OPEN GROMOV-WITTEN INVARIANTS AND
SUPERPOTENTIALS FOR SEMI-FANO TORIC SURFACES

KWOKWAI CHAN AND SIU-CHEONG LAU

ABSTRACT. We compute the open Gromov-Witten invariants for every com-
pact semi-Fano toric surface, i.e. a toric surface X with nef anticanonical
bundle. Unlike the Fano case, this involves non-trivial obstructions in the
corresponding moduli problem.

As an application, an explicit expression of the superpotential W for the
mirror of X is obtained, which in turn gives an explicit ring presentation of the
small quantum cohomology of X. We also give a computational verification
of the natural ring isomorphism between the small quantum cohomology of X
and the Jacobian ring of W.

1. INTRODUCTION

In this paper we investigate the SYZ mirror symmetry for compact semi-Fano
toric surfaces, that is, toric surfaces with nef anti-canonical bundles, or equivalently,
every toric divisor is at most a (—2)-curve.

The celebrated SYZ mirror symmetry was initiated from the work of Strominger-
Yau-Zaslow [22]. For a compact toric manifold X, its SYZ mirror is given by a
Landau-Ginzburg model which consists of a domain X C (C*)" and a holomorphic
function called the superpotential W : X — C. To compute the superpotential, the
open GW-invariants which count holomorphic disks play a fundamental role.

When the toric manifold is Fano, various aspects of the SYZ mirror symme-
try have been investigated, e.g., Cho and Oh [8] classified holomorphic disks with
boundary in Lagrangian torus fibers, and computed the superpotential for the mir-
ror. However, in the non-Fano situation, the moduli of holomorphic disks contains
bubble configurations and have a nontrivial obstruction theory, which make explicit
computations much more difficult. The only known results are the computations
of superpotentials of the Hirzebruch surface Fo by Fukaya, Oh, Ohta and Ono
[11] using their big machinery, and Fy and F3 by Auroux [2] via wall-crossing.
More recently, using a formula relating open and closed GW-invariants proved by
the first author [4], the open GW invariants of all torci CY surfaces and certain
CY-threefolds, including the canonical bundles of toric Del Pezzo surfaces, were
computed in the joint works [17, 18] of the second author with Leung and Wu.

The main result of this paper calculates the superpotential, or equivalently all
genus zero open GW-invariants for Maslov index 2 classes, for every semi-Fano toric
surface.
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Theorem 1.1. Let X be a compact semi-Fano toric surface. Letb € mo(X,T) be a
class of disks with Maslov index two bounded by a Lagrangian torus fiber T. Then
the genus zero one-pointed open GW-invariant ny is either one or zero according
to whether b is admissible or not.

As a consequence, the superpotential for the mirror of X is

W = Z Zp.

b admissible
bema (X, T

Here, b is admissible iff b = 5 + 3, si Dy, where

(1) B € (X, T) intersects a unique irreducible toric divisor Dy once;

(2) Dy’s are toric divisors which form a chain of (—2)-curves;

(3) Both sg > s1 > 89> -+ and sg > s_1 > s_o > --- are nondecreasing integer
sequences with |sy —sg41| = 0 or 1 for each k, and the last term of each sequence
is not greater than one.

For each b € m3(X, T), Z; is a holomorphic function on the dual torus bundle of X
defined by Equation (2).

The proof of Theorem 1.1 is based on the comparison of open GW-invariants
and ordinary GW-invariants in [4] (and its generalization in [17]), and the result on
local GW-invariants obtained by Bryan and Leung [3]. The idea is similar to the
proof of Theorem 4.2 in [18].

As an application, we give a verification based on direct computations that there
is a natural ring isomorphism between the small quantum cohomology QH*(X) of
a semi-Fano toric surface X and the Jacobian ring Jac(W) of its superpotential W.

Corollary 1.2. Let X be a compact semi-Fano toric surface, and W the superpo-
tential for its mirror. Then there is a natural ring isomorphism

(1) QH*(X) = Jac(W).

In the final stage of the preparation of this paper, a preprint [12] by Fukaya, Oh,
Ohta and Ono appeared on the arXiv. They proved that for every compact toric
manifold X and b € H,(X),

QHy(X) = Jac(Ws)

where QH}(X) is the big quantum cohomology ring and Wy, is the superpotential
bulk-deformed by b. Their proof uses their big machinery of Lagrangian Floer the-
ory and does not involve explicit computations of open Gromov-Witten invariants.
Corollary 1.2 can be obtained as a special case of their theorem.

By the isomorphism (1), for every semi-Fano toric surface X, our explicit expres-
sion for the supepotential W leads to an explicit presentation of the small quantum
cohomology ring QH*(X). Indeed we can obtain more:

Corollary 1.3. Let X be a compact semi-Fano toric surface and b = D 4+ aX be
a linear combination of toric cycles, where D is a toric divisor and a € C. Then
the bulk-deformed superpotential is

We=a+ >  exp((8,D))Zs.
B admissible

Then by using the results of FOOO mentioned above, an explicit ring presenta-
tion of QH};(X) is obtained for b € Hy(X) & H4(X).
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Remark 1.4. FOOO [9, 10, 12] used Novikov ring instead of C as the coefficient
ring, which is more appropriate in general. Throughout this paper we stick to the
tradition of using C as the coefficient ring because W is a finite sum for toric semi-
Fano surfaces. All the statements in this paper remains unchanged if C is replaced
by the Novikov ring.

This paper is organized as follows. Section 2 is a review on toric manifolds and
their Landau-Ginzburg mirrors that we need. In Section 3 we compute the open
GWe-invariants of semi-Fano toric surfaces and prove Theorem 1.1. In Section 4,
we outline our computational proof of the isomorphism QH*(X) = Jac(W) and
demonstrate the explicit calculations by several examples. Corollary 1.3 is proved
in Section 5, and we end by some comments on bulk-deformation by points.
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this paper. We are also grateful to Baosen Wu for numerous inspiring discussions
and sharing many of his insights. Thanks are also due to Kenji Fukaya, Mark Gross
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University of Hong Kong, and when the first and second authors were visiting
the THES and University of Wisconsin-Madison respectively. The authors would
like to thank these institutes for hospitality and providing an excellent research
environment.

2. LANDAU-GINZBURG MIRROR OF TORIC MANIFOLDS

We set up the notations and review some basic facts in toric geometry and mirror
symmetry that we need in this paper.

2.1. A quick review on toric manifolds. Let N = Z" be a lattice of rank n.
For simplicity we’ll always use the notation N := N ® R for a Z-module R. Let
Xy be a compact complex toric n-fold Xy, defined by a fan 3 supported in Ng.
Xy admits an action by the complex torus N¢/N = (C*)™, whence its name ’toric
manifold’. There is an open orbit in X5 on which N¢/N acts freely, and by abuse
of notation we’ll also denote this orbit by N¢/N C Xx.

We denote by M the dual lattice of N. Every lattice point v € M gives a
nowhere-zero holomorphic function exp (v, ) : N¢/N — C which extends to a
meromorphic function on Xy. Its zero and pole set gives a toric divisor which is
linearly equivalent to 0. (A divisor D in Xy is toric if D is invariant under the
action of N¢/N on Xs,.)

If we further equip Xx with a toric Kéhler form w, then the action of Ng/N on
X5 induces a moment map

to : Xy — Mg,
whose image is a polytope P C Mg defined by a system of inequalities
(1}2‘7 ) > ¢, i:17"'7d7

where v; are all primitive generators of rays of ¥, and ¢; € R are some suitable
constants.

P admits a natural stratification by its faces. Each codimension-one face T; C P
which is normal to v; € N gives an irreducible toric divisor D; = 1(Ti) C Xy, for
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i =1,...,d, and all other toric divisors are generated by {D;}. ;. For example,
the anti-canonical divisor of Xy is given by Zle D;.

2.2. Gromov-Witten invariants. First we recall the definition of the ordinary
GW-invariants of a projective manifold.

Let 8 € Ho(X,Z) be a 2-cycle in a smooth projective variety X. Let M, (X, 3)
be the moduli space of stable maps

f:(Cixy,ap) — X,
where C' is a genus g nodal curve with k& marked points and f.[C] = 5. Let

ev; : Mg p(X,8) = X (i =1,...,k) be the evaluation maps f — f(x;).

Definition 2.1. For cohomology classes v; € H*(X), 1 < i < k, the GW-invariant
0f{717 e 7’716} 18
k

GWXP (v, e ::/ evi(v).
ok (7 Vi) e l;[l i (n)

Analogously, we have the open Gromov-Witten invariants defined by FOOO [9],
and they are briefly described as follows. Let X = X, be a toric manifold defined
by a fan X. For a Lagrangian torus T C X, let mo (X, T) be the group of homotopy
classes of maps

w: (A 0A) — (X, T)
where A := {z € C: |z| < 1} denotes the closed unit disk in C. Then m(X, T) is
generated by the basic disk classes 3; € mo(X, T) which correspond to the primitive
generators v; € N of rays in ¥ for ¢ = 1,...,d. The two most important classical
symplectic invariants associated to 8 € mo(X,T) are its symplectic area |, sw and
its Maslov index u(8).

Now for 3 € mo(X,T), let M (T, 3) be the moduli space of stable maps from a
bordered Riemann surface of genus zero with k& boundary marked points respecting
the cyclic order of the boundary in the class 5. Notice that the bordered Riemann
surface may have disk or sphere bubbles. It is known that M(T,3) has expected
dimension n 4 u(B) + k — 3. Let [My(T,3)]" be its virtual fundamental chain
constructed in [9]. We let

ev;: My(T,8) — T
be the evaluation maps defined by ev;([u;po, ..., pr—1]) = u(p;) for 0 <i <k —1.

Definition 2.2 ([9]). Given a Lagrangian torus T C X and B € ma(X,T), the
genus zero one-pointed open GW-invariant ng is defined as

mai= [ il
[M1(T,B)]"
where [pt] € H™(T) is the Poincaré dual of the point class of T.

The invariant ng can be interpreted as the virtual number of holomorphic disks
in 8 whose boundaries pass through a generic point in T. We should mention that
the virtual dimension of M1 (T, ) is equal to dim T = n if and only if u(83) = 2.

Now let’s consider the situation where X = Xy is a semi-Fano (i.e. with nef
anti-canonical bundle) and T C X is a regular torus fiber. By the classification
result of Cho-Oh [8], a class § € m3(X, T) represented by a stable disk must be of
the form 8 = '+ a, where 3’ is represented by a holomorphic disk and o € Ha(X)
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is represented by a rational curve. The Maslov index of 8’ is at least two, and
the Chern number fa ¢1(X) of a must be non-negative since X is semi-Fano. This
shows that any stable disk bounded by T has u > 2, which implies that M (T, 3)
has no boundary since there is no disk bubbling, and hence the virtual fundamental

chain [M;(T, )] is indeed a cycle. Thus ng defined above is indeed a symplectic
invariant.

2.3. The LG mirror of toric manifolds. The mirror of a toric manifold X = X5,
is a Landau-Ginzburg model (X, W), which is a complex manifold X equipped with
a holomorphic function W : X — C called the superpotential. This superpotential
can be written down in terms of Kahler sizes and open Gromov-Witten invariants
of X [8, 1, 6]. The following is a brief review of this procedure from the SYZ
viewpoint. See [6] for more details.

First of all, we recall that the semi-flat mirror of X is

Xo = {(TT, V) :r € P™ V is a flat U(1)-connection on T,«}7

where T, C X denotes the moment-map fiber over  and P™ denotes the interior
of P. Tt is well known that X can be equipped with the so-called semi-flat complex
structure, making it into a complex manifold [19]. In this toric case, X is simply
P x Mg /M equipped with the standard complex structure.

Let A* be the lattice bundle over By whose fiber at r € P is A* = 7 (T,.). For
each A € A*, we may consider the following weighted count of stable holomorphic

disks:
FO) = 3 ngexp (—/Bw>.

aB=x
This defines a function F : A* — R. Applying fiberwise Fourier transform on F,
we obtain the superpotential

W Xy, — C,
W(T,, V)= Z ng exp (— / w) Holy (98),
Bems(X,T,) A

which defines a holomorphic function on Xj. Notice that the above expression can
be an infinite series. Nevertheless we’ll see that for semi-Fano toric surfaces, this is
just a finite sum and hence there is no convergence issues. For 8 € mo(X, T,), we
define a function Zg : Xy — C by

) Z5(T,, V) = exp (— /ﬁ w) Holy (95),

so that the superpotential can be written in the form W = ZﬁEm(X ) ngZg.
It is already known by [8] that ng, = 1, where §;, are the basic disk classes for

i =1,...,d corresponding to the primitive generators v; € N. Moreover, when X
is semi-Fano, the moduli space M1 (T, ) is non-empty only when 8 = §; + « for
some i =1,...,d and o € Hy(X) represented by a rational curve of Chern number

zero. Thus we may write

d
W =W, + Z Z NBi+aZpi+a
=1 a#0,c1(a)=0
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where Wy = Zle Z3,. In general it is very hard to compute ng, o starting from the
definition. In the following section, we’ll give a method to compute these invariants
when X is a semi-Fano toric surface.

3. DISK COUNTING AND GW-INVARIANTS

3.1. Toric surfaces. In this subsection we give some basic results on toric surfaces,
which will be needed in the proof of Theorem 1.1. These are probably well-known
facts among experts.

We start with the well-known formula for self-intersection number of a compact
toric divisor. Let X = Xy be a smooth toric surface defined by a fan ¥ in ZZ2.
Suppose D C X is a compact toric prime divisor. Then D corresponds to a ray
T €Y, 50 that 7 = 0~ Not for two 2-dimensional cones ~,0" € X. (See Figure

1).

F1GURE 1. Cones corresponding to a compact divisor.

Let 7 be generated by v € Z2, 0~ be generated by u,v and o+ be generated
by v,w such that u,v,w are placed in a counterclockwise fashion. Then the self-
intersection of D is given by

p2—_|"1 W

where

Proposition 3.1. Let D = U._| D; be a connected union of compact toric prime
divisors with D? = —2, and ; be the ray corresponding to D;. Suppose o; € ¥ are
2-dimensional cones so that 7; = 0,1 MNo;. Then the cone U]_yo0; is strictly convez.

Proof. Suppose T7; is generated by v; € Z2. Without loss of generality, we can
assume v; are labeled in a counterclockwise order as vectors in R%2. We further let
oo be generated by vg, v1; and o,, be generated by vy, vpy1-

Let
v; = i
T b1 .

Since D; is a (—2)-curve, we have
ai—1  Qi41

= 2.
bi—1 b1

In other words, the area of the triangle spanned by v;_; and v;41 is 1.

On the other hand, let A be the triangle spanned by vectors v;_; and v;; and let
B be the triangle spanned by v; and v;41. Since X is smooth, the areas of A and
B are % Now because the sum of areas of A and B is 1, which is equal to the area



OPEN GW INVARIANTS AND SUPERPOTENTIALS 7

Vg Vk—1

Vk+41

0

FIGURE 2. —2 toric divisors.

of the triangle spanned by v;_1 and v;11, we know the heads of the vectors v;_1, v;
and v; 41 are on the same line L. Moreover,

v; = 5(%‘—1 + Vit1).

Now since the heads of all vectors v; are on the same line, the cone U} j0; must
be strictly convex. O

3.2. Proof of Theorem 1.1. In this subsection, we give a proof of Theorem 1.1.

Let X be a compact semi-Fano toric surface. Let Dy, --- , D4 be the toric prime
divisors of X. Let T be a Lagrangian torus fiber and let 3; € m(X,T) be the
relative homotopy class of a Maslov index 2 disk such that 8; - D; = d;;.

Given any b € ma(X,T) of Maslov index two. Recall that M;(T,b) is the
moduli space of stable maps from bordered Riemann surfaces of genus zero with
one boundary marked point to X in the class b. It is known that M;(T,b) is
empty unless b = 3;, or b = ; + « for some i € {1,...,d} and o € Hy(X,Z) with
c1(a) = 0. Moreover, such an o must be of the form o = > s D, where all Dy,
have self-intersection —2.

Our goal is to calculate the open GW-invariant n; for all classes b. To state the
result, we need the following definitions.

Definition 3.2. Let mi,my € Z. We call a sequence {sp : m; < k < ma}
admissible with center | if each sy is a positive integer, and

(1) s;i < 8ip1 <8+ 1 wheni<l;

(2) si > Sit1 > 8, — 1 wheni >1;

(3) SmysSmy < 1.

For any toric prime divisor D; with self-intersection —2, we have a maximal chain
Dax of compact toric (—2)-divisors containing D;. Given a sequence {sy}, we have
an induced sequence {55} with respect to D;, defined as 5; = s; if D; C D" and
5; = 0 otherwise.

Definition 3.3. Let b = 3, + o« with o = > spDg. We say b is admissible if
D? = —2 and the sequence {sy} is identical to its induced sequence with respect to
D;, and {sy} is admissible with center i.

To prove Theorem 1.1, we recall the local GW-invariants of a configuration of
P'’s which was obtained by Jim Bryan and Conan Leung in [3].

Let L(n) be a genus 0 nodal curve consisting of a linear chain of 2n + 1 smooth
components L_,,,--- , L, with an additional smooth component L, meeting L. So
we have L, N L,, = 0 unless |n — m| =1 and L, N L,, = 0 unless n = 0. It was
shown in [3] that L(n) can be embedded into a smooth surface S so that all L; are
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(—2)-curves and L, is a (—1)-curve, where S can be taken as a certain blowup of
P2 along points.

S_n S_pr1 S_2 S_1 S0 S1 Sa Sp_1 Sn
F1GURE 3. The graph of L(n).
The local GW-invariants of L(n) is well-defined, at least for curve classes

L.+ Z spLp, sk >0.

k=—n

Theorem 3.4. [3] The genus zero local GW-invariants N(s;) of L(n) for classes
L+ p__, skLy is given by

Ni(si) = 1 if {sk} is admissible with center 0.
k) =0 otherwise.

We remark that here admissible with center 0 is an equivalent term for 1-
admissible used in [3].
We come to prove our main result Theorem 1.1.

Proof of Theorem 1.1. Given a semi-Fano toric surface X defined by a fan ¥, we
would like to compute the open GW-invariant ny, for b € w9 (X, T). First of all, by
[8, 9], np is non-zero only when b = §; + « for some 7 and « € Hy (X, Z) represented
by rational curves with ¢; () = 0. It is already known that n, = 1 when o = 0, so
it suffices to consider a # 0.

Suppose ng,+o # 0 and o # 0. Then D; must have self-intersection —2, and o
must be of the form o = Zke 1 SkDy, where I is the index set containing all the
natural numbers k such that Dy C D"**, and s; # 0. We want to show that the
sequence {si} is admissible, and in such cases n, = 1.

This is done by equating the open GW-invariant n; to an ordinary GW-invariant
of yet another toric manifold Y, which is a toric modification of X. The modification
is done as follows. Let v; be the primitive generator of the ray of ¥ corresponding
to D;, and let ¥; be the refinement of ¥ by adding the ray generated by vy :=
—v; (and then completing it into a convex fan). In general the corresponding
toric variety Xs, may not be smooth. If this is the case, then we take a toric
desingularization Y of Xy, by adding rays which are adjacent to vs. By abuse
of notations we still denote the divisors in Y corresponding to v;’s by D;, and
a =) . c;8kDy is regarded as a homology class in Y. We remark that the above
procedure does nothing if the ray generated by v, is already in 3.

Notice that in ¥, the ray generated by v,, cannot be adjacent to those generated
by vy for k € I (I is the index set introduced above) by using the fact that Dy’s
have self-intersection (—2). Then the newly added rays are not adjacent to any vy
for k € I, and thus each Dy, C Y for k € I still has self-intersection number (—2).
Let f € Ho(Y) be the fiber class, that is, f = §; + S0, where S is the disk class
corresponding t0 vy
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By Theorem 1.1 in [4] and its generalization in [17], we have the following equality
between open and closed GW-invariants

ny = GWo 1 ([pt)).

The proof is done by equating the open moduli M({VZP(X ,b) with the closed moduli
MTV:p(Y, f + «) together with their Kuranishi structures. We refer the details to
[4, 17].

Next we identify GW&/ 2+ (Ipt]) with the local GW-invariant of a configuration
of Pls.

Let Y be the blowup of Y at a generic point p. Then, by the result of Hu [15]
and Gathmann [13], which relates GW-invariants of blowups along points, we know
that the GW-invariant of Y for a class v with one point constraint is equal to that
of Y for the strict transform of 4 without this point constraint. More precisely, we
have )

G (pt]) = GWy 7,

where f’ is the strict transform f, which is the class of a (—1)-curve.

Because a = ) sp Dy, with all Dy, have self-intersection —2, it is easy to see that
every curve in « + f' is a tree of P'’s, with the same configuration as L(n), up to
a relabeling of its index. Therefore, GWO{/ 6°‘+f " exactly the local GW-invariant
of L(n). Theorem 1.1 now follows from Theorem 3.4. O

Theorem 1.1 allows us to explicitly compute the superpotential for the mirror of
any compact semi-Fano toric surface. Since these surfaces are completely classified
(there are totally 16 such surfaces, including the Fano ones), we can compute all
the superpotentials; a list of the results is given in the appendix.

4. SMALL QUANTUM COHOMOLOGY AND JACOBIAN RING

For a toric Fano manifold X, the map
Y QH"(X) = Jac(W), D; — Zg,,

gives a canonical ring isomorphism between the small quantum cohomology QH*(X)
of X and the Jacobian ring Jac(W) of the superpotential W [6, 9]. Recall that the
Jacobian ring of W is defined as

Jac(W) = C[zE, ... 2T (oW, ..., 0,W),
where 0; denotes Zja%j and n = dim X. In the non-Fano case, it is expected that
we still have an isomorphism QH*(X) = Jac(W),! but the map v : QH*(X) —
Jac(W) needs to be modified by quantum corrections.
In the following, we briefly recall the definition of the corrected map following
Fukaya, Oh, Ohta and Ono [9, 10]. As before, X is a compact toric manifold and T
is a Lagrangian torus fiber. Consider the moduli space Mk,l(T, B) of stable maps

from genus 0 bordered Riemann surfaces to (X, L) with & boundary marked points
and [ interior marked point in the class 8. We have evaluation maps

e,Uint :Mk‘,l(T7B) - Xl’ [u;p07p17' cyPk—15%1, - - '7Zl] = (U(Zl),. . .,U(Zl)),

LThis is now proved in the recent work [12] of Fukaya, Oh, Ohta and Ono (as a special case of
their main result).
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and
€v; : Mk,l(Taﬁ) — Ta [u;p()vpl? <oy Pk—1; Z] = u(pl)a
1=0,1,...,k —1, at the interior and boundary marked points respectively.
Let Vi,...,V; C X be toric subvarieties. Consider the fiber product

l
Ml,l(Tvﬁ;‘/la-”a‘/l) :zﬁl,l(’:l:‘7ﬁ)61ﬂ“‘t X x1 H‘/j
j=1

More precisely, M1 (T, 8; V,...,V}) is the set of all elements

1
([uaPO; 21y 72’[]7.171, e aml) S Ml,l(T7B) X H ‘/j
j=1
such that u(z1,...,2) = (x1,...,7;). The virtual dimension of M1 (T, 3; V1,...,V})
isn+pupB)+20-2— Z;Zl codimg (V;).

Definition 4.1 ([10, 11]). The genus zero open GW-invariant n(8;Vi,...,V}) is
defined as
(B Ve V) = [ evglpt]
[M1,:(T,8;V1,....Vi)I""
It is mon-zero only when the virtual dimension matches, that is, u(8) = 2 — 21 +
1 .
> j—1 codimg(V;).

By Lemma 6.8 in [10], the number n(8;V1,...,V;) € Q is independent of the
auxiliary perturbation data used to define [M1(T,3;V)]" . Definition 2.2 is the
special case when [ = 0.

Choose an additive basis {T; = PD[V;]} of H*(X, C) represented by the Poincaré
duals of fundamental classes of toric subvarieties V; C X.

Definition 4.2 ([10, 11]). Define an additive map v : QH*(X) — Jac(W) by
setting
W(T;) = > n(B; Vi) Zs,
B:12(8)=codimz (V;)
and extending linearly.

Remark 4.3. Fukaya, Oh, Ohta and Ono [10] also study the so-called poten-
tial function with bulk of a toric manifold X, by incorporating deformations of
Floer cohomology by cycles on the ambient space X. (In contrast, the super-
potential, or what Fukaya, Oh, Ohta and Ono called the potential function, W
Just encodes deformations of Floer cohomology by the cycles on L.) In the recent
preprint [12], they proved that the Jacobian ring of the potential function with bulk
is canonically isomorphic to the big quantum cohomology ring of X. The map
P QH*(X) = Jac(W) we discuss here is a special case of this isomorphism, when
the bulk deformation is set to zero. We’'ll also discuss the potential function with
bulk in Section 5.

Now, for the toric prime divisors D1, ..., D4, the map ¥ is given by

Di — Z n(ﬂ,Dz)Zg
B:u(B)=2
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A special case of Lemma 9.2 in [10] gives the following analogue of the divisor
equation for open GW-invariants.

Proposition 4.4 ([10]). If D is a toric divisor, then we have the following equality
n(B; D) = (D - B)ng.

Combining with our Theorem 1.1, we can compute the map ¢ : QH*(X) —
Jac(W) on toric divisors for any compact semi-Fano toric surface. As an applica-
tion, we outline a proof of Corollary 1.2 in the following.

To begin with, recall that the cohomology ring H*(X,C) of a compact toric
manifold X is generated by the divisor classes Dy, ..., Dq € H*(X,C). Moreover,
a presentation of H*(X,C) is given by

H*(X,C) =C[Dx,...,Dg/(L+SR),

where L is the ideal generated by linear equivalences among divisors and SR is the
Stanley-Reisner ideal generated by primitive relations.

By a result of Siebert and Tian [21], when X is semi-Fano, the small quantum
cohomology QH*(X) is also generated by the divisor classes Dj,..., Dy and a
presentation of @H*(X) is given by replacing each relation in SR by its quantum
counterpart, i.e. denoting the quantum Stanley-Reisner ideal by SR, then we
have

QH*(X) =C[Dy,...,D4)/(L+SRo).

Consider the case when X = Xy is a semi-Fani toric surface. We also assume
that X is not P2. Then any primitive collection is of the form 8 = {v;, v;} so that
v3,v; do not generate a cone in ¥. To compute SRg, we need to calculate D; * D,
where * denotes the small quantum product. Choose dual bases {D,,}, {D™} of
H?(X), both represented by toric divisors. Then, by the divisor equation and a
straightforward manipulation, we have

DixD; = S (D a)(D;- )GWI(pt)g”

a:cy (a)=2

> D (Di-a)(D;a)(D™ ) GW g | Do

ac1(a)=1

The GW-invariants GWO{( 1%([pt]), GWO))( ¢¢ can be computed using the results of
Bryan-Leung [3] as follows. To compute GWO)f 1%([pt]), note that we have ¢; (o) = 2
so that a® = 0. Such an a must be of the form o/ + f where o/ is represented
by a chain of (—2)-toric prime divisors and f is a fiber class. We are therefore in
exactly the same situation as in the proof of Theorem 1.1. Hence, GWO),( 1%([pt]) can
be computed as before.

As for GWO)i)’a, we have ¢1(«) = 1, so that « is represented by a chain Eizfp spDy,,
of toric prime divisors such that ka = —2for all £ # 0, Df0 = —1and so = 1. The
results of Bryan and Leung also apply in this situation: namely, the GW-invariant
GW(fda =1 if both the chains Zgz_p skD;,, and Y7_, spD;, are admissible with
center 0 and GWO{( ¢“ = 0 otherwise.

Let us give an example to illustrate the explicit computations.
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Example. Let ¥ be the fan whose rays are generated by
v1 = (1,0),v2 = (0,1),v3 = (=1, —1),v4 = (0, —1),v5 = (1, —-1),v6 = (2, —1).
This determines a toric surface X. We equip X with a toric Kahler form such that
the polytope P is given by
P = {(v1,22) €R*: 21 > 0,0 <y <ty +13+2ty, 01 + a9 <ty +ty + 23 + 3ty,
t1+tg+ a1 — 29 > 0,81 + 227 — 29 > 0},

where t; > 0 are the Kéhler parameters.

FIGURE 4. The fan ¥ and the polytope P defining X. The num-
bers beside the divisors indicate their self-intersection numbers.

The linear equivalences among divisors are generated by the following two rela-
tions
Dy — D3+ D5+ 2Dg =0,
Dy — D3 — Dy — D5 — Dg = 0.
Hence, H?(X) is of rank 4. We choose the dual bases {D™} and {D,,} to be
{Dl, D4, D5, Dﬁ} and {DQ, D37 D4 + 2D37 D1 + 2D2} respectively.

We can now start to compute the primitive relations. For example, we want
to compute Dy x Dy. We need to look for all curve classes with ¢; = 1,2 which
intersect both Dy and D4 non-trivially. There are two such classes with ¢; = 2:
the classes represented by D3 and D3 + Dy, and also two with ¢; = 1: the classes
represented by Di + D5+ Dg and D1+ Dy + D5+ Dg. Since all these configurations
are admissible, the corresponding GW-invariants are all equal to one, by the above
discussion. Hence, we get

DyxDy = qiq3q; — 1924395 + 019394(—D2 + D3 — (Dy + 2D3) + (D1 + 2D5))
~01429394(—D2 — D3 + (D1 + 2Dy))

= Q14303 — 1024345 + ©1a3qa(D1 + D5 + Dg)
—q19293q4(D1 + Dy + D5 + Dg),

where we have used linear equivalences to get the second equality. Similarly, we
can compute all other primitive relations.

Having computed all the primitive relations, we can go on to show the following
Lemma 4.5. The map
¢ :C[Dy,...,Da] = Clzi', 23], Divs > n(B;iDy)Zs
B:p(B)=2
defines a ring homomorphism ¢ : QH*(X) — Jac(W).
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Sketch of proof. First of all, we show that the ideal £ of linear equivalences is

mapped to the ideal (W, ..., 0,W) by . Linear equivalences are generated by

the relations Z ! vID; =0, j = 1,2, where we write v; = (v},v?) in coordinates.

17 7
By Proposition 4.4, we have

v(D;) = Z > Bk +Di)Z, 0

k=1 a:ci(a)=0

= Z Z (B + a))n(Br + @) Zg, +a-

k=1 a:ci(a)=0

Hence, we have
d
i=1 %
d .
= Z Z (Z vf (Oar, + D - a)) n(Br + a; Di) Zgy+a
i=1

k=1 a:ci(a)=0

M=~

AN

vl Z Z “(Br + a))n(Br + @) Zg, o

1 k=1 a:c1(a)=0

U

= Y Z n(Br + ;D) Zg, 4o
k=1 a:ci(a)

QQv

Next, we need to show that each primitive relation is mapped by ¢ to a relation
in the ideal (0;W,...,0,W). This can be done by explicit computations. Again,
we illustrate this by an example.

Consider X in the previous example. By Theorem 1.1, we can compute the
superpotential explicitly. The result is given by

2.3 2
41924349 q193q
DBIIL | (1 4 gy + gogs) LB

2129 22

2

z z

)(11614 1 T q127
22

W = (1+q)z+2+

+(1+ g3 + 9203

)

2o
where q; = exp(—t;), l = 1,...,4. We can also compute the images of the divisors
D; under :

d’(Dl) = (1 - (]1)217
V(D) = 2+ qiz,
2.3 2
z
b(Dg) = BRBU (| 0 DBA | NPBun
2122 22 2o
2
41434 41434421
B(Dy) = (1 go)( BB )
22 29
2
19421 | 41924939
B(D5) = (1— gg)(LB2L | DD0G,
z2 zZ92
2.2
z
¥v(Ds) = @t +q1z1 + (g3 + 4203 )q1q4 L, N929591
%2 Z2 Z9
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Using what we have computed before,
Dy« Dy = qu43q; — 01020343 + q143¢a(D1 + D5 + Dg)
—q19293G4(D1 + Dy + D5 + Dg)
= ¢1¢394[(1 — @2)(qa + D1+ D5 + D) — q2Dy).
This is mapped by ¥ to

2 2
q1z q14421 4192939
0143q4[(1 — q2)(qa + 21 + —2 + (1 + q2q3) + )
%) 22 22
2
419394 q14421
—q2(1 — q2)( L tgs )
Z9 Z9

22 z
= q1q3qa(1 — q2)(qs + 21 + aA w),
z9 V)
which is exactly ¢¥(D3) - 1 (Dy).
Similarly, we can show that ¥(SRq) = {0} C Jac(W). Hence, 9 defines a ring

homomorphism 9 : QH*(X) — Jac(W). O
Corollary 1.2 now follows from the following lemma.

Lemma 4.6. For generic choices of the Kdahler parameters q;, ¥ : QH*(X) —
Jac(W) is a bijective map.

Sketch of proof. Having computed the superpotential W and the images of the
divisors D; under v, we can check surjectivity of ¥ in a straightforward way. For
instance, for the surface X in the previous example, we have

21 =9%((1=q) ' Dy), 22 = (D2 — q1(1 — 1) "' D),
25 = Y([g3qi(1 — @2)(1 — q2g3)] " Da — [q145 (1 — g3) (1 — gags)] ™" D).

Also, since we have the relation 01 W = 0 which gives

2;1 = (q1q2q§qz)_l[(1 + q1)2’12:2 + (1 +q3 + (J2Q3>Q1Q421 + QQIZ%L

and 1 is a homomorphism, z; 1 also lies in the image of ¥. The surjectivity of v
for all other examples can be checked in this way.

On the other hand, by Proposition 3.7 and Lemma 3.9 in Iritani [16] (which
were proved by using Kouchnirenko’s results), we have dim H*(X) = dim Jac(W)
for generic choices of the Kahler parameters ¢;. Hence, ¢ : QH*(X) — Jac(W) is
bijective. O

5. THE BIG QUANTUM COHOMOLOGY

5.1. The potential with bulk. For a Lagrangian torus fiber T in a compact toric
manifold X and b € A, where A := C(toric invariant cycles), FOOO [10] defined
the potential with bulk Wy, as

1
We:= Y =m(Bib,...,b)Zs
I —_————
ﬂeﬂ'z(X,T) 1
1>0
where the open Gromov-Witten invariants n(3; Vi,...,V;) (see Definition 4.1) ex-

tend multilinearly to give a function n; : w2 (X, T) x A®! — C. In a recent preprint
[12] they proved that
QHL(X) = Jac(Wp).
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Thus an explicit expression of Wi, would give an explicit presentation of the big
quantum cohomology ring QH{(X).

In the previous section, we have given an explicit expression of W}, when b =0
for a semi-Fano toric surface X. We consider its potential with bulk in this section.
For the purpose of computing QHy(X), it is enough to consider b = aX + D + cp,
where D is a toric divisor, p is the intersection point of two toric prime divisors
(say Dy and Ds), and a,c € C.

Proposition 5.1 (Restatement of Corollary 1.3). Let X be a semi-Fano toric
surface, and b = aX + D + cp as described above. Then

0k
Wp =a+»_exp((8,D)) ( an(ﬁ P JD)) Zp.
B#0 k=0
In particular, when ¢ = 0,
Wo=a+ >  exp((8,D))Zs
B admissible
Proof. When g # 0,
k(B [X], 71,5 %—1) =0

for all k > 1 and ~1,...,7%—1 € H.(X) due to dimension reason. Thus

1
W= Y (b, b)Zg
BETFQ(X T)
1
_lenl ,b)—|—Zﬁnl(ﬁ;D—&—cp,...,D—l—cp)Zﬁ.
>0 ,(la;éo :
>0

Moreover, n1(0; X) = 1 (M1,1(T, 0; X) contains the constant map only) and n; (0;p) =
n1(0; D) = 0 (the corresponding moduli spaces are empty). Also by dimension
counting, n;(0;7y1,...,7) = 0 for all [ # 1. Thus the first term is

Z l'nl ., b)=a.

Using the divisor equation for open Gromov-Witten invariants ([10]; see Proposition
4.4), the second term is

1
Zﬁnl(ﬁ;D—&—cp,.. , D+ cp) ZB_Z ZCkc n(B;D,...,D,p,...,p)Zs

0’ 0 =
L;;O ?fo =k k

Z ch k B, nk(ﬁvpu7p)Zﬂ

6750 " k=0

= Z 'k' nk(ﬂvpaap)zﬁ

B#0
7,k>0

= exp((8,D) (Z e (Bipsp )> Zs-

B#0
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When ¢ =0,

Wy =a+ Y exp((8, D))nsZs.
B0

By Theorem 1.1, ng = 1 when j is admissible, and 0 otherwise. Thus

Wo=a+ Y exp((8,D))Z.
3 admissible

]

5.2. Speculations and discussions. In Proposition 5.1, n;(8;p,...,p) (I > 1)
has not been computed. In the following we give an informal discussion concerning
these invariants.

One of the issues involved in computing these invariants is the presence of ‘ghost
bubbles’ in the moduli space M1 (T, B3;p, . ..,p) (see Figure 5) when p is chosen to
be a toric fixed point. On the other hand, if we consider pq,...,p; € X in generic
position, which is the approach taken by M. Gross [14] where he used tropical geom-
etry to define the superpotential with bulk, the moduli space M1 (T, B;p1, .- .,p1)
does not involve disk bubbling (when S has the suitable Maslov index p(8) =
2-2l+ le=1 codimg (V;) so that the moduli has expected dimension n = dim T'),
and also ghost bubbles are not present. The invariant n;(/3; p1,...,p;) can still be
defined, and it is easier to compute.

\ .
PR — . D; .o.

p D>

FIGURE 5. Ghost bubbles in M 4(T, 3;p,p,p,p). The whole
sphere bubble is contracted to the toric fixed point p. The disk
class is taken such that M174(T,ﬂ;p,p,p,p) has expected dimen-
sion 2. However the actual dimension is bigger than 2 since the
interior marked points are free to move in the bubble.

This motivates us to consider p’ € D; which is not fixed by the torus action,
and define the invariant n;(8;p’,...,p") by taking a generic perturbation of the [
points around p’.

Example 5.2 (The Hirzebruch surface F3). Consider The Hirzebruch surface Fo
whose polytope picture is shown in Figure 6. If we take the above approach, then
n(B;p',...,p) equals to 1 when B =181 + B; for i =2,3,4 or B =181 + B4 + Dy,



OPEN GW INVARIANTS AND SUPERPOTENTIALS 17

D4

D+ Ds

D2

FIGURE 6. The polytope of the Hirzebruch surface Fs.

and 0 otherwise. Then for b = a[X] + D + cp,

ok
Wb =a+ ZGXP(<5,D>) <Z %nk(ﬂ,pa oo 7p)> Zﬁ
320 k=0
4
=a-+ eXp(<ﬂ1aD>)Zﬂ1 + Zexp(ce<ﬁl7D>Zﬁ1)eXp(<ﬂiaD>)Zﬂq‘,
=2
+ exp(c ewl’D)Zgl) exp({B4 + Dy, D))quZ3, .

The above consideration is tentative, and we are still investigating whether this
idea is in the right direction.

APPENDIX A. A LIST OF THE SUPERPOTENTIALS FOR THE MIRRORS OF ALL
SEMI-FANO TORIC SURFACES

Using the fact that any smooth compact toric surface is a blowup of either P?
or a Hirzebruch surface F,,, (m > 0) at torus fixed points, it is easy to see that
there are finitely many isomorphism classes of semi-Fano toric surfaces. In fact, all
except Fy and P! x P! are blowups of P?; there are 16 of such surfaces, five of which
are Fano (namely, P2, P! x P! and the blowup of P? at 1, 2 or 3 points).

By using Theorem 1.1, we can compute the superpotentials for the mirrors of all
these semi-Fano toric surfaces explicitly. In this appendix, we shall give a list of the
superpotentials for the 11 semi-Fano but non-Fano toric surfaces. We enumerate
them as Xy, ..., X711, and each surface is specified by the primitive generators p(X)
of rays of its fan and the defining inequalities of its polytope. Also, in the following
tables, the ¢;’s are positive numbers and ¢, = exp(—t;) (Kéhler parameters).



18

K.-W. CHAN AND S.-C. LAU

p(X) polytope P superpotential W

v = (170) T Z 0

vo = (0,1 To >0 2 N
X1 Vs = E—1,>—2) oy bty — 2wy >0 | T2 3135 +(1+g¢)Z

1)4—(0,—1) tl—l‘gzo

v = (1,0) 1 > 0

Vg = (0, 1) To > 0 )
X 03:(—1,—1) 61+t2+2t3—331—l‘22 Zl+32+%+(1+QQ>%+%

1)4:(0,—1) t1+t3—$220

1)5:(17—1) t14+x1—20>0

v = (1,0) T Z 0

vz = (0,1) 22 20 (L4 )z + 22 + DLBLE (1 4
X3 v = (1) ;12—*_;20—’_2153+3t4 o Q2+ %%)% +(1+g3+

vg = (0,-1) 1 +13+2ty —22 >0 %%)%‘;Zlﬁ-%

’052(1,—1) ti1+ts+x1—222>0

06:(2,71) t1+21'17£17220

v = (1,0) 1 > 0

Vo = (0, 1) i) Z 0 5
x, | 8= (Z10) | t2ttgtti 2120 (1+qu)z1 + 29 + 220 4 B0 4

1)4:(0,71) t1+t3+2t4*$220 (1+Q3)M+M

1)5:(17—1) t1+tg+x1 —2202>0 z2 =2

U6:(2,—1) t14+2x1 —290 >0

v1 = (1,0) 1 >0

Vg = (0, 1) r9 >0 ,
X vg = (—1,0) to+ts+ts—ax1 >0 z1+zQ+%+%+(1+

Plug=(=1,-1) | ti+t3+2ty—x1—22 > q3) Ll 4 02
0

05:(0,71) t1+t4*I220

’06:(1,—1) t1+1'1—1'220

v = (1,0) T Z 0

Vo = (0, 1) To Z 0

vs = (—1,0) | tattsttatts—zy >0 | 1 +§13)21 tapt WERE L
Xo | va=(=1,=1) | ty+t3+24+3t5—x1— | TLDE 4 (1+ g3 + g3qa) PL" +

T3 20 919521 @z

vs = (0,-1) t1+tg+2t5 —29 >0 (L ga a0 557 4750

1)6:(1,—1) ti1+ts+x1 —22>0

’U7—(2,71) t1+21'1717220

v = (1,0) 1 > 0

Vg = (0, 1) o > 0

’ng(—l,l) t2+t3—t1—t5—$1+ (1+q1)zl+22+%+‘13;}7445+
X7 z2 20 719433 qlq;rq; ' qlz21

vi=(=1,0) |ts+tatts—a1 >0 | = +1+a)BE=+ 0

1)5—(0,—1) t1+ts+2t5 —x9 >0

UG—(l,—l) ti1+ts+x1 —22 >0

072(2,—1) t1+2x1 —x29 >0
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p(X) polytope P superpotential W
v = (170) T Z 0
vz = (0,1) z2 >0 (1+2q1)21+22+(1+ ) a4
v3=(=1,0) | ta sty +s+tg— | Fare)ielisde D + (1 +
T > 0 2 3
X8 | gy = (22,1) | byt 2t Bttty | 070301 T as0005) SR A (Lt an+
) 2
221 — 29 >0 g394+9495 + 939495 +Q3qz95)%+
1 o . 2
vs = (=1, -1 t1+>t40+2t5+3t6 e (L4 g5 + qags + 43qaqs) 22°4 + %
T2 =
’UGZ(O,—l) t1 +t5+2tg —x2 >0
’()7:(1,71) t1+t6+$1*$220
?)8—(2,—1) t1+2$1—$220
v = (1,0) il Z 0
vy = (0,1) 3 >0 92450422
U3 = (*1,1) to+2t3+ts—1t1 —tg— (1+CI1)21+22+ ,d196%1 +(1+
X x1+ 22 >0 go) 24ateds 4 DBBe (14 gy +
9 2
V4 = (_170) t3+t4+t5+t6_$1 > 0 919595 q19621
q49s +(1+ g5+ qags +
vy = (—1,—1) t1+t4+2t5+3tg—x1 — qlzf) 2 ( 7 ) #2
x2 >0 Ta2
’06:(0,71) t1+t5+2t67.’£220
’07:(1,—1) t1+t6+$1—$220
Ug_(2,—1) t1 +2x1 —29 >0
v = (1,0) T Z 0
vy = (0,1) xo >0 )
vy = (—1,1) ;2 4;2 +>t40— t1—te — (1+Q1)Zl +zQ+(1+‘q2§236’)‘q23%2‘if2 +
1 2 = q195%22 949596 | 91954
X10 vy = (—2,1) 2ty +ts—t1 —t3—2x1+ qlllq:szf (1+4gs) o T ¢+
z9 >0 (14 gs) 202 4 021
’05:(*1,0) t4+t5 +t67$120 = =
1)6:(0,—1) t1+t5+2t6—$220
117:(1,—1) t1+tg+x1 —2202>0
USZ(Q,—l) t1+2x1 —29 >0
v = (1,0) x1 >0 92934395
s = (0,1) 29> 0 (1 POt )a1+ (1+2 o
— 424939495 92939495 42939495%
vs=(-1,2) 42t 3t4tf52_2t>16 Fodt T waodd )2 dan
6 — 9l — X1 T2 =2 43919522
X11 Vg4 = (—171) t3—|—2t4—|—t5—t1—t7— (1+q2+qzq3) (I14(L172213+(1+q3+
1+ 122 >0 Goqs) P20 | BRI (1 + g5 +
U5 = (_170) ty+is+tg+tr—x1 >0 M + (14 qge + nqrzr 4
Vo = (“11) |ty +1o 42 48ty —ay — | LI s T I 050
1
T3 20 T2z
U7 (0, 1) tl +t6+2t7—$220
’08:(1,71) t1+t7+5017$220
092(2,—1) t1+2$1—$220
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-2

0 Xi

FIGURE 7. Polytopes defining the semi-Fano but non-Fano toric
surfaces. The numbers indicate the self-intersection numbers of
the toric divisors.
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