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Abstract

It is known that there are no scalar Lie fields in more than two space-
time dimensions. Bilocal fields, however, which naturally arise in con-
formal operator product expansions, do generate infinite Lie algebras.
Recent work, [BNRT07], [BNRT08], is reviewed, in which we classify such
algebras and their unitary positive energy representations in a theory of
a system of scalar fields of dimension two. The results are linked to the
Doplicher-Haag-Roberts theory of superselection sectors governed by a
(global) compact gauge group.

1 Can methods of 2D CFT work in 4-dimensional
conformal field theory?

The usual answer to the question in the title is no. Several reasons are given
why 2-dimensional conformal field theory (2D CFT) is rather special so that
extending its methods to higher dimensions appears to be hopeless.

1. The 2D conformal group is infinite dimensional: it is the direct product of
the diffeomorphism groups of the left and right (compactified) light rays. By
contrast, for D > 2, according to the Liouville theorem, the conformal group in
D space time dimensions is finite (in fact, (D + 1)(D + 2)/2)-dimensional: it is
(a covering of) the spin group Spin(D, 2).
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2. The representation theory of affine Kac-Moody algebras and of the Virasoro
algebra is playing a crucial role in constructing soluble 2D models of (rational)
CFT. There are, on the other hand, no local Lie fields in higher dimensions:
after an inconclusive attempt by Robinson [R64] (criticized in [L67]) this was
proven for scalar fields by Baumann [B76].

3. The light cone in two dimensions is the direct product of two light rays. This
geometric fact is the basis of splitting 2D variables into right- and left-movers’
chiral variables. No such splitting seems to be available in higher dimensions.

4. There are chiral algebras in 2D CFT whose local currents satisfy the axioms of
vertex algebras (see e.g. [K] and references therein) and have rational correlation
functions. It was believed for a long time that they have no interesting higher
dimensional CFT analogue.

5. Furthermore, the chiral currents in a 2D CFT on a torus have elliptic correla-
tion functions [Zh96], the 1-point function of the stress energy tensor appearing
as a modular form (these can be also interpreted as finite temperature correla-
tion functions and a thermal energy mean value on the Riemann sphere). Again,
there seemed to be no good reason to expect higher dimensional analogues of
these attractive properties.

We shall argue that each of the listed features of 2D CFT does have, when
properly understood, a higher dimensional counterpart.

1. The presence of a conformal anomaly (a non-zero Virasoro central charge
c) tells us that the infinite conformal symmetry in 1 + 1 dimension is, in fact,
broken. What is actually used in 2D CFT is the operator product expansion
(OPE) which appear for any D and allow to extend the notion of a primary
field (for instance with respect to the stress-energy tensor).

2. For D = 4, infinite dimensional Lie algebras are generated by bifields
Vij(x1, x2) which naturally arise in the OPE of a set of (say, hermitean, scalar)
local fields φi of dimension d (> 1):

(x2
12)

d φi(x1) φj(x2) = Nij + x2
12 Vij(x1, x2) + O((x2

12)
2) ,

x12 = x1 − x2 , x2 = x2 − x02
, Nij > 0 (1.1)

where Vij are defined as (infinite) sums of OPE contributions of (twist two)
conserved local tensor currents. This being the topic of the present talk, we
shall elaborate on it later (see [NST02], [BNRT07], [BNRT08]).

3. We shall exhibit a factorization of higher dimensional intervals by using the
following parametrization of the conformally compactified space-time ([U63],
[T86], [N05], [NT05]):

M̄ = {zα = eit uα , α = 1, . . . , D; t, uα ∈ R ; u2 =
D∑

α=1

u2
α = 1} =

SD−1 × S1

{1,−1}
.

(1.2)
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The real interval between two points z1 = eit1 u1, z2 = eit2 u2 is given by:

z2
12 (z2

1 z2
2)−1/2 = 2 (cos t12 − cos α) = −4 sin t+ sin t− , z12 = z1 − z2 (1.3)

t± = 1/2 (t12 ± α) , u1 · u2 = cos α , t12 = t1 − t2 . (1.4)

Thus t+ and t− are the compact picture counterparts of “left” and “ right”
chiral variables (see [NT05]). The factorization of 2D cross ratios into chiral
parts again has a higher dimensional analogue [DO01]:

s :=
x2

12 x2
34

x2
13 x2

24

= u+ u− , t :=
x2

14 x2
23

x2
13 x2

24

= (1− u+) (1− u−) , xij = xi − xj (1.5)

which yields a separation of variables in the d’Alembert equation (cf. Remark
2.1).

4. It turns out that the requirement of global conformal invariance (GCI) in
Minkowski space together with the standard Wightman axioms of local com-
mutativity and energy positivity entails the rationality of correlation functions
in any even number of space-time dimensions [NT01]. Indeed, GCI and local
commutativity of Bose fields (for space-like separations of the arguments) imply
the Huygens principle and, in fact, the strong (algebraic) locality condition

(x2
12)

n[φi(x1), φj(x2)] = 0 for n sufficiently large (1.6)

which allows the introduction of higher dimensional vertex algebras [N05].

5. Local GCI fields have elliptic thermal correlation functions with respect to
the (differences of) conformal time variables in any even number of space-time
dimensions; the corresponding energy mean values in a Gibbs (KMS) state (see
e.g. [H]) are expressed as linear combinations of modular forms [NT05].

The rest of the paper is organized as follows. In Sect. 2 we reproduce the
general form of the 4-point function of the bifield V and the leading term in
its conformal partial wave expansion. The case of a theory of scalar fields of
dimension d = 2 is singled out, in which the bifields (and the unit operator) close
a commutator algebra. In Sect. 3 we classify the arising infinite dimensional
Lie algebras L in terms of the three real division rings F = R, C, H. In Sect.
4 we formulate the main result of [BNRT07] and [BNRT08] on the Fock space
representations of L(F) with compact gauge group U(N, F) where N is the
central charge of L.

2 Four-point functions and conformal partial
wave expansions

The conformal bifields V (x1, x2) of dimension (1, 1) which arise in the OPE
(1.1) (as sums of integrals of conserved tensor currents) satisfy the d’Alembert
equation in each argument [NST03]; we shall call them harmonic bifields. Their
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correlation functions depend on the dimension d of the local scalar fields φ. For
d = 1 one is actually dealing with the theory of a free massless field. We shall,
therefore, assume d > 1. A basis {fνi , ν = 0, 1, . . . , d− 2, i = 1, 2} of invariant
amplitudes F (s, t) such that

〈0 | V1(x1, x2) V2(x3, x4) | 0〉 =
1

ρ13 ρ24
F (s, t) ,

ρij = x2
ij + i0x0

ij , x2 = x2 − (x0)2 (2.1)

is given by

(u+ − u−) fν1(s, t) =
uν+1

+

(1− u+)ν+1
−

uν+1
−

(1− u−)ν+1
,

(u+ − u−) fν2(s, t) = (−1)ν(uν+1
+ − uν+1

− ) , ν = 0, 1, . . . , d− 2 ; (2.2)

f01 =
1
t

, f02 = 1 ; f11 =
1− s− t

t2
, f12 = t− s− 1 ;

f21 =
(1− t)2 − s(2− t) + s2

t3
, fν2(s, t) =

1
t

fν1

(
s

t
,

1
t

)
(2.3)

fν,i, i = 1, 2 corresponding to single pole terms [NRT08] in the 4-point correla-
tion functions wνi(x1, . . . , x4) = fνi(s, t)/ρ13 ρ24:

w01 =
1

ρ14 ρ23
, w02 =

1
ρ13 ρ24

;

w11 =
ρ13 ρ24 − ρ14 ρ23 − ρ12 ρ34

ρ2
14 ρ2

23

, w12 =
ρ14 ρ23 − ρ13 ρ24 − ρ12 ρ34

ρ2
13 ρ2

24

;

w21 =
(ρ13 ρ24 − ρ14 ρ23)2 − ρ12 ρ34 (2 ρ13 ρ24 − ρ14 ρ23) + ρ2

12 ρ2
34

ρ3
14 ρ3

23

,

w22 =
(ρ14 ρ23 − ρ13 ρ24)2 − ρ12 ρ34 (2 ρ14 ρ23 − ρ13 ρ24) + ρ2

12 ρ2
34

ρ3
13 ρ3

24

. (2.4)

We have wν2 = P34wν1(= P12wν1) where Pij stands for the substitution of the
arguments xi and xj . Clearly, for x1 = x2 (or s = 0, t = 1) only the amplitudes
f0i contribute to the 4-point function (2.1). Indeed, it has been demonstrated in
[NRT05] that the lowest angular momentum (`) contribution to fνi corresponds
to ` = ν. The corresponding OPE of the bifield V starts with a local scalar field
φ of dimension d = 2 for ν = 0; with a conserved current jµ (of d = 3) for ν = 1;
with the stress energy tensor Tλµ for ν = 2. Indeed, the amplitude fν1 admits
an expansion in twist two1 conformal partial waves β`(s, t) [DMPPT] starting
with (for a derivation see [NRT05], Appendix B)

βν(s, t) =
Gν+1(u+)−Gν+1(u−)

u+ − u−
, Gµ(u) = uµF (µ, µ; 2µ;u). (2.5)

1The twist of a symmetric traceless tensor is defined as the difference between its dimension
and its rank. All conserved symmetric tensors in 4D have twist two.
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Remark 2.1 Eqs. (2.2) (2.5) provide examples of solutions of the d’Alambert
equation in any of the arguments xi, i = 1, 2, 3, 4. In fact, the general conformal
covariant (of dimension 1 in each argument) such solution has the form of the
right hand side of (2.1) with

F (s, t) =
f(u+)− f(u−)

u+ − u−
. (2.6)

Remark 2.2 We note that albeit each individual conformal partial wave is a
transcendental function (like (2.5)) the sum of all such twist two contributions
is the rational function fν1(s, t).

It can be deduced from the analysis of 4-point functions that the commu-
tator algebra of a set of harmonic bifields generated by OPE of scalar fields of
dimension d can only close on the V ’s and the unit operator for d = 2. In this
case the bifields V are proven, in addition, to be Huygens bilocal [NRT08].

Remark 2.3 In general, irreducible positive energy representations of the (con-
nected) conformal group are labeled by triples (d; j1, j2) including the dimension
d and the Lorentz weight (j1, j2) (2ji ∈ N), [M77]. It turns out that for d = 3
there is a spintensor bifield of weight

((3/2; 1/2, 0)⊕ (3/2; 0, 1/2), (3/2; 1/2, 0)⊕ (3/2; 0, 1/2))

whose commutator algebra does close; for d = 4 there is a conformal tensor
bifield that transforms under the tensor square of the direct sum of conformal
weights (2; 1, 0) ⊕ (2; 0, 1). (In both cases the direct sums of triples label irre-
ducible representations of the extended conformal group that includes the space
reflection.)

3 Infinite dimensional Lie algebras and real di-
vision rings

Our starting point is the following result of [NRT08].

Proposition 3.1. The harmonic bilocal fields V arising in the OPEs of a
(finite) set of local hermitean scalar fields of dimension d = 2 can be labeled
by the elements M of an algebra M⊂ Mat(L, R) of real matrices closed under
transposition, M → tM , in such a way that the following commutation relations
(CR) hold:

[VM1(x1, x2), VM2(x3, x4)] = ∆13VtM1M2(x2, x4) + ∆24VM1 tM2(x1, x3)
+ ∆23VM1M2(x1, x4) + ∆14VM2M1(x3, x2)
+ tr(M1M2) ∆12,34 + tr(tM1M2) ∆12,43 ; (3.1)
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here ∆ij is the free field commutator, ∆ij := ∆+
ij −∆+

ji, and ∆12,ij = ∆+
1i ∆+

2j −
∆+

i1 ∆+
j2 where ∆+

ij = ∆+(xi − xj) is the 2-point Wightman function of a free
massless scalar field.

We call the set of bilocal fields closed under the CR (3.1) a Lie system. The
types of a Lie systems are determined by the irreducible associative matrix al-
gebras M. As observed in [BNRT08] M is irreducible iff its commutant M′

coincides with one of the three real division rings (or not necessarily commu-
tative fields): the fields of real and the complex numbers R and C, and the
noncommutative division ring H of quaternions. In each case the Lie algebra of
bilocal fields is a central extension of an infinite dimensional Lie algebra that
admits a discrete series of highest weight representations2.

It was proven, first in the theory of a single scalar field φ (of dimension two)
[NST02], and eventually for an arbitrary set of such fields [NRT08], that the
bilocal fields VM can be written as linear combinations of normal products of
free massless scalar fields ϕi(x):

VM (x1, x2) =
L∑

i,j=1

M ij : ϕi(x1)ϕj(x2) : . (3.2)

For each of the above types of Lie systems VM has a canonical form, namely

R : V (x1, x2) =
N∑

i=1

: ϕi(x1)ϕi(x2) :,

C : W (x1, x2) =
N∑

j=1

: ϕ∗j (x1)ϕj(x2) :,

H : Y (x1, x2) =
N∑

m=1

: ϕ+
m(x1)ϕm(x2) : (3.3)

where ϕi are real, ϕj are complex, and ϕm are quaternionic valued fields (cor-
responding to (3.2) with L = N, 2N, and 4N , respectively). We shall denote the
associated infinite dimensional Lie algebra by L(F), F = R, C, or H.

Remark 3.1 We note that the quaternions (realized as 4×4 real matrices) appear
both in the definition of Y - i.e., of the matrix algebra M, and of its commutant
M′, the two mutually commuting sets of imaginary quaternionic units `i and rj

corresponding to the splitting of the Lie algebra so(4) of real skew-symmetric

2Finite dimensional simple Lie groups G with this property have been extensively studied
by mathematicians (for a review and references - see [EHW]); for an extension to the infinite
dimensional case - see [S90]. If Z is the centre of G and K is a closed maximal subgroup of G
such that K/Z is compact then G is characterized by the property that (G, K) is a hermitean
symmetric pair. Such groups give rise to simple space-time symmetries in the sense of [MR07]
(and of earlier work - in particular by Günaydin - cited there).
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4× 4 matrices into a direct sum of “a left and a right” so(3) Lie algebras:

`1 = σ3 ⊗ ε, `2 = ε⊗ 1, `3 = `1`2 = σ1 ⊗ ε,

(`j)αβ = δα0δjβ − δαjδ0β − ε0jαβ , α, β = 0, 1, 2, 3, j = 1, 2, 3;
r1 = ε⊗ σ3, r2 = 1⊗ ε, r3 = r1r2 = ε⊗ σ1 (3.4)

where σk are the Pauli matrices, ε = iσ2, εµναβ is the totally antisymmetric
Levi-Civita tensor normalized by ε0123 = 1. We have

Y (x1, x2) = V0(x1, x2)1 + V1(x1, x2)`1 + V2(x1, x2)`2 + V3(x1, x2)`3
= Y (x2, x1)+ (`+i = −`i, [`i, rj ] = 0);

Vκ(x1, x2) =
N∑

m=1

: ϕα
m(x1)(`κ)αβϕβ

m(x2) :, `0 = 1. (3.5)

In order to determine the Lie algebra corresponding to the CR (3.1) in each
of the three cases (3.4) we choose a discrete basis and specify the topology
of the resulting infinite matrix algebra in such a way that the generators of
the conformal Lie algebra (most importantly, the conformal Hamiltonian H)
belong to it. The basis, say (Xmn) where m,n are multiindices, corresponds to
the expansion [T86] of a free massless scalar field ϕ in creation and annihilation
operators of fixed energy states

ϕ(z) =
∞∑

`=0

(`+1)2∑
µ=1

((z2)−`−1ϕ`+1,µ + ϕ−`−1,µ)h`µ(z), (3.6)

where (h`µ(z), µ = 1, ..., (`+1)2) form a basis of homogeneous harmonic polyno-
mials of degree ` in the complex 4-vector z (of the parametrization (1.2) of M̄).
The generators of the conformal Lie algebra su(2, 2) are expressed as infinite
sums in Xmn with a finite number of diagonals (cf. Appendix B to [BNRT07]).
The requirement su(2, 2) ⊂ L implies that the last (c-number) term in (3.1)
gives rise to a non-trivial central extension of L.

The analysis of [BNRT07], [BNRT08] implies the following

Proposition 3.2 The Lie algebras L(F), F = R, C, H are 1-parameter central
extensions of appropriate completions of the following inductive limits of matrix
algebras:

R : sp(∞, R) = lim
n→∞

sp(2n, R)

C : u(∞,∞) = lim
n→∞

u(n, n)

H : so∗(4∞) = lim
n→∞

so∗(4n). (3.7)

In the free field realization (3.3) the suitably normalized central charge coincides
with the positive integer N .
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4 Fock space representation with a compact
gauge group

To summarize the discussion of the last section: there are three infinite di-
mensional irreducible Lie algebras, L(F) that are generated in a theory of GCI
scalar fields of dimension d = 2 and correspond to the three real division rings
F (Proposition 3.2). For an integer central charge N they admit a free field
realization of type (3.3) and a Fock space representation with (compact) gauge
group U(N, F):

U(N, R) = O(N), U(N, C) = U(N), U(N, H) = Sp(2N). (4.1)

It is remarkable that this result holds in general.

Theorem 4.1 (i) In any unitary irreducible positive energy representation
(UIPER) of L(F) the central charge N is a positive integer.

(ii) All UIPERs of L(F) are realized (with multiplicities) in the Fock space
F of NdimRF free hermitean massless scalar fields.

(iii) The ground states of equivalent UIPERs in F form irreducible rep-
resentations of the gauge group U(N, F) (4.1). This establishes a one-to-one
correspondence between UIPERs of L(F) ocurring in the Fock space and the
irreducible representations of U(N, F).

The proof of this theorem for F = R, C is given in [BNRT07] (the proof of
(i) is already contained in [NST02]); the proof for F = H is given in [BNRT08].

Theorem 4.1 provides a link between two parallel developments, one in the
study of highest weight modules of reductive Lie groups (and of related dual
pairs) [EHW], [S90] (and [H85] [H89]), the other in the work of Haag-Doplicher-
Roberts [H], [DR90] on the theory of (global) gauge groups and superselection
sectors in the operator algebra approach to local quantum physics (which actu-
ally both originated - in the talks of Irving Segal and Rudolf Haag, respectively
- at the same Lille 1957 conference on mathematical problems in quantum field
theory). Albeit the settings are not equivalent the results match. The observ-
able algebra (in our case, the commutator algebra generated by the set of bilocal
fields VM ) determines the (compact) gauge group and the structure of the su-
perselection sectors of the theory. (For a more careful comparison between the
two approaches - see Sections 1 and 4 of [BNRT07].)

The infinite dimensional Lie algebra L(F) and the compact gauge group
U(N, F) appear as a rather special (limit-) case of a dual pair in the sense
of Howe [H89]. It would be interesting to explore whether other (inequivalent)
pairs would appear in the study of commutattor algebras of (spin)tensor bifields
(discussed in Remark 2.2) and of their supersymmetric extension (e.g. a limit
as m,n →∞ of the series of Lie superalgebras spo(4m∗|2n) studied in [GS91]).
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