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1. Introduction

The supersymmetric N' = 2 theories in two and four dimensions are quite interesting
both for physicists and mathematicians. Their low-energy dynamics is rich, yet the super-

symmetry is large enough to impose rather stringent constraints on the effective action.

Prepotential of effective theory

In quantum field theory one is interested in the low-energy effective action. The extended
supersymmetry implies that all the terms with at most two derivatives and at most four
fermions in the effective action are related, and can be expressed through derivatives of
a single holomorphic quantity, a locally defined function F (&) on the moduli space M of
vacua, the so-called prepotential.

In the recent years the exact calculations of the prepotential were performed, which
utilized the fact that only the one-loop perturbative corrections about (an arbitrary) instan-
ton solution summed over the instanton sectors, contribute to the prepotential. Actually,
the prepotential itself is not so easy to calculate. However, it turns out that a certain

”quantum corrected” prepotential
Z(@,h) =exp Y Fy(a) h*~? (1.1)
g=0

has a simple expression in terms of the gauge theory instantons. The leading term F(a) =
Fy(ad) is the prepotential of the low-energy effective theory. The higher order terms, F,(a),
describe the coupling of the theory to the N' = 2 supergravity multiplet. In the string
theory realisations of the N/ = 2 theory the terms F,(d) are computed by the genus g
string amplitudes.

The prepotential I and the higher genus corrections Fy are special in the sense that
they determine the terms in the Lagrangian of effective theory, given by the integrals over
half of the superspace, the so-called generalised F-terms. Formally one can consider the

similar F-terms in the ultraviolet theory. The original microscopic Lagrangian

| L[ g =
Ly = 5 /d49 Totr®? + 3 /d49 ?otlf‘I’2 (1.2)

can be deformed by adding the operators

t
Le=Lo+ Y 2 j I /d49 tr®* ! = L, +/ d*6 t (®) (1.3)
k>0



where

& =D+00+00F +... (1.4)

is the vector superfield, and it is often convenient to work with the generating function

{Zlk+1
o) =Dty +1

The bare couplings 7, T are adjusted so as to produce the finite couplings in the effective

(1.5)

Lagrangian, obtained by integrating out the high frequency modes.

Renormalisation group flow

We can reformulate our problem above as the calculation of the effect of the Wilsonian
renormalisation group flow on the prepotential of the theory. One starts with the theory
with /' = 2 supersymmetry, which is determined by the ultraviolet prepotential Fyv,

perturbed by arbitrary powers of the holomorphic operators

tr drtL

Fuv = %(To—f—tl) tr <I>2—|—Ztk rr1

k>0

(1.6)

and quadratic Fyv, i.e.

— —2
Fuv = %?0 tr & .

Then one integrates out the fast modes, i.e. the perturbative fluctuations with momenta
above certain scale y as well as the non-perturbative modes, e.g. instantons (and fluc-
tuations around them) of all sizes smaller then p~1. The resulting effective theory has a
derivative expansion in the powers 2—2. The leading terms in the expansion are all deter-
mined, thanks to the N/ = 2 supersymmetry, by the effective prepotential F(u). As p is

lowered all the way down to zero, we arrive at the infrared prepotenial Fig:
Fuv — Fir

The supersymmetry considerations suggest that the renormalisation flows of F and F
proceed more or less independently from each other. Thus one can simplify the problem
by taking the limit, 7o — ‘oo, while Fyy kept fixed. In this limit the path integral is
dominated by the gauge instantons. The setup of [2] allows to evaluate their contribution,
as well as the contribution of the fluctuations around the instantons, exactly. The price

one pays is the introduction of extra parameters into the problem, some sort of the infrared
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cutoff, which we denote by A2, since it appears to be a parameter of the loop expansion
in dual topological string theory [1]. As we send h — 0, the infrared cutoff is removed,
and the prepotential is recovered as the extensive part of the free energy, cf. (1.1). For

details the reader is invited to consult [2][1][3].

Prepotential and symplectic geometry
The goal of this paper is to extract the generalised prepotential, Fig = F(d, t) as a function
of the moduli of the vacua @, and the higher Casimir couplings t. It has been proposed
in [4] (see also [5] and references therein) that the answer is given by tau-function of
a quasiclassical or universal Whitham integrable hierarchy [6] and below we derive this
hierarchy directly from the results of instanton calculus.

For fixed t the prepotential defines a generating function of a Lagrangian submanifold
Ly in the complex symplectic vector space CV, invariant under the action of a certain
discrete subgroup I' of Sp(2N,Z), the group of electric-magnetic dualities [7]. The defor-
mations of such submanifolds are constrained by the considerations of duality, however at

each order of deformation beyond the first one there are ambiguities:

F(d@,t) = F(@0) + Y trtgs
(1.7)

0 0 0
—+ Z tit (— Uk+1 OU+1 log Vg (O‘T) + Ckl(u)) —+ ...

o Oa,, 0Oay, OTmn

where u, ~ (tr®*) are I-invariant functions on Lo, i.e. the polynomials of the coefficients
of Seiberg-Witten curve, Cy;(u) are some polynomials of u, called Losev-Shatashvili polyno-
mials, and the precise definition of the theta constant and the theta characteristics in (1.7)
is at the moment immaterial. While the choice of uj is more or less a matter of convention,
the choice of Losev-Shatashvili polynomials C;(u) is physically important. The appear-
ance of theta functions in (1.7) is dictated by the I'-invariance and the extra terms Cy;(u)
are constrained by the degree considerations [7], which predict that for small k,, they
vanish. However, to determine them one needs a microscopic theory, and below we show
how a particular choice of microscopic theory determines all contact terms Cy;(u) in terms
of quasiclassical integrable hierarchy. In particular, we shall see that Losev-Shatashvili
polynomials Cg;(u) indeed vanish for k,1 < N, i.e. exactly for the Casimirs which deform
the Seiberg-Witten geometry for the U(N) gauge theory. This distinguishes the quasi-

classical hierarchy derived in this paper as directly coming from the microscopic instanton
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theory, compared to the previous attempts, proposed in [8], based on the analogies with

Landau-Ginzburg models.

Ensembles of partitions

In particular, for the so-called noncommutative U(1) theory (which supports instantons,
[9]), or the theory on a single D3 brane in the background, which preserves only sixteen
supercharges (so that the theory on the brane has only eight supercharges), the instanton
partition function Z(a, h,t), t = (t1,ts,...), can be shown to be given by the sum over the

Young diagrams, i.e. over the partitions [2][1][3]:

B m3 chypq1(a, N
Z(a,t,h) = Z 7( T P 2 Z —hrl (1.8)

(we shall remind the relevant notions of the theory of partitions in the Appendix). This
theory can also be realised at a special point on the moduli space of U(N) gauge theory
with 2N — 2 fundamental hypermultiplets’. If the theory has the gauge group U(N), e.g.
it is realised on the stack of N fractional D3 branes, the corresponding partition function
is given by the generalisation of (1.8):

—»

— _ ert (= — A Chk-l-l a, )
2. 6.0) = 27,6, m) Y (m(@ K1) (~1)Mexp sz HCS )

—

A

where m(@, X, 1) is the U(N) generalisation of Plancherel measure [2][3] and ZPert(, t, )

is the perturbative partition function.

Limit shape and Toda chain

We shall evaluate the sums like (1.8) by the analogue of the saddle point method. The limit
h — 0 of the sum (1.8) is dominated by a partition A, of a large size ~ A2, The shape
of the Young diagram of this partition, the so-called limit shape, is found by extremizing
the effective energy functional. When all but the first coupling t; are set to zero, this

limit shape is the celebrated ”arcsin law” curve, found by Vershik-Kerov and Logan-Shepp

T In a certain sense, all the instanton contributions in the "U(1)” theory are the artefacts of
the imbedding of the theory into the theory with rich ultraviolet structure. In the terminology of
[10] these are ”freckled instantons” and their contribution must be subtracted by the appropriate
”mirror map”. See also [11] for the related and more detailed discussion, and [12] for the related

N =1 considerations.



[13][14][15][16]. Our main claim for the rank N = 1 is that the evolution of the limit
shape under the higher Casimirs is governed by the quasiclassical Toda hierarchy, and we
present the corresponding solution explicitly. This result, which we prove in the section
3, gives a further confirmation of the claim of the previous work [1] of A. S. Losev and
the authors, that the BPS sector of the rank one N' = 2 gauge theory is equivalent to the
stationary sector of the CP* Gromov-Witten theory. The dispersionless Toda hierarchy is
well-known to describe the genus zero part of that theory (see, e.g. [17]).

In the section 4 we describe the non-abelian theory. We find that the corresponding
limit shape is described by the Krichever quasiclassical tau-function [6] associated with a

family of hyperelliptic curves with two marked points

H z—af(@,t))(z — z; (a@,t)) (1.10)
=1

Interestingly enough, for nonvanishing t this family extends outside the family of Seiberg-

Witten curves. The answer is encoded in (1.10) and a particular (1, 0)-differential d3,

holomorphic outside the points Py where z = oo, which obeys certain normalisation condi-
tions. We demonstrate how the instanton corrections (for nonvanishing t) can be extracted
from the generalised Seiberg-Witten geometry, and derive equation (1.7) from the ”first
principles”. In the section 5 discuss the relation of our approach with the Eguchi-Yang
matrix integral and propose a possible way to extend this relation beyond the quasiclassical

theory.



2.

Gauge theory partition function

We study N = 2 gauge theory in the self-dual Q-background. The setup and the rel-

evant physics are reviewed in [2][1][3] so we just briefly discuss it here. The gauge theory

path integral is saturated by instantons, and N = 2 supersymmetry cancels the contribu-

tion of fluctuations, so that effectively one has to integrate ”unities” over the corresponding

moduli spaces of the instanton solutions. These moduli spaces can be described by the

ADHM construction, and the corresponding integrals can be computed via equivariant lo-

calisation technique in nontrivial 2-background [2]. As a result, the gauge theory partition

function can be presented effectively in one of the following ways:

1)

The sum over instantons can be interpreted as a Van-der-Vaals gas in one dimensions:
the integrals over the instanton moduli space of charge k can be reduced, via ADHM
construction and equivariant localisation a la [18] to the grand canonical ensemble of

a one-dimensional gas of particles

Z(&, t, 6172) = Zpert(c—i, t, 6172>><

1 €1 + €2 F i 1
XZH( €€ ) %11;[1 d%exp(—EU(gbI))X

k=0

where U(z) = t(z) +t(z +e1 +e2) —t(z +e1) — t(x + )+

N
1
+e16 ) log <($ —ay)’ - glat 62)2)

=1

2(2% — (€1 + €2)°)
2

V() = —e1e2lo
N

x
(2
interacting via pair-wise Van-der-Vaals kind of potential, in the presence of N (for
U(N) theory) sources. Here €1 o are parameters of the Q-background, which can be,
after calculating integrals in (2.1) via residues, put to be ¢, = —eg = h.

The gauge theory partition function can be shown to be equal to the partition function
of the statistical model of random partitions. For U(N) gauge theory one deals with
the ensemble of N-tuples of partitions )= (M, ..., AN), and the partition function of
the gauge theory is [2][3]:

chk+1 a, )\

k41 (22)

Z(d,t,h) = Zpert(c?,t,h)-z m?(a@, X, 1) (— Wexp 2 Z

X



3) The gauge theory partition function can be also written as a path integral in the
theory of a free chiral fermion on a Riemann sphere [1], or, via bosonisation, as a path

integral in the theory of a free boson ¢ with the action:
s= 1 a¢5¢+lj§ Jw‘1+lj§ Jw+j§ Zthk LR ) (23)
47 S2 h C. Cl/s C

with the boson ¢ normalised so that it takes values in a circle of finite circumference.
In (2.3) C, denotes a circle |w| = r, and € | 0. Similar path integrals were studied
before in the context of so called conformal matrix models [19], though with very
different properties of genus expansion [20]. In this paper we shall concentrate on the
quasiclassical computations in the theory (2.3).

We start with reminding the basic facts about partitions and free fermions.

2.1. Partition function and partitions

The partition A of the size |A\| = A1 + A2 + ... + Ay, is a non-increasing sequence of

non-negative integers \; € Z>( (some details and examples are collected in Appendix A):
)\:<)\12)\22>\3...2)\g>\>)\g>\+1:>\g>\+2:...20) (24)

For our purposes it is convenient to encode the partition A in the so-called profile function

fa(x), which is a piece-wise linear function, given by:
Ia(@) = |z —al+
+Z x—a—h\—i+1)|—|z—a—h\ i) (2.5)
— |z —a—h(1—9)|+ | —a+ hil

The Chern character of the “universal sheaf” ch(€) (at the fixed point in instanton moduli
space, characterized by partition A, see [1][2] and references therein) is essentially the

Fourier transform of the profile function:

ch(€) = %/ dz fy(z) e"* = (1-1— e uh Ze“h(l D (uhhi 1)) (2.6)

hence for the coefficients of its expansion

hu hu

ch()=(e? —e 2 )chy g,hu :i v chi(a, \) (2.7)
h k!



which enter the formula for the statistical weight of the partition A in the ensemble (1.8),

one has
chg(a,\) = %/ z f(z)x NZ (a+ AN —i+1)F — (a+ R\ —0))F) (2.8)
i=1

In the nonabelian case, for the gauge group U(N), the universal sheaf £ splits as a sum of
N rank one sheaves &. Accordingly, at the fixed point of the torus action on the moduli

space of instantons, corresponding to the N-tuple of partitions X:

ch(&) = <eﬁ7u — _Tu> Ze “chya) (0, hu) Zﬁ chy (@, X) (2.9)

=1

with
N

Chk (C_i, X) = Z Chk (al, /\l> (2.10)

1=1
For the empty partitions A(). = () the Chern character (2.9) reduces to the generating

function of the vacuum expectation values of the single trace operators tr ®*, in the absence

of quantum corrections.

Plancherel measure and the profile of the partition

The Plancherel measure

.6 : o
Ni—Aj+j—i (L —i)! Ni—Aj+j—i
m, =[] 7 =H— 1T T (2.11)

i<j J =t (E’\-i_)‘ —1)! 1<i<j<ty J =

can also be expressed in terms of the profile function f(z):

m?2
(—T;;W = exp <—% /xl>x2 dridzy [ (z1) 3 (22) (21 — :cg)) (2.12)

where the kernel v (x) solves the following difference equation:
Yr(x + R) + ya(z — B) — 295(z) = logz? (2.13)

and is given by the asymptotic series:

he
=~ F()
6048F () +.. ) (2.14)

4
h_F(4)(x) _

1 h?
i) = o (F@) = FO@) + 50

B2 12
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determined by its leading term, or the function:

F(z) = 2? (log T — g) (2.15)

which enters the perturbative prepotential of pure N = 2 super-Yang-Mills theory. The

finite difference derivative of vy (x) is related to the I'-function:

o (x + Z) —7h (a: = g) — log (h%r (% + %)) (2.16)

In the 7 — 0 limit (2.13) just turns into F”(z) = 2log x. The function 7, (z) is related to

the generalized Riemann zeta function:

— -1+ L d
n(e) = =¢'(=1) + p5logh + 7

1 [dt, et
Wl e e

The ¢'(—1) and logh terms in (2.17) are chosen so as to ensure 75 (0) = 0. These corrections

s=

do not give any contribution to quasiclassical part and can be therefore simply absorbed

into normalisation (in particular we did not write them in (2.14)).

2.2. Fermions and Baker-Akhiezer functions

The gauge theory partition function (1.8),(1.9) can be compactly written as a matrix
element in the infinite wedge representation of the group GL(c0), in other words, it has a
free fermion representation [1][3](see also [21]). We shall recall it now in order to motivate
the introduction of some quasiclassical objects, like the multi-valued functions S(z) and
®(z), which will be the main tool for solving our problem. As we shall see, they appear
in the asymptotic expansion of the fermionic one-point functions, or the Baker-Akhiezer
functions (cf. [22][23]).

Free fermions and partitions
Introduce the free fermion fields, v (w), ¥ (w):

(2.18)



where{,, 7;[;3} = 0,5s. The vacuum with the charge M is defined as:

|M) = |M;0) = ¢_M+%¢_M+%¢_M+% e
and is annihilated by the fermion harmonics:

| MYy =0, r>—M,
G MY =0, r<—-M

We always use the normal ordering : (...) : with respect to the vacuum |0):

:'QDT@ZS: = /QDTJS? 5<0
:wr{pVSZ = _iswra r >0

Let us introduce the Wi, algebra operators:

hk _ k+1 k+1
Wk+1=—k+1j{3¢<<D+%) —(D—%) )@Di

hk

= D [r )M = (= )M e

k+1 )
T€Z+§

where D = wd,, and k > 0. For example,
Wi =—Jo ,Wa=hlg,

i.e. Jy is the zero mode of the U(1) current,

Tw) = Plwpplw) : = 3 Jw

keZ

Jk — Z :&rwr-l-k :

T‘GZ"‘%

while the Ly Virasoro generator is the zero mode of the stress-energy tensor:

T(w) = — : flw)dp(w) : = 3 Lyw™ (dﬁw)z

kEZ

Ly = Z RRVRTSI

T‘GZ"‘%
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(2.21)

(2.22)

(2.23)

(2.24)

(2.25)



The importance of the fermions is the relation between the partitions and the excited

states in the fermion Fock space:

|M, )\> — w—M+%—)\1¢—M+%—)\2¢—M+%—>\3 .. ¢_M_%+’L_>\z e (2.26)
The operators Wy, introduced in (2.22) are diagonal in the basis of ”partition” states:

W M; \) = %chk(hM, A)|M; ) (2.27)

with the eigenvalues given by (2.8). In what follows, we shall also use the formula [24][25]:

T |M; 0) = > myh M) (2.28)
A

and its direct consequence

-M

N[

7 -1 o1 m) oo?:—>\i—|—7‘—
o M+1;0)=hr"""2 : M; )\ 2.2
Jor CTM +150) S I M (229)

where the sum is now taken over all partitions do not containing an eigenvalue, corrse-

ponding to r-th fermionic mode, which is automatically taken into account vanishing of

the product factor. The infinite product in (2.29) is actually finite

(2.30)

o0 £>\

Hi—)\i-l—r.—%—M 1 Hi—)\i—i-r—%—M
7

: 1
Pl L+r—3 M

Baker-Akhiezer functions
The sum over partitions (1.8) can be compactly written as a matrix element in the theory

of free fermions [1][3]:

J_ 2 chy 4 (a,X)
Z(a’ t, h) = <M‘€_%e% Zk>0 tkaJrleTl ‘M) = ; % 67%2 Zk>0 tk72+1 (231)

where a = hM for M € Z, and the second equality follows from (2.28), (2.27). Let
rez—+ % and set z = hr. Consider the Baker-Akhiezer function, or the following matrix

element:

~ 1

~ J_
U(z,a,t,h) = m(M\e—% G eF Lonso Wt TR r 4 ) (2.32)
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Using (2.28), (2.29) it can be expanded into a sum over partitions

N[

~ h ™ tkh
N t e — + Lykt1 o LykHLY
(2,0,%, 1) Z(a,t,h) h22k+1 +3) (r=2"") (2.33)
2.33
Zmi |>\|eh2 Zk>0 Chk+1(“ > ‘- )\ tros- M
A i=1

The latter can be obtained from the partition function (2.31) by the shift of times ¢, —
tr — (5k(h, T):

87 1 1 tih"
U(z,a,t,h) = h~ "2 exp?Z k ((T_i_%)k—i-l_(r_%)k-i-l) )

k+1
k>0 (2.34)
MT (r+2)/T(r4+3)
e 2 2’ Z(a,h,t —9)
L(r+3) Z(a,h,t)
defined via the generation function
okt T(r+i-2) 2 T(r+1)
6k = log———2—N2 4 Zlog——— 2~ (2.35)
hzkgo bl T(r+3) A 7T +3)
From (2.34) one gets, that asymptotically at h — 0 and hr = z — o
~ t
U(z,a,t,h) ~ exp % (2.36)
with the singularity
S(z,a,t) = Z trz® — z(logz — 1) + alogz + . .. (2.37)

k>0

while the nonsingular at z — oo terms in (2.37) are expressed, as follows from (2.34), in
terms of the first derivatives of log Z(a,t,h) w.r.t. t-variables. The essential singularity
(2.37) contains the Eguchi-Yang term z(logz — 1), (cf. [17]), coming from the Gamma
function logl'(z) ~ z(logz — 1) in (2.34). The fact that the regular term of the first order
in z, t12z in (2.37) is accompanied by the z(logz — 1) term, of the degree 1 + ¢, in a sense,
is the consequence of the asymptotic freedom of the noncommutative U(1) theory (see [3]
for the discussion of this phenomenon). In the U(N) case we shall see the analogous shift,
t1 — t; — Nlogz, in agreement with the exact coefficient, N, of the beta function of U(N)
super-Yang-Mills theory [26].
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One can also study the fermion matrix element in the coordinate representation:

~ 1 1 ~
\I/(w, a,t, h) = W<M|6_% 6% Zk>0 te Wit w(w) e% |M + 1) =
— Z w™ " (rh,a,t,h) (2.38)
rEZ-i-%
Asymptotically, (2.38) gives
~ b t
U(w,a,t,h) ~ exp % (2.39)
with the quasiclassical phase:
t
Y(w,a,t) = S(z,a,t) — z logw, d5(za.t) = logw (2.40)

dz

related to (2.36) by the Legendre transform, while (2.38) can be thought as an integral
duality transformation [27] for the Baker-Akhiezer functions. Note (for fixed (a,t)):

¥ = —zd—w (2.41)
w

The nonabelian theory partition function also has a representation in terms of free
fermions. For the gauge group U(N) one uses N flavours, ¢/)(w), I = 1,..., N. For the
special values of the vacuum expectation value of the Higgs scalar ®, a; = h (M; + p;),
where M; € Z are integers, p; = % (N + 1 — 2l), the partition function of the nonabelian
theory can be related to that of the abelian one by means of the procedure of blending of

partitions. In the language of free fermions this is the following procedure:

N
1
T(wr)=—Y O@w)w (2.42)
N
The single free fermion ¥ is produced out of N free fermions ¥, I = 1,..., N living

on the w-space. The fermion W lives on the N-fold cover of the original space, which in
quasiclassical limit turns into a spectral curve.

The spectral curve for a nonabelian theory will be explicitly described below. On a
small phase space (with only ¢; nonvanishing) it coincides with the Seiberg-Witten curve,
but when higher Casimirs are switched on, it goes beyond the Seiberg-Witten family,
still being a hyperelliptic curve for the U(N) gauge theory. This curve corresponds to a
quasiclassical hierarchy [6] of the Toda type, and we shall see that co-ordinate z = hr,
corresponding to the Baker-Akhiezer functions of the type (2.36) is distinguished from the

point of view of this hierarchy.
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2.3.

Genus expansion

The partition function (1.8), (1.9) has the same genus expansion, as in (1.1), but with

the switched on times t. There are various interpretations of this expansion, which will be

presented in detail elsewhere [28].

a.)

Gauge theory interpretation in four dimensions: the (2-background acts as a ”smart
box” with parameter h? being the inverse volume, prepotential as the extensive part
of the free energy, the higher terms Fy; being the finite size effects.

Topological string interpretation: in the geometrical engineering setup F,’s are the
genus g topological string amplitudes on a local Calabi-Yau manifold.

Van-der-Vaals gas in one dimensions: the h-expansion becomes the Mayer diagram
expansion [28] in this case.

We can view (2.3) as the quantum field theory and perform the standard Feynman
diagram expansion around the Gaussian action ﬁ fs2 00y with the vertices of va-
lency p weighted with the weight 772, so that the sources $ dowT! have the weight
h', the ”mass term” t; ¢ (890)2 having no h-dependent factor at all, etc. The weight

of the Feynman diagram ~ with v,(7y) vertices of valency p would be, then

th(p—2)vp(7) _ R2EM-V(7) _ 529-2

where

E(v)=3> pv(v)

is the number of edges, and

Vi) =Y u0)

is the number of vertices, and ¢ is the number of loops. In this way one can make

contact with the string loop expansion.

2.4. The quasiclassical solution

The partition functions (1.8)(1.9) should be viewed as the partition functions of an

instanton gas in the "box” of size 2. We are interested in the free energy of the instanton

gas,

per unit volume:

F(@,t) = Limy_o h’logZ(a, h,t) (2.43)
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Energy and entropy

The evaluation of the asymptotics (2.43) is greatly facilitated by the observation that in the
limit where h — 0 with the rest of the parameters kept fixed, the sum over the partitions
A (or N-tuples X) is dominated by the single partition of the very large size ~ h ™2 [3]. To
determine this partition and to evaluate (2.43) one can use the geometric representation
of partitions, Young diagrams. In the limit 7~ — 0 the boundary of Young diagram of
the master partition becomes a continuous curve. This curve, e.g. the profile fy(z), can
be found by maximizing the weight of the partition A in the sum (1.8). The Plancherel
measure (2.12) and the Chern characters (2.8) in (1.8) combine together into the following

energy functional

1

E(\h) = 1/ N dridzs f(x1) f3(22) Ya(r1 — 22) —

1

= / do f(2)t(z)  (2.44)

so that
Z(a,t,h) =) e PAM (2.45)
A

Expanding the energy F(A, k) in A (assuming fy(z) — f(x)):

(L) ~ &[]

where
1 124 124 ]‘ 124
Elf] = 1 dedy f"(z1) f"(22) F(z1 — 22) — 5 dr f"(x)t(x) , (2.46)
xr1>T2
we can approximate the partition function as:
1
Z(a,t,h) ~ exp <—?€[f]) (2.47)

Indeed, the entropy contribution, i.e. the number of partitions A, whose profiles fy(x)
differ from f(x) by O(h), is of the order of

1
exp (ﬁL) ,

where L is finite in the 7 — 0 limit. Thus in the A~ — 0 limit the entropy contribution is

negligible, compared to that of the energy.
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The variational problem

Thus, we arrive at the following conclusion:

The quasiclassical tau-function or generalised Seiberg-Witten prepotential is the critical

value of the functional

F(a@,t) = — Crity &[]

: (2.48)

where we look for the extremum of the energy functional £[f] in the class C*(R) of differ-

entiable functions f(x), such that

(2.49)

For @ in appropriate domain of the moduli space M the support of f”(z) is a set of n

disjoint intervals {I;};=1,.. , along the real axis:

suppf"” =1L, I,

L= (7))

Ty <...<at:lJr < Ty <:z:?jr1 <:z:j\'[
(2.50)
The moduli @ enter the variational problem via the additional constraints:
]‘ "
ar = 5 dr l’f (CE) )
2 Jy,
(2.51)
where I, [ =1,...,n is the I’th connected component of suppf”.

The number n of cuts, and independent moduli a; depend on the gauge group. For
example, for G = U(N),SU(N), n = N. For G = SO(N), n = 2[%], and for G =
USp(2N) there are n = 2N + 1 cuts.

In the G = SU(N) case the Higgs eigenvalues a; obey: 21111 a; = 0. In the G =

SO(N) case the Higgs eigenvalues have the form: (al, a2, .. Qpj2, —A1, —Q2, . . ., —Cp /2, *),

17



where for odd N, x = 0 and for N even x is absent. In the G = USp(2N) case the Higgs
eigenvalues have the form: (ay,as,...,ay, —a1,—as,...,—an,0,0).

It is easy to notice [29] that our variational problem is very similar to arising in
the context of multisupport solutions for matrix integrals. However, there are important
distinctions, caused basically by properties of the functions (2.49), which are extremising
the functional (2.48). Below we present the solution to the variational problem in the same
geometric terms, though involving sometimes the multivalued differentials on hyperelliptic
curves. We shall return to the parallels between our approach and the matrix models,

when discussing the Eguchi-Yang matrix integral.
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3. Solution in the U(1) case

In this chapter we study in detail the extended prepotential in the case of U(1) theory.
In the U(1) case, the constraint (2.51) can be in standard way taken into account with the

help of the Lagrange multiplier
D 1 "
Efl = Elf,al =€[fl—a <a—§/d:wsf (l‘)) (3.1)

The Lagrange multiplier a” naively looks like the zeroth time tg, since its contribution
can be viewed as the shift t(z) — t(z) +a”z. However, in our setup (as often happens for
similar problems, see e.g. [30] [31]) the variable a is fixed, while a? is varied, thus the dual
variable a plays the role of the zeroth time. For N > 1 the situation is more complicated

and will be discussed later on.

3.1. The limit shape

The variational equation for the functional (3.1) gives

—1 /da? (@) (x —Z) (log|lz — Z| — 1) + t'(z) = a® x € supp f” (3.2)

It is convenient to introduce the following analytic multivalued function

S(z) = —3 /d:)s f'(x) (z —2) (log(z —x) — 1) + t'(2) (3.3)

on the z-plane with the suppf” removed. It has the following properties:

1.) The differential ®(z) = dS/dz is multivalued. However, the differential d® is already
well-defined on C, the double cover of the z-plane, which is ramified at the end-points
of the interval of the support of f”.

2.) The exponential exp (Re @) is therefore single-valued on C. On the cut it is equal to
one.

3.) The equation (3.2) implies that the real part
ReS(z) = 2 (S(z +1i0) + S(z —i0)) = a”

is constant on the cut I = suppf”. In order to consider the asymptotic of (3.3) in

what follows we shall always choose a branch, which is real along the real axis.
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4.)

Asymptotically, as z — oo,

- =1 oF
= k
S(z) = —=z (logz—l)-l—alogz-l—Ztkz _Zwﬁ—tk
k=1 k=1
where, according to (2.48),
oF — 1 k+1 g1
815].3_2(]{:—}—1)/(13:3: f($>7 k>0

and the coefficient in front of the z(logz — 1) term is fixed by
[t @) = '(+00) = F(=00) =2
The Legendre transform of S(z), X(w),

12
4% = —2d® — d(t — ") — 22 / do J'(x)
2 zZ—x

expands near z = oo, w = oo as follows:

Y(z) = —2 — E — Dtz —al E k+107
(2) z k_Q(k ezt —a ng-l-k:1 T

The formulae (3.5) together with the equation

p_ 9F
oa ’

a

(3.4)

(3.6)

(3.7)

(3.8)

(3.9)

which follows from (2.48), identify the generating function (2.48) with the logarithm

of quasiclassical tau-function, being in the case of the single cut, a tau-function of

dispersionless Toda chain hierarchy. Note, that the asymptotics (3.4) follows from
(2.33)(2.34). Note also that the term, linear in z in (3.8), can be viewed as the

regularised k£ = 1 term (k — 1)tx2", where t; is replaced by the divergent term 7y + ¢1.

The bare coupling 7y is a logarithmically divergent function of the energy cutoff [3].

The pair of multi-valued functions (®(z,a),z) can be viewed as the quasiclassical

analogues of the pair of Orlov-Shulman and Lax operators [22]. The canonical trans-

formation, taking the pair (logw,a) to (P, z) is generated by the generating function

S(z,a), or, equivalently, 3(®, a).
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3.2. Toda as presentiment

As we have already discussed, the limit shape is described by the function f(z),
which differs from |z — a| on the single interval I = (z~,2"). The corresponding integral
transforms S(z) and ®(z) suggest to study the double cover C of the z-plane with the
branch points z = 27 and z = z~.

The curve C can be equivalently described by the equation
1
z:v—l—A(w—f—E) (3.10)

in C x C*, with #* = v &+ 2A. It is just a copy of a Riemann sphere or CP!, with two
marked points Py, with z(Py) = oo, wT(P1) = co. Another form of the curve (3.10) will

be generalised in the nonabelian case:
Vr=(z—-0v)? 4N = (z—a")(z—27) (3.11)

where y = A (w — w™!). The formula (3.3) defines a function with a logarithmic cut and
asymptotic behaviour (3.4), odd under the involution w <+ 1 of the curve (3.10). In terms

of the variable w one can globally write

S =—-Sgy(w)+ Z te Q% (w) 4 a logw + abl (3.12)
k>0

with the Eguchi-Yang term

Spy (w) = (v +A (w + %)) logw + A(logA — 1) (w - l) , (3.13)

w

the "Hamiltonians”
Q(w) =28 —2F, k>0 (3.14)

which are the Laurent polynomials in w, and the ”zeroth Hamiltonian”
Qo(w) = logw , (3.15)

all odd under w + 1. The Eguchi-Yang term (3.13) is fixed by its asymptotics Sgy (w) =
+2(logz — 1)+ O(1) at Py (cf. with (2.37)). Note that one can write the differentials d€2
in the following suggestive form:

dz

A =k (2" 1y) y

(3.16)
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where the symbol (...); denotes now a polynomial part in z, in the expansion near Pj.
We can think of (3.12) as of the Legendre transform of the Seiberg-Witten differential
d¥ = —z%2. Obviously, on the cut (3.12) gives S|,_, = aP. The canonical Toda chain

times are defined by the residues
to = resp, dS = —resp_dS = a (3.17)
and
ty = 7 TesP,2 dS = — 7 resp_z ds, k>0 (3.18)

From the expansion (3.4) at z — oo it also immediately follows, that

oF

el I'eSp+deS = —resp ZFdS, k>0 (3.19)
k

Notice that (3.4) has no constant in z term, which together with explicit formula (3.12)

allows to compute a” from a regularized value of the function (3.12) at z — oo

D _ S|y =
(3.20)
= lim Z tr2 — z(logz — 1) + alogz + Spy (w Z 1 (w) — alogw
k>0 k>0

The consistency condition for (3.19) is ensured by the symmetricity of the second deriva-

tives
0?F
M = I'eSP+ (deQn) (321)
where we have introduced
0S 0*F
==+ | F - 22
otk (Z Dadiy nz Btkét nz”) , k>0 (3.22)
0S8 0*F PF 1
=Qp==L|1 - — —
da 0 ( 8% 0a? Oadt,, nz”)

The functions €, k > 0, form a basis in the space of meromorphic functions with poles

—1

at the points with Py, odd under the w — w™" involution. All time-derivatives here are

taken at constant z.
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The expansion (3.22) of the Hamiltonian functions (3.14) expresses the second deriva-

tives of F in terms of the coefficients of the curve (3.10), e.g.

A% 42
Qozlogz—log/\—g— 22+
z z
2 2
lez—v—£—2vé\ + ... (3.23)
z z
4uA?  2A2(A% + 20
92222—(02+2A2)— Y - ( 2+U)+
z z
as z — 0o, which gives, in particular,
0*F 0?F
= logA. —— — 3.24
oa> ~ %% Gaot; " (3:24)
and 0% F 0?F
— =2A? =2 22— 3.25
72 k200 () o
which becomes the long-wave limit of the Toda chain equations after a derivative with
respect to a is taken:
0%aP 0 daP
— = 2— 2—— 3.26
ot da eXp( da ) (3-26)
with the Toda co-ordinate a” = %—f. The other expansion coefficients (3.23), with the

help of (3.21), give rise to the Losev-Shatashvili polynomials. In the U(1) case they are
polynomials in the single variable u = v, whose coefficients depend on A.

One can now find the dependence of the coefficients of the curve (3.10) on the defor-
mation parameters t of the microscopic theory by computing dS at the ramification points
w = +1, where z = v+ 2A and dz = 0:

as

dQy,
dlogw |, _ 4

‘ b dlogw

+a—vF2AlogA =0 (3.27)
w==+1

k>
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Small phase space

If t, = 0 for k£ > 1, solution to (3.27) immediately gives
v=a, A=¢e" (3.28)
and the prepotential

_1 _1,.D 1.2 _
F = gresp, (2dS) — 5aa 50" =

(a®ty + ") (3.29)

N —

The slope f’(x) of the corresponding limit shape profile f(x) is given by:

2 —
f'(x) = =arcsin (93 a) : z € (a—2e", a+2e) (3.30)

s 2et1

where the branch of arcsin (hence the name of the ”arcsin law” [32]) is chosen so that

f’ (a4 2¢e') = +1. The limit shape itself is given by the function:

f(x) = % (\/4€2t1 — (z — a)? + (x — a)arcsin <932;1a>) , € (a—2e", a+2e")
(3.31)
and
f(x) =|x —al, otherwise. (3.32)

Turning on to
Now let us turn on the Casimir tr ®3 in the ultraviolet, in other words acquiring nonvan-
ishing ¢, t2. Now one finds from (3.27)

v=a— iL (—16t362(t1+2t2“))
4t (3.33)
logA = t1 + 2tsa — %L (—16t362(t1+2t2“))
where L(¢) has an expansion:
— (=)t 2, 3.3 8.4
L(t) = — " =t—t -7 - =t 3.34
(®) ; n! * 2 3 * ( )
and obeys the functional equation
L(t) exp L(t) =t (3.35)
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For the prepotential one gets instead of (3.29)

t 1 D 2
F = _21reSPJr (2dS) + sresp, (2dS) — aa— @

! 1 ’ 64t4 . 2 1024t6 (3.36)
= t(CL) + 5621‘.”(0) + th e4t”(a) + TQ e6t”(a) 4 - 5 e8t”(a) L

where the instanton expansion is governed by the parameter ¢ = €™ related with the
bare coupling, which can be introduced by ¢; — t; + log ¢q. Here t; = 0 for £ > 2 and
t(a) = tlé + tg‘g—g, so that t’(a) = t1 + 2t2a.

The slope of the limit shape is again given by the trigonometric functions:

v

F(z) = 2 (arcsin (%) + 2t\/4A2 — (@ — 0)2) (3.37)

v—2A <z <v+2A

where v and A are the functions (3.33) of t1, to, a.

Note that our "rules of the game” are such that the higher order times t;, £ > 1
are considered to be the nilpotent parameters. Had we viewed them as the ordinary
perturbation parameters (and thus faced the possible non-renormalisability concerns), the
formula (3.37) would have suggested a possibility for the interesting critical behaviour,
similar to the one found in the two dimensional Yang-Mills theory [33]: indeed, as soon as

ta becomes sufficiently large, |ta| > t5, so that
4t5A (a,ty,t5) =1 (3.38)

the slope f’(x) reaches +1 before = reaches the right end of the cut (v — 2A,v 4+ 2A).
The equation (3.38) is nothing but the convergence radius of the series (3.34) for the
function L(t). For |t2] > t5 a new cut opens up and the theory goes over to another
phase, in particular the curve C would grow in genus. Of course, the critical value of t5 is

exponentially large ~ A~!, like the Landau pole.

3.3. Symplectomorphisms and dispersionless hierarchy

The evolution of the prepotential F(a,t) with respect to the times ¢ is described by
the Toda chain hierarchy. We start by reminding the Lax formulation of this hierarchy

[22]. The flows can be described in the Hamiltonian fashion, by interpreting the evolution
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to take place on the space of holomorphic functions on P = C* x C. We endow the space

P with the holomorphic symplectic form:
d
w =" nda (3.39)
w
where w € C*,a € C. The k’th flow is governed by the Hamiltonian

Qp(w,a) = 28 — 2~ E>1 (3.40)

where, as in (3.14)(3.10) the £ denote the part, holomorphic at w = 0 or w = oo, respec-

tively, and z is the Lax operator:

+(w, a) = v(a) + Aa) (w + %) , (3.41)

and
Qp = logw (3.42)

The evolution is encoded in the equations:

av(a) 1 8/\(&)
o, (w N E) o - (3.43)
= @) (1= 1) 22— (a4 N (0 1)) 2
Thus: v(a) RVEINC) /
o6 2 (A%(a)) Bt A(a)v(a)
dv(a) _, A2y OM@) 2 L 9A2(q)Y (3.44)
o (v(a)A%(a)) | oty (a) (v(a)® + 2A%(a))

The first line in (3.44) implies the Toda equation (3.25). Let us discuss the geometry
behind the equations (3.44)(3.43). They define a set of commuting symplectomorphisms

of P. Infinitesimally these symplectomorphisms look like:
ow = w&anétk, da = —w@kaétk (345)
Let us denote the finite time symplectomorphism by:

gt): P —-P, (W (w,a;t), A(w,a;t)) = g(t)(w,a) (3.46)
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so that g(0) = id. Now let us take the Lax operator, viewed as a function on P, and let it

evolve in the geometric way:
2w, a;t) = g(t)"2(w,a;0) = 2(W (w,a;t), A(w,a;t)) =

v(A(w,a;t)) + A(A(w,a;t)) <W(w, a;t) + m) - (3.47)

v(a;t) + Afast) (w + %)

the last equality being a consequence of the asymptotic behaviour of the Hamiltonian
vector fields (3.45) as w — 0 and w — oo.

We can also change the canonical variables, from (w,a) to (z, ®), such that:

%U Nda =dz NdP (3.48)

By substituting (3.41) into (3.48) we can express ® via w and a (of course, (3.48) determines

® up to an addition of a function of z):

a da/
d(w,a) =
e /\/(Z(w,a)—v(a’))Q—‘lAQ(a’)

C 2(w,a) = v(a)+Aa) (w + %) (3.49)

Finally, the symplectomorphism ¢(t) can be described with the help of a generating func-
tion (see [34] for the definitions):

dS = ®dz + logw da (3.50)

where we view S as a function of (z,a). We can think of (z,®) as of the functions of
W, A, i.e. they coordinatise the image of g(t). Thus S is a function of z, a,t. We claim it
coincides with (3.3).
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4. The nonabelian case

4.1. The energy and surface tension

In the nonabelian case, G = U(N), N > 1, similarly to (3.1), one has to add to the

functional £[f] several Lagrange multipliers, or the so-called surface tension term:

el = €lf) =3 o ( 1 / e xfff@)) _

(4.1)
N
=E[f] + %aD/xf”(a:)da:—l—/ dz o(f') — ZalalD
=1
where N
p_ 1 D
a”=—>» a (4.2)
N ; :

and o is a piece-wise linear function, which vanishes for ¢ outside the interval (=N, N),
and equals 1 (af —aP)(t+ N —20+2)+ Zf;il(a,% —aP), fort € (=N +20—2,—N +2I),
fori=1,...,N, so that:

%aD/a:f”(a:)dx—i—/ dz o(f') = %ZQZD/ r f"(z) da (4.3)

=1 L

Define, as before:

S(z) =—12 / dzr f"(x)(z — x)(log(z — x) — 1) + t/(2) (4.4)
and
D(z) = % = —%/ dr f"(x)log(z — z) + t"(2) (4.5)

4.2. The curve

The variational equation, following from (4.1), can be written as:
S(z) = % (S(z +1i0) + S(xz —i0)) = af , for z € I, (4.6)

which implies:

®(z +i0) + ®(z —i0) =0, for z € I, (4.7)

28



Together with the obvious property
: D i s 1"~ ~
S(x £1i0) = q IF?/ dz f"(z) (r — ) , for x € I (4.8)

it implies that the differential
1 12
d® = S"(z)dz = -5 (/ dx %) dz +t"dz (4.9)

is well-defined on the double cover C of the z-plane, which is ramified at the points xli:

N
H z—a)(z— ;) (4.10)
=1

Let us denote by P+ the two preimages of the point z = oco. The differential d® is odd
under the involution y — —y. As z — 00, on one of the sheets of C, say near Py, the

differential d® has the following asymptotics:

OF dz
E k—2 E
. ]{7 - 1 th dz — N— — CL 8tk_1 F (411)

These two properties allow to write:

N-1
=> skzk ae = k(k— )tpdQp_y — NdQo — 2mi > _ dw; (4.12)

k>0 k>1 j=1

where the differentials df2 are fixed by their asymptotics at z — oo

+k2*"ldz+0(272), k>0
dQQy, ~ { (4.13)
+92 1+ 0(272), k=0
and vanishing A-periods
7{ A% =0, k>0, Vi=1,...,N—1
A;
while dw;, i = 1,..., N — 1 are canonical holomorphic differentials normalized to the A-

cycles, surrounding the first N — 1 cuts.

The coefficients s; and the ramifications points xli are to be determined from the
conditions: .
— ¢ 2D = Lk(k — 1)ty k=2,3,...
2mi Jpy (4.14)

resp, dP = FN
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directly following from (4.11),

1 1 _
5 P, 00 =5 | F@de =3 (6 = fa) =1
T J A L (4.15)
L_ d® =0, l=1,...,N
271 B,

If s(2) = > 1>0 sx2" is a polynomial of power N + K —2 (in the case of nonvanishing times
t1,...,tx up to the K-th order), its higher K coefficients are fixed by leading asymptotic
and the residue at infinity via (4.14), while the rest N — 1 coefficients can be determined
from fixing the A-periods by the upper line in (4.15). Now it leaves only 2N branch points
{xf} of the curve (4.10) to be fixed from the rest of (4.15) (vanishing of the B-periods),
and the Seiberg-Witten periods of the ”dual differential”

1 1
— diE=— b =qa, I=1,...,N (4.16)
271 A; T A,

Together with normalization of (‘D(:c}) = 0 at the largest positive ramification point,
suggested by integral representation (4.5), the second conditions of (4.15) can be equiva-

lently written as 2N real conditions

Redb(x;) =0, j=1,...,2N (4.17)
The condition (4.17) ensure that under variation at constant z

d (dS) = § (Pdz) ~ holomorphic

modulo the exact terms.

Since under rescaling:

zpz, y— oy
. N L (4.18)
Ty e opx, ap — pag, g — p "tk

the function ®(z) acquires logarithmic corrections, the t; dependence can be fixed by

t1 =resp, (27 ®dz) (4.19)

with the appropriately chosen branch of ® at the point P;.
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The Lagrange multipliers

oF
D
=— [|=1,...,N
a 8@[ 9 ’ 9
can be computed by a standard trick. From (4.6),(4.8) it is clear that
a; — a; /x.+ ds 5 %B as (4.20)
j J
o oF 1
:—f s, i=1,...,N—1 (4.21)
8@2 2 B;
and still N
1 1 oF
D _ = D _ —
“ TN Zl “EN ; da;
For the other time-derivatives one can write
1
g—;: =resp, (2"dS) = TSP (zFt1do) (4.22)

4.3. Small phase space and Seiberg-Witten curves

Now suppose:
2

t(z) = tl‘% :
The conditions (4.11)(4.15) imply that w = exp (—®) is a meromorphic function on C with

the only pole at P, , where it behaves as:

woc 2N 4. (4.23)

(recall that z(P, ) = co) and which transforms under the y +— —y involution as w — w™!,

(for the switched on higher times, such function would acquire an essential singularity at
the points where z = 0o, and the constraints (4.15) cannot be resolved algebraically).
These conditions fix w uniquely, up to a few parameters:
1 N
AV (w+ =) = z—v) = Pn(z 4.24
(e ) =116 - =Paca (4.24)

i.e.

dz 1
P = —Py(2)—= =AY (w—- =
d N(Z>y7 ) (w U))

The coefficients of Py (z) are determined by the periods (4.15):
1
—— ¢ d®=ay, I=1,...,N (4.25)
27t J 4,

Finally, the parameter A is related to the time ¢; via:
AN =l (4.26)

In this way one easily recovers the results of [3].
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4.4. Quasiclassical flows

Let us now come back to the general formula (1.7) and show how it can be derived
from our quasiclassical solution on large phase space, or for nonvanishing microscopic times.
Taking an extra derivative of (4.22) one gets formula (3.21), which can be re-written on
generic non-abelian curve (4.10) as

PF
Dt 0t

=resp, (2"dQ,) =resp, gp, (2(P)"z(P")"W (P, P')) (4.27)

where we have introduced the bi-differential W (P, P") = dpdp/logE (P, P’), E(P, P") being
the prime form [35], with the only second order pole at diagonal and vanishing A periods.
In the inverse co-ordinates z = z(P) and 2z’ = z(P’) near the point Pt with z(P*) = oo

it has expansion

W(z,2')= ——= = Z o dQu(z

k>0

The bi-differential W (P, P") can be related with the Szego kernel [35]

0
Se.(P,PS_.(P,P")=W(P, P+ dwi(P)dwj(P’)aT log ¥.(0|7) (4.28)
ij

which, for a half-integer characteristics e = —e, has an explicit expression on hyperelliptic

curve (4.10)
e e(2') Vdzdz
Su(z, ) = L&) L UelZ) Vdzdz (4.29)
2\/Uc(2)Uc(2") 2 — %
with
(4.30)

Here {x =} is a partition of the ramification points of (4.10) into two sets, corresponding
J
to a given characteristic e. For example, on a small phase space, when (4.10) turns into

the Seiberg-Witten curve (4.24), there is a distinguished partition e = F with

Ug(z) = \/gig—;;f; (4.31)
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Substitution of (4.28) into (4.27) gives

0°F
Dt 0t

=resp, op, (2(P)"2(P")™S.(P, P')?) —
0
—resp, (2"dw;)resp, (2™ dwj) ﬁlog 9e(0]7) = (4.32)
ij
) _PF PF 0
6a¢6tn Bajﬁtm Brij

— Com (xei log 9. (0]7)

J

where for the Losev-Shatashvili polynomials one gets from (4.29)

Com (;H) - %resP+®p+ ((Ziiz;)z (1 + 252’2 ),) + 5U<fz))) dzdz’) (4.33)

If calculated on the small phase space, where all ¢, = 0, with £ > 1, and the particular
choice of the characteristic (4.31), which correspond to the deformation (1.7) around the

Seiberg-Witten prepotential, residues in (4.33) vanish for n,m < N, and one gets

O2F Otupy1 QU1 O
T log V(0 N 4.34
atnatm Bai a&j aTij og E( ‘T)7 n,m< ( )
with )
Up = 8tn_1 = EreSP.A,. (Z Y ) = E Z'Ul = E(tr ) > (435)

justifying (1.7).

Our derivation of the renormalisation group equation almost repeats, or even simpli-
fies, the derivation from [8]. The main difference is that the formalism of quasiclassical
hierarchy is developed now at fixed hyperelliptic co-ordinate z, while in [8] the role of
such distinguished co-ordinate was played by the co-ordinate on base torus w. In the last
case the quasiclassical flows were not deforming the geometry of the Seiberg-Witten curves
(only the generating differential had to be replaced), but the Losev-Shatashvili polynomi-
als (the analogs of (4.33)) were never vanishing, being instead related to the generalised
Kontsevich model, or topological Landau-Ginzburg models [36]. Now we see, that alge-
braic w has to be replaced by the transcendental ®. The proper choice of local co-ordinate
z is suggested by the microscopic theory, where it is already encoded in Fyy = tr t(P),
see (1.6), and therefore it appears to be distinguished in the effective functional (2.48).
We can conclude therefore, that the quasiclassical hierarchies arise as adequate language
for the effective low-energy theories, but to specify the details (the choice of proper basis,

local co-ordinates etc) one needs to turn directly to a microscopic theory.
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4.5. Instanton expansion with higher times

Let us now test our results in the non-abelian case against explicit calculations of the
first instanton corrections to the prepotential. We shall see immediately that extracting
even the first term in the instanton expansion of the Krichever tau-function is a non-
trivial task, and the direct evaluation using the sum over partitions here is much more
effective. The true application of the quasiclassical tau-function is the analysis of the non-
perturbative effects such as the emergence of the massless BPS particles at some points
of the moduli space of vacua, the surfaces of marginal stability and so on. However,
when we study the extended Seiberg-Witten theory, the "new” directions coming from the
"times” t; which couple to the higher Casimirs, are to be viewed as nilpotent (much like
the generalised moduli space of the topological string of B type on Calabi-Yau manifold
[37]). We should not attempt to give a physical meaning to the singularities which might
occur at finite values of t;’s. Note that adding matter to the N' = 2 theory effectively
switches on the times ;. For example, if we add Ny fundamental multiplets, we get
ty ~ k > Fmy =28 1n the theory with "real” fundamental multiplets the prepotential has
singularities when the charged matter becomes massless, i.e. near a ~ my, which is near
infinity for small ¢.

Let us start with the perturbative limit with the higher times switched on. It is
characterized by the degenerate differential (4.12)

N
d
Ao =t (2)dz =)~ Zv (4.36)
— Ul
=1

where the position of poles of degenerate holomorphic differentials coincide with the per-

turbative values of the Seiberg-Witten periods
a; = —resy, (2d®g) =v, (=1,....N (4.37)
Integrating (4.36),
=t"(z Z log (z — aj) (4.38)

one gets the perturbative generating differential dSy = ®dz, satisfying

adS() . dz
8@; zZ — Qy ’




=kzF"ldz, k>0
and, in the rational case, it is easy to write the function
N
So(x) =t'(z) = > (v — a) (log(z — a;) — 1)
1=1
Equations

define the perturbative prepotential with switched on higher Casimirs to be

N
Fo=3 tla) + % S F(ar — an) (4.40)
=1

m#£l

to be the sum of the ultraviolet prepotential Fyy = tr t(®) and the perturbative N' = 2
prepotential, with the ”Seiberg-Witten” function defined in (2.15).
Consider now vanishing B-period (4.15) of the perturbative differential (4.36)

/jd(‘DO:O
zt

k2

where m]i = a; £+ 2,/qS; + O(q?) are positions of the branching points of the curve (4.10)
in the vicinity of perturbative rational curve. Equation ®g(z]) = ®o(z;) in the first
nonvanishing order in parameter of instanton expansion q gives

th”(al)

L@ = am)?

S = , 1=1,...,N (4.41)
where the numeric coefficient is fixed, say, from comparison with the Seiberg-Witten curve
(4.24) on a small phase space.

Take now for simplicity the U(2) gauge group. Then for the equation of the curve
(4.10) up to the second order in ¢ one has

y? = H ((Z—al)2—4qSl-|—...) =
=t (4.42)

= (z—a1)*(z — a2)® — 4q (S1(z — a2)* + S2(z — a1)*) + O(¢?)

and

%: (Z—alcjfz—az) <1+2q <(Z —51661)2 e —52&2)2)> +0le)
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One can also expand therefore (4.12) as d® = d®q + qd®; + O(¢?) with

dd, =2 (tm(z) - (ji ;lc)lzz—_a;)) ((z —521)2 i (z —522)2) -
2(S1 — S2)

(a1 —a2)(z — a1)(z — a2)

(4.43)

normalized to res,, d®; = res,,d®; = 0 (we restrict ourselves now for t'”(z) = 2ty with

only nonvanishing ¢1,t; # 0). Computation of residues of (4.43) at infinity gives

1
— 51"es.oo (z2d(1>1) = ai0a; + azdas + 571 + S

1 (4.44)
— gresoo (z3d(I>1) = a%dal + a%éag +2(a151 4+ a252)
Taking into account that (4.22) gives at linear order in ¢
1 OF| & dF
- e = | =) af e+ 4.45
Py [TeSo0 (z 1) oir |, ;al a; + ot ( )

where the first term in the r.h.s. arises as a contribution from the perturbative prepotential
(4.40) due to instantonic renormalization of the relation between the coefficients of the

curve (4.10) and the Seiberg-Witten periods as a; — a; + gda; with

1
a; — a2

da; = (2152 — ) Sy = resy, (zd®q)

(4.46)

day = (th + ) Sy = resg, (2d®)

a; — az

Comparing (4.45) with (4.44) and taking into account (4.46), one gets F; = 1 37, 5;, what
coincides with direct instantonic calculus. Higher coefficients of the instantonic expansion

of the quasiclassical tau-function can be obtained in a similar way.
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5. Eguchi-Yang picture

In 1994, T. Eguchi and S. Yang have proposed [17] the following matrix model:

Zn(t) = /DM exp Ntr (—2M (logM — 1) + ZtkMk> (5.1)
k>0

for the description of the type A CP?! topological string, in the stationary sector of Gromov-
Witten theory (some generalisations for other target spaces were studied in [38]). Their
proposal is more general, it includes the full phase space of the sigma model, i.e. the full
set of gravitational descendants of the cohomology of CP?.

One can easily relate the matrix model (5.1) to our variational problem (3.2). We shall
show that the proposal [17] is correct as far as the genus zero part of the topological string is
concerned, if one views (5.1) as the integral over the supermatrices of (N4|N_) x (N4|N_)
size.

Indeed, let us study the saddle point approximation to the matrix integral (5.1), in
the large N limit. As usual, we assume the eigen-values to form a distribution, with the
continuous density of the eigenvalues:

() = {tr 6 ( — M) (5.2)

The action of the matrix model (5.1) together with the contribution of the measure (the
Vandermonde determinant) combine together nicely to the following effective action func-

tional of p(z):

Vet [p] = 2/ § d:)sldzr:gp(asl)p(:vg)log(xl—xg)-i-/ dzp(z) (—Qx(log(a:) —-1)+ Zthk>

k>0
(5.3)

In the case of bosonic matrix model the density function p(x) is a non-negative function

on the real line which has a compact support. The obvious constraint for (5.2)

/ dxp(z) =1 (5.4)

can be enforced with the help of a Lagrange multiplier:

Verr[o] = Verrlo] — aP ( / dp(z) — 1)

37



The saddle point equation reads now:

2/ dzp(z)loglr — x| — 2z(log(x) — 1) + Zthk =aP, X € suppp (5.5)
k>0

Note that once we shift © — = — a, make an identification:

f'(x) = sgn(x) - p(a) (5.6)

and rescale the times ¢, and a” by an irrelevant here factor of 2%, the equation (5.5)
becomes equivalent to (3.2). It can be shown by integrating (3.2) by parts and choosing
the real branch of the logarithm function. However, the ”density” p(z) which corresponds
to the saddle point of (3.1) is not non-negative. For example, on the small phase space,
for a = 0,

p(x) = sgn(x) — %arcsin <2eitl> (5.7)

which has a jump at x = 0, where it goes from being positive to being negative. Note also
that for (5.7) obviously:

/ dz p(z) =0 (5.8)

(which is also consistent with (5.6) and (2.51)).

What could this negative density of eigenvalues possibly mean? The hint comes from
(5.8). Since the integral of the density of eigenvalues is proportional to the trace of unit
matrix, one can conclude that the "matrix model” corresponding to the original model of
random partitions (1.8) must have vanishing trace of the unit matrix. The natural venue
for such matrices is the supermatrix model (see, e.g. [39]), where the traces are replaced
by supertraces. For the (N4 |N_) x (N4 |N_) matrices the supertrace of a unit operator is

equal to N; — N_, which can be both positive and negative.

A B
M = (C D) , strM = trA — trD (5.9)

where A and D are Ny x Ny and N_ x N_ size hermitian matrices with bosonic entries,

respectively; B and C are fermion-valued Ny x N_ and N_ x N, dimensional complex

! The factor of 2 in (5.1) in front of the Eguchi-Yang term is a consequence of the fact that
matrix integral is rather related to the correlation function bilinear in fermions, cf. e.g. with
[19]. In particular, this is related to the fact that integration measure contains the square of the

Vandermonde determinant.
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matrices, B = CT. The only subtlety in the definition of the measure DM is the division
by the volume of the gauge group, which is done by the proper treatment of ghosts (both
bosonic and fermionic). The invariance of the measure and the action (which is the same
as (5.1) with the replacement Ntr — %Str, with the new ”supermatrix Planck constant”
h) is such that both A and D can be diagonalised:

A — diag(x7,. .. ,xj\'hr), D — diag(xzy,...,zy ) (5.10)

We can view (5.10) as a gauge-fixing condition. The corresponding Fadeev-Popov deter-

minant equals (note again its similarity with the (square of the) free fermion correlator):

_ N
<H1§i<j§N+ (@";r - x;r) H1§i<j§N_ (z; — L ))

= (5.11)
H1§i§N+ H1§j§N_ (%Jr - )

Now one can write for the density of eigenvalues (5.10):

Ny N_
p(z) =h Zd(w—xir) —Zé(az—x;) (5.12)

and consider it in the large N limit, i.e. when h — 0 as N4+ — 00, so that h/Nt are finite.
The logarithm of jacobian (5.11) plus the Eguchi-Yang action are still given by -5 Veg[p],
defined in (5.3), but the supermatrix density (5.12) is automatically subjected to (5.8)
upon Ny = N_, which can be re-expressed in terms of times of the Toda hierarchy. For
example, on the small phase space:

ANy — 2”7_2@“ , (5.13)

while in general:
hNi — |zt (t) — al (5.14)

It would be nice to investigate our supermatrix model further, perhaps extending the sad-
dle point correspondence to the exact relation between the h and Nii (or h)-expansions.
Perhaps it is worthwhile to study more general supermatrix models, with N, # N_. It is
also interesting to find out whether there is a relation of our supermatrix model and the
Dijkgraaf-Vafa matrix models, computing the superpotentials of N/ = 1 supersymmetric
gauge theories, as suggested in [1][3]. In this paper we have pointed out new features of
the matrix models possibly relevant for the A/ = 2 physics: the non-positivity of eigen-
value densities, which could be related to the block-matrix decompositions arising in the
perturbative matrix model calculations (cf. e.g. with [40],[41] where such decomposition

was performed for bosonic one- and two- matrix models).
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6. Conclusions and future directions

In this paper we have solved the long-standing problem of extending the prepotential
of the effective N’ = 2 theory to the ”large phase space”, obtained by turning on the chiral
perturbations

Acz/ d*0 t (®) (6.1)

where t is a gauge-invariant function. We have seen that for the single-trace perturbations
the resulting prepotential coincides with the Krichever tau-function of the quasiclassical
hierarchy. For the U(1) theory this is the Toda chain hierarchy. For the U(N) theory
this more general quasiclassical or universal Whitham hierarchy (in the sense of [6]) of the
Toda~chain type (i.e. it corresponds to hyperelliptic curve with two marked points Py ).
The derivation of the paper was based on a particular identification of the operators
(6.1) with some cohomology classes of the moduli spaces My, of gauge instantons, and
their continuation on the partial compactifications Mj,. For the gauge theory with gauge
group U(N) the compactification M}, is the moduli space of rank N torsion free sheaves
on X = CP? with the fixed trivialisation at the fixed complex line D = CP__ (this is also

a moduli space of noncommutative instantons [9]). The operator (6.1) of the form:

/ d*o tr ®* (6.2)
is identified with the k-th component of the Chern character ch(€) of the universal sheaf
E—- M xX

One can imagine other definitions of the ultraviolet observables (6.1). This discussion is
parallel to the discussion of the 2-observables in the two dimensional sigma models [10].
The integrable structure which we find with our prescription is very suggestive. Of course,
the arguments [42] which show that the moduli space of vacua of N/ = 2 supersymmetric
gauge theory is a base of an algebraic integrable system, based on electric-magnetic duality,
do not apply per se to the large phase space, spanned by the couplings ¢;. However, one
can think, at least formally, of them as coming from the degeneration of the standard
moduli space of vacua of the theory with larger gauge group, more matter and so on.
The appearance of quasiclassical hierarchies in the Seiberg-Witten theory was antici-
pated long time ago [4]. The program of studying the ”large phase space” of the Seiberg-

Witten theory was put forward in [7] and some proposals about corresponding integrable
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hierarchies were made in [4][8][43]. The subtlety of all these proposals is the contact term
ambiguity. In a sense it is a standard problem of reconstructing the ultraviolet theory
given the infrared one. We have shown in this paper, that the quasiclassical hierarchy,
in the basis of time-variables proposed by microscopic instanton theory, solves the ambi-
guity problem exactly in the way anticipated in [7]. For small k,[ the Losev-Shatashvili
polynomials can be also studied using the blowup techniques [7][44].

One should keep in mind the richness of physics which is related to the random partition
models of which we studied the thermodynamic limits: our results can be easily extended to
the five dimensional supersymmetric gauge theories (which means going beyond the small
phase space analysis of [23]) where they become the statements about the dispersionless
hierarchies governing the melting of the crystals with appropriate symmetries (thus gener-
alizing the work of [45]); the same fermion correlators and their dispersionless limits show
up in the physics of one dimensional electrons [46] (”physics of quantum wires”). Finally,
one may study more seriously the analogues of Douglas-Kazakov phase transition on the
large phase space, and also incorporate the multi-trace ultraviolet perturbations. We hope

to return to this discussion elsewhere.
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Appendix A. Partitions and Chern characters

Partitions and Young diagrams (the standard reference is [24]).

For each partition A (2.4), its size |A| = A1 + A2 + ...+ Ay, is a number of boxes in the
so-called Young diagram Y (), which is a geometric way to represent partition. The length
£y is the number of columns. Traditionally one draws Young diagrams as the collection of
rows of boxes, of the lengths A1, As, etc. Here we draw an example of the Young diagram,

for the partition A = (5,2) with £y =2, |\| =T:

and its profile function fy(z) defined in (2.5),

Profile of the partition 5,2

Fig.1

For partition A one introduces the dual partition X', whose Young diagram Y (\') is

obtained by exchanging the rows and columns of Y (A). For example, the partition,
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dual to (5,2), , is the partition
(2,2,1,1,1):

It is convenient to introduce a coordinate system, (7, j), on the Young diagram:

1<j<\<by,
(A.1)

1<i< N, <4y
The coordinate ¢ labels rows, from top to bottom, while the coordinate j labels columns,
from left to right. For example, the partition A = (5, 2) gets coordinatised in the following

way:

(1,1) | (1,2) | (1,3) | (1,4) | (1,5)

(2,1) | (2,2)

For the box with the coordinates (4, j), the hook-length is defined as: h(; ;) = A\i + A; —i —
j+ 1. In our example A = (5,2):

h’(l,l) - 6 h’(l,2) - 5 h’(l,3) - 3 h(174) - 2 h(175) - 1

h(271) — 2 h(272) — 1

Finally, the Plancherel measure, which appears in (1.8), (2.11) is just the product of the
hook-length’s

Ly —1)! )\i—/\j-i-j—i )\—)\ +7—
. H— [[ MNtizioq (A2
he (Ex + A —i)! 1<i<j<iy Jt i<j g1

In our example:

1 -0 4 4789101112

MG =177 9.2.3.5.6 6l-20 1 123456 7 123"
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Chern characters.
The Chern character of the partition A is a generating function for the symmetric functions

of the eigen-values \; — i:

> 1. Mu > 1.
Ch)\(M, u) _ Zeu(M+§—z+)\i) _ e%e_T + Zeu(M+§—z)(eu>\i . 1) —
i=1 i=1
1 M? 1
- 2 aM - .
u+ +u<2 24+|)\|>+ (A.3)
ey U MM+ A 20+ 1)) +
- - — '3 T (A o e
2 3 12 -

the second equality being valid when Reu > 0. In the gauge theory the main object is
the Chern character of the “universal sheaf” &£, which is related to (A.3) in the following
simple way:

hu hu

hu  _hu a
ch(&) = (e 2 —e 2 )chA (%,hu> =
_ L ua _ —uh uh(1—1) ( uhX; _
=e <1+(1 e )Ze (e 1)) (A4)
-y Y
= k!
It is the components chy(a, \) of Chern character (A.4) that enter the formula for the

statistical weight of the partition A in the ensemble (1.8). For example:

chg(a, \) =
chy(a,\) =
chy(a, \) = a? + 2h%| )| (A.5)
chs(a, \) = a® + 6h2a|)| +3h3z>\ +1—2)
One can also write for the Chern characters
chi(a,A) = a® + ) ((a+n(N —i+1)F = (a+h(X — )" -
i=1
— (a+h(1 — i)+ (a — hi)F) = (A.6)

f: ((a+h\ —i+1)" = (a+ A\ —1i))
=1

which is useful to make link with the fermionic formalism.
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