
VERTEX ALGEBROIDS OVER VERONESE RINGS.

F.Malikov

Abstract. We find a canonical quantization of Courant algebroids over Veronese
rings. Part of our approach allows a semi-infinite cohomology interpretation, and
the latter can be used to define sheaves of chiral differential operators on some
homogeneous spaces including the space of pure spinors punctured at a point.

Introduction

Attached to a commutative associative algebra A are the Lie algebra of its deriva-
tions, Der(A), and the module of Kähler differentials, Ω(A). The identities that are
satisfied by the classic differential geometry operations, such as the Lie bracket, the
Lie derivative, the de Rham differential, etc., can be summarized by saying that the
A-module Der(A)⊕Ω(A) is a Courant algebroid, [C, LPX]. For the reasons that will
become apparent later, we will use the notation Vpoiss(A) = Vpoiss(A)0 ⊕Vpoiss(A)1,
where Vpoiss(A)0 = A and Vpoiss(A)1 = Der(A)⊕ Ω(A).

This example can be enriched in two different ways. First, it can be quantized.
Attached to A in [GMSI] is the notion of a vertex algebroid, V(A). This notion is
a result of axiomatizing the structure that is induced on conformal weight 0 and 1
components of a graded vertex algebra. One has V(A) = A⊕V(A)1 for some V(A)1,
which fits in the exact sequence

0→ Ω(A)→ V(A)1 → Der(A)→ 0.

Therefore, V(A)1 is filtered and the corresponding graded object GrV(A)1 = Vpoiss(A)1.
This strongly resembles the Poincaré-Birkhoff-Witt filtration, and it is indeed true
that the notion of a Courant algebroid is a quasiclassical limit of that of a vertex
algebroid; this important observation is due to Bressler [Bre], but the fact that the
Courant bracket belongs in the infinite dimensional world had been discovered by
Dorfman much earlier, [Dor].

Unlike its quasiclassical counterpart, a vertex algebroid may not exist, the obstruc-
tion being the class ch2(Spec(A)); if exists, it may not be unique, the isomorphism

classes being parameterized by the hypercohomology group H1(Spec(A), Ω2
A

dDR→
Ω3,cl

A ), [GMSI].
The second way to enrich is to note that Der(A) and Ω(A) tell the whole story

only if the algebra A is ‘good enough’, e.g. (super)polynomial; if not, then the higher
algebras of derivations and modules of 1-forms must arise. This was made precise by
Hinich, [Hin], who defined Der(A)• as a kind of a derived functor of the functor Der
by applying the latter to a polynomial differential graded algebra resolution R→ A.
This gives rise to a graded Courant algebroid functor A 7→ Vpoiss(A)•.

The problem of combining the two, that is to say, finding a quantization, V(A)•,
of Vpoiss(A)• appears to be intellectually attractive and important for applications.
If A is a complete intersection, then the resolving algebra R can be chosen to be
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a super-polynomial ring on finitely many generators, the corresponding resolution
R → A being none other than the standard Koszul complex, and the quantization,
a differential graded vertex algebroid V(R), is immediate; this observation has been
used in a number of physics and mathematics papers. If, however, A is not a com-
plete intersection, then any resolving algebra R is infinitely generated in which case
defining a vertex algebroid V(R) becomes problematic because of various divergen-
cies. A regularization procedure for some of these divergencies was suggested in [BN]
and elaborated on in [GMSIII].

Here is what we do in the present paper. Let VN be the (N + 1)-dimensional
irreducible sl2-module, ON ⊂ P(VN) the highest weight vector orbit, and AN the
corresponding homogeneous coordinate ring. All of this is a representation theorist’s
way of saying that P1 ∼−→ ON ⊂ PN is a Veronese curve, and AN is a Veronese ring.

AN is a quadratic algebra, in fact, it is Koszul [Bez], but it is not a complete
intersection. The main result of the paper, Theorem 4.1.1, asserts that Vpoiss(AN)•

admits a unique quantization. It is no surprise that this quantization, V(AN ), con-

tains a vertex algebroid, V(sl2)k, attached to ŝl2 with some central charge k. What

is more important is that the vertex algebroid attached to ĝl2 enters the fray. The
latter, V(gl2)k1k2 , depends in general on two central charges, k1, k2, and we find
that the quantization conditions imply, first, that k1 + k2 = −2 and, second, that
k1 = −N − 2.

Theorem 4.1.1 and its proof appear in sect.4, and it is for the sake of this section
that the paper was written. Section 3 is to a large extent an exposition of Hinich’s
result (see also [Behr]) with some improvements (sect. 3.3, 3.4, 3.5) that are needed
in sect.4. Sections 1 and 2 are an attempt, perhaps futile, to make the paper self-
contained – except subsections 2.7.3, 2.7.4, where sheaves of vertex algebroids over
C2 \ 0 are classified. The classification obtained is instrumental in proving Theorem
4.1.1; in particular, the vertex algebroid V(gl2)k1,k2 with the compatibility condition
k1 + k2 = −2 makes appearance in sect. 2.7.4.

An obvious generalization of AN is provided by the homogeneous coordinate ring of
a higher dimensional Veronese embedding P(Cn)→ P(SN(Cn)). We show (Theorem
4.3.1) that if n > 2 and N > 1, then no quantization exists.

Much of the above carries over to an arbitrary simple g, where AN is replaced
with the homogeneous coordinate ring of the highest weigh vector orbit in the projec-
tivization of a simple g-module. For example, C2\0 becomes the Bernstein-Gelfand-
Gelfand base affine space, G/N . Constructed in [GMSII] is the 1-parameter family
of sheaves of vertex algebroids H∞/2(Ln,VG,k) over G/N , where VG,k, k ∈ C, is a
family of vertex algebroids over G, [AG, F, FP, GMSII]. There is little doubt that
the family H∞/2(Ln,VG,k), k ∈ C, is universal in that it classifies vertex algebroids
over G/N equipped with V(g)k-structure. This is a higher rank analogue of the
classification obtained in sect. 2.7.3 and alluded to above. Note that just as G/N
is a G × T -space, the maximal torus acting on the right, so there is a diagram of
embeddings

V(g)k1 →֒ H∞/2(Ln,VG,k) ←֓ V(t)k2 with k1 + k2 = −ȟ.

Therefore, V(g)k ⊕ V(t)−k−ȟ is a higher rank analogue of V(gl2)k,−k−2; here g, n

and t are the Lie algebras of the Lie groups G, N , and T resp. We elaborate on
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these remarks in sect.5, where we use the technique of semi-infinite cohomology to
compute CDO-s on some homogeneous spaces including the spaces of pure spinors
punctured at a point. In the latter case, this gives an approach alternative to that
of the original result by Nekrasov [N].

Some aspects of the sl2-case, however, are not that easy to generalize. As they
say, we hope to return to this subject in a separate paper.

We would like to conclude by saying that a major source of inspiration was pro-
vided to us by the work of Berkovits and Nekrasov [B,BN], where similar problems
are analyzed in the case of the spinor representation of the spinor group.

Acknowledgments. The author would like to thank N.Nekrasov and especially
V.Hinich for interesting discussions and for bringing [Hin] to his attention. The paper
was completed at the IHES in Bures-sur-Yvette. We are grateful to the institute for
hospitality and excellent working conditions. This work was partially supported by
an NSF grant. Special thanks go to V.Gorbounov and V.Schechtman.

1. Vertex algebras

Conventions. Underlying all the constructions in this paper will be the category
of Z-graded vector superspaces and grading preserving linear maps over C. This
grading will be called (and should be thought of as) the homological degree grading.
More often, though, the attribute ‘graded’ will be skipped. Thus the phrase ‘let
V be a vector space’ will mean that V = ⊕n∈ZV n, V even = ⊕n∈ZV 2n, V odd =
⊕n∈ZV 2n+1. Likewise, the prefix ‘super-’ will be usually omitted so that commutative
will mean super-commutative, algebra super-algebra, bracket super-bracket: [a, b] =
ab− (−1)abba.

If V and W are vector spaces, then V ⊗W is also a vector space with homological
degree grading defined in the standard way so that (V ⊗W )n = ⊕i∈ZV i ⊗W n−i.
Various bilinear operations (‘multiplications’) to be used below will be morphisms
of graded vector spaces V ⊗W → U .

Along with the homological degree grading, the grading by conformal weight will
play a prominent role. The latter will be indicated by a subindex; thus, for example,
the phrase ‘a graded (by conformal weight) vertex algebra’ will mean, in particular,
a vector space V with a direct sum decomposition V = ⊕n≥0Vn valid in the category
of graded vector spaces.

Most of the definitions and constructions in this and the following section are
well known, and their graded versions are always straighforward. We recommend
[Kac] and [FBZ] as an excellent introduction to things vertex and a guide to further
reading.

Definition 1.1. A vertex algebra is a collection (V, 1, T,(n) , n ∈ Z), where V
is a vector space, 1 ∈ V is a distinguished elemen known as the vacuum vector,
T : V → V is a linear operator known as the translation operator, each (n) is a
multiplication

(n) : V ⊗ V → V, a⊗ b 7→ a(n)b s.t. a(n)b = 0 if n >> 0,
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that is subject to the following axioms:
(1) (vacuum)

1(n) =

{
IdV if n = −1
0 otherwise

, a(−1)1 = a, ∀a ∈ V ; (1.1a)

(2) (translation invariance)

[T, a(n)]b = (Ta)(n)b = −na(n−1)b, ∀a, b ∈ V, n ∈ Z; (1.1b)

(3) (skew-symmetry)

a(n)b = (−1)ab
∑

j≥0

(−1)n+1+j 1

j!
T j(b(n+j)a), ∀a, b ∈ V n ∈ Z; (1.1c)

(4) (Jacobi identity)

[a(m), b(n)]c =
∑

j≥0

(
m

j

)
(a(j)b)(m+n−j)c, ∀a, b, c ∈ V, m, n ∈ Z; (1.1d)

(5) (quasi-associativity or normal ordering)

(a(−1)b)(n)c =
∑

j≥0

a(−1−j)b(n+j)c + (−1)ab
∑

j>0

b(n−j)a(−1+j)c, ∀a, b, c ∈ V, n ∈ Z.

(1.1e)

The collection of axioms we used in Definition 1.1 is a little superfluous but makes
the exposition a little more transparent. It emphasizes the fact that the notion of
a vertex algebra is a mixture of (appropriate analogues of) that of an associative
algebra and a Lie algebra. Extracting the Lie part of the definition one arrives at
the notion of a vertex Lie algebra.

Definition 1.2. A vertex Lie algebra is a collection (V, T, (n), n ∈ Z+), where V
is a vector space, T : V → V is a linear operator, each (n) is a multiplication

(n) : V ⊗ V → V, a⊗ b 7→ a(n)b s.t. a(n)b = 0 if n >> 0 (1.2)

that is subject to the following axioms:
(1) translation invariance, that is, (1.1b) for n ≥ 0;
(2) skew-symmetry, that is, (1.1c) for n ≥ 0;
(3) Jacobi identity, that is, (1.1d) for n ≥ 0.

There is an obvious forgetful functor

Φ : {Vertex algebras} → {Vertex Lie algebras}. (1.3a)

Its left adjoint functor (the vertex enveloping algebra functor)

U : {Vertex Lie algebras} → {Vertex algebras} (1.3b)

is well known to exist; e.g. it appears in [Kac] as ’the vertex algebra attached to a
formal distribution Lie superalgebra.’

Note a canonical map
ι : L → Φ(UL) (1.4)
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that is the image of Id ∈ Hom(UL,UL) under the identification Hom(UL,UL)
∼−→

Hom(L, ΦUL).

Example 1.3. Let L′ be a free C[T ]-module on one generator L and let L(Vir)c =
L′ ⊕ C, where C is considered as a trivial C[T ]-module. L(Vir)c carries a unique
vertex Lie algebra structure such that

L(0)L = T (L), L(1)L = 2L, L(2)L = 0, L(3)L =
1

2
c.

The vertex enveloping algebra UL(Vir)c is the vacuum representation of the Virasoro
algebra of central charge c.

Example 1.4. Let g be a Lie algebra with an invariant bilinear form (., .). Let

L(g)k = C[T ]⊗ g⊕ C.

This space carries an obvious action of T , where again we consider C as a trivial
C[T ]-module, and a unique vertex Lie algebra structure such that

(1⊗ a)(0)(1⊗ b) = 1⊗ [a, b], (1⊗ a)(1)(1⊗ b) = k(a, b). (1.5a)

The vertex enveloping algebra UL(g)k is the vacuum representation of the corre-
sponding affine Lie algebra of central charge k.

If g is chosen to be glN = slN ⊕ C · I, then this construction has the following
version: we let (a, b) = tr(a · b), L(glN)k1,k2 = L(slN)⊕C[t]⊗C · I and extend (1.5a)
by

(1⊗ I)(1)(1⊗ I) = k2N, (1⊗ I)(0)(1⊗ I) = (1⊗ I)(n)(1⊗ slN) = 0 ∀n. (1.5b)

In order to handle the case of the trivial bilinear form (., .), or more generally the
case where (., .) is not unique even up to proportionality, we will change the notation
and denote by L(g)(.,.) the vertex Lie algebra which is precisely L(g)k except that
the last of conditions (1.5a) is replaced with

(1⊗ a)(1)(1⊗ b) = (a, b) (1.5c)

for some (., .).

A passage to the quasiclassical limit is a gentler way to blend the Lie and com-
mutative/associative algebra parts of the structure.

Definition 1.5. A vertex Poisson algebra is a collection (V, 1 ∈ V, T, (n), n ≥ −1),
where V is a vector space, T : V → V is a linear operator, each (n) is a multiplication

(n) : V ⊗ V → V, a⊗ b 7→ a(n)b s.t. a(n)b = 0 if n >> 0

that is subject to the following axioms:
(1) the triple (V, 1, T, (−1)) is a unital commutative associative algebra with deriva-

tion;
(2) the collection (V, 1 ∈ V, T, (n), n ≥ 0) is a vertex Lie algebra;
(3) each multiplication (n), n ≥ 0, is a derivation of (−1).
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Vertex Poisson algebras are to vertex algebras what Poisson algebras are to non-
commutative algebras. The following construction (cf. [Li]) is meant to illustrate
this point.

1.6. Suppose a vertex algebra V carries an exhaustive increasing filtration by
vector spaces

C1 ∈ F 0V ⊂ F 1V ⊂ · · · ⊂ F pV ⊂ · · · , ∪p≥0F
nV = V (1.6)

which satisfies (F pV )(n)F
qV ⊂ F p+qV and T (F pV ) = F pV for all p, q ∈ Z so that

(F pV )(n)F
qV ⊂ F p+q−1V if n ≥ 0. By focusing on symbols one discovers that the

vertex algebra structure on V defines the following on the corresponding graded
object GrV = ⊕pF

pV/F p−1V :

1gr = 1 ∈ F 0V ;

T gr : F pV/F p−1V → F pV/F p−1V, T (ā) = T (a) mod F p−1V

(−1)gr : (F pV/F p−1V )⊗ (F qV/F q−1V )→ F p+qV/F p+q−1V

ā⊗ b̄ 7→ ā(−1)gr b̄ = a(−1)b mod F p+q−1V ;

(n)gr : (F pV/F p−1V )⊗ (F qV/F q−1V )→ F p+q−1V/F p+q−2V

ā⊗ b̄ 7→ ā(n)gr b̄ = a(n)b mod F p+q−2V if n ≥ 0.

It is then immediate to check that (GrV, 1gr, T gr, (n)gr , n ≥ −1) is a vertex Poisson
algebra. For example, commutativity of the product (−1) follows from the n = −1
case of (1.1c) and associativity from the n = −1 case of (1.1e).

The vertex algebras reviewed in Examples 1.3, 1.4 possess a filtration with the
indicated properties:
• in the case of UL(Vir)c the filtration is determined by assigning degree one to

ι(L(Vir)c), see (1.4);
• in the case of UL(g)k the filtration is determined by assigning degree one to

ι(L(g)k);
Denote thus obtained vertex Poisson algebras as follows:

UpoissL(Vir) = GrUL(Vir)c, UpoissL(g) = GrUL(g)k, UpoissL(glN) = GrUL(glN)k,k2 .
(1.7)

2. Courant and vertex algebroids

Definition 2.1. A vertex (vertex Poisson) algebra V is called graded if

V =

+∞⊕

n=−∞

Vn so that

Vn = 0, if n < 0, 1 ∈ V0, T (Vm) ⊂ Vm+1, and (Vm)(j)Vn ⊂ Vm+n−j−1. (2.1)
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Such grading is usually referred to as conformal, Vn is called the conformal weight
n component, and v ∈ Vn is said to have conformal weight n; the conformal weight
of v ∈ Vn is usually denoted by ∆(v).

All the vertex algebras we have seen are graded:
UL(Vir)c is graded by letting V0 = C, V1 = {0}, V2 = ι(L), UL(g)k by letting

V0 = C, V1 = ι(g), UL(glN)k1,k2 by letting V1 = ι(glN)
A graded vertex (vertex Poisson) algebra structure on V induces the following

structure on the subspace V0 ⊕ V1:

1 ∈ V0, (2.2a)

T : V0 → V1, (2.2b)

(n) : Vi ⊗ Vj → V(i+j−n−1); n ≥ 0, i, j = 0, 1, (2.2c)

(−1) : (V0 ⊗ Vi)⊕ (Vi ⊗ V0)→ Vi, i = 0, 1. (2.2d)

These data satisfy a list of identities obtained by inspecting those listed in Definitions
1.1 and 1.5 and choosing the ones that make sense. The meaning of ‘make sense’
is clear in the case of identities, such as the Jacobi, involving only operations (n)

with n ≥ 0, because V0⊕ V1 is closed under these operations. Expressions T j(a(n)b),
a(i)b(j)c, (a(i)b)(j)c, a, b, c ∈ V0, V1, are said to make sense if either they are composi-
tions of operations (2.2a-d) or because ∆(a)+∆(b)−n−1 < 0, ∆(b)+∆(c)−j−1 < 0,
∆(a) + ∆(b) − i − 1 < 0 (resp.) in which case the expressions are defined to be 0,
cf. condition (2.1). Finally, we shall say that an identity makes sense if all the
expressions that it involves make sense.

Definition 2.2. A Courant algebroid is a vector space V0 ⊕ V1 carrying the data
(2.2a-d) so that all those axioms of Definition 1.6 that make sense are valid.

Definition 2.3. A vertex algebroid is a vector space V0 ⊕ V1 carrying the data
(2.2a-d) so that all those axioms of Definition 1.1 that make sense are valid.

There are two obvious forgetful functors

Φalg : {Vertex algebras} → {Vertex algebroids}. (2.3a)

Φpoiss
alg : {Vertex Poisson algebras} → {Courant algebroids}, (2.3b)

and both afford the left adjoints Ualg and Upoiss
alg , which are analogous to (1.3b).

When applied to the algebras of (1.7) and of Examples 1.3-5, they give us first
examples of Courant

Vpoiss(Vir) = C, Vpoiss(g) = C⊕ g, Vpoiss(glN) = C⊕ glN (2.4)

and vertex algebroids resp.

V(Vir)c = C, V(g)k = C⊕ g, V(glN)k1,k2 = C⊕ glN . (2.5)

Here is an example of geometric nature.

Example 2.4. Let A be a commutative associative algebra with unit 1, Ω(A)
the module of Kähler differentials, Der(A) the algebra of derivations. Note that the
homological degree grading of A determines that of Ω(A) and Der(A). Set V0 = A,

V1 = Der(A) ⊕ Ω(A), and let T
def
= d : V0 = A → ΩA →֒ V1 be the canonical
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(de Rham) derivation. Then the space V0 ⊕ V1 carries a unique Courant algebroid
structure determined by

a(−1)b = ab, a(−1)(τ + ω) = aτ + aω, τ(0)a = τ(a),

τ(0)ω = Lieτω, τ(1)ω = ιτω,

τ(0)ξ = [τ, ξ], τ(1)ξ = 0,

(2.6)

for all a, b ∈ A, ω ∈ Ω(A), τ, ξ ∈ Der(A). Denote thus defined Courant algebroid
by Vpoiss(A).

Since all the operations recorded in (2.6) are of geometric nature, there arises, for
each scheme X, a sheaf of vertex algebroids

Vpoiss
X

def
= TX ⊕ ΩX . (2.7)

Note that in keeping with our convention we assume that X is graded, that is to say,
OX is a sheaf of graded algebras; consequently, TX and ΩX are sheaves of graded
OX-modules.

If V = V0 ⊕ V1 is a vertex algebroid, then part of its structure coincides with
that of Vpoiss(A). For example, the triple (V0,(−1) , 1) is a commutative associative
algebra with unit, (V0)(−1)(T (V0)) is a V0-module (although V1 is not), the map
T : V0 → (V0)(−1)(T (V0)) is a derivation. There arises a filtration

V0 ⊕ (V0)(−1)(T (V0)) ⊂ V, (2.8)

and a moment’s thought will show that, absolutely analogously to sect.1.7, the cor-
responding GrV carries a canonical Courant algebroid structure.

Definition 2.5.
(a) Given a Courant algebroid Vpoiss, call a vertex algebroid V a quantization of
Vpoiss if there is an isomorphism of Courant algebroids

GrV ∼−→ Vpoiss.

(b) If V is a quantization of Vpoiss(A), see Example 2.4, then we shall denote V by
V(A).

Note that in the case of Vpoiss(A), filtration (2.8) implies the following exact
sequence of vector spaces

0→ Ω(A)→ V1
π→ Der(A)→ 0. (2.9)

The problem of quantizing Vpoiss(A) is not trivial and was studied in [GMSI].
Call A suitable for chiralization if Der(A) is a free A-module on generators τ1, ..., τN

s.t. [τi, τj] = 0. If A is suitable for chiralization and a basis τ1, ..., τN is fixed,
then Vpoiss(A) can be quantized by letting V(A) = Vpoiss(A) as a vector space and
requiring all of the relations (2.6) except the last two; the latter are to hold only for
the basis vector fields:

(τi)(0)(τj) = 0, (τi)(1)(τj) = 0. (2.10)

It is easy to show, using axioms (1.1a–e), at least that these choices determine a
vertex algebroid structure.
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Let us point out some of the differences between the Courant and vertex algebroid
structures thus obtained: in the Courant case

(f(−1)τi)(1)(g(−1)τj) = 0,

in the vertex case

(f(−1)τi)(1)(g(−1)τj) = −f(−1)(τj(τi(g))− f(−1)(τi(τj(g))− τi(g)(−1)τj(f); (2.11a)

in the Courant case multiplication (−1) is associative, e.g.,

(fg)(−1)τi = f(−1)(g(−1)τi),

in the vertex case it is not as

(fg)(−1)τi = f(−1)(g(−1)τi)− τi(g)df − τi(f)dg; (2.11b)

here f, g ∈ A and axioms (1.1c,d) along with simplifications due to grading have
been used.

Furthermore, if A is suitable for chiralization, then

{isomorphism classes of quantizations of Vpoiss(A)}
is an

(
Ω3,cl(A)/dΩ2(A)

)0 − torsor,
(2.12)

and

Aut(V(A))
∼−→

(
Ω2,cl(A)

)0
, (2.13)

where the automorphism of V(A) attached to ω ∈ Ω2,cl(A)0 is defined by the assign-
ment

V(A)1 → V(A)1, τ 7→ τ + ω(π(τ)), (2.14)

π being defined in (2.9). Note that we had to pay the price for relentlessly working
in the graded setting by extracting the homological degree 0 subspace in (2.12-13).

Since any smooth algebraic variety X can be covered by the spectra of rings suit-
able for chiralization, (2.13-14) create an avenue to define sheaves of vertex algebroids
over X, to be denoted VX or VA if X = Spec(A).

Definition 2.6. Let X be a graded scheme.
(a) Call a sheaf of vertex algebroids over X a quantization of Vpoiss

X , see (2.7), if for

each affine U ⊂ X its space space of sections over U is a quantization of Γ(U,Vpoiss
X ).

(b) Denote by VertX (or VertA if X = Spec(A)) the category of quantizations of
the sheaf Vpoiss

X .

The characteristic property of VX ∈ VertX is the existence of the sequence of
sheaves

0→ ΩX → VX
π→ TX → 0; (2.15)

this is a sheaf analogue of (2.9).
Here are the (obvious graded versions of the) main results of [GMSI]:

• there is a gerbe of vertex algebroids over a manifold X such that the space
of sections over each U = Spec(A) ⊂ X, A being suitable for chiralization,
is the category of quantizations of Vpoiss(A);
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• in the case where OX = O0
X this gerbe possesses a global section, i.e., a sheaf

VX ∈ VertX , if and only if the 2nd component of the Chern character

ch2(TX) ∈ H2(X, Ω2
X → Ω3,cl

X ) (2.16)

vanishes; if this class vanishes, then

{ Isomorphism classes of sheaves VX} is an H1(X, Ω2
X → Ω3,cl

X )− torsor; (2.17)

• the forgetful functor (2.3a) has a left adjoint functor

Ualg : {Vertex algebroids} → {Vertex algebras}; (2.18)

if the obstruction (2.16) vanishes, we call

Dch
X

def
= UalgVX (2.19)

a sheaf of chiral differential operators, CDO for short.

Note that proving (2.17) amounts to covering X by open sets that are suitable for
chiralization and re-gluing a given sheaf by composing the old gluing functions with
automorphisms (2.13,14).

2.7. Further examples and constructions.

2.7.1. Localization. For any quantization V(A) and an ideal a ⊂ A a natural
quantization V(Aa) is defined [GMSI], the reason being that all the (n)-products on
V(A) are in fact certain differential operators. For example, at the quasiclassical
level, all the operations recorded in (2.3) are differential operators of order ≤ 1.
Furthermore, (2.11a,b) provide examples of genuine quantum operations being order
2 differential operators. Therefore, given an A and V(A), there arises a sheaf of vertex
algebroids

VA ∈ VertA s.t. Γ(Spec(A),VA) = V(A). (2.20)

This construction underlies the above discussion of gerbes of vertex algebroids.
A little more generally, if X and Y are manifolds and p : X → Y is a covering,

then there is a functor

p∗ : VertY → VertX .

The reason for this to be true is that the story of quantizing Vpoiss(A), Spec(A) ⊂ Y ,
starts with a choice of an abelian basis {τi} ⊂ Der(A), and any such choice is
canonically lifted to an abelian basis of Γ(V, TX) for any affine V ⊂ p−1(Spec(A)).

In particular, if X carries a free action of a finite group G, then there arises an
equivalence of categories

VertX/G → VertGX , (2.21)

where VertGX is a full subcategory of G-equivariant vertex algebroids. The inverse
functor is, essentially, that of G-invariants

VertGX → VertX/G, V 7→ p∗(VG), (2.22)

where p∗ is the push-forward in the category of sheaves of vector spaces.
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Here is a version of localization called a push-out in [GMSI, II]. If a Lie group acts
on A by derivations, then

A⊗ V(g)k
def
= A⊕ A⊗ g⊕ Ω(A) (2.23)

is a vertex algebroid.
2.7.2. According to (2.16,17), there is a unique sheaf of vertex algebroids over

CN , VCN . Its space of global sections is V(C[x1, ..., xN ]), where we take {∂j = ∂/∂xj}
for an abelian basis of Der(C[x1, ..., xN ]), and if U = {f 6= 0}, then Γ(U,VCN

) is
defined via the localization of sect.2.7.1.

The corresponding CDO, see (2.19), is Dch
CN = UalgVCN . Its space of global sec-

tions, denoted by either Dch(CN) or Dch(C[x1, ..., xN ]), is likewise obtained via Ualg:
Dch(CN) = UalgV(C[x1, ..., xN ]). Here is a more explicit description of the latter
vertex algebra: it contains V(C[x1, ..., xN ]), cf. (1.4), hence xj , ∂j ; operators (xj)(n)

and (∂j)(n) generate it from the vacuum 1, and the only non-trivial relation amongst
(xj)(n) and (∂j)(n) is as follows:

(∂j)(0)xj = −(xj)(0)∂j = 1.

2.7.3. Let X = C
2 \ (0, 0) and choose the trivial grading where OX = O0

X .
The obstruction (2.16) vanishes, because one sheaf, say, the restriction of VC2 to
C2 \ (0, 0), exists. Isomorphism classes of sheaves of vertex algebroids over X are
easy to classify. Indeed, consider the affine covering

X = U1 ∪ U2, Uj = {(y1, y2) s.t. yj 6== 0}
and the Cech 1-cocycle

ωab : U1 ∩ U2 7→
dy1 ∧ dy2

ya
1y

b
2

, a, b ≥ 1.

It is known (and easy to check) that

H1(X, Ω2
X → Ω3,cl

X ) = ⊕a,bCωab.

Hence the isomorphism classes of sheaves of vertex algebroids over X are in 1-1
correspondence with linear combinations of ωab. Here is an explicit construction of
the sheaf attached to kωab: let VX be the restriction of the standard VC2 to X, VUj

its pull-back to Uj , j = 1, 2; now glue VU1 and VU2 over the intersection U1 ∩ U2, cf.
(2.13,14), as follows:

∂1 → ∂1 +
kT (y2)

ya
1y

b
2

, ∂2 → ∂2 −
kT (y1)

ya
1y

b
2

. (2.24)

It is immediate to generalize this to the case of an arbitrary ω in the linear span of
{ωab}. Denote the sheaf sheaf thus obtained by VX,ω.

This simple example will be essential for our purposes.
2.7.4. Symmetries. Given a Lie algebra morphism

ρ : g→ Der(A),

the composition

g→ Der(A)
(id,0)→֒ Vpoiss(A) = Der(A)⊕ Ω(A)
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defines a Courant algebroid morphism

ρpoiss : Vpoiss(g)→ Vpoiss(A).

Furthermore, any Poisson algebroid morphism ρpoiss, upon quotienting out Ω(A),
defines a Lie algebra morphism ρ.

A quantization of a Courant algebroid morphism ρpoiss : Vpoiss(g)→ Γ(X,Vpoiss
X ) is

defined to be a vertex algebroid morphism ρ̂ : V(g)k → V(A) such that the diagram

0 // Ω(A) // V(A) // Der(A) // 0

V(g)k
ρ //

ρ̂

OO

Der(A) // 0

(2.25)

commutes. Here the arrow V(g)k
ρ→ Der(A) means the composition V(g)k = C ⊕

g
0⊕ρ→ Der(A), see (2.5).
Similarly, if g operates on X, that is, there is a Lie algebra morphism

ρ : g→ Γ(X, TX)

then a quantization of the corresponding Courant algebroid morphism ρpoiss : Vpoiss(g)→
Γ(X,Vpoiss

X ) is defined to be a vertex algebroid morphism ρ̂ : V(g)k → Γ(X,VX) such
that the diagram

0 // Γ(X, ΩX) // Γ(X,VX) // Γ(X, TX) // 0

V(g)k
ρ //

ρ̂

OO

Γ(X, TX) // 0

(2.26)

commutes.
To see an example of importance for what follows, let us consider the tautological

action of gl2 on C2. If we let X = C2 \ (0, 0), then there arises

ρpoiss : Vpoiss(gl2)→ Γ(C2 \ (0, 0),Vpoiss
C2\(0,0)). (2.27),

and we ask if this map can be quantized to a map V(gl2)k1,k2 → Γ(C2\(0, 0),VC2\(0,0),ω),
where the vertex algebroid VC2\(0,0),ω was defined in sect.2.7.3.

Lemma 2.7.4.1. Quantization of (2.27),

ρ̂ : V(gl2)k1,k2 → Γ(C2 \ (0, 0),VC2\(0,0),ω)

exists if and only if ω = kdy1 ∧ dy2/y1y2, k1 = −k − 1, k2 = k − 1 for some k ∈ C.

Proof. We shall use the notation of sect.2.7.3. In terms of the coordinates y1, y2

the morphism ρ is this
ρ(Eij) 7→ yi∂j . (2.28)

If we consider yi∂j as an element of Γ(U1,VX,ω), then over U2 it becomes, according to
(2.17,2.24), (yi∂j ± kT (yj±1)yi)/y

a
1y

b
2 and hence may develop a pole. To compensate

for it, we can choose a different lift of Eij to Γ(U1,VX,ω) by replacing yi∂j with yi∂j +
α, where α ∈ Γ(U1, ΩX). Over U2 this element becomes (yi∂j ± T (yj±1)yi)/y

a
1y

b
2 + α.

Since α may have at most a pole along {y1 = 0}, for this element to extend to a
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section over U2, one of the following two things must happen: either T (yj±1)yi/y
a
1y

b
2

has no pole along {y1 = 0}, in which case no α is needed, or T (yj±1)yi/y
a
1y

b
2 has no

pole along {y2 = 0}, in which case a desired α can be found. For a favorable event
to occur for i = 1 and i = 2, both a and b must be at most 1. But by definition, see
sect.2.7.3, a and b are at least 1; therefore a linear map gl2 → Γ(X,VX,ω) may exist
only if ω = kdy1 ∧ dy2/y1y2. On the other hand, if ω = kdy1 ∧ dy2/y1y2, then the
map

E12 7→ y1∂y2 , (2.29a)

E21 7→ y2∂y1 −
ky′

2

y1
, (2.29b)

E11 7→ y1∂y1 , (2.29c)

E22 7→ y2∂y2 +
ky′

1

y1
. (2.29d)

delivers the desired vertex algebroid morphism

V(gl2)−k−1,k−1Γ(C2 \ (0, 0),VC2\(0,0),ω), ω = kdy1 ∧ dy2/y1y2. (2.30)

It is easy to see the vertex algebroid morphism condition determines the map
uniquely. �

Note that the top row of (2.26), unlike that of (2.25), does not have to be exact
in general. In the case at hand, however, it is precisely when ω = kω11:

Corollary 2.7.4.2. The sequence

0→ Γ(C2 \ (0, 0), ΩC2\(0,0))→ Γ(C2 \ (0, 0),VC2\(0,0),ω)1 → Γ(C2 \ (0, 0), TC2\(0,0))→ 0

is exact if and only if ω = kω11 for some k ∈ C.

Proof. Notice that TC2\(0,0) is generated by ρ(gl2) over functions. The “if” part
is then seen to be an immediate consequence of Lemma 2.7.4.1. The “only if” part
was actually proved at the beginning of the proof of the lemma cited. �

2.7.5. Conformal structure. If x1, ..., xN are coordinates on CN , ∂j = ∂/∂j ,
then there is a vertex (Poisson) algebra morphism

UpoissL(Vir)→ Γ(CN ,Dpoiss
CN ), UL(Vir)2N → Γ(CN ,DCN ), L 7→

N∑

j=1

T (xj)(−1)∂j ,

(2.31)
where the latter is a quantization of the former. A little more generally, if A is an
algebra suitable for chiralization with τ1, ..., τN an abelian basis of Der(A), then one
can find a coordinate system, i.e., {x1, ..., xN} ⊂ A s.t. τi(xj)δij, and thus obtain

UpoissL(Vir)→ UpoissVpoiss(A), UL(Vir)2N → UV(A), L 7→
N∑

j=1

T (xj)(−1)τj .

In this case, N is the Krull dimension of A.
Another example is provided by the twisted sheaves VC2\0,ω of sect.3.7.3. Some-

what unexpectedly, the same definition (2.31), which in the present case becomes
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L 7→ T (y1)∂1 +T (y2)∂2, applied locally over both both the charts U1 and U2 survives
the twisted gluing transformation (2.24) for any ω and defines a global morphism

UL(Vir)2 → Γ(C2 \ 0,VC2\0,ω). (2.32)

3. A Graded Courant Algebroid
Attached to a Commutative Associative Algebra

3.1. Modules of differentials.
Even though the assumption that all the vector spaces in question are Z-graded

has been kept since the very beginning of sect.1, it has been barely used. From now
on it will be essential and referred to explicitly as in the following definition.

Definition 3.1.1 A differential graded algebra (DGA) R is a pair (R#, D), where
R# = ⊕∞

n=0R
n is a graded supercommutative associative algebra with Reven =

⊕∞
n=0V

2n, Rodd = ⊕∞
n=0R

2n+1, and D is a square 0 degree (-1) (hence odd) derivation.
Call a DGA (R#, D) quasi-free if there is a graded vector superspace V = ⊕∞

n=0V
n

with V even = ⊕∞
n=0V

2n, V odd = ⊕∞
n=0V

2n+1 such that R# is the symmetric algebra
S•V .

If R is a DGA, then H•
D(R)

def
= Ker(D)/Im(D) is a a graded supercommutative

associative algebra.
For any commutative associative algebra A there is a quasi-free DGA R and a

quasi-isomorphism

R→ A, (3.1.1)

that is to say, a DGA morphism (A being placed in homological degree 0 and
equipped with a zero differential) that delivers a graded algebra isomorphism H•

D(R)
∼−→

A.
If A is finitely generated, then a DGA resolution R can be chosen so that each V j

from definition 3.1.1 is finite dimensional. These two finiteness assumptions will be
made throughout.

A DGA resolution of A is not unique, but for any two such resolutions

R1 → A← R2

there is a homotopy equivalence [Behr]

f : R1 → R2. (3.1.2)

If R is a quasi-free DGA, denote by Ω(R) the module of Kähler differentials
of R. It is canonically a differential-graded (DG) free R-module with derivation
d : R → Ω(R) and differential LieD, which we choose to denote by D, too. The
correspondence R 7→ Ω(R) is functorial in that naturally associated to an algebra
morphism f : R1 → R2 there is a map of DG R1-modules:

Ω(f) : Ω(R1)→ Ω(R2) (3.1.3).
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Furthermore, we have

Ω(R) =

+∞⊕

n=0

Ω(R)n, d : Rn → Ω(R)n, D : Ω(R)n → Ω(R)n−1, [d, D] = 0. (3.1.4)

It follows that the homology HD(Ω(R)) is naturally a graded H•
D(R)-module.

For any 2 quasi-free DGA resolutions R1 → A ← R2, we can find a homotopy
equivalence f : R1 → R2, see (3.1.2), hence a quasi-isomorphism

Ω(f) : Ω(R1)→ Ω(R2) (3.1.5)

and an isomorphism

H(Ω(f)) : H•
D1

(Ω(R1))→ H•
D2

(Ω(R2)) (3.1.6)

Definition 3.1.2

Ω(A)• = H•
D(Ω(R)), (3.1.7)

where R is a quasi-free DGA resolution of A.

The assignment A 7→ Ω(A)• defines a functor from the category of algebras to the
category of graded vector spaces.

Note that

Ω(A)• =

+∞⊕

n=0

Ω(A)n, (3.1.8)

is a graded A-module, and Ω(A)0 is the module of Kähler differentials of A, Ω(A).

3.2. Modules of derivations.
If R is a quasi-free DGA, we denote by Der(R) the Lie algebra of derivations of

R. Like Ω(R), it is a DG R-module, but unlike Ω(R) it is graded in both directions:

Der(R) =
⊕

n∈Z

Der(R)n (3.2.1)

and, which is more serious, not free; in fact, each component Der(R)n is a direct
product

Der(R)n =
+∞∏

j=0

(V j)∗ ⊗ Rn+j. (3.2.2)

where V j is one of the ingredients of Definition 3.1.1 assumed to be finite dimensional.
The derivation [D, .] : Der(R)→ Der(R) is a differential because D ∈ Der(R)−1

is odd. Hence a Lie algebra H•
[D,.](Der(R)) arises.

The assignment R 7→ Der(R) is not quite functorial, because even if f : R1 → R2

is a quasi-isomorphism, a Lie algebra morphism Der(f) : Der(R1)→ Der(R2) does
not quite exist. It does exist though at the level of the corresponding homotopy
categories. This remark and what follows belongs to Hinich [Hin, sect.8].

Decompose f : R1 → R2 as follows

f : R1
i→֒ S

p→ R2, (3.2.3)
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where i is a standard acyclic cofibration, and p is an acyclic fibration. (Recall that
i being a standard cofibration means S being obtained by adjoining variables to R1,
and being a fibration means being an epimorphism.)

In the case of i, there arises a diagram of quasiisomorphisms

Der(R1)
πi← Der(i)

ini→ Der(S), (3.2.4)

where Der(i) = {τ ∈ Der(S) s.t. τ(R1) ⊂ R1}, πi is the obvious projection, and ini

is the obvious embedding.
Analogously, in the case of p, there is a diagram of quasiisomorphisms

Der(S)
inp← Der(p)

πp→ Der(S), (3.2.5)

where Der(p) = {τ ∈ Der(R1) s.t. τ(Ker(p)) ⊂ Ker(p)}, inp is the obvious em-
bedding, and πp is the obvious projection.

Hinich defines

Der(i) = ini ◦ π−1
i , Der(p) = πp ◦ in−1

p , Der(f) = Der(p) ◦Der(i). (3.2.6)

This map makes sense in the homotopy category and delivers a homotopy category
quasi-isomorphism

Der(f) : Der(R1)→ Der(R2). (3.2.7).

Hence an isomorphism

H(Der(f)) : H•
[D1,.](R1)→ H•

[D2,.](R2). (3.2.8)

Theorem 3.2.1.[Hin] If fj : R1 → R2, j = 1, 2, are homotopic to each other,
then Der(fj), j = 1, 2, are also.

Corollary 3.2.2. [Hin]
(1) The assignment R 7→ Der(R) defines a functor from the homotopy category

of DG commutative associative algebras with quasi-isomorphisms to the homotopy
category of DG Lie algebras.

(ii) The assignment R 7→ H•
[D,.](Der(R)) defines a functor from the homotopy

category of DG commutative associative algebras with quasi-isomorphisms to the
category of graded Lie algebras.

Definition 3.2.3.
Der(A)• = H•

[D,.](Der(R)),

where R is a quasi-free DGA resolution of A.

3.3. Synthesis: Courant algebroids.
The notion of a Courant algebroid allows us to bring sections 3.1 and 3.2 under

the same roof. Let Vpoiss be a Courant algebroid. It follows from the Jacobi identity
(1.1d) that, for any ξ ∈ Vpoiss(R), ξ(0) ∈ End(Vpoiss(R) is a derivation of all products.
Identity (1.1b) implies that ξ(0) commutes with T . If, in addition, ξ is odd and
ξ(0)ξ = 0, then (ξ(0))

2 = 0 as another application of (1.1d) shows. Therefore, a pair
(Vpoiss, ξ) is a differential Courant algebroid, and the homology Courant algebroid,
H•

ξ(0)
(Vpoiss), arises.
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Let us now specialize this well-known construction to the Courant algebroid
Vpoiss(R) = Der(R) ⊕ Ω(R), see Example 2.4, in the case of a quasi-free DGA
R = (R#, D). By definition D is odd and, according to (2.6), D(0)D = [D, D] = 0.
Hence the pair (Vpoiss(R), D(0)) is a DG Courant algebroid and the graded Courant
algebroid H•

D(0)
(Vpoiss(R)) arises. Again by virtue of (2.6), the differential D(0) pre-

serves Der(R) ⊂ Vpoiss(R), where it coincides with [D, .], and Ω(R), where it coin-
cides with the standard action of D by the Lie derivative, see also (3.1.4). We obtain
a canonical vector space isomorphism

H•
D(0)

(Vpoiss(R)) = H•
[D,.](Der(R))⊕H•

D(Ω(R)). (3.3.1)

If f : R1 → R2 is a homotopy equivalence, then

H(Der(f))⊕H(Ω(f)) : H•
D(0)

(Vpoiss(R1))→ H•
D(0)

(Vpoiss(R2)), (3.3.2)

is a vector space isomorphism by virtue of (3.1.6) and (3.2.8). In fact, (3.3.2) is a
graded Courant algebroid isomorphism. This follows from the fact that the Courant
algebroid structure on Vpoiss(R) consists of classical differential geometry operations,
such as the tautological action of Der(R) on R and the action of Der(R) on Ω(R) by
means of the Lie derivative. An inspection of maps (3.2.3–3.2.8) shows that Hinich’s
construction respects all these operations.

Corollary 3.3.1. The assignment R 7→ H•
D(0)

(Vpoiss(R)) defines a functor from

the homotopy category of DG commutative associative algebras with quasi-isomorphisms
to the category of graded Courant algebroids.

Definition 3.3.2.
Vpoiss(A)• = H•

D(0)
(Vpoiss(R)),

where R is a quasi-free DGA resolution of A.

3.4. Conformal structure.
The construction of sect.2.7.5 in the present setting means the following. If R# =

S•V , pick a homogeneous basis {xi} ⊂ V and a dual ‘basis’ {∂i} ⊂ V ∗, where
∂i(xj) = δij . As in sect.2.6.5, we obtain a morphism

UpoissL(Vir)→ UVpoiss(R), L 7→
∑

j

(T (xj))(−1)∂j . (3.4.1)

Lemma 3.4.1.

ξ(0)

∑

j

T (xj)(−1)∂j = 0 for any ξ ∈ Der(R). (3.4.2)

Corollary 3.4.2. Assignment (3.4.1) determines a Courant algebroid morphism

UpoissL(Vir)→ UVpoiss(A)0. (3.4.3)
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Proof of Lemma. Let ξ =
∑

i(fi)(−1)∂i, fi ∈ R#. We have

ξ(0)

∑

j

T (xj)(−1)∂j =
∑

j

(ξ(0)T (xj))(−1)∂j +
∑

j

(−1)ξ·xjT (xj)(−1)(ξ(0)∂j) =

∑

j

T (ξ(0)xj)(−1)∂j −
∑

j

(−1)ξ·xj+ξ·xjT (xj)(−1)((∂j)(0)

∑

i

(fi)(−1)∂i) =

∑

j

T (fj)(−1)∂j −
∑

i

∑

j

T (xj)(−1)(
∂fi

∂xj
)(−1)∂i =

∑

j

T (fj)(−1)∂j −
∑

i

T (fi)(−1)∂i = 0.

�

3.5. Grading of Der(A)• and identification of Der(A)0.
Recall that R, hence Ω(R) and Ω(A)•, are all graded by Z+. Contrary to this,

although the Lie algebra Der(R) is graded in both directions, Der(A) is Z−-graded.

Lemma 3.5.1.
(a) Der(A)n = 0 if n ≥ 0;
(b) Der(A)0 is the Lie algebra of derivations of A.

Proof. Consider a quasi-free DGA resolution R→ A. The complex (Der(R), [D, .])
is filtered as follows, cf. (3.2.2),

F pDer(R)n =

+∞∏

j=p

(V j)∗ ⊗ Rn+j. (3.5.1)

A spectral sequence (Er
pq, dr)⇒ Der(A)p+q arises so that

(E0
pq, d0) = ((V −p)∗ ⊗ Rq, 1⊗D).

Since R = (R#, D) is quasi-isomorphic to A placed in degree 0, we have

E1
pq =

{
(V −p)∗ ⊗ A if q = 0
0 otherwise

It follows at once that the spectral sequence collapses and Der(A)−n is the n-th
cohomology of the complex

0→ (V 0)∗ ⊗A→ (V 1)∗ ⊗A→ · · · → (V n)∗ ⊗A→ · · · (3.5.2)

Item (a) of the lemma is thus proven.
In order to prove item (b), we have to write down a formula for the differential of

complex (3.5.2). The resolution R→ A gives an exact sequence

0→ J →֒ R0 π→ A→ 0.

We shall regard an element τ ∈ (V j)∗ as a derivation of R = S•V . The differential,
D, of R can be written thus: D =

∑
fj∂j + ξ, where ∂j ∈ (V 1)∗, {fj} generate J ,
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and ξ ∈ F 2Der(R)−1. It easily follows from the construction of the spectral sequence
that if τ ∈ (V 0)∗, then

d1(τ ⊗ a) = −aπ(τ(fj))∂j .

It follows at once that Ker{d1 : (V 0)∗ ⊗A→ (V 1)∗ ⊗A} is precisely the algebra of
derivations of R0 that preserve the ideal J modulo those derivations whose image is
J , and this is Der(A)0 by definition. �

4. Quantization in the case of a Veronese ring.

4.1. Consider the Veronese ring

AN = C[x0, ..., xN ]/Q, Q = (xixj − xi+1xj−1). (4.1.1)

It is known that Spec(AN) is the cone over the highest weight vector orbit in the
projectivization of the (N+1)-dimensional representation of sl2. Hence the canonical
Lie algebra morphism

sl2 → Der(AN). (4.1.1)

An explicit formula for this morphism will appear in sect.4.2.3 below.
Being a cone, Spec(AN ) carries the Euler vector field

∑
j xj∂j . This allows us to

extend (4.1.1) to an action of gl2:

gl2 → Der(A), where E11 + E22 7→ N
∑

j

xj∂j . (4.1.2)

Remark. The normalizing factor of N is not particularly important but can be
justified by the geometry of the base affine space SL2/N .

As in sect.2.7.4, this gives a Courant algebroid morphism

Vpoiss(gl2)→ Vpoiss(AN )0 ⊂ Vpoiss(AN)•. (4.1.3)

The following theorem, the main result of this paper, uses the concept of quanti-
zation of a Courant algebroid, see Definition 2.5, and the notion of quantization of
a Courant algebroid map, see sect.2.7.4, (2.25-26).

Theorem 4.1.1.
(a) The Courant algberoid Vpoiss(AN )• admits a unique quantization V(AN )•.
(b) Maps (4.1.2) and (3.4.3) quantize to the maps

V(gl2)−N−2,N → V(AN)0, (4.1.4)

UL(Vir)2 → UalgV(AN )0, (4.1.5)

where the functors U and Ualg are those defined in (1.3b) and (2.18) resp.

The proof of the theorem is constructive, and an explicit construction of V(AN)•

will appear in sect.4.2.4 below.
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4.2. Proof.

4.2.1. Beginning of the proof: a reduction to the homological degree 0.
Suppose one quantization, V(AN)•, is given. We have the direct sum decomposi-

tion
V(AN)• = ⊕n∈ZV(AN)n,

where V(AN )0 ⊂ V(AN ) is a vertex subalgebroid. Filtration (2.8) in the present
situation becomes

AN ⊕ Ω(AN )0 ⊂ V(AN )•.

Since AN ⊕ Ω(AN )0 ⊂ V(AN)0, V(AN)0 is a quantization of Vpoiss(AN)0. This and
the fact that Ω(AN )• and Der(AN)• are graded in the opposite directions, cf. (3.1.8)
and Lemma 3.5.1(a), imply a canonical vector space isomorphism

V(AN )•
∼−→ V(AN)0

⊕
(⊕n<0Der(AN)n)

⊕
(⊕n>0Ω(AN )n). (4.2.1)

Now suppose that only V(AN )0 is given.

Lemma. If V is a quantization of Vpoiss(AN)0, then there is a unique quantization,
V(AN)•, of Vpoiss(AN)• such that V(AN)0 = V.

Proof.
(i) Uniqueness. Pick a splitting (over C) of the exact sequence of graded vector

spaces, cf. (2.19),

0→ Ω(AN )0 → V(AN )0
1 → Der(AN)0 → 0

so as to identify V(AN)1 with Ω(AN) ⊕ Der(AN) and obtain the projection π :
V(AN)1 → Ω(AN ) that is compatible with (4.2.1). It follows from Definition 2.5
that the only multiplications on V(AN) that are not immediately determined by
those on Vpoiss(AN) are the following components of (0) and (1):

π ◦ ((0)) : Der(AN)• ⊗Der(AN)• → Ω(AN )•, ξ ⊗ τ 7→ π(ξ(0)τ),

(1) : Der(AN)• ⊗Der(AN)• → AN , ξ ⊗ τ 7→ ξ(1)τ.

The homological degree of the L.H.S. of these is non-positive, see (4.2.1), of the
R.H.S. is non-negative; therefore, the operations may be non-zero only if both ξ, τ ∈
Der(A)0; the uniqueness follows.

(ii) To prove the existence, note that Definition 2.2 differs from Definition 2.3 in
the following two respects only:
• the associativity of (−1) in the former is replaced with quasi-associativity (1.1e)

in the latter;
• the requirements of the former that multiplications (n), n ≥ 0, be derivations of

multiplication (−1) and that multiplication (−1) be commutative are simultaneously
replaced with the Jacobi identity (1.1d) with m or n equal to -1.

Upon choosing a splitting as at the beginning of the proof, in each of the cases the
identities of Definition 1.1 exhibit quantum coorections, i.e., the terms that measure
the failure of a quantum object to be a classical one. It is easy to notice, by inspec-
tion, that in our situation the quantum corrections may be non-zero only if all the
terms involved belong to V = V(AN )0.
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One such example is provided by formula (2.11b), where the failure of multipli-
cation (−1) to be associative is measured by −τ(g)df − τ(f)dg; both the summands
vanish unless τ ∈ V, f, g being in V automatically.

Another example deals with the commutativity of (−1). Let f ∈ AN , τ ∈ Der(AN)•;
then (1.1c) reads

[τ(−1), f(−1)] = τ(f)(−2),

which is 0 unless τ ∈ V. We leave it to the untiring reader to check the validity of
all the remaining requirements of Definition 2.3. �

In order to prove Theorem 4.1.1, it remains to quantize Vpoiss(AN)0. We shall do
this in a somewhat roundabout manner.

4.2.2. Localization.To return to the hypothetical vertex algebroid V(AN)•. By

virtue of sect. 4.2.1, it is enough to consider V(AN)
def
= V(AN)0. Since C = Spec(AN)

is affine, we can localize the latter, see (2.20), sect.2.7.1, so as to get a sheaf VC ∈
VertC . Let Č be C \{0} and VČ the restriction of VC to Č. Apparently, VČ ∈ VertČ
and, the manifold Č being smooth, our strategy will be to use the classification of
the objects of VertČ , reviewed in the end of sect.2, so as to identify those vertex
algebroids over Č that may have come from C as above.

We begin by realizing Č as a quotient of a manifold w.r.t. a finite group action.
Consider the action

ZN × C
2 → C

2,

m̄(y1, y2) = (exp (2π
√
−1m/N)y1, exp (2π

√
−1m/N)y2).

(4.2.3)

The map

AN → C[y1, y2]
ZN , xj 7→ yN−j

1 yj
2 (4.2.4a)

is an isomorphism; hence isomorphisms

C
2
ZN

∼−→ C, (C2 \ 0)/ZN
∼−→ Č. (4.2.4b)

There arises is a projection
p : C

2 \ 0→ Č (4.2.5)

and a faithful functor
p∗ : VertČ → VertC2\0 (4.2.6)

It is an equivalence of categories

p∗ : VertČ → VertZN

C2\0, (4.2.7)

where VertZN

C2\0 is the full subcategory of ZN -equivariant vertex algebroids; the in-

verse functor is that of ZN -invariants: VC2\0 7→ VZN

C2\0; cf. sect.2.7.1, (2.21,22).

The objects of the category VertC2\0 were classified in sect.2.7.3 to the effect that
there is 1-1 correspondence between isomorphism classes of vertex algebroids and
linear combinations ω =

∑
a,b>0 kabωab, where ωab is the 2-form dy1 ∧ dy2/y

a
1y

b
2. It

follows from the construction that the vertex algebroid, VC2\0,ω is ZN -equivariant if
and only if ω is, hence if and only if

ω =
∑

a,b>0,N divides a+b−2

kabωab. (4.2.8)
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It is from this list that we have make a choice.

4.2.3. Conclusion of the proof.
By definition, our hypothetical sheaf VC must fit, for some ω, in the following

commutative diagram:

0 // Γ(C, ΩC) //
� _

��

Γ(C,VC) //
� _

��

Γ(C, TC) //

��

0

0 // Γ(Č, ΩČ) // Γ(Č,VČ,ω) // Γ(Č, TČ) // 0

(4.2.9)

Note that the vertical arrows are all the restriction (from C to Č) maps. Further-
more, the rightmost vertical arrow is an equality. To see this, note that Γ(Č, TČ) =
Γ(C2 \0, TC2\0)

ZN . The latter is generated, over functions, by the tautological action
of gl2, see sect.2.7.4, formula (2.27,28). (Indeed, an element of Γ(C2 \ 0, TC2\0)

ZN is
a linear combination of f(y1, y2)∂1 and g(y1, y2)∂2, where N divides deg(f)− 1 and
deg(g)−1. This implies that f(y1, y2)∂1 is proportional to either ρ(E11) or to ρ(E21)
and g(y1, y2)∂2 is proportional to either ρ(E12) or to ρ(E22), see (2.28).) Therefore,
so is the former. But this action is precisely the action of gl2 on C = Spec(AN)
described somewhat inexplicitly in (4.1.2), hence the equality Γ(C, TC) = Γ(Č, TČ).

Contrary to this, the leftmost vertical arrow is not an equality; e.g. it is easy to
check that

yr
1y

N−r−1
2 dy1 ∈ Γ(Č, ΩČ) but yr

1y
N−r−1
2 dy1 6∈ Γ(C, ΩC) if 0 ≤ r ≤ N − 2. (4.2.10)

This simple remark is the reason why the quantization of Vpoiss(AN) is unique.
Now, the upper row of (4.2.9) is exact by virtue of Definition 2.5. This and the

fact that the rightmost arrow is an equality imply that the lower row must also be
exact, at least on the right. By virtue of Corollary 2.7.4.2,

ω = kω11. (4.2.11)

Now our task is to determine k.
Define W to be the vertex subalgebroid of Γ(Č,VČ,kω11

) generated by AN =

Γ(Č,OČ) and ρ̂(V(gl2)−k−1,k−1), where ρ̂ is the one from Lemma 2.7.4.1.
Equality (4.2.10) and the preceding discussion force Γ(C,VC) to be W. It is

clear that W = AN ⊕ Γ(C, ΩC) + AN(−1)ρ̂Vch(gl2)−k−1,k−1 and were elements ρ(Eij)
independent over AN , we would be done: W would be the sought after quantization
for any k. (In fact, were that true, we could equivalently define V(AN) to be the
push-out AN ⊗ V(gl2)−k−1,k−1, see (2.23).) But they are not, and the problem with
this is that an element of AN(−1)ρ̂Vch(gl2)−k−1,k−1 may belong to Γ(Č, ΩČ) and not
to Γ(C, ΩC), cf.(4.2.10).

In fact, AN is a quadratic algebra, see (2.2), and Γ(C, TC) is a quadratic AN -
module generated by {Eij, 1 ≤ i, j ≤ 2}. The relations, in terms of y1, y2, are

ya
1y

b
2ykρ̂(Eij)− ya

1y
b
2yiρ̂(Ekj) = 0 for all a + b + 1 = N, (4.2.12)

as it easily follows from (2.28).
Our task then is to ensure that

(ya
1y

b
2yk)(−1)ρ̂(Eij)− (ya

1y
b
2yi)(−1)ρ̂(Ekj) ∈ Γ(C, ΩC) for all a + b + 1 = N. (4.2.13)
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Let us consider for the sake of definiteness the case of i = 1, k = j = 2. We have
to compute the following section of Γ(Č,VČ,kω11

(Č)):

(yr
1y

N−r
2 )(−1)ρ̂(E12)− (yr+1

1 yN−r−1
2 )(−1)ρ̂(E22) for all 0 ≤ r < N. (4.2.14)

Formulas (2.29a–d) give

(yr
1y

N−r
2 )(−1)(y1∂2)− (yr+1

1 yN−r−1
2 )(−1)(y2∂y2 +

kT (y1)

y1
). (4.2.15)

A little thought (or formula (2.11b)) will show that the first term yields

yr+1
1 yN−r

2 ∂2

−r(N − r)yr
1y

N−r−1
2 T (y1)− (N − r)(N − r − 1)yr+1

1 yN−r−2
2 T (y2),

where it is understood that

yr+1
1 yN−r

2 ∂2
def
= (y1(−1)(y1(−1)(· · · (y1(−1)(y2(−1)(...(y2(−1)∂2) · · · )))))).

The second one will likewise give

− yr+1
1 yN−r

2 ∂2

+ (N − r − 1)(r + 1)yr
1y

N−r−1
2 T (y1) + (N − r − 1)(N − r − 2)yr+1

1 yN−r−2
2 T (y2)

− kyr
1y

N−r−1
2 T (y1).

Adding one to another makes expression (4.2.14) into

(N − 1− 2r − k)yr
1y

N−r−1
2 T (y1) + (−2N + 2r + 2)yr+1

1 yN−r−2
2 T (y2).

The latter equals the total derivative

−2T (yr+1
1 yN−r−1

2 )) = −2T (xN−r−1),

and is therefore an element of Γ(C, ΩC), precisely when k = N + 1.
The case where i = j = 1, k = 2 works out similarly and gives the same answer

k = N + 1. This concludes the proof of item (a) of Theorem 4.1.1.
As to item (b), (4.1.4) follows from the k = N + 1 case of Lemma 2.4.7.1, the

assertion that has been instrumental for the proof anyway, and (4.1.5) follows from
(2.32). �

4.2.4. Corollary. The unique quantization V(AN ) = V(AN )0 ⊕ Der(AN)• ⊕
Ω(AN )•, where V(AN )0 is the vertex subalgebroid of Γ(Č,VČ,(N+1)ω11

) generated by

AN = Γ(Č,OČ) and ρ̂(V(gl2)−N−2,N), ρ̂ being the one from Lemma 2.7.4.1.

4.3. Higher dimensional Veronese embeddings.
Regard Cn as the tautological representation of gln and let V = (Cn)∗. Let

ιN : P(V )→ P(SNV ), l 7→ l⊗N (4.3.1)

be the classical Veronese embedding. By AnN let us denote the homogeneous coor-
dinate ring of ιN (P(V )). It is clear that if n = 2, then AnN is the algebra AN we
dealt with above. It is now natural to ask if Vpoiss(AnN) affords a quantization. The
result is a bit disheartening.
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Theorem 4.3.1. The vertex Poisson algebroid Vpoiss(AnN) cannot be quantized
if N > 1 and n > 2.

Proof. Consider the action

ZN × V → V, (m̄, v) 7→ exp (2π
√
−1m/N)v. (4.3.2)

Analogously to (4.2.4a,b), we obtain isomorphisms

V/ZN
∼−→ Spec(AnN), (V \ 0)/ZN

∼−→ Spec(AnN) \ 0. (4.3.3)

Thus we are lead to the question, “How many vertex algebroids are there on (V \
0)/ZN?” That such vertex algebroids exist is obvious because VZN

V \0 is one; here VV \0

is the pull-back of the standard VV ,cf. sect.2.7.2, on V \ 0. Note that if x1, ..., xn is
a basis of C

n – remember that we think of C
n as the space of linear functions on V

– then the assignment

ρ̂ : Eij 7→ xi(−1)∂j (4.3.4a)

defines a vertex algebroid morphism

ρ̂ : V(gln)−1,−1 → Γ((V \ 0)/ZN ,VZN

V \0). (4.3.4b)

Lemma 4.3.2. The manifolds V \0, (V \0)/ZN carry a unique up to isomorphism

sheaf of vertex algebroids. It is isomorphic to VV \0 in the former case and to VZN

V \0

in the latter case.

Proof of Lemma 4.3.2. By virtue of (2.17) and (2.21), it suffices to show that

H1(V \ 0, Ω2
V \0 → Ω3,cl

V \0) = 0. (4.3.5)

Converging to the hypercohomology H∗(V \ 0, Ω2
V \0 → Ω3,cl

V \0) is a standard spectral

sequence with

E1
00 = H0(V \ 0, Ω2

V \0),

E1
01 ⊕E1

10 = H1(V \ 0, Ω2
V \0)⊕H0(V \ 0, Ω3,cl

V \0).

The next differential is

d2 = dDR : H0(V \ 0, Ω2
V \0)→ H0(V \ 0, Ω3,cl

V \0),

and it is clear that it is surjective. Finally, if n > 2, then H1(V \ 0, Ω2
V \0) = 0; this

concludes the prooof of Lemma 4.3.2. �

It is clear now why Vpoiss(AnN ) cannot be quantized if n > 2: it is because Lemma
4.3.2 has left us no room for manoeuvre that was helpfully provided by the analysis
of sect.2.7.3 in the n = 2 case. Indeed, one can now repeat the entire argument of
sect. 4.2.1–4.2.3 only to find out that an obvious analogue of (4.2.13) is false. Here
are some details:

According to Lemma 4.3.2, a quantization of Vpoiss(AnN), if existed, upon lo-
calizing to (V \ 0)/ZN would give VZN

V \0. Hence any such quantization can be

equal only to the vertex subalgebroid of Γ(V \ 0,VV \0)
ZN generated by AnN and

ρ̂(V(gln)−1,−1, see (4.3.4a-b). But this subalgebroid necessarily contains elements
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from Γ((V \ 0)/ZN , Ω(V \0)/ZN
) \ Ω(AnN ). Indeed, a computation analogous to the

one performed in the end of sect.4.2.3 shows that if n ≥ 3, then

(x3x
N−1
2 )(−1)(x1(−1)∂1)− (x3x

N−2
2 x1)(−1)(x2(−1)∂1) = (T (x3x

N−2
2 ))(−1)x2

∈ Γ((V \ 0)/ZN , Ω(V \0)/ZN
)) \ Ω(AnN ).

This concludes the proof of Theorem 4.3.1. �

5. Chiral Hamiltonian Reduction Interpretation

We will now interpret some of the constructions above in the language of semi-infinite
cohomology. Our exposition will be brief and almost no proofs will be given. In some
respects, the material of this section is but an afterword to [GMSII].

Since we will be mostly concerned with smooth varieties, we will find it convenient
to work not with vertex algebroids, such as V(g)k, VX , but with the corresponding
vertex algebras or CDO-s, such as UalgV(g)k = UL(g)k, Dch

X = UalgVX .

5.1. Semi-infinite cohomology. Let V be a vertex algebra, g a finite dimen-
sional Lie algebra, (., .) an invariant bilinear form on g, and ρ a vertex algebra
morphism

ρ : UalgV(g)(.,.) → V, (5.1.1)

see Example 1.4, especially (1.5c).
Introduce the Clifford vertex algebra built on Π(g⊕g∗), Π being the parity change

functor. This vertex algebra is nothing but the space of global sections of the stan-
dard CDO on superspace Π(g ⊕ g∗), see sect.2.7.2 for a discussion of a purely even
analogue. Denote this vertex algebra by Dch(Π(g⊕ g∗)).

By definition, if we let {xi} be a basis of g, {φi} the corresponding basis of Π(g),
{φ∗

i } the dual basis of Π(g∗), then Dch(Π(g⊕g∗)) is generated from the vacuum vector
by operators (φi)(n), (φ∗

i )(n), the only non-trivial relation amongst which being

(φ∗
i )(0)φi = (φi)(0)φ

∗
i = 1.

There arises the vertex algebra V⊗Dch(Π(g⊕ g∗)).
If {ck

ij} are the structure constants of g relative to {xi}, that is to say, if [xi, xj] =∑
k ck

ijxk, then following [Feig] one considers the element

d∞/2 =
∑

k

ρ(xk)(−1)φ
∗ − 1

2

∑

i,j,k

ck
ijφk(−1)(φ

∗
i(−1)φ

∗
j) ∈ V⊗Dch(Π(g⊕ g∗)).

A direct computation shows that

(d∞/2)(0)d
∞/2 = 0 if (., .) = −K(., .), (5.1.2)

where K(., .) is the Killing form on g: K(a, b) = tr(ada · adb).

If condition (5.1.2) is satisfied, then we obtain a DGVA C∞/2(Lg; V)
def
= (V ⊗

Dch(Π(g⊕g∗)), d
∞/2
(0) ). The cohomology vertex algebra H∞/2(Lg; V) is due to Feigin

[Feig] and well known as either semi-infinite or BRST cohomology of the loop algebra
Lg with coefficients in V. If one chooses to think of V as an algebra of (‘chiral’)
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functions on a symplectic manifold with g-structure, then H∞/2(Lg, V) is to be
thought of as an algebra of functions on the symplectic quotient M//g, hence the
title of this section.

One similarly defines the relative version H∞/2(Lg, g; V), see [GMSII] for some
details; the condition (5.1.2) remains the same in this case.

5.2. The sl2 case. Let us return to the set-up of sect.4.2.2, where we had the
Veronese cone C = Spec(AN ), Č = C \0, and consider LN , the degree N line bundle
over P1, and ĽN = LN \ { the zero section }. We obtain the commutative square

LN
// C

ĽN
∼ //

?�

OO

Č
?�

OO (5.2.1)

where the upper horizontal map is a surjective birational isomorphism, a blow-up
of the vertex of the cone. We have seen that Č carries a family of CDO-s, Dch

Č,ω
,

ω ∈ H1(Č, Ω2
Č
). Denote the coorresponding family of CDO-s on ĽN by Dch

ĽN ,ω
.

Theorem 4.1.1 says that Dch
Č,ω

is a pull-back of a CDO on C iff ω = (N − 1)ω11 in

which case it contains V(sl2)−N−2.
Now a question arises, “For what, if any, ω is Dch

ĽN ,ω
a pull-back of a CDO from

LN?” The existence of such ω depends on the vanishing of the characteristic class
ch2(LN), (2.16). A simple way to prove the vanishing result, and to compute a
possible ω, is provided by the semi-infinite cohomology.

One has the base affine space C2 \ 0, the principal N -bundle p : SL2 → C2 \
0, where N is the subgroup of upper-triangular matrices and a family of CDO-s,
DSL2,(.,.) on SL2, over SL2. This family enjoys [AG, GMSII] the 2 vertex algebra
embeddings

UalgV(g)(.,.)
ρl→ Γ(SL2, D

ch
SL2,(.,.))

ρr← UalgV(g)−(.,.)−K(.,.), s.t. ρl(a)(n)ρr(b) = 0 if n ≥ 0.

(5.2.2)
In this case condition (5.1.2) is satisfied for all forms (., .). Therefore, for any

U ⊂ SL2/N , there arises a vertex algebra H∞(Ln, Γ(p−1(U), Dch
SL2,k)), where we use

ρr in place of ρ, see (5.1.1). Denote by H∞/2(Ln, Dch
SL2,(.,.)) the sheaf associated with

the presheaf U 7→ H∞(Ln, Γ(p−1(U),DSL2,(.,.))). It was noted in [GMSII] that this
sheaf is a CDO, which re-proves the obvious fact that ch2(C

2 \ 0) = 0.
Note that the left one of embeddings (5.2.2) survives the passage to the cohomol-

ogy. The right one does not, not entirely at least, but the embedding of the torus
part does, albeit with a shifted central charge. We obtain

UalgV(g)(.,.)
ρl→ Γ(C2 \ 0, H∞/2(Ln, Dch

SL2,(.,.)))
ρr← UalgV(t)−(.,.)|t−1/2K(.,.)|t (5.2.3)

so that ρl(a)(n)ρl(b) = 0 if n ≥ 0; here (., .)|t and K(., .)|t stand for the restrictions
of the corresponding forms to t.

Altogether, the 2 embeddings provide a vertex algebra embedding of UalgV(gl2)k1,k2

with appropriate central charges k1 and k2. In fact, if we let (a, b) = ktr(a · b) as
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we did in in sect.2.7.4, then we obtain that k1 = k, k2 = −k − 2 and a diagram, cf.
Lemma 2.7.4.1 and (2.30).

UalgV(g)k →֒ Γ(C2 \ 0, H∞/2(Ln, Dch
SL2,(.,.)))

∼−→ Γ(C2 \ 0, Dch
C2\0,−(k+1)ω11

). (5.2.4)

Lemma 2.7.4.1 shows that the chiral hamiltonian reduction technology reproduces
precisely those CDO-s on the punctured plane that carry an affine Lie algebra action.

In order to try and define a CDO on LN , we represent the latter as

LN = (C2 \ 0)×C∗ CN , (5.2.5)

where CN is a character C∗ ∋ z 7→ zN . This suggests to define a CDO on LN as the
chiral hamiltonian reduction of Dch

C2\0,−(k+1)ω11
⊗Dch

C
using embedding (5.2.3) twisted

by action (5.2.5); in practice that means that if h is the standard generator of t, then
one has to replace ρr(h) in (5.2.3) with ρr(h)+Ny(−1)∂y, where y is a coordinate on
CN . Two things are to be kept in mind: first, since the topology of C∗ is non-trivial
[GMSII], one has to use the relative version of the semi-infinite cohomology; second,
and most important, condition (5.1.2) is not automatically satisfied. In fact, (5.1.2)
is equivalent to

(ρr(h) + Ny(−1)∂y)(1)(ρr(h) + Ny(−1)∂y) = 0, (5.2.6a)

which gives

(., .) = −(
N2

8
+

1

2
)K(., .). (5.2.6b)

It follows that H∞/2(Lt, t; Dch
C2\0,−(k+1)ω11

⊗Dch
C

) is well defined and gives a CDO on

LN precisely if (5.2.6b) holds.
To conclude,
(1) the manifold ĽN carries a 1-parameter family of CDO-s, Dch

C2\0,−(k+1)ω11
, with

a UalgV(sl2)(.,.)-structure, see sect.2.7.4;

(2) the condition that a CDO on Č extends to one on C picks a unique (., .); the
latter depends on N linearly, see Theorem 4.1.1;

(3) the family Dch
C2\0,−(k+1)ω11

contains at least one representative that extends to a

CDO on LN ; the condition that a CDO on ĽN extends to LN and affords a realization
via the chiral Hamiltonian reduction picks a unique (., .); the latter depends on N
quadratically, (5.2.6b).

In fact, there is a third way to fix a (., .). This one amounts to carrying a regu-
larization procedure à la Lambert, used in [BN] and alluded to in the introduction
to [GMSI], and gives another quadratic dependence on N . The importance of this
approach is yet to be worked out.

5.3. Higher rank generalization. Let G be a simple complex Lie algebra,
P ⊂ G a parabolic subgroup, R ⊂ P the unipotent radical of R, M = P/R. Let us
make the following assumption

M = M0 ×M1, where M0
∼−→ C

∗, M1 is simple. (5.3.1)

Let Q ⊂ G be the extension of M1 by R. Thus we obtain a C∗-bundle

G/Q→ G/P
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and the associated line bundle
LQ → G/P.

We have
ch2(G/Q) = 0. (5.3.2)

Indeed, there is at least one CDO on G/Q that can be defined via the chiral Hamil-
tonian reduction as follows. By analogy with sect.5.2, since (5.2.2) holds true with
SL2 replaced with an arbitrary simple complex Lie group G, we observe that if
q = Lie(Q), then H∞/2(Lq, q; Dch

G,(.,.)) is well defined for precisely one choice of (., .).

In fact, in this case condition (5.1.2) amounts to the requirement that the restriction
(., .) to M1 be equal to the Killing form on M1, and there is one and only one way
to achieve that by appropriately rescaling (., .) – this is where assumption (5.3.1) is
crucial.

As a consequence, we obtain a vertex algebra morphism

UalgV(g)(.,.) → H∞/2(Lq, q; Dch
G,(.,.)) (5.3.3)

for a uniquely determined bilinear form (., .).
Assertion (5.3.2) is of course analogous to the fact that ch2(SL2/N) = 0, which

was discussed in sect.5.2. Unlike the sl2-case, however, we have obtained not a family
but a single CDO on G/Q, and this precludes the definition of a CDO on LQ via the
chiral Hamiltonian reduction. It is then natural to expect that ch2(LQ) 6= 0 and that
each CDO on G/Q with UalgV(g)(,.)-structure is isomorphic to.H∞/2(Lq, q; Dch

G,(.,.)).
One example of this analysis is provided by G = SLn with Q chosen to be the

subgroup with 1st column equal to (1, 0, 0, ..., 0). Then G/Q is Cn \ 0, the corre-
sponding CDO has been used in sect. 4.3, and it is easy to check that in this case
embedding (5.3.3) becomes precisely (4.3.4a,b).

Another example is provided by the space of pure spinors punctured at a point. It
is a homogeneous space which satisfies assumption (5.3.1). Therefore, our analysis
is an alternative way to prove the vanishing of the 2nd component of the Chern
character, originally verified by Nekrasov [N].

Needless to say, our discussion is very close in spirit to the definition of Wakimoto
modules due to Wakimoto and Feigin-Frenkel, see [F2] and references therein. In
fact, it is easy to see that the spaces of sections over ‘the big cell’ of the sheaves

constructed in sect.5.2 contain Wakimoto modules over ŝl2, and those of the present
section contain the so-called generalized Wakimoto modules corresponding to R.
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