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1 Riemann Zeros and Spectra of Fractal Strings: An Informal
Introduction

Unlike an ordinary (Sturm–Liouville) vibrating string, which consists of a single
interval (of length `, say), a fractal string consists of infinitely many intervals (of
lengths `1, `2, · · · , ` j, · · · , with ` j ↓ 0 as j → ∞), vibrating independently of each
other. Hence, the (eigenvalue or frequency) spectrum of a fractal string consists of
the union of the spectra (counting multiplicities) of each of the countably many or-
dinary strings of which it is composed.

A fractal string (or, equivalently, its boundary, viewed as a compact subset of
the real line R) always has (fractal) Minkowski dimension D between 0 and 1, the
most extreme case D = 0 and D = 1 being referred to (following [Lap1]) as the least
and most fractal case, respectively, while the case when D = 1/2 is referred to (also
as in [Lap1]) as the midfractal case. The latter case will play a key role throughout
this paper.

By listening to a fractal string, one can detect whether or not one of its com-
plex dimensions coincides with a nontrivial Riemann zero (that is, with a zero of the
Riemann zeta function which is located in the critical strip 0 < Re(s)< 1). Indeed,
it turns out that the Riemann zeta function ζ = ζ (s) mediates between the geometry
and the spectrum of a fractal string:

ζν(s) = ζ (s) ·ζL (s), (1)

where ζν ,L (s) = ζν(s) := ∑
∞
k=1 f−s

k is the spectral zeta function of the fractal
string L , with { fk}∞

k=1 denoting the sequence of (suitably normalized) frequen-
cies of L , written in nondecreasing order according to their multiplicities, and
ζL (s) := ∑

∞
j=1 `

s
j is the geometric zeta function of L . This relation (discovered

in [Lap2, Lap3]) has played an important role in fractal string theory, as it enables
one to understand why some of the complex dimensions of L (i.e., the poles of
the meromorphic continuation of ζL ) may be “canceled” by (nontrivial) zeros of ζ .
Accordingly, certain oscillations which are present in the intrinsic geometry of the
fractal string are no longer “visible” (or rather, “audible”) in the spectrum of L .

More poetically, it is shown in [LapMai1,2] that “One can hear the shape of
a fractal string of dimension D 6= 1/2” (in the sense of a certain inverse spectral
problem, denoted by (ISP)D and to be specified in §6 below, and not in the original
sense of Mark Kac [Kac]) if and only if the Riemann hypothesis is true. Moreover,
one cannot hear it for all of the fractal strings of dimension 1/2 (because ζ = ζ (s)
has zeros on the critical line Re(s) = 1/2). Hence, in the present approach, the truth
of the Riemann hypothesis is equivalent to the existence of a (mathematical) phase
transition at D = 1/2 and at no other dimension D in the “critical interval” (0,1).
(See Theorems 15 and 17 below.) By “hearing the shape of a fractal string” here, we
mean that the inverse spectral problem (ISP)D in §6 below has an affirmative answer
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for any fractal string of dimension D.

Phrased a little more precisely: one can hear the shape of a fractal string of
a given (Minkowski) dimension D ∈ (0,1) if and only if the Riemann zeta function
ζ (s) does not have any zero on the vertical line Re(s) = D. (See Theorem 14.) Fur-
thermore, in general, one cannot hear the shape of a fractal string in the midfractal
case where D = 1/2. (See Corollary 16.) Consequently, one can hear the shape of a
fractal string in every possible dimension D ∈ (0,1) (other than 1/2) if and only if
the Riemann hypothesis [Rie] is true; that is, if and only if

ζ (s) = 0, 0 < Re(s)< 1⇒ Re(s) =
1
2
. (2)

(See Theorem 15.) These results have been established by the author and Helmut
Maier in [LapMai2] (announced in 1991 in [LapMai1]) building on the author’s
earlier work [Lap1] (see also [Lap2,3]) on a partial resolution of the Weyl–Berry
conjecture in any dimension [Berr1,2]) as well as on the ensuing work of the author
and Carl Pomerance [LapPom2] (announced in 1990 in [LapPom1]) on a resolution
of the one-dimensional (modified) Weyl–Berry conjecture (of [Lap1]) and its unex-
pected connections with the Riemann zeta function. (See Conjecture 9 and Theorem
11 in §5.)

Later on, these results of [LapMai2] (which made use at the heuristic level of
the intuition of complex dimensions) were reinterpreted (by the author and Machiel
van Frankenhuijsen in [Lap-vFr1,2]) in terms of the then rigorously defined notion
of complex dimension, as well as extended to a large class of Dirichlet series and
integrals, including all of the arithmetic zeta functions for which the generalized
Riemann hypothesis is expected to hold. (See also [Lap-vFr3, Chapter 9].) More-
over, a method similar to the one used in [LapMai2], but now relying in part on the
explicit formulas established in [Lap-vFr1–3] (and direct computations as well as on
inverse spectral problems), was used to show that the Riemann zeta function, along
with a large class of Dirichlet series and integrals (including most of the arithmetic
zeta functions, [ParSh1–2], [Sarn], [Lap-vFr3, Appendix A] or [Lap6, Appendices
B, C and E], other than the zeta functions of varieties over finite fields, for which the
result clearly does not hold), cannot have an infinite vertical arithmetic progression
of zeros. (See Lap-vFr3, Chapter 11] for this result and several extensions concern-
ing the density of the zeros.)

Unknown at the time to the authors of [Lap-vFr1] (and of earlier papers on
this and related subjects), this latter result about the zeros in arithmetic progres-
sion, in the special case of ζ , was already obtained by Putnam in [Put1–2] by a
completely different method, which could not be generalized to this significantly
broader setting. This turned out to be quite beneficial to the general theory of com-
plex dimensions as it led us in [Lap-vFr1–3] to significantly improve and refine
the authors’ original pointwise and distributional explicit formulas. (See, e.g., [Lap-
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vFr3, Chapter 5].)

In the rest of this paper, we will be more specific and explain what type of
inverse spectral problem is involved here. (See, especially, §6.) First of all, we will
need to precisely define (in §2) what is a fractal string as well as its Minkowski di-
mension and content.

We will then recall (in §3) results from [LapPom1,2] providing a character-
ization of the notions of Minkowski measurability and nondegeneracy, which will
play a key role in §5 and part of §6 (as well as serve as a motivation for some aspects
of §7.4). In §4, we will discuss Weyl’s asymptotic formula and conjecture [We1,2]
for the spectral asymptotics of drums with smooth (or sufficiently “regular”) bound-
ary, as well as the Weyl–Berry conjecture [Berr1,2] for drums with fractal boundary
(or “fractal drums”) and its partial resolution obtained in [Lap1]. In §5, we will
present the resolution of the modified Weyl–Berry (MWB) conjecture [Lap1] for
fractal strings obtained in [LapPom1,2], thereby establishing a precise connection
between the corresponding direct spectral problem and the Riemann zeta function
ζ = ζ (s) in the critical interval 0 < s < 1. In §6, we will introduce the aforemen-
tioned inverse spectral problem (ISP)D, for each D ∈ (0,1), and precisely state the
results of [LapMai1,2] connecting it with the presence of zeros of the Riemann zeta
function in the critical strip 0 < Re(s)< 1 (the so-called critical or nontrivial zeros),
and thereby, with the Riemann hypothesis.

Finally, in §7, we will discuss a variety of topics, closely connected to (or
motivated in part by) the above developments. The subjects to be discussed in-
clude the mathematical theory of complex dimensions of fractal strings developed
in [Lap-vFr1–3] (see §7.2), its higher-dimensional counterpart recently developed in
[LapRaZ̆u1] and [LapRaZ̆u2–8] (see §7.3), as well as aspects of “quantized number
theory” (see §7.4) developed in [HerLap1] (and [HerLap2–4], along with [Lap7]).
In particular, in the latter subsection, we will see that the aforementioned inverse
spectral problem (ISP)D can be rigorously reinterpreted in terms of the invertibility
(or “quasi-invertibility”) of the “spectral operator” a= ζ (∂ ), with the “infinitesimal
shift” (of the real line) ∂ now playing the role of the usual complex variable s in the
definition of the quantum (or operator-valued) analog of the classic Riemann zeta
function ζ = ζ (s).

We close this introduction by providing several relevant references. For gen-
eral references concerning the theory of the Riemann zeta function and related
aspects of analytic number theory, we mention, for example, [Edw, Ing, Ivi, Kar-
Vor, Lap6, Lap-vFr3, ParSh1–2, Pat, Ser, Ti] along with the relevant references
therein. For fractal string theory and the associated theory of complex dimensions,
along with their applications to a variety of subjects, including fractal geometry,
spectral geometry, number theory and dynamical systems, we refer to [Lap-vFr3],
along with [EllLapMaRo, HamLap, Fal2, HeLap, HerLap1–5, LalLap1–2, Lap1–9,
LapLéRo, LapLu1–3, LapLu-vFr1–2, LapMai1–2, LapNe, LapPe1–3, LapPeWi1–
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2, LapPom1–3, LapRaZ̆u1–8, LapRo1–2, LapRoZ̆u, LéMen, MorSepVi, Pe, PeWi,
Ra, RatWi2, Tep1–2, Z̆u1–2] and the relevant references therein. In particular,
Chapter 13 of [Lap-vFr3] provides an exposition of a number of recent exten-
sions and applications of the theory, including to fractal sprays (higher-dimensional
analogs of fractal strings, [LapPom3]) and self-similar systems ([Lap-vFr3, §13.1],
based on [LapPe2–3, LapPeWi1–2, Pe, PeWi]), p-adic (or nonarchimedean) geome-
try, ([Lap-vFr3, §13.2], based on [LapLu1–3, LapLu-vFr1–2]), multifractals ([Lap-
vFr3, §13.3], based on [LapRo, LapLéRo, EllLapMaRo]), random fractal strings
([Lap-vFr3, §13.4], based on [HamLap]), as well as fractal membranes and the
Riemann (or modular) flow on the moduli space of fractal membranes ([Lap-vFr3,
§13.5], based on the book [Lap6] and on [LapNe]). As a general rule, we will give
specific references to the most recent monograph [Lap-vFr3] rather than to the ear-
lier research monographs, [Lap-vFr1] and [Lap-vFr2].

2 Fractal Strings and Minkowski Dimension

A (nontrivial) fractal string L is a bounded open set Ω ⊂ R which is not a finite
union of intervals. Hence, Ω is an infinite countable disjoint union of (bounded) in-
tervals I j, of lengths ` j = |I j|, for j = 1,2, · · · : Ω =∪∞

j=1I j. Since |Ω |=∑
∞
j=1 ` j <∞,

we may assume without loss of generality that (` j)
∞
j=1 is nonincreasing and so ` j ↓ 0

as j→ ∞. Furthermore, for our purposes, we may identify a fractal string with its
associated sequence of lengths (or scales), L := (` j)

∞
j=1, written as above (count-

ing multiplicities). Indeed, all of the geometric notions we will work with, such as
V (ε), the Minkowski dimension and content, as well as the geometric zeta function
and the complex dimensions, depend only on L = (` j)

∞
j=1 and not on the particular

geometric realization of L as a bounded open subset Ω of R.

Given ε > 0, the (inner) ε-neighborhood (or inner tube) of ∂Ω (or of L ) is
given by

Ωε := {x ∈Ω : d(x,∂Ω)< ε}, (3)

where ∂Ω denotes the boundary of Ω (a compact subset of R) and d(·,∂Ω) denotes
the (Euclidean) distance to ∂Ω .

In the sequel, we will let

V (ε) =VL (ε) := |Ωε |, (4)

the volume (really, the length or 1-dimensional Lebesgue measure) of Ωε . As was
mentioned above, it can be shown (cf. [LapPom1,2]) that V (ε) depends only on L
(and not on the particular geometric realization Ω of L ). Then, given d ≥ 0, the
d-dimensional upper Minkowski content of L (or of ∂Ω ) is given by
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M ∗
d = M ∗

d (L ) := lim
ε→0+

sup
V (ε)

ε1−d , (5)

and similarly for the d-dimensional lower Minkowski content M∗,d = M∗,d(L ),
except for the upper limit replaced by a lower limit.

The Minkowski dimension of L (or of its boundary ∂Ω ),1 denoted by D =
DL , is defined by

D := inf{d ≥ 0 : M ∗
d < ∞} (6)

= sup{d ≥ 0 : M ∗
d =+∞}.

We note that since |Ω |<∞, we always have 0≤D≤ 1. Furthermore, from the phys-
ical point of view, D will play the role of a critical exponent (or critical parameter):
it is the unique real number D such that M ∗

d =+∞ for d <D and M ∗
d = 0 for d >D.

The upper (resp. lower) Minkowski content of L is defined by M ∗ := M ∗
D

(resp., M∗ :=M∗,D). We always have 0≤M∗ ≤M ∗ ≤∞. If 0 <M∗(≤)M ∗ < ∞,
then L is said to be Minkowski nondegenerate. If, in addition, M∗ = M ∗ (i.e., if
the upper limit in Equation (5) is a true limit in (0,+∞), with d := D), then we
denote by M this common value, called the Minkowsi content of L , and the frac-
tal string L (or its boundary ∂Ω ) is said to be Minkowski measurable. So that
M = limε→0+ V (ε)/ε1−D and 0 < M < ∞.

We close this section by stating a theorem that shows the intimate connec-
tions between the geometric zeta function ζL of a fractal string L (introduced in
§1 above, just after Equation (1)), and the Minkowski dimension of L . (Recall that
ζL (s) = ∑

∞
j=1 `

s
j, for all s ∈ C with Re(s) sufficiently large.) This result was first

observed by the author in [Lap2, Lap3], using earlier work of Besicovich and Tay-
lor in [BesTay], and has since then been given several direct proofs in [Lap-vFr3,
Theorem 1.10] and in [Lap-vFr3, Theorem 13.111]; see also [LapLu-vFr2].

Theorem 1 ([Lap2, Lap3]). Let L be a fractal string. Then, the abscissa of con-
vergence of ζL coincides with the Minkowski dimension of L : σ = D.

Recall that the abscissa of convergence of ζL is given by

σ := inf
{

ρ ∈ R :
∞

∑
j=1

`
ρ

j < ∞

}
. (7)

It follows from this definition and from known results about Dirichlet series with
positive coefficients (see, e.g., [Ser, §VI.2.2 and §VI.2.3]) that ζL = ζL (s) is holo-
morphic for Re(s)> D and that the open right half-plane {Re(s)> D} is the largest
right half-plane (of the form {Re(s) > α}, for some α ∈ R∪{±∞}) to which ζL

1 This is really the upper Minkowski dimension of ∂Ω , relative to Ω , but we will not stress this
point in this paper (except perhaps in §7.3).
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can be holomorphically continued as well as the largest such half-plane in which the
Dirichlet series ∑

∞
j=1 `

s
j is absolutely convergent (and hence, convergent). Therefore,

ζL does not have any pole in {Re(s)>D}. (We refer, e.g., to [Ser, §V1.2 and §V1.3]
or to [HardWr] for an introduction to the theory of Dirichlet series.)

Furthermore, note that s = D is always a singularity of ζL (i.e., ζL (s)→+∞

as s→ D+, s ∈ R) and therefore, if ζL can be meromorphically continued to an
open (connected) neighborhood of D, then D is a pole of ζL . Theorem 1 above
(according to which D = σ ), along with this last observation, is one of the original
justifications for calling the poles of a meromorphic continuation of ζL (to an open
connected neighborhood of {Re(s) > D}) the (visible) complex dimensions of the
fractal string L . (See [Lap-vFr1–3] and, for a brief introduction, see §7.2 below.)

Here and thereafter, {Re(s) > α} stands for {s ∈ C : Re(s) > α}. By con-
vention, for α = −∞ or +∞, respectively, it coincides with C or the empty set /0.
Similarly, if α ∈ R,{Re(s) = α} denotes the vertical line {s ∈ C : Re(s) = α}.

3 Characterization of Minkowski Measurability and
Nondegeneracy

We recall here some of the joint results of the author and Carl Pomerance ob-
tained in [LapPom1,2]. Further results from that work will be discussed in §5.

Theorem 2 (Characterization of Minkowski measurability, [LapPom2]). Let
L = (` j)

∞
j=1 be a fractal string of Minkowski dimension D ∈ (0,1). Then, L is

Minkowski measurable if and only if

` j ∼ L j−1/D as j→ ∞, (8)

for some constant L ∈ (0,+∞). In that case, the Minkowski content of L is given by

M =
21−D

1−D
LD. (9)

Equation (8) precisely means that the limit of ` j · j1/D exists in (0,+∞) and
is equal to L. Furthermore, note that (8) is equivalent to

NL (x)∼MxD as x→+∞, (10)

with M := LD and where NL , the geometric counting function of L , is defined for
all x > 0 by

NL (x) = #({ j ≥ 1 : `−1
j ≤ x}). (11)
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Here and thereafter, #B denotes the number of elements of a finite set B. More-
over, Equation (10) precisely means that x−D NL (x)→ M as x→ +∞, for some
M ∈ (0,+∞).

Although we will not use this result explicitly, it is helpful to also give the
counterpart of Theorem 2 for Minkowski nondegeneracy. Let α∗ (resp., α∗) be the
lower (resp., upper) limit of ` j · j1/D as j→ ∞; so that we always have 0 ≤ α∗ ≤
α∗ ≤ ∞.

Theorem 3 (Characterization of Minkowski nondegeneracy, [LapPom2]). Let
L be a fractal string of dimension D∈ (0,1). Then, L is Minkowski nondegenerate
(i.e., 0 < M∗(≤)M ∗ < ∞) if and only if

0 < α∗(≤)α∗ < ∞. (12)

Concretely, Equation (12) means that there exist positive constants c, C ≥ 1
such that c−1 j−1/D ≤ ` j ≤ c j−1/D for all j ≥ 1 or, equivalently, C−1xD ≤ NL (x)≤
CxD for all x > 0.

Let Nν = Nν ,L denote the spectral (i.e., frequency) counting function of L .
Hence, Nν(x) := #({ f ∈ σ(L ) : f ≤ x}) for all x > 0, where σ(L ) = {n ·`−1

j : n≥
1, j ≥ 1} denotes the (frequency) spectrum of L . (In essence, the frequencies of L
are, up to a multiplicative normalizing positive constant, equal to the square roots
of the eigenvalues of L ; that is, of the eigenvalues of the Dirichlet Laplacian−∆ =
−d2/dy2 on any geometric representation Ω of L by a bounded open subset of R.)
It is also shown in [LapPom2] that Equation (12) (and hence also, the Minkowski
nondegeneracy of L , according to Theorem 3) is equivalent to

0 < δ∗(≤)δ ∗ < ∞, (13)

where δ∗ (resp., δ ∗) denotes the lower (resp., upper) limit of ϕν(x)/xD as x→+∞,
and ϕν(x) is the “asymptotic second term” for Nν(x); namely, ϕν(x) := W (x)−
Nν(x), with W (x) := |Ω |x being the Weyl (or leading) term to be discussed in
§4.1, §5 and §6 below. (In general, one always has ϕν(x) ≥ 0 for all x > 0 and
thus 0≤ δ∗ ≤ δ ∗ ≤ ∞.)

Equation (13) means that there exist c1 ≥ 1 such that c−1
1 xD ≤ ϕν(x)≤ c1xD

for all x > 0; in other words, the error estimates of [Lap1], to be discussed further
on in Theorem 8 of §4.1, are sharp in this case. More specifically, when N = 1 and
D ∈ (0,1), each of the equivalent conditions (12) and (13) characterizes the sharp-
ness of the remainder estimates of [Lap1], recalled in Equation (19) (see Theorem
8(i)) below).

It is natural to wonder whether the counterpart of Theorem 3 and of its com-
plement for Nν holds for one-sided (rather than two-sided estimates). The answer
may be somewhat surprising to the reader. In short, it is positive for the upper esti-
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mates but negative for the lower estimates. More specifically, still in [LapPom2], it
is shown that

M ∗ < ∞⇔ ` j = O( j−1/D) as j→ ∞ (i.e., α
∗ < ∞)⇔ NL (x) = O(xD) (14)

as x→+∞⇔ ϕν(x) = O(xD) as x→+∞, (i.e., δ
∗ < ∞),

and, more generally, that the exact counterpart of (14) holds for any d > 0, provided
D and M ∗ = M ∗

D are replaced by d and M ∗
d , respectively. This provides, in partic-

ular, a converse (in the present one-dimensional case) to the error estimate obtained
in [Lap1] for the asymptotic second term of Nν(x) to be discussed next; see part (i)
of Theorem 8 below, specialized to the case where N = 1 and D ∈ (0,1).

Moreover, it is shown in [LapPom2] by means of an explicit counterexample
that in the analog of (14) for M∗, the implications in one direction holds, but not in
the other direction. For example, it is not true, in general, that M∗ > 0⇔ α∗ > 0⇔
δ∗ > 0.

Here, in Equation (14), as well as in the sequel, given f : [0,+∞)→ R and
g : [0,+∞)→ [0,+∞), one writes that f (x) = O(g(x)) to mean that there exists a
positive constant c2 such that | f (x)| ≤ c2g(x), for all x sufficiently large. (For the
type of functions or sequences we will work with, we may assume that this inequal-
ity holds for all x > 0.) We use the same classic Landau notation for sequences
instead of for functions of a continuous variable.

In closing this section, we note that under mild assumptions on L (about
the growth of a suitable meromorphic continuation of its geometric zeta function
ζL ), it has since then been shown that within the theory of complex dimensions de-
veloped in [Lap-vFr1–3], the characterization of Minkowski measurability obtained
in [LapPom2] (Theorem 2 above) can be supplemented as follows (see [Lap-vFr3,
Theorem 8.15]), under appropriate hypotheses.

Theorem 4 (Characterization of Minkowski measurability revisited, [LapPom2,
Lap-vFr3]). Let L be a fractal string of Minkowski dimension D. Then, under suit-
able conditions on ζL (specified in [Lap-vFr3, Section 8.3]), the following state-
ments are equivalent:

(i) L is Minkowski measurable.
(ii) Condition (8), or equivalently (10), holds.
(iii) D is the only complex dimension of L with real part D, and it is simple.

Moreover, if any of these conditions is satisfied, then the Minkowski content of L is
given by

M = 21−D M
1−D

= 21−D res(ζL ,D)

D(1−D)
, (15)
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where res(ζL ,D) denotes the residue of ζL (s) at s = D, M := LD and L and M are
given as in (8) and (10), respectively.

Recall that the complex dimensions of L are the poles of a (necessarily
unique) meromorphic continuation of ζL (to a connected open neighborhood of
{Re(s) > D}). According to a result of [Lap2,3] (see Theorem 1 above), there are
no complex dimensions with real parts > D; see the discussion following Equation
(7) above.

Remark 5. When L is a self-similar string (in the sense of [Lap-vFr3, Chapter 2]
i.e., the boundary of L is a self-similar set), it is shown in [Lap-vFr3, Theorems
2.16, 8.23 and 8.36] that no hypothesis on ζL is needed in the counterpart of The-
orem 4, and that either of the equivalent statements (i), (ii) or (iii) of Theorem 4
is true if and only if L is nonlattice; i.e., iff the subgroup of R generated by the
logarithms of its distinct scaling ratios is not of the form ρZ, for some ρ > 0. If L
is lattice, then it is Minkowski nondegenerate but is not Minkowski measurable.

Finally, we mention that the original proof of Theorem 2 given in [Lap-
Pom1,2] was analytical and combinatorial in nature. Several parts of the proof have
since been established in a different manner by Falconer in [Fal2], using some tech-
niques from the theory of dynamical systems, and more recently (and perhaps most
concisely), by Rataj and Winter in [RatWi2] using techniques from geometric mea-
sure theory (in particular, from [Sta, RatWi1] and the relevant references therein).

Remark 6. We also note that the notion of Minkowski dimension was introduced
(for noninteger values of the dimension) by Bouligand in the late 1920s in [Bou].
The notion of (normalized) Minkowski content was introduced by Feder in [Fed],
while that of Minkowski measurability was apparently first used by Stachó in [Sta].

The Minkowski dimension is also often called “box dimension” (see, e.g.,
[Fal1, Lap-vFr3, Man, Mat, Tri, LapRo2] or the applied literature on fractal
dimensions), entropy dimension, or capacity dimension, for example. Contrary to
the Hausdorff dimension, it is not σ -stable (that is, it is usually not true that
D(∪∞

k=1Ak) = supk≥1 D(Ak)), where D(A) denotes the upper Minkowski dimen-
sion of A; see, e.g., [Fal1, Mat, Tri].2 Furthermore, unlike the Hausdorff measure
(which is a true positive Borel measure, in the usual mathematical sense of the
term, [Coh, Fal1, Foll, Mat, LapRo2]), the Minkowski content (when it exists) or
more generally, the upper Minkowski content, is not a measure (it is only finitely
sub-additive). In fact, as is pointed out in [Lap1] (see also [Lap2–3]), and some-
what paradoxically, this is precisely because it does not have all of these desirable
mathematical properties that the Minkowski dimension is important in the study of
aspects of harmonic analysis as well as of spectral and fractal geometry, includ-
ing the study of the vibrations and spectra of fractal drums or “drums with fractal
boundary” ([Lap1–3], see also §4 below) and, in particular, of fractal strings (i.e.,
one-dimensional drums with fractal boundary). See, e.g., [Lap1, Examples 5.1 and
5.1’].

2 A simple counterexample is provided by A := {1/k : k≥ 1} and Ak := { 1
k } for each k≥ 1, viewed

as subsets of R; then, D(A) = 1/2, whereas D(Ak) = 0 for all k ≥ 1 and hence, supk≥1 D(Ak) = 0.
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4 The Weyl–Berry Conjecture for Fractal Drums

In this section, we first briefly recall Weyl’s classic formula for the leading spec-
tral asymptotics of ordinary (smooth or piecewise smooth) drums, as well as cor-
responding extensions and sharp remainder estimates (from [Lap1]), valid for gen-
eral fractal drums and providing a partial resolution of the Weyl–Berry conjecture
([Berr1–2]) in any dimension; see §4.1. (In §5, we will specialize the situation to the
one-dimensional case, which is the main focus of this paper.) In the latter part of this
section, we will comment on various aspects of Weyl’s formula for fractal drums,
both in the case of drums with fractal boundary (which is of most interest here) and
in the related case of drums with fractal membrane (corresponding to Laplacians
and Dirac operators on fractals themselves); see §4.2. We will also conclude this
section by briefly mentioning some of the physical and technological applications
of these mathematical results about fractal drums and of the original (or modified)
Weyl–Berry conjecture.

4.1 Weyl’s asymptotic formula with sharp error term for fractal
drums

Hermann Weyl’s classic asymptotic formula ([We1,2]; see also, e.g., [CouHil,
ReSi3]) for the frequency (or spectral) counting function Nν = Nν(x) of an ordi-
nary (N-dimensional) drum can be stated as follows:

Nν(x) = CN |Ω |NxN +o(xN) (16)

as x→+∞. Here, |Ω | := |Ω |N denotes the volume of the bounded open set Ω ⊂RN

(i.e., the N-dimensional Lebesgue measure of Ω ). Furthermore, given x > 0,Nν(x)
is the number of (suitably normalized) frequencies f of the drum not exceeding x,
and CN is an explicitly known positive constant which can be expressed in terms of
the volume of the unit ball of RN (and therefore, in terms of appropriate values of
the gamma function Γ =Γ (s)). In the sequel, we denote the leading term in (16) by

W (x) := Cn|Ω |NxN (17)

and call it the Weyl term. In addition, mathematically, the spectrum of the (N-
dimensional) “drum” is interpreted as the spectrum of the Dirichlet Laplacian −∆

on a given nonempty bounded open set Ω ⊂ RN(N ≥ 1), with boundary ∂Ω . Fur-
thermore, the Dirichlet boundary conditions are interpreted variationally (or in the
distributional sense); see, e.g., [LioMag, Bre] or [Lap1, §2].

Since the Laplacian is a second order (self-adjoint, positive) linear operator,
the aforementioned (normalized) frequencies are (up to a multiplicative constant)
equal to the square roots of the eigenvalues. In the present situation, the spectrum



14 Contents

is discrete and hence, we can order these frequencies in nondecreasing order (and
according to their multiplicities) as follows:

0 < f1 ≤ f2 ≤ ·· · ≤ fn ≤ ·· · , with fn→+∞ as n→ ∞. (18)

Remark 7. Physically, W (x) can be interpreted as a volume in phase space. More
specifically, W (x) is proportional to

|{(x,ξ ) ∈Ω ×RN : |ξ |2 ≤ x2}|2N = |B(0,1)|N |Ω |N xN ,

where RN ×RN ≈ R2N is the “phase space” (the space of positions and velocities
or equivalently, momenta, of the classical particle) and for ρ > 0,B(0,ρ) denotes
the ball of center the origin and radius ρ in RN .

In [Berr1, Berr2], extending to the fractal case a classic conjecture of the
mathematician Hermann Weyl [We1,2] in the “regular” (or “smooth” case),3 the
physicist Michael Berry has conjectured that (16) should be completed to obtain
an asymptotic second term for the spectral counting function Nν(x), of the form
−CN,HHH(∂Ω)xH =: S(x), where H is the Hausdorff dimension of the boundary
∂Ω (H ∈ [N−1,N]),HH(∂Ω) is the H-dimensional Hausdorff measure of ∂Ω (a
well-known fractal generalization to noninteger dimensions of the notion of “vol-
ume”; see, e.g., [Fed, Fal1, Mat, Tri, LapRo2]), and CN,H is a positive constant
independent of Ω and depending only on N and H (as well as expressed in terms of
the gamma function, by analogy with the known results in integer dimensions for
simple examples such as N-dimensional cubes).

Unfortunately, it turns out that Berry’s conjecture (called the Weyl–Berry
conjecture in [Lap1] and in the literature since then), although very stimulating,
is not correct, as was first noted by Brossard and Carmona by means of an explicit
counterexample in [BroCar] and then, explained from a mathematical point of view
(and illustrated by a family of even simpler counterexamples) in [Lap1]. (See, in
particular, [Lap1, Examples 5.1 and 5.1’].) Furthermore, H should be replaced by
D, the (inner) Minkowski dimension of ∂Ω , and HH(∂Ω) might reasonably be re-
placed by MD(∂Ω), the (inner) Minkowski content of ∂Ω . Finally, as was shown
in [Lap2,3] and [LapPom2,3], even the expected constant CN,H (when it exists) does
not simply take the form of CN,D (where D is the Minkowski dimension of ∂Ω )
but whatever replaces the factor of proportionality in the counterpart of S(x) should
merely be expressed in terms of the residue at s = D of the meromorphic continua-
tion of the corresponding spectral zeta function ζν(s) = ∑

∞
n=1 f−s

n , where ( fn)
∞
n=1 is

the sequence of frequencies of the drum, as given in Equation (18) above. In fact, in
§5, we will see that when N = 1 (the special case of fractal strings instead of higher-
dimensional fractal drums) and when ∂Ω (or, equivalently, the fractal string) is
Minkowski measurable (with Minkowski content denoted by M ), then C1,D is pro-

3 See, e.g., [Mel1–2, Ivr1–3] and [Hö1–3, Ph, See1–3] (along with the relevant references therein
and in [Lap-vFr3, §12.5 and Appendix B]) for results (in the smooth case) concerning the Weyl
conjecture about the asymptotic second term of the spectral counting function Nν (x).
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portional to the positive number−ζ (D), where ζ = ζ (s) is the classic Riemann zeta
function and D ∈ (0,1). (See Theorem 11 below, where in light of (23), C1,D is of
the form cDM , with cD given by Equation (24).)

On the positive side, the following partial resolution of the Weyl–Berry con-
jecture was obtained by the author in [Lap1] (recall that the Weyl term W (x) is given
by (17) above and is therefore proportional to xN):

Theorem 8 (Sharp error estimates, [Lap1]). Let Ω be any (nonempty) bounded
open subset of RN . Recall that we always have D ∈ [N− 1,N], where D = D(∂Ω)
is the (inner) Minkowski dimension of ∂Ω ; see comment (b) in §4.2 just below.

(i) Then, in the “fractal case” where D ∈ (N−1,N], we have

Nν(x) =W (x)+O(xD) as x→+∞, (19)

provided M ∗
D(∂Ω) < ∞, where the (pointwise) remainder estimate O(xD) is sharp

for every D ∈ (N − 1,N). Furthermore, if M ∗
D(∂Ω) = +∞, then D should be re-

placed by D+ ε , for any arbitrarily small ε > 0.

(ii) In the “nonfractal case” where D=N−1 (which is the case, for example,
if the boundary ∂Ω is piecewise smooth or, more generally, locally Lipschitz), then
exactly the same result as in part (i) holds, except for the fact that the error term
now takes the form O(xD logx) as x→+∞ (with D := N−1).

When M ∗
D(∂Ω) = +∞, either in case (i) or (ii) of Theorem 8, one should try

to use the later extension of this theorem obtained in [HeLap] and expressed in terms
of generalized (upper) Minkowski contents, relative to suitable gauge functions; see
comment (g) in §4.2 just below.

Note that in the most fractal case when D = N, the remainder estimate (19)
still holds but is clearly uninteresting because then, the error term is of the same
order as the leading term W (x) given by Equation (17).

4.2 Further comments, extensions and applications

We next comment on various aspects and extensions (in related contexts) of Theo-
rem 8 and of the Weyl–Berry conjecture. Just as in §4.1, our discussion is not meant
to be exhaustive in any way but simply aims at providing various pointers and ref-
erences where the interested reader can find a lot more detailed information.

(a) The nonfractal case where D := N − 1 (see part (ii) of Theorem 8
just above) was essentially already obtained by G. Métivier in [Mét3] (see also
[Mét1,2]), in a slightly less precise form and using a different terminology (not
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explicitly involving the notions of Minkowski dimension and content).

(b) In Theorem 8, the (inner) Minkowski dimension D and (inner) upper
Minkowski content M ∗

D := M ∗
D(∂Ω) are defined exactly as in the one-dimensional

case where N = 1 (see Equations (6) and (5), respectively), except that on the right-
hand side of (5) (with d := D), V (ε)/ε1−D should be replaced by V (ε)/εN−D. Since
Ω ⊂RN is bounded, it has finite volume and therefore it is easy to check that D≤N.
Furthermore, since ∂Ω is the boundary of a (nonempty) bounded open set, its topo-
logical dimension is equal to N− 1 and hence, D ≥ N− 1. Consequently, as was
observed in [Lap1], we always have N−1≤ D≤ N. (For the special case of fractal
strings, we have N = 1 and we thus recover the fact that 0≤D≤ 1; see the statement
following Equation (6) in §2.)

In [Lap1], the case where D = N−1 is called the least or nonfractal case, the
case where D = N is called the most fractal case, while the case where D = N− 1

2
(i.e., the codimension N−D = {D} is equal to 1/2, where {D} ∈ [0,1) is the frac-
tional part of D), is referred to as the midfractal case. It turns out that each of these
cases (where the codimension N−D takes the value 0,1 or 1/2, respectively)4 plays
an important role in the proof of Theorem 8 (and its generalizations) given in [Lap1]
(as well as in related spectral or geometric results obtained in [Lap1, Examples 5.1
and 5.1’, along with Appendix C]).

(c) To show that the remainder estimates are sharp (in case (i) of Theorem
8 where D ∈ (N− 1,N) and M ∗

D(∂Ω) < ∞), a simple one-family of examples is
constructed in [Lap1, Example 5.1 (N = 1) and Example 5.1’ (N ≥ 1)]. When
N = 1, it is of the form Ωa := ∪∞

j=1(( j + 1)−a, j−a), where a > 0 is arbitrary, so
that ∂Ωa = {0}∪{ j−a : j ≥ 1}. It follows that for every a > 0, H = 0 (since ∂Ωa
is countable), whereas D = (a+ 1)−1, ∂Ωa is Minkowski measurable (as defined
in §2 above and shown in [Lap1]) with Minkowski content M := MD(∂Ω) equal
to 21−DaD/(1−D); see [Lap1, Appendix C]. This was the first explicit example
of a fractal string and served as a motivation for the formulation of Theorem 2
above (the characterization of Minkowski measurability for fractal strings, obtained
in [LapPom2]) and the modifed Weyl–Berry conjecture, stated in [Lap1] and to
be discussed in §5 below (see Conjecture 9). Note that the midfractal case where
D = 1/2 corresponds to a = 1, while the most (D = 1) and least (D = 0) fractal
cases correspond, respectively, to the limits a→ 0+ and a→+∞. Furthermore, the
symmetry a↔ 1/a exchanges D and 1−D.

Finally, when N ≥ 2, exactly the same statements as above are true for the N-
dimensional analog (a fractal comb) of Ωa, defined by Ωa,N := Ωa× [0,1]N−1. We
then have that H = N−1,D = N−1+(a+1)−1, ∂Ωa,N is Minkowski measurable
and MD(∂Ωα,N) has the same value as above. Furthermore, the remainder estimate
(19) of part (i) of Theorem 8 is still sharp for every a > 0 (and hence, for every

4 Strictly speaking, when D = N−1,N−D = 1 is not equal to {1}.
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D∈ (N−1,N)); see [Lap1, Example 5.1’]. Actually, it follows from the later results
(from [LapPom2]) recalled in §5 below that for every a > 0,

Nν(x) =W (x)− cN,D MD(∂Ω)xD +o(xD) as x→+∞, (20)

where Ω = Ωa,N , W (x) is given by (17), and cN,D is explicitly known.

(d) Under suitable hypotheses, Theorem 8 has an exact counterpart for the
Neumann Laplacian (instead of the Dirichlet Laplacian), with the boundary con-
ditions interpreted variationally (as in [Bre, LioMag] or [Lap1, §2]) as well as for
higher order, positive self-adjoint elliptic operators with (possibly) variable coef-
ficients and with Dirichlet, Neumann or mixed boundary conditions; see [Lap1],
Theorem 2.1 and its corollaries. For the Neumann Laplacian, the error estimate (19)
holds, for instance, for the classic Koch snowflake domain and, more generally, for
all planar quasidics [Pomm, Maz] (e.g., for the simply connected planar domains
bounded by the Julia sets of the quadratic maps z 7→ z2 + c, where the complex pa-
rameter c is sufficiently small).

(e) In [BroCar], for the Dirichlet Laplacian and using probabilistic methods,
Brossard and Carmona have obtained error estimates (as t → 0+) for the partition
function Zν = Zν(t) := Tr(et∆ ) (the trace of the heat semigroup), of interest in quan-
tum statistical mechanics, probability theory, harmonic analysis and spectral theory.
These estimates are also expressed in terms of the (inner) Minkowski dimension
D. We should note, however, that even though part (i) of Theorem 8 implies those
error estimates, the converse is not true, in general. Indeed, typically, beyond the
leading term (for which a classic Tauberian theorem can be used in order to show
the equivalence of the corresponding results for Nν(x) and Zν(t) (see, e.g., [Kac],
[Sim]), pointwise asymptotic results for Nν(x) are considerably more difficult to ob-
tain than for Zν(t).

( f ) The Weyl–Berry conjecture for drums with fractal boundary (and its
modifications in [Lap1]) has since been studied in a number of different con-
texts, both analytically and probabilistically. We refer to [Lap-vFr3, §12.5] for
a number of references on the subject, including [BroCar, Lap1–3, LapPom1–3,
LapMai1–2, Ger, GerSchm, FlVas, HeLap, MolVai, vBGilk, Lap-vFr1–3, Ham-
Lap, LapRaZ̆u1, LapRaZ̆u7]. We also refer to [Gilk], [Hö1–3], [Lap1–3] and [Lap-
vFr3, Appendix B] for related references (including [Gilk] in the case of partition
functions) on the spectral asymptotics of smooth (as opposed to fractal) drums. A
general introduction to Weyl’s aymptotic formula and its analytic or probabilistic
proof (for smooth or piecewise smooth boundaries, for example) can be found in
[CouHil, ReSi3, Gilk, Kac, Sim].

Finally, we mention that the original Weyl–Berry conjecture was also formu-
lated for “drums with fractal membrane” (as opposed to “drum with fractal bound-
ary”). An appropriate modification of the conjecture was established in that setting
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by Jun Kigami and the author in [KiLap1] (building on a conjecture of [Lap3]) for a
large class of self-similar fractal drums corresponding to Laplacians on fractals (the
so-called “finitely ramified” or p.c.f. self-similar sets), such as the Sierpinski gasket,
the pentagasket and certain fractal trees. In particular, in [KiLap1] is established a
suitable analog of Weyl’s classic asymptotic formula, but now for the leading spec-
tral asymptotics of Laplacians on (self-similar) fractals (see, e.g., [Ki]) rather than
on bounded open sets with fractal boundary. The resulting semi-classical formula,
along with its geometric interpretation, is further explored and extended from the
point of view of nonsmooth geometric analysis and Connes’ noncommutative ge-
ometry [Con], in [Lap4–5], [KiLap2] and (in a somewhat different setting and using
suitably constructed Dirac operators and intrinsic geodesic metrics on the fractals
under consideration), in [ChrIvLap] and [LapSar].

Beside [KiLap1] and [Lap3], see also, e.g., [Lap-vFr3, §12.5.2] for many
other references on (or related to) this subject, including [Ram, RamTo, Sh, FukSh,
Ham1–2, Lap4–5, KiLap2, Sab1–3, Tep1–2, DerGrVo, ChrIvLap, LalLap1–2, Lap-
Sar].

(g) Theorem 8 above (from [Lap1]), along with the results from [LapPom2]
stated in §3 above and §5 below, as well as a part of the results from [LapMai2]
discussed in §6 below, have been extended by Christina He and the author in the
research memoir [HeLap] to the more general situation where the (now general-
ized) Minkowski content is no longer defined in terms of a strict power law, but in
terms of a large class of “gauge functions” involving, for example, expressions of
the form xD logx, xD log logx, · · · or xD/ log loglogx, etc. This is of interest in the
applications to fractal geometry, spectral geometry, harmonic analysis, probability
theory, stochastic processes and mathematical or theoretical physics.

We close this section by briefly commenting on the physical relevance of
Weyl’s asymptotic formula (see [Kac] for an interesting overview), Theorem 8
above (from [Lap1]) and the Weyl–Berry conjecture which partially motivated it.
The Weyl–Berry conjecture, along with its various modifications and extensions,
has potential or actual physical and engineering applications to condensed matter
physics, quantum mechanics, quantum chemistry, quantum chaos, acoustics, dif-
fusions and wave propagation in fractal or random media (i.e., on or off fractals),
geophysics, radar and cell phone technology (fractal antennas), as well as the mak-
ing of computer microchips. (See, e.g., [Berr1–2, Kac, Ram, RamTo, Sch, Lap1–6,
SapGoMar, KiLap1–2, LapPa, LapNeuReGr, ChrIvSar, LalLap1–2, LapSar] and the
relevant references therein.)

We will next focus on the one-dimensional case (i.e., N = 1), as in the rest of
this paper (with the exception of the present section), and therefore on the connec-
tions between this subject and aspects of number theory, particularly the Riemann
zeta function and the Riemann hypothesis, in §5 and §6, respectively.
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5 Direct Spectral Problems for Fractal Strings and the Riemann
Zeta Function in the Critical Interval

Having discussed in §4 the Weyl classical asymptotic formula (with error term) and
the closely related Weyl–Berry conjecture, we may now specialize the situation to
the one-dimensional case (that of fractal strings, corresponding to N = 1 in §4.1) and
discuss the key result of [LapPom2] establishing the (one-dimensional) “modified
Weyl–Berry conjecture” for fractal strings; see Theorem 11 below. This brings to the
fore direct connections between the spectra of fractal strings and the Riemann zeta
function ζ = ζ (s), in the case of the “critical interval” 0 < s < 1. (See also Equation
(1) above for a related general formula.) This connection will be further explored
in §6 (based on [LapMai2]), in relation with the critical strip 0 < Re(s) < 1, the
Riemann hypothesis and the converse of Theorem 11; that is, an inverse (rather than
a direct) spectral problem for fractal strings; see, in particular, Theorems 14 and 15
(from [LapMai2]) in §6 below.

Let Ω be an arbitrary (nontrivial) fractal string (i.e., a bounded open sub-
set of R), of Minkowski dimension D ∈ (0,1) and associated sequence of lengths
L = (` j)

∞
j=1, written in nonincreasing order (according to multiplicities) and such

that ` j ↓ 0 as j→∞; see §2. In the sequel, we will refer to such a fractal string as Ω

or L , interchangeably.

Recall from our discussion in §1 and §4.1 that a one-dimensional fractal drum
(i.e., drum with fractal boundary) is nothing but a fractal string. Furthermore, re-
call from §2 that the (Minkowski) dimension of a fractal string always satisfies
0 ≤ D ≤ 1. In the sequel, we exclude the extreme cases where D = 0 and D = 1
(the least or nonfractal case and the most fractal case, respectively) and therefore
assume that D belongs to the critical interval (0,1) : 0 < D < 1.

Letting N = 1 in the expression (17) for the Weyl term (i.e., the leading term
in Weyl’s asymptotic formula (16)) W = W (x), we obtain (given our current nor-
malization for the frequencies)

W (x) = |Ω |1 x, for x > 0. (21)

So that, according to Weyl’s classic formula (16), we have

Nν(x) =W (x)+R(x), (22)

where W (x) is given by (21) and R(x) = o(x) as x→ +∞. Furthermore, provided
M ∗ < ∞ (i.e., L has finite upper Minkowski content), then according to part (i) of
Theorem 8 above (from [Lap1]), the error term R(x) in (22) can be estimated as fol-
lows: R(x) = O(xD) as x→+∞. Moreover, if L is Minkowski nondegenerate (i.e.,
0 < M∗ < M ∗ < ∞), we even have that R(x) is truly of the order of xD as x→+∞

(according to a result of [LapPom2] briefly discussed in §2 above; and conversely
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(still by [LapPom2]), if R(x) is exactly of the order of xD (resp., if R(x) = O(xD)),
then L is Minkowski nondegenerate (resp., M ∗ < ∞). (See Theorem 3 and Equa-
tion (14).)

The question is now to know when we really have an asymptotic second term,
proportional to xD, in Weyl’s asymptotic formula (22). We will sometimes refer
to such a term as a “monotonic second term”. In [Lap1], the following conjecture
(called the MWB conjecture, for short) was stated.

Conjecture 9 (Modified Weyl–Berry conjecture, [Lap1]). If L is a Minkowski mea-
surable fractal string of dimension D ∈ (0,1), then

Nν(x) =W (x)− cD M xD +o(xD), as x→+∞, (23)

where M denotes the Minkowski content of L (i.e., of its boundary ∂Ω) and cD is
a positive constant depending only on D.

Remark 10. (a) In higher dimensions (i.e., when N ≥ 2 and Ω ⊂RN is a bounded
open set), the counterpart of the MWB conjecture is not true, in general; see [FlVas]
and, especially, [LapPom3] for various counterexamples. Moreover, one does not
know whether it is true for a simply connected domain in the plane (i.e., when
N = 2). It is not the object of the present paper to discuss this issue further, al-
though it is of significant interest and is also very intricate.

(b) When N = 1, the Minkowski measurability condition is necessary, in gen-
eral, for the spectral counting function Nν to admit a monotonic asymptotic second
term, proportional to xD, as x→+∞. For example, for the Cantor string L = LCS
(defined by ΩCS := [0,1] \C, the complement in [0,1] of the classic ternary Cantor
set C), Nν admits an oscillatory (asymptotic) second term. More specifically, for the
Cantor string, the asymptotic second term is of the form −xD G(log3 x), where G is
a 1-periodic function which is bounded away from zero and infinity; see [LapPom2]
and, especially, [Lap-vFr3, Equation (16.57) and §10.2.1]. This fact was first proved
in [LapPom1,2] (by a direct computation) and does not contradict the MWB con-
jecture since (as was also first proved in [LapPom1,2]), the Cantor string is not
Minkowski measurable (but is Minkowski nondegenerate). Moreover, these issues
were investigated in great detail in [Lap-vFr1–3], by using the theory of complex
dimensions and associated explicit formulas developed in those monographs. (See,
e.g., [Lap-vFr3], Chapter 6, §8.4 and Chapter 10.)

It is shown, for example, in [Lap-vFr3, §6 and §8.4] (building in part on con-
jectures and results in [Lap3]) that a self-similar string is Minkowski measurable
if and only it is nonlattice (i.e., the logarithms of its distinct scaling ratios are ra-
tionally independent). Moreover, it follows from loc. cit. that a lattice self-similar
string (e.g., the Cantor string) is never Minkowski measurable (but is Minkowski
nondegenerate) and that its spectral counting function Nν(x) always has an asymp-
totic second term which is oscillatory and of the order of xD (in fact, it is of the form
xD G(logx), where G is a nonconstant periodic function on R which is bounded
away from zero and infinity).
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More generally, we will see in Theorem 14 of §6 (based on [LapMai2]) that if
ζ = ζ (s) does not have any zeros on the vertical line {Re(s)=D}, then the existence
of an asymptotic second term proportional to xD for the spectral counting function
Nν(x) implies that L is Minkowski measurable (i.e., the hypothesis of Conjecture 9
is also necessary).

The following theorem (due to the author and Carl Pomerance in [LapPom2],
and announced in [LapPom1]) gives the precise asymptotic second term of the spec-
tral (or frequency) counting function of a Minkowski measurable fractal string,
thereby resolving in the affirmative the MWB conjecture for fractal strings and
yielding the specific value of the positive constant cD appearing in Equation (23)
above.

Theorem 11 (Resolution of the MWB conjecture for fractal strings, [LapPom2]).
The modified Weyl–Berry conjecture for fractal strings (Conjecture 9 above) is true
for every D ∈ (0,1). More specifically, if L is a Minkowski measurable fractal
string of dimension D ∈ (0,1), then its frequency counting function Nν = Nν(x)
admits a monotonic second term, proportional to xD, of the exact same form as in
Equation (23). Furthermore, the positive constant occurring in (23) is given by

cD = (1−D) 2−(1−D)(−ζ (D)). (24)

Note that cD > 0 because ζ = ζ (s) is strictly negative in the critical interval
0 < s < 1 (see, e.g., [Ti]): −ζ (D) > 0 since D ∈ (0,1). Furthermore, in Equation
(24), the constant cD is proportional to the positive number −ζ (D), and hence, to
the value at s = D of ζ = ζ (s) in the critical interval 0 < s < 1.

We next briefly comment on the structure of the proof of Theorem 11 given
in [LapPom2]. It relies on two different theorems. Namely, the geometric charac-
terization of Minkowski measurability (Theorem 2 above, from [LapPom2]) along
with the following theorem (also from [LapPom2]), which is of an analytic number
theoretic nature and whose motivation will be explained after its statement. (In the
sequel, given y ∈ R, [y] stands for the integer part of y and {y} := y− [y] ∈ [0,1)
denotes the fractional part of y.)

Theorem 12 (The sound of Minkowski measurable fractal strings, [LapPom2]).
Let L be a Minkowski measurable fractal string of dimension D ∈ (0,1). Equiv-
alently, according to Theorem 2 (see Equation (8) in §3), let L = (` j)

∞
j=1 be a

nonincreasing sequence of positive numbers satisfying (for some positive constant
L > 0)

` j ∼ L j−1/D as j→ ∞. (25)

Then

∞

∑
j=1

[` jx] =

(
∞

∑
j=1

` j

)
x+ζ (D)LDxD +o(xD) as x→+∞, (26)
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where ζ denotes the classic Riemann zeta function. Equivalently, Equation (26) can
be stated as follows:

∞

∑
j=1
{` j x} ∼ −ζ (D) LDxD as x→+∞.

We note that in order to state Theorem 12, one does not need to assume that
L is Minkowski measurable and therefore, to rely on Theorem 2. Instead, one can
simply assume that (25) (or, equivalently, (10)) holds for some D ∈ (0,1). Theorem
2 is then used when deducing Theorem 11 from Theorem 12.

Given a fractal string Ω = ∪∞
j=1I j (as in §2), its spectral counting function

Nν =: Nν(Ω , ·) satisfies Nν(Ω , ·) = ∑
∞
j=1 Nν(I j, ·), with Nν(I j, ·) = [` j x] for each

j ≥ 1 because I j is an interval of length ` j. It follows that Nν(x) = ∑
∞
j=1[` j x],

which is the left-hand side of (26). In light of the first expression obtained for the
Minkowski content M in Equation (15) (and the line following it), one then easily
deduces Theorem 11 (and hence, the MWB conjecture for fractal strings, Conjec-
ture 9) from Theorem 12. Note that |Ω |1 = ∑

∞
j=1 ` j, so that the leading term of

Nν(x) = ∑
∞
j=1[` j x] in (26) coincides with the Weyl term W (x) (given by (21)), as

it should. Furthermore, as was alluded just above, by using the expression of M
given by the first equality in (15) and eliminating LD in the asymptotic second term
of (26), one establishes both the existence and the value of the positive constant cD
(explicitly given by Equation (24) of Theorem 11).

Physically, the aforementioned relation, Nν(Ω , ·) = ∑
∞
j=1 Nν(I j, ·), follows

from the fact that the intervals I j comprising the fractal string Ω (or, more poetically,
the strings of the fractal harp) are vibrating independently of one another. Mathe-
matically, it follows from the variational formulation of the underlying eigenvalue
problem; see, e.g., [Lap1] and the relevant references therein (including [LioMag]
and [ReSi3]).

6 Inverse Spectral Problems for Fractal Strings and the
Riemann Hypothesis

It is natural to wonder whether the converse of Theorem 11 (or essentially equiv-
alently, of the MWB conjecture for fractal strings, Conjecture 9) is true. Roughly
speaking, this means that if there are no oscillations of order D in the spectrum of L ,
then there are no oscillations of order D in the geometry of L . Rephrased: If Nν(x)
has an asymptotic second term, proportional to xD, is it true that L is Minkowski
measurable?
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More precisely, given D ∈ (0,1), the inverse spectral problem (ISP)D under
consideration can be stated as follows:

(ISP)D If L is a fractal string of dimension D such that

Nν(x) =W (x)−C xD +o(xD) as x→+∞, (27)

for some nonzero (real) constant C , then is it true that L is Minkowski measur-
able (or, equivalently, in light of Theorem 2 and the comment following it, that
NL (x) ∼ M xD as x→ +∞, for some positive constant M, where NL = NL (x)
denotes the geometric counting function of L )?

The above problem, (ISP)D, is called an inverse spectral problem since
given some spectral information about the fractal string L (namely, the existence
for Nν(x) of a monotonic asymptotic second term, proportional to xD), one asks
whether one can recover some geometric information about L (namely, that L is
Minkowski measurable). Similarly, the MWB conjecture from [Lap1] (Conjecture
9 above) and its resolution given in Theorem 11 above (from [LapPom2]) fall natu-
rally within the class of direct spectral problems.

Remark 13. (a) In the statement of (ISP)D, it is not necessary to assume that L
is of Minkowski dimension D since a result from [LapPom2] (recalled in Theorem 3
above and the comment following it) shows that (27) implies that L is Minkowski
nondegenerate (i.e., 0 < M∗ ≤M ∗ < ∞) and hence, has Minkowski dimension D.

(b) Originally, in [LapMai1–2], the error term o(xD) in the counterpart of Equa-
tion (27), was assumed to be slightly smaller, namely, O(xD/ log1+δ x) as x→+∞,
for some δ > 0. However, an unpublished work of Titus Hilberdink [Hil], using an
improved version of the Wiener–Ikehara Tauberian theorem (see, e.g., [Pos]) used
in [LapMai1–2], shows that the more general estimate o(xD) suffices. (Actually, in
[LapMai1–2], the better error estimate is only used for the sufficiency part of the
proof of Theorem 14, that is, the part requiring the use of a Tauberian theorem.)

(c) For Dirichlet boundary conditions (which are assumed here in (ISP)D), one
must necessarily have C > 0 in Equation (27) because then, we have that Nν(x)≤
W (x) for all x > 0, which implies that C ≥ 0. Note that by hypothesis, C 6= 0.

In [LapMai2] (announced in [LapMai1]), the author and H. Maier have shown
that this family of inverse spectral problems (ISP)D, for D ranging through the crit-
ical interval (0,1), is intimately related to the presence of zeros of ζ = ζ (s) in the
critical strip 0 < Re(s) < 1 (i.e., to the critical zeros of ζ ), and thereby, to the
Riemann hypothesis. More specifically, we have the following two theorems (the
second one really being a corollary of the first one).

Theorem 14 (Characterization of the nonvanishing of ζ along vertical lines in
the critical strip, [LapMai2]). Fix D ∈ (0,1). Then, the inverse spectral problem
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(ISP)D is true (that is, has an affirmative answer for every fractal string of dimen-
sion D satisfying the assumptions of (ISP)D) if and only if the Riemann zeta function
ζ = ζ (s) does not have any zeros along the vertical line {Re(s) = D}; i.e., if and
only the “D-partial Riemann hypothesis” is true.

Theorem 15 (Spectral reformulation of the Riemann hypothesis, [LapMai2]).
The inverse spectral problem (ISP)D is true for every value of D in (0,1) other than
in the midfractal case when D = 1/2 (or equivalently, for every D ∈ (0,1/2)) if and
only if the Riemann hypothesis is true.

Theorem 15 follows at once from Theorem 14 since the Riemann hypothe-
sis states that ζ (s) = 0 with 0 < Re(s) < 1 implies that Re(s) = 1/2 (i.e., that s
belongs to the critical line {Re(s) = 1/2}). The fact that in Theorem 15, D can be
equivalently assumed to be in (0,1/2),(1/2,1) or in (0,1)\{1/2}, follows from the
functional equation satisfied by ζ = ζ (s), according to which

ξ (s) = ξ (1− s), for all s ∈ C, (28)

and hence,

ζ (s) = 0⇔ ζ (1− s) = 0, for 0 < Re(s)< 1. (29)

Here, ξ = ξ (s) denotes the completed Riemann zeta function (or the global zeta
function of Q, the field of rational numbers), defined by ξ (s) := π−s/2Γ (s/2)ζ (s).
For the standard properties of ζ and of ξ , we refer, e.g., to [Edw, Ing, KarVor, Pat,
Ti].

The next result follows immediately from Theorem 14 and the well-known
fact according to which ζ has a zero (and even infinitely many zeros, according to
Hardy’s theorem [Edw, Ti], even though it is not needed here) along the critical line
{Re(s) = 1/2}.

Corollary 16 ([LapMai2]). The inverse spectral problem (ISP)D is not true in the
midfractal case when D = 1/2.

The following interpretation of Theorem 15 and Corollary 16 has first been
proposed in [Lap2, Lap3] and has since been pursued in a different, but closely
related context, in [HerLap1–5] and in [Lap7], as will be briefly discussed towards
the end of §7.4 below.

Theorem 17 (The Riemann hypothesis as a mathematical phase transition,
[Lap2, Lap3]). The Riemann hypothesis is true if and only if (ISP)D, the inverse
spectral problem for fractal strings, fails to be true (i.e., fails to have an affirmative
answer) only in the midfractal case when D = 1/2.

In [Lap2,3], the author also wondered (in an open problem) whether the math-
ematical phase transition conditionally (i.e., under RH, and in fact, if and only if
RH is true) occurring at D = 1/2 could be understood (in a suitable model) as a true
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physical phase transition, of the type occurring in the theory of critical phenomena
in statistical physics or quantum field theory. He also asked whether the (then) intu-
itive notion of fractal “complex dimension”, underlying the proof of the key part of
Theorem 14 (as will be explained next), could not be understood as a “complexified
space-time dimension”, as in Wilson’s theory of phase transitions and critical phe-
nomena [Wil].

We now briefly comment on the proof of Theorem 14, the central result of
[LapMai2], from which Theorem 15 and Corollary 16 (as well as Theorem 17) fol-
low, given the known properties of the Riemann zeta function. First, note that The-
orem 14 consists of two different theorems (and was stated as such in [LapMai1,2].
The part of Theorem 14 corresponding to a sufficient condition (for (ISP)D to be
true) is established by using the Wiener–Ikehara Tauberian theorem (see, e.g., [Pos]
or [LapMai2] for the statement of this theorem). That is, assuming that (for a given
D ∈ (0,1)), ζ (s) 6= 0 for all s ∈ C on the vertical line {Re(s) = D}, one uses the
aforementioned Tauberian theorem in order to show that the inverse problem (ISP)D
has an affirmative answer (for all fractal strings of dimension D). On the other hand,
in order to establish the converse, namely, the fact that the condition that ζ (s) 6= 0
for all s ∈ C on the vertical line {Re(s) = D} is necessary for the inverse spectral
problem (ISP)D to be true (i.e., to have an affirmative answer for all fractal strings of
dimension D), one uses in [LapMai1,2] in a key (but rigorous) manner the intuition
(at the time) of complex dimension and its intimate connections with asymptotic
oscillatory behavior (both in the geometry and the spectrum), along with Theorem
2 (from [LapPom2]).5

More specifically, we reason by contraposition. Fix D ∈ (0,1) and assume
that ζ (ω) = 0, for some ω ∈ C such that Re(ω) = D. Then, due to the basic sym-
metry of ζ (namely, ζ (s) = ζ (s), where the bar indicates that we are taking the
complex conjugate of the given complex number), we also have ζ (ω) = 0. Let us
write ω = D+ iτ , with τ ∈ R; so that ω = D− iτ . Without loss of generality, we
may assume that τ > 0. (Clearly, τ 6= 0 since ζ (D)< 0 because 0 < D < 1.)

Next, for x > 0, let

U(x) := xD +β (xω + xω) = xD(1+2β cos(τ logx)), (30)

for some coefficient β > 0 sufficiently small, and let V (x) := [U(x)], the integer
part of U(x). It is easy to check that for all β small enough, U(x) > 0 and U
is (strictly) increasing on (0,+∞); furthermore, the range of U is all of (0,+∞).
Hence, for such values of β , given any integer j ≥ 1, we can uniquely define ` j > 0
such that U(` j) = j (and thus, V (` j) = j). In this manner, we define a fractal string
L = (` j)

∞
j=1 with geometric counting function NL coinciding with V : NL =V . In

5 It can now also be systematically understood in terms of the generalized explicit formulas of [Lap-
vFr3, Chapter 5]; see [Lap-vFr3, Chapter 9]. The resulting theorems and assumptions, however, are
somewhat different.
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light of Equation (30), NL =V = [U ] has sinusoidal (and hence, nontrivial periodic)
oscillations, caused by the “complex dimensions” ω and ω . Therefore, NL (x) can-
not be asymptotic to xD; equivalently, we do not have NL (x) ∼M xD as x→ +∞,
for some M > 0. (Note that here, according to (30), we would have to have M := 1.)
It then follows from Theorem 2 (the characterization of Minkowski measurability,
from [LapPom2]) and the comment following it that L is not Minkowski measur-
able. Moreover, and using the fact that ζ (ω) = ζ (ω) = 0, via a direct computation6

it is shown in [LapMai2] that Equation (27) holds for the fractal string L , for some
(explicitly known) positive constant C . Consequently, the hypothesis (27) of (ISP)D
is satisfied but its conclusion (namely, the Minkowski measurability of L ) is not;
i.e., the inverse spectral problem (ISP)D cannot be true for this value of D ∈ (0,1)
because it fails to hold for this particular fractal string L . This proves that if (ISP)D
is true for some D∈ (0,1), we must have ζ (s) 6= 0 for all s∈C such that Re(s) = D,
as desired.

We point out that in the above construction, the geometric oscillations caused
by the nonreal complex dimensions ω and ω of L remain (as is obvious from (30)),
but due to the fact that by construction, ζ (ω) = ζ (ω) = 0, the spectral oscillations
(in the asymptotic second term of Nν(x)) disappear. Therefore, we see the subtle
interplay between complex dimensions, geometric and spectral oscillations, as well
as the critical zeros of ζ . (Clearly, both ω and ω belong to the open critical strip
0 < Re(s)< 1 since we have that Re(ω) = Re(ω) = D and D ∈ (0,1).)

Finally, we note that by using the theory of complex dimensions developed
in [Lap-vFr1–3], it can be shown that the above fractal L has exactly three com-
plex dimensions (each of which has a real part equal to D and multiplicity one).
Namely, the set DL of complex dimensions of L is given by DL = {D,ω,ω}.
Moreover, observe that xω = xD xiτ and xω = xD x−iτ ; so that the real part (resp., the
imaginary part) of the complex dimension ω (or ω) determines the amplitude (resp.,
the frequency) of the corresponding geometric or spectral oscillations (viewed mul-
tiplicatively). This statement is now fully corroborated (for any fractal string and
its complex dimensions) by the rigorous theory of complex dimensions of fractal
strings and the associated (generalized) explicit formulas developed in [Lap-vFr1–
3].

7 Epilogue: Later Developments and Research Directions

In this epilogue, by necessity of concision, we very briefly discuss further develop-
ments closely connected to (or partly motivated by) the results discussed in the main
body of this paper as well as by related results and conjectures in [Lap1–3]. These
topics include a geometric interpretation of the critical strip for the Riemann zeta

6 This is now proved in [Lap-vFr1–3] by using the (generalized) explicit formulas from [Lap-vFr1–
3] and Equation (1).
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function ζ = ζ (s) (see §7.1), the theory of complex dimensions of fractal strings
(see §7.2), fractal zeta functions and a higher-dimensional theory of complex di-
mensions (valid for arbitrary bounded subsets of Euclidean spaces and relative frac-
tal drums, see §7.3), quantized number theory and the spectral operator, along with
a functional analytic reformulation of the results of [LapMai2] discussed in §6, as
well as a different framework (developed in [HerLap1–5]) and a new asymmetric
reformulation of the Riemann hypothesis recently obtained by the author in [Lap7]
(see §7.4).

7.1 Fractal strings, ζ = ζ (s), and a geometric interpretation of the
critical strip

The one-dimensional situation (i.e., the case of fractal strings) is ideally suited to the
Riemann zeta function ζ = ζ (s) in the (closed) critical strip 0 ≤ Re(s) ≤ 1, as we
have seen in §5 and, especially, §6 above. This is due in part to the product formula
(1), ζν(s) = ζ (s) · ζL (s), connecting the geometric zeta function ζL of a fractal
string L to its spectral zeta function ζν ,7 combined with the fact that fractal strings
always have a (Minkowski) dimension between 0 and 1 : 0≤ D≤ 1.

These facts, along with the results of [LapPom1,2] and some of the results
and conjectures of [Lap1–3], have led to the following geometric interpretation of
the (closed) critical strip 0≤ Re(s)≤ 1, using the terminology introduced in [Lap1]
(in any dimension): The least (resp., most) fractal case when D = 0 (resp., D = 1),
corresponds to the left- (resp., right-) hand side of the critical strip, that is, to the
vertical line {Re(s)= 0} (resp., {Re(s)= 1}. Furthermore, the midfractal case when
D = 1/2 corresponds to the critical line, namely, the vertical line {Re(s) = 1/2}
where (according to the Riemann hypothesis) all of the nontrivial (or critical) zeros
of ζ = ζ (s) are supposed to be located. This geometric picture of the critical strip
has later been corroborated by the work in [LapMai1,2] described in §6 above. Its
complete and rigorous justification has then been provided by the theory of complex
dimensions for fractal strings (that is, in the one-dimensional situation) developed
in [Lap-vFr1–3]. (See, in particular, [Lap-vFr3, Chapters 9 and 11].) We will next
briefly describe (in §7.2) a few aspects of the latter theory.

7 We note that the product formula (1) for the spectral zeta functions of fractal strings has since
been extended in various ways in the setting of Laplacians on certain self-similar fractals; see
[Tep1–2, DerGrVo, LalLap1–2].
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7.2 Complex dimensions of fractal strings and oscillatory
phenomena

The theory of complex dimensions of fractal strings, developed by the author and
M. van Frankenhuijsen in the research monographs [Lap-vFr1–3] (and several corre-
sponding articles), aimed originally at obtaining a much more accurate understand-
ing of the oscillatory phenomena which are intrinsic to fractals (in their geometries
and their spectra as well as in the underlying dynamics). This is accomplished via
explicit formulas (generalizing Riemann’s original 1858 explicit formula and its ex-
tensions to various aspects of number theory and arithmetic geometry, see [Edw, Ing,
ParSh1–2, Pat, Sarn, Den1, Ti] along with [Lap-vFr3, §5.1.2 and §5.6]) expressed in
terms of the underlying complex dimensions; see [Lap-vFr3, Chapter 5]. The latter
complex dimensions are defined as the poles of a suitable zeta function, typically a
geometric, spectral, dynamical or arithmetic zeta function. (See [Lap-vFr3].)

In the case of fractal strings, which is the main focus of the theory developed
in [Lap-vFr1–3], these explicit formulas can be applied, for example, to the geo-
metric counting function NL (x), the spectral counting function Nν(x), the volume
of tubular neighborhoods V (ε) (giving rise to a “fractal tube formula”), or to the
counting function of the number of primitive geodesics of an underlying dynamical
system. (See [Lap-vFr3, Chapters 6–11].) In the special case of self-similar strings,
the resulting fractal tube formulas give very precise information, in part due to the
knowledge of the periodic (or, in general, the quasiperiodic) structure of the com-
plex dimensions (see [Lap-vFr3], Chapters 2–3 and §8.4).

For a fractal string L , under mild growth assumptions on the associated ge-
ometric zeta function ζL (see [Lap-vFr3, §5.1]) and assuming that all the com-
plex dimensions (i.e., the poles of ζL ) are simple, the fractal tube formula for
V (ε) =VL (ε) takes the following form (see [Lap-vFr3, Chapter 8]):

V (ε) = ∑
ω∈D

αω

(2ε)1−ω

ω(1−ω)
+R(ε), (31)

where D = DL denotes the set of (visible) complex dimensions of L and αω :=
res(ζL ,ω) for each ω ∈D . Furthermore, the error term R(ε) is precisely estimated
in [Lap-vFr3]. In the important special case of self-similar strings (which includes
the Cantor string discussed just below), one can take R(ε)≡ 0 and therefore obtain
an exact fractal tube formula (which holds pointwise); see [Lap-vFr3, §8.4].

Remark 18. (a) The explicit formula is valid for multiple poles as well but must
then take a different form, in general. Namely, we then have (see [Lap-vFr3, Theo-
rems 8.1 and 8.7])

V (ε) = ∑
ω∈D

res
(

ζL (s) (2ε)1−s

s(1− s)
,ω

)
+R(ε). (32)
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(b) The fractal tube formulas (31) and (32) hold pointwise or distributionally,
depending on the growth assumptions made about ζL ; see [Lap-vFr3], §8.1, espe-
cially, Theorems 8.1 and 8.7 and their corollaries. Also, in the so-called “strongly
languid” case (in the sense of [Lap-vFr3, Definition 5.3]), we can let R(ε)≡ 0 and
therefore obtain an exact formula. This is the case, for example, for all self-similar
strings; see [Lap-vFr3, §8.4].

(c) For the first higher-dimensional analog of (31) and (32), see [Lap-vFr1–
3] for specific examples of fractal sprays (in the sense of [LapPom3]), and for a
fairly general class of fractal sprays and self-similar tilings (or, less generally, sets),
see [LapPe2–3, LapPeWi1–2]; see also [Pe, PeWi] and, for a direct approach in the
case of the Koch snowflake curve, [LapPe1]. Within the general higher-dimensional
theory of complex dimensions developed in [LapRaZ̆u1–8], the precise counterpart
of (31) and (32) is provided in [LapRaZ̆u5–6] and [LapRaZ̆u1, Chapter 5]; see §7.2
for a brief discussion.

Let us now specialize the above discussion to the Cantor string L = CS,
viewed geometrically as the bounded open set Ω ⊂ R, defined as the comple-
ment of the classic ternary Cantor set in [0,1]; hence, ∂Ω is the Cantor set. Then
L =CS = (` j)

∞
j=1, with `1 = 1/3, `2 = `3 = 1/9, `4 = `5 = `6 = `7 = 1/27, · · · . Al-

ternatively, the lengths of the Cantor string (or harp) are the numbers 3−n−1 repeated
with multiplicity 2n, for n = 0,1,2, · · · . Then

ζCS(s) =
3−s

1−2 ·3−s , for all s ∈ C; (33)

so that the set DCS of complex dimensions (here, the complex solutions of the equa-
tion 1−2 ·3−s = 0) is given by

DCS = {D+ inp : n ∈ Z}, (34)

where D := log3 2 = log2/ log3 (the Minkowski dimension of CS or, equivalently,
of the ternary Cantor set) and p := 2π/ log3 (the oscillatory period of CS). Then
(31) (with R(x)≡ 0) becomes

VCS(ε) =
1

2log3 ∑
n∈Z

(2ε)1−D−inp

(D+ inp)(1−D− inp)
−2ε (35)

= ε
1−D G(logε

−1)−2ε,

where G is a periodic function which is bounded away from zero and infinity. One
then recovers the result from [LapPom1,2] according to which CS (and hence also,
the Cantor set) is Minkowski nondegenerate but is not Minkowski measurable. (Ac-
tually, the values of M∗ and M ∗ are computed explicitly in [LapPom2] as well as,
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in a more general context, in [Lap-vFr3, Chapter 10].)

Moreover, the geometric counting function of CS is given by

NCS(x) =
1

2log3 ∑
n∈Z

xD+inp

D+ inp
−1 (36)

while the corresponding frequency counting function is given by

Nν ,CS(x) = x+
1

2log3 ∑
n∈Z

ζ (D+ inp)
xD+inp

D+ inp
+O(1) as x→+∞. (37)

(See [Lap-vFr3], §1.1.1, §1.2.2 and Chapter 6.)

In (31) and (35)–(37), we see the intuitive (and actual) meaning of the com-
plex dimensions. Namely, the real (resp., imaginary) parts correspond to the ampli-
tudes (resp., frequencies) of the oscillations (in the spaces of scales, for (31) and
(35)–(36), and in frequency space, for (37)).

Remark 19 (Fractality and complex dimensions). The notion of fractality is noto-
riously difficult to define. Mandelbrot [Man] has proposed to define a fractal as a
geometric object whose Hausdorff dimension is strictly greater than its topological
dimension. There is an obvious problem with this definition (Mandelbrot was aware
of it, as is stated in his book, [Man, p. 82]). Namely, the Cantor curve (or “devil’s
staircase”) is not fractal in this sense (since its Hausdorff, Minkowski and topologi-
cal dimensions are all equal to 1); however, as Mandelbrot states in [Man], everyone
would agree that the Cantor curve should be called “fractal”. This issue has long
preoccupied the present author.

There is, however, a satisfactory way to resolve this apparent paradox as well
as many other related and unrelated issues. In the theory of complex dimensions de-
veloped in [Lap-vFr1–3], an object is called “fractal” if it has at least one nonreal
complex dimension (with positive real part). (See [Lap-vFr3, §12.1].) Accordingly,
the Cantor curve (CC) is, indeed, fractal because its set of complex dimensions
is given by DCC = DCS ∪{1}, where DCS is the set of complex dimensions of the
Cantor set (or, equivalently, the Cantor string) given by (34). (Hence, DCC has in-
finitely many nonreal complex dimensions with positive real part.) Furthermore,
(nontrivial) self-similar strings (and, more generally, self-similar geometries) are
fractal.8 In order to accommodate random (and, in particular, stochastically self-
similar fractals), as in [HamLap] and the relevant references therein, the above
definition of fractality has been extended to allow for a “fractal” A to be such that
its associated zeta function ζA has a natural boundary along a suitable curve of
the complex plane, called a “screen” in [Lap-vFr3, §5.1] (and hence, such that ζA
cannot be meromorphically extended beyond that curve). In [LapRaZ̆u1–8], such a
compact subset of RN is called a “hyperfractal”. In [LapRaZ̆u1,2,4] are even con-

8 An example of a trivial self-similar set is an interval of R or a cube in RN(N ≥ 2). In such cases,
all of the complex dimensions are easily seen to be real; see [Lap-vFr3] and [LapRaZ̆u1].
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structed “maximal hyperfractals”; that is, compact subsets A of RN (where N ≥ 1
is arbitrary) such that ζA has a singularity at every point of the “critical line”
{Re(s) = D}, where D is the Minkowski dimension of A.

Remark 20 (Noncommutative Riemann flow of zeros and the Riemann hypothe-
sis, [Lap6]). In the long term, the theory of complex dimensions aims at unifying
many aspects of fractal and arithmetic geometries. Many concrete and more ab-
stract examples are provided in [Lap-vFr3]. This direction is pursued in many dif-
ferent directions in the author’s book, In Search of the Riemann Zeros [Lap6], where
is introduced the notion of fractal membrane (i.e., quantized fractal string) and the
associated moduli spaces of fractal membranes (as well as of fractal strings). In
[Lap6], a still conjectural (noncommutative) flow on the moduli space of fractal
membranes and correspondingly, a flow of zeta functions (or partition functions)
and a flow of zeros are used in an essential manner in order to provide a possible
new interpretation of (and approach to) the Riemann hypothesis.

Accordingly, the flow of fractal membranes can be viewed as some kind of non-
commutative Ricci flow which is transforming (as “time” tends to infinity or phys-
ically, as the absolute “temperature” tends to zero) generalized quasicrystals into
(self-dual) pure crystals. Correspondingly, the zeta functions are becoming increas-
ingly symmetric (that is, satisfy a true functional equation, in the limit), while the
zeros (of these zeta functions) are pushed under this flow (viewed as a flow on the
Riemann sphere) onto the Equator, which naturally represents the critical line in this
context. Conjecturally, this would also provide a proof of the generalized Riemann
hypothesis (GRH), valid for all of the number theoretic zeta functions for which
the analog of the Riemann hypothesis is expected to be true. (See, e.g., [ParSh1–2],
[Sarn], [Lap-vFr3, Appendix A] and [Lap6, Appendices B, C and E].) Very con-
cisely, this is the interpretation of (and approach to) the Riemann hypothesis pro-
posed in [Lap6]. Needless to say, it poses formidable mathematical and physical
challenges but may nevertheless stimulate further investigations of the aforemen-
tioned (noncommutative) Riemann (or “modular”) flow, whether it be viewed as
a (noncommutative) Ricci-type flow or, physically, as a renormalization flow (not
unlike the one which presumably describes the time evolution of our universe).

7.3 Fractal zeta functions of arbitrary compact sets and
higher-dimensional theory of complex dimensions

In a forthcoming book by the author, Goran Radunović and Darko Z̆ubrinić, entitled
Fractal Zeta Functions and Fractal Drums, [LapRaZ̆u1] (see also the series of re-
search and survey papers [LapRaZ̆u2–8]), is developed a higher-dimensional theory
of complex dimensions, valid for any bounded subset of N-dimensional Euclidean
space RN , with N ≥ 1 arbitrary. Distance and tube zeta functions are defined in that
general setting. Let D be the (upper) Minkowski dimension of a given (nonempty)
bounded subset A of RN . Then it is shown in [LapRaZ̆u1–2] that the distance zeta
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function of A, denoted by ζA = ζA(s) and defined (for all s ∈ C with Re(s) suffi-
ciently large and for a given δ > 0) by

ζA(s) :=
∫

Aδ

d(x,A)s−Ndx (38)

is holomorphic for Re(s)> D.

Remark 21. (a) This new type of fractal zeta function, ζA, was introduced by the
author in 2009 in order to be able to extend to any higher dimension N the theory
of complex dimensions of fractal strings developed in [Lap-vFr1–2] (and now also
in [Lap-vFr3]). The case of fractal strings corresponds to N = 1; in that case, the
precise relationship between ζL and ζA, with A := ∂L , is explained in [LapRaZ̆u1]
and [LapRaZ̆u2].

(b) For the simplicity of the discussion, we assume here that |A| = 0 (i.e., A
is a Lebesgue null set), which is the case of most fractals of interest. We refer to
[LapRaZu1] for a discussion of the general case.

A first key result of the theory is that the abscissa of convergence of this
Dirichlet-type integral (viewed as a Lebesgue integral) or, equivalently, the abscissa
of (absolute) convergence of ζA, coincides with D:

σ = D, (39)

the (upper) Minkowski (or box) dimension of A. Therefore, {Re(s) > D} is the
largest open right half-plane (of the form {Re(s) > α}, for some α ∈ R∪{±∞}),
on which the Lebesgue integral appearing on the right-hand side of (38) is conver-
gent (i.e., absolutely convergent). This result is the higher-dimensional counterpart
of Theorem 1 above (first noted in [Lap2–3] in the case of fractal strings, i.e., when
N = 1). The proof of Equation (39) makes use of an interesting integral estimate ob-
tained in [HarvPol] in order to study the singularities of solutions of certain linear
partial differential equations. (See also [Z̆u1].)

Moreover, under mild assumptions, namely, if D < N (recall that we always
have 0 ≤ D ≤ N), M D

∗ > 0 and the Minkowski dimension of A exists (i.e., the
lower and upper Minkowski dimensions of A coincide), then {Re(s) > D} is also
the maximal open right-half plane to which ζA = ζA(s) can be holomorphically
continued; i.e., D coincides with Dhol(ζA), the abscissa of holomorphic continuation
of ζA:

D = σ = Dhol(ζA), (40)

where, as above, D = D(A) and σ = Dabs(ζA).

An entirely analogous theorem holds for the tube zeta function of A, denoted
by ζA = ζ̃A(s) and defined by
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ζ̃A(s) =
∫

δ

0
ts−N |At |N

dt
t
, (41)

for all s ∈ C such that Re(s)> D.

In fact, it can be shown that the two functions, ζA and (N − s) ζ̃A, differ
by an entire function, from which it follows that (for D < N), the two fractal zeta
functions ζA and ζ̃A have exactly the same qualitative properties. In particular, given
a domain U ⊆ C containing {Re(s) > D}, the common half-plane of (absolute)
convergence of ζA and ζ̃A, ζA can be meromorphically extended to U if and only if
it is the case for ζ̃A. Furthermore, ζA and ζ̃A have exactly the same poles, in U (with
the same multiplicities). These poles are called the (visible) complex dimensions of
A. Moreover, the residues of ζA and ζ̃A at a simple pole (or, more generally, the
principal parts at a multiple pole) are related in a very simple way. For example, if
D is simple, then we have

res(ζA,D) = (N−D) res(ζ̃A,D).

Finally, if ζA (or, equivalently, ζ̃A) can be meromorphically continued to an
open and connected neighborhood of D, then D is a simple pole of ζA and ζ̃A (i.e.,
it is a complex dimension of A)9 and the residue of ζ̃A at s = D is squeezed between
the lower and upper Minkowski contents of A:

M∗ ≤ res(ζ̃A;D)≤M ∗. (43)

If, in addition, A is Minkowski measurable, (with Minkowski content denoted by
M , as before), then

res(ζ̃A;D) = M . (44)

Both formulas (43) and (44) are valid even if D = N, although the justifica-
tion of this statement requires a specific argument; see [LapRaZ̆u1].

We should note that, in light of the aforementioned functional equation con-
necting ζA and ζ̃A, the choice of δ is unimportant in the definition of ζA and ζ̃A

(in (38) and (41), respectively). Furthermore, the residues of ζA and ζ̃A at (simple)
complex dimensions are independent of δ .

9 Since ζA and ζ̃A are holomorphic in the open half-plane {Re(s)> D}, it then follows that

D = max{Re(s) : s ∈D}, (42)

where D is the set of (visible) complex dimensions of A in any domain U containing this neigh-
borhood of {D}.



34 Contents

In the special case when N = 1 (that is, for fractal strings), it is shown (still in
[LapRaZ̆u1,2,8]) that the distance zeta function ζA and the geometric zeta function
ζL are closely related (here, A := ∂Ω and L is the fractal string associated with
the bounded open set Ω ⊂ R). In fact, given any subdomain U of {Re(s) > 0} (or,
more generally, of C\{0}),ζL has a meromorphic continuation to U if and only
if ζA = ζ∂Ω does. In fact, their difference can be shown to be holomorphic in U .
Consequently, ζL and ζA have the same poles (with the same multiplicities) in U ;
i.e., they have the same visible complex dimensions. This is true independently of
the geometric realization Ω of the fractal L = (` j)

∞
j=1 as a bounded open subset of

R. In particular, we recover Theorem 1.

A variety of results are provided in [LapRaZ̆u1–8], guaranteeing the exis-
tence of a suitable meromorphic extension of ζA (and of ζ̃A) beyond the half-plane
of convergence {Re(s)>D}. Moreover, many examples of computation of the com-
plex dimensions of a variety of fractals (when N = 1,2 or N ≥ 3) are provided
throughout [LapRaZ̆u1–8]. These fractals include (one- or two-parameter) families
of generalized Cantor sets, the Sierpinski gasket and carpet, the Menger sponge (a
3-dimensional analog of the Sierpinski carpet, see, e.g., [Man]), families of spirals,
fractal curves such as the Cantor curve (or devil’s staircase), which is examined
from several points of view, as well as geometric chirps and curves with cusps. The
theory is extended to a new class of objects, called relative fractal drums (RFDs),
which allow a much greater flexibility in many situations and generalize both the
usual fractal drums (i.e., drums with fractal boundary, in the sense, for example, of
[Lap1–3], as discussed in §4 above) and the class of bounded subsets of Euclidean
space RN . It is noteworthy that in the case of RFDs, the relative Minkowski dimen-
sion can be negative; it can even take the value −∞, as is shown in [LapRaZ̆u1,4,7],
where geometric explanations are provided for this “dimension drop” phenomenon.

In short, a relative fractal drum is a pair (A,Ω), with A an arbitrary (pos-
sibly unbounded) subset of RN and Ω an open subset of RN with finite volume
(i.e., |Ω |N < ∞) and such that Ω ⊆ Aδ , for some δ > 0. The special case of an
ordinary fractal drum (or “drum with fractal boundary”, in the sense of [Lap1–3])
corresponds to the case where A = ∂Ω and Ω is as above.

Furthermore, the main results of [Lap1] (see Section 4.1 above, especially,
Theorem 8) are used in an essential manner in order to show that the spectral zeta
function of a fractal drum (that is, of the Dirichlet Laplacian on a bounded open
subset of RN , with N ≥ 1) can be meromorphically extended to (at least) the open
half-plane {Re(s)>D}, where (as before) D is the (upper) Minkowski dimension of
the boundary ∂Ω of the drum. [This was already observed in [Lap3], using [Lap1]
and a well-known Abelian-type theorem (in the sense of [Sim]), the converse of a
Tauberian theorem. It can also be deduced from the main result of [Lap1] by a direct
argument, based on the holomorphicity of an integral depending analytically on a
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parameter.] Moreover, using the construction of a maximal hyperfractal10 carried
out in [LapRaZ̆u1,2,7] (and alluded to towards the end of Remark 19 above), it is
shown that the half-plane {Re(s)> D} is optimal, in general; i.e., it cannot usually
be larger, from the point of view of the meromorphic continuation of the spectral
zeta function. We note that under suitable assumptions, the Dirichlet Laplacian can
be replaced by a higher order positive, self-adjoint elliptic operator, with possibly
variable coefficients and with Dirichlet, Neumann or mixed boundary conditions;
see [Lap1] and [LapRaZ̆u1,7].

Extensions of the results of [LapRaZ̆u1–8] to unbounded sets, in particular,
are provided in [Ra].

Finally, we note that ζA and ζ̃A remain unchanged if we replace the bounded
set A ⊂ RN by its closure A. As a result, we could have assumed throughout that
A was a compact subset of RN . Moreover, we point out that fractal tube formu-
las, significantly extending to compact subsets of RN the corresponding (pointwise
and distributional) tube formulas obtained in [Lap-vFr3, §8.1–8.3] for fractal strings
(as well as the later tube formulas obtained for fractal sprays in [LapPe2–3] and
[LapPeWi1–2]), are established in [LapRaZ̆u5–6] and [LapRaZ̆u1, Chapter 5], with-
out any assumptions of self-similarity and in every dimension N ≥ 1.

Remark 22. We close this discussion by mentioning the fact that the higher-
dimensional theory of fractal zeta functions and the associated complex dimensions
now enables us to extend to the general (higher-dimensional) setting the defini-
tion of fractality introduced in [Lap-vFr1–3] (see, especially, [Lap-vFr3, §13.1 and
§13.2]). Accordingly, a geometric object is said to be “fractal” if it has at least one
nonreal complex dimension (with a positive real part). In particular, one can now
precisely talk about the fractality of any bounded subset A (or, more generally, rel-
ative fractal drum) in RN , with N ≥ 1 arbitrary. (Compare with Remark 19 above.)

As an example, the Cantor curve (i.e., the “devil’s staircase” in the termi-
nology of [Man]) is fractal according to this definition, whereas it is not fractal
according to Mandelbrot’s original definition in [Man] (because its Hausdorff, box
and topological dimensions coincide and are equal to one). (Recall from Remark 19
that in [Man], a geometric object is said to be “fractal” if its Hausdorff dimension is
strictly greater than its topological dimension.) One can also check that most of the
classic “fractals” (for example, the ternary Cantor set and its generalizations, as
well as the Sierpinski gasket and carpet and their higher-dimensional counterparts)
are indeed fractal in this new sense. (See [LapRaZ̆u1–4,7] for these and many other
examples.)

A technical challenge remains to prove this same result for all (suitable) self-
similar sets (as was done when N = 1 for self-similar strings in [Lap-vFr1–3] and
when N ≥ 2 for a large class of self-similar sprays or tilings in [LapPe2–3] and

10 Recall that in the terminology of [LapRaZ̆u1–8], a “maximal hyperfractal” is a compact subset
A of RN such that ζA has singularities at every point of the “critical line” {Re(s) = D}; in addition
to Remark 19, see Remark 22 below.
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[LapPeWi1–2]),11 as well as for the classic types of fractals occurring in com-
plex dynamics (Julia sets, the Mandelbrot set and their generalizations; see, e.g.,
[Man, TanL, Shi]) and in conformal dynamics and/or hyperbolic geometry (for in-
stance, limit sets of Fuchsian groups and Kleinian groups; see, e.g., [BedKS]), possi-
bly by using other gauge functions than the usual ones based on the standard power
laws, as was originally done in [HeLap] and further studied in [LapRaZ̆u1–8] (from
the point of view of the new higher-dimensional theory of complex dimensions). It
may be difficult to do so, but there is no doubt in the author’s mind that all of the
classic (deterministic) fractals will eventually be found to be “fractal” in the above
sense or “hyperfractal”, in a sense to be explained next.

Due in part to the work in [HamLap] on random fractal strings and their com-
plex dimensions, the notion of fractality was extended as follows (first in [Lap-vFr2]
and [Lap-vFr3, §13.4.3] and then, in any dimension, in [LapRaZ̆u1–8]). A geometric
object is said to be “fractal” if it has at least one nonreal complex dimension with
a positive real part (as above) or else if it is “hyperfractal”; i.e., if the associated
fractal zeta function has a natural boundary along some suitable contour in C (a
“screen”, in the sense of [Lap-vFr3, §5.3]). We note that the term “hyperfractal”
was introduced in [LapRaZ̆u1–8], in this context.

Therefore, a “hyperfractal” is such that the associated fractal zeta function
cannot be meromorphically extended beyond a certain “screen”. Furthermore, in
[LapRaZ̆u1–4,7–8] is also introduced the notion of “maximal hyperfractal”, accord-
ing to which the corresponding fractal zeta function has a singularity at every point
of the critical line of convergence {Re(s)=D}, where D is the Minkowski dimension
of A ⊂ RN (or its relative counterpart, in the case of an RFD). It is then shown in
([LapRaZ̆u2–4,7] or [LapRaZ̆u1, Chapter 4]) using, in particular, countably many
suitable fractal strings assembled in an appropriate way, along with Baker’s theo-
rem from transcendental number theory [Bak], that maximally hyperfractal strings
(N = 1), as well as maximally hyperfractal compact subsets and RFDs of RN (for
every N ≥ 1) can be explicitly constructed. This construction is completely deter-
ministic. The author conjectures (building on [HamLap] and [Lap-vFr3, §13.4.3])
that for large classes of random fractals, maximal hyperfractality is an almost sure
property.

In closing this remark, we mention that the above definition of fractality can-
not just be applied to standard geometric objects embedded in Euclidean spaces
(or, more generally, in appropriate metric measure spaces) but is also applicable, in
principle, to ‘virtual’ geometries, spectral geometries, dynamical systems, algebraic
and noncommutative geometries (not necessarily consisting of ordinary points; see,
e.g., [Cart] and [Con]), as well as arithmetic geometries. In fact (along with the
proper notion of zeta function and the associated complex dimensions), it should be
used as a unifying tool between these apparently vastly different domains of math-
ematics. This long-term goal has been one of the central motivations of the author
(and his collaborators) in [Lap1–9, Lap-vFr1–3, LapRaZ̆u1, LapPom2, LapMai2,
HeLap, LapLu3, LapNe, LapPeWi1, EllLapMaRo, ChrIvLap, LapSar] (particularly,

11 Added note: In the case of self-similar sprays, the results of [LapRaZ̆u1,5,6] now enable one to
recover and significantly extend the results of [LapPe2–3] and [LapPeWi1,2].
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in [Lap3–5] and [Lap8–9], as well as in the books [Lap6] and [Lap-vFr1–3]).
For instance, the author conjectures that there exists a natural fractal-like ge-

ometric object whose complex dimensions are precisely the critical (i.e., nontrivial)
zeros of the Riemann zeta function. Furthermore, the essential “shape” of this object
should be understood in terms of a yet to be constructed cohomology theory asso-
ciated with the underlying complex dimensions (and the pole of ζ = ζ (s) at s = 1).
In particular, connections with Deninger’s work (and conjectures) in [Den1,2] arise
naturally in this context. (See, especially, [Lap6] and [Lap8–9], along with [Lap-
vFr3, §12.3 and §12.4].)

7.4 Quantized number theory, spectral operators and the Riemann
hypothesis.

Formula (1), ζν(s) = ζ (s) · ζL (s), which connects the spectral zeta function ζν =
ζν ,L and the geometric zeta function ζL of a fractal string L via the Riemann zeta
function ζ , has the following counterpart, in terms of the spectral and geometric
counting functions of L (see [Lap-vFr3, Theorem 1.2]):

Nν(x) =
∞

∑
n=1

NL

( x
n

)
, (45)

for any x> 0. Note that for a fixed x> 0, only finitely many terms are nonzero on the
right-hand side of (45). However, the number of these terms tends to +∞ as x→+∞.

The (heuristic) spectral operator, at the level of the counting functions, is
then given by the map

g := NL 7→ Nν(g) :=
∞

∑
n=1

g
( ·

n

)
; (46)

that is, Nν(g)(x) := ∑
∞
n=1 g(x/n), for all x > 0. It can therefore be thought of as the

map sending the geometry (represented by NL , given by Equation (11)) of a fractal
string L onto the spectrum (represented by Nν = Nν ,L ) of a fractal string L . Here,
as in the discussion preceding Equation (13),

Nν(x) = #({ f ∈ σ(L ) : f ≤ x}), (47)

for any x > 0, where σ(L ) = {n · `−1
j : n≥ 1, j ≥ 1} is the (frequency) spectrum of

L = (` j)
∞
j=1.

Remark 23. At an even more fundamental level (that of the “density of geometric
states” η := ∑

∞
j=1 δ{`−1

j }
and the “density of spectral states” ν := ∑ f∈σ(L ) δ{ f},

see [Lap-vFr3, §6.3.1]), the spectral operator can be viewed as the map sending
the geometry (represented by η) of a fractal string L = (` j)

∞
j=1 onto its spectrum

(represented by ν) :
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η :=
∞

∑
j=1

δ{`−1
j }
7→ ν = ν(η) =

∞

∑
j,n=1

δ{n·`−1
j },

(48)

where δ{y} denotes the Dirac point mass at y > 0 and the “generalized frac-
tal strings” η and ν are viewed as positive (local) measures (or as tempered
distributions) on (0,+∞); see [Lap-vFr3, §6.3.2]. We also refer to [Lap-vFr3, §6.3.1]
for explicit formulas expressing η and ν in terms of the underlying complex dimen-
sions of L , along with [Lap-vFr3, Chapter 4] for the notion of generalized fractal
string, based on the notion of local measure from [DolFr], [JoLap], [JoLapNie] and
[LapRaZ̆u1, Appendix A].

Viewed additively (that is, after having made the change of variable x =
et , t = logx, with x > 0 and t ∈ R), the (heuristic) spectral operator, denoted by
a, becomes the following map (where f = f (t) is a suitable function of the new
variable t ∈ R):

f (t) 7→ a( f )(t) :=
∞

∑
n=1

f (t− logn). (49)

As before, let P denote the set of all prime numbers. Then, given any p∈P ,
the associated (local) Euler factor ap is given by the operator

f (t) 7→ ap( f ) =
∞

∑
m=0

f (t−m log p). (50)

The spectral operator a and its (operator-valued) Euler factors ap (with p ∈P) are
connected via the following (operator-valued) Euler product representation of a:

a( f )(t) =

(
∏

p∈P
ap( f )

)
(t), (51)

with ap = (1− p−∂ )−1. Here, we have let ∂ = d/dt denote the differentiation oper-
ator (also called the infinitesimal shift of the real line). We have (for any h ∈ R)

(e−h∂ )( f )(t) = f (t−h); (52)

in particular, we have

(n−h)( f )(t) = f (t− logn), (53)

so that we should also expect to be able to obtain the following (operator-valued)
Dirichlet series representation of a:

a( f )(t) =

(
∞

∑
n=1

n−∂

)
( f )(t). (54)

All of these semi-heuristic formulas and definitions are given without proper
mathematical justification in [Lap-vFr3, §6.3.2] (and, originally, in [Lap-vFr2,
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§6.3.2] where the heuristic spectral operator a was first introduced). However, in
[HerLap1–5], Hafedh Herichi and the author have developed a rigorous functional
analytic framework within which (under suitable assumptions) all of these “defini-
tions” and formulas are properly justified and, among many other results, the refor-
mulation of the Riemann hypothesis obtained in [LapMai2] (see Theorem 15 above)
can be restated in operator theoretic terms; namely, as the “quasi-invertibility” of the
spectral operator in all possible dimensions, except in the midfractal case 1/2.

We refer the interested reader to the forthcoming book [HerLap1], titled
Quantized Number Theory, Fractal Strings and the Riemann Hypothesis, for a com-
plete exposition of the theory. We limit ourselves here to a brief exposition and a
few additional comments.

For each fixed c ∈ R, let Hc = L2(R,e−2ctdt),12 and let ∂ = d/dt be the
unbounded (and densely defined) operator acting on the Hilbert space Hc via ∂ ( f )=
f ′, the distributional (or else, the pointwise almost everywhere defined) derivative
of f , for all f in the domain D(∂ ) of ∂ :

D(∂ ) := { f ∈Cabs(R)∩Hc : f ′ ∈Hc}, (56)

where Cabs(R) is the space of (locally) absolutely continuous functions on R (see,
e.g., [Coh, Foll, Ru1]). Then, the infinitesimal shift ∂ = ∂c is shown in [HerLap1–3]
to be an unbounded normal operator on Hc (that is, ∂ ∗∂ = ∂∂ ∗, where ∂ ∗ denotes the
adjoint of the closed unbounded operator ∂ ; see, e.g., [Kat] or [Ru2]), with spectrum
σ(∂ ) = {Re(s) = c}. Furthermore, the associated group {e−h∂}h ∈ R is shown to
be the shift group given (for all f ∈Hc) by (52) while n−∂ is therefore given by (53).

Moreover, for every c > 1, the quantized (i.e., operator-valued) Euler product
and Dirichlet series representations (51) and (54) of a = ac hold, in the following
strong sense: a = ∑

∞
n=1 n−∂ and a = Πp∈P(1− p−∂ )−1, where both the series and

the infinite product converge in B(Hc), the Banach algebra of bounded linear oper-
ators on the Hilbert space Hc. (See [HerLap5] or [HerLap1, Chapter 7].)

In addition, for all f in a suitable dense subspace of D(∂ ) (and hence, of
Hc), the spectral operator a = ac, now rigorously defined (for every c ∈ R) by the
formula a := ζ (∂ ), is given (for c > 0) by an appropriate operator-valued version of
the classic analytic continuation of the Riemann zeta function ζ = ζ (s) to the open
half-plane {Re(s)> 0}. Namely, formally, we have

12 Hence, Hc is the complex Hilbert space of (Lebesgue measurable, complex-valued) square in-
tegrable functions with respect to the absolutely continuous measure e−2ct dt, and is equipped with
the norm

|| f ||c :=
(∫

R
| f (t)|2 e−2ct dt

)1/2

< ∞ (55)

and the associated inner product, denoted by (·, ·)c.
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a= ζ (∂ ) =
1

∂ −1
+

∞

∑
n=1

∫ n+1

n
(n−∂ − t−∂ )dt. (57)

(Compare, for example, with [Ser, §VI.3] or the proof of Theorem 12 above given
in [LapPom2].)

Similarly, the global spectral operator A := ξ (∂ ), where, as before, ξ (s) :=
π−s/2Γ (s/2) ζ (s) is the global (or completed) Riemann zeta function, is shown to
be given by an operator-valued (or quantized) version of the standard analytic con-
tinuation of ξ = ξ (s) to the entire complex plane (see, e.g., [Ti, §2.6] or [Lap6,
§2.4]). Again, we refer the interested reader to [HerLap5] or [HerLap1, Chapter 7]
for the precise statements and many related results.

We note that the spectral operator a = ac, now defined for any c ∈ R by
a := ζ (∂ ), is obtained via the functional calculus for unbounded normal operators
(see [Ru2]); so that, formally, one substitutes the infinitesimal shift ∂ for the com-
plex variable s in the usual definition of the Riemann zeta function (or, rather, in its
meromorphic continuation to all of C, still denoted by ζ = ζ (s), for s ∈ C).

As it turns out, according to the celebrated spectral theorem (for unbounded
normal operators, see [Ru2]), what matters are the values of ζ = ζ (s) along the
spectrum σ(∂ ) of ∂ ; that is, according to a key result of [HerLap1,2], along

σ(∂ ) = c`(ζ ({s ∈ C : Re(s) = c}), (58)

where c`(G) denotes the closure of G⊆ C in C.

We point out that for c = 1, the unique (and simple) pole of ζ , we must
assume that s 6= 1 on the right-hand side of (58). Alternatively, one views the mero-
morphic function ζ as a continuous function with values in the Riemann sphere
C̃ :=C∪{∞}, equipped with the standard chordal metric. (We set ζ (1) = ∞.) Then,
even for c = 1, the extended spectrum σ̃(a) of a is given by the right-hand side
of (58), but without the closure, where σ̃(a) := σ(a)∪{∞} if a is unbounded and
σ̃(a) := σ(a) if a is bounded; that is, according to [HerLap1–5], if c≤ 1 or if c > 1,
respectively.

One therefore sees how the properties of the Riemann zeta function ζ = ζ (s)
(for example, its range along the vertical line {Re(s) = 1} or the existence of a pole
at s = 1) are reflected in the properties of the spectral operator a = ζ (∂ ) (for ex-
ample, whether or not a is bounded or invertible or, equivalently, whether or not its
spectrum σ(a) is compact or does not contain the origin, respectively).

Formula (58) for σ(a) follows from a suitable version of the spectral map-
ping theorem (SMT) for unbounded normal operators (see [HerLap1, Appendix
E]) according to which σ(ζ (∂ )) = c`(ζ (σ(∂ ))\{1}) or, equivalently, σ̃(ζ (∂ )) =
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ζ (σ(∂ )) (where in the latter formula, ζ is viewed as a continuous C̃-valued func-
tion, as explained above). Note that for c 6= 1, we have that 1 /∈ σ(∂ ), so that
ζ = ζ (s) is holomorphic and hence, continuous along σ(∂ ) = {Re(s) = c}, whereas
for c = 1, ζ = ζ (s) is meromorphic but has a singularity (more specifically, a simple
pole) at s = 1 ∈ σ(∂ ). Consequently, we can use the continuous (resp., meromor-
phic) version of SMT (stated and proved in [HerLap1, Appendix E]) in order to
deduce that when c 6= 1 (resp., c = 1), the identity (58) (resp., the counterpart of
(58) when c = 1) holds.

Next, given T > 0, one defines (still via the functional calculus for unbounded
normal operators) a truncated infinitesimal shift ∂ (T ) = ∂

(T )
c (say, ∂ (T ) := ϕ(T )(∂ ),

where ϕ(T ) is a suitable cut-off function), so that (again by the aforementioned spec-
tral mapping theorem, SMT), σ(∂ (T )) = [c− iT,c+ iT ], where c∈R and i :=

√
−1.

(We refer to [HerLap1–3] for the precise definitions; see also Remark 24 just below.)
Then, letting a(T ) := ζ (∂ (T )), we obtain the truncated spectral operator a(T ) = a

(T )
c .

We say that the spectral operator a is quasi-invertible if each of its truncations a(T )

is invertible (in the usual sense, for bounded operators), for every T > 0. (Note that
the normal operator ∂ (T ) is bounded since its spectrum is compact.)

Remark 24. For c 6= 1, the cut-off function ϕ(T ) : σ(∂ ) = {Re(s) = c} → C is
assumed to satisfy the following two conditions: (i) ϕ(T ) is continuous and, in ad-
dition, (ii) c`(ϕ(T )({Re(s) = c})) = [c− iT,c+ iT ]). For c = 1, we replace (i) by
(i’) : ϕ(T ) has a (necessarily unique) meromorphic continuation to a connected
open neighborhood of {Re(s) = 1}. (Then, condition (i’) and (ii) imply that (i)
also holds.) Consequently, when c 6= 1 (resp., c =1), one can use the continuous
(resp., meromorphic) version of the spectral mapping theorem (SMT, see [HerLap1,
Appendix E]) in order to deduce that

σ(∂ (T )) = σ(ϕ(T )(∂ )) (59)

= c`(ϕ(T )({Re(s) = c})) = [c− iT,c+ iT ],

and especially, that

σ(a(T )) = σ(ζ (∂ (T ))) (60)

= c`(ζ (σ(∂ (T )))) = c`(ζ ([c− iT,c+ iT ])),

where for c = 1, one should remove {1} from σ(∂ (T )) = [c− iT,c+ iT ] in the last
two equalities of (60), while when c 6= 1, (60) takes the following simpler form (since
then, ζ is continuous along the vertical line segment [c− iT,c+ iT ]) :

σ(a(T )) = ζ ([c− iT,c+ iT ]). (61)

When c = 1, (61) can be replaced by the following identity, which is equivalent to
(60) interpreted as above (since ζ (1) = {∞} and ζ (s) 6= ∞ for all s ∈ C,s 6= 1) :
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σ̃(a(T )) := σ(a(T ))∪{∞}= ζ ([1− iT,1+ iT ]), (62)

where (as in an earlier comment) the meromorphic function ζ should be viewed as
a C̃-valued continuous function in the right-hand side of (62) and where σ̃(a(T ))
denotes the extended spectrum of a(T ).

The full strength of the definition given in the following remark will be
needed when we discuss Theorem 29 below. This definition and the accompany-
ing property is also used in the statement and the proof of Theorem 26 (and hence,
of Theorem 27 as well).

Remark 25. A possibly unbounded linear operator L : D(L)⊆H→H on a Hilbert
space H, with domain D(L), is said to be invertible if it is a bijection from D(L) onto
H and if its inverse, L−1, is bounded. (If L is closed, an assumption which is satisfied
by all of the operators considered in the present subsection (§7.4), then L−1 is au-
tomatically bounded, by the closed graph theorem [Kat, Foll, Ru1].) Furthermore,
essentially by definition of the spectrum, L is invertible if and only if 0 /∈ σ(L). (See,
e.g., [Kat, ReSi1, Ru2, Sc].)

We can now state the counterparts of Theorem 14 and Theorem 15 (the key
results from [LapMai2] discussed in §6 above) in this context. (See Remark 28 be-
low.)

Theorem 26 (Analog of Theorem 14, [HerLap1, HerLap3]). Given any c ∈ R,
the spectral operator a = ac is quasi-invertible if and only if ζ = ζ (s) does not
have any zeros along the vertical line {Re(s) = c}; i.e., if and only the “c-partial
Riemann hypothesis” is true.

Hence, much as in Corollary 16, a1/2 is not quasi-invertible (since ζ has at
least one zero along the critical line {Re(s) = 1/2}).13 Furthermore, ac is quasi-
invertible for every c > 1. Actually, for c > 1, a = ac is invertible (which implies
that it is quasi-invertible) and its inverse is given by a−1 = ∏p∈P(1− p−∂ ), with
the convergence of the infinite product holding in B(Hc); see [HerLap1,5].

Just as Theorem 15 is a consequence of Theorem 14, the following key result
follows from Theorem 26.

Theorem 27 (Analog of Theorem 15, [HerLap1, HerLap3]). The spectral opera-
tor is quasi-invertible for every value of c in (0,1) other than in the midfractal case
when c = 1/2 (or, equivalently, for every c ∈ (0,1/2)) if and only if the Riemann
hypothesis is true.

Remark 28. Recall from §6 that Theorems 14 and 15 are expressed in terms of the
solvability of the inverse spectral problem (ISP)D for all fractal strings of Minkowski

13 In fact, ζ has infinitely many zeros along the critical line, according to Hardy’s theorem (see
[Edw, Ti]) but this is irrelevant here. We refer to [HerLap1,3] for a version of Theorem 26 for
which this well-known fact actually matters.
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dimension D. Here, the role played by the dimension D is now played by the param-
eter c, while the solvability of (ISP)D is now replaced by the quasi-invertibility of
ac. In a precise sense, c is the analog of D in the present context; this analogy is
based in part on some of the results of [LapPom2] which are briefly discussed in §3
above (see Theorem 3 and the comments following it), provided one thinks of the
functions f = f (t) as geometric counting functions of fractal strings (modulo the
change of variable x = et ).

We leave it to the interested reader to state (in the present context) the coun-
terpart of Theorem 17 (about a mathematical phase transition at c = 1/2).

Like Theorem 15, Theorem 27 is a symmetric criterion for the Riemann hy-
pothesis (RH). Indeed, in light of the functional equation (28) for ζ connecting ζ (s)
and ζ (1− s), we can replace the open interval (0,1/2) by the symmetric interval
(1/2,1), with respect to 1/2. (See also Equation (29) above.) In contrast, the author
has recently discovered the following asymmetric criterion for RH, as we now ex-
plain. (See [Lap7].)

Let b= bc be the nonnegative self-adjoint operator defined by b := aa∗= a∗a.
Note that b is a nonnegative self-adjoint operator because a is normal (see, e.g.,
[Kat]) and, like a itself, is unbounded for all c ∈ (0,1), while it is bounded for all
c > 1 (see [HerLap1–3]). Then, b is invertible (in the sense of possibly unbounded
operators, see Remark 25 above) if and only if b is bounded away from zero (i.e.,
if and only if there exists γ > 0 such that (b f , f )c ≥ γ|| f ||2c , for all f ∈ D(b)). Fur-
thermore, b is invertible if and only if a is invertible, which is the case if and only
0 /∈ σ(a) or, equivalently, 0 /∈ σ(b).

Theorem 29 (An asymmetric reformulation of the Riemann hypothesis, [Lap7]).
The following statements are equivalent:

(i) The Riemann hypothesis is true.
(ii) The spectral operator a is invertible for all c ∈ (0,1/2).
(iii) The self-adjoint operator b is invertible for all c ∈ (0,1/2).
(iv) For each c ∈ (0,1/2), b is bounded away from zero.

We know that in part (iv) of Theorem 29, the implicit lower bound γ = γc may
vary with c and even tend to 0 as c→ (1/2)− or c→ 0+.

A priori, the phase transition observed at c = 1/2 in Theorem 29 just above
is of a very different nature from the one observed in Theorem 15 (based on
[LapMai2], see also Theorem 17) or in Theorem 27 (based on [HerLap1,3], see
the comment following Remark 28). Indeed, under RH (and, in fact, if and only
RH holds, by Theorem 29), we have that, for all c ∈ (0,1/2), σ(a) is a closed un-
bounded subset of C not containing 0 and hence, a is invertible. This follows from
the expression (58) obtained in [HerLap1–3] for σ(a), combined with a conditional
result (by Garunkštis and Steuding; see the proof of Lemma 4 and Proposition 5 in
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[GarSte]) about the non-universality of ζ in the left critical strip {0 < Re(s)< 1/2}.

On the other hand, for any c∈ (1/2,1), we have that σ(a) =C and hence, that
a is not invertible. This follows again from (58), but now combined with the Bohr–
Courant theorem [BohCou] according to which for every c ∈ (1/2,1), the range of
ζ along any vertical line {Re(s) = c} is dense in C. This latter fact is a consequence
of the universality of ζ in the right critical strip {1/2 < Re(s) < 1}, as was first
observed and established by Voronin in [Vor1,2].

Consequently, the (unconditional) universality of the Riemann zeta function
ζ in the right critical strip {1/2 < Re(s)< 1} and the (conditional) non-universality
of ζ in the left critical strip {0 < Re(s) < 1/2} are absolutely crucial in order to
understand the mathematical phase transition occurring in the midfractal case when
c = 1/2, according to Theorem 29, if and only RH holds.

We stress that the universality of ζ , initially discovered by Voronin in [Vor2]
in the mid-1970s after he extended the Bohr–Courant theorem to jets of ζ (con-
sisting of ζ and its derivatives), in [Vor1], has since been generalized in a number
of ways; see, e.g., the books [KarVor, Lau, Ste1], along with [Bag1–2, Rei1, Her1,
Her4, Ste2] and the many relevant references therein.

Roughly speaking, the universality theorem, as generalized in [Bag1–2, Rei1],
states that given any compact subset K of the right critical strip {1/2 < Re(s)< 1}
with connected complement in C, every C-valued continuous function on K which
is holomorphic and nowhere vanishing on the interior of K can be uniformly ap-
proximated on K by vertical translates of ζ .

The universality theorem has been extended to a large class of L-functions
for which the generalized Riemann hypothesis (GRH) is expected to hold; see, e.g.,
[Ste1] for an exposition, along with [Ste2] and the relevant appendices of [Her-
Lap1,4]. Accordingly, Theorem 29 can be extended to many L-functions. Similarly,
but for different and simpler reasons, after a suitable modification in the definition of
the truncated infinitesimal shift ∂ (T ), Theorems 26 and 27 (based on [HerLap1–4])
can be extended to essentially all of the L-functions (or arithmetic zeta functions) for
which GRH is expected to hold (independently of whether or not the analog of the
universality theorem holds for those zeta functions); see, e.g., [ParSh1,2], [Sarn],
[Lap-vFr3, Appendix A] and [Lap6, Appendices B,C,E].

Moreover, we point out that a counterpart in the present context (that is, for
the spectral operator a= ζ (∂ )) of the universality of ζ is provided in [HerLap1,4].
Interestingly, the corresponding “quantized universality” then involves the family
of truncated spectral operators {a(T ) = ζ (∂ (T ))}T>0; that is, the complex variable
s is not replaced by the operator ∂ , as one might naively expect, but by the family
of truncated infinitesimal shifts {∂ (T )}T>0 discussed earlier in this subsection; see
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[HerLap4] and [HerLap1].

In addition, we note that the (conditional) phase transition at c = 1/2 as-
sociated with Theorem 29 (and also with Theorem 15, from [LapMai1,2], which
preceded the work in [BosCon1,2]; see also its interpretation given in Theorem 17,
from [Lap2,3]) is of a very different nature from the one studied by Bost and Connes
in [BosCon1,2]. (See also [Con, §V.11].) Indeed, the latter phase transition has noth-
ing to do with the universality or with the critical zeros of ζ but instead, is merely
connected with the pole of ζ (s) at s = 1.14 However, it is natural to wonder whether
the conditional phase transition occurring at c = 1/2 in Theorem 29 (if and only
if RH holds) can be interpreted physically and mathematically (as in [BosCon1,2])
as some kind of “symmetry breaking” associated with a suitable physical model (in
quantum statistical physics or quantum field theory, for example) as well as cor-
responding to a change in the nature of an appropriate symmetry group yet to be
attached to the present situation.

Remark 30. It is also natural to wonder what is the inverse of the spectral oper-
ator, when 0 < c < 1/2 and assuming that RH holds. Naturally, according to the
functional calculus, we must have a−1 = (1/ζ )(∂ ), even if a−1 is not bounded (i.e.,
even if D(a−1) 6=Hc or equivalently, if R(a) 6=Hc, where R(a) denotes the range of
a). We conjecture that under RH, we have for all c ∈ (0,1/2) and all f ∈D(a−1) =
Hc, a

−1( f ) = ∑
∞
n=1 µ(n)n−∂ ( f ), so that a−1( f )(t) = ∑

∞
n=1 µ(n) f (t − logn), both

for a.e. t ∈ R and as an identity between functions in Hc. (Here, µ = µ(n) denotes
the classic Möbius function, given by µ(n) = 1 or −1, respectively, if n ≥ 2 is a
square-free integer that is a product of an even or odd number of distinct primes,
respectively, and µ(n) = 0 otherwise; see, e.g., [Edw] or [Ti].) Observe that if that
were the case, then “quantized Dirichlet series” would behave very differently from
ordinary (complex-valued) Dirichlet series. In particular, the quantized Riemann
zeta function a = ζ (∂ ) would be rather different from its classic counterpart, the
ordinary Riemann zeta function, ζ = ζ (s) (where s ∈ C). Indeed, as is well known,
even if the Riemann hypothesis is true, the series ∑

∞
n=1 µ(n) n−s cannot converge

for any value of s := s0 with 0 < Re(s0) < 1/2. Otherwise, it would follow from
the standard properties of (numerical) Dirichlet series and the Möbius inversion
formula (see, e.g., [Edw]) that the sum of the series ∑

∞
n=1 µ(n)n−s would have to

be holomorphic and to coincide with (1/ζ )(s) in the half-plane {Re(s) > Re(s0)},
which is, of course, impossible because the meromorphic function 1/ζ must have
a pole at every zero of ζ along the critical line {Re(s) = 1/2} (of which there are
infinitely many).

We close this discussion by a final comment related to the operator b (appearing
in the statement of parts (iii) and (iv) of Theorem 29) and to the possible origin of
the (conditional) phase transition occurring in the midfractal case c = 1/2.

14 A similar phase transition (or “symmetry breaking”) is observed at c = 1, as is discussed in
[HerLap1–4], since a is bounded and invertible for c > 1, unbounded and not invertible for 1/2≤
c ≤ 1, while, likewise, σ(a) is a compact subset of C not containing the origin for c > 1 and
σ(a) = C is unbounded and contains the origin if 1/2 < c < 1.



46 Contents

Remark 31. The nonnegative self-adjoint operator b = aa∗ = a∗a is given by the
following formula:

b( f )(t) = ζ (2c) ∑
(k,n)=1

f
(

t− log
k
n

)
n−2c, (63)

where the sum is taken over all pairs of integers k,n≥ 1 without common factor. The
appearance of the terms n−2c (for n≥ 1) and of the factor ζ (2c) are very interesting
features of this formula (which first appeared in [Lap-vFr2–3, §6.3.2] without formal
justification). A priori, the above formula was derived (in [HerLap1,5], motivated in
part by the new result of [Lap7] described in Theorem 29 above) by assuming that
c > 1. However, the series ∑

∞
n=1 n−2c is convergent for c > 1/2 and the term ζ (2c)

is singular only at c = 1/2, due to the pole of ζ (s) at s = 1. This may shed new
light on the origin of the phase transition occurring at c = 1/2 in the statements of
Theorem 29.

Given the reformulation of the Riemann hypothesis provided above in terms
of the invertibility of the spectral operator b = bc, where b = a∗a = aa∗ (see the
equivalence of (i), (iii) and (iv) in Theorem 29), it is tempting to extend formula
(63) to a suitable class C of “test functions” f = f (t) (technically, a “core” for the
operator b, that is, a dense subspace of D(b) in the Hilbert graph norm ||| f |||c :=
(|| f ||2c + ||b f ||2c)1/2) so that it becomes valid for all c ∈ (0,1/2). More specifically,
for each c ∈ (0,1/2), we would like to show that there exists a constant γ = γc > 0
(which may depend on the parameter c) such that

||b f ||c ≥ γ|| f ||c, (64)

for all f ∈ C . (Compare with part (iv) of Theorem 29 above as well as with the
comments preceding the statement of Theorem 29.)

In light of the new asymmetric criterion for RH obtained in [Lap7] (see The-
orem 29 and, especially, the equivalence of (i) and (iv) in Theorem 29), this con-
jectured inequality (64) would imply (in fact, would be equivalent to) the Riemann
hypothesis. Thus far, however, the author has only been able to verify it for a cer-
tain class of test functions, unfortunately not yet large enough to fulfill the required
conditions.

A last comment is in order.

Remark 32. In two works in preparation ([Lap8] and [Lap9]), the author explores
some of the applications of this new formalism (“quantized number theory” from
[HerLap1–5] and [Lap7]) to potentially reformulating the Weyl conjectures (for
curves and higher-dimensional varieties over finite fields or, equivalently, for func-
tion fields),15 as well as for constructing generalized Polya–Hilbert operators16

with spectra the Riemann zeros or, in fact, the zeros (and the poles) of general
L-functions. For this purpose, the author has introduced a related but different

15 See, e.g., [Lap6, Appendix B] and the references therein.
16 See, e.g., [Lap6, Chapters 4 and 5], along with the relevant references therein.
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formalism, in [Lap8,9] associated with harmonic analysis and operator theory in
weighted Bergman spaces of analytic functions (see, e.g., [HedKorZh], [AtzBri]).17

On the one hand, this new functional analytic framework offers greater flexibility
and ease of use, since it only involves bounded operators, albeit of an unusual na-
ture. On the other hand, the framework (from [HerLap1–5, Lap7]) discussed in this
section presents the significant advantage, in particular, of naturally parametrizing
the critical strip 0<Re(s)< 1 by means of the dimension parameter c∈ (0,1). Only
future research on both approaches will help us to eventually determine whether
one formalism should be preferred to the other one, or as is more likely to happen,
whether both formalisms should be used in order to further develop different aspects
of quantized number theory.
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[Boh2] H. Bohr, Über eine quasi-periodische Eigenschaft Dirichletscher Reihen mit Anwendung
auf die Dirichletschen L-Funktionen, Math. Ann. 85 (1922), 115–122.

[BohCou] H. Bohr and R. Courant, Neue Anwendungen der Theorie der diophantischen Approx-
imationen auf die Riemannsche Zetafunktion, J. Reine Angew. Math. 144 (1914), 249–274.

17 Some of this work may eventually become joint work with one of the author’s current Ph.D.
students, Tim Cobler.



48 Contents
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e-print, arXiv:1305.3933v2[math-NT], 2015; IHES preprint, IHES/M/13/12, 2013.)

[HerLap5] H. Herichi and M. L. Lapidus, Quantized Riemann zeta functions: Its operator-valued
Dirichlet series, Euler product and analytic continuation, in preparation, 2015.

[HiPh] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, revised edition, Amer.
Math. Soc. Colloq. Publ., vol. XXXI, Amer. Math. Soc., R. I., 1957.

[Hil] T. Hilberdink, Written personal communication to the author, early 2000 (unpublished).
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meromorphic extensions of fractal zeta functions, preprint, 2015.

[LapRaZ̆u4] M. L. Lapidus, G. Radunović and D. Z̆ubrinić, Zeta functions and complex dimen-
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and Berlin, 2015, pp. 229–257; DOI:10.1007/978-319-18660-3 13. (Based on a plenary lec-
ture given by the first author at that conference.) (Also: e-print, arXiv:1502.00878v3
[math.CV], 2015.)

[LapRo1] M. L. Lapidus and J. A. Rock, Towards zeta functions and complex dimensions of
multifractals, Complex Variables and Elliptic Equations No. 6, 54 (2009), 545–560. (Also:
e-print, arXiv:math-ph/0810.0789, 2008.)

[LapRo2] M. L. Lapidus and J. A. Rock, An Invitation to Fractal Geometry: Dimension Theory,
Zeta Functions and Applications, book in preparation, 2015.

[LapRoZ̆u] M. L. Lapidus, J. A. Rock and D. Z̆ubrinić, Box-counting fractal strings, zeta func-
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[Ra] G. Radunović, Fractal analysis of unbounded sets in Euclidean spaces and Lapidus zeta
functions, Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2015.

[Ram] R. Rammal, Spectrum of harmonic excitations on fractals, J. de Physique 45 (1984), 191–
206.

[RamTo] R. Rammal and G. Toulouse, Random walks on fractal structures and percolation cluster,
J. Physique Lettres 44 (1983), L13–L22.

[RatWi1] J. Rataj and S. Winter, On volume and surface area of parallel sets, Indiana Univ. Math.
J. 59 (2010), 1661–1685.

[RatWi2] J. Rataj and S. Winter, Characterization of Minkowski measurability in
terms of surface area, J. Math. Anal. Appl. 400 (2013), 120–132. (Also: e-print,
arXiv:1111.1825v2[math.CA], 2012.)

[ReSi1] M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. I, Functional
Analysis, revised and enlarged edition (of the 1975 edn.), Academic Press, New York, 1980.

[ReSi2] M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. II, Fourier Anal-
ysis, Self-Adjointness, Academic Press, New York, 1975.

[ReSi3] M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. IV, Analysis of
Operators, Academic Press, New York, 1979.

[Rei1] A. Reich, Universelle Wertevereteilung von Eulerprodukten, Nachr. Akad. Wiss. Göttingen
Math.-Phys. Kl. II (1977), No. 1, 1–17.

[Rei2] A. Reich, Wertverteilung von Zetafunktionen, Arch. Math. 34 (1980), 440–451.
[Rie] B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsb. der

Berliner Akad. 1858/60, pp. 671–680. (English transl. in [Edw, Appendix, pp. 229–305].)
[Ru1] W. Rudin, Real and Complex Analysis, third edition, McGraw-Hill, New York, 1987.
[Ru2] W. Rudin, Functional Analysis, second edition (of the 1973 edn.), McGraw-Hill, New York,

1991.
[Sab1] C. Sabot, Integrated density of states of self-similar Sturm-Liouville operators and holo-

morphic dynamics in higher dimension, Ann. Inst. H. Poincaré Probab. Statist. 37 (2001),
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