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Abstract

Quadratic, second-order, non-local actions for tensor gauge fields transforming in arbitrary irreducible
representations of the general linear group in D-dimensional Minkowski space are explicitly written in
a compact form by making use of Levi—Civita tensors. The field equations derived from these actions
ensure the propagation of the correct massless physical degrees of freedom and are shown to be equivalent
to non-Lagrangian local field equations proposed previously. Moreover, these actions allow a frame-like

reformulation & la MacDowell-Mansouri, without any trace constraint in the tangent indices.
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1 Introduction

Combing the principle of relativity with the rules of quantum mechanics implies that linear relativistic
wave equations describing the free propagation of relativistic particles in Minkowski space are in one-to-
one correspondence with unitary representations of the Poincaré group. Using the method of induced
representations, Wigner showed in 1939 that the unitary irreducible representations (UIRs) of the Poincaré
group 1S0q(3,1) are completely characterized by two real numbers : the mass-squared m? and the spin?

2 > 0 (no tachyon) and

s of the corresponding particle [1]. Physical considerations® further impose m
2s € N (discrete spin). The Barmann-Wigner programme amounts to associating, with any given UIR of
the Poincaré group, a manifestly covariant differential equation whose positive energy solutions transform
according to the corresponding UIR. In 1948, this programme was completed in four dimensions when, for
each UIR of 150y (3,1), a relativistic wave equation was written whose positive energy solutions transform
according to the corresponding UIR [2].

This programme is the first step towards the completion of the Fierz-Pauli programme which consists
in writing a manifestly covariant quadratic action for each first-quantized elementary particle propagating
in Minkowski spacetime. In four spacetime dimensions, the latter programme was initiated in 1939 [3] and
completed in the seventies by Singh and Hagen for the massive case (m? > 0) [4] and by Fronsdal and Fang
for the massless case (m? = 0) [5, 6]. The description of free massless (massive) gauge fields in D = 4 has
thus been known for a long time and is tightly linked with the representation theory of Spin(2) =2 U(1) (re-
spectively Spin(3) = SU(2)). This case is very particular because all non-trivial irreducible representations
(irreps) of these compact groups are exhausted by the completely symmetric tensor-spinors, pictured by a
one-row Young diagram with [s] columns for a spin-s particle (where [n] denotes the integer part of n).

The Bargmann—Wigner programme generalizes to the Poincaré group I1.SOg(D—1,1). When D > 4, more
complicated Young diagrams appear whose analysis requires appropriate mathematical tools, as introduced
in [7, 8, 9, 10]. For tensorial representations, the word “spin” will denote the number of columns possessed
by the corresponding Young diagram. From now on, we restrict the analysis to massless UIRs induced
by representations of the “little group” SO(D — 2) for D > 3, because each massive representation in
D — 1 dimensions may actually be obtained as the first Kaluza—Klein mode in a dimensional reduction from
D down to D — 1. There is no loss of generality because the massive little group SO(D — 2) in D — 1
dimension is identified with the D-dimensional massless little group. Such a Kaluza—Klein mechanism leads
to a Stiickelberg formulation of the massive field [11].

An analysis of the gauge structure for arbitrary mixed-symmetry tensor gauge fields ¢, was undertaken
in [9, 10]. The results of Dubois-Violette and Henneaux [8] for rectangle-shaped Young-diagram tensor
representations were extended to arbitrary tensor representations of GL(D,R). Guided by the duality

symmetry principle, through a systematic study, in [9] we proposed a general local field equation which

2In the massless case, the discrete label s is more accurately called helicity, but we use the naming “spin” whenever the mass

of the particle is positive or zero.
3In this paper, we will not consider infinite-dimensional representations of the little group.



applies to tensor gauge fields ¢, in arbitrary irreps of GL(D,R) and generalizes the Bargmann—Wigner
equations [2] of D = 4 to any spacetime dimension D > 3. The fermionic case goes along the same lines
[12], for this reason, we will restrict ourselves to tensorial representations of the Poincaré group in this paper.

In a work [13] on completely symmetric higher-spin (s > 2) tensor gauge fields ¢, Francia and Sagnotti
discovered that foregoing locality allows to relax the trace conditions of the Fronsdal formulation. They
wrote a non-local field equation which involves the de Wit-Freedman curvature [14] and which was shown
to be equivalent to Fronsdal’s field equation, after gauge-fixing.*

The authors of [15] followed another path: For completely symmetric tensor fields ¢5 of rank s > 0 they
constructed field equations derived from actions S ~ [ dPx ¢s - G(ps), where the “Einstein tensor” G(¢s)
is higher-derivative and divergence-free, 9 - G(¢s) = 0. It contains 2[51] = s + £(s) derivatives of the field
(where £(n) denotes the parity of the natural number n € N: its values is zero if n is even, or one if n is
odd).

Subsequently, in [16] we proved that, restricted to completely symmetric tensor gauge fields ¢s, the
field equation proposed in [9] was equivalent to Fronsdal’s field equation and we further conjectured the
validity of the same field equation in the arbitrary mixed-symmetry tensor gauge field ¢, case. This
conjecture was verified explicitly on a simple mixed-symmetry higher-spin tensor gauge field example.® In
the same work [16], we then showed that both works [13] and [15] were actually equivalent, provided one
multiplied the higher-derivative Einstein-like tensor G(¢s) of [15] by an appropriate power of the non-local
inverse d’Alembertian operator O~!, thereby recovering the non-local action of [13]. At the light of this
observation, the authors of [15] reconsidered their previous work in [19] and inserted the fermionic case
along the lines of [13]. They also conjectured a schematic form of the Einstein-like tensor G(¢, ) where ¢,
transforms in an arbitrary irrep. of GL(D,R).

In the present work we pursue this investigation and provide the explicit expression for the higher-
derivative Einstein-like tensor G(¢, ) corresponding to a field transforming in an arbitrary irrep. of GL(D,R).
The field equation derived from the action (s > 0)

Sloy] = / P b, — G(6y) (1)

O3]
is then shown to be equivalent to the field equation of [9, 16, 17] which propagates the correct massless
physical degrees of freedom. The quadratic Lagrangian is always of second order but non-local for fields
of higher-spin s > 2. The corresponding field equation sets to zero all traces of the generalized curvature
tensor Ky introduced in [9]: Tr Ky = 0, where the weak equality X ~ 0 means “X is equal to zero on the
surface of the field equations” (or, “on-shell”).
As a preliminary result of the present work, the non-local quadratic action [13] of Francia and Sagnotti

is rewritten in a compact and suggestive form by using Levi-Civita tensors. Moreover, we express these

*Actually, Fronsdal’s action Si[¢s] = [ d*z LF(¢,) trivially extends to D dimensions [14]: Spl¢s] = [d”z L7 (¢s). The

Lagrangian £ (¢s) is independent of the dimension D .
5That the aforementioned field equation is correct for an arbitrary mixed-symmetry tensor gauge field ¢,. was finally proved

in [17], thereby generalizing Bargmann—Wigner’s programme to arbitrary dimension D > 3. Actually, the latter programme

had previously been completed in [18] with different equations.



actions in a frame-like fashion thereby providing a bridge between the local constrained approach of Vasiliev
[20] and the non-local unconstrained approach. Indeed, we show that the latter action may be obtained
as a flat spacetime limit of a MacDowell-Mansouri-like action in constant-curvature background, where the
gauge fields and parameters are unconstrained, in contrast with Vasiliev’s formalism.

The plan of the paper is as follows. In Section 2, we first review the various approaches to higher-spin
symmetric tensor gauge fields in flat spacetime. The subsection 2.2.3 proposes an extension of the non-
local action for the unconstrained frame-like approach to constant-curvature spacetimes. Mixed-symmetry
tensor gauge fields ¢, are studied in Section 3 where we recall our results (Theorem 1) on the completion
of the Bargmann-Wigner programme, writing in details most of the intermediate steps in the proof.® Our
main result (Theorem 2) is presented in the subsection 3.2.2 where a non-local second-order covariant
quadratic action is given for each inequivalent UIR of the Poincaré group, thereby completing the Fierz—
Pauli programme in arbitrary dimension D > 3.

Three appendices follow. In the appendix A, we systematically introduce our notation by reviewing all
the mathematical machinery on irreps necessary for our purpose. We also summarize some former results on
the gauge structure of mixed-symmetry tensor fields. The proofs of some technical lemmas are relegated to
Appendix B while the appendix C contains the proof of Theorem 1 which states that the Bargmann—Wigner
equations presented in [9, 16, 17] restrict the physical components of a tensor gauge field ¢, to an UIR of
the little group O(D — 2).

2 Completely symmetric tensor gauge fields

Completely symmetric tensors ¢p,. . = @u,..u,) Of rank s correspond to a Young tableau” made of one
row with s cells. This is the simplest case of irreducible tensors under GL(D,R) associated with a Young
diagram made of s columns, thus we fix the main ideas on this specific example since it already exhibits the
prominent properties of the general case.

Einstein’s gravity theory is a non-Abelian massless spin-2 field theory, the two main formulations of which
are the “metric” and the “frame” approaches. In a very close analogy, there exist two main approaches to
higher-spin (i.e. spin s > 2) field theories that are by-now referred to as “metric-like” [5, 14] and “frame-
like” [21, 20]. In the former approach, the components of the massless field ¢4 transform in the irreducible
representation of the general linear group which is labeled by a Young diagram Y made of s columns.
Both metric-like and frame-like approaches may be divided into two subclasses called the “constrained” and
“unconstrained” approaches according to whether trace constraints are imposed or not on the gauge fields

and parameters.

5Because these lemmas and other intermediate results were either spread in the literature or not yet published in full details.
"The reader unfamiliar with Young tableaux may read the brief introduction to the tensorial irreps of GL(D,R) in Subsection

Al.1.



2.1 Bargmann—Wigner programme

Not all covariant wave equations that would describe proper physical degrees of freedom are Euler-Lagrange
equations for some Lagrangian. Therefore, we prefer to separate the discussion of the linear field equations

from the discussion on quadratic Lagrangians for symmetric tensor gauge fields.

2.1.1 Local, constrained approach of Fronsdal

The local spin-s field equation of [5, 14] states that the Fronsdal tensor F vanishes on-shell

s(s—1
g 1 Opa Tr Py ) = 0, (2)

]:,ul--.,us = D¢N1~~-Us - S aaa(u1¢u2...us)a + 9

where Tr stands for the trace operator and curved (respectively square) brackets denote complete sym-

metrization (antisymmetrization) with strength one. The gauge transformations are

OPuy.ps = $ a(#lemmus) : 3)
Since (3) transforms F as
s(s—1)(s—2
OFpyoops = (;() D1 Oz O Tr €11y i) (4)

the gauge parameter €., ,, is constrained to be traceless, Tre = 0, in order to leave the field equation (2)
invariant. Eventually, the standard de Donder gauge-fixing condition

(s =1)
2

Dyy..pps = 0% Gaps..ps — s Tt Dy ) = 0 (5)

is used to reduce the Fronsdal equation (2) to its canonical form O¢,, ., ~ 0. In order that D, ,, =0
contains as many conditions as the number of independent components of the gauge parameter €, the gauge
potential ¢ must be double-traceless, Tr? ¢ = 0. As shown in [14], this gauge theory leads to the correct
number of physical degrees of freedom, that is, the dimension of the irrep. of the little group O(D — 2)
corresponding to the one-row Young diagram of length s.

The main advantage of the Fronsdal approach to free massless fields is that it respects the following two

requirements of orthodox quantum field theory :
(i) Locality,
(ii) Second-order field equations (for bosonic fields).

Theories for which the second requirement is violated, i.e. the field equations contain the nth derivatives
of the bosonic field with n > 2, are called “higher-derivative”. Roughly speaking, non-local theories are
a particular case of higher-derivative theories where the order in the derivatives is infinite, n = oco. Both
requirements (i) and (ii) are related to the no-go theorem of Pais and Uhlenbeck on free quantum field
theories with higher-derivative kinetic operator for the propagating degrees of freedom [22]. They proved
that for such a kinetic operator, the quantum field theory cannot be simultaneously stable (bounded energy

spectrum), unitary and causal. In modern language, one would say that the field theory contains “ghosts”.



Notice that the Pais—Uhlenbeck no-go theorem does mot imply that all higher-derivative theories are
physically sick. For instance, at least three harmless violations of the requirements (i) or (ii) have been

suggested in the physics literature:

(a) “Gauge artifact” : The ghosts associated with the higher-derivatives correspond to spurious “gauge”
degrees of freedom. More precisely, in a proper gauge, the physical degrees of freedom propagate
according to local second-order field equations. For instance, the worldsheet non-local action of the
non-critical bosonic string is obtained from the Polyakov action by integrating out the the massless
scalar fields describing the coordinates of the string in the target space [23]. In the conformal gauge,

it reduces to the local Liouville action for the scalar field associated with the conformal factor.

(b) “Perturbative cure” : The theory admits a perturbative expansion with an orthodox free limit. One can
prove that, if the higher-derivatives are present in the perturbative interaction terms only, then they
may be replaced with lower-derivative terms order by order [24]. This perturbative cure is perfectly
justified when the higher-derivative theory is the effective field theory of a more fundamental orthodox
theory, the higher-derivative terms corresponding to perturbative corrections. A good example of
perturbatively non-local effective field theory is Wheeler-Feynman’s electrodynamics in which the
degrees of freedom of the electromagnetic field are frozen out. Another one is the o/-expansion in

string theory.

(c) “Non-perturbative miracle” : The possibility remains that the higher-derivative quantum field theory is
consistent in the non-perturbative regime but does not admit a reasonable free limit. Such a possibility
has been raised for conformal gravity [25] which is of fourth order, but it has never been proved that

such a scenario indeed works.

2.1.2 Curvature tensors of de Wit, Freedman and Weinberg

The main drawback of Fronsdal’s approach is the presence of algebraic constraints on the fields. They
introduce several technical complications and are somewhat unnatural. To get rid of these trace constraints,
it is necessary to relax one of the two requirements (i) or (ii) of orthodox quantum field theory in one of the
harmless ways explained in the previous subsection. This is the path followed by higher-spin gauge fields in
order to circumvent the conclusions of the Pais—Uhlenbeck no-go theorem. Indeed, all known formulations
of free massless higher spin fields exhibit new features with respect to lower-spin (s < 2) fields (e.g. trace
conditions, non-locality or higher-derivative kinetic operators, auxiliary fields, etc). These unavoidable
novelties of higher spins are deeply rooted in the fact that the curvature tensor, that is presumably the
central object in higher-spin theory, contains s derivatives. A major progress of the recent approaches to
higher-spin fields was to produce “geometric” field equations, i.e. equations written explicitly in terms of
the curvature.

The curvature tensor R, .., ;,..0, of de Wit and Freedman [14] and the curvature tensor K

v | | psvs

of Weinberg [26] are essentially the projection of 0y, ... 0, ¢v, ..., the sth derivatives of the gauge field, on



the tensor field irreducible under GL(D,R) with symmetries labeled by the Young tableau

palpe] - s
AR (6)

The Weinberg and de Wit—Freedman tensors are simply related by a choice of symmetry convention. In the
case s = 2, the de Wit—Freedman curvature tensor precisely is the Jacobi tensor while the Weinberg tensor

coincides with the Riemann tensor. In the case s = 3, they are related by

RH1V1PL viop (7)

— KM
) H2v202 T K (p2|  v2| p2)?

and

IC/L1V1 | pova | n3vs — 2 R[m[uz[m; v1)valvs) (8>

where the three antisymmetrizations are taken over every pair of indices (u;,v;). (We refer to Appendix
A.1.1 for the notations.) The Weinberg tensor is in the antisymmetric convention for which the projection
is more easy to perform because, since 0y, ... 0y, ¢y,.. 1, is already symmetric in all indices of the two rows
of the Young tableau (6), it only remains to antisymmetrize over all pairs (u;, ;). This corresponds to
taking s curls of the symmetric tensor field ¢5. On the one hand, the Weinberg tensor is, by construction,

antisymmetric in each of the s sets of two indices

Kl movs = -+ = Kpgwn [ [wevs] = Kpgvn [ | v, - (9)

Moreover, the complete antisymmetrization over any set of three indices gives zero, so that the Weinberg
tensor indeed belongs to the space irreducible under GL(D,R) characterized by a two-row rectangular Young
diagram of length s. On the other hand, the de Wit—Freedman tensor is, by definition, symmetric in each

of the two sets of s indices

R(m-.-us);m-..vs = Rm---us s(v1evs) — Rmmus V1. Vs * (10)

Moreover, it obeys the algebraic identity

Ru. =0, (11)

s 3 V1)V2.. Vs

so that it also belongs to the space irreducible under GL(D,R) characterized by a two-row rectangular
Young diagram of length s. Both definitions of the curvature tensor are equivalent, in the sense that they
define the same tensor space invariant under the action of GL(D,R).

Due to these symmetries, the curvature tensors are strictly invariant under gauge transformations (3)
with unconstrained gauge parameter €, . ., ,. Indeed, if the indices of two partial derivatives appear in the
same column, the corresponding irreducible tensor vanishes. For the same reason, the irreducible components

of the partial derivative of the de Wit-Freedman tensor 0,R ;.. 4, ;1,.., Which are labeled by the Young

tableau
Hiff2)  --- 0 |Hs
Vl U2 P Z/S ,
7]




identically vanish. In terms of the Weinberg tensor, this translates into the “Bianchi identity”

Ky | povs = 0. (12)

A generalization of the Poincaré lemma states that the differential Bianchi-like identity (12) together with
the previous algebraic irreducibility conditions on K imply that the Weinberg tensor is the sth derivative
of a symmetric tensor field of rank s [7, 8]. The same theorem states that the most general pure-gauge
tensor field for which the curvature vanishes identically is a symmetrized derivative of a symmetric tensor
field of rank s — 1. The gauge structure of symmetric tensor gauge fields was elegantly summarized by
Dubois-Violette and Henneaux in terms of generalized cohomologies [8] (see Section A.2 for a brief review

of these concepts).

2.1.3 Non-local, unconstrained approach of Francia and Sagnotti

The field equations proposed by Francia and Sagnotti [13] for unconstrained completely-symmetric tensor
gauge fields are non-local, but they are invariant under gauge transformations (3) where the trace of the
completely-symmetric tensor gauge parameter € is not constrained to vanish. They read

_s=2
pHk2 opPs= R 0772 Ry s =0 for s even,

- (13)
ke et 072 Oy Ry i s R0 for s odd,

where R, . 4y ;0.0 1 the spin-s curvature tensor introduced by de Wit and Freedman. Putting it in words,

the geometric equations (13) for completely symmetric tensor gauge fields ¢ are easily constructed: When

s is odd one takes one divergence together with % trace(s) of the tensor Ry, . ;.. and when s is

even one just takes s/2 trace(s) [13]. So one constructs a gauge-invariant object with the symmetries of the
field of rank s but containing s + ¢(s) derivatives. Consequently, the authors of [13] further multiplied by

s+e(s) . .
1==5 in order to get second-order field equations.

Via algebraic manipulations, the field equations (13) for rank-s completely symmetric tensor fields have

been shown [13] to be equivalent to

fN1H2H3lJ4-~-Hs - 8(u18u2aM3Hu4..-us) ~0, (14>

where the tensor H,,. ., ; is a non-local function of the field ¢,,. ,, and its derivatives, whose gauge
transformation is proportional to the trace of the gauge parameter. The gauge-fixing condition H,, .. ,,_, = 0
leads to the Fronsdal equation (2). Therefore, this geometric formulation of higher-spin gauge fields falls into
the class (a) of harmless non-locality. Basically, the main additional subtlety arising for spin s > 4 is that
the usual de Donder condition is reachable with a traceless gauge parameter if and only if the double trace
of the field vanishes. Therefore, in the Fronsdal approach the field is constrained to have vanishing double
trace (which is consistent with the invariance of the double trace of the field under gauge transformations
with traceless parameter). As pointed out in [27], more work is therefore required in order to obtain the

double-trace condition for spin s > 4 in the unconstrained approach. A solution is to take a modified



identically traceless de Donder gauge [27]. After this further gauge-fixing, the field equation implies the
vanishing of the double trace of the field, thereby recovering the usual de Donder condition.

Heuristically, one can also argue that the non-local field equations (13) are equivalent to local ones (2)
by going in a traceless-transverse gauge (i.e. Tr¢ = 0 and 9 - ¢ = 0), because both equations reduce to the
Klein—Gordon equation O¢ = 0 since the powers of the d’Alembertian cancel in the non-local approach. Of
course, rigorously speaking, we should prove that this rule applies for the formal object O~!. We take this
opportunity to briefly discuss the meaning given to the inverse d’Alembertian in the non-local unconstrained
approach, and in which sense local higher-derivative field equations may be equivalent to non-local second-
order field equations. Regarding O~!, we note that an obvious way of defining a pseudodifferential operator
(such as 1/0) is through its Fourier transform, because the latter simply is a non-polynomial function of
the momentum (such as —1/p?), a much less frightening object. The second comment is that any linear
application A on a vector space V' is invertible on the quotient V/KerA = ImA (More concretely, let w = Av
be in ImA, then one may write v = A~ w+u with u € KerA). The third comment is that the representatives
in the quotient Ker" /KerO for n > 1 are usually called “runaway solutions” because they are unbounded
at infinity. These solutions are the classical counterparts of the ghosts in the quantum theory, so one
rejects them on physical ground. In mathematical terms, one requires the solutions to be in an appropriate
functional class such that Kerd™ = KerO (for all n > 1). In this restricted sense, the non-local equations
(13) and the following higher-derivative equations

nphiz o optsm R R s vnews =0 for s even, (15)
IR kst tl aus+1Rm...us;u1...us ~0 for s odd,
are thus equivalent at the level of sourceless free field equations. Nevertheless, this equivalence of the
equations of motion does not imply the equivalence of the variational principle of course and, thus, does not
contradict the Pais-Uhlenbeck no-go theorem on higher-derivative Lagrangians [22]. This being said, from
now on we refer to (13) or (15) without any distinction.
It is convenient to rewrite the Francia—Sagnotti equations (15) in terms of the Weinberg tensor in order

to generalize them to mixed-symmetry tensor gauge fields more easily:

77(V1V2 . .nysf1Vs) ’C,ullll | | psvs =~ 0 for s even, (16)

77(”1”2 .. .n”S”SH) Ova i1 iy .o | s 0 for s odd,
where the symmetrization over all indices v of the Minkowski metrics is important in order to have the
proper symmetries on the free indices p;, 1 <7 < s.
2.1.4 Higher-derivative, unconstrained approach

The compensator field equation for symmetric tensor fields [13, 27] (generalized later to completely symmetric

tensor-spinor fields [28])

s(s—1)(s—2
Fuipopspia.pos — (;() A1 Opa Ous iy i) = 0 (17)

10



is the same as (14) except that the symmetric tensor o, .. ., , of rank s — 3 is an independent field, called

“compensator”. It is a pure-gauge field whose gauge transformation

6au1~--us—3 = (TI“ E)ulmus—s (18)

precisely cancels the contribution (4) coming from the Fronsdal tensor so that (17) is invariant under gauge
transformations with unconstrained gauge parameter. The compensator field may be gauged away by using
the freedom (18), which gives the Fronsdal equation (2). Fixing a = 0 is called the “Fronsdal gauge”, where
the constraint Tre = 0 is imposed on the gauge parameter. Again, in order to recover the double trace
constraint Tr2¢ = 0 on the gauge field more work is necessary [28].

The “Ricci curvature tensor” (TrR)u,.us;u..ws_o 1S the trace of the de Wit-Freedman tensor. Its

symmetries are encoded in the Young tableau

M1 M2 cee Hs—2Hs—1| Hs

v | V2 e Vs—2 . (19)

The Damour—Deser identity [29] schematically written TrkC = d*~2F relates the Ricci-like tensor TrR to
the (s — 2)th curl of the Fronsdal tensor F . These curls are obtained by projecting the (s — 2)th partial
derivative Oy, ... 0y, ,Fpu,. pu, of the Fronsdal tensor on the irreducible component labeled by (19) via the
antisymmetrization over the pairs (u;, ;) for 1 < i < s — 2. Consequently, the compensator equation (17)

implies the higher-derivative “Ricci-flat” equation

(’I‘I.R)nuflnuufs; Vy...Vs—2 ~ 0 — (’I‘I.IC)H/lyl I ------ |/1/s—27/s—2 |l1/s—1 Iﬂs ~ 0 ‘ (20)

Conversely, the equation (20) and the Damour—Deser identity imply that the s — 2th curl of the Fronsdal
tensor F vanishes on-shell. As was explained in [16], the generalized Poincaré lemma of [7, 8] shows® the
equivalence of this “closure” condition d*"2F = 0 of the Fronsdal tensor to its “exactness” expressed by
the compensator equation (17). In other words, the field equations (17) and (20) are strictly equivalent
in a flat spacetime with trivial topology. Notice that both of them are higher-derivative when s > 2, the
compensator equation being of third order and the Ricci-flat-like equation being of sth order.
Furthermore, the Ricci-flat-like equation (20) is equivalent to a set of first-order field equations. In D = 4,
they correspond to the Bargmann-Wigner equations [2], originally expressed in terms of two-component
tensor-spinors in the representation (s,0) @ (0, s) of SL(2,C). They were generalized to D > 4 in [9, 16] for
arbitrary tensorial UIRs of the Poincaré group, and in [12] for spinoral UIRs. The main idea is to start with
a tensor field that is (on-shell) irreducible under the Lorentz group O(D — 1,1) with symmetries labeled
by the Young tableau depicted by (6). The antisymmetric convention proves to be more convenient so one

considers a (on-shell) traceless tensor field whose components K obey the GL(D, R) irreducibility

LAV oo | s

conditions explained in Subsection 2.1.2. One then requires that it also obeys the Bianchi-like identity (12),

8We insist on the fact that it was not necessary to make use of the de Wit—Freedman connections to derive this result since

the Poincaré lemma allows a direct jump from the Ricci-flat-like equation to the compensator equation.

11



which is equivalent to the fact that the tensor K is the Weinberg curvature of a completely-symmetric tensor
gauge field ¢4 of rank s. The on-shell tracelessness Tr K ~ 0 of the irreducible tensor is therefore equivalent
to the Ricci-flat-like equation (20) if the tensor K obeys the differential Bianchi identity (12). Finally, one
can also show that the (on-shell) O(D — 1, 1)-irreducibility conditions combined with the differential Bianchi
identity imply that the tensor field is divergenceless on-shell 0 - K = 0.

In summary, the equations

=0
~0

a[PICIMVl] | pove |... | psvs

orK

) (21)
PV ‘HQVQ [... | HsVs
imposed on a tensor field K taking values in an irreducible representation of the group O(D — 1,1), are
equivalent to the Ricci-flat-like equations (20) and thereby to all other field equations of symmetric tensor

gauge fields alike.

2.2 Fierz—Pauli programme

Fronsdal was able to write down a local second-order action, quadratic in the double-traceless gauge field
¢ and invariant under the gauge transformations (3) with traceless parameter e [5]. Moreover, Curtright
pointed out that these requirements fix the Lagrangian uniquely, up to an overall factor [30]. The Euler-
Lagrange equation derived from Fronsdal’s action is equivalent to (2).

Notice that by introducing a pure gauge field (sometimes refered to as “compensator”), it is possible to
write a local (but higher-derivative) action for spin-3 [13, 27] that is invariant under unconstrained gauge
transformations. Very recently, this action was generalized to the completely symmetric spin-s case by
further adding an auxiliary field associated with the double trace of the gauge field [31]. Retrospectively,
the reference [32] may be interpreted as an older “non-minimal” version of it, as explained in more details

in [28] (see also [33] for the fermionic counterpart of [32]).

2.2.1 Non-local actions of Francia and Sagnotti

In this subsection, we introduce a compact expression for the “Einstein tensors” of [13] by using Levi-
Civita “epsilon” tensors. In this way, it is much simpler to write the Einstein-like tensor, and the Noether
(sometimes referred to as “Bianchi”) identity is automatically satisfied without explicitly introducing the
trace expansion as in [13].

Since the Levi-Civita tensors are involved it is natural to use the antisymmetric convention for Young
tableaux, so the starting point are the Francia—Sagnotti equations (16) in terms of the Weinberg tensor K.

It turns out to be convenient to introduce the symmetric tensor 7, .. ,, of rank 2n defined by
(22)

My po ps pa o pan—1p2n - MprpeMpspg -+ - Muon—1p2,) 0

for all integers n € N, corresponding to the product of n metrics with all indices symmetrized. The Einstein-
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like tensor

GHIH2-Hs—1s . —

MH1V1...0101T1 Vs...psOsT,
€ P o ghss PO T Noyps Koy || GsTs s even,

23)

Hiv1...p101T1 Hs+1Vs+1---Ps+10s+1Ts+1
€ A T T N e vsr - - Mpreepsar Muse1m afllCagm l.losgimsr1r S odd,

is defined wvia traces of the Hodge dual on every set of antisymmetric indices of the Weinberg tensor. In
the even spin case, the symmetry under the exchange of two u; indices is a consequence of the symmetry
properties of the curvature tensor K under the exchange of pairs (oy,7;) of antisymmetric indices together
with the symmetry properties of the tensor n defined in (22). In the odd spin case, the symmetry is not
automatic and, actually, one must understand that there is an implicit symmetrization over the p indices in
the second line of (23). By taking traces, etc, one may show that the Einstein-like equations GH1#2-Hs ()
are algebraically equivalent to the equations (16) of Francia and Sagnotti [13]. The Einstein-like tensor
(23) is automatically gauge invariant under (3) because it is a linear combination of the curvature tensor.
The Noether identity corresponding to the gauge transformations (3) with unconstrained parameters is the
divergencelessness of the Einstein-like tensor, 9, G#1#2#s = 0, which follows from the Bianchi-like identity
(12) obeyed by the Weinberg tensor. The Einstein-like tensor contains a product of D —3 symmetric tensors

Mo gse(s)- One may rewrite the traces over the Levi-Civita tensors as products of Kronecker symbols

vi...Vp __ ¢lu vpl v V.
S, = Ol Lo =56
via the identity
ittty 1oy €1 PIPP = (D — )G (24)

This leads to an expansion of the Einstein-like tensor as a sum of product of metrics times traces of the
[5]th trace of the curvature tensor written in (16):

V...V
N Koyon | | psvs T+ - - - for s even,

gﬂl--',u's X (25)

V]...Vs+1
Nt Oy K v o psws e e for s odd.

The coefficients in the expansion of the Einstein-like tensor were determined uniquely in [13] by imposing
that the Noether identity be obeyed. Therefore, the Einstein-like tensor (23) must correspond to the one of
Francia and Sagnotti, up to an overall coefficient.

The conclusion of the discussion on the negative powers of the d’Alembertian in Subsection 2.1.3 is that
one cannot remove them in the Lagrangian of the non-local approach without introducing ghosts, but that
one can remove them in the Euler-Lagrange equations provided that the ghosts are eliminated “by hand”

by choosing an appropriate functional space of allowed solutions. The authors of [13] proposed an action of

the form [ dPr ¢ —+G (¢) . In the form chosen here, this prescription leads to

[

1% Vg N 1
S[¢s] — /dD$ EHI 1---P101T1 . 6Ms .s---psO'.sTsT]l/lml/S N 77p1-..ps ¢/,L1A..,us F 80—1 N 8(78@57—1_“7—8 5 (26)
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for even spin s, and to

1
S[¢s] = /de ghtViPLOITL | ghetlTatd Nrippstr Miccvsrr « - Tlpiopsta ¢M1...Ms F a171 s aUs+1¢7'2-.-Ts+1 ’ (27)
2
for odd spin s.
The kinetic operator is self-adjoint, thus the Einstein-like equations G, .. ,, = 0 are the Euler-Langrange
equations of the quadratic action, and the action is manifestly gauge invariant. The fact that these properties
are manifest allows a straightforward generalization to any mixed-symmetry tensor gauge field, as we explain

in Section 3.

2.2.2 Non-local actions in terms of differential forms

Introducing letters from the beginning of the Latin alphabet in order to denote tangent space indices, one may
rewrite the actions (26) and (27) in a frame-like fashion. In flat spacetime of course, the distinction between
tangent and curved indices is somewhat irrelevant since the background coframe reads, in components,
(GO)Z = d,, . However, making this distinction may suggest a natural generalization of the quadratic actions
to curved spacetimes by using differential forms.

To start with, we write the action for a symmetric spin-s field ¢, featuring only “tangent” indices except

for D suitably chosen “exterior form” indices:

S[¢] — /de EMV-uPU'TgalblmCldlfl . Eas—lbs—l-ncs—lds—lfs—l nybl,,_b571 . npcl_.0371 X

1
X ¢ua1..4a5,1 F’CO’T|d1f1|...‘dS_1fs_1 ’ (28>

for s even, and

D aiby...c1d V... agbs...cod asbs...csd
S[¢s] = _/d x et L ghtPoT ga2t2--C2 22 coogE ofs Nfias Mvbibe.. .bs - - - Tlpcica...cs X

1
X 8d1 qualag...asfl FKUT‘d2f2|...|dsfs ) (29)
2

for s odd. The action (29) has been obtained from (27) after one integration by part, all the other operations
being mere change of labels.
Now, we introduce some tensor-valued differential forms. For instance the Weinberg tensor field K defines

a tensor-valued two-form R via

1 v
(Rl)albﬂ...\asflbsfl = §’Cu1f|a1b1|...\a571bs,1 dm'u Ndx ) (30)

while the symmetric tensor gauge field ¢, defines a tensor-valued one-form e € ©*~H(R”*) @ QY(RP) by

€ay...as_1 — ¢,u,a1...a571 dxt . (31>

Also, the background coframe defines a vector-valued one-form

(e0)® = 8% da . (32)
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It is tempting to treat the spin-s field one-form e%%-1 as a sort of “vielbein” for higher-spins perturbing
the pure spin-two flat background efj, as suggested by Vasiliev [21]. In this way, the curvature two-form (30)
can be thought as the generalization of the linearized Riemann two-form in the moving-frame formulation

of gravity [20]. Actually, one may also introduce a “Lorentz connection” one-form

(wl)a1b1|a2...a5,1 = 8[(11 ¢b1],ua2...a5,1 dz". (33)

(The notations has been chosen in such a way as to easily make contact with the materials reviewed in
Section 2 of [34].)
In the even-spin case, the action can be written in the following “Einstein—Cartan—Weyl” form by making

use of the former differential forms:

ba...bs_1

1

X /681 /\ . /\681 /\ eal...as—l /\ DﬁilRillflL"lds—lfs—l , (34)
2

S[gbs} = Eaibi..cidifi - €as—1bs—1...com1ds—1fs—1 1] .- -7702."0571 X

while the odd-spin case goes as follows:

s ,01D3...bs .Cs
SM’S] = Eaybi...cidi fi €agba...cadafo - - - Easbs...csds fs Ufla ot ~-770163 X
d s 1 Ldafe].ld
x /e82 I Al ey L (35)
05t

We implicitly understood everywhere that a symmetrization over all indices labeled by the same Latin letter
should be performed.

The writing of the actions (34) and (35) suggests that they might make sense in an arbitrary curved
background at the condition that the linearized curvature be replaced with its full non-Abelian counterpart.
As a preliminary step in this direction, we show in the next subsection that the above Einstein—Cartan—
Weyl actions can be seen as a flat spacetime limit of a MacDowell-Mansouri-like [35] action quadratic in
curvatures and torsions taking value in some (A)dSp higher-spin algebra when D > 4. (For D = 3, the
action looks more like a Chern—Simons action, in agreement with the fact that the theory is “topological”

in the sense that there are no local physical degrees of freedom in three dimensions for s > 0.)

2.2.3 Non-local actions a la MacDowell and Mansouri

The isometry algebra of (A)dSp manifold is presented via its translation-like generators P, and Lorentz

generators My, (a,b=0,1,...,D — 1) together with their commutation relations
[Mab 3 Mcd] =1 (nac Mdb — Tbe Mda — Nad Mcb + Mbd Mca) y (36)
[Pa>Mbc] :i(nabpc_nacpb)7 (37)
[Py, Py) = i A My . (38)

By defining My = (A)_l/ 2 P,, it is possible to collect all generators into the generators Msp where

A=01,....,D — l,f). These generators M4p span a pseudo-orthogonal algebra since they satisfy the
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commutation relations

[Mag, Mcp] = it (nacMpp —npcMpa —napMcp +nppMca) ,

where n4p is the mostly minus invariant metric of the corresponding pseudo-orthogonal algebra. This is
easily understood from the geometrical construction of (A)dSp as the hyperboloid defined by X4X, =
% which is obviously invariant under the pseudo-orthogonal group. It is possible to derive the
Poincaré algebra io(D—1, 1) from the (A)dSp isometry algebra by performing the Inénii-Wigner contraction
A — 0, in which limit the generators P, become commuting genuine translation generators. The constant-

curvature spacetime algebras can be uniformly realized as follows

, 0
Map = =i Xag555 (39)

if one takes 8)(% ~ 0 and Xz ~ 0 in the flat limit A — 0.

Since the gauge fields and parameters are unconstrained in the non-local formulation, it is natural to
make use of the so-called off-shell constant-curvature spacetime higher-spin algebras which were discussed
recently in [36, 34] and which we will now review in many details according to the present perspective.
These higher-spin algebras can be easily defined as the Lie algebras of polynomials in the operators (39)
endowed with the commutator as Lie bracket. In more abstract terms, they are the Lie algebras coming
from the realization of the universal enveloping algebra induced by the unitary representation (39) of the
constant-curvature spacetime isometry algebra. In more concrete terms, we will consider the Weyl-ordered

monomials in the isometry algebra generators defined by (39)

T, = Map, - Moo, Payy - - Pa,_, +perms (40)

1b1\...|atbt|at+1... as—1

as the most convenient basis of generators for our purpose (¢ € N and s € Ny ), where “perms” stands for
the sum of all nontrivial permutations of the generators M and P. The symbol of the differential operators

(40) is a tensor irreducible under GL(D,R) with symmetries labeled by the two-row Young tableau

aq “ e ay |Ai41 ce As—1

by e b, (41)

In order to mimic MacDowell-Mansouri formulation, one defines a connection one-form w taking values in

the higher-spin algebra

n v _ v, aibi|...|atbt|ai41... as—1
w(x 7dx 7MAB) = —idr Wy i Ta1b1|...\atbt|at+1...as_l

2 The component of w linear in P, is the

moving frame e® of the spacetime manifold while the component linear in My, is its Lorentz connection w?.

and whose non-Abelian curvature is the two-form R = dw + w

In the pure gravity case, the coefficient R* of My, in R is the sum R%® = R® + Ae® A e® of the Riemann
two-form plus cosmological terms while the coefficient T% of P, in R is the torsion. The components
wbil-latbelasiias—1 of the connection w are assumed to be irreducible tensors under GL(D,R) described

by the Young diagram (41), as can be done without loss of generality.
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In general, if a connection one-form is decomposed as a sum w = wy + w; of a vacuum solution wy
plus a small fluctuation wi, then its curvature can also be expanded in powers of the fluctuation: at
order zero, one has Ry = dwg + wg = 0 by assumption, and at order one, the linearized curvature reads
R1 = Dowi = dwy + [wo,w1]+ , where the background covariant derivative Dy = d + [wp, ]+ is nilpotent,
D3 = Ry = 0. The linearization of the gauge transformations dew = de + [w, €] reads dw; = Dpe and leaves
the linearized curvature invariant. In the present case, the background higher-spin connection is assumed

to be purely gravitational in the sense that
wo = —i(ed Py + wi® M) . (42)

Moreover, if the gravitational background is assumed to be a vacuum solution of the constant-curvature
spacetime algebra, then the background connection one-form describes the corresponding constant-curvature
spacetime manifold, since Rg = 0 decomposes as RSI’ = —Aeg A eg and 7§ = 0. In order to evaluate the
action of the covariant derivative with respect to this background, it is sufficient to compute the commutator
of P and M with any monomial 7. A nice property of the Weyl ordering is that the commutator of a Lie
algebra element with a Weyl-ordered element of the universal enveloping algebra preserves the Weyl ordering.
Therefore the generators 1" transform as tensors under the adjoint action of the Lorentz algebra spanned by
the M,’s and it is convenient to split the background covariant derivative into the sum Dy = Dg + [eo, |+
where D} is the covariant derivative with respect to the background Lorentz connection. The commutator

between a translation-like generator P and any generator T is easily computed

t
[Pa7 Tb1C1| ...... ‘btct‘bt+1...b571 ] = 27/ E Tb101| ...... |bi_1Ci_1|b2‘+1Ci+1‘ ...... |btct|bt+1...b5,1 [Ci nbl]a
=1
+ i ATy cy)..... |brce|abisr |brso bs—

oo ATy ) bretabs 1 bes... bes - (43)

While the background one-form (42) is assumed to contain the spin-two gauge fields (eg,wg?) only, the
fluctuation one-form may contain the infinite tower of symmetric tensor gauge fields. In particular, the

components along the pure translation-like generators in
wp = et P L P+ O(My) (44)

are frame-like one-forms e®*~1 given by (31) in some proper gauge. More precisely, the linearized gauge

transformations dwy; = Dye read in components
556(11”.(13_1 — D([]/Eal...as_l + (eo)c 6C(L11|CLQ...CLS_1) (45)

and

5Ew‘111b1‘~--‘atbt|at+1~--asfl _ Déealbl‘---‘atbtlatqtl---asfl + (eo)c 6a1b1\...|atbt|c(at+1---asfl)
_ agbz\...\atbt|at+1...a\,l [a1 bl}
AY, (€ s €

-+ 6a1b1\---\az71bt71\at+1---asf1 [ategt] ) (46)
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for t > 0, due to the commutation relations (43). The frame-like one forms e'"**~"

can be seen as rank-s
tensors reducible under GL(D,R) which can be decomposed into the sum of two tensors irreducible under

GL(D,R) respectively labeled by the Young tableau

ai - s—1 ‘LI/
and
ay e s—1
P (47)

The gauge variation nucec(al‘a?"“sﬂ) can be chosen in such a way as to precisely cancel the “hook” part in
ey 7" labeled by the Young tableau (47). In this metric-like gauge, the identification (31) holds. Pursuing
the analogy with gravity, the other components of w; should be expressed in terms of these dynamical fields
e via some torsion constraints on the curvature R. These constraints are only known at linearized order

where they take the form
Rypldabidasiaet — g for <t <s 1. (48)
The commutation relations (43) lead to the following expression for the linearized curvatures,

Rllllu-as—l _ Déealmas*l + (eo)c/\wi(mlaz...asfl)

and
aiby|...latbtlagy1...as—1 L aibi]...latbtlaz41...as—1
Ry = Dyuwy
aibi|...|atbe|c(aty1...as—1)
+ (eo)c N wyq s
ba|...|atb Qs b
+AY, wtllz 2. |atbtlatti... as—1 a1 /\601]
bil...laz—1bs— e Qs b
Fo 4 AY, ittt danins s olae b (49)
for t # 0.

Therefore, the torsion constraints (48) are solved as

a1bi]...|arby a G o a1b1]...|arb|a Qs
(wl)[; 1| IV}( t1 1) — (Dé)[u(wl)l,]l 1]--|atbe|at+1 1L OA). (50)

In the metric-like gauge, these relations may be used recursively to express the auxiliary one forms with
mixed symmetries in terms of the frame-like field. For instance, when ¢ = 0 and A = 0, Equation (50)
reproduces (33). Moreover, then the Riemann-like two-form (Rl)z},bl""‘as_lbs_l may be identified with the
Weinberg tensor according to (30).

By using the expression (49) together with the former remarks, one can check that the MacDowell-

Mansouri-like action

S[(ZsS] = K €ayrbi...crdifi - €as—1bs—1...cs—1ds—1fs—1 an.”bs_l .- ’7702”.05_1 X
1
X /681 /\ . /\Rf{lallaﬂ-“asfl /\ -~ Rflfl""‘dsflfsfl , (51)
2
O ayas

18



reproduces the Einstein—Cartan—Weyl-like action (34) at order zero in A, in the metric-like gauge. More
precisely, one should first take the A — 0 limit in the action (51) and then one uses the zero-torsion
constraints to express the auxiliary one-forms in terms of the frame-like field. In the pure gravity case s = 2,

one recovers MacDowell-Mansouri action [35]. In the odd spin case, it is the action

1
Slps] = A €ayby...c1d1f1 €azba...cadafo + - - Easbs...csds fs nflas 77b1b3'"bs R
1
X /682 A Rcllldl‘CQaZ'ag"'as_l N —— R?M'"'dsfs . (52)
DT
(A)dsS

which can reproduce the action (35). We implicitly understood everywhere that a symmetrization over all
indices labeled by the same Latin letter should be performed. The “d’Alembertian” in (anti) de Sitter is

not determined uniquely from its flat spacetime limit. In general,
Dayas = V2 + O(A),

where the term O(A) is an operator acting on the spin degrees of freedom. A convenient requirement in order
to remove this ambiguity could be that O(4)4s should commute with the (A)dS covariant derivative, hence
it is tempting to define O(4)4g as the anticommutator [ Do, Dg |+ because it commutes with the differential
Dy.

The MacDowell-Mansouri-like actions (51)-(52) are automatically gauge invariant since the Lagrangian
is quadratic in the linearized curvatures. Notice that these MacDowell-Mansouri-like actions may provide
quadratic actions in constant-curvature spacetime within the unconstrained approach. This issue should
be investigated further. We should also point out that these quadratic actions are of the same MacDowell-
Mansouri form as the Lopatin—Vasiliev action [20] but the latter is local and has a different structure for
the contraction of indices. This is possible because the tangent indices are not constrained to be traceless
here and so more freedom is allowed in the contraction of indices.

Let us conclude this subsection with some speculative observations. The appealing feature of the
quadratic actions (51)-(52) is that the starting point of Vasiliev et al. in their construction [37] of cubic
vertices, invariant under non-Abelian gauge transformations associated with the constrained (“on-shell”)
higher-spin algebra, was the formulation of symmetric tensor gauge fields a la MacDowell-Mansouri via a
local constrained frame-like formulation [20]. Therefore, by analogy, our result suggests that a non-linear La-
grangian for the non-Abelian higher-spin gauge theory with unconstrained (“off-shell”) higher-spin algebra
— if any — could be of the non-local MacDowell-Mansouri-like form presented here. Although elusive, such
a non-local expression quadratic in the curvatures has some precedents. Indeed, the expressions (51)-(52)
are reminiscent of the two-dimensional non-local action S[g], quadratic in the worldsheet scalar curvature,
which is obtained from the Polyakov action S¥[g, X] by integrating out the D massless Klein-Gordon scalars
X*"(o) describing the position of the bosonic string in the target space [23]. The harmless non-locality of
this action and of the free higher-spin actions fall into the same category. An analogous picture for the full
MacDowell-Mansouri-like actions would be in agreement with the folklore stating that a non-Abelian gauge

theory of higher-spin fields might be interpreted as the effective theory of some more fundamental theory
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describing extended objects. In any case, we believe that the frame-like actions presented here deserve to

be explored further.

3 Mixed-symmetry tensor gauge fields

In the present section we generalize the gauge theory of free rank-s symmetric tensor fields to the case
of massless gauge fields with components transforming in an arbitrary irrep. of the general linear group,
labeled by a Young diagram Y made of s columns. The reader is now assumed to have read the appendix A
because the fundamental definitions are not repeated here. Following the terminology introduced in Section

A.2.2) we say that the gauge field ¢, is a (differential) hyperform of Q%;) (RP).

3.1 Bargmann—Wigner programme
3.1.1 Local, constrained approach of Labastida

It is natural to try to generalize the work of Fronsdal (briefly reviewed in Subsection 2.1.1) to arbitrary
mixed-symmetry tensor gauge fields. In [38], Labastida conjectured some gauge invariances and determined
a local gauge-invariant wave operator which was supposed to describe the proper degrees of freedom, but
he was not able to prove that one may reach a gauge where the on-shell physical degrees of freedom provide
the appropriate UIR of O(D — 2).

Labastida used a set of commuting oscillators [38] and thereby chose the symmetric convention for
Young tableaux. Nevertheless, it turns out to be convenient for our later purposes to deal with fields in the
antisymmetric convention. So, throughout the present section 3.1, the gauge field ¢, is understood to be
a (differential) multiform of Qf;}"“’zs (RP) whose components are in the irrep. of GL(D,R) labeled by the
Young diagram Y = (f1,...,4s). Each basis element d;z* of each exterior algebra A(RP*) plays the role of
a graded oscillator. We introduce the Labastida operator defined by

1
F:=0—dd + 5 di d;Trij (53)

where there is always an implicit summation from 1 to s over all repeated Latin indices. Each term on the

right-hand-side commutes with the operator Tr;;*;, hence the Labastida operator F preserves the GL(D, R)-

irreducibility conditions (105). In other words, the Young symmetrizer Y 4 commutes with the operator F,

so that if ¢, € Qé) (RP) | then the mixed-symmetry Labastida tensor F, := F¢, also belongs to Q%/s) (RP).
It is natural to postulate that the field equation is

and that the gauge transformations take the form

56¢Y = YA di6i7 (55)
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where ¢; are differential multiforms belonging to Qf;]""’eifl"“’fs (RP). The gauge transformation of the

Labastida tensor under (55) is given by
1
55fy = 5 YA dl d]' dk (Trij€k) s (56)

due to the identity (115). The equation (56) is the analogue of (4). The commutation relations (116) suggest
to require that Tr(;;e;) = 0. Notice that this condition is weaker than the tracelessness of every parameter
independently. The gauge invariance of the wave equation (54) was one of the requirements of Labastida in
order to determine uniquely his relativistic wave operator in the symmetric convention [38]. One may easily
check that the translation of Labastida’s requirements in the antisymmetric convention also fix uniquely the
wave operator. Hence the Labastida tensor in the symmetric convention of [38] must be equal to a linear
combination of the Labastida tensor F,, in the antisymmetric convention.

The main technical problems in the local approach are of course the trace conditions to be imposed on
the gauge field and the gauge parameters. In the general mixed-symmetry case ¢,., it is very difficult to
determine them from first principle, contrary to the completely symmetric case, because there is now a wide
variety of inequivalent ways to take traces. Moreover, a troublesome aspect in the construction of Labastida
is that the double-trace constraints that he imposes on the gauge field ¢, are in general not invariant under
his gauge transformations.” For instance the analogue of the double-trace constraint of Labastida reads

Tr(;; Trpy ¢, = 0 in the antisymmetric convention. But the identity
Tr(;; Tryy (dmem) = 4dzfi (Trjkel)) + dm(Tr(Z-jTrkl)em)

shows that the former double-trace constraint is in general not preserved by gauge transformations (55)
where the parameters are only subject to the trace constraint Tr(;;e) = 0. It is then fair to say that the

problem of constructing a local action principle for arbitrary gauge fields ¢, is still open.

3.1.2 Higher derivative, unconstrained approach

The curvature tensor of Weinberg was appropriately generalized in [9] by extending the cohomological results
of [8] to arbitrary mixed-symmetry tensor fields. The definitions and main properties of the curvature
tensors in the general case under consideration are reviewed in Section A.2.2. The curvature tensor field
K, € QZ) (RP) for the mixed-symmetry tensor gauge field ¢, € Qé) (RP) is obtained by taking s curls,
K, =di...ds¢, and Y is the Young diagram obtained by adding a row of length s on top of the Young
diagram Y . The curvature tensor is invariant under the gauge transformations (55) without any trace
constraint on the gauge parameters ¢;. The Bianchi-like identities are the set of equations d;K_ = 0
(i=1,...,s).

The commutation relation

[Trij . didj]— = O — did! — djd} | (57)

9We are grateful to A. Pashnev and M. Tsulaia for calling this fact to our attention.

21



where no sum on the indices i and j is understood, follows from (115) and implies in turn the opera-
torial identity Triadi...ds = ds...d;F. Applied on the gauge field ¢, , this last identity leads to the

generalization of the Damour—Deser identity for arbitrary mixed-symmetry fields
Trio Ky = dgdy ... ds Fy . (58)
Therefore, the Labastida equation (54) implies the Ricci-flat-like equation
Tr IC7 ~ 0, (59)

stating that the curvature tensor is traceless on-shell, in agreement with (106). In analogy with the situation

reviewed in Subsection 2.1.4, the Ricci-flat-like equation (59) implies the compensator equation
1
fy ~ iYA di dj dk aijk , (60)

where ;i = a(y) are some (differential) hyperforms associated with the Young diagrams obtained by
removing three boxes in distinct columns of Y. The compensator fields a;j; are pure-gauge fields expected

to vary according to
decvijr = Trejep) (61)

in order to compensate the variation (56) of the Fronsdal tensor in the third-order field equation (60). As
one can see, the Labastida equation (54) arises as a partial gauge-fixing of the compensator equation.

The results explained in the previous paragraph were announced in [17] but the complete proof was not
presented there because of the lack of space. For the sake of completeness, we now sketch the subtle use of
Poincaré lemmas that enables to relate the Ricci-flat-like equation (59) with the compensator equation (60)
via the Damour—Deser identity (58). The argument is deeply rooted in the following lemma, the proof of

which is given in Appendix B.1
Lemma 1. Let P be a differential hyperform of Q) (RP) . Then,
dP=0 = dP=0, Vie{l,...,s}. (62)

As a corollary of the lemma 1, we have the implication

k

([Tds—r+s) P=0 "2 ([][di) P=0, VIC{L2... s} |#=k, (63)
=1 el

for any integer k € {1,...,s}, which can easily been proved by induction. The properties (63) and (121)

combined together prove the following

Proposition 1. Let P be a differential hyperform of () (RP). Then,

k
([Ids-eri) P=0 = (J[ )P =0, VIc{l2... s} |#I=k, (64)
=1

i€l
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In other words, the proposition 1 provides a sufficient condition for the cocycle condition d*P = 0 of
the generalized cohomology group (k)H(“"””'S)(d) associated with the operator d = d{1} + ... + d{%} acting
on the space of hyperforms (RP). The generalized Poincaré lemma of [9] proves the triviality of the
generalized cohomology groups (¥ H(1-6)(d) for 1 < k < s, 0 < £; and ¢; < D. The Ricci-flat-like
equation (59) combined with the Damour-Deser identity (58) states that the Fronsdal tensor obeys the
equation dsdy...dsF, ~ 0. The proposition 1 for k = s — 2 implies that dS*Q}"Y ~ 0. The triviality of
@ gy (d) implies the exactness of the on-shell Fronsdal tensor, F, ~ d3a, as expressed by the compensator

equation (60).

3.1.3 Non-local, unconstrained approach of de Medeiros and Hull

As was pointed out in [16], the equations (16) of Francia and Sagnotti were generalized by Hull and de

Medeiros in [15] as follows
TroTray ... Tre_1 ) K, =0 , (65)

for s even. The sum of products of all possible traces over indices all belonging to distinct columns in (65)

correspond in (16) to the contraction with the symmetrized powers 7, ,, - ) of the metric tensor.

M —1ps
For s odd, the equation may be written in two ways

TI‘(12 .o TI‘872571TI'S SJrl) d5+1lC7 — TI‘(12 c o TI'572 s—1 di)lC7 ~ 0, (66)

because of the fact that K_ is of degree zero in the s + 1th set of antisymmetric indices. One can check
explicitly that the operators Tr;j*; commute with the operator Tr(3...Try,_12,) when ¢ and j belong
to the set {1,...,2n} [19]. Therefore, the equations (65)-(66) have the same symmetry properties as the
corresponding tensor gauge field ¢,.. As they are, it is not obvious that they describe the proper physical
degrees of freedom because the light-cone gauge is hard to reach since the gauge transformations (55) involve
many parameters and are highly reducible in general. As a preliminary, we show in the next paragraph that

the equations (65)-(66) are equivalent to the following compensator-like equation
1
j:y ~ 5 YA di dj dk Hz’jk s (67)

generalizing the equation (14). The essential difference between (67) and the compensator equation (60) is
that the tensor fields H;;, are non-local functions of the gauge field ¢, and its partial derivatives. Never-
theless, their gauge transformations are proportional to Tr(;;€;) so that the gauge-fixing condition H;j, = 0
leads to the Labastida equation (54).

To prove the on-shell equivalence between the deMedeiros—Hull equations (65)-(66) and (67) we need a

crucial identity.

Lemma 2. For any given natural number n € N,

_ n—1
TT(12 v Try, 2n) dids .. .dop—_1do, = O" Ip m on—2 djdk T?“jk F + dldjdkOUk R
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where there is an implicit sum from 1 to 2n over every repeated index and Oy, denotes a set of differential

operators (1 <i,7,k < 2n).

The proof is given in Appendix B.2. Applying the operator appearing in Lemma 2 for n = [%] on the
gauge field ¢, , one gets the on-shell equality
n—1 n—1 n—2
O fy — S — O djdk Tl"jk .7:Y + didjdkilijk ~ 0, (68)

for the multiforms ¥;;, := Oyji¢, , by virtue of the equations (65)-(66). Taking a trace of both sides of the
equation (68), leads to

0" ' Try Fy ~ dyoy, (69)

for some multiforms oy. Inserting (69) into (68) gives (67).

3.1.4 Bargmann—Wigner equations

Following the discussion in the subsection 2.1.4, we stress that the sth-order Ricci-flat-like equation (59) is
equivalent to a set of first-order field equations for Ky-. Indeed, the vanishing of the Ricci-like tensor means
that the on-shell Weinberg tensor field K. takes values in an irrep. of O(D —1,1). The Bargmann-Wigner
equations are somehow the converse statement. Let IC7 be a differential hyperform with components in a
tensorial irrep. of the Lorentz group O(D — 1,1) whose symmetries are labeled by the Young diagram Y
(in the antisymmetric convention). As explained in the appendix A.2.2, the Bianchi-like identities (122)
imply that the hyperform K_ is exact, which means that it is precisely the curvature tensor of a gauge
field ¢, taking values in an irreducible representation of GL(D,R) labeled by the Young diagram Y. This
proves the equivalence between the Ricci-flat-like equation (59) obeyed by the Weinberg tensor field, and the
Bianchi-like equations (122) obeyed by an O(D — 1, 1)-irreducible tensor fields with the same symmetries as
the Weinberg tensor. Moreover, due to the commutation relation (115) the compatibility condition between

the Bianchi-like identities (122) and the tracelessness property (59) are the transversality conditions
dK_~0 (i=1,...5). (70)

The equations (70) and (122) are called the Bargmann—Wigner equations since they generalize (21). They
were proposed in [9, 16] as field equations for mixed-symmetry tensor gauge fields. By definition, the
Bargmann-Wigner equations state that the differential hyperform K_ is harmonic on-shell.

Up to now, we have achieved to prove the equivalence of the Labastida equation (54), the Ricci-flat
equations (59), compensator (60), the deMedeiros—Hull equations (65)-(66) and the Bargmann—Wigner
equations (70) and (122). In order to prove that they describe the proper physical degrees of freedom, it
is sufficient to do so for one of these equations: this is done in the appendix C for the Bargmann—Wigner
equations. As a corollary, this completes the Bargmann—Wigner programme for arbitrary finite-component

fields in any dimension, as summarized in the following theorem.
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Theorem 1. (Bargmann—Wigner’s programme) [17]

Let Y be an allowed Young diagram (fy,...,0s) with at least two rows of equal length s and Y :=
(1 —1,...,05 — 1) be the Young diagram ({1, ...,{s) obtained by removing the first row of Y .
Any tensorial irreducible representation of the group O(D —1,1) with finite-dimensional representation space
yOD-11)

v where V.= RP | provides a massless unitary irreducible representation of the group 10(D — 1,1)

associated with the Young diagram Y : Its infinite-dimensional representation space is the space of harmonic

(D-1,1) . The latter space is isomorphic to the Hilbert

differential multiforms K. of spin s taking values in VYO
space Hy of physical states ¢, € L*(RP) ® Vé)(D_Q) that are solutions of Oy, ~ 0.
Any single-valued massless unitary irreducible representation of IO(D—1,1) induced from a finite-dimensional

irreducible representation of O(D — 2) is equivalent to a representation obtained in this way.

3.2 Fierz—Pauli programme

In the first subsection, we discuss the state of the art in order to clarify what is new in the present work
with respect to the extensive literature on the subject. In the second subsection, a non-local Lagrangian
for any mixed-symmetry tensor gauge field is written in compact form, two particular cases of which are

exhibited in the third subsection.

3.2.1 Local actions

Local covariant Lagrangians have already been obtained for gauge fields labeled by the most general “hook”
diagrams (¢1,1,...,1) [39], “two-row” diagrams (2,...,2,1,...,1) [40] and “two-column” diagrams (¢1,¢2)
[41, 42] in approaches where trace constraints are imposed on the higher-spin fields. On the one hand,
a decisive step towards the explicit completion of the Fierz—Pauli programme has been performed in the
OSp(1,1|2) formalism [18]. The drawback of this formalism is that it requires some technically involved
computations in order to write the quadratic action only in terms of the Sp(2) singlet variables (i.e. the
constrained mixed-symmetry gauge field). This last step has never been performed explicitly for the mixed-
symmetry case to our knowledge. On the other hand, in [43] Labastida introduced an explicit self-adjoint
Finstein-like tensor corresponding to his field equation and conjectured that this Einstein-like tensor would
provide the local constrained quadratic action for a tensor gauge field labeled by an arbitrary Young diagram.
The problem of his approach is that he could not prove in full generality that his choice of trace constraints
would lead to the proper physical degrees of freedom.

More recently, an algorithm for the construction of quadratic actions for mixed-symmetry tensor gauge
fields was given in the BRST approach [44]. Finally, de Medeiros and Hull conjectured in [19] the rough form
of a non-local Einstein-like tensor but they did not give the precise coefficients of its expansion in powers
of traces, neither did they prove that their Einstein-like equation describes the proper physical degrees of
freedom.

In this sense, the non-local second-order action that we write in Theorem 2 provides the first explicit

realization of the Fierz—Pauli programme in full generality. More accurately, our analysis is restricted to
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Minkowski spacetime and to fields with a finite number of components. Incidentally, we should mention that
for “massless” mixed-symmetry tensor gauge fields, the Bargmann—Wigner programme for the anti de Sitter
group SO(D — 1,2) has already been examined in many details [45] and the Fierz—Pauli programme has
recently experienced considerable progresses [46]. Also, the completion of the Bargmann-Wigner programme
has recently been extended to all massless irreps (including infinite-component ones) of the Poincaré group
ISO(D —1,1) [47]. The non-locality property of the action proposed here remains elusive and it would be
pleasant to explicitly derive its local counterparts. Actually, the BRST algorithm of [44] indirectly ensures
the existence of a local action invariant under unconstrained gauge transformations, but with many auxiliary
fields. In the same way, the work of [18] may be interpreted as a proof of the existence of a local second-order

action invariant under constrained gauge transformations.

3.2.2 Non-local actions

The main idea is that the use of the Levi-Civita tensors enables a straightforward generalization of the
results of Subsection 2.2.1 to the mixed-symmetry case. Still, one should make sure to take the appropriate
traces and that the result is projected on the proper symmetry.

Our main results are summarized in compact form in the following theorem. Subsequently, we provide
two examples and then describe in more details the construction of the non-local Lagrangian for arbitrary

mixed-symmetry tensor gauge fields.

Theorem 2. (Fierz—Pauli’s programme)

Let s be a positive integer. The smallest even integer that is mot smaller than s is denoted by § :=
2[%] =s+e(s). Let Y := ({1,...,43) be a Young diagram with first row of length s (that is to say, fz =0
when s is odd) and such that {y + o < D — 2. Let ¢, be a gauge field with components in the tensorial
irreducible representation of the group GL(D,R) with (finite-dimensional) representation space V}E;L(D’R)
where V =RP.

The second-order quadratic action

S[¢Y]:<¢Y|K|¢Y>

defined by the self-adjoint kinetic operator

K = Tr P05Vl o 5 o Lo (I1#) - (71)
Oz -
=1
with -
=3 % . _ .
Tr O-D5-Y[ ._ H (Trj §_j+1)D—1—f]—€sfg+1’
j=1

1s manifestly gauge-invariant under the transformations

Ol dy) = D dile), (72)
=1
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where €; are differential multiforms belonging to Qfgl]""’f”fl""’gs (RP).

Let Y be the Young diagram obtained by adding one row of length s to the Young diagram Y. The

equation of motion derived from this action may be cast into the form

65 [¢y]
~0 <= |G, =0, 73
T 6,) (73)
where the Finstein tensor G, is defined by
Y Tr (P-D3-1YI @ ~0 for s even,

g, = (74)

s+

Ygs Ir (D—1)=F2—|Y| d;l@ ~0 for s odd,

with IE? the dual of the curvature tensor K. and Y the dual of the Young diagram Y .
The (infinite-dimensional) space of field configurations extremizing the action S[ ¢, | carries the massless
unitary irreducible representation of the group 10(D — 1,1) associated with the Young diagram Y : it is

isomorphic to the Hilbert space Hy of physical states ¢, € LQ(RD)(@V}?(D_Q) that are solutions of Dy, ~ 0.

In order to help the reader to get used to the notations involved in the theorem 2 and to provide some
flavor of the general proof, we present two particular examples with mixed symmetry gauge fields (one for

each parity of the spin s).

An odd-spin example

V;?L(D,R)

We first consider the gauge field ¢, € with the associated Young diagram Y = ({1, f2,¢3,0) =

(2,1,1,0). The spin is s = 3, hence 3 = 2[332] = 3 + £(3) = 4. The tensor gauge field components read

qﬁu% b2 5l The ket | ¢, ) is assumed to be expressed in the symmetric convention, which means that it is

totally symmetric in (ui,p?, p3) and obeys ‘b(u%u%u?;u%) = 0. The Young tableau associated to (bu}u?u? ik
is depicted as follows

pl | pd | el
i ' (75)

Y:

3 described by the Young tableau

The curvature tensor Ky will have components ICM} pdpd | 22 | pdid

pi | pd |

IEANEANT:
I (76)

=l
I

that is, as a Young diagram, Y = (3,2,2,0) = (2,1,1,0) + (1,1,1,0). The curvature tensor is expressed in

the antisymmetric convention because of the presence in the Lagrangian of the § = 4 Levi-Civita tensors

1 2,2 2 3,3 3 4. 4 4
P R o T Ry Ty N T 6 R 1 N GV R ) (77)
contracted with the s = 3 derivatives of the gauge field components
8;%8#% aﬂ% ¢u%u?u? TN
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In order for the Ricci-flat-like equation TrK5 ~ 0 to define a nontrivial theory, we must have D > £1+/2+2 =
5. We choose here D = 5.

Continuing the construction of the Lagrangian, we have to act with €(3) = 1 extra derivative 6#411 on

the gauge field ¢#1 1203 sl . The components of the bra ( ¢, | are written, in the symmetric convention, as
Bl and they correspond to the Young tableau
ws | 13 | p3
T ' (78)

Finally, the trace operator Tr (P~15- V1 = (Tr14)?(Tro3)? reads, in components,

(Mt s M t) (Mu237pi2,03) -

Summarizing, the action is explicitly written as

1 1
= — ey .“ -
S[¢y] - 2 / |:¢N5'U«5N5 T (77,%#377#4# 77#3;1,%77“4#4)(8 15 e 5) 8u48u18#33 3 d)#ﬂh/ﬁ ,,U,Q

At this stage, it is instructive to draw the GL(5,R) Young diagram Z corresponding to the product (77),

in which we mark by a “x” the cells corresponding to the components of the bra ( ¢, | (and ket | ¢, ))

and by a “=” the cells corresponding to the partial derivatives. The components of the metric tensors are
marked by a “o”. It gives
pi | i |t | el x| x| x| -
CANCANCANE x| =] —|°
Z = p w3 | pg || T | —|efe|e
pa | 1| e | i oo |o|x
CAVEANCANT: o x| x| X (80)

The differential multiform dsKy = d, Ky is labeled by the Young diagram Y := Y +(1,1,1,1) = (3,2,2,1).
The ket % dg | Ky ) = (%, %,%,%,) d, | Ky ) enters in the Lagrangian with the following tensorial components,

in the antisymmetric convention,

1,1 2,22 3,3,,3 4 4 4 4
Bk | H3RERE | p3pgps | Kapspgp
(*1*2*3*4d4lc)45 3HaH5 | H3Bals | Battshatts

Only one GL(5,R)-irreducible component of the above tensor, also denoted by (CLTC)VN , survives inside the
+
action. It is labeled by the Young diagram Y = (5,5,5,5,5)—(1,2,2,3) = (4,3,3,2) and the corresponding

Young tableau reads

AVAVANG X | x| x| o
v, = pi|pd|pilps| = | x|o|eloe
AN AN ofo|o
T ° (81)

It may be obtained by rotating Z ~ by 180 degrees and removing the cells of the Young tableau Y,

corresponding to d,K5-. In terms of SL(5,R)-irreducible representations, this tensor is equivalent to d, Ky-.
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The Euler-Lagrange derivatives are proportional to

Y [(Tr, )2 (T, )2 (4, K) | = 0 (82)

or, in components,

5S %)

0Pl a2 s

o< Y [(77#%#3 Mot M M2ad) (D) byt | i3 | 322 | #iué]

where Y, is the Young projector associated with the Young tableau (78). In the field equations (and also in

the Lagrangian), only one GL(5,R)-irreducible component of the tensor product UBWURWUREU R will

contribute. It is the irreducible component characterized by the Young tableau X such that the product
X .Y contains Y in its decomposition. We find that X = (2,2,2,2). Drawing the tableau,

(83)

Indeed, it is easy to check, using the Littlewood-Richardson rules, that

According to the definitions introduced in the appendix A.1.1, one may say that, on-shell, the field (Ci:TC)?

+

takes values in a tensorial representation of SL(5,R) labeled by the difference Y, — Y of ) where the

substraction of the Young diagram Y corresponds to the trace constraints (82) imposed by the equations of

motion. Due to the isomorphism V:SvL(s’R) & VEL(&R)
Yy Yv o

tensorial representation labeled by the difference Yy — Y corresponding to the field (d, IC)7+ on which are

, the former tensorial representation is equivalent to a

imposed the trace constraints
Y, [Tr,, T, d, ICY} ~ 0, (84)

labeled by Y . This provides a group-theoretical proof of the fact that the Einstein-like equations (82) are
equivalent to the deMedeiros—Hull equations (84). They respectively are particular instances of (73) and
(66).

An even-spin example

GL(D,R)

We next consider the gauge field ¢, € V3 with the associated Young diagram Y = ({1, 0o, l3,04) =

(3,2,2,2). We choose the dimension D = 7. The spin is s = 4, hence 4 = 2[3}2] = 4 + £(4) = 4. The tensor
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gauge field components read ¢ L The associated Young tableau is depicted as follows

piudpdud ;s pdudpdus;p

RN GANGAN G

AV AN
iy (85)

The curvature tensor Ky~ has components K 1 described by the Young tableau

pipdpdud s pdpdpded s pdududed s ul

RN GAN AN

VAN ANT

T ANANANT:
ol (86)

where Y = (4,3,3,3) = (3,2,2,2) + (1,1,1,1). The curvature tensor is expressed in the antisymmetric

convention because of the presence in the Lagrangian of the s = 4 Levi-Civita tensors

1,1 1 2,2 2 3,3 3 44 4
ehiMa-- 7 cHIBZ - BT cHIH2--- P o1 Hy (87)

contracted with the s = 4 derivatives of the gauge field components

0,20,30,1

Ou Puctssdpstoct s bt -
With D = 7, the Ricci-flat-like equation Tr Ky ~ 0 defines a nontrivial theory, since {1 + {3 +2 < D.

The components of the bra ( ¢, | are written, in the symmetric convention, as qﬁﬂ% p2pdpl
(D-1)5-Y] _

pEpEpdpd s pd

Finally, the trace operator Tr Try4(Tro3)? reads, in components,

Mudpd Mudpd M2 -

Summarizing, the action is explicitly written as

1 11 4 4
_ 7
Slevl = 5 /d z [%%u?#?ué‘méu%u%ué;ué (it Mz Mzpeg) (1107 gl )

1

0 K2t st YT R T I
This construction is more transparent when drawing the GL(7,R) Young diagram Z corresponding to the

product (87), in which we mark by a “x” the cells corresponding to the components of the bra ( ¢, | (and

ket | ¢, )) and by a “—” the cells corresponding to the partial derivatives. The components of the metric
tensors are marked by a “o”. It gives b | 2 | 3| | x| x| x
CAVCANEANE XX x|
g3 | 13| 13| s x| =1-|-
Z = pilmg ||| T [ —lefo]e
ps | H5 | 15 | 15 oo |o|x
pe | 6 | 18 | 1o X | x| x| X
pr | w7 | 17 | iy x| x| x| X




Only one GL(7,R)-irreducible component of the differential multiform *; *3 *3 ¥4 Ky survives inside the
action. The corresponding differential hyperform is denoted by I€§ and is labeled by the Young diagram
Y =(7,7,7,7) — (3,3,3,4) = (4,4,4,3). The associated Young tableau reads

AN X | x| x|
po | mi |1 | ps | | x| x| x| %
Ws | M5 | 13 | 5 x|ofo|o
pi | pd | g °erel° (88)

It has been obtained by rotating Z ~ by 180 degrees and removing the cells corresponding to the Young
diagram Y. In terms of SL(7,R)-irreducible representations, the tensor If€§ is equivalent to Ky

The Euler-Lagrange equations are

05 x Y [( 3 )/E

0 Mg M3 M2 pd

b2 4 12 s 1. 4 Hrngnapd | i pugudps | Kenguing | npugus (89)
K77 7 5 g R e e 5 Mg

where Y is the projector on the symmetries of ¢ 1. In the field equations (and thus

HEHZURIT 5 HGHEHERG 5 13
in the Lagrangian), only one GL(7,R)-irreducible component of the tensor product Mk it M2 i3 M2y will

contribute. It is the irreducible component characterized by the Young tableau X such that the tensor

product X - Y contains Y in its decomposition. We find X = (2,2,1,1). Drawing the diagram,

X | X | X | X
o| o] o | o X | X | X | X
oD | X | X | XX
o | o X | X | X | X
X | o] o] o
X

Y ILTR) o VEL(ZR), the Einstein-like equations (89) are equivalent to the deMedeiros—

Due to the isomorphism e N

Hull equations
Y, TrMTrQSIC?] ~0. (90)

The equations (89) and (90) respectively provide a particular example of (73) and (65).

3.2.3 Proof of Theorem 2

The proof may be divided in three distinct parts. Firstly, we show that our definition of the action produces
a result different from zero, which is a non-trivial statement due to the numerous contractions of various

irreducible tensors. Secondly, the kinetic operator (71) is proven to be self-adjoint, which implies that the

31



equations of motion indeed are (73). Thirdly, the Euler-Lagrange equations (73) are shown to be equivalent
to the equations of Hull and de Medeiros. At the light of the results of Section 3.1, this step ends the
proof of Theorem 2. The simpler way to start the proof of Theorem 2 is to explicit the construction of
the Lagrangian step by step and exhibit the Young tableaux corresponding to the diverse objects involved,
because the procedure is very simple even though the multiplicity of indices somehow casts a shadow on
this quality.

(1°) The starting point is the product of the 5 Levi-Civita tensors corresponding to the operator *j ... *z

in (71). In components, this product reads

1,,1 1 2,2 2 5,5 5
by chtihe iy | T (91)

Obviously, this product defines an irreducible representation of GL(D,R) labeled by the following Young

tableau
pio| oyl It
my | w3 I
7 -
1 2 5

All other indices present in the Lagrangian have to be contracted with the contravariant indices of the Levi-
Civita tensors in (91), therefore we will have to “store” into the tableau (92) the indices of the components
of the gauge fields, partial derivatives and metric tensors.

Since the components of the tensor gauge field in the bra and in the ket are contracted with the Levi-
Civita tensors in the action, the antisymmetrization is automatic so that one may assume without loss of
generality that the only algebraic constraints on the gauge field is that it is totally symmetric in the indices
appearing in the rows of Y. Only the GL(D, R)-irreducible components of ¢, will appear in the Lagrangian.
For the ket | ¢, ), the tensor gauge field components read

¢

1,2 .12 Ty, Lol 2 ey
RT3 Pg iy o Hg® 5 e S g M My

where 7, is the length of the ath row in Y. The Young tableau (102) corresponding to the gauge field can
be obtained by looking at the Young tableau Y included in the left upper corner of (92).

The s partial derivatives in the operator dj ... ds read in components

A ) iﬂ)a@.

d,2 ...0
Hgy 1 Hogy1 “ZSH( 1%

The contraction of the components

0,1

Q2 ...0ys
‘uﬁl+l 'u'£2+1 u£s+1(

6Hi+1 )E(S)¢ 1

Ty 93
HLHR e 15 5 3R g 5 e s G G e b, (93)
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with the Levi-Civita tensors (91) in the Lagrangian projects the derivatives of the gauge field on the
components of the curvature tensor whose symmetry properties are characterized by the Young diagram
Y := ({1 + 1,05 +1,...,0,+ 1) and Young tableau (124). This explains the appearance of the curvature
tensor in the ket of the Euler-Lagrange equations (73). In the odd-spin case where €(s) =1 and s = s+1, an
extra partial derivative 8@“ is applied on the curvature tensor. The index of this extra partial derivative is
not antisymmetrized with the index of any other partial derivative, as can be seen in (93) by the fact that
no other partial derivative index 'L‘Z 41 bossesses the same column index: i # 5. Therefore the contraction
of (93) with (91) is nonzero. The first derivative of the odd-spin curvature tensor is characterized by the
Young diagram Y, := ({1 + 1,05+ 1,...,0,+1,1).

An important point to understand next is that the components corresponding to the bra (¢, | can be
chosen as

Qbu%ﬁ;lm#};—e(s) Y R i LI ;#%*514‘1"’#;_:‘511:11 . (94)

It is easier to state the preceding point in terms of Young tableaux and diagrams. The previous ordering of
the indices of the bra ¢, can be read off from (92): One rotates the Young diagram Y corresponding to ¢,
by 180 degrees (~ in the plan of the sheet of paper) and places it at the right-bottom corner of (92). The
indices appearing in the cells of the rotated ¥ Young diagram coincide with the components of (¢, |.

g . . .
D-1)5-¥] , as indicated in

The indices that remain uncontracted in (92) are traced by the operator Tr (
(71). The resulting action is nonvanishing because no two indices ,u;'- and u;-/ with the same row index j are
contracted by the same epsilon tensor. In the Lagrangian, all the indices with the same row label ¢ could be
totally symmetrized without giving a vanishing result. In fact, by construction of the Lagrangian, such an
operation would be redundant. We have explained how the curvature tensor K- appeared in the Lagrangian,
as well as the action of an extra derivative 8#?“ when £(s) = 1. By contraction with the epsilon-tensors
(91), the curvature tensor Ky is dualized on every column, giving ** K for s even and 5 Htd g K for s
odd.

By construction, for s even, only the GL(D, R)-irreducible component of the differential multiform ** K
which is labeled by the Young diagram ? € Y* will survive in the action. [See Appendix A.1.2 for the general
definition of the dual Young diagram ? and tensor.] The corresponding differential hyperform is denoted
by I€§ € V?GLD and V = RP. The coordinates of ? are (D —¥0s—1,D — {5y —1,...,D —¥; —1). One
can read the components of IC% and understand its appearance in the Lagrangian by inspecting the Young
tableau (92): Mark with a “e” the cells of (92) which correspond to Ky-. Then rotate (92) ~ by 180 degrees.
The empty cells now sit at the top of the rotated tableau and give the Young tableau ? associated with the
components of E§ Now consider the Young tableau Y included in the left upper-corner of ? From (94)
and the paragraph below (94), it corresponds to the Young tableau associated with the components of the
bra ( ¢, |. The remaining indices of ? correspond to the components of the operator Tr (D-D35-I¥1 | Note
that the cells in which these remaining indices appear do not constitute a Young diagram.

In the odd-spin case, the GL(D,R)-irreducible component of the differential multiform *5*!d K

which survives in the Lagrangian is labeled by Y. The corresponding differential hyperform is denoted
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(dsHIC):v and transforms in V?GVLD with V' = RP. The coordinates of Y| € Y**! are (D—1,D—¢,—1,D —
+

by 1— ,D—/1—1). Similarly as in the even-spin case, the Young tableau associated with the components

of (dsHIC)f is obtained from (92) by marking with a “e” the cells of (92) which correspond to (ds+1K)y,
+

and rotating (92) ~ by 180 degrees. The empty cells which sit now at the top of the rotated tableau give

the Young tableau Y+ associated with the components of (ds+1lC) . Again, the Young tableau Y included

in the left upper-corner of Y| corresponds to the components of the bra ( ¢, | in (94). The remaining

indices which sit below and at the right of the Young tableau Y C Y, correspond to the components of
(D-1)*51 Y|

the operator Tr . The cells in which these remaining indices appear do not constitute a Young
diagram.

(2°) The detailed construction of the Lagrangian explained above enables us to provide a Young-
diagramatic proof of the self-adjoint property of the kinetic operator, KI = K. Take the rectangular
Young diagram with D rows and § columns which underlies (92). Mark with a “x” the cells corresponding
to| ¢, ) and ( ¢, | and fill with the symbol “—” the cells corresponding to the partial derivatives. Finally,
mark with the symbol “o” the cells that remain, which correspond to the trace operators Tr (D-1)3-IYT
Denote the resulting rectangular Young tableau by the symbol Z. Now rotate Z by 180 degrees ~. What

(192

appears is not yet Z, since each symbol “—” has to jump upward over the symbols “o”. Because there is

”

an even number 5 of “—” and because to each “o” in the ¢th column there is a corresponding “o” in the
(s —i+1)th column, there is an even number of jumps. The rotation of Z corresponds to taking the adjoint
f (¢, | K| ¢y ). A jump in a column corresponds to a transposition in the indices of a Levi-Civita
tensor, therefore an even number of transposition brings a factor +1. Finally, there is an even number of
integrations by part because 3 is even. We have thus showed that K' = K. Moreover, it is now obvious
that the action is invariant under the gauge transformations (72) because it depends on the ket | ¢, ) only
through the curvature.
(3°) The Euler-Lagrange equations <[ ™ |] ~ ( are obtained by varying the action with respect to the
bra ( ¢, |, so by definition they have the symmetries of | ¢, ). In the odd-spin case, it means that

one sets (on-shell) to zero the component of [Tr (D*1)831*|Y|} (CZJ:II/C)ﬁr which belongs to VSLD. In the

even-spin case, one sets (on-shell) to zero the components of [TY (D=3 =Y IE§ which belong to V}g Lo,
The operator between square brackets is in general reducible, it decomposes under GL(D,R) into a sum of
irreducible powers of the metric tensor. However, only a certain GL(D,R)-irreducible component labeled
Xeven for s even (X% for s odd) will survive in the field equation, the component for which the division
?/ X" contains Y and the component for which the division /?:/ X9 contains Y (see Appendix A.1.1
for the division rule with Young diagrams) As recalled in Appendix A.1.2, with respect to SL(D R), the

irreducible representations Y and Y are equivalent: V~ SLlp o VSLD (V = RP ). Similarly, Y+ and Y, are

equivalent irreps of SL(D,R). The dual SL(D,R)—lrreducible representation Y (respectively Y ) is called
the contragredient SL(D,R)-irreducible representation of Y (of Y ), see e.g. the third reference of [48].
Consequently, the field equations for s even imply that the component of the trace Tr2 Ky which belongs to

SL(D,R)

Vs is set to zero. In the odd-spin case, it means that the field equations set to zero the component of
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the trace Tr™s ds 1Ky which belongs to V{f LIDE) - The latter two field equations are therefore equivalent

to the equations (65) and (66), which in turn are equivalent to the Ricci-flat-like equations Tr Ky ~ 0.
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A Notation and conventions

In this section, we review former results, introduce the fundamental definitions and take the opportunity to

fix the notation.

A.1 Young diagrams and tensorial representations

We essentially extracted the standard definitions and properties on irreps and Young diagrams from various

“textbook” references such as [48] (see also [49] and the appendix of the second reference of [8]).

A.1.1 Young diagrams and irreducible representations

A Young diagram Y is a diagram which consists of a finite number s > 0 of columns of identical squares
(referred to as the cells) of finite non-increasing lengths ¢1 > fo > ... > ¢ > 0. The total number of cells
of the Young diagram Y is denoted by |Y| = Z‘;:l ;. The set of Young diagrams with at most s columns
is denoted by Y®. We identify any Young diagram Y with its “coordinates” ({1,...,¢s). For instance,

Y IGY?’

is identified with the triple (4,3,1) € N3. A Young tableau is a Young diagram where each cell contains
an index.

Let Y be the Abelian group made of all formal finite sums of Young diagrams with integer coefficients.
This group is N-graded by the number |Y| of boxes: Y = > . Vn. The famous “Littlewood-Richardson
rule” defines a multiplication law which endows ) with a structure of graded commutative ring. The product

of two Young diagrams X and Y is defined as

X'Y:Z”fnxy‘zz,
Z

where the coefficients mxy |z = my x|z are the number of distinct labeling of the Young diagram Z

obtained from the Littlewood-Richardson rule. As one can see, | X - Y| = |X|+ |Y|. A related operation in
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Y is the “division” of Z by Y defined as
z/Yy = ZmXY\Z X,
X

where the sum is over Young diagrams X such that the product X - Y contains the term Z (with coefficient
mXY\Z)'

Multilinear applications with a definite symmetry are associated with a definite Young tableau, while
the symmetry in itself is specified by the Young diagram. Let V be a finite-dimensional vector space of
dimension D over a field K and V* its dual. The dual of the nth tensor power V®" of V is canonically
identified with the space of multilinear forms of rank n: (V®")* = (V*)® Let Y be a Young diagram
whose first column has length ¢; < D and let us consider that each of the |Y| copies of V* in the tensor
product (V*)®|Y| is labeled by one cell of Y. The Schur module V}g Lb s defined as the vector space of

all multilinear forms 7" in (V*)®I¥| such that :

(i) T is completely antisymmetric in the entries of each column of Y,

(71) complete antisymmetrization of 7' in the entries of a column of Y and another entry of Y

that is on the right-hand side of the column vanishes.

The space Vf Lb is an irreducible subspace invariant for the natural action of GLp on (V*)®|Y|. Its elements
were called hyperforms by P. J. Olver [7].
Let Y be a Young diagram and 7" an arbitrary multilinear form in (V*)®|Y|, one defines the multilinear
form Y, (T) € (V*)2¥1 by
YV (T)=To Ay oSy

with

Ay =) (), Sy=>r,

ceC reR

where C is the group of permutations which permute the entries of each column, ¢(c) is the parity of the
permutation ¢, and R is the group of permutations which permute the entries of each row of Y. It can
be proved that any ), (T") belongs to VSLD and that the application ), of End((V*)@Y‘) satisfies the
condition 2 =AY, for some number A # 0. Thus Y, = A~'Y, is a projection of (V)21 onto itself, i.e.
Yi =Y ,, with image Im(Y ,) = Vf Lp  The projector Y , is referred to as the Young symmetrizer in
the antisymmetric convention for the Young diagram Y.

Actually the construction of the Young symmetrizer introduced above by first symmetrizing the intries
of the rows and then antisymmetrizing the entries of the columns of a given Young tableau could as well have
been defined with antisymmetrization first followed by symmetrization. The corresponding irreducible GL p-
modules are isomorphic and the corresponding projector is called the Young symmetrizer in the symmetric
convention for the Young diagram Y and is denoted by Y ;. The changes of convention Y 0Y , and Y ,0Y
are mere changes of basis in the Schur module Vf Lb  Notice that for Young diagrams Y made of one row (or

one column), it is not necessary to specify the choice of convention because both symmetrizers produce the
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same result; and the corresponding hyperforms of the Schur module Vf Lp are usually said to be completely
(anti)symmetric tensors. In all other cases, the hyperforms are also called mixed-symmetry tensors

in the litterature.

Example: The simplest instance of a mixed-symmetry tensor is the tensor T:V‘p of rank three associated

. [l L P . . . . .
with the “hook” tableau 7 | identified with the couple (2,1) € N2. We chose the antisymmetric convention
sothat T =T/ . and T} .= 0, where square brackets always denote complete antisymmetrization
mvlp [uv]lp [uv[p]
. . . . . S
over all indices with strength one. In the symmetric convention, we would have a tensor T),,.,, such that
S S S . .
Typiw = T(up);v and T(Mp;l/) = 0, where curved brackets always denote complete symmetrization over all
indices with strength one. We can switch from one convention to the other by the following changes of basis
S A A S
Lapiv ="Totu;p) and Ty, , = Lo

If the vector space V is endowed with a non-degenerate symmetric bilinear form (i.e. a metric) with

signature (p,g) where p+g¢ = D, then the subspace V;Z"*%)

of traceless hyperforms in the Schur module
Vf Lb ig irreducible under the group O(p,q). Whenever the sum of the lengths of the first two columns of
Y is greater than D, ¢ 4+ f2 > D, then the irreducible space is identically zero: V;)(p’Q) = {0}. So Young
diagrams such that ¢1 + ¢ < D are said to be allowed. All non-zero finite-dimensional irreps of O(p, q) are
uniquely characterized by the datum of an allowed Young diagram.

Let Y~ be the Abelian monoid made of all formal finite sums of Young diagrams with non-negative
integer coefficients. Finite direct sums of irreps of GLp may therefore be labeled by elements of )s ¢ via

the rule

GLp . GLp GLp
Vinxany = mVy ™2 & nVy0,

where the positive integer coefficients m,n € N must be interpreted as the multiplicity of the corresponding
representations. The same is true for the groups O(p, q). The evaluation of the Kronecker product of two

irreps of GLp can be done by means of the Littlewood—Richardson rule which gives
VI & VI = VG — @) my s VSV, 5)
Z

A related operation is that of contraction of one set of contravariant indices of symmetry Z with a subset of
a set of covariant tensor indices of symmetry Y to yield a sum of covariant tensors with indices of symmetry

X given by the division rule
GL GL GL GL
VZ D/VYD: Z/YD:@mXY‘ZVX D.
X

The irreps of GLp may be reduced to direct sums of irreps of O(p, q) by extracting all possible trace
terms formed by contraction with products of the metric tensor and its inverse. The reduction is given by

the branching rule

GLp 1 O(p.g) = W L voR?, (96)

where A is the formal infinite sum

A=1+ [+ 10 + H+ OO0 + - + 0+
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corresponding to the sum of all possible powers of the metric tensor. The decomposition (96) actually has

a useful converse

Op,)1GLp = VP9 1vihe,, (97)

because the series A has an inverse

At=1-[T7]+ H—_[H— +...

The operation (97) leads to a formal finite sum of irreps, some of which with strictly negative integer
coefficients that have to be interpreted as constraints on some trace of the corresponding tensor basis.

(Remark: These constraints are not preserved by the full GLp group.)

A.1.2 Multiform and hyperform algebras

The elements of the algebra ®( A (V*)) of symmetric tensor products of antisymmetric forms € A(V*) are
called multiforms. The subspace @5( A (V*)) of sums of symmetric products of s antisymetric forms is

denoted by

/\[s](V) =AVH)O...0ANVH). (98)

s factors

The D generators of the ith factor A(V*) are written d;az* (i = 1,2,...,s). By definition, the multiform

algebra A (RP) is presented by the commutation relations
dizt djz” = (—)% djz” diz” (99)

where the wedge product is not written explicitly.

Let G be an Abelian group. The direct sum Vi, = @4V, is called the G-graded space associated with
the family of vector spaces {V;}4cq. Moreover, if V' is an algebra such that for any two elements a € V,
and 3 € V}, the product a3 € V.p,, then V is said to be a G-graded algebra. As an example, the algebra
Ng (V) is N°-graded

01 oy b
NV = D AV, (100)
(¢1,...,£s)ENS
where an element o of /\f;]’EQ""’ZS(V) reads
1 S S
o = W a[l»‘%n-#%l} | ...... | [/Li'“”zs] dll’u% VANRAN dll’u%l (O, ® ds.’Eul FANPIAN ds.’BMZS . (101)

Each exterior algebra is Zo-graded by the parity of the antisymmetric form. This induces a Zs-grading of
the algebra A4 (V) given by the parity (¢1 + ... + £5) of the multiform o € /\f;]’ZQ""’ZS(V). The algebra of
multiforms is therefore graded commutative [see Equation (99)].
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If (¢1,...,¢5) defines a Young diagram Y, then one can form a Young tableau by placing all the ué
indices in (101) corresponding to the ith exterior algebra A(V*) in the ith column of Y :

pio| oy py e It
TN 1y
1, | B,
1l
b (102)
So the space /\f;}’&""’es (V') of multiforms is an eigenspace of the operator Ay antisymmetrizing over the

indices placed in the same column. Conversely, any hyperform in the antisymmetric convention can be seen
as a multiform. This induces a natural product on the space of hyperforms.

From now on, we will assume that V is equipped with a metric. Then the Hodge dual operations

* /\f[ls,]...,gi,...,fs (V) N AEﬁg,}...,D*éi,...,fs(V)’ 1 g 'L < s (103)

in each subspace /\zi(V*) may be defined. In practice, the operator *; acts as the Hodge operator on the ith
antisymmetric form in the tensor product. To remain in the space ®(V*) of covariant tensors requires the
use of the metric in order to lower contravariant indices.

Using the metric, another simple operation that can be defined is the trace. The convention is that we
always take the trace over indices in two different columns, say the ¢th and jth. We denote this operation

by

Oyl s
[s]

Using the previous definitions of multiforms, Hodge dual and trace operators, we may reformulate the

definition of the Schur module as follows: Let o be a multiform in /\fsl}""’es(V). If

l;<t;<D, Vije{l,...,s}: i<y,
then one obtains the equivalence

Trij{xia} =0 Vij: 1<i<j<s <= acVi?, . (105)

Indeed, the condition (i) is satisfied since « is a multiform and the condition (ii) is simply rewritten in terms

of tracelessness conditions.
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Let Y be an allowed Young diagram, ¢; + f5 < D. The further irreducibility condition obeyed by a

(b-11) C Vf LD, is the vanishing of all possible traces. Using the irreducibility conditions

multiform « € VYO
(105) under GLp one may show that the vanishing of the trace over the indices placed in the first two

columns implies the vanishing of all other possible traces:
GLD . — - — S 4 O(p7Q)
If acVy™P, then: Tra =0 <= Trja=0 Vije{l,...,s} <<= acly , (106)

where we defined Tr = Trqs.
Let Y = (¢1,...,¢s) be any Young diagram in Y*. We define the dual Young diagram Y = (fq,... L)
by the following lengths of its columns: ¢; := D — fyq_; for i € {1,...,s}. Let a be a multiform of

/\4[15’]""& (V). One denotes by a € /\57[15,]...,173<V) the dual multiform defined by

S
a:= *°a, where x5 = 1_‘[*z .
=1

The dual multiform & belongs to the same representation space of SLp as . If o, € Vf Lp isa hyperform
labeled by the Young diagram Y, then the dual multiform ay is in the irrep. of GLp associated with the
dual Young diagram )N/, i.e. ay € V}g Lp , called the contragradient representation of Vf Lo, Actually,
the representations are equivalent under SLp.

Y = (1,09,...,4s) is an allowed Young diagram, ¢; + ¢ < D, then the Young diagram Y* =
(D — {y1,0s,...,Ls) is also an allowed Young diagram called associated Young diagram. In such case,
it o, € VYO P9 44 5 hyperform in the irrep. of O(p,q) corresponding to the Young diagram Y, then the
multiform ;¢ is in the irrep. of O(p, ¢) labeled by the associated Young diagram Y™, i.e. xja, € Vo*(p’q).
The two irreps of O(p, q) become equivalent when they are restricted to SO(p, q). Notice that, for an allowed
Young diagram, all columns but the first one have length ¢; < D/2 (2 < i < s). Therefore each inequivalent
finite-dimensional irreps of SO(p, q) is uniquely characterized by a Young diagram with columns of length
smaller than D/2.

The metric on V' allows to endow the space A[(V) of multiforms with a non-degenerate symmetric

bilinear form
() Ag(V)oAg(V) — K (107)

called scalar product defined by taking the scalar product in each of the s exterior algebras A(V*). More
explicitly,

1

1 1 s s

JTERR 17 S RO VL OO T

[0} /3 = -0 Q,1 1 s 1 s
( ) ) AT 1ty [ o] IR

for two multiforms a and # which read in components as in (101). The scalar product is positive definite if
and only if the metric on V is. Via the left multiplication in A[S](V) the generators d;z* can be interpreted
as operators. Their adjoint (d;z*)" for the scalar product reproduces the interior product in each exterior

algebra because the operators d;z# and (d;z” )Jr satisfy the canonical graded commutation relations
[dia, (dja”) 1] = b5 0™, (108)
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where [ , |+ stands for the Zo-graded commutator, 7, are the components of the (pseudo-Riemannian)
metric on V and n#**ny, = /. The anticommutation relations (108) also imply that Als)(V) is isomorphic to a
Fock space whose creation operators would be the d;x*’s and the destruction operators the (dim“)T’s. In terms
of the latter operators, the trace operators Tr;; defined in (104) can be written as Tr;; = 1, (d;z*)T(d;z¥)T.

If (¢4, 0o, ...,¢s) defines a Young diagram Y, then the operators Ay and Sy are well-defined on /\f;}’b’“"[“ (V).
Moreover, they are self-adjoint, therefore the two Young symmetrizers are the adjoint of each other:

YL = Y . There is no ambiguity once a Young tableau is specified. This implies that one may define

the non-degenerate product on the space of hyperforms

(,)y WP er 5 K (109)

defined by
(o, By == (a, Y, ), (110)
where o and 3 may be taken to be multiforms of /\f;]’ZQ""’ZS(V) but the result depends only on their irre-

ducible component in Vf LD One observes that £ may naturally be assumed to be in the antisymmetric
convention, and « in the symmetric convention. Indeed, (o, 8)y = (a, Y,8)y = (Y o, )y because
the symmetrizers are projectors and adjoint with respect to each other. In Dirac’s terminology, one may take

the “bras” to be hyperforms in the symmetric convention and the “kets” in the antisymmetric convention.'”

A.2 Differential complexes

The objective of the works presented in [7, 8, 9, 10] was to construct complexes for irreducible tensor fields

of mixed symmetries, thereby generalizing to some extent the calculus of differential forms.

A.2.1 Multicomplex of differential multiforms

We start with basic definitions from homological algebra. A differential complex is defined to be an
N-graded space Vi, = ®;enV; with a nilpotent endomorphism d of degree one, i.e. there is a chain of linear

transformations

d d d d
RELEG VANLES /JELEG /AN

such that d> = 0. A well-known example of such structure is the de Rham complex for which the vector

space is the set Q*(R?) of differential forms graded by the form degree. The role of the nilpotent operator

is played by the exterior derivative d = dz#0,. One can now define the quotient H*(d) := Iliﬁfdd called the
cohomology of d. This space inherits the grading of V.. The elements of H(d) are called (co-)cycles.
Elements of Im, are said to be trivial or exact (co)-cycles.

A straightforward generalization of the previous definitions is to consider a more complicated grading.

More specifically, one takes N* as Abelian group (s > 2). A multicomplex of order s € N is defined to be

10We are grateful to Marc Henneaux for calling these observations to our attention.
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an N®-graded space V(, ., = &b Viir,....is) With s nilpotent endomorphisms d; (1 < j < s) such that
(7:17--~7Z'S)GNS

AiViireoigyims) © Vit yig+1,is)-

A multicomplex of order one is a usual differential complex. A concrete realization of this definition is the
space of differential multiforms whose elements are sums of products of the generators d;z* with smooth
functions as coefficients.

More precisely, the space of differential multiforms is the graded tensor product of C*°(RP) with s
symmetrized copies of the exterior algebra A(RP*) where RP* is the dual space with basis d;z* (1 <1 < s,

thus there are s times D of them). We denote this multigraded space C*(R”) ® Als] (RP) as

QR = P oyt RP), (111)

[s
(ely-wgs)ENS

by analogy with the de Rham complex Q*(R”) = Qp;;(R”). The tensor field R NP
1 s
1ol

multiform o € Q[S] (RP) which explicitly reads

(z) defines a

1

1 Hl s s
m O[uimu%l [ ... | Mf---ﬂ?s (CC) d]_l"u1 VANV d]_$ @ ®...0 dsf'ul VANPAN ds.’lj'uls . (112)

o =

In the sequel, when we refer to the differential multiform o we speak either of (112) or of its components.
More generally, we call (smooth covariant) tensor field any element of the space @(RP*) @ C>°(RP).

We endow Q) (RP) with the structure of a multicomplex by defining s exterior derivatives

di . QZES,]...,ZZ-,...,ZS (RD) N Qf[lg}...,fi—i-l,...,es (RD), 1<i< s, (113)

defined by taking the exterior derivative with respect to the ith set of antisymmetric indices. Naturally, for

each label i (1 < i < s) one can define the cohomology group H*(d;) = Iﬁird
d

L. The nilpotent operators

7

d; = djz"0, generalize the exterior differential of the de Rham complex.
If the manifold R” is endowed with a metric then, by using the Hodge operators *; introduced previously,

one may also define the coderivatives

dl = (=)D s dyg QB (RP) - QAT RP), 1<, (114)

As usual, the Laplacian or d’Alembertian may be defined by the anticommutator O = [d;, dz]+ . A multiform
a in Qg (RP) is said to be harmonic if it is closed (d;a = 0) and coclosed (dja =0) forallie {1,...,s}.

Notice the very useful identities

[Trij, di)e = 26,,d)), (115)
and
[di, dj]e =0, [d;,dl]z = d;0. (116)
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A.2.2 Generalized complex of differential hyperforms

Let N be a natural number not smaller than 2. An N-complex is defined as a graded space V., = &;V;
equipped with an endomorphism d of degree 1 that is nilpotent of order N > 2: d¥ = 0. The generalized
cohomology of the N-complex V, is the family of N — 1 graded spaces ¥) /f (d) with 1 < k < N —1 defined
by ® H(d) = Ker(d*) /Im(dN*), i.e. ®)H*(d) = @;®) H'(d) where

Wi (@)={aeVi|da=0a~a+d "8 B Vi n},
Proposition 2. [10] Any multicomplex structure of order N —1 possesses a canonical N -complex structure.

This fact plays a crucial role in the gauge structure of mixed-symmetry tensor gauge fields. The proof
is rather simple.
Proof: In order to connect the two definitions one has to build an N-grading from the N*-grading of the

multicomplex V(, ) = P Vi endowed with the s nilpotent endomorphisms d;. A simple

(i1,...,i5)6N5
choice is to consider the total grading defined by the sum i = ijl 5. We introduce the operator

dT = Z d]'
j=1

which possesses the nice property of being of total degree one. Two convenient cases arise:

il:mvis)

e [d;,dj]+ = 0: Usually the nilpotent operators d; are taken to be anticommuting and therefore d is

nilpotent. This case is rather standard in homological perturbation theory.

e [d;,dj]- = 0 when i # j and d;> = 0 : From our present perspective, commuting d;’s are indeed
quite interesting because, in that case, dp is in general nilpotent of order s + 1 and the space V is
endowed with a (s + 1)-complex structure. Indeed, every term in the expansion of dfﬁrl contains at

least one of the d; twice. O

Due to the (anti)commutation relations (116), the second case in the proof is illustrated by the multicomplex
Qq (RP) of differential multiforms.
The total cohomology group [10] is the generalized cohomology group *) H(1:%)(dp) associated

with the operator dr and the N°-grading, whose elements o € V{;, ;. satisfy the set of cocycle conditions

[[ dia=0— VvIc{L2...s}|#I=k, (117)
el

with the equivalence relation

a ~ a + > II 4 8., (118)
Jc{1,2,...s 7
#J=s—k+1
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where (3 belongs to V(;, ;) with

i ik J,
1 — 1 ifkeJ.

Jk =
This can be easily seen by decomposing the cocycle condition d?a = 0 and the equivalence relation o ~
o+ dST_kHﬁ in N* degree.
A differential hyperform [7] is a GL(D, R)-irreducible tensor field, that is, an element of C*°(RP) ®
Vf LIDR)  We denote by Qé) (RP) the space of differential hyperforms associated with the Young diagram

Y made of s columns. We also introduce the Y*®-graded space

Qo (RP) = Y 9 (RP). (119)
Yeyvs

In order to endow the space €y (RD ) with a structure of multicomplex, one may introduce the maps [9, 10]

At @lfyy bt RP) — Qlfy S RP) (120

for 1 < ¢ < sand ¢;41 > ¢;. This operator is defined as follows: take the derivative of a differential hyperform
of Q%S) and consider the image in Qﬁ;} where Y{#} is the Young diagram obtained from Y by adding one
more cell in the ith column. In other words, d{} = Yﬁj} o d. Since hyperforms in the antisymmetric
convention may also be seen as multiforms, the action of an operator d{"} may be expressed as a linear
combination of the action of the exterior derivatives d;. So we have the obvious property that, for any

differential hyperform o of Q) (RP),

([[d:i) e=0, vIic{i2...s}|#I=k

el
—  (J]d" )a=0, VIc{1,2,....s} |#=k. (121)
el
We proved in [9] the triviality of the generalized cohomology groups (k) i (Zl""’fs)(d) for 1 <k <s,0</
and {1 < D, in the space of differential hyperforms €y (RP) with d = d{'} + ... + d{s}, thereby extending
the results of [7, 8]. In particular, for ) H ?(d) where Y € Y* is a Young diagram made of s columns, one

Y
(s

may show'! that the closure conditions of a hyperform IC7 €N )(]RD ) are equivalent to

dik,=0, (i=1,...,s) (122)
and that imply the following exactness of the differential hyperform

K_=dy...dso, (123)

Y

where ¢, is a differential hyperform belonging to Qé) (RP) with Y the Young diagram obtained by removing

the first row of Y. Such an exact hyperform K is called the curvature tensor of the gauge field ¢, .

HSee Corollary 1 of [9] for more details.
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If the components qﬁu%_““} | | s
1

s of the gauge field are characterized by the Young tableau (102), then

o e

the components ’C“i"'ﬂéﬁl || H;““;s“ are described by the Young tableau
i | | |
Py | M3 po’ || e
i | w3 e

1 2
Fooy+1 Mo +1

1
Hiy41 (124)

Analogously, for ) HY (d) where Y is a Young diagram made of s columns, one may show that the

closure condition of a hyperform ¢, € Q%;) (RP) is equivalent to

di...dsp, =0, (125)

and they imply the following exactness of the differential hyperform

¢y =Sy Z die; = Z dWepy, (126)

i=1 i=1
where the ¢; are differential multiforms belonging to Qfsl]""’eifl""’zs (RP) while the egsy are differential hyper-
forms (or zero if they are not well-defined) belonging to Q%""’Zﬁl"“’es)(RD ). Such an exact hyperform ¢,

is called the a pure gauge field.

The norm of the functions in L?(R?) together with the scalar product on Nl (RP) define a natural non-
degenerate symmetric bilinear form on the space €[4 (RP) of differential multiforms, so that the codifferential
dZT in (114) becomes the adjoint of the exterior derivative d;. This implies that one may define the following

scalar product on the space of differential hyperforms

(,): QLR 0Q;R") - R (127)

defined by
(o] 8) = [P (a D)y, (128)
where (a, B)y is the scalar product (110) on Vf LIDR) e remind the reader that, without loss of

generality, one may take the bras (a | to be differential hyperforms in the symmetric convention and the

kets | 3) in the antisymmetric convention.
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Given a non-degenerate symmetric bilinear form ( , ) on a functional space, a quadratic action for
the field ¢ is a bilinear functional S[¢] = (¢ | K | ¢) entirely determined by the datum of a self-adjoint
(pseudo)differential operator K called kinetic operator. Because of the non-degeneracy of the bilinear
form, the action S[¢| is extremized for configurations obeying the field equation K | ¢ ) = 0. Translation
invariance requires the kinetic operator K to be independent of the coordinates x, hence the field equation is
a linear partial differential equation (PDE) with constant coefficients. Boundary conditions and regularity
requirements should be specified when solving PDEs.'? For instance, in order to convert linear PDEs into
algebraic equations by going to the momentum representation, we consider the gauge field ¢, either as a
rapidly decreasing smooth function or as a tempered distribution, that is the ket | ¢,.) € S (RP) ® VYG L(DR)
and the bra (¢, | € S'(RP) ® VYGL(D’R) . The action S[¢,] is said to be gauge invariant under (72) if
(die; | K| ¢, ) =0 for all ¢; and ¢,.. This gauge invariance property is equivalent to the Noether identity

dZTK = 0 since the bilinear form is non-degenerate.

B Technical lemmas

B.1 Proof of Lemma 1

We consider any two adjacent columns of the differential hyperform P |, i, |v1..]... » a0d We want to show
that the following implication holds (without expliciting the other columns this time; they play no role in

the proof)

P

B |[V1.vg, 0] T 0 = a[P,P

Nl---,ut'f”l/l---l’q

=0, (129)

where a coma stands for a derivative. In the case where ¢ = r, the above implication is trivial (P is then
symmetric under the exchange of the two columns), so we assume ¢ < 7 from now on.
(A) Since P € Q(S)(RD) ;one has P, jnfve..v, = 0 Which gives Py i, = r(—)T’PW[MM#T?lW]y%yq .

Without bothering about coefficients, we write

Pul[ul...ur,ﬂpT}ug...uq X Pyl...yT\ul...uq : (130)

(B) We antisymmetrize on the first (r+2) indices of the differential hyperform P, yielding K,y jv1um]us..y =

0. Decomposing this identity, we see three classes of terms appearing, where vy and 1o are
1. both in the first column,
2. one in the first column, the second in the other,

3. both in the second column.

2Throughout this article, we are sometimes sloppy concerning such technical issues of functional analysis because our main
concern is algebraic. Practically, this means that we always implicitly assume that the functional space we work with is such
that the objects we talk about and the operations we perform on them, are well defined. There is no lack of rigor in such

assumption because they may be legitimated and we refer to textbooks such as [50] for details.
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Explicitly one finds

0 = a(PVl[Ml---urfllllr}VQVS---Vq_PVQ[,U'I---,“rfl|M1"]V1V3---Vq)

+ bPI/U/Q[,ul...pr_Q‘ur_llLT]I/g...I/q + Cpul...ur|ul...1/q} ’ (131)

for some non-vanishing coefficients a, b, ¢ € No. This allows us to write P, ,,( as a linear

M1l — 2| o — 1 | V3. Vg

combinaison of P, . ju...,, and (77,, ) . Using (130) one obtains

11 pr—1|prlvovs..vg T PZ/Q 1. por—1|pr]v1vs.. g

7)1/11/2[;11...,u,.,z\/,L,»,lpT}ug...uq X P,LL1...,LLT|I/1...I/q . (132)

(C) Starting this time from P vvslvs..v, = 0 and using the relations (130) and (132), one obtains

M1 for

similarly P, Jaevg € Puyoopirvn..vy - At the end of the day one gets

1V2V3 [ o fhr — 3 | o — 2 flr — 1

qu...Vq[yq+1...ur|,u1...,uq] X ,P,ulu.,urhjl.“uq . (133)

As a consequence of our starting hypothesis Equation (129), we have P

finally, using Relation (133), 0|, =0.

1] |V1 g

V1eviglitgetpir i otig o) = 05 and

B.2 Proof of Lemma 2

The proof is somewhat tedious because it requires some care with the combinatorial gymnastic.

By definition,
1
Tr(12"'Tr2n—12n) = m Z ( H Tr7r(2i—1)7r(2i)>'
" mEGa,  i€{l,...,n}
To start with, one makes use of (115) for ¢ # j in order to rearrange the factors in the following sum over

all permutations 7 of the set {1,...,2n}

Treio. .. Tron_19n) didz ... dop—1don =

1 n
= @ Z (HTr7'|'(2i71)7'('(2i)dﬂ(2i71)dﬂ(2i)> . (134)

TeBGop =1

Then, one evaluates each factor
_ T T
Trr@i-1)r@idr@i-1)dr@) = B = degimnydrpio) = Greoleen T dr@i-1)dre) Trr@i-nre),  (135)

by using (57). Now, one inserts (135) into the products

H Trr(2i—1)m(2i)dr(2i—1) D (25)
=1

2n n
= 0" 4+ grt ( - Zdjd} + Zdﬂ-(2i—1)dﬂ'(Qi)Trﬂ(%fl)ﬂ(Qi))
j=1 i=1

2n—2 2n 2n
n—2 T T
+0 E E dﬂ.(j)dﬂ.(k)dﬁ(j)dﬂ(k) + E didjdk(. o) (136)
J=1 k=j+1+e(5) ij k=1

We evaluated and grouped the terms in (136) according to the number of d’Alembertians and curls, by mak-
ing use of the commutation relation (116). More precisely, the decomposition in powers of the d’Alembertian

goes as follows.
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™. The leading term comes from picking the d’Alembertian in each of the n factor in the product.

O~ : The terms come from choosing a factor and taking d’Alembertian in the n — 1 remaining factors.
Still, one may either choose in the right-hand-side of (135) one of the term of the form djd; or the last

term with the trace.

0”2 : In degree n—2, the terms are of two types: either they contain two curls and are of the form d; dkd; d};
or they contain at least three curls. The first type of terms comes from choosing two factors in the
product and one term of the form dd! in each of them. All other choices give rise to terms of the

second type.

On=3 . All terms of degree n — 3 or lower in the d’Alembertian include at least three curls. All such terms

have been put together in the last term of (136).

Eventually, one should perform the sum over all permutations of the 2n elements in the set {1,...,2n}. The

result is

n

1
(2n)! Z (HTr7r(2i—1)7r(2i)d7r(2i—1)dﬂ'(2i)>

7T662n i=1

=0 4+ ot ( Zd dl + 2n1_ 5 Z d; dkTrjk> (137)
=1

n—1 n—2 5t
+5—0 dekdd+2dddk( ),
J.k=1 i,5,k=1

because of the two identities

Z Zdw(2i—1)d7r(2z‘)Tffr(m—m(gi) =n Z dr(1)dr@2) Trr(1)r(2) »

TESy, 1=1 TEGan,
and
2n—2
> > Z dn(ydnmydhpydlgy = 20(n—=1) > draydeedlydl ),
€62y J=1 k=j+1+(j) T€EGap

supplemented by the fact that for any object s;; symmetric in its indices j and &,

2n
Z Sx()yr(2) = (2n —2)! Z Sk - (138)
TE€Gan J7k:1

Finally, by making use of the definition (53) in (137) and going back to the departure equation (134), one
obtains by straightforward algebra

2n
_ n—1 .
TI'(12...TI‘2n_12n)d1...dgn = QOo” 1F + ﬁmn 2 Z djdk( - DTl"jk + d;d;)
g, k=1

2n
+ > diddy(..),

i k=1

The commutation relation (115) ends the proof the lemma 2.
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C Light-cone

The proof of the theorem was already sketched in the appendix A of [42] but we present it here in full details
in order to be self-contained. In physical terms, the proof amounts to show that, on-shell fieldstrengths are
essentially gauge fields in the light-cone gauge [18, 51].

Indeed, in order to prove the theorem 1 it is convenient to introduce a light-cone basis associated with
any light-like vector p#: we define it as a basis of RP~51 such that the light-like direction + is normalized
along the vector while the light-like direction — is orthogonal and the remaining space-like directions define
the transverse hyperplane RP~2. Hence, p* = 1 is the only non-vanishing component of the vector p# in

this basis.

Lemma 3. Let p* be a given vector on the lightcone (defined by p?> = 0) in Minkowski space RP~11,
This vector defines the operators p; = pud;x* and their adjoint ﬁT = pu(diaz“)T . Any multiform | o) of

(2
the Fock space /\ﬁ;},b,...,ﬁs (RP) with £5 > 0 such that

pila)y=0, plla)=0, Vie{l,. .., s}

reads in the light-cone basis
|a) = Piby---Ds | ),

l1—1,05—1,....0s—1

5] (RP=2) is a multiform on the transverse hyperplane RP~2,

where | ) € A

Proof of Lemma 3 : As explained in Appendix A.1.2, the space A (RP) is isomorphic to a Fock space
whose creation operators are the d;z* and the destruction operators the (d;z*)f. In the light-cone basis,
the condition ﬁ;-r | ) = (d;z7)" | @) = 0 states that the ith Fock space = A(RP) is in the vacuum for the
creation operator d;z.'3 Thus the occupation number of d;z™ is zero for all integers ¢ from 1 to s.

On the one hand, the condition p; | ) = d;z~ | a) = 0 states that the ith Fock space =2 A(RP) has
maximal occupation number for the creation operator d;x~. For any fixed i, this operator is Grassmann-
odd, thus its maximal occupation number is equal to one. This is true for all integers ¢, hence | a) =
diz—doz™ ...dsx~ | B) for some multiform | 3) € /\fsl]fl’erl"“’esfl(RD) . On the other hand, we have also

shown that the occupation number is zero for all creation operators d;x™, thus | 8) is transverse and belongs

to Alg (RD_g) . OJ

Proof of Theorem 1 : The on-shell harmonicity of the differential hyperform Ky- implies that the massless
Klein-Gordon equation OK_. ~ 0 is obeyed. Let us Fourier transform the tensor field components K_ (z)

in such a way that the harmonicity conditions become algebraic.!* The d’Alembert equation implies that

3Because the metric is off-diagonal in the light-cone directions.

MBoundary conditions and regularity requirements should be specified when solving PDEs. In Theorem 1, we implicitly
assumed that the “ket” | o, ) € L*(RP) ® VYO(DQ). This choice is convenient because (a) it provides an obvious norm for
Hy, (b) it selects solutions such that | ¢, (x) el e 0, and (c) if we consider ¢, as a temperate distribution (since the “bra”
(o, | € S(RP) ® VYO(sz)) then we are always allowed to convert linear PDEs into algebraic equations by going to the

momentum representation.
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the support of the Fourier transform K5-(p) is on the mass-shell p? ~ 0, so that the momentum vector p* is
light-like on-shell. For each Fourier mode of the tensor field le(p) associated with a momentum vector p*,
let us introduce a light-cone basis. As follows from Lemma 3, the harmonicity conditions impose that the

components of each Fourier mode are on-shell equal to

Ky () = By - Dby ()

for some transverse multiform ¢, (p) labeled by the Young diagram Y . It is now easy to prove that the
on-shell O(D — 1,1)-irreducibility conditions of the components K_(p) imply the O(D — 2)-irreducibility
condition of the components of ¢, (p). Therefore the harmonicity conditions restrict the hyperform K_(p)
to carry an UIR of O(D — 2) labeled by the Young diagram Y. This conclusion is true for any Fourier mode,

therefore it applies to the complete Fourier transform as well. O
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