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Abstract. We introduce a formalism for the geometry of eukary-
otic cells and organisms. Cells are taken to be star-convex with
good biological reason. This allows for a convenient description of
their extent in space as well as all manner of cell surface gradients.
We assume that a spectrum of such cell surface markers determines
an epigenetic code for organism shape. The union of cells in space
at a moment in time is by definition the organism taken as a metric
subspace of Euclidean space, which can be further equipped with
an arbitrary measure. Each cell determines a point in space thus
assigning a finite configuration of distinct points in space to an
organism, and a bundle over this configuration space is introduced
with fiber a Hilbert space recording specific epigenetic data. On
this bundle, a Lagrangian formulation of morphogenetic dynamics
is proposed based on Gromov-Hausdorff distance which at once
describes both embryo development and regenerative growth.

1. Introduction

We seek to posit a geochemical model for morphogenesis of eukary-
otic organisms that includes cellular details. Our aim is to describe the
main laws underlying the morphogenetic processes during normal de-
velopment as well as during possible perturbations resulting in creating
structure de novo as in the course of regeneration [5]. In this inherently
multi-scale context, we must describe the nano-biology of the cell in its
environment without unnecessary detail in a manner compatible with
macro-biological aspects of the geometrical shape of an organ or entire
organism.

Indeed, we shall proceed with a series of ansätze, one after another,
the first group of which are effectively axiomatic mathematical state-
ments about the structure of cells and the organisms which they com-
prise. Some aspects of this are inspired by biology as we shall dis-
cuss in detail, and others are nothing more than rather obvious but
new mathematical formalizations of elementary biological structure.
Indeed, for the mathematician and biologist reader alike, the depth
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of certain ansätze may range from sublime to ridiculous–though likely
quite differently for the two fields as we shall comment in specific cases.

The second group of ansätze governs the “morphogenetic field”, a
term used by René Thom [10] with the concept carefully articulated
by the first-named author with Misha Shubin in [8] and discussed in
some detail here, which determines the time-evolution of cell states. In
fact, our treatment here differs from [8] insofar as they consider four
discrete cell events (apoptosis, division, movement, growth), whereas
in our language, the first two are represented by birth/death events
(death alone or death with the birth of two daughters), and the latter
two by continuous evolution as a path in a certain bundle (a Hilbert
space1 as fiber over a configuration of finitely many distinct points in
three-space).

One profound contribution of [8] is what we shall call the “Epigenetic
Hypothesis”: the distribution of oligo sacchyride residues of glycocon-
jugates on the cell surface determines the morphogenetic field via an
as-yet unknown code. In fact, we are not so absolute as that and relax
it here by allowing any other distribution or gradient on the cell surface
as well, notably protein or electromagnetic gradients for example. One
nice aspect of the mathematical formalism we have found is that such
gradients on the cell surface can be explicitly prescribed in terms of
real-valued functions on the two-dimensional sphere.

Another notable aspect of the formalism here is the seamless jump in
scale from cells to organisms provided by any Gromov-Hausdorff type
metric on measured metric spaces. Indeed, in our description, each cell
has its explicit extent in three-space, the union of which forms a metric
subspace comprising the organism. Depending upon which features of
the organism are to be emphasized, different measures on the cells yield
different metrics on the space of organisms.

Our precarious multi-scale endeavor is only confounded by the first
ansatz:

Ansatz 1.1. No statement in biology is always true except this one.

2. Cells

We first describe the geometry of a single cell in mathematical detail
(based on the biologically sound assumption that cells are star-convex),
then the notion of cell state which captures certain epigenetic informa-
tion (and is succinctly described by a collection of real-valued functions
on the two-dimensional sphere S2 of unit radius centered at the origin

1A Hilbert space is a vector space with inner product which is complete as a
metric space, and a product of such is thus again a Hilbert space.
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in space R3 owing to star-convexity) and finally discuss cell trajectory,
i.e., lifetime from birth to division or to final apoptosis (programmed
cell death) or necrosis (death from injury or disease).

The structure of a live cell includes the Microtubule Organizing Cen-
ter (MTOC) or centrosome, from which emanates a network of mi-
crotubules forming the essential part of the cytoskeleton of the cell
and holding in place the cell surface just as a system of poles holds in
place the surface of a circus tent. Most animal and some plant MTOC,
apart from its main gamma-tubulin content, contain two cylindrical
structures called centrioles meeting at a point; see Figure 1.

Figure 1. Centrosome structure (from Wikipedia) on
the left and the image of centrosomes in a cell (from
wadsworth.org) on the right

Let us say that a cell is centriolic if its centrosome indeed con-
tains such a pair of centrioles, and likewise an organism if its cells
are centriolic. These organisms are especially amenable to our meth-
ods and analyses here since each cell C has its distinguished MTOC
point p(C) ∈ C ⊂ R3 given by the point of contact of the two cen-
trioles. This is a mere convenience though, and one may rather make
the choice of an appropriate point within the centrosome or even an
arbitrary point of star-convexity in general.

2.1. Shape. Even comprehending just the geometry of a single cell
within an organism already seems hopeless as suggested by Figure 2.
One has only to peruse for example protist organisms (which are unicel-
lular eukaryotes) depicted on the left to see a wild geometric diversity
of detailed cell shapes. There are furthermore anatomical anomalies
such as meter-long human neuro skeletal cells as depicted on the right
with their dendritic extremities. Exotic examples abound.

Nevertheless modulo Ansatz 1.1, all cells do share a common geo-
metric feature as follows. Recall that in mathematics, one says that a
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region K ⊆ R3 of space R3 is star-convex with respect to a point p ∈ K
provided that for each point q ∈ K the line segment pq connecting p
to q also lies in K.

Figure 2. Cell shapes: collage of protists from [2] on
the left and a sketch of a multipolar neuron (from study-
blue.com) on the right.

Ansatz 2.1. A cell C is star-convex with respect to some point p(C) ∈
C in its MTOC, and in particular for a centriolic cell, we may take
p(C) as the point of contact between centrioles.

It is a biological axiom, to the extent that such there be in light of
Ansatz 1.1, that the cytoskeleton of a cell is star-convex with respect to
a point in its MTOC. In our idealization of the geometry, we may con-
sider the outer surface of the cytoskeleton as a cell surface. In reality,
one would presumably take a small epsilon neighborhood of the star-
convex cytoskeleton to describe the cell shape, though many cells are
star-convex already with epsilon equal to zero. Indeed, we shall later
consider only epsilon neighborhoods of cells anyway, so the geometric
idealization of Ansatz 2.1 from cytoskeleton to cell is unimportant.

Remark 2.1. Fix in space the centrosome of a centriolic cell at some
instant in time. Let ~u be the unit vector in the direction along the
cylindrical axis for the earlier-replicated centriole and ~v the unit vector
in the direction of the later-replicated one, with ~w = ~u × ~v. In each
case, the direction along the cylindrical axis is determined by the fact
that the MTOC point of centriole contact occurs asymmetrically at a
preferred starting end of each cylinder. A centriolic cell thus determines
a so-called positively oriented orthonormal 3-frame (~u,~v, ~w) describing
the spatial orientation of each cell. We shall not in fact require this
further extra structure, but it is worth noting.

Now, fix a cell C with its MTOC point p = pC . Given a unit vec-

tor ~ξ ∈ S2, where S2 denotes the usual two-dimensional sphere in R3
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(comprised of endpoints of vectors of unit length based at the ori-

gin), there is a corresponding ray from p in the same direction of ~ξ,
and this ray meets the cell surface at a single point at some distance

ρ(~ξ) ∈ R>0 from p according to star-convexity. See Figure 3. This
assignment ρ = ρC : S2 → R>0 of a positive real-valued function on the
two-dimensional sphere S2 completely determines the shape of the cell
C.

Figure 3. Centrosome and shape function ρ.

To recapitulate this section, given a eukaryotic cell C, there is an
MTOC point p = pC ∈ C, which is well-defined without choice provided
C is centriolic, with respect to which C is star-convex together with a
shape function ρ = ρC : S2 → R>0 which completely determines the
geometrical cell shape

C = {q ∈ R3 : ||q − p|| ≤ ρ(
q − p
||q − p||

)} ⊆ R3,

where ||~η|| denotes the usual length of a vector ~η in R3. There is
furthermore a canonical identification of the standard sphere S2 with

the cell surface ∂C given by the mapping RC : ~ξ 7→ pC + ρC(~ξ)~ξ. The
volume V of C and its surface area A are respectively given in terms
of a sufficiently regular shape function ρC as

V (C) =

∫ ∫ ∫
C

dV =
1

3

∫ ∫
S2

[ρC(~ξ)]3 dA,

A(C) =

∫ ∫
S2

∣∣∇ρC(~ξ) · ~ξ
∣∣ dA,
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2.2. Cell state. What exactly constitutes a cell state for morphogene-
sis or any other purpose depends upon the implied internal structure of
the cell and must reflect the predictions and interactions of the theory
that depend upon it. One obvious aspect of cell state is the shape func-
tion ρC : S2 → R>0 and another is the spatial location of the MTOC
point pC introduced in the previous section. Taken together, these de-
termine the natural parametrization RC : S2 → ∂C of the cell surface
∂C.

It follows from the existence of the parametrization that any real-
valued function φ : ∂C → R can equivalently be specified by sim-
ply pulling back to a real-valued function f : S2 → R, i.e., φ(q) =
f(R−1C (q)). In particular, the density of some substance on the cell sur-
face can be conveniently specified by just such a real-valued function
on S2 2.

Ansatz 2.2. Cell state is determined by the shape function f0 = ρ
together with a collection f1, . . . , fN of cell surface densities fi : S2 →
R, for i = 1, . . . , N .

The collection (f1, . . . , fN) of cell surface densities is called the epi-
genetic spectrum of the the cell. We shall refer to the full N + 1 tuple
FC = (f0, f1, . . . , fN) including the shape as the (internal) cell state.

In fact, the cell surface ∂C is relatively fluid with sub-regions evolving
in time to different shapes within the cell surface. Thus, we should
expect the typical distribution of substance on the cell surface to evolve
continuously in time.

Of special interest are the distributions of oligo conjugates, small
oligosaccharide residues of glycoconjugates3 on the cell surface. There
are up to 12 varieties of monosaccharides and disaccharides in oligosac-
charide residues of glycoconjugates (six of hexose type). There have
been numerous indications that these oligosaccharide residues are re-
lated to cellular morphogenetic pathways as has been formulated as an
Epigenetic Hypothesis in [8] and the references therein.

Thus, we propose that the cell state FC of C includes both the cell
shape f0 = ρ and the epigenetic spectrum of cell densities f1, f2, . . . , f12
of the corresponding number of “coding” oligo conjugates, as per the

2Of course, a surface density is not simply pulled-back, rather, it is scaled by the
Jacobian of RC to account for area distortion

3The term “glycoconjugates” means glyco-residues attached to either lipids or
proteins lying inside the cell membrane or cell wall in the case of plants.
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Epigenetic Hypothesis, the nature and number of which should be de-
termined experimentally. Here is an important point of contact be-
tween one aspect of our theoretical work and experimental determi-
nation. We leave open the possibility of extending this minimal set
of functions determining cell state with other molecular compounds or
other factors such as protein or electromagnetic gradients defined on
the cell surface, where recent works [6] suggest the latter are central to
morphogenesis.

Recall [4] that there is a standard distance between two tuples F =
(f0, f1, . . . , fN) and G = (g0, g1, . . . , gN) of functions fi, gi : S2 → R
given by their L2 distance

d(F,G) =

√∫
S2

(f0 − g0)2 + (f1 − g1)2 + · · ·+ (fN − gN)2dA.

Indeed, letting

L2(S2) = {f : S2 → R :

∫ ∫
S2

f 2dA <∞}

denote the so-called square integrable functions on S2, the distance

d gives the collection
[
L2(S2)

]N+1
of all possible cell states FC the

structure of a Hilbert space. Hardly worth mentioning mathematically,
the next ansatz gives an explicit concept of distance between cell states.

Ansatz 2.3. The natural distance4 between cell states F = (f0, f1, . . . , fN)
and G = (g0, g1, . . . , gN) is the L2 distance d(F,G).

2.3. Trajectory. The sperm-fertilized cell oocyte becomes the zygote,
the first cell C(∅) of the organism, which next mitotically divides to
ten or more generations in a highly organized paroxysm of cell divi-
sions, no time at all for diffusive or other equilibria to develop, no time
for appreciable cell growth or motion and immediately generating all
manner of steep gradients across the early embryo.

Recall that the centrosome of a cell C at interphase replicates to
create a pair of centrosomes. These centrosomes move to opposite
ends of the cell and nucleate microtubules to help form the mitotic
spindle separating the chromosomes into two sets, one copy for each
daughter cell C ′, C ′′ together with one centrosome for each daughter
cell. One centrosome of C ′ or C ′′ is inherited from the centrosome of
C, which we call the mother centrosome, while the other, which we call

4In fact, we mean this in the looser sense that the distance might differently
weight different component functions (a “weighted L2 space”) more generally taking

d~α(F,G) =
√∫ ∫

S2
∑N
i=0 αi(fi − gi)2dA, for certain specified parameters αi ∈ R>0.
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the daughter centrosome since it is younger than its mother, has been
assembled upon the mother centrosome before mitosis.

Insofar as the replicated centrosomes of C are distinguishable, so
too are its daughters C ′ and C ′′. We can thus label each cell in the
organism by its phylogeny: a word in the alphabet m and d, where m
indicates the daughter C(m) that inherits the mother centrosome from
C and d the daughter C(d) that inherits the daughter centrosome.

Each cell itself is determined by its phylogeny, a finite word ω in the
two-letter alphabet {m, d}, including the empty word for the zygote.
This labeling of cells by m and d is evidently equivalent to the usual
structure of embedded phylogenetic tree: a binary tree with gamete for
root and with m on the right (say) and d on the left.

Ansatz 2.4. Each cell C is born at some instant sC in time and ter-
minates either through death or cell division at a later instant tC; each
cell except for the gamete is born with exactly one distinguishable sister.

Death may be apoptosis, necrosis or it may reflect some crisis for
the organism such as amputation or disintegration. A somatic cell is
always born with exactly one sister and terminates either alone (by
death) or in giving birth to its daughters (by division).

It is worth saying explicitly that Ansatz 2.4 is biologically tautolog-
ical, no more than a self-evident remark but is a necessary aspect of
axiomatic mathematical formulation. Indeed, in other important clas-
sical mathematical contexts, births as well as deaths can occur only
in pairs. Biologically, the ansatz is trivial and can be ignored, for of
course it is tautologically so.

Vertices of our phylogenetic tree other than the root are thus labeled
by the cell event of death or cell division. Edges of the tree correspond
to the lifetime of cells, and we will assign as a length of the edge labeled
by the cell C its lifetime tC − sC . In this manner, a point in an edge
corresponds to the cell Ct ⊆ R3 at a particular instant t in time, where
sC ≤ t ≤ tC .

According to our assumptions, two sister cells C ′ and C ′′ must share
their time of birth sC′ = sC′′ = tC with the time of death of their mother
(but see section 4.2). For an extreme example such as a skeletal muscle
cell C or an eye lens cell C which is fully differentiated once and for
all time already in the embryo and never divides again, we find sC
at birth and tC after death of the organism. At another extreme are
dermal cells with their profuse and nearly identical divisions.

The potency of a cell to produce progeny with different types of tis-
sues and organs or simply to differentiate into many possible cell types
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is called a morphogenetic potency or just a potency. Thus in an organ-
ism there are totipotent, pluripotent, bipotent and fully differentiated
cells.

Let us define the potency π(C) of a cell C to be zero if it does not
divide at all, and if it does divide, say the daughters have respective
epigenetic spectra F ′, F ′′ ∈ [L2(S2)]N , then we compare the spectra
defining π(C) = d(F ′, F ′′). Thus, the potency of a fully differentiated
cell is nearly zero. In contrast, a bipotent stem cell, for example, can
have a large potency if its product cell line differs substantially in
epigenetic spectrum from its stem cell line in the L2 distance.

3. Organisms

We define an organism to be the collection of its constituent cells
lying in space as determined by a language over the two-letter alpha-
bet given by following the centrosome. The collection of constituent
cell states determines a state of the organism at each instant in time.
A convenient mathematical formalism exists for this as a configuration
space of distinct points in space which evolve under time either con-
tinuously or through specific rules of birth and death at certain event
times together with a bundle over this base space with fiber given by
an L2 space of functions on the two-dimensional sphere. All this is
quite mathematically routine given what has come before.

At a given moment in time, the cells C underlying an organism
comprise a metric subspace which moreover can be further imbued
with any function µ(C) chosen to reflect essential morphological or
other parameters of C. For example, we could take mass density of
a cell, density of distribution of ion channels or other cell constituent
concentrations. We may choose particular functions µ(C) for specific
applications

A fundamental ansatz is that two organisms each at a given moment
in time can be profitably compared using Gromov-Hausdorff (GH) type
distances (cf. Appendix A) between corresponding measured metric
spaces. This is precisely what allows us to finally pass from the cellular
to the capacious scale in our investigations.

It is important to note that the comparison of “two organisms” in
this framework should be interpreted first of all as the comparison of
the morphology of the same organism at different moments in time
reflecting the laws of evolution of its shape. Equally, we consider the
comparison of the differences between normal and “crisis” developmen-
tal scenarios (that is, strong perturbations of proper morphology) for
the same organism at some moment in time.
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3.1. Phylogeny. The zygote C(∅) comes into being at an instant
s∅ = sC(∅) and then undergoes a sequence of binary divisions, the first
one occurring at the instant t∅ = tC(∅). At each division, there are dis-
tinguishable sister cells produced, and the mother cell producing these
progeny subsequently ceases to exist. And so it goes.

The mother of all cells of the organism is the zygote C(∅). For each
subsequent offspring produced, i.e., each cell that did, does or will or
ever occur in the organism there is a well-defined word ω in the two-
letter alphabet {m, d} as discussed before, where the length of the word
is the number of generations from the zygote.

Not all words occur for a given organism, and the phylogenetic lan-
guage of O is the collection ΩO of words that do in fact occur for the
organism O. Let C(ω) be the cell corresponding to the word ω ∈ ΩO
including the empty word for the zygote. Thus, each cell C(ω) is born
and dies at respective specific times sω and tω > sω.

We shall let Ct
ω ⊆ R3 denote the cell C(ω) labelled by ω at time t,

where sω ≤ t ≤ tω with time-dependent cell state F t
ω ∈ [L2(S2)]N+1,

reflecting shape and epigenetic coding, and MTOC point ptω ∈ R3 with
auxiliary measure µtω ∈ R>0.

3.2. Organism state, configuration and trajectory. We have the
mathematical definitions of organism and state given by the following
biological tautology:

Ansatz 3.1. An organism O is determined by the collection of its
constituent cells {C(ω) : ω ∈ ΩO} and its state by their respective
states.

Let us say that a cell Ct
ω exists at some time t if sω ≤ t ≤ tω for

some ω ∈ ΩO. It is convenient to suppress the birth/death times of a
cell and write simply Ct

ω ⊂ R3 to signify the cell at a time t at which
the cell exists and to signify the empty set otherwise. In the same way,
let F t

ω denote the cell state and µtω the measure at a time t between
cell birth and death and to take constant value zero otherwise; finally,
ptω denotes the MTOC point and ρtω the shape function if the cell Ct

ω

exists, and these are undefined otherwise.
Let Ωt = Ωt

O ⊆ ΩO be the phylogenetic words of the cells of the
organism O that exist at time t. The organism

Ot =
⋃
{Ct

ω : ω ∈ Ωt} ⊆ R3

at a time t is the union of these cells, i.e., the constituent cells of the
organism at the instant t. Of course, Ot or any epsilon neighborhood
of it inherits the structure of a metric subspace of R3, and each cell
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comes with its measure µtω which together give the weighted sum

µt = µtO =
∑
ω

µtωδptω

of delta functions as a measure on Ot.
The state of the weighted organism (Ot, µt) at time t consists of the

cell states F t
ω of its constituent cells. The collection of MTOC points

χt = {ptω1
, ptω2

, . . . , ptω#Ωt
}

of cells that exist at time t come in their prescribed lexicographic order-
ing (where, say m < d) which we shall call the (labelled) configuration
of the organism at time t.

Recall that if X is a metric space, then a (labelled) configuration
in X of n ≥ 1 points is a collection of n distinct labelled points in X;
see Appendix B for the barest thumbnail discussion tailored to our own
needs and [3] for instance for further generalities. It is biologically clear
that in fact the MTOC points χt do give a configuration in R3, lying
in Ot, i.e., the MTOC points of distinct cells never coincide. Indeed,
we have the stronger:

Ansatz 3.2. The cells of an organism that exist at each instant in time
have disjoint interiors in space R3.

Again a biological tautology, this kind of “steric” constraint is com-
monplace in protein theory for instance. We do not intend to entirely
rule out gap or other cell junctions here, rather, let us consider adding
that further layer of detail only later.

The number #χt of MTOC points of the organism Ot is piecewise
constant and jumps at various times of lone death (one point disap-
pears) or birth (two new points appear and an old one disappears) of
constituent cells according to Ansatz 2.4. In fact, there may be finitely
many coincidentally simultaneous birth or death times, but we make
the following finiteness assumption:

Ansatz 3.3. For any fixed t, there is a finite sequence of event times
τ0 = s∅ < τ1 < τ2 < · · · < τM ≤ t so that for each time τi−1 <
s < τi, for i ≥ 1, the configurations χs are equinumerous and evolve
continuously in time.

The discussion of how exactly the cell state before determines the
specific cell states after a birth event time is postponed until the more
speculative considerations of the next section.
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4. Morphogenesis

“The time has come” the Walrus said, “To talk of many things: Of
shoes–and ships–and sealing-wax– Of cabbages–and kings– And why
the sea is boiling hot– And whether pigs have wings.”5 This is just
to say that now we must discuss things a bit more metaphorically in
order to absorb the next ansätze.

4.1. Organism shape. As humans, we can perceive the natural world
on various levels. For instance, in pond water one finds paramecia,
which we might probe in the lab in vivo or in vitro to discern further
structure. Going to an extreme, we might travel to CERN and uncover
the constituent elementary particles.

As human observers, we do not even want to try to absorb the molec-
ular let alone the atomic or stringy nature of a paramecium. With
what has been6 called “willful ignorance” and also7 termed “twice bar-
barism”, our vision in morphogenesis had better contain the required
cellular and other data even if we shall ultimately and barbarically
ignore this level of detail in the large.

To handle the need for minute detail in certain biological regards
for cells, we have already introduced the notion of cell state. We must
somehow pass from this data as we have formalized it, corpuscular by
its very nature, to the context of continuous data of substantial spatial
extent.

Naturally enough, we might take an epsilon neighborhood of the
actual cells at each instant in time, that is, a neighborhood of Ot in
R3. We furthermore might naturally let epsilon vary over Ot in order
to allow for instance for different packing densities of one type of cell
compared to another. An elegant and precise mathematical formalism
for this viewpoint is provided by the class of metrics on measured metric
spaces inspired by GH distance. For completeness, one such distance
(the Sturm L2 distance [9]) is explicitly defined in Appendix A.

Ansatz 4.1. Given two organisms O and O′ with their respective mea-
sures µ and µ′, Gromov-Hausdorff type distances between the measured
metric spaces (O, µ) and (O′, µ′) such as the Sturm L2 distance capture
the geometry of organism morphology.

Just as the Sturm L2 distance is one among many sensible choices
for comparing measured metric spaces, so too, we have the flexibility

5Lewis Carroll, The Walrus and The Carpenter (1872).
6René Thom, Semiophysics: a sketch (1989)
7Claude Levi-Strauss, Tristes Tropiques (1955)
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to take different measures µ(C) on cells C. As an example, the mass
density can be one special case of measures involved in building the
morphology of an organism. Presumably as a human observer em-
ploying it as we have done here is like observing the world with those
X-ray glasses that are bought by gullible children; we would detect
density differences between cells within organisms when we compare
them wearing our mass density glasses. A tadpole and a frog would be
easily distinguished by their bone structures for instance. The formal-
ism we have developed is robust enough to handle general examples
exchanging X-ray for other glasses by changing the measure µt on the
fixed metric space that is the organism Ot.

4.2. Cell division in detail. During mitotic division of the cell C, the
two daughter cells C(m) and C(d) labelled by centrosomes as before are
separated by a so-called mitotic plane passing through the interior of C
often asymmetrically. This separating plane divides the cell surface ∂C
into two inequivalent regions Ωm,Ωd ⊂ ∂C forming the cell boundary
of respective daughters.

Ansatz 4.2. The epigenetic spectra of daughters C(m) and C(d) are
nearly inherited in the L2 sense on S2 by inclusion of the cell surfaces
Ωm,Ωd from the mother.

On the complementary regions to Ωm and Ωd in daughter cell sur-
faces, there are as-yet unspecified rules of how to extend to a function
on the entire cell surface. This ansatz partly describes the morpho-
genetic birth effect, that is, the function that determines the cell states
of C(m)σ2 and C(d)σ2 at the moment σ2 when mitotis is complete from
the cell state of Cσ1 of a mother cell as mitosis begins at σ1.

It is not that the biology breaks down during the interval between
times σ1 and σ2. After all, there is a sensible moment of birth when
the cell membranes of the daughters finally separate that we could
also take to be the moment of death of the mother C. The surface
concentrations in ∂C of the oligo conjugates or other compounds are
everywhere defined until this moment and after become the surface
concentrations in ∂C(m) and ∂C(d). In this sense, again the ansatz is
disappointingly tautological biologically. However, this scenario does
not hold exactly and in our barbaric and willful ignorance, we posit
in Ansatz 4.2 a precise sense in which L2 distance suitably measures
deviation from this idealized biology.

4.3. Morphogenetic field. To recapitulate, given a eukaryotic organ-
ism O and a time t, we have the constituent cells Ct

ω ⊆ R3 that exist at
time t indexed by a finite set Ωt of words in the alphabet {m, d}. The
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union of these star-convex regions is by definition the organismOt ⊆ R3

at time t as a metric subspace of R3. This region comes equipped with
a measure µt, and it is the measured metric spaces (Ot, µt) that reflect
the large-scale geometry of the organism. Standard methods, called
GH type metrics, can be applied to these spaces to quantify the sense
in which two organisms have the same shape. Nevertheless, the organ-
ism has a complicated state, namely, we take the state of the organism
to be the collection of cell states of each of its constituent cells, i.e.,
cell states F t

ω and MTOC points χtω, for ω ∈ Ωt

On the cellular scale, we have organized things in Appendix B into
a vector bundle E → Γ over the space Γ of configurations of finitely
many points in R3, where the fiber over a configuration with n points is
an n-tuple of elements in [L2(S2)]N+1, namely, the cell states of the con-
stituent cells. Thus, the entire organism in its entire state is described
at an instant in time as a point in the total space of this bundle over
the finite configuration of MTOC points in the base, and the measure
µ is an auxiliary function defined on the base.

The idea from [8] is that the “morphogenetic field” is a function
defined on some bundle of states that governs the time evolution of
an organism starting from ovum. Their formalism was different with
discrete time cell events as was already mentioned. Here we imagine
continuous evolution in some E(n) with jumps in n at finitely many
event times compatible with Ansatz 3.3. The morphogenetic field of
[8] should be realized here as some sort of functional which governs the
time evolution of an organism, namely, as a Lagrangian action:

Ansatz 4.3. There is some Lagrangian formulation of organism evo-
lution, i.e., an action functional on paths in E whose stationary paths
are the time trajectories of organisms.

It is important to emphasize that the Lagrangian formulation of
Ansatz 4.3 is different from that of the underlying physics: our action
should be formulated on the space of organism states as we have defined
them.

Using our definition of potency (see the end of section 2.3) and the
observation that each organism starts to differentiate from the zygote
having a huge potency towards its later less-potent progeny, we posit:

Ansatz 4.4. The average potency π(C) over the set of all cells C in
an organism is strictly decreasing in generation during embryo devel-
opment.

This is of course in keeping with the second law of thermodynamics.
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Ansatz 4.5. Nearly identical sisters almost always remain nearly in
contact.

This is interesting as it relates the phylogeny to the geometry. Of
course, sisters are never truly identical, but if they were, then the mor-
phogenetic field could not distinguish them, so of course they would
evolve in the same manner. Nature is nearly like this as an essentially
deterministic physical system. This seems to give a nice explanation
for organ formation and other aspects as well and really makes good
sense. Again, with the L2 distance between cell states, we can conve-
niently quantify differences between sisters or indeed any pair of cells
viz Ansatz 4.5

Ansatz 4.6. The morphogenetic field is locally supported in the sense
that for any cell Ct

ω that exists, there is a neighborhood N ⊇ Ct
ω of it

in R3 so that the forward time evolution of Ct
ω for some fixed interval

of time depends only upon the states of the cells in N .

In particular, phylogeny does not matter a priori, which implies that
there is indeed a physical determinism underlying the morphological
determinism we are studying. And this determinism is governed by
the laws formulated as a morphogenetic field concept.

Ansatz 4.7. For any sub-organism O′ ⊆ Ot in any reasonable state
there is a stable ideal outcome organism O∞ so that the Lagrangian
action of an arbtrary path from O′ to a stable outcome O∗ is given by
a Gromov-Hausdorff type distance between O∞ and O∗.

This GH-deviation from ideal outcome is admittedly a bold hypoth-
esis for the dynamics providing thereby the key mechanism driving
morphogenesis ranging from embryo development to the creation of
proper morphology during the regeneration processes in the event of
crisis. The ansatz is interesting on several levels first of all in its pos-
tulate that there are stable ideal outcome organisms at all under ad-
mittedly unspecified reasonable conditions. The comparison of stable
outcomes using GH techniques is consistent with the earlier Ansatz 4.1.
Indeed, perhaps another more traditional differential calculus type ex-
pression of action in terms of the GH-metric could be possible rather
than relying on stability of outcomes. Secondly, it ties the cellular scale
of the morphogenetic field with the large-scale geometry of organisms
through the action, and it evidently implies the earlier Ansatz 4.3 in
its specificity.
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Appendix A. Distances between measured metric spaces

This appendix gives a precise example of the sort of distance between
measured metric spaces that we propose for use in comparing organ-
isms. For completeness, definitions are given from first principles.

Definition A.1. If X is a set, then a function µ : X × X → R is
a metric if and only if for all x1, x2, x3 ∈ X, we have: [Symmet-
ric] d(x1, x2) = d(x2, x1); [Triangle Inequality] d(x1, x3) ≤ d(x1, x2) +
d(x2, x3); [Positive] d(x1, x2) ≥ 0 and d(x1, x2) = 0 if and only if
x1 = x2.

Given metric spaces (X, dX) and (Y, dY ), let D(dX , dY ) denote the
set of all possible metrics on the disjoint union X t Y of X and Y
extending dX on X and dY on Y , that is, d satisfies Definition A.1 on
X t Y and

d(x1, x2) = dX(x1, x2) and d(y1, y2) = dY (y1, y2)

for all xi ∈ X and yi ∈ Y , for i = 1, 2.

Definition A.2. A Borel probability measure µ on a space X is the
specification of a real number µ(A) to each set A in the sigma algebra8

B(X) of subsets generated by the open sets of X satisfying the following
properties: [Sigma additive] if Ai ∈ B(X) are pairwise disjoint subsets
for i ∈ I with I countable, then µ(∪{Ai : i ∈ I}) =

∑
i∈I µ(Ai); [Non-

negative] µ(A) ≥ 0 for all A ∈ B(X); [Null empty set] µ(∅) = 0.
[Probability measure] µ(X) = 1.

Given two measured metric spaces (X, dX , µX) and (Y, dY , µY ), let
M(µX , µY ) denote the collection of all Borel probability measures µ on
X × Y extending µX on X and µY on Y , that is, µ satisfies Definition
A.2 on B(X × Y ) and

µ(A× Y ) = µX(A) and µ(X ×B) = µY (B)

for all A ∈ B(X), B ∈ B(Y ).
One collection of distances for measured metric spaces inspired by

the GH metric is given by:

Definition A.3. The Sturm Lp-distance [9] between measured metric
spaces (X, dX , µX) and (Y, dY , µY ) is defined to be

Sp(X, Y ) = inf
d,µ

(∫
X×Y

[d(x, y)]pµ(dx, dy)

) 1
p

,

8A collection of subsets of X is a sigma algebra provided it is closed under count-
ably many applications of the set operations complement, union and intersection.
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where the infimum is over all d ∈ D(dX , dY ) and µ ∈ M(µX , µY ), and
p ≥ 1 is some fixed natural parameter.

We can take this Sturm distance, say with p = 2 for definiteness, as
just one of many possibilities. Further GH type metrics on collections
of measured metric spaces as well as discussions of their computational
implementation in practice for digital shape comparison can be found
in the very accessible [7].

Appendix B. Configuration spaces

As in the text, we have:

Definition B.1. If X is a metric space then a (labelled) configuration
in X of n ≥ 1 points is a collection of n distinct labelled points in X.
Let

Γ
(n)
X = {(p1, p2, . . . , pn) ∈ Xn : pi 6= pj if i 6= j},

where the exponent Xn denotes the n-fold Cartesian product. Let

ΓX = tn≥1Γ(n)
X denote the disjoint union.

Insofar as Γ
(n)
X is a subset of the Cartesian product Xn, it inherits a

natural subspace topology. For example, Γ
(1)
X = X while a configuration

on two points is the complement of the diagonal in the Cartesian square

Γ
(2)
X = X2 − {(x1, x2) ∈ X2 : x1 = x2}.
There is a nice theory of analysis and measure on configuration spaces

satisfying appropriate boundedness conditions, cf. [1]. For our purposes
here, just the underlying topological spaces and vector bundles over
arbitrary configurations are enough.

Definition B.2. Given not only a metric space X but also a Hilbert
space V , we define

E
(n)
X = {

(
(p1, ϕ1), (p2, ϕ2), . . . , (pn, ϕn)

)
∈ (X × V )n : pi 6= pj if i 6= j},

and set EX = tn≥1E(n)
X .

Again, as a subset of the Cartesian product (X × V )n, the new

space E
(n)
X inherits its natural metric topology, and the forgetful map

E
(n)
X → Γ

(n)
X has the natural structure of a vector bundle with fiber V n

for each n ≥ 1. We informally refer to EX itself as a V -bundle over
ΓX .

Taking X = R3 and V = [L2(S2)]N+1 gives a vector bundle E = EX
over Γ = ΓX , whose fiber is the state of the organism.



18 NADYA MOROZOVA AND ROBERT PENNER

References

[1] S. Albeverio, Yu. G. Kondratiev, M. Röckner. Analysis and geometry on
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