BOUNDEDNESS OF NON-HOMOGENEOUS SQUARE FUNCTIONS AND L4
TYPE TESTING CONDITIONS WITH ¢ € (1,2)

HENRI MARTIKAINEN AND MIHALIS MOURGOGLOU

ABSTRACT. We continue the study of local T'b theorems for square functions defined in
the upper half-space (R’;™", pu x dt/t). Here y is allowed to be a non-homogeneous mea-
sure in R™. In this paper we prove a boundedness result assuming local L? type testing
conditions in the difficult range ¢ € (1, 2). Our theorem is a non-homogeneous version of
aresult of S. Hofmann valid for the Lebesgue measure. It is also an extension of the recent
results of M. Lacey and the first named author where non-homogeneous local . testing
conditions have been considered.
1. INTRODUCTION

We study the boundedness of the vertical square function

Vi) = ( | s ‘f) "

Here the linear operators 6;, t > 0, have the form

(8 0 (@) = [ sile,)(0) duty).

The appearing measure p is a Borel measure in R™ which is only assumed to satisfy, for
some m, the upper bound
p(B(z,r)) ™, xR r>0.

Moreover, for some a > 0, the kernels s; satisfy the size and continuity conditions

to
1.2 <
( ) |St(xay)| ~ <t+ ‘.’IJ - y‘)m+a
and
ly —2|*
1.3 ) — se(@,2)| S
( ) |5t(x y) St(l‘ Z)‘ (t + |l‘ - y|)m+a

whenever |y — z| < t/2.
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The following is our main theorem.

1.4. Theorem. Let q € (1,2) be a fixed number. Assume that to every open cube Q C R™ with
p(0Q) = 0 there is associated a test function bg satisfying that

(1) sptbg C Q;
@) Jobodu = u(Q)
3) ||bQ||qu(u) S (@),

4
/Q(/Oa@ IetbQ(oc)IQCff)Q/2 du(z) < Q).

Then for every p € (1, q| we have that

IVIIze(uy—rr () S 1+ Vioc,qs

Vioeqg = [s,gp M(lQ) /Q ( /Oacz) b (x”?it)q/z d,u(:v)r/q

and the implicit constant depends only on n, m, q, p, the kernel constants and the constant in the
testing condition (3).
Suppose we, in addition, have the x-continuity of the kernels s, i.e.,

where

|z —2|*
15 ) — si(m )| <
(1.5) |st(z,y) — se(2z,y)| S T ypte

whenever |x — z| < t/2. Then for every p € (1, c0) we have that

IV o ()= () S 1+ Vioeg-

After some reductions the proof boils down to proving the L? estimate for p = q.
However, the conclusion of the theorem for p = 2 under z-continuity can be considered
to be the main point. As such it is an extremely general form of a local 7T theorem
with non-homogeneous measures and non-scale-invariant L'*¢ type testing conditions.
It should also be noted that an example from [23] shows that when dealing with the
vertical square function (as we are here) one cannot derive the L?(;1) estimate from the
L9(p) estimate without z-continuity. This fails even in the case that y is the Lebesgue
measure.

Hofmann [11] proved the L? boundedness of the square function under these local
L1 testing conditions (and z-continuity) in the case that y is the Lebesgue measure. Our
proof in this general context is completely different, and we find it necessary to first work
directly in L9(u1) rather than in L?(y). To this end, we need to begin by establishing that

1 HQ) dt\a/2 1/q
< 227
IV lsag-sza0 S 1+ 500 | /Q ( /0 O@PT)" du(@)] .

We will then bound this Carleson norm of L? type by Vi, ,. Hofmann, however, uses a
T1 in L? and bounds, by a clever argument, a Carleson norm of L? type by a Carleson
norm of L9, ¢ < 2, type. We find his argument to be specific to the doubling situation.
Our strategy has the additional bonus of giving the L? result without z-continuity.

We also rely on and extend the very recent non-homogeneous twisted martingale
bounds by Lacey and one of us [18]. On the other hand, we develop an L? analog of
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the good Whitney averaging trick first used by us [22]. Lastly, we make extensive use of
the LP, p # 2, techniques, including Stein’s inequality. The complete outline of the proof
is given in Subsection

Very recently Lacey and the first named author [19] managed to prove the L? bound-
edness in the non-homogeneous case but only with local L? testing conditions. Our main
theorem is an extension of these two state of the art results [11]], [19]. Indeed, we con-
sider general measures and general exponents simultaneously. The aforementioned two
references are the most obvious predecessors of our main theorem, but the whole story
up to this point is rather long.

One can consider T'b theorems at least for square functions and Calderén-Zygmund
operators. Then they can be global or local. And if they are local, they can be with
the easier L>°/BMO/T?> type testing assumptions, or with the more general L?, s <
0o, type assumptions. Moreover, in the latter case the range of the exponents (in the
Calder6n—-Zygmund world more than one set of testing functions appear) one can use is
a very significant problem. Lastly, the fact that whether one considers the homogeneous
or non-homogeneous theory is a major factor. All of these big story arcs are relevant for
the context of the current paper. We now try to give at least some of the key references of
local T'b theorems.

The first local T'b theorem, with L> control of the test functions and their images, is
by Christ [7]]. Nazarov, Treil and Volberg [24] proved a non-homogeneous version of this
theorem. The point compared to the global 7'b theorems is as follows. The accretivity of a
given test function b is only assumed on its supporting cube Q, i.e., | [, obodul 2 n(Q).
While in a global T'b one needs a function which is simultaneously accretive on all scales.
But the remaining conditions are still completely scale invariant: bg € L>(p) and Thg €
L*>(). This scale invariance of the testing conditions is the main thing one wants to get
rid of.

The non-scale-invariant L* type testing conditions were introduced by Auscher, Hof-
mann, Muscalu, Tao and Thiele [3]. Their theorem is for perfect dyadic singular in-
tegral operators and the assumptions are of the form fQ |b%2|p < Q) fQ \bQQ\q < Q)
fQ \Tbé2|‘1/ < Q| and fQ \T*b2Q|p/ S QL 1 < p,g < co. Extending the result to general
Calder6n—-Zygmund operators is complicated (it is almost done by now — but not com-
pletely). Hofmann [10] established the result for general operators but only assuming
the existence of L€ test functions mapping to L?. Auscher and Yang [5] removed the ¢
by proving the theorem in the sub-dual case 1/p + 1/q < 1. Auscher and Routin [4] con-
sidered the general case under some additional assumptions. The full super-dual case
1/p+1/q > 1is by Hytonen and Nazarov [17], but even then with the additional buffer
assumption [, Tb|? < |Q| and J2o IT*03 " < 1Q)-

This was the main story for the Calderén-Zygmund operators for doubling measures.
For square functions the situation is a bit more clear with the need for only one exponent
q. The case ¢ = 2 is implicit in the Kato square root papers [2,[12,13] and explicitly stated
and proved in [1] and [9]. The case ¢ > 2 is weaker than this. The hardest case ¢ € (1, 2)
is due to Hofmann [11] as already mentioned. Some key applications really need the fact
that one can push the integrability of the test functions to 1 + ¢ (see again [11]).

The non-homogeneous world is yet another story. The whole usage of these non-scale-
invariant testing conditions is a huge source of problem in this context. One reason lies
in the fact that even if we have performed a stopping time argument which gives us that



4 HENRI MARTIKAINEN AND MIHALIS MOURGOGLOU

a fixed test function by behaves nicely on a cube Q, for example that [, olb r?dp < u(Q),

we cannot say much what happens in the stopping children of @). That is, in a stopping
child @’ of @ we cannot use the simple argument

/ b ds < / bl du < (@) < (@)
Q’ Q

which would only be available if ; were doubling. The non-homogeneous case ¢ = 2
for square functions is the very recent work of Lacey and the first named author [19].
The case p = ¢ = 2 for Calderén-Zygmund operators is by the same authors [18]. For
relevant dyadic techniques see also the Lacey—Véhikangas papers [20,21] and Hytdnen—
Martikainen [16]. To recap the context, in this paper we consider non-homogeneous
square functions and push ¢ to the range ¢ € (1,2).

We still mention that the study of the boundedness of non-homogeneous square func-
tions was initiated by the recent authors in [22]. This was a global 7'b. The key technique
was the usage of good (in a probabilistic sense) Whitney regions. A scale invariant lo-
cal T is by the current authors together with T. Orponen [23]. In that paper we also
study the end point theory, L theory, and various counter-examples (e.g. the failure of
the change of aperture with general measures and the difference between conical and
vertical square functions).

1.1. Outline of the proof. Let us give a brief point-by-point outline of the proof:
(1) We prove a T'1 in L9(u) which states that

IV La(uy—raguy S 1+ Cary (g, 10),

where

Carv(a,10) = s [ | ([ " ao@rY) " auw)

(2) Using the above we reduce to bounded functions |f| < 1 in various martingale
estimates. This is key for us. Indeed, we need to be able to control norms of the

type
(S iure)”
k

where the (twisted) martingales A, are constructed (in a dyadic grid) via stopping
times from the test function bg. This is very delicate with general measures and
such general test function. Indeed, estimates of this type have only very recently
been established by Lacey and one of us [18] in the ¢ = 2 situation.

(3) Sufficient control of such martingales for bounded functions is then achieved by
a non-homogeneous John-Nirenberg type argument. This generalises the argu-
ments in [18] from the L? case to the LY case.

(4) The estimation of Cary (g, 10) by Vi, 4 starts by a probabilistic good Whitney aver-
aging argument in L9. This requires some rethinking compared to the ¢ = 2 case
of [22]]. Essentially, we fix an arbitrary cube Qo C R™ with side-length ¢(Qo) ~ 2°
and an arbitrary function f with |f| < 1g,. The good Whitney means that we

La(p)
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reduce to bounding

U(R) dt\a/2 1/q
[ (X w@ [ @k )" due)]
@ o, “R)/2
(R)<2s

by C(1 + Vioe 4)(10Q0) /9, where D is an arbitrary fixed dyadic grid.

(5) We then expand f = _o.p Aq f using the constructed twisted martingales. This
sum is not restricted to good cubes. Still, the existence of common dyadic parents
of @ and R of controlled size is needed. This is because the L9, ¢ # 2, theory
requires the usage of Stein’s inequality, and the needed martingale structure is
constructed via these common ancestors. But only the goodness of R is used
for this (and for multiple other bounds). This is special to the square function
case and is a massive technical simplification: we avoid showing that twisted
martingale decompositions restricted to bad cubes would be, on average, small
in the L? norm, and our paraproducts readily collapse (see Remark 4.1 of [16] and
Remark 2.14 of [21]).

(6) After completing the estimation of various series we conclude the p = ¢ case
of our theorem. The general case is achieved by the non-homogeneous vector-
valued theory of Calderén-Zygmund operators by Garcia-Cuerva and Martell
[8].

We conclude the introduction by additional notes, which are collected to the following
remark. This can be safely skipped in the first reading. We then indicate, as an extremely
brief example, an interesting connection of square functions to geometry. After that we
set up some notation.

1.6. Remark. The estimate ||V|| o) ra(u) S 1+ Vioc,q can be proved assuming only that
w(B(z,r)) < Az, r) for some A: R" x (0,00) — (0, 00) satisfying that r — A(x,r) is non-
decreasing and A(z, 2r) < CyA(z,r) for all z € R™ and r > 0. In this case one only needs
to replace the kernel estimates by

ta
ta/\(x7t> + ’fI,' - y’a)\(xv ‘LL‘ - y’)

[se(z,y)] S

and

ly —2[*
$7t> + ’x - y|o¢)\(a;’ "T - y’)
whenever |y — z| < t/2. This is done in the global situation in [22]. Here we skip the
required modifications. Such formalism lets one capture the doubling theory as a by-
product, and allows some more general upper bounds than ™.

We also point out that the assumption (1), i.e. sptbg C @, is not necessary. But then
one does need to understand that the assumption (3) reads [, |bo|?du < 1(Q). A care-
ful reader can see that everything goes through as written except that Section |8 requires
some small technical modifications. One can assume that the dyadic grid D one is work-
ing with has the following “no quadrants” property: Whenever I, € D, k € N, is a
strictly increasing sequence (meaning that I, C Ij41) of dyadic cubes, then this sequence
exhausts all of R" (meaning that | J, . [x = R"). One can assume this since almost every
random dyadic grid is such. Then it is easy to see that Lemma [8.2| remains true. This is
almost everything one needs to change in the proof, we leave the details as an exercise.

su(.9) = su(w, )| £ gy
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Let us also make the standard remark that the assumption (2) can be replaced by
| o bqdu| 2 p(Q). One then just considers the scaled test functions

b — Q)
¢ beQdM

1.7. Example. We briefly point out an interesting connection of the boundedness of square
functions (our topic) and geometry. Let £ C R" be a closed set which is m-ADR for
some integer 0 < m < n, i.e., u := H™|p satisfies pu(B(x,r)) =~ r™ for all z € E and
r € (0,diam(E)). Instead of going through the extensive literature of uniformly rectifi-
able sets we content by just citing the very recent result of Chousionis, Garnett, Le and
Tolsa [6]]. Let s¢(x, y) = t0;[t ™ ¢([x — y]/t)], where $(z) = (1 + |=|?)~(™+1)/2, This kernel
satisfies (1.2), and (L.5). Let V be the corresponding square function. One of the
results of [6] says that £ is uniformly m-rectifiable (for the definition see [6]]) if and only
if V is L?(p) bounded.

Notation. We write A < B, if there is a constant C' > 0 so that A < C'B. We may also
write A ~ Bif B < A < B. For a number a we write a ~ 2% if 2F < g < 2F+1,
We then set some dyadic notation. Consider a dyadic grid D in R™. For Q, R € D we
use the following notation:
£(Q) is the side-length of Q;
d(Q, R) denotes the distance between the cubes ) and R;
D(Q,R) :=d(Q, R) + ¢(Q) + £(R) is the long distance;
Wo =Q x (((Q)/2,¢4(Q)) is the Whitney region associated with Q;
ch(Q) ={Q € D: Q' CQ,UQ") =Q)/2};
gen(Q) is determined by ¢(Q) = 28°"(@);
e Q%) € Dis the unique cube for which E(Q(k)) =2M(Q)and Q C Q®);
o (o= Q) [, fdn

2. REDUCTIONS AND START OF THE PROOF

bg

2.1. Reduction to the case p = ¢q. Suppose we have proved the bound ||[V[| o (u)—ra(u) S
1+ Vioc 4 already. Define A = Cand B = L?((0,00),dt/t). Let K: R* x R" — B = L(A,B)
be defined by

K(z,y) = [t = su(@,y)];
and let T': L9(p) = LY (n) — Lf (1) be defined by

Tf) = [ K@) i@ duly) = [t = 01w

It is not hard to see that .
1Kz 9)le S 77
|z —y|™

and

y—z a/2
1K (o) = K@)l % ly — 2 oy — 2| <o —yl.

@ — y|mre/2’
The non-homogeneous vector-valued theory of Calderén-Zygmund operators by Garcia-

Cuerva and Martell [8] yields that HTHL,,(#)_)Lg(#) S 1+ Vigeq for p € (1, ¢]. If we have
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the z-continuity of the kernels s;, then we also have that

K@) - Kepls s 227 s <oy
’y ’y BN|x_y|m+a/27 - y'

The bound ”THLP(/J,)—}IJg(,LL) < 14 Vige,q holds for all p € (1, 00) in this case. Since we have
that ||Tf||L§(M) = |V fllzr(n), the LP theory of V' follows from the p = ¢ case.

2.2. Reduction to a priori bounded operators V. In this subsection we say the follow-
ing. Suppose we have proved the L9(y) bound of Theorem i.e., the quantitative
bound ||V ra(y—re(u) S 1+ Vioe,q under the additional a priori finiteness assumption
IVl £a(u)—ra(u) < oo. Then the L9(u) bound of Theorem [1.4{automatically follows with-
out the a priori assumption.

To this end, define si(x,y) = s;(x,y) if 1/i <t < i, and s(z,y) = 0 otherwise. These
kernels are clearly in our original class — they satisfy and with kernel constants
bounded by those of V. Define

Vif(a) = ( / / 07 ()P Cff) e ([Teirer ) "

0if @) = [ i) £0) duty).

Let us note that the V; are bounded operators on L9(u). Let

1
Mfa::sup/ fldu(y).
a < ) r>0 [,L(B(JZ,T)) B(x,r)‘ ’ ( )
This centred maximal function is a bounded operator on LP(u) for every p € (1,00).
Notice that |6, f(z)| < M, f(x) for every t > 0 and = € R". Using this we see that

Vil Lagu)—Lagey < [2108 ]2 ([ Myl Loy —s Lagu) < 00
By monotone convergence we have that

where

IV oo = Jim [1Vifllza

< Timsup [|Vi| o) Lo () [ 1 o)

1—00

< limsup(1 + ‘/]éc7q)‘|f||Lq(“)

1—+00
< (1 + Vioc,q)HfHLq(,u)'

So it suffices to prove Theorem 1.4/ under the assumption ||Vl pa(,)—ra(u) < 00 —a piece
of information that will be used purely in a qualitative way.

2.3. Reduction to a ¢g-Carleson estimate. We begin by stating a 7’1 in L7(u) (the case
q = 21is in [22])). The proof of this T'1 is indicated in Appendix[A] Define, say for A > 3,

Cary (g, ) := sgp [M()\IQ) /Q </04(Q) |0t1Q($)|2dtt)q/2 du(a:)} Ha

Iu()l\Q)/Q(/Oe(Q) fetl(x)‘Q%)q/zdu(x)r/q,

and

Cary (g, A) := sup {
Q
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Here the supremums run over all the open cubes ) C R". Then, for g € (1, 2], we have
that there holds that

2.1) IVl o) 2aguy < Cr(1+ Cary(q,30)) < Co(1 + Cary (g, 10)).
Assuming the existence of the L9 test functions as in Theorem [1.4]we then prove that
(2-2) Cal"V((L 10) < 03(1 + Vioqq) + 0271||V||Lq(u)—>Lq(u)/2'

We call this the key inequality. Combining and gives that

IVl La(y—rau) < C1 4 Vioe,q) + IV La(uy—ra(u)/2

ending the proof.
We will now start the proof of the key inequality (2.2). This task is completed in Section
In Appendix[A]we indicate the proof of the T'1 theorem in L%(y), i.e., the first estimate

of 2.7).

3. RANDOM AND STOPPING CUBES/ MARTINGALE DIFFERENCE OPERATORS

3.1. Random dyadic grids. At this point we need to set up the basic notation for random
dyadic grids (these facts are essentially presented in this way by Hytonen [14]).

Let Dy denote the standard dyadic grid, consisting of all the cubes of the form 2¥(¢ +
[0,1)"), where k € Z and ¢ € Z". We also denote Dy, = {Q € Dy : £(Q) = 2*}. A generic
dyadic grid, parametrized by w € ({0,1}")%, is of the form D(w) = UpezDy(w), where
Di(w) = {Qo + zx(w) : Qo € Doy} and zp(w) = 2j<k w;27. The notation Qy + w :=
Qo+ >k w;27, Qo € Dy, is convenient. We get random dyadic grids by placing the
natural product probability measure P, on ({0,1}")Z (thus the coordinate functions w;
are independent and P,,(w; = n) = 27" if n € {0,1}").

We fix the constant vy € (0, 1) to be so small that

vy<a/(2m+2a) and my/(1—7) < a/4,

where o > 0 appears in the kernel estimates and m appears in u(B(z,7)) < ™. A cube
R € D is called D-bad if there exists another cube ) € D so that £(Q)) > 2"¢(R) and
d(R,0Q) < L(R)74(Q)'™7. Otherwise it is good. We denote the collections of good and
bad cubes by Dgooq and Dpag respectively. The following properties are known (see e.g.
[14]).

e For a fixed Qo € Dy the set Qy + w depends on w; with 2/ < £(Qo), while the
goodness (or badness) of Qo + w depends on w; with 2/ > ¢(Qy). In particular,
these notions are independent (meaning that for any fixed @y € Dy the random
variable w > 1gooc1(Q0 + w) and any random variable that depends only on the
cube Qg + w as a set, like w — f Qotw f dp, are independent).

e The probability mgooq := Pu(Qo + w is good) is independent of Qg € Dy.

® Thad := 1 — Mgood < 277, with the implicit constant independent of r.

The parameter r < 1is a fixed constant which is at least so large that 2r(1=7) > 100.

The following lemma is stated without proof since the first part was proved on page
25 of [15] and the second is lemma 2.10 of [20]].

3.1. Lemma. Let Q € D and R € Dyyoq, and set 0(u) := h“fvﬂ, u € N,
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(1) Assume £(Q) < €(R). Let {(R)/¢(Q) = 2° and D(Q,R)/{(R) ~ 27 for £ > 1 and
j > 0. Then, there holds that

R C QUHI+0G),

(2) Assume ((R) < £(Q). Let £(Q)/¢(R) = 2 and D(Q, R)/4(Q) ~ 27 for £,5 > 0. Then
there holds that
RcC Q(j+9(j+f))_

3.2. Collections of stopping cubes. Let D be a dyadic grid in R" for which p(0Q) = 0
for all € D. It will be enough to work with such dyadic grids since for almost every
w € ({0,1}")% there holds that D = D(w) satisfies this property. For Q € D we may now
set bg := biny(), where the latter function exists by assumption. Now also b satisfies the
assumptions (1)-(4) listed in Theorem

Let Q* € D be a fixed dyadic cube with £(Q*) = 2°. Set fg* ={Q*} and let ]-"é* be the
(disjoint) collection of the maximal cubes @) € D, Q C Q*, for which at least one of the
following two conditions holds:

D) [bo+)al <1/2;
(2) {|bg+|7)q > 271 A7,

Here A is a constant such that ||b RH%Q(“) < Ap(R) for every R.

Next, we repeat the previous procedure by replacing Q* with a fixed @ € .7-"(}2*. The
combined collection of stopping cubes resulting from this is called F3.. This is continued
and we set Fo: = U;io Fo.. Finally, for every @Q € D, Q C Q*, we let Q* € Fg- be the
minimal cube R € Fy+ for which Q C R.

3.2. Lemma. If F € FJ,. for some j > 0, then there holds that

1 A
. < —1_ =
seFit!
SCF

Proof. Let F € Fq+. Consider a disjoint collection {Q}!}; C D for which Q} C F and
|(br) 1| < 1/2. We have that

M(F):/FdeM:/F\UZ.Q;deM+;/ngFd#
Su(F\LiJQ}>1/QI</F!bF\qdu)l/qu;;MQ%)
< aau(FAJQ!) " e L),

which implies that

u() < ) p(FyJet) = S [ - (U]
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Therefore, we obtain

u(LiJQ}) < <1 - (Q:;Q,)M(F)-

Next, we consider a disjoint collection {Q?}; C D for which Q7 C F and (|br|?)g2 >
2¢'+1 A9, Then, one may notice that

! / ]. A
) <2 [ eltdu < 5 tn(e)
M(L;JQZ)_ | brldp < 5 s )
Combining the analysis we conclude that (3.3) holds. O

The next lemma follows.

3.4. Lemma. The following is a Carleson sequence: ag = 0 if Q is not from |J; FL., and it
equals pi(Q) otherwise. This means that - aq < u(R) for every dyadic R.

We now state the classical Carleson embedding theorem.

3.5. Proposition. Given a Carleson sequence (Ag)gep we have for every f € LP(u), 1 < p <
oo, that

> {Nel?Aq < CllF I

QeD

3.6. Remark. Note that ¢ is always reserved to be the fixed index ¢ € (1,2) appearing in
the testing conditions.

The next proposition is a Carleson embedding on L” (1), where the Carleson condition
itself depends on p. This kind of Carleson is also well-known, of course, but we state and
prove this general version here for the convenience of the reader.

3.7. Proposition. Let D be a dyadic grid in R" and p € (1, 2] be a fixed number. Suppose that
for each Q € D we have a function Aq satisfying that spt Ag C Q and

68 Canl(Aodoen) = (s o [ [ 3 140)]” () " < o

ReD #

QeD
QCR
Then we have that
p/2 Pl £IIP
(39) [ 13 halla@P] ™ dute) < Cary((Aa)aen) |11,

QeD



BOUNDEDNESS OF NON-HOMOGENEOUS SQUARE FUNCTIONS 11

Proof. For each fixed j € Z let (R;), denote the maximal R € D for which |(f)r| > 2/. We
have that

p/2
JADEEREE D= [[E X ePitel)?]" dutz)
QeD JEZ QED
(fql~27

S22 3 0@ duta)
JEZ i QeD
QCPJ.

p/2
DRDY | [ 1ae@P]” dute)
JEZL R; * Qep
QCR‘

< Car,(Aghoen) 3 2| RY)
JEL i

< Carp((AQ)QeD)pZ2pj“({M/?f > 2j})
JEZ

~ Carp((AQ)gen)” M7 FI

< Cany((AQ)aen) /1,

where the last estimate follows form the LP(u) — LP(u) boundedness of the dyadic
Hardy-Littlewood maximal operator ME. In the proof we also used the assumption
p € (1,2] simply via the fact that (a +b)? < a” +b” fora,b > 0 and ~y € (0, 1]. O

3.3. Twisted martingale difference operators and square function estimates. If () € D,
Q C Q*, and f € L (1), we define the twisted martingale difference operators

v [ Yle (o
Aof = _\er b 11
’ Qedn(@) [<b(@>a>@f @™ hoa)g Q} Q-

Note that on the largest Q* level we agree (by abuse of notation) that Ag- = Eé’?* + Ag+,

where Eg*f = (f)q+bg+. Therefore, we have that [ Agfdu = 0if Q@ C Q*. We also
define .
Af=A7f= 3 Agf
QRED:QCQ*
Notice thatif /(Q*) = 2°, then k < s, thatis, only cubes inside the fixed Q* are considered.
We now state some lemmata which contain the square function estimates we need in
our proof. The first one was proved by Stein on page 103 of [25]:

3.10. Lemma. Let (M,v) be a o-finite measure space and let 9t denote the family of measurable
subsets of M. Suppose that F1 C Fo C ... is an infinite increasing sequence of (o-finite) o-
subalgebras of M. Let Ey, = E(-|F},) denote the conditional expectation operator with respect to
Fi. Assume that { fi.}r is any sequence of functions on (M, v), where f, is not assumed to be
Fi-measurable, and let (ny,)y, be any sequence of positive integers. Then there holds that

0 ), <A (S 1<
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where A, depends only on p.

The proof of the next lemma is quite hard. It was proved by Lacey and the first named
author [18] (but only in L?(u)).

3.12. Lemma. Suppose F' € Fg« and f € Li(u). Suppose also that we have constants €g,
Q € D, which satisfy |eq| < 1. Then there holds that

| 2 catat|,ug, 1415

Q=F

We don’t need the full strength of this. Therefore, instead of using it we will give a
somewhat simpler proof in the |f| < 1 case, which is the only thing we will need. This
also contains the modifications needed in the ¢ # 2 case.

3.13. Lemma. Suppose F' € Fg- and | f| < 1. Suppose also that we have constants eg, @ € D,
which satisfy |eq| < 1. Then there holds that

(3.14) H 3 EQAQf)
QeD

Qo=F

S u(F).

q
La(p)
Proof. For the fixed F' € Fg+, we let j € N be such that F' € ]:é* and define H = Hp =
{H € fg-;[l : H C F'}. For a cube @ € D for which Q* = F we set

_ Ne ey,
Daf = 2 [<bF>Q' (bF>Q}1Q

Q'Ech(Q)\H
The initial step is that
q q
| > conaf|),  SUP1ENG + ||| o c@Dos|
Gep La(p) “ >0l 557, La(p)
Q=F Qe=F
UQ)>e
This works exactly as in [18], proof of Proposition 2.4.
The second step is to show that
p
(3.15) sw| > eqDof||| SuF),  1f1<1pe(0,)
>0 5p L ()
Q=F
L(Q)>e

The argument we will next give shows that for (3.15) it is enough to show that for a fixed
s € (0,00) but for all P € D there holds that

S
(3.16) sup | > EQDQf‘ HLS( : < Ciu(P).
>0 gep.@cp "
Qi=F
U(Q)>e

Consider a fixed function f for which |f| < 1. Let us define the function g =
CylegDof, if Q* = F, and g = 0 otherwise. Notice that leQllroe(n < 1if Co > 4.
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Notice also that ¢ is supported on @ and constant on the children @’ € ch(Q). For
P € D we define

dp ::sup) Z gpQ‘:CSlsup Z eQDQf‘.
>0 >0

QeD QeD: QCP
QCP Qe=F
L(Q)>e LQ)>e

Suppose we have (3.16) with some s and for all P. Then for all P € D we have that

u{x € P: @p(x) > 1}) S/P‘I)spd,u:CQ_S

sup Z eQDQf‘ ‘ ’

>0 hep ok L (p)

< Cy°Chu(P)
< u(P)/2,

if Cy > 011/821/3. So let us fix Cy large enough.
The non-homogeneous John-Nirenberg principle (see e.g. Lemma 2.8 of [18]) now
tells us that for every P € D and ¢ > 1 there holds that

p({z e P:®p(x) > t}) < 27ED/2,(P).

But then we have for every p € (0,00) and P € D that

p
(3.17) s S obof|[!, S [ #hdusup)
e>0 QeD:QcP H P
Qi=F
LQ)>e

With the choice P = F we have (3.15).

So we have reduced to showing with some exponent s € (0,00) and for all
dyadic cubes P € D. We will first do this with f = 1and s = 1/2, i.e., we will prove that
for every P € D there holds that

1/2
/ [sup Z eQDQlu dp < p(P).
P te>0 QeD

a=F,QCP

£(Q)>e

Let us write

1 1 (br)g — (br) g n [(br)q — <bF>Q’]2‘

(br)gr (br)q br) (br)Q* (br)
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Define &g := eg/(br)%, Q* = F. Note that |¢g| < 1, and then that
Q Q Q Q

~ 1/2
P e QeD Q'cch(Q)\H
Qa=F,QCP
{Q)>e
B B 1/2
<uP) Y sup| N g Y [(bee — (br)glle
0 La(u)
> QeD Q'ech(Q)\H
Q*=F,QCP
LQ)>e

< p(P) YO 1pbp| ) S u(P),

The penultimate estimate follows from Corollary 2.10 of [18] (with p = ¢). For the last
inequality we have the following explanation. It is trivial if F N P = ) or F C P. Oth-
erwise, we may assume that there is a Q) for which Q* = F and Q C P C F. But then
P*=F.

The exponent s = 1/2 is more useful now when we are dealing with the second term:

/P[sup Z €Q Z [(br)q — <bF>Q/]21Q/H1/2 du

2
>0 QeD Q' ech(Q)\H (br)Q™ (br)qy
a=F,QCP
YQ)>e
1/2
S / > 1a5ebe)] T dp
P~ Qep
< (P)lfl/qH[Z IAS (1pb )‘2]1/2’
= QU La(u)

QeD
S (P Y 1pbe| Loy S #(P).
Here
of = 2 e —{Nelle
Q'ech(Q)
is the classical martingale difference. So we have proved (3.16) with s = 1/2and f =1
for every P € D. That means that for f = 1 we have (3.17) with every p € (0, 00) and
PeD.

Consider now a function f for which |f| < 1. Using the above special case we will
now prove (3.16) for every P € D with s = 1. Let us write

(No (e {<f>Q’ (e }+{<<f>c2’ <f>cz'}

(br)qgr (br)q (Orig  (br)q brigr (br)q
1
(3.18) = <bF>Q{<f>Q' —(Ha}
619 Ao - N 550~ e )
1 1
(3.20) + <f>Q{ <bF>Q’ - <bF>Q }
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The terms (3.18)-(3.20) give us the corresponding decomposition
QDo f = AL f + QAL f - Dol + €5 Dgl,

where Af, is the classical martingale defined above, ACQ is the stopped classical martin-
gale

of = > [hae —(Halle:

Q'ech(Q\H

and the bounded constants ¢;, and €7, are defined by

1 _ € 2 _
€ = br)g’ €o = c{fq-

The first term can be bounded by Hoélder (say with p = 2) and using Corollary 2.10
of [18] (with p = 2). The rest exploit the special case f = 1. The second term can be
bounded by bringing the absolute values in, using Holder to the sums with p = 2, and
then using Holder in the integral with p = 2. Here one needs with f =1and p = 2.
The last term is just with f =1 and p = 1. We are done. O

In the | f| < 1 case we can get rid of the assumption Q* = F' as follows:
3.21. Proposition. Let |f| < 1. Then there holds that

q

S @)

La(p)

I(5 8
k

Proof. By Khinchine’s inequality there holds that

(52 18018) ), [ enes

where (¢j)kez is a random sequence of Rademacher functions, i.e., a sequence of inde-
pendent random variables attaining values +1 with an equal probability P(e, = 1) =
P(er, = —1) = 1/2. If we set g = e, when Q) € Dy, we have that

[ 52 8t = >

k QEDR:QCR* QRED:QCR”

S| X e, )"

j=>0 Fe]—"é* QeD:QCR*
S (X wm) " su@
7>0

La(uxP)’

ZA

Qe=F
efJ

where the second-to-last inequality follows from (3.14) and [dP = 1, and the last one
from (3.3). O
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4. REDUCTIONS TOWARDS THE PROOF OF THE KEY INEQUALITY

We will estimate the quantity

([ r@r)” )

for an arbitrary fixed cube )y C R™ and for an arbitrary fixed function f satisfying that
|f| < 1g, (the choice f = 1g, would suffice). Let s be defined by 257! < ¢(Qo) < 2°.

4.1. Reduction to a dyadic setting of good geometric data. For a fixed w € ({0,1}")%
and xz € Q9 we have that

£(Qo) {(R)
/0 0@ % < Z e / 07 @) %

ReD(w {(R)/2
E(R)§2S

Recall the constants from (2.1). To prove (2.2) we note that by above it is enough to prove
that

U(R) dt\a/2 1/q
2
(A1) By /R 1o, <x>(Re§D(jw) 1(x) /Z I @F ) duta)]
U(R)<25

can be bounded by

[C3(1 + Vioe,g) + Co IV || L) s Lag) /2] 1(10Q0) /1.

And here we may take the average over only those w for which there holds that D(w)
satisfies that ;1(OR) = 0 for every R € D(w). This is because almost every w is such.
We can estimate the quantity in by

Ew[/R" 1Q0(x)( S la) /;;R/L |0tf(g;)|2%)q/2 du(x)} 1/q

RED(w)good )
O(R)<2s
{(R) dt\ a/2 1/q
B [ 0@ X e [ @R ) )]
R RED(w)pad UR)/2
O(R)<2s

It is actually only now that these quantities inside the average really start to depend on
w! Using Eg® < (Eg)® for a € (0, 1], we see (with a = 1/¢q and o = ¢/2) that

Eu |:/Rn 190 (:c)( Z 1r(2) /e( 16:f () %)q/Q du(x)} Ve

ReED(w)bad UR)/2
R)<25
{(R) dt\ a/2 1/q
<[ 1@ (B Y 1@ [ 10s@PT)" du@)]
n /R t
ReD(w)bad (R)/2

U(R)<2s
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Using the fact that w — 1paq(Ro +w) is independent of w — 1g,t.(x) for every Ry € Dy,
and that F, 1p.q(Ro + w) < ¢(r) — 0 when r — oo, we have

L(R 1/q

B[ ta@( X e [ e )" )

ReD(w)pad UR)/2
U(R)<2s

< () 2V £llnagey < (2C2) MV | Lagu— zaa #(10Q0) /4

fixing r < 1 large enough (note that ¢(r) = C(n, a, m)27"7).
We have reduced to showing that uniformly on w € ({0, 1}")% the quantity

t(R) dt\a/2 1/q
[ 1a@( X @ [ @R )]
! Rep(w)good UR)/2
o(R)<2s

can be dominated by C5(1 + Vi 4)11(10Q0) /9. We fix one w and write D = D(w). More
specifically, w can also be taken such that ;/(OR) = 0 for every R € D.

4.2. Decomposition of f. Since f € L(yu) is supported in Qo we may expand

(4.2) F= > > Aof

Q*eD QeD
2AQ*)=2° QCQ*
QoNQ*#0

Notice that there are only finitely many such Q* and always Q* C 10Qg. Define

UR

) dt\ 1/2

Ag@= (X @ [ es@P )
RED s U«R)/2
2-r<f(R)<28

and

{(R) di 1/2
Af@ = (Y @ [ @l )"
REDgood K(R)/Q
o(R)<2s
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Notice that for = € )y there holds that

7@ - 4(Y Y Aef)@)

Q* QCQ*
L(Q)>2—"
< |Af(2) = A @)+ [Acf@) = Ax(D Y Aof)(@)|
Q* QCQ*
L(Q)>2—"
{(R) dt
g(RE;W ) [ @) (s 3 X )@
L(R)<27r {(Q)>2—"
<(/2 s v (- Y nef)@)
0 Q* QCQ*
2(Q)>27"

It follows by dominated convergence and the fact that V' is bounded on L7(y) that

i [ra(ar-4 (2 ¥ 2an))],
Q* QcQr

LQ)>2—"r

We have reduced to showing that

4.3) HlQO(x)( S 1R / ‘ > 0 Af(x 2dt>1/2‘

REDgo0q QeD Lt
271 <(R)<2¢ QCR*
LQ)>2—rF

can be dominated by C3(1 + Vige 4 )1(Q*)'/ for every fixed « and for every fixed Q*. We

used the fact that
0(X Y Aef)=d D 6ol
Q* QCQ* Q* QCQ*
{Q)>27~ {(Q)>2—*
since the sum is finite for every . To fix only one Q* C 10Q, we used the fact that

#{Q* €D U(Q*)=2°and Q* N Qo # 0} < 1.
4.3. Splitting the summation. We will split the sum (4.3) in to the following four pieces:

Q: UQ) < ((R);

{(Q) = {(R) and d(Q, R) > ((R)"¢(Q)'

((R) < ¢(Q) < 2"((R) and d(Q, R) < {(R)U(Q)'~

{(Q) > 2"¢(R) and d(Q, R) < {(R)"(Q)' "
We call the second sum the separated sum, the third sum the diagonal sum and the last
sum the nested sum. Thus, is bounded by

IZ(Q)<Z(R) + Isep + Idiag + Ihested-
We bound these four pieces in the four subsequent chapters.

4.4. Remark. The k and the s are fixed and sometimes such implicit conditions on the
generations of the cubes are not written down.
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5. THE CASE {(Q) < ¢(R)

We start by proving the following lemma.

5.1. Lemma. Let Q, R € D be such that /(R)/{(Q) = 2* and D(Q, R)/¢(R) ~ 2/ for £ > 1
and j > 0. Then, if Sy = QUHI+90)), & € Rand y € Q, there holds that

(5.2) |s¢(,y) — se(x, cq)| S 274273%9/40(Sp) ™™, t € (((R)/2,L(R)).

Here cq denotes the centre of Q.

Proof. First, notice that for every y € Q we have that |y — cg| < ¢(Q)/2 < ¢{(R)/4 < t/2.
Therefore, we may use to obtain

Q)" Q)"
|St(x7y) - St(xch)| S (E(R) n d(Q’R))m+a S D(Q’R)era’

where we used that obviously D(Q, R) < ¢(R) + d(Q, R) in our situation. Next, observe
that

E(Q)a ~ 9—alo—(m+a)j —m
B0, s 22 Jg(R)~™.

Using the estimate my/(1 — v) < /4 and the definition of Sy we see that
0(So)™™ 2 27T (R) T,
Combining we get (5.2). O

Let Q € Dand R € Dyy0q be such that £(R)/4(Q) = 2¢and D(Q, R)/{(R) ~ 2/ for ¢ > 1
and j > 0. Assume also that (z,t) € Wg. Since /(Q) < ¢(R) < 25, we have [ Agfdu = 0.
Using this we write

0801 @)1 = [ [u(e,) ol ) ()]
Using the estimate we now see that
il )] 5270127 () | g w)linty),

where Q, R C Sy := QU+7%90G)) (by (1) of Lemma .
We can now see that Iyg)<¢(r) can be dominated by

Su(E X w( Y aso / g f1dn)")”|
Ji.t k<s ReDk,good Q€D _¢: QCQ*
D(Q,R)/t(R)~27

I

La(p)
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where b; ¢ := 9-a(t+39), Let us fix J. 0, k. Set 7j(k) := j +6(j) + k = gen(Sp). We have by
disjointness considerations and the fact that ), R C S that

2

> ow( X sy [18esldn)
REDy, go0d QEDy_: QCQ*
D(Q,R)/L(R)~27

2

:( Z 1n Z 2—mTj(/€)/‘AQf’du)
REDy good  QEDk—g: QCQ*
D(Q,R)/¢(R)~2

2

S OY w32 [1agfia)
S€Dr; (k) REDE good QEDy_¢: QCQ*
RcsS D(Q,R)/t(R)~2I

5( 1S /’ k@f’dﬂ>

SED

= Tj(k)(|Ak—zf|)] :
Note that for fixed j, ¢ there holds by Stein’s inequality (Lemma [3.10) and estimate

that
La(u) S H(g ’A’“f’z)m‘

H( o8 f?)" < QY
We may now conclude that Iyg)<(r) S #(Q*)"/1.

La(p)

6. THE SEPARATED SUM

We first prove the following lemma.
6.1. Lemma. Let Q,R € D be so that d(Q,R) > ((R)(Q)', £(Q)/¢(R) = 2¢ and
D(Q, R)/{(Q) ~ 2 for £, > 0. Then, if So = QUH0U+0) x € Rand y € Q, there holds that
(6.2) |se(z,y)| S 27 42730/40(Se)™ ™, te (((R)/2,0(R)).
Proof. We begin by noting that
/(R)® / O‘/Qf R /2
()| § g P
d(Q, Rym+e ™ D(Q, R)m+
The second estimate is a standard fact and follows since (m + a)y < «/2, {(R) < £(Q)
and d(Q, R) > ((R){(Q)'™
On the other hand it is easy to see that
0(Sp)™™ > 2—mj—(€+j)a/4£(Q)—m‘

This uses just the definition of Sy and the bound m~v/(1 — v) < «/4. Combining the
estimates we have (6.2). a

Let Q € D, R € Dgyoq be such that d(Q, R) > ((R)T(Q)'™7, L(Q)/U(R) = 2¢ and
D(Q,R)/0(Q) ~ 2 for £,j > 0.1f (z,t) € Wx we have by that

680 f(2))] < 27D g(Sy)m / Ao f ()] duly).

_ 2—&6/22—(m+a)j€(Q)—m'
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where Q, R C Sy := QUHYU+9) (by (2) of Lemma .
If we denote bj ¢ := 2-(“*1)/4 we may deduce that Isp can be dominated by

Siu(X X w( X s [18ena)’)”
gl k<s RED good QEIDI@+£ZQ‘CQ*
D(Q,R)~274(Q)

La(u)

A completely analogous estimate to that of the previous section shows that Isep w(Q*)Y.

7. THE DIAGONAL SUM

Let @ € D, R € Dgooq be such that £(Q)/{(R) = 2¢ and D(Q, R)/4(Q) ~ 27. Since we
are in the diagonal summation I4;,; we have that ¢, j < 1. If (z,t) € Wg we have that

|se(z,y)| St~ L(R)™™ =~ £(Sp)™ ",

where Q, R C Sy := QUTIU+0) (by (2) of Lemma . It is now clear by the previous
arguments that Igj,g < w(Q*)Ye,

8. THE NESTED SUM

In this case one uses the goodness of R to conclude that one must actually have that
R C Q. Therefore, things reduce to proving that

s—gen(R)

H1QO< S /R)/z) Z HtAR(Z)frdt)l/z‘

REDgood: RCQ*
27R<U(R)<25—T"

< *\1/q
Lo S @)L

We bound the left-hand side of the above inequality by Iyested, 1 + Inested,2, Where

Inested,l =
«r) | sgn®) 2 di\1/2
HlQo( > 1R/ ‘ > 0(Lgenre-n Do f) ) ‘Lq
REDgooa: RCQ* UR)/27 o (®)
27rR<U(R)<28~T
and
Inested,Z =
or) | s—8en®) 2 din1/2
H1Q0< > 1R/ ‘ > 6(lgenAgof) ) ‘Lq :
R€Dgpoq: RCQ* {R)/2 f=r+1 (w)

27R<U(R)<25—T
8.1. The sum Iegeq,1- The following lemma is the key to handling this sum.

8.1. Lemma. For £ > 7+ 1and R € Dy, gooq we have for (x,t) € W, that there holds that

801 o) D £) ()| S 2-0¢/29Ch0m / Ao F @) dpa(y).
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Proof. If S € ch(RY), S # R“~1),and (x,t) € Wg, we have by the size estimate that

01580 @S [ s Aro f)]dus)

/ (iisi)aﬂg(; ro S ()| du(y)

Here we used that by goodness d(R, S) > ¢(R)?¢(S)7, and that we have v < a/(2m +
2a). O

Let us denote by := 27%/2. We now see using this lemma that I,esteq,1 can be domi-
nated by

> b

(X (2 e [18m0iwlduw)’) "

£>r+1 k<s—C REDj good La(p)
RCQ*
¢ Tl Z (2 55 [ wowiaw)) ],
sco
2N\ 1/2
e;_lbﬂHlQo( (SE%;H:(E)/SIAka(y)IdM(y)) ) / (Lq(u)
H( [Ex(|Axf])] ) 2‘ L < u(QH)Ma,
k<s

The last inequality follows from Stein’s inequality and (3.22).
8.2. The sum Ieseq 2. We begin by recording the following bound:
8.2. Lemma. For £ > r+ 1 and R € Dgooq we have for (x,t) € W that there holds that
16:(1gee-vyebigione) (@)] S 272,
Proof. Choose Ny so that (R(©))® = R(“+No) Notice that since R is good there holds that
d(R, 8R(1z+j—1))m+oc > 90t/290i/2g( Ry (RUHI)),

Here we used that v(a +m) < a/2.
Therefore, for (z,t) € Wg, the above estimate, the size bound (1.2) and the stopping
conditions show that

((R)*
|9t(1(R<e 1))cb(R<£))a )| Z/ Ww(mma(fy)’dﬂ@)

R\ (RE+-D) |T —

N
20: U(R)*p(RH))
N 2a€/22a]/2£(R)a (R(€+j)>

< 2—0{[/2'

We now have to do a case study.
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8.3. The case (R“~1)* = (R(), In this case we may write
(8.3) lre-nAge f = *1(R(£fl>)cBR(Z71) b(Rw))a + Bpe-1) b(R(Z))av
where

() re-n (frw

B — ) = f—
R gy pen  (Broya) ao

with the minus term missing if £(R()) = 2°.
Accretivity condition gives that

1B | (R < ‘/ Bre-1b(gw)ya du‘ = ‘/ Agw fdu).
R(¢—1) R(=1)

Combining with Lemma 8.2) we see that for (z,t) € W there holds that

w1
10:(L(pee-1))e Bre-1b(geya) (z)] < 2 Z/QM(R(Z_D)/R(“) |A g fldpu.

So to control the sum with the first term of (8.3) it is enough to note that for a fixed
£ > r + 1 there holds that

H1Q0< > ( > ,u(Rl(fl))/R(z_n |AR<€)f(y)|d:u(y)>2>l/2‘

k<s—{ ReD;: RCQ*

o T (X 5 [1anrmiaem)) "]

kSS—E SGD]Q+[,1

~ [ ( Stz gawmr) |

k<s

La(p)

La(p)

< * 1/q.
Loy > M)

In the last step we again used Stein’s inequality (3.11) and (3.22). We will not touch the
second term of yet — it will become part of the paraproduct.

8.4. The case (R‘~1)* = R(~1), We decompose

(f) gee—1) (f)ro
| FSTERIVAN =(——bpe1) — —"—b po)\a
ren &g ] <<bR<z1>>R(“> RUEED (O(r))a) g (Rm))
(f)rw®
+ 1 pee—1)ye ——"2"—b a.
(RED) <b(R(€))“>R(€) (E)

The term in the parenthesis will become part of the paraproduct, and we do not touch it
further in this subsection.

For the second term, using the construction of the stopping time and Lemma (8.2), we
have for (z,t) € Wg that

(f)ro

Or.(z,t)] = ‘Qt(l(me—w)c Byl meo b(m))a)(w)‘ S 272 f) geo .
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We say that R € S, if (R“"1)* = R“~1. To control the corresponding sum we note that

s—gen(R)
H1QO< Z 1R/;(R) ‘ § O (1) 2%>1/2’

ReDgood: RCQ* (R)/2 f=r+1 Lq(,u,)
27R<U(R)<25T ReS,
s—gen(R) 1/2

5 H1Q0< Z 1gr Z 2_a€/2‘<f>3(£)‘2> ’ o

R€Dgooq: RCQ* f=r+1 "

2R <f(R)<25—T ReS,

—a 1/2

< HlQo( Z 2 £/2 Z |<f>S|2AS> ‘ o

t2r+1 SeD: SCQ* i

1/2 .

e X insias) T, <@

SeD: SCQ* Y

where we denoted

As(z) = > lg(x).
S’ech(S)
(S/)a:S/

For the final estimate one can use the fact that | f| < 1 to throw away the averages, and
then use Holder with exponent p := 2/q > 1 together with Lemma

5 a0 gy <o 5 )]

SeD: SCQ* FeFgs

(@) 7 Pu(Q) )V = (@)1,

A
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8.5. The Carleson estimate for the paraproduct. Combining the above two cases and
collapsing the remaining telescoping summation we are left with:

B (fro 2dt\1/2
HlQO ( ReDgg::RCQ* = /e(R)/z ‘ {b(rerrya) R Obrene] 5 ) ‘ L4 (y1)
27R<U(R)<25—T
Bibse|? P2 ‘
sfhe( X = A
SCQ* R(—
dt\1/2
S e Z S [ e ).,

FeFg« S:S°=F ReD
R(M= S

S‘ ( Z Z 1R/ ‘thF}2 dt>1/‘

FeFg+ R:RCF L
dt
5 ‘ o Fezf:Q* 1F/ }etbFF ‘ La(p)
(F) o dty\1/2)a 1/q
< 0,b |
: j§) (FEEJ;{Q* H (1F/0 ‘ ' F‘ ) Lq(u)>
Ve (2 1) S Vieean(@)1
720 FeF).

In the first inequality we used the stopping time conditions and the fact that |f| < 1,
while the penultimate inequality follows from assumption (4) of Theorem 1.4}



26 HENRI MARTIKAINEN AND MIHALIS MOURGOGLOU

APPENDIX A. T'1 THEOREM IN L7(11)

Let us recall the definition of our Carleson constant:

= g gy, [ o]

cube

Recall also that ¢ € (1,2]. We are interested in proving the following 7'1 theorem.
A.1. Theorem. We have the quantitative bound
(A2) IVl oz S 1+ Cary (g, 30).

We now indicate the proof of this theorem. We can again, without loss of generality,
assume that ||VHLq(#)_)Lq(’LL) < 00.

A.1. Reduction to a dyadic setting of good geometric data. Since we are not so well
localised yet this part of the argument has a few more steps than that of the main theorem.
We write

0o L(R)
[T S = X e [ s

ReD(w) {R)/2
= lim > lR(x)/ \etf(a:)ﬁ7
7% ReD(w) (R)/2
L(R)<2s

By monotone convergence we have that

W lsao = [ [ > e /“

ReD(w tR)/2
e(R)<2s

s 2) " )

We take the expectation F,, of this identity. Notice that there holds that

UR) At a/2 1/
/.« Z La(@ /(R)/2l9tf(:v)l2;)q ap(@)] " < IV oo € L(({0.11)7).
K(R)§2S

Indeed, ||V f]| ra(u) < oo and E,1 = 1. Therefore we have by dominated convergence
that

L(R) dt\a/2 1/q
IVl = Jim Bul [ > inte V[ tes@P G au)] "
«R)/ 13
ReD(w (R)/2
e(R)<2s
We now write
IVl La(u)—La(u) = sup IV fllzaqw

f compactly supported
lfllLa <1
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Fix such f, and then fix N so that spt f C B(0,2Y). It is enough to prove that for every
s > N there holds that

Bl [ ( > int /E(R 0@ )" )]

ReD(w t(R)/2
E(R)<29

< O(1+ Cary(q,30)) + [V [l o () Laguy/2-

Now also fix s > N. One may argue as in Subsection 4.1{ and reduce to showing that
uniformly on w € ({0,1}")Z there holds that

‘R dty\a/2 1/q ——
[ tefe) [ foef @) )" du@)] " (14 Cany (g, 30))
" ReD(w | (R)/2
800!
o(R)<2s

We fix w and write D = D(w).

A.2. Expanding f and splitting the summation. We now expand the fixed f in L7(u) as
follows:

(A.3) f= lim > Y Agf
Q*eD QeD
K(Q*):?S QCQ*
Q*NB(0,2N)#£p £(Q)>2—~
This time the martingales are simple: Aq f = > orcan(g)[(f)@ — (f)@llq with the under-
standing that Ag- f = > o/canie) (fo g, €(Q*) = 2°. The argument of Subsection
shows that it is enough to be able to bound the quantity

av (L0 3 w05 asarf %)

REDgq0q QeD
2R <U(R)<2s QCQ*
LQ)>2—~

with C(1 + Cary (g, 30)) for every fixed « and for every fixed Q*.

The splitting of the summation is the same as in the proof of the main theorem: the
quantity in is dominated by Iy)<s(r) + Isep + Idiag + Inested- The first three terms
are treated using similar arguments to the corresponding ones found in Sections 5} [f|and
[7, and allows us to obtain

IE(Q)<€(R) + Isep + Idiag 5 1
Indeed, notice that in these sections things boil down to the martingale estimate

1/2
(A5) 103 1aer®) |, Sl =1,
0co* (w)
which is easy for the classical martingales. These sections don’t depend on the finer
structure of the martingales.

The only difference lies in the treatment of the nested sum. Mostly it is much easier
because of the simple martingales. But the thing that is more complicated is that now
only f € Li(y) (and not bounded). The moral of the story: only the paraproduct requires
a different argument.
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A.3. The paraproduct in 7'1. We need to show that
1/2 _
|2 1nsPag) ™| | s Carvla.30),
Sep La(p)

ScQ*

) L(R) o dt
Ag(@)? == Y 1g(x) / 10:1()|” =
«R)/2 t
ReDgood
R("=g5
By Proposition 3.7)it is enough to show the next lemma.

A.6. Lemma. There holds that

where

Carg((As)s) < Cary (g, 30).
Proof. LetQ € D, Q C Q*. We have that

/;Q[ZAS /Q Z Z 1p(z / 16,1z Qdﬂqmdu(x)

SeD SED REDgonq
SCQ SCQ R(MN=g

<Ll n e [, paer] e,

ReD
d(R,Q°)>100{(R)

Here we used that each appearing R € Dgq satisfies that R C Q and ((R) < 277((Q).
Therefore, we have that d(R, Q%) > /(R)"(Q)'~7 > 2r(0=7¢(R) > 100/(R). Let R(Q)
denote the maximal R € D for which d(R, Q¢) > 1004(R).

We have reduced to bounding

[5 Sw [ ol §) o

ReR(Q HED
UR) dtia/2
/ S ae / o> )" duta)
Q " ReR(Q)
UR) dtva/

- L) e
Rer(Q) " 770
< Cary(q,30)7 Y p(100R)

< Cary (g, 30)70(Q).

Recall that the supremum in the definition of Cary (g, 30) runs over all the open cubes.
Therefore, we used that R C 2int(R) and then simply that 60int(R) C 100R. We also used
the disjointness of the cubes in R(Q)) and the bounded overlap property »_ per (o) L1o0r <
1. We are done. g

This completes our proof of Theorem
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