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Abstract. We compute the open Gromov-Witten invariants for every com-
pact semi-Fano toric surface, i.e. a toric surface X with nef anticanonical

bundle. Unlike the Fano case, this involves non-trivial obstructions in the
corresponding moduli problem.

As an application, an explicit expression of the superpotential W for the

mirror of X is obtained, which in turn gives an explicit ring presentation of the
small quantum cohomology of X. We also give a computational verification
of the natural ring isomorphism between the small quantum cohomology of X
and the Jacobian ring of W .

1. Introduction

In this paper we investigate the SYZ mirror symmetry for compact semi-Fano
toric surfaces, that is, toric surfaces with nef anti-canonical bundles, or equivalently,
every toric divisor is at most a (−2)-curve.

The celebrated SYZ mirror symmetry was initiated from the work of Strominger-
Yau-Zaslow [22]. For a compact toric manifold X, its SYZ mirror is given by a
Landau-Ginzburg model which consists of a domain X̌ ⊂ (C∗)n and a holomorphic
function called the superpotentialW : X̌ → C. To compute the superpotential, the
open GW-invariants which count holomorphic disks play a fundamental role.

When the toric manifold is Fano, various aspects of the SYZ mirror symme-
try have been investigated, e.g., Cho and Oh [8] classified holomorphic disks with
boundary in Lagrangian torus fibers, and computed the superpotential for the mir-
ror. However, in the non-Fano situation, the moduli of holomorphic disks contains
bubble configurations and have a nontrivial obstruction theory, which make explicit
computations much more difficult. The only known results are the computations
of superpotentials of the Hirzebruch surface F2 by Fukaya, Oh, Ohta and Ono
[11] using their big machinery, and F2 and F3 by Auroux [2] via wall-crossing.
More recently, using a formula relating open and closed GW-invariants proved by
the first author [4], the open GW invariants of all torci CY surfaces and certain
CY-threefolds, including the canonical bundles of toric Del Pezzo surfaces, were
computed in the joint works [17, 18] of the second author with Leung and Wu.

The main result of this paper calculates the superpotential, or equivalently all
genus zero open GW-invariants for Maslov index 2 classes, for every semi-Fano toric
surface.
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Theorem 1.1. Let X be a compact semi-Fano toric surface. Let b ∈ π2(X,T) be a
class of disks with Maslov index two bounded by a Lagrangian torus fiber T. Then
the genus zero one-pointed open GW-invariant nb is either one or zero according
to whether b is admissible or not.

As a consequence, the superpotential for the mirror of X is

W =
∑

b admissible
b∈π2(X,T)

Zb.

Here, b is admissible iff b = β +
∑

k skDk, where

(1) β ∈ π2(X,T) intersects a unique irreducible toric divisor D0 once;
(2) Dk’s are toric divisors which form a chain of (−2)-curves;
(3) Both s0 ≥ s1 ≥ s2 ≥ · · · and s0 ≥ s−1 ≥ s−2 ≥ · · · are nondecreasing integer

sequences with |sk−sk+1| = 0 or 1 for each k, and the last term of each sequence
is not greater than one.

For each b ∈ π2(X,T), Zb is a holomorphic function on the dual torus bundle of X
defined by Equation (2).

The proof of Theorem 1.1 is based on the comparison of open GW-invariants
and ordinary GW-invariants in [4] (and its generalization in [17]), and the result on
local GW-invariants obtained by Bryan and Leung [3]. The idea is similar to the
proof of Theorem 4.2 in [18].

As an application, we give a verification based on direct computations that there
is a natural ring isomorphism between the small quantum cohomology QH∗(X) of
a semi-Fano toric surface X and the Jacobian ring Jac(W ) of its superpotentialW .

Corollary 1.2. Let X be a compact semi-Fano toric surface, and W the superpo-
tential for its mirror. Then there is a natural ring isomorphism

(1) QH∗(X) ∼= Jac(W ).

In the final stage of the preparation of this paper, a preprint [12] by Fukaya, Oh,
Ohta and Ono appeared on the arXiv. They proved that for every compact toric
manifold X and b ∈ H∗(X),

QH∗
b(X) ∼= Jac(Wb)

where QH∗
b(X) is the big quantum cohomology ring and Wb is the superpotential

bulk-deformed by b. Their proof uses their big machinery of Lagrangian Floer the-
ory and does not involve explicit computations of open Gromov-Witten invariants.
Corollary 1.2 can be obtained as a special case of their theorem.

By the isomorphism (1), for every semi-Fano toric surface X, our explicit expres-
sion for the supepotentialW leads to an explicit presentation of the small quantum
cohomology ring QH∗(X). Indeed we can obtain more:

Corollary 1.3. Let X be a compact semi-Fano toric surface and b = D + aX be
a linear combination of toric cycles, where D is a toric divisor and a ∈ C. Then
the bulk-deformed superpotential is

Wb = a+
∑

β admissible

exp(⟨β,D⟩)Zβ .

Then by using the results of FOOO mentioned above, an explicit ring presenta-
tion of QH∗

b(X) is obtained for b ∈ H2(X)⊕H4(X).
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Remark 1.4. FOOO [9, 10, 12] used Novikov ring instead of C as the coefficient
ring, which is more appropriate in general. Throughout this paper we stick to the
tradition of using C as the coefficient ring because W is a finite sum for toric semi-
Fano surfaces. All the statements in this paper remains unchanged if C is replaced
by the Novikov ring.

This paper is organized as follows. Section 2 is a review on toric manifolds and
their Landau-Ginzburg mirrors that we need. In Section 3 we compute the open
GW-invariants of semi-Fano toric surfaces and prove Theorem 1.1. In Section 4,
we outline our computational proof of the isomorphism QH∗(X) ∼= Jac(W ) and
demonstrate the explicit calculations by several examples. Corollary 1.3 is proved
in Section 5, and we end by some comments on bulk-deformation by points.

Acknowledgements. We are heavily indebted to Conan Leung. He not only
suggested this problem to us, but also allowed us to freely use his ideas throughout
this paper. We are also grateful to Baosen Wu for numerous inspiring discussions
and sharing many of his insights. Thanks are also due to Kenji Fukaya, Mark Gross
and Yong-Geun Oh for their useful comments on open Gromov-Witten invariants
with interior marked points. Much of this work was done in the IMS of the Chinese
University of Hong Kong, and when the first and second authors were visiting
the IHÉS and University of Wisconsin-Madison respectively. The authors would
like to thank these institutes for hospitality and providing an excellent research
environment.

2. Landau-Ginzburg mirror of toric manifolds

We set up the notations and review some basic facts in toric geometry and mirror
symmetry that we need in this paper.

2.1. A quick review on toric manifolds. Let N ∼= Zn be a lattice of rank n.
For simplicity we’ll always use the notation NR := N ⊗ R for a Z-module R. Let
XΣ be a compact complex toric n-fold XΣ defined by a fan Σ supported in NR.
XΣ admits an action by the complex torus NC/N ∼= (C×)n, whence its name ’toric
manifold’. There is an open orbit in XΣ on which NC/N acts freely, and by abuse
of notation we’ll also denote this orbit by NC/N ⊂ XΣ.

We denote by M the dual lattice of N . Every lattice point ν ∈ M gives a
nowhere-zero holomorphic function exp (ν , ·) : NC/N → C which extends to a
meromorphic function on XΣ. Its zero and pole set gives a toric divisor which is
linearly equivalent to 0. (A divisor D in XΣ is toric if D is invariant under the
action of NC/N on XΣ.)

If we further equip XΣ with a toric Kähler form ω, then the action of NR/N on
XΣ induces a moment map

µ0 : XΣ →MR,

whose image is a polytope P ⊂MR defined by a system of inequalities

(vi , ·) ≥ ci, i = 1, . . . , d,

where vi are all primitive generators of rays of Σ, and ci ∈ R are some suitable
constants.
P admits a natural stratification by its faces. Each codimension-one face Ti ⊂ P

which is normal to vi ∈ N gives an irreducible toric divisor Di = µ−1
0 (Ti) ⊂ XΣ for
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i = 1, . . . , d, and all other toric divisors are generated by {Di}di=1. For example,

the anti-canonical divisor of XΣ is given by
∑d

i=1Di.

2.2. Gromov-Witten invariants. First we recall the definition of the ordinary
GW-invariants of a projective manifold.

Let β ∈ H2(X,Z) be a 2-cycle in a smooth projective variety X. Let Mg,k(X,β)
be the moduli space of stable maps

f : (C;x1, · · ·xk) −→ X,

where C is a genus g nodal curve with k marked points and f∗[C] = β. Let
evi :Mg,k(X,β) → X (i = 1, . . . , k) be the evaluation maps f 7→ f(xi).

Definition 2.1. For cohomology classes γi ∈ H∗(X), 1 ≤ i ≤ k, the GW-invariant
of {γ1, · · · , γk} is

GWX,β
g,k (γ1, · · · , γk) :=

∫
[Mg,k(X,β)]vir

k∏
i=1

ev∗i (γi).

Analogously, we have the open Gromov-Witten invariants defined by FOOO [9],
and they are briefly described as follows. Let X = XΣ be a toric manifold defined
by a fan Σ. For a Lagrangian torus T ⊂ X, let π2(X,T) be the group of homotopy
classes of maps

u : (∆, ∂∆) −→ (X,T)

where ∆ := {z ∈ C : |z| ≤ 1} denotes the closed unit disk in C. Then π2(X,T) is
generated by the basic disk classes βi ∈ π2(X,T) which correspond to the primitive
generators vi ∈ N of rays in Σ for i = 1, . . . , d. The two most important classical
symplectic invariants associated to β ∈ π2(X,T) are its symplectic area

∫
β
ω and

its Maslov index µ(β).
Now for β ∈ π2(X,T), let Mk(T, β) be the moduli space of stable maps from a

bordered Riemann surface of genus zero with k boundary marked points respecting
the cyclic order of the boundary in the class β. Notice that the bordered Riemann
surface may have disk or sphere bubbles. It is known that Mk(T, β) has expected

dimension n + µ(β) + k − 3. Let [Mk(T, β)]
vir

be its virtual fundamental chain
constructed in [9]. We let

evi :Mk(T, β) −→ T

be the evaluation maps defined by evi([u; p0, . . . , pk−1]) = u(pi) for 0 ≤ i ≤ k − 1.

Definition 2.2 ([9]). Given a Lagrangian torus T ⊂ X and β ∈ π2(X,T), the
genus zero one-pointed open GW-invariant nβ is defined as

nβ :=

∫
[M1(T,β)]vir

ev∗0[pt]

where [pt] ∈ Hn(T) is the Poincaré dual of the point class of T.

The invariant nβ can be interpreted as the virtual number of holomorphic disks
in β whose boundaries pass through a generic point in T. We should mention that
the virtual dimension of M1(T, β) is equal to dimT = n if and only if µ(β) = 2.

Now let’s consider the situation where X = XΣ is a semi-Fano (i.e. with nef
anti-canonical bundle) and T ⊂ X is a regular torus fiber. By the classification
result of Cho-Oh [8], a class β ∈ π2(X,T) represented by a stable disk must be of
the form β = β′+α, where β′ is represented by a holomorphic disk and α ∈ H2(X)
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is represented by a rational curve. The Maslov index of β′ is at least two, and
the Chern number

∫
α
c1(X) of α must be non-negative since X is semi-Fano. This

shows that any stable disk bounded by T has µ ≥ 2, which implies that M1(T, β)
has no boundary since there is no disk bubbling, and hence the virtual fundamental
chain [M1(T, β)] is indeed a cycle. Thus nβ defined above is indeed a symplectic
invariant.

2.3. The LG mirror of toric manifolds. The mirror of a toric manifoldX = XΣ

is a Landau-Ginzburg model (X̌,W ), which is a complex manifold X̌ equipped with
a holomorphic function W : X̌ → C called the superpotential. This superpotential
can be written down in terms of Kähler sizes and open Gromov-Witten invariants
of X [8, 1, 6]. The following is a brief review of this procedure from the SYZ
viewpoint. See [6] for more details.

First of all, we recall that the semi-flat mirror of X is

X̌0 :=
{
(Tr,∇) : r ∈ P int,∇ is a flat U(1)-connection on Tr

}
,

where Tr ⊂ X denotes the moment-map fiber over r and P int denotes the interior
of P . It is well known that X̌0 can be equipped with the so-called semi-flat complex
structure, making it into a complex manifold [19]. In this toric case, X̌0 is simply
P int ×MR/M equipped with the standard complex structure.

Let Λ∗ be the lattice bundle over B0 whose fiber at r ∈ P int is Λ∗
r = π1(Tr). For

each λ ∈ Λ∗, we may consider the following weighted count of stable holomorphic
disks:

F(λ) :=
∑
∂β=λ

nβ exp

(
−
∫
β

ω

)
.

This defines a function F : Λ∗ → R. Applying fiberwise Fourier transform on F ,
we obtain the superpotential

W : X̌0 → C,

W (Tr,∇) =
∑

β∈π2(X,Tr)

nβ exp

(
−
∫
β

ω

)
Hol∇(∂β),

which defines a holomorphic function on X̌0. Notice that the above expression can
be an infinite series. Nevertheless we’ll see that for semi-Fano toric surfaces, this is
just a finite sum and hence there is no convergence issues. For β ∈ π2(X,Tr), we
define a function Zβ : X̌0 → C by

(2) Zβ(Tr,∇) := exp

(
−
∫
β

ω

)
Hol∇(∂β),

so that the superpotential can be written in the form W =
∑

β∈π2(X,Tr)
nβZβ .

It is already known by [8] that nβi = 1, where βi, are the basic disk classes for
i = 1, . . . , d corresponding to the primitive generators vi ∈ N . Moreover, when X
is semi-Fano, the moduli space M1(T, β) is non-empty only when β = βi + α for
some i = 1, . . . , d and α ∈ H2(X) represented by a rational curve of Chern number
zero. Thus we may write

W =W0 +
d∑

i=1

∑
α̸=0,c1(α)=0

nβi+αZβi+α,
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whereW0 =
∑d

i=1 Zβi . In general it is very hard to compute nβi+α starting from the
definition. In the following section, we’ll give a method to compute these invariants
when X is a semi-Fano toric surface.

3. Disk counting and GW-invariants

3.1. Toric surfaces. In this subsection we give some basic results on toric surfaces,
which will be needed in the proof of Theorem 1.1. These are probably well-known
facts among experts.

We start with the well-known formula for self-intersection number of a compact
toric divisor. Let X = XΣ be a smooth toric surface defined by a fan Σ in Z2.
Suppose D ⊂ X is a compact toric prime divisor. Then D corresponds to a ray
τ ∈ Σ, so that τ = σ− ∩ σ+ for two 2-dimensional cones σ−, σ+ ∈ Σ. (See Figure
1).

B
B
B
B
BM

B
B
B
B
B
BB

Q
Q

Q
QQk

����*
u

v

w

τ

σ+

σ−

O

Figure 1. Cones corresponding to a compact divisor.

Let τ be generated by v ∈ Z2, σ− be generated by u, v and σ+ be generated
by v, w such that u, v, w are placed in a counterclockwise fashion. Then the self-
intersection of D is given by

D2 = −
∣∣∣∣u1 w1

u2 w2

∣∣∣∣
where

u =

(
u1
u2

)
and w =

(
w1

w2

)
.

Proposition 3.1. Let D = ∪l
i=1Di be a connected union of compact toric prime

divisors with D2
i = −2, and τi be the ray corresponding to Di. Suppose σi ∈ Σ are

2-dimensional cones so that τi = σi−1∩σi. Then the cone ∪n
i=0σi is strictly convex.

Proof. Suppose τi is generated by vi ∈ Z2. Without loss of generality, we can
assume vi are labeled in a counterclockwise order as vectors in R2. We further let
σ0 be generated by v0, v1; and σn be generated by vn, vn+1.

Let

vi =

(
ai
bi

)
.

Since Di is a (−2)-curve, we have∣∣∣∣ai−1 ai+1

bi−1 bi+1

∣∣∣∣ = 2.

In other words, the area of the triangle spanned by vi−1 and vi+1 is 1.
On the other hand, let A be the triangle spanned by vectors vi−1 and vi; and let

B be the triangle spanned by vi and vi+1. Since X is smooth, the areas of A and
B are 1

2 . Now because the sum of areas of A and B is 1, which is equal to the area
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Figure 2. −2 toric divisors.

of the triangle spanned by vi−1 and vi+1, we know the heads of the vectors vi−1, vi
and vi+1 are on the same line L. Moreover,

vi =
1

2
(vi−1 + vi+1).

Now since the heads of all vectors vi are on the same line, the cone ∪n
i=0σi must

be strictly convex. �

3.2. Proof of Theorem 1.1. In this subsection, we give a proof of Theorem 1.1.
Let X be a compact semi-Fano toric surface. Let D1, · · · , Dd be the toric prime

divisors of X. Let T be a Lagrangian torus fiber and let βi ∈ π2(X,T) be the
relative homotopy class of a Maslov index 2 disk such that βi ·Dj = δij .

Given any b ∈ π2(X,T) of Maslov index two. Recall that M1(T, b) is the
moduli space of stable maps from bordered Riemann surfaces of genus zero with
one boundary marked point to X in the class b. It is known that M1(T, b) is
empty unless b = βi, or b = βi + α for some i ∈ {1, . . . , d} and α ∈ H2(X,Z) with
c1(α) = 0. Moreover, such an α must be of the form α =

∑
skDk where all Dk

have self-intersection −2.
Our goal is to calculate the open GW-invariant nb for all classes b. To state the

result, we need the following definitions.

Definition 3.2. Let m1,m2 ∈ Z. We call a sequence {sk : m1 ≤ k ≤ m2}
admissible with center l if each sk is a positive integer, and

(1) si ≤ si+1 ≤ si + 1 when i < l;
(2) si ≥ si+1 ≥ si − 1 when i ≥ l;
(3) sm1 , sm2 ≤ 1.

For any toric prime divisorDi with self-intersection −2, we have a maximal chain
Dmax

i of compact toric (−2)-divisors containing Di. Given a sequence {sk}, we have
an induced sequence {s̃k} with respect to Di, defined as s̃j = sj if Dj ⊂ Dmax

i and
sj = 0 otherwise.

Definition 3.3. Let b = βi + α with α =
∑
skDk. We say b is admissible if

D2
i = −2 and the sequence {sk} is identical to its induced sequence with respect to

Di, and {sk} is admissible with center i.

To prove Theorem 1.1, we recall the local GW-invariants of a configuration of
P1’s which was obtained by Jim Bryan and Conan Leung in [3].

Let L(n) be a genus 0 nodal curve consisting of a linear chain of 2n+ 1 smooth
components L−n, · · · , Ln with an additional smooth component L∗ meeting L0. So
we have Ln ∩ Lm = ∅ unless |n −m| = 1 and L∗ ∩ Ln = ∅ unless n = 0. It was
shown in [3] that L(n) can be embedded into a smooth surface S so that all Li are
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(−2)-curves and L∗ is a (−1)-curve, where S can be taken as a certain blowup of
P2 along points.

q
q q q q qq qq · · · q q· · ·

1

s0 s1 s2 sn−1 sns−1s−2s−n s−n+1

Figure 3. The graph of L(n).

The local GW-invariants of L(n) is well-defined, at least for curve classes

L∗ +

n∑
k=−n

skLk, sk ≥ 0.

Theorem 3.4. [3] The genus zero local GW-invariants N(sk) of L(n) for classes
L∗ +

∑n
k=−n skLk is given by

N(sk) =

{
1 if {sk} is admissible with center 0.
0 otherwise.

We remark that here admissible with center 0 is an equivalent term for 1-
admissible used in [3].

We come to prove our main result Theorem 1.1.

Proof of Theorem 1.1. Given a semi-Fano toric surface X defined by a fan Σ, we
would like to compute the open GW-invariant nb for b ∈ π2(X,T). First of all, by
[8, 9], nb is non-zero only when b = βi+α for some i and α ∈ H2(X,Z) represented
by rational curves with c1(α) = 0. It is already known that nb = 1 when α = 0, so
it suffices to consider α ̸= 0.

Suppose nβi+α ̸= 0 and α ̸= 0. Then Di must have self-intersection −2, and α
must be of the form α =

∑
k∈I skDk, where I is the index set containing all the

natural numbers k such that Dk ⊂ Dmax
i , and si ̸= 0. We want to show that the

sequence {sk} is admissible, and in such cases nb = 1.
This is done by equating the open GW-invariant nb to an ordinary GW-invariant

of yet another toric manifold Y , which is a toric modification ofX. The modification
is done as follows. Let vi be the primitive generator of the ray of Σ corresponding
to Di, and let Σ1 be the refinement of Σ by adding the ray generated by v∞ :=
−vi (and then completing it into a convex fan). In general the corresponding
toric variety XΣ1 may not be smooth. If this is the case, then we take a toric
desingularization Y of XΣ1 by adding rays which are adjacent to v∞. By abuse
of notations we still denote the divisors in Y corresponding to vl’s by Dl, and
α =

∑
k∈I skDk is regarded as a homology class in Y . We remark that the above

procedure does nothing if the ray generated by v∞ is already in Σ.
Notice that in Σ, the ray generated by v∞ cannot be adjacent to those generated

by vk for k ∈ I (I is the index set introduced above) by using the fact that Dk’s
have self-intersection (−2). Then the newly added rays are not adjacent to any vk
for k ∈ I, and thus each Dk ⊂ Y for k ∈ I still has self-intersection number (−2).
Let f ∈ H2(Y ) be the fiber class, that is, f = βi + β∞, where β∞ is the disk class
corresponding to v∞.
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By Theorem 1.1 in [4] and its generalization in [17], we have the following equality
between open and closed GW-invariants

nb = GWY,α+f
0,1 ([pt]).

The proof is done by equating the open moduliM
ev=p

1 (X, b) with the closed moduli

M
ev=p

1 (Y, f + α) together with their Kuranishi structures. We refer the details to
[4, 17].

Next we identify GWY,α+f
0,1 ([pt]) with the local GW-invariant of a configuration

of P1’s.
Let Ỹ be the blowup of Y at a generic point p. Then, by the result of Hu [15]

and Gathmann [13], which relates GW-invariants of blowups along points, we know
that the GW-invariant of Y for a class γ with one point constraint is equal to that
of Ỹ for the strict transform of γ without this point constraint. More precisely, we
have

GWY,α+f
0,1 ([pt]) = GW Ỹ ,α+f ′

0,0 ,

where f ′ is the strict transform f , which is the class of a (−1)-curve.
Because α =

∑
skDk, with all Dk have self-intersection −2, it is easy to see that

every curve in α+ f ′ is a tree of P1’s, with the same configuration as L(n), up to

a relabeling of its index. Therefore, GW Ỹ ,α+f ′

0,0 is exactly the local GW-invariant

of L(n). Theorem 1.1 now follows from Theorem 3.4. �

Theorem 1.1 allows us to explicitly compute the superpotential for the mirror of
any compact semi-Fano toric surface. Since these surfaces are completely classified
(there are totally 16 such surfaces, including the Fano ones), we can compute all
the superpotentials; a list of the results is given in the appendix.

4. Small quantum cohomology and Jacobian ring

For a toric Fano manifold X, the map

ψ : QH∗(X) → Jac(W ), Di 7→ Zβi ,

gives a canonical ring isomorphism between the small quantum cohomologyQH∗(X)
of X and the Jacobian ring Jac(W ) of the superpotential W [6, 9]. Recall that the
Jacobian ring of W is defined as

Jac(W ) = C[z±1
1 , . . . , z±1

n ]/⟨∂1W, . . . , ∂nW ⟩,

where ∂j denotes zj
∂

∂zj
and n = dimX. In the non-Fano case, it is expected that

we still have an isomorphism QH∗(X) ∼= Jac(W ),1 but the map ψ : QH∗(X) →
Jac(W ) needs to be modified by quantum corrections.

In the following, we briefly recall the definition of the corrected map following
Fukaya, Oh, Ohta and Ono [9, 10]. As before, X is a compact toric manifold and T
is a Lagrangian torus fiber. Consider the moduli space Mk,l(T, β) of stable maps
from genus 0 bordered Riemann surfaces to (X,L) with k boundary marked points
and l interior marked point in the class β. We have evaluation maps

evint :Mk,l(T, β) → X l, [u; p0, p1, . . . , pk−1; z1, . . . , zl] 7→ (u(z1), . . . , u(zl)),

1This is now proved in the recent work [12] of Fukaya, Oh, Ohta and Ono (as a special case of
their main result).
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and

evi :Mk,1(T, β) → T, [u; p0, p1, . . . , pk−1; z] 7→ u(pi),

i = 0, 1, . . . , k − 1, at the interior and boundary marked points respectively.
Let V1, . . . , Vl ⊂ X be toric subvarieties. Consider the fiber product

M1,l(T, β;V1, . . . , Vl) :=M1,l(T, β)evint ×Xl

 l∏
j=1

Vj

 .

More precisely, M1,l(T, β;V1, . . . , Vl) is the set of all elements

([u; p0; z1, . . . , zl], x1, . . . , xl) ∈M1,l(T, β)×
l∏

j=1

Vj

such that u(z1, . . . , zl) = (x1, . . . , xl). The virtual dimension ofM1,l(T, β;V1, . . . , Vl)

is n+ µ(β) + 2l − 2−
∑l

j=1 codimR(Vj).

Definition 4.1 ([10, 11]). The genus zero open GW-invariant n(β;V1, . . . , Vl) is
defined as

n(β;V1, . . . , Vl) =

∫
[M1,l(T,β;V1,...,Vl)]

vir
ev∗0 [pt].

It is non-zero only when the virtual dimension matches, that is, µ(β) = 2 − 2l +∑l
j=1 codimR(Vj).

By Lemma 6.8 in [10], the number n(β;V1, . . . , Vl) ∈ Q is independent of the

auxiliary perturbation data used to define [M1,1(T, β;V )]
vir

. Definition 2.2 is the
special case when l = 0.

Choose an additive basis {Ti = PD[Vi]} of H∗(X,C) represented by the Poincaré
duals of fundamental classes of toric subvarieties Vi ⊂ X.

Definition 4.2 ([10, 11]). Define an additive map ψ : QH∗(X) → Jac(W ) by
setting

ψ(Ti) =
∑

β:µ(β)=codimR(Vi)

n(β;Vi)Zβ ,

and extending linearly.

Remark 4.3. Fukaya, Oh, Ohta and Ono [10] also study the so-called poten-
tial function with bulk of a toric manifold X, by incorporating deformations of
Floer cohomology by cycles on the ambient space X. (In contrast, the super-
potential, or what Fukaya, Oh, Ohta and Ono called the potential function, W
just encodes deformations of Floer cohomology by the cycles on L.) In the recent
preprint [12], they proved that the Jacobian ring of the potential function with bulk
is canonically isomorphic to the big quantum cohomology ring of X. The map
ψ : QH∗(X) → Jac(W ) we discuss here is a special case of this isomorphism, when
the bulk deformation is set to zero. We’ll also discuss the potential function with
bulk in Section 5.

Now, for the toric prime divisors D1, . . . , Dd, the map ψ is given by

Di 7→
∑

β:µ(β)=2

n(β;Di)Zβ .
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A special case of Lemma 9.2 in [10] gives the following analogue of the divisor
equation for open GW-invariants.

Proposition 4.4 ([10]). If D is a toric divisor, then we have the following equality

n(β;D) = (D · β)nβ .

Combining with our Theorem 1.1, we can compute the map ψ : QH∗(X) →
Jac(W ) on toric divisors for any compact semi-Fano toric surface. As an applica-
tion, we outline a proof of Corollary 1.2 in the following.

To begin with, recall that the cohomology ring H∗(X,C) of a compact toric
manifold X is generated by the divisor classes D1, . . . , Dd ∈ H2(X,C). Moreover,
a presentation of H∗(X,C) is given by

H∗(X,C) = C[D1, . . . , Dd]/(L+ SR),

where L is the ideal generated by linear equivalences among divisors and SR is the
Stanley-Reisner ideal generated by primitive relations.

By a result of Siebert and Tian [21], when X is semi-Fano, the small quantum
cohomology QH∗(X) is also generated by the divisor classes D1, . . . , Dd and a
presentation of QH∗(X) is given by replacing each relation in SR by its quantum
counterpart, i.e. denoting the quantum Stanley-Reisner ideal by SRQ, then we
have

QH∗(X) = C[D1, . . . , Dd]/(L+ SRQ).

Consider the case when X = XΣ is a semi-Fani toric surface. We also assume
that X is not P2. Then any primitive collection is of the form P = {vi, vj} so that
vi, vj do not generate a cone in Σ. To compute SRQ, we need to calculate Di ∗Dj ,
where ∗ denotes the small quantum product. Choose dual bases {Dm}, {Dm} of
H2(X), both represented by toric divisors. Then, by the divisor equation and a
straightforward manipulation, we have

Di ∗Dj =
∑

α:c1(α)=2

(Di · α)(Dj · α)GWX,α
0,1 ([pt])qα

+
∑
m

 ∑
α:c1(α)=1

(Di · α)(Dj · α)(Dm · α)GWX,α
0,0 qα

Dm.

The GW-invariants GWX,α
0,1 ([pt]), GWX,α

0,0 can be computed using the results of

Bryan-Leung [3] as follows. To compute GWX,α
0,1 ([pt]), note that we have c1(α) = 2

so that α2 = 0. Such an α must be of the form α′ + f where α′ is represented
by a chain of (−2)-toric prime divisors and f is a fiber class. We are therefore in

exactly the same situation as in the proof of Theorem 1.1. Hence, GWX,α
0,1 ([pt]) can

be computed as before.

As forGWX,α
0,0 , we have c1(α) = 1, so that α is represented by a chain

∑q
k=−p skDik

of toric prime divisors such that D2
ik

= −2 for all k ̸= 0, D2
i0

= −1 and s0 = 1. The
results of Bryan and Leung also apply in this situation: namely, the GW-invariant

GWX,α
0,0 = 1 if both the chains

∑0
k=−p skDik and

∑q
k=0 skDik are admissible with

center 0 and GWX,α
0,0 = 0 otherwise.

Let us give an example to illustrate the explicit computations.
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Example. Let Σ be the fan whose rays are generated by

v1 = (1, 0), v2 = (0, 1), v3 = (−1,−1), v4 = (0,−1), v5 = (1,−1), v6 = (2,−1).

This determines a toric surface X. We equip X with a toric Kähler form such that
the polytope P is given by

P = {(x1, x2) ∈ R2 : x1 ≥ 0, 0 ≤ x2 ≤ t1 + t3 + 2t4, x1 + x2 ≤ t1 + t2 + 2t3 + 3t4,

t1 + t4 + x1 − x2 ≥ 0, t1 + 2x1 − x2 ≥ 0},
where ti > 0 are the Kähler parameters.

D1

D6

D5

D4

D3

D2

-2

1

0

-2
-2

-1

Figure 4. The fan Σ and the polytope P defining X. The num-
bers beside the divisors indicate their self-intersection numbers.

The linear equivalences among divisors are generated by the following two rela-
tions

D1 −D3 +D5 + 2D6 = 0,

D2 −D3 −D4 −D5 −D6 = 0.

Hence, H2(X) is of rank 4. We choose the dual bases {Dm} and {Dm} to be
{D1, D4, D5, D6} and {D2, D3, D4 + 2D3, D1 + 2D2} respectively.

We can now start to compute the primitive relations. For example, we want
to compute D2 ∗ D4. We need to look for all curve classes with c1 = 1, 2 which
intersect both D2 and D4 non-trivially. There are two such classes with c1 = 2:
the classes represented by D3 and D3 +D4, and also two with c1 = 1: the classes
represented by D1+D5+D6 and D1+D4+D5+D6. Since all these configurations
are admissible, the corresponding GW-invariants are all equal to one, by the above
discussion. Hence, we get

D2 ∗D4 = q1q3q
2
4 − q1q2q3q

2
4 + q1q3q4(−D2 +D3 − (D4 + 2D3) + (D1 + 2D2))

−q1q2q3q4(−D2 −D3 + (D1 + 2D2))

= q1q3q
2
4 − q1q2q3q

2
4 + q1q3q4(D1 +D5 +D6)

−q1q2q3q4(D1 +D4 +D5 +D6),

where we have used linear equivalences to get the second equality. Similarly, we
can compute all other primitive relations.

Having computed all the primitive relations, we can go on to show the following

Lemma 4.5. The map

ψ : C[D1, . . . , Dd] → C[z±1
1 , z±1

2 ], Di 7→
∑

β:µ(β)=2

n(β;Di)Zβ

defines a ring homomorphism ψ : QH∗(X) → Jac(W ).
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Sketch of proof. First of all, we show that the ideal L of linear equivalences is
mapped to the ideal ⟨∂1W, . . . , ∂nW ⟩ by ψ. Linear equivalences are generated by

the relations
∑d

i=1 v
j
iDi = 0, j = 1, 2, where we write vi = (v1i , v

2
i ) in coordinates.

By Proposition 4.4, we have

ψ(Di) =

d∑
k=1

∑
α:c1(α)=0

n(βk + α;Di)Zβk+α

=
d∑

k=1

∑
α:c1(α)=0

(Di · (βk + α))n(βk + α)Zβk+α.

Hence, we have

ψ

(
d∑

i=1

vjiDi

)
=

d∑
i=1

vji

 d∑
k=1

∑
α:c1(α)=0

(Di · (βk + α))n(βk + α)Zβk+α


=

d∑
k=1

∑
α:c1(α)=0

(
d∑

i=1

vji (δik +Di · α)

)
n(βk + α;Di)Zβk+α

=
d∑

k=1

∑
α:c1(α)=0

vjkn(βk + α;Di)Zβk+α

= ∂jW.

Next, we need to show that each primitive relation is mapped by ψ to a relation
in the ideal ⟨∂1W, . . . , ∂nW ⟩. This can be done by explicit computations. Again,
we illustrate this by an example.

Consider X in the previous example. By Theorem 1.1, we can compute the
superpotential explicitly. The result is given by

W = (1 + q1)z1 + z2 +
q1q2q

2
3q

3
4

z1z2
+ (1 + q2 + q2q3)

q1q3q
2
4

z2

+(1 + q3 + q2q3)
q1q4z1
z2

+
q1z

2
1

z2
,

where ql = exp(−tl), l = 1, . . . , 4. We can also compute the images of the divisors
Di under ψ:

ψ(D1) = (1− q1)z1,

ψ(D2) = z2 + q1z1,

ψ(D3) =
q1q2q

2
3q

3
4

z1z2
+ (q2 + q2q3)

q1q3q
2
4

z2
+
q1q2q3q4z1

z2
,

ψ(D4) = (1− q2)(
q1q3q

2
4

z2
+
q1q3q4z1

z2
),

ψ(D5) = (1− q3)(
q1q4z1
z2

+
q1q2q3q

2
4

z2
),

ψ(D6) =
q1z

2
1

z2
+ q1z1 + (q3 + q2q3)

q1q4z1
z2

+
q1q2q

2
3q

2
4

z2
.
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Using what we have computed before,

D2 ∗D4 = q1q3q
2
4 − q1q2q3q

2
4 + q1q3q4(D1 +D5 +D6)

−q1q2q3q4(D1 +D4 +D5 +D6)

= q1q3q4[(1− q2)(q4 +D1 +D5 +D6)− q2D4].

This is mapped by ψ to

q1q3q4[(1− q2)(q4 + z1 +
q1z

2
1

z2
+ (1 + q2q3)

q1q4z1
z2

+
q1q2q3q

2
4

z2
)

−q2(1− q2)(
q1q3q

2
4

z2
+ q3

q1q4z1
z2

)]

= q1q3q4(1− q2)(q4 + z1 +
q1z

2
1

z2
+
q1q4z1
z2

),

which is exactly ψ(D2) · ψ(D4).
Similarly, we can show that ψ(SRQ) = {0} ⊂ Jac(W ). Hence, ψ defines a ring

homomorphism ψ : QH∗(X) → Jac(W ). �

Corollary 1.2 now follows from the following lemma.

Lemma 4.6. For generic choices of the Kähler parameters ql, ψ : QH∗(X) →
Jac(W ) is a bijective map.

Sketch of proof. Having computed the superpotential W and the images of the
divisors Di under ψ, we can check surjectivity of ψ in a straightforward way. For
instance, for the surface X in the previous example, we have

z1 = ψ((1− q1)
−1D1), z2 = ψ(D2 − q1(1− q1)

−1D1),

z−1
2 = ψ([q1q3q

2
4(1− q2)(1− q2q3)]

−1D4 − [q1q
2
4(1− q3)(1− q2q3)]

−1D5).

Also, since we have the relation ∂1W = 0 which gives

z−1
1 = (q1q2q

2
3q

3
4)

−1[(1 + q1)z1z2 + (1 + q3 + q2q3)q1q4z1 + 2q1z
2
1 ],

and ψ is a homomorphism, z−1
1 also lies in the image of ψ. The surjectivity of ψ

for all other examples can be checked in this way.
On the other hand, by Proposition 3.7 and Lemma 3.9 in Iritani [16] (which

were proved by using Kouchnirenko’s results), we have dimH∗(X) = dimJac(W )
for generic choices of the Kähler parameters ql. Hence, ψ : QH∗(X) → Jac(W ) is
bijective. �

5. The big quantum cohomology

5.1. The potential with bulk. For a Lagrangian torus fiber T in a compact toric
manifold X and b ∈ A, where A := C⟨toric invariant cycles⟩, FOOO [10] defined
the potential with bulk Wb as

Wb :=
∑

β∈π2(X,T)
l≥0

1

l!
nl(β;b, . . . ,b︸ ︷︷ ︸

l

)Zβ

where the open Gromov-Witten invariants n(β;V1, . . . , Vl) (see Definition 4.1) ex-
tend multilinearly to give a function nl : π2(X,T)×A⊗l → C. In a recent preprint
[12] they proved that

QH∗
b(X) ∼= Jac(Wb).
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Thus an explicit expression of Wb would give an explicit presentation of the big
quantum cohomology ring QH∗

b(X).
In the previous section, we have given an explicit expression of Wb when b = 0

for a semi-Fano toric surface X. We consider its potential with bulk in this section.
For the purpose of computing QH∗

b(X), it is enough to consider b = aX +D+ cp,
where D is a toric divisor, p is the intersection point of two toric prime divisors
(say D1 and D2), and a, c ∈ C.

Proposition 5.1 (Restatement of Corollary 1.3). Let X be a semi-Fano toric
surface, and b = aX +D + cp as described above. Then

Wb = a+
∑
β ̸=0

exp(⟨β,D⟩)

( ∞∑
k=0

ck

k!
nk(β; p, . . . , p)

)
Zβ .

In particular, when c = 0,

Wb = a+
∑

β admissible

exp(⟨β,D⟩)Zβ .

Proof. When β ̸= 0,
nk(β; [X], γ1, . . . , γk−1) = 0

for all k ≥ 1 and γ1, . . . , γk−1 ∈ H∗(X) due to dimension reason. Thus

Wb :=
∑

β∈π2(X,T)
l≥0

1

l!
nl(β;b, . . . ,b)Zβ

=
∑
l≥0

1

l!
nl(0;b, . . . ,b) +

∑
β ̸=0
l≥0

1

l!
nl(β;D + cp, . . . ,D + cp)Zβ .

Moreover, n1(0;X) = 1 (M1,1(T, 0;X) contains the constant map only) and n1(0; p) =
n1(0;D) = 0 (the corresponding moduli spaces are empty). Also by dimension
counting, nl(0; γ1, . . . , γl) = 0 for all l ̸= 1. Thus the first term is∑

l≥0

1

l!
nl(0;b, . . . ,b) = a.

Using the divisor equation for open Gromov-Witten invariants ([10]; see Proposition
4.4), the second term is∑
β ̸=0
l≥0

1

l!
nl(β;D + cp, . . . , D + cp)Zβ =

∑
β ̸=0
l≥0

1

l!

l∑
k=0

Cl
kc

knl(β;D, . . . ,D︸ ︷︷ ︸
l−k

, p, . . . , p︸ ︷︷ ︸
k

)Zβ

=
∑
β ̸=0
l≥0

1

l!

l∑
k=0

Cl
kc

k(⟨β,D⟩)l−knk(β; p, . . . , p)Zβ

=
∑
β ̸=0
j,k≥0

ck

j!k!
(⟨β,D⟩)jnk(β; p, . . . , p)Zβ

=
∑
β ̸=0

exp(⟨β,D⟩)

( ∞∑
k=0

ck

k!
nk(β; p, . . . , p)

)
Zβ .
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When c = 0,

Wb = a+
∑
β ̸=0

exp(⟨β,D⟩)nβZβ .

By Theorem 1.1, nβ = 1 when β is admissible, and 0 otherwise. Thus

Wb = a+
∑

β admissible

exp(⟨β,D⟩)Zβ .

�

5.2. Speculations and discussions. In Proposition 5.1, nl(β; p, . . . , p) (l ≥ 1)
has not been computed. In the following we give an informal discussion concerning
these invariants.

One of the issues involved in computing these invariants is the presence of ‘ghost
bubbles’ in the moduli space M1,l(T, β; p, . . . , p) (see Figure 5) when p is chosen to
be a toric fixed point. On the other hand, if we consider p1, . . . , pl ∈ X in generic
position, which is the approach taken by M. Gross [14] where he used tropical geom-
etry to define the superpotential with bulk, the moduli space M1,l(T, β; p1, . . . , pl)
does not involve disk bubbling (when β has the suitable Maslov index µ(β) =

2− 2l+
∑l

j=1 codimR(Vj) so that the moduli has expected dimension n = dimT),

and also ghost bubbles are not present. The invariant nl(β; p1, . . . , pl) can still be
defined, and it is easier to compute.

D1

D2p

Figure 5. Ghost bubbles in M1,4(T, β; p, p, p, p). The whole
sphere bubble is contracted to the toric fixed point p. The disk
class is taken such that M1,4(T, β; p, p, p, p) has expected dimen-
sion 2. However the actual dimension is bigger than 2 since the
interior marked points are free to move in the bubble.

This motivates us to consider p′ ∈ D1 which is not fixed by the torus action,
and define the invariant nl(β; p

′, . . . , p′) by taking a generic perturbation of the l
points around p′.

Example 5.2 (The Hirzebruch surface F2). Consider The Hirzebruch surface F2

whose polytope picture is shown in Figure 6. If we take the above approach, then
nl(β; p

′, . . . , p′) equals to 1 when β = lβ1 + βi for i = 2, 3, 4 or β = lβ1 + β4 +D4,
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p’

D1

D2

D3

D4

Figure 6. The polytope of the Hirzebruch surface F2.

and 0 otherwise. Then for b = a[X] +D + cp,

Wb = a+
∑
β ̸=0

exp(⟨β,D⟩)

( ∞∑
k=0

ck

k!
nk(β; p, . . . , p)

)
Zβ

= a+ exp(⟨β1, D⟩)Zβ1 +
4∑

i=2

exp(c e⟨β1,D⟩Zβ1) exp(⟨βi, D⟩)Zβi

+ exp(c e⟨β1,D⟩Zβ1) exp(⟨β4 +D4, D⟩)q4Zβ4 .

The above consideration is tentative, and we are still investigating whether this
idea is in the right direction.

Appendix A. A list of the superpotentials for the mirrors of all
semi-Fano toric surfaces

Using the fact that any smooth compact toric surface is a blowup of either P2

or a Hirzebruch surface Fm (m ≥ 0) at torus fixed points, it is easy to see that
there are finitely many isomorphism classes of semi-Fano toric surfaces. In fact, all
except F2 and P1×P1 are blowups of P2; there are 16 of such surfaces, five of which
are Fano (namely, P2, P1 × P1 and the blowup of P2 at 1, 2 or 3 points).

By using Theorem 1.1, we can compute the superpotentials for the mirrors of all
these semi-Fano toric surfaces explicitly. In this appendix, we shall give a list of the
superpotentials for the 11 semi-Fano but non-Fano toric surfaces. We enumerate
them as X1, . . . , X11, and each surface is specified by the primitive generators ρ(Σ)
of rays of its fan and the defining inequalities of its polytope. Also, in the following
tables, the tl’s are positive numbers and ql = exp(−tl) (Kähler parameters).
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ρ(Σ) polytope P superpotential W

X1

v1 = (1, 0) x1 ≥ 0

z1 + z2 +
q21q2
z1z2

2
+ (1 + q2)

q1
z2

v2 = (0, 1) x2 ≥ 0
v3 = (−1,−2) 2t1+ t2−x1−2x2 ≥ 0
v4 = (0,−1) t1 − x2 ≥ 0

X2

v1 = (1, 0) x1 ≥ 0

z1 + z2 +
q1q2q

2
3

z1z2
+(1+ q2)

q1q3
z2

+ q1z1
z2

v2 = (0, 1) x2 ≥ 0
v3 = (−1,−1) t1+t2+2t3−x1−x2 ≥

0
v4 = (0,−1) t1 + t3 − x2 ≥ 0
v5 = (1,−1) t1 + x1 − x2 ≥ 0

X3

v1 = (1, 0) x1 ≥ 0

(1 + q1)z1 + z2 +
q1q2q

2
3q

3
4

z1z2
+ (1 +

q2 + q2q3)
q1q3q

2
4

z2
+ (1 + q3 +

q2q3)
q1q4z1

z2
+

q1z
2
1

z2

v2 = (0, 1) x2 ≥ 0
v3 = (−1,−1) t1+t2+2t3+3t4−x1−

x2 ≥ 0
v4 = (0,−1) t1 + t3 + 2t4 − x2 ≥ 0
v5 = (1,−1) t1 + t4 + x1 − x2 ≥ 0
v6 = (2,−1) t1 + 2x1 − x2 ≥ 0

X4

v1 = (1, 0) x1 ≥ 0

(1 + q1)z1 + z2 +
q2q3q4

z1
+

q1q3q
2
4

z2
+

(1 + q3)
q1q4z1

z2
+

q1z
2
1

z2

v2 = (0, 1) x2 ≥ 0
v3 = (−1, 0) t2 + t3 + t4 − x1 ≥ 0
v4 = (0,−1) t1 + t3 + 2t4 − x2 ≥ 0
v5 = (1,−1) t1 + t4 + x1 − x2 ≥ 0
v6 = (2,−1) t1 + 2x1 − x2 ≥ 0

X5

v1 = (1, 0) x1 ≥ 0

z1 + z2 +
q2q3q4

z1
+

q1q3q
2
4

z1z2
+ (1 +

q3)
q1q4
z2

+ q1z1
z2

v2 = (0, 1) x2 ≥ 0
v3 = (−1, 0) t2 + t3 + t4 − x1 ≥ 0
v4 = (−1,−1) t1+t3+2t4−x1−x2 ≥

0
v5 = (0,−1) t1 + t4 − x2 ≥ 0
v6 = (1,−1) t1 + x1 − x2 ≥ 0

X6

v1 = (1, 0) x1 ≥ 0

(1 + q1)z1 + z2 +
q2q3q4q5

z1
+

q1q3q
2
4q

3
5

z1z2
+ (1 + q3 + q3q4)

q1q4q
2
5

z2
+

(1 + q4 + q3q4)
q1q5z1

z2
+

q1z
2
1

z2

v2 = (0, 1) x2 ≥ 0
v3 = (−1, 0) t2+t3+t4+t5−x1 ≥ 0
v4 = (−1,−1) t1+t3+2t4+3t5−x1−

x2 ≥ 0
v5 = (0,−1) t1 + t4 + 2t5 − x2 ≥ 0
v6 = (1,−1) t1 + t5 + x1 − x2 ≥ 0
v7 = (2,−1) t1 + 2x1 − x2 ≥ 0

X7

v1 = (1, 0) x1 ≥ 0

(1 + q1)z1 + z2 +
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ρ(Σ) polytope P superpotential W
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Figure 7. Polytopes defining the semi-Fano but non-Fano toric
surfaces. The numbers indicate the self-intersection numbers of
the toric divisors.
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