H) (1.4)

with the alternative (but non-associative) ring O of octonions substituted by the
associative division algebra H of quaternions. The superconnection approach
applies equally well to the “mini internal space” J3 of the electroweak model of
leptons which can thus serve as a simpler “toy model” for J5.

We begin, in Sect. 2, by summarizing both our treatment of the euclidean
extension

T3 = Hus(C) ® H16(C) = Jig ® Jis (1.5)



of J§ (that admits an analogue 1751 for J3) and the quite natural realization of
the notion of superconnection in it. In Sect. 3 we recall the fermionic oscillator
realization of C¢(9,1) and characterize the 16-dimensional particle subalgebra
J(P) of j28. In Sect. 4 we introduce the Higgs potential allowing a symmetry
breaking minimum and derive the mass matrix for the gauge fields. Section 5
is our temporary conclusion.

Our notations and conventions are the ones of [I4] and [16] and of [3I] in
particular for the Clifford algebras and their “fermionic oscillator” (i.e. C.A.R.)
representations for the even-dimensional case. Concerning the latter point, it
should be mentioned that the representation of the Clifford algebra of an even-
dimensional euclidean space as the algebra of canonical anti-commutation re-
lations (C.A.R.) depends on the choice of a direction of simple spinor in the
sense of Elie Cartan which is the corresponding direction of the Fock vacuum
[11]. In fact the directions of simple spinors parametrize the isometric complex
structures (see also [I3] for a more general point of view). Finally it is worth
noticing that Sections 3.2 and 3.3 of [I4] and Section 2 of [3I] contain moti-
vated summaries of the Jordan-von Neumann-Wigner classification and that, in
this respect [31] is a fairly complete reference. For Jordan algebras and Jordan
modules our reference is [22] and for exceptional Lie groups see [34].

2 Internal symmetry and superconnection

As explained in Sect. 4 of [16] and in Sect. 2.2 of [3I] the optimal euclidean
extension of J§ is the direct sum of two Jordan algebras of complex hermi-
tian 16 x 16 matrices. It contains, in particular, the hermitean generators i Iy,
a,b=0,1,...,8 of the derivation algebra so(9) viewed as a sub Lie algebra of
50(9,1) C C£°(9,1) ~ C¥(9,0), the (restricted) structure algebra of J5. Choos-
ing a basis (eg = 1,e1, ..., er) of octonion units we can think of J§ as generated
by the 2 x 2 hermitian octonionic matrices

é\a_<0* 6(;1>’ a:O,l,...,7 (682607;:_ejforjzlv"'77)a

ea
~ 10
€g = 03 — <0 _1) . (2.1)

We shall represent them by the products
I'_1T'y, a=0,1,...,8, [Fa,l—‘b]+ =Ty + Ty = 204,

[_,T,] =0, T2, =-1T=(T_T,)*=T1, (2.2)
where T'y,, @« = —1,0, ..., 8, generate the Clifford algebra C¢(9,1). The Coxeter
element wg 1 of C¢(9,1) plays the role of chirality and commutes with so(9,1):
1

vi=wgg =I_1Tely...T7Ig, v =1; [v:Tapl =0 for T'yp = 5

T, Ts).
(2.3)



In a representation in which ~ is diagonal the 32-dimensional Dirac spinor rep-
resentation of so(9, 1), generated by I'ng, is reduced:

32=16, ® 165, (y—1)16, =0= (y+ 1)165. (2.4)

The C¢(9, 1) generators anticommute with chirality and intertwine left and right
chiral (Weyl) spinors

[Fa,7]+ =0, I'y: 16L,R — 16R,L, a=-1,0,1,...,8. (25)

In Haag’s approach [2I] to quantum field theory the algebra of observables is
a subalgebra of gauge invariant elements (with respect to the unbroken gauge
symmetry) of a larger field algebra. The finite-dimensional (internal space)
counterpart of the field algebra is Zs-graded with odd part anticommuting with
7, generated by I', which will give room to the Higgs (scalar) fields, and an even
part, commuting with v generated by the 45 hermitean matrices

I'_14,ilq € $0(10,C)(D 50(9,1)), a,b=0,1,...,7,8, (2.6)

associated, in particular, with the gauge fields.

We proceed to identifying the symmetry generators and a complete set of
commuting observables. Singling out e; € O as the imaginary unit preserved

by SU(3) we can write the decomposition in the form (cf. Appendix):
Osax=2+4+2, z2=a"+2"er, Z =2, + Z%e5 + Ze4,
27 =g 4 ¥ mod N, 5 =1 2.4, (2.7)
where we have used the octonionic multiplication rules of [3]
€i iyl = €iy3(mod7)(= —€iy1€i), 1 =1,2,...,7. (2.8)
We then identify the Pati-Salam subalgebra
su(2)p & su(2)r @ su(4) C so(10)

by setting
su(4) ~ so(6) = Span{T'jx, j,k=1,2,...,6},
su(2) ® su(2) ~ so(4) = Span{T'p, af =—1,0,7,8}. (2.9)
In particular, we choose a basis of su(3) @u(1) invariant commuting observables

as

1 , 1 ‘
2IF = §(r8,1 —iTo7), 218 = —§(r8,1 +iTg7) = IFIF =0, (2.10)

7
B-L= g(F13+F2G+F45)a (2.11)



B and L being the baryon and the lepton numbers. The colour gauge Lie algebra
su(3). then appears as the commutant of B—L in su(4). The weak hypercharge
Y and the electric charge @ are expressed as:

1. 1 ;
Y:B—L+2]§,Q:I3L+§Y:§(B—L)—%FO7. (2.12)

The left and right isospins take values 0 and 1/2 so that 2I& and 21§ satisfy
(2IF)3 =2If for X =L R= P, :=(2IF)? =P} =1 (2I%)?. (2.13)

(Py being the SU(2)y, invariant projector on the states of weak isospin 1/2.)

We can write the (skew hermitian) matrix valued gauge field 1-form

A=dat A5 X, = iW +iB +iG (2.14)
where s = 1,...,12 = dim Ggum indA XA& are suitable linear combination of the

matrices 1} the three terms W, B, G correspond to the subalgebras su(2)r,
u(1)y, su(3)., respectively, of the Lie algebra

Gsm = su(2)r @ u(l)y @ su(3). (2.15)

of the gauge group Ggm ; they will be displayed explicitly in Sect. 3 below.

We shall interrupt for a moment our exposition in order to summarize, for
reader’s convenience, the notion of a superconnection on the example of the
gauge group U(n) acting on the exterior algebra A C™ as worked out in [30].
We shall identify the Zs grading of A C™ with chirality, assuming (arbitrarily)
that A” C" is right chiral (i.c. has negative chitality) and denote by AF left and
right chiral propjections of the U(n) connection A. We then define the U(n)
superconnection 1-form on T*M ® A C™ by

Lo~ (AT 0N = [0 ¢
]D)d+A+<I>,A(0 A_),cp(¢ 0) (2.16)

where d = dz*0,, and the two by two block matrix has 2n~1 % 2"=1 dimensional
blocks. The Zy grading of 1-forms is the combined grading of fields (in which
Af and A, are even and ®, ¢*, ¢ are odd) and of differential forms (in which
dxt is odd, dx* A dx” is even, etc.). Thus the superconnection D is odd. The
corresponding curvature form is obtained using the Zy graded commutator:

F=F+D®, F=DA, D®=[D,], (2.17)
n FL 0 + + £ b
where DA = dx* ANdx¥ | # _ ), Ft, =9,AF — 9, AF, while
O F/,uj j1% [ % 1
0 (Do)

D, 3], = & + < ) , D¢ = D™¢+¢DT = da’ (9, + A} )p — 9 AT,

Dé 0

(Dg)* = da((8, + A)o" — 9" AL). (2.18)



In the last two equations we have used the anticommutativity of ¢™*) and dx*.
We observe that the above construction works once one has the notion of chi-
rality which allows to define ”the Higgs” as a matrix valued chirality changing
scalar field. Remarkably, embedding our J§ model into C¢(9,1) provides a
natural notion of chirality, Eq. , such that the operator

d = ¢°T, (2.19)

is chirality changing. For v = 03 ® 116 the matrices (2.18)) are reproduced.

3 Fermionic oscillators. Particle subspace

We shall use the following fermionic oscillator’s representation of C¢(10,C) (cf.
17, [32], [31)):

2a90 =g + 107, 2a; = 'y + zl“;y(mod?),j =1,2,4,2a8 =Tg+1T_4
(2af =T —il'7,2a} =T —iT3,...,2a5 =Tg —T_}),

lay, ay]+ =0, [au, a4 = 20, . (3.1)

The basic fermions and antifermions are given by the primitive idempotents of
the abelian (unital) algebra generated by the Cartan subalgebra of the (com-
plexified) so(9,1). It is spanned by the idempotents

7, = a,ai(=m2), 7, =ata, =1 -7, (7,7, =0),vr=0,1,2,4,8. (3.2)

vy v

They belong to the euclidean extension J28 (1.5) of the octonionic spin factor
J8. The symmetry subalgebra (respecting the quark lepton splitting (1.3)) of
the (complexified so(9,1)) is the rank five extension

Gewt = u(2) ®u(3), u(2) = Span{aag,a, = 0,8},
u(3) = Span{dajay,j, k = 1,2,4}, (3.3)

of the gauge Lie algebra gsyr = s(u(2) @ u(3)) of the SM. In particular, the
(left) electroweak su(2)y symmetry generators,

IY = ajao, I* = ajas, 215 = (1T, I'] = n§ — =, (3.4)

are complemented by

. 1
215 = T8 — 7T6a B-L= Z [ajva’j] = EZ(W; - Trj) (35)

Jj=124 J

(cf. (2.10) (2.11))). The u(1) centre of ggas is spanned by the hypercharge

Wl

2
Y:B—L+2I§:g(ﬁ’l—i—ﬂ'z—l—ﬂﬁl)—ﬁ(’)—wg, (3.6)



the linear combination of B— L and 271 that annihilates the right chiral (sterile)
neutrino:
(vRr) := |vr >< vg| = mommamyms = Y (vg) = 0. (3.7)

A general problem in theories with configuration space of the form C(M)®F, the
product of the commutative algebra of smooth functions on a spin manifold M
with a finite dimensional (not necessarily commutative or associative) algebra F,
first encountered in the better developed noncommutative geometry approach
[19], [7], is the problem of fermion doubling (or rather quadrupling) [I8], recently
tackled in [4]. In order to avoid (or reduce) the problem one can simply restrict
attention to the 16 dimensional particle subalgebra

J(P) = Hg(C) & H(C) (3.8)

of the Jordan algebra (1.5). The projector P on the particle subspace can be
written as the sum of projectors £ and ¢ on the lepton and the quark subspaces:

P=L+q=P?),P(=1-P)=0+q { =mmomy (L =1—1),

0 A 0 !/ / / !,/
L=mimhmy, q= g Ujl = mymimy + mymemy + mmHTy. (3.9)

J=1,2,4

Here U; = U(a}, a;) is the (polarized) quadratic Jordan operator (see Eq. (3.24)
of [31] and references cited there):

U,X :=a,Xa, +a,Xa},. (3.10)

The gauge invariant states of the subalgebra J(P) are uniquely characterized
by the eigenvalues of 27 (2.10) and Y (2.12)). In particular, the chirality 7 in
J(P) is determined by anyone of these quantum numbers:

v+ (_1)213L =0=~+(=1)%. (3.11)

Conversely, Eq. (3.11) determines the subalgebra J(P). The orthogonal projec-
tor P : Ji @ Ji — J(P) is given by:

1

%(1 —y(=1)) = S (1= (=)™, (3.12)

P(=t+4q) =
The SU(2)p-invariant projectors in J(P) are determined by the eigenvalues of
Y. For the left chiral particles for which P; = (21£)? =1 (cf. ) Y takes
two values, —1 and %7 of multiplicity two and six, respectively. In H{(C), for
P; = 0, the hypercharge takes four eigenvalues: two nondegenerate ¥ = 0, —2
and two others, Y = %, —% of multiplicity three each. We note that for the
electroweak model (based on the Jordan algebra Ji (1.4))) - with only leptons
present - the trace of the hypercharge in the left and the right particle space is
—2, so that only their difference, the supertrace, vanishes (as emphasized in [9]).
By contrast, in the full SM the trace of Y vanishes in H% and HE, separately.



J
or a;) with + and their left isospin independence for j = 1, 2,4 implies that their

projection on J(P) vanishes:

The expression 1) for P together with the anticommutativity of at? (=a,

a§-*)'y = —va;-*)7 [IF, a§-*)] =0= Pa;-*)P =0,7=1,24. (3.13)

Thus, the Higgs field in the particle subspace can be written in the form:
O(x) = doao + doaj + dsas + Psaj. (3.14)

Then the connection and the curvature form, the counterparts of (2.16]) (2.17)),
can be written simply as:

D=d+A+® D*=F +dd+da"[A,, & + &, F =dA+ A% (3.15)

4 Higgs potential and bosonic Lagrangian
The bosonic action in a gauge theory is defined as the trace of (half of) the
square of the curvature. In order to account for symmetry breaking we shall

replace P4 by a more general fourth order expression, invariant with respect to
the unbroken gauge symmetry with Lie algebra

su(3). @ u(l)y @u(l)r C gsur, u(l)y = Span{l¥ = Q — %Y} (4.1)

(This extends the procedure adopted in [30] where one subtracts from ®2 a
general U(n) invariant operator). We shall write the Higgs potential as:

1 - - 2 . —
Vig) = Str (‘I’(KPl + PP —m?(Py + KP{)) + Apogodsds
1, - - _
= 5((;5(;3 — mQ)QtT(Pl + /€2P1/) + Apodpopsps, m, K, A > 0. (4.2)
Here we have used the relations (cf. (2.13)):

Pl :=1-P = (2[5 (PP =0,P + P = 1),
OPD = ppP], PP[D = ¢poP1, ¢ = oo + Pss. (4.3)

It is the last, fourth order, term in (4.2]) that breaks the U(2) electroweak
symmetry to U(1) x U(1) (the independent change of phases of ¢q, ¢g).

We shall write the bosonic Lagrangian of the SM in the form:
1 o1
L(A9) = —Ztr(FIWF” )+ §tr(6‘“¢8"¢) +

+ gtrldudllar, gl + V(6), (14)

10



where A, is the total gauge field of the SM:

Ay =i(WHL + W I+ W2+ NB,Y + = Z > Graiaiag), (4.5)

pni s
SOZj 1,2,4

W, and B, are an SU(2) triplet and singlet, respectively, G, is the gluon
(SU(3).) octet, As are the su(3) Gell-Mann matrices such that tr(A;\;) = 204.
The normalization constant N is determined from the condition that I3 and
NY are equally normalized in J(P):

tr(IF)? (= %(1 +3)=2=tr(NY)? = 430N N% = %. (4.6)

Here we have used the calculation: trY? = 1><2+% ><6+4+% x3+% X3 = 4—3?.

Clearly, the value of N depends on the spectrum of fundamental fermions. For
the leptonic (electroweak) model one has a smaller ratio, N2 = 1—12 We shall see
that the resulting N2 gives the value of the computed Weinberg angle.

We will obtain the (quadratic) mass form for the electroweak gauge fields,

1
Q(W,B) := —itr[WJrI_f +WIF + W3IE + NBY, ¢]?, (4.7)

by noting that [G, ¢] = 0 and substituting in the third term of the Lagrangian
(4.4) the components of ¢(x) by constant values which minimize V' (¢):

|al® = pa, @ = 0,8, po + ps = m?, pops = 0. (4.8)

In writing down (4.7) (and later) we are omitting the (contracted) vector index
1 of the gauge fields. Taking further into account the relations

(Wtagao + W aas, d)? = [WT(¢oag — ¢sao), W™ (¢say — ¢oas)l4+, (4.9)

1 _
[W3ls + NBY, ¢]* = Z(Wz% + 2N B)?(goag — oao)”
1 _
+1(W3 — 2N B)*(¢sag — dsas)?, (4.10)
and inserting the values (4.8) of ¢p, ¢g that minimize the potential, we find

QW, B) = 3tr{(po + o) (W~ -+ WI0)

1
+5 (po(W3 + 2NB)? + ps(W3 — 2N B)?)}

1
= 4m? <W+W— + W w4 §(W32 +4N?B?) + 2NBWj3 g> ,

Po — P8
e =¢€(po, = =+1. 4.11
(po,ps) = % + ps ( )

11



Eq. (4.11) tells us that the parameter 2m appears as the mass of the charged,
W#, bosons. The mixing matrix for the neutral gauge bosons W3 and B,

1 2Ne
2Ne 4N?)°
has determinant 0 for €2 = 1 as ensured by the last equation (4.8). This implies

the existence of a zero mass photon. The physical neutral gauge fields A” and
the Z-boson diagonalize the mixing matrix by a rotation on the Weinberg angle:

AV =cB —esWs,, Z =esB+ cWs,

1 5 4N? 3
2 25 _ _ 2_ e 2p _ _
C~ = COS Qw—m—g,S—Sln aw—m—§7 (412)
for AN? = 2, (4.6). The relations (4.12) just reflect the fermion spectrum:
tryep (205)% 3
tg%0, = AN? = (= 2). 4.13
g R (4.13)
No wonder that the same result is derived in grand unified theories. For 4N? =
%, the value in the leptonic model based on J3, we would have reproduced the
result s> = 1 of [30] (also obtained in [9] and earlier, under different premises,
in work of Neeman and Fairley, cited in [30]).
The constant # in V(¢) (4.2) does not appear in the mass matrix for the
gauge bosons. It does affect, however, the mass square of the Higgs mass iden-

tified as the coefficient 8m?(1 + x?) to ¢¢ in the quadratic term of V() giving
m¥; = 2(1 + x%)m2,. (4.14)

This allows to accomodate the observed relation 16my, & 25m,, for k¥ < L

N2

We end with two remarks placing our result in a more familiar context.

1. The Lagrangian involves no coupling constants. A way to introduce
the gauge coupling g of the charged W-bosons and the gluons consists in re-
placing L(A, ¢) by g% L(gA, go), a scaling that preserves the kinetic (and,
more generally, the quadratic) term (cf. [30]); we then identify (a multiple of)
g with the W and G gauge coupling. The couplings ¢’ of the Z boson and e of
the photon A" are determined by g and the Weinberg angle:

g =gtgly, e? = g%sin? 0, , (4.15)
yielding in our case g2 = %g’z = §e2.

2. Our calculation (as well as that of [30] and in the work cited there) is
classical, corresponding to a tree quantum field theoretic approximation. Ac-
cording to the renormalization group analysis the coupling constants g,¢’, ...
depend on the energy scale (or the momentum transfer — a dependance now
confirmed experimentally). Our argument, or a similar one in a grand unified
theory, is believed to be exact at “unification scale” (at inaccessibly high energy
—up to 10 — 106 GeV). The measured value of sin?6,, is 0.2312 (at momen-
tum transfer 91.4 €2¥). The value sin® 6, = 1 based on the U(2) electroweak
theory is, in fact, closer to it than the value 3/8 computed for the full SM.

12



5 Outlook

The fact that the euclidean extensions of the spin factors J3 and J§ are related
to the “structure Clifford algebras” C¥¢(5,1) and C£(9,1) makes the supercon-
nection approach of [29], [27], adopted by physicists and neatly formulated in
[30], particularly natural. The generators I'y, of C¢(4n + 1,1) (n = 1,2) anti-
commute with the chirality operator v = wsp+1,1 and intertwine between the
(internal symmetry counterpart of) left and right chiral fermions. This begs to
identify the (multicomponent) scalar field

®(x) =Y ¢"(x)[a, orrather P(z)P (5.1)

where P projects on the particle subspace (excluding antiparticles) with the
matrix valued odd part of the superconnection associated with the Higgs field.
The detailed explicit calculation of Sects. 3, 4 aimed to demonstrate the acces-

sibility and the relative simplicity of this approach.

Let us make some comments on the description of the theory of fundamen-
tal particles of matter for one generation of the Standard Model given here.
One has an internal quantum space which corresponds to the Jordan algebra
J§ = JSping of hermitian 2 x 2-matrices over Q acted by the subgroup of au-
tomorphisms preserving the splitting @ = C @ C? which is the subgroup Ggas
of Aut(J§) = Spin(9,0). One also has an external classical space which
corresponds to the algebra C(M) of real functions on spacetime acted by the
subgroup of automorphisms preserving the Minkowskian structure which is the
Poincaré group. Particles are then described by modules over J§ and C(M)
respectively that is by the Clifford algebra C/ly or its hermitian part for the in-
ternal structure and by the module S of sections of the (Weyl) spin bundles for
the external structure. These modules being equivariant respectively by Ggas
and by the Poincaré group. Here, we have taken into account Cy x S as a mod-
ule over C(M) and investigated the corresponding (super-)gauge theory. In a
sense this is not so natural. Indeed, from the very beginning Cy x S is a module
over the Jordan algebra J§ x C(M) = C(M, J§). In [14] differential calculi over
general Jordan algebras and a corresponding theory of connections over Jordan
modules have been defined, which has been further developed in [6]. Thus it
would be more natural to write an action for the theory of (super-)connections
over the Jordan algebra C(M, J§) (cf. the approach of [15], [10] and [12]). If one
does that, a lot of supplementary scalar fields appear, namely the components
of the connection in the quantum directions (i.e. over the part J§). It is an
open problem to classify these fields and to analyse their relevance for physics.
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Appendix: The splitting O = C ® C? and the as-
sociated Zs-symmetry

The splitting @ = C @ C? corresponds to the choice of an imaginary unit i € Q
which plays the role of the complex imaginary ¢ € C. One can then write an
octonion z € O as
sr::z—l—ZZkek =z+4+ 7
2
where z and the Z* are elements of C = R + iR(C O) and where (e;) is the
canonical basis of C* | k € {1,2,3}. One recovers the product of O by setting

i2=-1
iek = —eki
erer = —O0pel + ), Enemem

i.e. the e generate a quaternionic subalgebra. The subgroup of Gy = Aut(O)
which preserves i € Q is isomorphic to SU(3) and is identified in our picture to
the colour group SU(3).(C G2) while the splitting O = C & C? is identified to
the quark-lepton symmetry, C? for the quark and C for the lepton.

Following [34], let us consider the center Zs of SU(3)., this is the subgroup
of G5 induced by the actionwofj:—%—i—@iG@onx:z—&—ZG@as

wx)=w(z+2)=2+jZ

where Z = (Z¥) € C3 C O and jZ = (jZ*) is the diagonal action. Then, by
construction w € G and the subgroup of G5 which commutes with w is again

SU(3). C Ga.

Consider the Jordan algebra J§ = JSping = Ha(O) of the hermitian octo-
nionic 2 x 2 matrices. The group of automorphisms of J§ is the group Spin(9)

and the mapping
Mz A w(x)
w(w A2>H<w<x> Ao

defines an automorphism of J§ which induces an action of Zz on J§. The sub-
group of Aut(J§) = Spin(9) which commutes with this action (i.e. with wy) is
the group Ggps defined by which preserves the splitting O = C @ C> and
the C-linearity in C3.

Consider now the exceptional Jordan algebra J§ = H3(Q), then the mapping

A\ T3 T A w(rs) w(ze)
ws : Tz Ao X1 — w(mg,) Ao w(ml)
Ty T1 As w(za) w(r1) Az
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defines an automorphism of J§ (i.e. w3 € Fy = Aut(J§)) and induces an action
of Zz on J§. The subgroup of F; which commutes with this action (i.e. with
ws3) is the subgroup of Aut(J§) = Fy isomorphic to

SU(3) x SU(3)/Zs

which preserves the splitting @ = C & C? and the C-linearity in C3, [34]. This
subgroup was denoted as SU(3). x SU(3)ew/Zs3 in [106].

Warning : Our presentation of Q at the beginning of this appendix is clearly
related to the Cayley-Dickson construction applied to the transition from H to
O by adding the “new” imaginary unit i, but this i € O should not be confused
with the complex number 7 involved in the complexification Clg of C¢(9,0) in
[16] and in C¢(10,C) in Section 3.

Once one works in O, it is much more natural to index a basis of the imag-
inary octonionic units by the field Z7 of the integers modulo 7. Among such a
choice the choice of [3] is particularly nice since in the basis (eq)acz, of [3] the
relations of O (i.e. the multiplication table of Q) are translational invariant

€alB = €y = Ca+1€4+1 = €41
and invariant by the dilatation by 2, i.e.
€a€B = €y = €223 = €24

so that everything is fixed by setting ejes = e4 (which is then necessary for the
consistence) and we stick to the above choice for Q. In such a basis e7(“ = e”)
has the particularity to be invariant by dilatation

ear = €7, Vo € Zn

and is unique under this condition since 7 is a prime number (i.e.Z7 is a field).

Since in our approach the splitting @ = C®C? is fundamentally linked to the
color symmetry of quarks and to the quark-lepton symmetry [14], it is natural
to identify i € @ as i = e7 (“ = e¢”) in this frame. This justifies our choice of
notations all along our paper. The relation i = e; must be supplemented by
e; = ej,ey = ey and e3 = ey to express the previous items in term of basis

(€a)acz, of [B].
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