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Abstract. For an odd prime number p, it is shown that differen-
tials dn in the motivic cohomology spectral sequence with p-local
coefficients vanish unless p − 1 divides n − 1. We obtain an ex-
plicit formula for the first non-trivial differential dp, expressing it
in terms of motivic Steenrod p-power operations and Bockstein ho-
momorphisms. Finally, we construct examples of varieties, having
non-trivial differentials dp in their motivic spectral sequences.

The motivic cohomology spectral sequence is an algebro-geometric
analogue of the Atiyah–Hirzebruch spectral sequence in topology. For
smooth varieties it has the second term consisting of motivic cohomol-
ogy groups and converges to algebraic K-theory.

The spectral sequence was initially constructed for fields by Bloch
and Lichtenbaum in their unpublished preprint [BL]. Further, two
constructions for varieties were given in papers of Friedlander and
Suslin [FS] and Grayson [Gr]. The equivalence of their approaches
was established in [Su2].

The behavior of differentials in the motivic cohomology spectral se-
quence is quite similar to the topological case. Being taken with ratio-
nal coefficients the sequence collapses at its E2-term (see [GS]).

The next natural question in the row is to describe possible non-
trivial differentials in the spectral sequence with p-local coefficients.

In topology the goal was achieved by Buchstaber [Bu]. In the cur-
rent paper we establish the parallel result for the motivic cohomology
spectral sequence. Philosophically, our approach is quite similar to
Buchstaber’s one, but the technique is certainly rather different.

The strategy of the proof is the following: First, I show, using Adams
operations, that the first non-trivial differential may appear only in Ep-
term (Proposition 1.2). Then, computing the motivic Steenrod algebra
in the corresponding degree, it is possible to show that the differential
in question is proportional to some concrete cohomological operation.
Finally, to check that the proportionality coefficient is not 0, I construct
an example of a variety such that the differentials dp in its motivic
spectral sequences are non-trivial (Theorem 4.2).
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The computation of the p-local Steenrod algebra is based on Vo-
evodsky’s result on the structure of the motivic Steenrod algebra with
finite coefficients. Since the latter result is proven only for fields of
characteristic 0, we should restrict ourself to this case. Besides this
reference, all arguments work properly for arbitrary perfect fields of
the characteristic prime to p.

First version of this paper was written many years ago (see [Ya]) and
contained a gap. The approach used that time led to the necessity to
prove triviality of some derived limits in the motivic homotopy cate-
gory. Unfortunately, it seems that no one knows how to attack that
question.

Finally, after years I was able to bypass this problem, using p-
cyclotomic coefficients. The idea to do it suddenly appeared during
my visit to the University of Nottingham. Passing to this new proof
strategy drastically changed the text.

I woukld like to thank Andrei Suslin and Ivan Panin for their in-
terest to the topic and multiple fruitful discussions during my work.
I’m deeply grateful to Alexander Merkurjev, whose help with the con-
struction of a variety from Theorem 4.2 can not be overestimated. I’m
also in debt to Chuk Weibel, who gave me a reference to the examples
related to the case p = 2. I’m very grateful to Alexander Vishik for the
invitation to visit the University of Nottingham, to the university for
its hospitality, and to EPSRC Responsive Mode grant EP/G032556/1
for the partial support of my stay.
Notation remarks. Everythere in the paper k denotes a field. For

results of Section 3 one should assume that k is of characteristic 0. For
Section 4, it is sufficient to assume that k is perfect.

We denote the category of smooth separated schemes of finite type
over a base field (smooth varieties) by Sm/k.

We fix a prime number p and denote by Z(p) the localization of the
ring of integers outside the prime ideal (p). We also denote by Z/p∞
the p-cyclotomic group, i.e. lim

→
Z/pnZ.

Except for the two examples in Section 3 we always assume that
p > 2.

An (resp. Pn) always denotes affine (resp. projective) space of di-
mension n.

A short exact sequence of Abelian groups 0 → X → Y → Z → 0
is often denoted by [X, Y, Z], and the corresponding Bockstein homo-
morphism by β[X, Y, Z].
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1. Differentials and Adams operations

As it was shown in [FS], for any X ∈ Sm/k there exists the Motivic
Cohomology Spectral Sequence:

(1.1) Ei,j
2 = H i−j,−j(X)⇒ K−i−j(X),

starting from the motivic cohomology groups H∗,∗ and converging to
the algebraic K-groups of the variety X. Differentials in this spectral
sequence are: dn : Ei,j

n → Ei+n,j−n+1
n (n ≥ 2).

As it was shown in [GS], this spectral sequence taken with rational
coefficients collapses immediately. On the other hand, its structure
with integer coefficients becomes too tangled, because of the interrela-
tion of different p-prime effects involved. The purpose of the current
paper was to investigate the case of Z(p)-coefficients that allows to “dis-
till” the p-prime effects. In this case one gets non-degenerated differen-
tials of rather high degree and it is then interesting to interpret them in
different terms, for example, as some cohomological operations. This
can be summarized in the following

Theorem 1.1. The motivic cohomology spectral sequence

Ei,j
2 = H i−j,−j(X,Z(p))⇒ K−i−j(X,Z(p))

has zero differentials dn for p−1 - n−1. The first non-trivial differential
dp coincides, up to the multiplication by a non-zero Z/p-constant with
the operation BP 1r, where P 1 is the first Z/p motivic Steenrod power,
B = β[Z(p),Z(p),Z/p], and r denotes the coefficient reduction operation
corresponding to the residue map Z(p) → Z/p .

In the current section we prove the first statement of the theorem1.
Then, in Section 2 the differential in question will be interpreted as a
bistable motivic cohomology operation of degree (2p− 1, p− 1) i.e., as
an element of the corresponding Steenrod algebra, which is computed
in Section 3. Finally, in Section 4 we construct an example of a variety
for which the corresponding differential in the spectral sequence is non-
trivial that completes the proof of the Theorem.

Proposition 1.2. dn = 0 for p− 1 - n− 1.

Proof. As it was shown in [GS], for an integer k such that 1
k
∈ Z(p) the

Adams operations ψk in K∗(X,Z(p)) can be represented as operations
acting on the whole motivic cohomology spectral sequence. Moreover,

1see also Merkurjev [Me], who treated, using similar technique, the case of the
Brown–Gersten–Quillen spectral sequence.
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its action on the E2-term is given by the relation: ψk(α) = k−qα for
α ∈ H∗,q(X). Therefore, all topological arguments proposed by Buch-
staber [Bu] work in this case as well. Since Adams operations commute
with differentials, we have for every integer n > 1:

dnψk = ψkdn : H∗,∗(X)→ H∗+2n−1,∗+n−1(X).

Hence, one has: (kn−1− 1)dn = 0. Let us define a number M(i) as the
greatest common divisor of the following sequence:

(1.2) M(i) := g.c.d.
k>1
{kN(ki − 1)},

where N � i. One can easily verify that these numbers are well-
defined. The integers M(i) are sometimes called Kervaire–Milnor–
Adams constants2 and their values are presented in Lemma 1.4 be-
low. Obviously, M(n − 1)dn = 0. Since for p − 1 - n − 1, we have:
p -M(n− 1), the differentials of these degrees vanish. �

Corollary 1.3. The motivic spectral sequence with Q-coefficients de-
generates at E2-term.

Proof. Any differential vanishes after multiplication by an invertible
number. �

Lemma 1.4. For a prime p and a positive integer n denote by νp(n)
the greatest dividing p-exponent3 of n. The Kervaire–Milnor–Adams
constants are determined by the following values. For p > 2

νp(M(i)) =

{
1 + νp(i) for i ≡ 0 mod p− 1

0 else

and for p = 2:

ν2(M(i)) =

{
2 + ν2(i) for i ≡ 0 mod 2

1 else.

Proof. See [Ad]. �

Corollary 1.5. For p > 2, one has: pdp = 0.

Proof. Since, by Lemma 1.4, one has: νpM(p − 1) = 1, the corollary
follows. �

2Probably, after paper [KM]
3For example, for any positive integer n, one has: n = 2ν2(n)3ν3(n)5ν5(n) . . .
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2. Differentials as cohomology operations

Let us give a brief explanation of the construction of motivic Eilenberg–
Mac Lane spaces, following, almost literally, the exposition of [Vo3].

For a variety X ∈ Sm/k consider the presheaf Ztr(X) of abelian
groups on the category Sm/k, which takes a variety U to the abelian
group, generated by all cycles on X × U , which are finite and equidi-
mensional over U . For an Abelian group A we set Atr := A⊗ Ztr and
define the presheaves

(2.1) Kpre
n,A : U 7→ Atr(An)(U)/Atr(An − {0})(U).

On the Nisnevitch site (Sm/k)Nis one can sheafify Kpre
n,A. Applying to

the resulting sheaves the functor, forgetting Abelian group structure,
one obtains the family of pointed sheaves of sets Kn(A) that play the
role of Eilenberg–Mac Lane spaces in the homotopy category HoA1 .

Alternatively, one can start from the presheaf Kpre
n,Z and obtain a

complex Z(n) of sheaves of Abelian groups on (Sm/k)Nis (see the
construction in [VSF]). For any i, j ∈ Z, a smooth scheme X, and
an Abelian group A one defines motivic cohomology groups as hy-
percohomology groups H i,j(X,A) := Hi(XNis, A(j)), where A(j) =
A ⊗ Z(j). Let K(i, j, A) be a simplicial abelian group sheaf corre-
sponding to the complex A(j)[i]. Applying again the forgetful func-
tor one gets the simplicial sheaf of sets that defines an object of the
motivic homotopy category HoA1 also denoted by K(i, j, A). The
sheaves K(i, j, A) are A1-local [VD] and for any smooth scheme X
one has: H i,j(X,A) = HomHoA1

(X+, K(i, j, A)). For any pointed sim-
plicial sheaf F• on (Sm/k)Nis one can take the following definition of
reduced motivic cohomology:

(2.2) H̃ i,j(F•, A) = HomHoA1
(F•, K(i, j, A)).

It is shown in [VD] that there exists a weak equivalence between Kn(A)
and K(2n, n,A), so the two constructions of Eilenberg–Mac Lane
spaces agree.

Thus, it is reasonable to expect that natural transformations of mo-
tivic cohomology functors can be classified by cohomology groups of
motivic Eilenberg-Mac Lane spaces. This statement, proven in [Vo]
gives us the classification of motivic cohomology operations.

Let us recall that in A1-homotopy theory there exist two types of
sphere objects and hence two different suspension functors. Among all
the cohomological operations there are special ones that commute with
both suspension isomorphisms. These operations are called bistable,
and Voevodsky showed, using a simple trick [Vo3, Prop 2.6], that there
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exists a bijection between bistable operations and operations that a
priori commute only with T -suspension. Here T means the Tate object
T = A1/(A1 − {0}). Operations of the latter type we will call stable.

For every Eilenberg–Mac Lane spaceKn(A) one can choose a univer-
sal element ιn in the group H2n,n(Kn(A)), corresponding to the identi-
cal morphism of the space Kn(A). Applying the T -suspension map to
the element ιn, one obtains the element ΣT ιn, corresponding to some
homotopy class fn ∈ [ΣTKn(A), Kn+1(A)]. Finally, one can construct
an inverse system of the groups H i+2n,j+n(Kn(A), B) as shown in the
diagram below.

(2.3) H i+2n+2,j+n+1(Kn+1(A), B)
f∗n //

++WWWWWWWWWWWWWWWWWWWW
H i+2n+2,j+n+1(ΣTKn(A), B)

ΣT'
��

H i+2n,j+n(Kn(A), B)

Let us set:

(2.4) OPi,j(A,B) = lim
←
n

H i+2n,j+n(Kn(A), B).

It is shown in [Vo] that the groups OPi,j(A,B) classify stable cohomo-
logical operations of degree {i, j} from motivic cohomology groups with
coefficients in A to ones with coefficients in B. In particular, the group
OP∗,∗(Z/p,Z/p) coincides with motivic Steenrod algebra A∗,∗(Z/p).

Proposition 2.1. Consider motivic cohomology spectral sequence (E∗,∗∗ , d∗).
Let us fix an integer n > 1 and assume that for every 1 < i < n and any
scheme X ∈ Sm/k the differentials di : H∗,∗(X) → H∗+2i−1,∗+i−1(X)
are trivial.

Then, the differential dn is a stable cohomological operation of degree
(2n− 1, n− 1) on the category Sm/k.

Proof. Since all the previous operations vanish, the differential dn ac-
tually acts on the E2-term of the spectral sequence. Due to the functo-
riality of the spectral sequence construction, it becomes an operation
of degree (2n − 1, n − 1) on the motivic cohomology. To prove the
stability, one has to check the commutativity of the following diagram:

(2.5) H̃ i,j(X)

ΣT

��

dn // H̃ i+2n−1,j+n−1(X)

ΣT

��

H̃ i+2,j+1(T ∧X)
dn // H̃ i+2n+1,j+n(T ∧X).
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Though the space T ∧X does not belong to Sm/k, its cohomology is
a direct summand of the cohomology of the scheme P1 ×X due to the
existence of the retraction Spec(k) → P1. Actually, the space T ∧ X
happens to be A1-homotopically equivalent to (P1,∞)∧X that allows
us to apply differentials to its cohomology groups.

Motivic cohomology groups of T ∧ X are (2, 1)-shifted cohomology
groups ofX and the isomorphism ΣT is delivered by multiplication with
the Tate element σT = ΣT (1) ∈ H2,1(P1). Since the spectral sequence
differentials satisfy the Leibnitz rule, to prove the commutativity of 2.5,
it is suffices to verify that dn(σT ) = 0. This element should lie in the
cohomology group of degree (2n+1, n) that vanishes, since 2n+1 > 2n.
So, the result follows by the dimension reasons. �

3. Some calculations in the Steenrod algebra

Proposition 3.1. For any n > 0 the natural functor Fn : Ab→ HoA1

mapping a group A to the Eilenberg–Mac Lane space Kn(A) sends
short exact sequences [A,B,C] to fibered squares

Kn(A) //

��

Kn(B)

��
∗ // Kn(C).

Proof. We will use the identification Kn(A) = K(2n, n,A) mentioned
before and the construction of K(2n, n,A) mentioned on page 5. As
A = B×C ∗ in the category Ab, it is sufficient to check that the functor
chain coming from A to K(2n, n,A) preserves finite limits. It can be
easily checked for the functor A 7→ A(n). The functor (Complexes)→
(Simplicial groups) and the forgetful functor from simplicial groups to
simplicial sets both admit left adjoints, therefore, they also preserve
finite limits.

�

Corollary 3.2. Every short exact sequence [A,B,C] of Abelian groups
induces coefficient long exact sequence in cohomology.This correspon-
dence is functorial with respect to morphisms of short exact sequences.
In particular, this implies functoriality of the corresponding Bockstein
homomorphisms.

From now on we assume that the base field has characteristic 0.
Our current aim is to compute the module of stable operations from

cohomology with Z/p∞ coefficients. We start with Voevodsky’s com-
putation of the motivic Steenrod algebra. In the sequel we often use



MOTIVIC SPECTRAL SEQUENCE AND STEENROD ALGEBRA 8

abbreviation OPl for OPl,p−1, as we always consider only operations of
weight p− 1.

Example 3.3 ([Vo3]). For l > 0, one has:

OPl(Z/p,Z/p) =


Z/p for l = 2p− 2

Z/p⊕ Z/p for l = 2p− 1

Z/p for l = 2p

0 otherwise.

Moreover, the operations P 1, {βP 1, P 1β}, and βP 1β make sets of Z/p-
generators in degrees 2p− 2, 2p− 1, and 2p, correspondingly.

Proposition 3.4. For l > 0, m > 0 the Z/p-module OPl(Z/pm,Z/p)
is independent of m. The following operations can be choosen as gen-
erators in the corresponding degrees:

Degree 2p− 2 2p− 1 2p

Generator(s) P 1rm P 1βm, β1P
1rm β1P

1βm

Here rm is induced by the coefficient reduction Z/pm → Z/p and
βm = β[Z/p,Z/pm+1,Z/pm] denotes the corresponding Bockstein ho-
momorphism.

Proof. Repeating, almost literally, the arguments of Voevodsky’s proof
of the motivic Steenrod algebra structure theorem [Vo, Theorem 3.49,
Proposition 3.55], one sees that for finitely generated groups of coef-
ficients the operation modules under consideration are isomorphic to
their topological counterparts. In the classical algebraic topology there
is Cartan’s calculation [Ca] stating that the group H∗(K(Z/ps),Z/p)
is independent of s > 0. This concludes the first part of the statement.

There are two natural maps OP(Z/p,Z/p) ⇒ OP(Z/pm,Z/p). First
of them is induced by the coefficient reduction Z/pm → Z/p and the
second one, shifting the degree, is induced by the Bockstein morphism
βm = β[Z/p,Z/pm+1,Z/pm]. These maps move the generators P 1, βP 1

(see Example 3.3) to the generators from the table above and take zeros
on the rest part of the Steenrod algebra. One can directly verify that
the obtained operations are all non-trivial and pairwise different, that
implies the proposition. �

The group inclusions im : Z/pm ↪→ Z/pm+1 induce maps in cohomol-
ogy: i∗m : H∗+n,∗+n(Kn(Z/pm+1)) → H∗+n,∗+n(Kn(Z/pm)). Passing to
the projective limit on n, one obtains the inverse system:

OPl(Z/p,Z/p)
i∗1← OPl(Z/p2,Z/p)← · · ·
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Corollary 3.5.

lim
←
m

OPl(Z/pm,Z/p) =

{
Z/p for l = 2p− 1, 2p

0 otherwise.

Proof. One can easily verify that the induced maps
i∗m : OP∗(Z/pm+1,Z/p)→ OP∗(Z/pm,Z/p)

act on the above generators as follows: i∗m(P 1rm+1) = 0, i∗m(P 1βm+1) =
P 1βm, i∗m(β1P

1rm+1) = 0, and i∗m(β1P
1βm+1) = β1P

1βm. Therefore,
only the elements of the form {Xβ1 ← Xβ2 ← . . .} “survive” in the
projective limit. The corollary follows immediately. �

Lemma 3.6. Let X1
ϕ1→ X2

ϕ2→ · · · be a sequence of abelian groups.
Then, for an abelian group W , one has:

lim
←
i

OP∗,∗(Xi,W ) ' OP∗,∗(lim
→
i

Xi,W ).

Proof. The system {Xi, ϕi} induces the projective system of groups:

OP∗,∗(X1,W )
ϕ]
1← OP∗,∗(X2,W )

ϕ]
2← · · ·

Let α ∈ lim
←

OP∗,∗(Xi,W ). Equivalently, consider the system of oper-

ations {αi ∈ OP∗,∗(Xi,W )} endowed with induced morphisms ϕ]i such
that αi = ϕ]i(αi+1). For a variety Y let us also consider an element x
such that x ∈ H∗,∗(Y, lim

→
Xi) ' lim

→
H∗,∗(Y,Xi). This element defines

a system {xj ∈ H∗,∗(Y,Xj)}j>N(x) such that ϕj∗(xj) = xj+1. Obviously,
α(ϕ∗(x)) = ϕ](α)(x). Let us now define α̌ ∈ OP∗,∗(lim

→
Xi,W ), setting

α̌(x) := αN(xN) = αN+1(xN+1) = · · ·
In order to construct the opposite map, let us start with an opera-
tion γ ∈ OP∗,∗(lim

→
Xi,W ) and construct for any index j an opera-

tion γ̂j given by the through map H∗,∗(−, Xj) → H∗,∗(−, lim
→
Xj)

γ→

H∗,∗(−,W ), where the first arrow is canonical and the second is given
by the operation γ. These operations fit together to make an element of
the projective system and, therefore, the operation γ̂ ∈ lim

←
i

OP∗,∗(Xi,W ).

One can easily verify that given constructions are mutually inverse. �

Corollary 3.7. The Z/p-module OP∗(Z/p∞,Z/p) has two generators
P 1β∞, β1P

1β∞, lying in degrees 2p-1, 2p, correspondingly. Here β∞ =
β[Z/p,Z/p∞,Z/p∞].
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Proof. Application of Lemma 3.6 to Corollary 3.5 shows that the mod-
ule OP∗(Z/p∞,Z/p) has generators only in degrees 2p− 1 and 2p.

Natural identification
β∞ = lim

←
m

βm

completes the proof. �

Let us now move back from p-cyclotomic coefficients to p-local. We
will need some auxillary results. Now we are temporarly passing to the
stable homotopy category of T -spectra. Denote by S the suspension
spectrum of the final object pt. Let us consider the multiplication by
p morphism S

×p→ S and denote its cone by P.

Lemma 3.8. The spectrum P is Spanier–Whitehead self-dual up to the
1-shift. That means, for arbitrary spectra U, V there exists a natural
isomorphism

[U ∧ P, V ] ' [U, V ∧ P[1]].

Proof. Obviously, the spectrum S is self dual. Then, the Lemma follows
from [Sw, 14.29–14.33]. All the arguments, used in loc.cit. are of formal
nature and can be easily translated in the language of A1-homotopy
theory. �

Corollary 3.9. Assume that the morphism of spectra f : X → Y in-
duces an isomorphism of all homotopy group sheaves with Z/p-coef-
ficients. Denote by CpX the cone of the morphism X ' S ∧ X ×p→
S∧X ' X. Then, the induced morphism of cones Cf : CpX → CpY is
a homotopy weak equivalence.

Proof. Consider the following diagram:

[S, CpX[1]]

Cf

��

[P, X]

'
��

'oo

[S, CpY [1]] [P, Y ]
'oo

The right vertical arrow is an isomorphism by the assumption. Both
the horizontal arrows are duality isomorphisms by Lemma 3.8. This
proves the Corollary. �

Corollary 3.10. Let f : X → Y be a morphism of spaces inducing a
weak equivalence of p-cones Cf : CpX

'→ CpY . Then, for any cohomol-
ogy theory E represented by an ΩT -spectrum E, the map:

E∗,∗(Y,Z/p) f∗→ E∗,∗(X,Z/p)
is an isomorphism.
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Proof. By the previous lemma and corollary, one has:

[Y,E ∧ P[1]] ' [CpY,E]
Cf' [CpX,E] ' [X,E ∧ P[1]].

The outside groups are isomorphic (after some shift) to the cohomology
groups E∗,∗(Y,Z/p) and E∗,∗(X,Z/p), correspondingly. �

Lemma 3.11. For any n > 0 all homotopy group sheaves π∗(Kn(Q),Z/p)
vanish.

Proof. Consider the multiplication by p self-morphismKn(Q)→ Kn(Q).
It is a weak equivalence, since Q is divisible. On the other hand, this
morphism induces zero maps on homotopy groups with Z/p-coefficients,
that concludes the proof. �

Below σT = ΣT (1) denotes the element of the groupH2,1(T ) obtained
by suspension of 1.

Lemma 3.12. The following sets are bijective:
(1) bistable operations OPi,j(A,B);
(2) the collection of natural transformations

ϕn : H2n−1,n(−, A)→ H2n−1+i,n+j(−, B)

given for n ≥ 0 such that ϕn+1(x ∧ σT ) = ϕn(x) ∧ σT ;
(3) the collection of motivic cohomology classes

ψn ∈ H2n−1+i,n+j(ΩSKn(A), B)

such that the restriction of ψn+1 to ΩSKn(A) ∧ T is ψn ∧ σT .

Proof. To obtain the bijection between the first and the second sets
one just rewrite (up to the index change) Proposition 2.6 of [Vo3].
We give here an explicit construction of the projective system corre-
sponding to the collection of (3). We shall construct the morphisms
γn : ΣTΩSKn → ΩSKn+1. Let us start from the structure morphisms
αn : ΣTKn → Kn+1 in the Eilenberg-Mac Lane spectrum. Taking the
dual ones, applying the ΩS functor, and swapping two loop functors,
we obtain the collection of morphisms:

γ̃n : ΩSKn → ΩSΩTKn+1 ' ΩTΩSKn+1.

Dualizing the latter morphisms, we have the desired ones.
To get the bijection between (2) and (3) we just claim that the space

ΩSKn(A) represents motivic cohomology group H2n−1,n(−, A). The
rest is parallel to Proposition 2.7 of loc. cit. �
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Proposition 3.13. The Bockstein homomorphism B = β[Z(p),Q,Z/p∞]
induces the isomorphism of Z/p-modules:

OP∗(Z(p),Z/p)
B∗
→
'

OP∗+1(Z/p∞,Z/p).

The group OP∗(Z(p),Z/p) is Z/p in degrees ∗ = 2p − 2, 2p − 1 and
trivial otherwise. One can canonically take operations P 1r, β1P

1r ∈
OP∗(Z(p),Z/p) as generators in the corresponding degrees.

Proof. Using [Vo3, Proposition 2.6] and Lemma 3.12 one can see that
operations on both sides of the proposition statement can be seen as
the collection of elements χn ∈ H2n+∗,n+p−1(Kn(Z(p)),Z/p) on the left-
hand-side and ψn ∈ H2n+∗,n+p−1(ΩSKn(Z/p∞),Z/p) on the right-hand-
side, correspondingly, where both the collections satisfy compatibility
conditions of Lemma 3.12.

Consider the short exact sequence of abelian groups

0→ Z(p) → Q→ Z/p∞ → 0.

By Proposition 3.1 for every n > 0 it gives a fibered square of motivic
Eilenberg-Mac Lane spaces:

(3.1) Kn(Z(p)) //

��

Kn(Q)

��
∗ // Kn(Z/p∞)

In the homotopy category it determines a morphism θn : ΩSKn(Z/p∞)→
Kn(Z(p)).

By functoriality, one can check that for n > 0 diagrams

ΣTKn(Z(p))

αn

��

ΣTΩSKn(Z/p∞)

γn

��

θnoo

Kn+1(Z(p)) ΩSKn+1(Z/p∞)
θn+1oo

are commutative in the homotopy category. Therefore, the family θn
determines the map of sets:

Θ: OPm(Z(p),Z/p)→ OPm+1(Z/p∞,Z/p).

By the construction, it is also clear that the map Θ coinside with the
mapB∗ induced by the Bockstein homomorphismB = β[Z(p),Q,Z/p∞].

To show Θ is a bijection, write down a long exact sequence of homo-
topy group sheaves with Z/p coefficients, corresponding to the fibered
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square 3.1. By Lemma 3.11, one has:

π∗(ΩSKn(Z/p∞),Z/p) '→ π∗(Kn(Z(p)),Z/p)

and Corollaries 3.9, 3.10 show that constructed maps give a bijection
between projective families ψ and ϕ.

Finally, the morphism of short exact sequences

(r,×p−1, id) : [Z(p),Q,Z/p∞]→ [Z/p,Z/p∞,Z/p∞]

implies the equality rB = β∞ that, together with exposition of groups
OP∗(Z/p∞,Z/p) given above, supplies us with the desired set of gen-
erators. This proves the proposition. �

Denote by pA
∗,∗ the subgroup of the Steenrod algebra A∗,∗, made by

operations, vanishing after multiplication by p.

Lemma 3.14. The Bockstein homomorphism B = β[Z(p),Z(p),Z/p]
induces the epimorphism:

OP2p−2(Z(p),Z/p)
B
� pA

2p−1,p−1(Z(p)).

Proof. Considering a long exact cohomology sequence, corresponding
to the short exact coefficient sequence [Z(p),Z(p),Z/p] one can easily see
that any p-torsion cohomological operation from A2p−1,p−1(Z(p)) lifts to
an element from OP2p−2(Z(p),Z/p). �

Remark 3.15. In fact, the epimorphism in Lemma 3.14 is an isomor-
phism. In order to check, it is sufficient to exhibit a non-trivial p-torsion
operation from A2p−1,p−1(Z(p)). The examples of such operations are
given in the next section.

Summarizing the results of Proposition 3.13, and Lemma 3.14, we
obtain the following

Theorem 3.16. Let F : H∗,∗(−,Z(p)) → H∗+2p−1,∗+p−1(−,Z(p)) be a
non-trivial bistable cohomological operation on motivic cohomology. Let
also pF = 0. Then, the operation F coincides up to the multiplication
by a non-zero constant4 with the operation BP 1r, where P 1 is the first
Z/p motivic Steenrod power, B = β[Z(p),Z(p),Z/p], and r denotes the
corresponding coefficient reduction operation.

4In fact, a non-zero element of Z/p.
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4. dp 6= 0

The purpose of the current section is to construct a variety such
that the corresponding motivic cohomology spectral sequence has a
non-trivial differential. Although the previous deicussion makes us to
consider only the case of p > 2 and char k = 0, in this section we
decided to give more general statements. So, here we just have to
assume that p is a prime number and the field k is perfect such that
(char k, p) = 1. All coefficient rings are assumed to be Z(p). Abusing
the notation, we omit mentioning coefficients unless it is absolutely
nesessary. k denotes a field of characteristic 0. From now on D always
denotes a central simple algebra over k of degree p. We also denote
by G the norm variety SL1,D and by X = SB(D) the corresponding
Severi–Brauer variety. Let us mention that since G is a twisted form
of SLp, one has dim G = p2 − 1.

The variety G supplies us with the examples of non-trivial differen-
tials, which are going to be considered in Theorem 4.2. Before we pass
to the theorem statement, let us give another example5, demonstrating
the non-triviality of differentials d2 in the case p = 2.

Example 4.1. Consider the motivic spectral sequence for the variety
SpecQ. One can check that the Milnor symbol {−1,−1,−1,−1} ∈
KM

4 (Q) is non-trivial of the order 2. This symbol lies in E0,−4
2 . On

the other hand, the spectral sequence converges to K4(Q), the map
KM

4 (Q) → K4(Q) should pass through the stable homotopy group of
the sphere spectrum π4

S. The latter group is trivial, therefore, one
gets from the short exact sequence E−2,−3

2 → E0,−4
2 → E0,−4

∞ that the
differential d2 : H1(SpecQ,Z(3)) → E0,−4

2 = KM
4 (Q) is non-zero. This

is, certainly, true with Z/2 coefficients as well.

Theorem 4.2. Consider the Motivic spectral sequence corresponding
to the variety G

Ei,j
2 = H i−j,−j(G)⇒ K−i−j(G).

The differential dp : E1,−2
p → Ep+1,−p−1

p is non-trivial.

Proof. We formulate, first, three conditions that imply, almost obvi-
ously, the theorem statement.

(1) K0(G) = Z(p) · 1, where the class 1 lies in codimension 0;
(2) CHp+1(G) 6= 0;
(3) For 1 < n < p the differentials dn vanish.

5The author is in debt to Chuk Weibel, who paid his attention to this example.
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The first condition is proven in [Su, Theorem 6.1]. The third one is
exactly the statement of Proposition 1.2. The rest of the paper will be
devoted to the proof of the second one (Proposition 4.3).

To complete the proof of the theorem, we just mention that since
motivic cohomology coincide with higher Chow groups, the term

Ep+1,−p−1
2 = CHp+1(G, 0) = CHp+1(G) 6= 0

by (2). On the other hand, Ep+1,−p−1
∞ = 0, since, by (1) the whole

group K0(G) is concentrated in the term E0,0
∞ = Z(p). Hence, there

should be a non-trivial differential, that kills the term Ep+1,−p−1
2 . By

(3) the only possibility is that 0 6= dp : E1,−2
p → Ep+1,−p−1

p . �

Proposition 4.3. For the algebra D, one has: CHp+1(G) 6= 0.

Proof. Let us recall that X = SB(D) denotes the Severi-Brauer vari-
ety of dimension p − 1 corresponding to the algebra D. For the pro-
jection map G×X → G consider a filtration of the base by codimen-
sion of points and write down the corresponding spectral sequence (see
Rost[Ro]):

(4.1) Est
1 (n) =

∐
g∈G(s)

H t(XF (g),Kn−s) ⇒ Hs+t(G×X,Kn),

where XF (g) = X × SpecF (g) is a fiber over the generic point g. This
spectral sequence is a natural generalization of the Brown–Gersten–
Quillen (BGQ) spectral sequence.

For convenience we have drawn below the most important for us case
n = p+ 1, setting, for shortness

∐
g∈G(s)

H t(XF (g),Ku) = Rs
t,u.

The E1-term of this spectral sequence is concentrated in the strip given
by the conditions: 0 ≤ t ≤ p− 1 and s+ t ≤ n.
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R0
p−1,p+1 R1

p−1,p

dp

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
R2
p−1,p−1 0 0

...
... . . . 0 0

R0
1,p+1 R1

1,p · · · Rp−1
1,2 Rp

1,1 0

R0
0,p+1 R1

0,p · · · Rp
0,1 Rp+1

0,0

Almost everythere we need to consider the spectral sequence for n =
p+ 1. In these cases we will just omit the index (p+ 1).

Assume, the following statements hold:
(1) Ep+1,0

2 = CHp+1(G);
(2) Coker

(
Hp(G×X,Kp+1)

ϕ→ E1,p−1
p

)
6= 0.

Then the proposition follows easily. Actually, just consider the bound-
ary short exact sequence:

Hp(G×X,Kp+1)
ϕ→ E1,p−1

p

dp→ Ep+1,0
p .

As, by (2) ϕ is not an epimorphism, one has: Ep+1,0
p 6= 0, but by (1)

and the dimension reasons, there exists an epimorphism CHp+1(G) =
Ep+1,0

2 � Ep+1,0
p that proves the desired result.

The rest of the paper is devoted to the proof of auxillary statements.
(1) is established in Lemma 4.4 right below, (2) is proven in Proposi-
tion 4.8. �

Lemma 4.4. Ep+1,0
2 = CHp+1(G).

Proof. One has: Ep+1,0
2 = Rp+1

0,0 /R
p
0,1. Decoding the notation, we get:

(4.2) Ep+1,0
2 = Coker

 ∐
g∈G(p)

F (g)∗ →
∐

g∈G(p+1)

Z

 = CHp+1(G)

that completes the proof. The same is, certainly, true with Z(p) coeffi-
cients. �

Now we show that E1,p−1
2 = E1,p−1

p . This allows us to compute the
term E1,p−1

p in the explicit way.
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Proposition 4.5. Differential maps dt1 : Rp−t
t,t+1 → Rp−t+1

t,t are epimor-
phisms, provided that 1 ≤ t ≤ p−1. Therefore, in these cases Ep+1−t,t

2 =
0.

Proof. Deciphering the notation, we have to prove that the maps∐
g∈G(p−t)

H t(XF (g),Kt+1)→
∐

g∈G(p+1−t)

H t(XF (g),Kt)

are epimorphisms. The inner groups H t(XF (g),Kt+m) can be com-
puted using the Brown–Gersten–Quillen spectral sequence. Writing
down Gersten resolutions for different values of t one gets natural maps
on the resolutions, induced by embedding of points of different codi-
mensions. This implies natural maps of BGQ spectral sequences and,
finally, natural maps of K-cohomology groups

· · · → H t(XF (g),Kt+m)→ H t+1(XF (g),Kt+1+m)→ · · ·
By Statement 4.6, these maps are isomorphisms for m = 0, 1 and 1 ≤
t ≤ p− 1. By functoriality of the construction this implies that

Ep+1−t,t
2 = Rp−t+1

t,t /Rp−t
t,t+1 ' Rp−t+1

p−1,p−1/R
p−t
p−1,p = Ep−t+1,p−1

2 (2p− t).
The rest follows from Lemma 4.7 below. �

In the proof of previous proposition we needed a result of Merkurjev
and Suslin, which we reproduce here.

Statement 4.6 ( [MS, Corollary 8.7.2]). Let k̄ be the algebraic closure
of k. For a Severi–Brauer variety X of dimension p − 1, set X̄ =
X × Spec k̄. Then

(4.3) H i(X,Ki) = CH i(X) = pZ(p) ⊂ Z(p) = CH i(X̄)

and

(4.4) H i(X,Ki+1) = Nrd D∗ ⊂ k̄∗ = H i(X̄,Ki+1),

provided that 1 ≤ i ≤ p−1. (Here Nrd denotes the group of the reduced
norms.)

Lemma 4.7. For n > p, one has: En−p−1,p−1
2 (n) = 0.

Proof. Consider now G × X as a group-variety over X. By Suslin’s
computations [Su], H∗(G×X,K∗) becomes a module over H∗(X,K∗)
generated by Chern classes cj, where cj ∈ Hj(G × X,Kj+1) for j >
0. In particular, this implies that CH i(G × X) = 0 for i > p − 1.
Therefore, the spectral sequence converges to zero in the nth diagonal.
In particular, En−p−1,p−1

∞ (n) = 0. By the dimension reasons, there are
no differentials, affecting the term En−p−1,p−1

2 (n). So that, one has:
En−p−1,p−1

2 (n) = En−p−1,p−1
∞ (n) = 0. �
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Proposition 4.8. The map ϕ : Hp(G × X,Kp+1) → E1,p−1
p has non-

trivial cokernel.

Proof. Let us mention, first, that by the previous lemma, one has:
E1,p−1
p = E1,p−1

2 . Denote this group by V and consider the base-change
commutative diagram corresponding to the morphism Spec k̄ → Spec k,
where k̄ is the algebraic closure of k.

(4.5)

Hp(G×X,Kp+1)
ϕ−−−→ V

χ

y ψ

y
H l(Ḡ× X̄,Kp+1)

ϕ̄−−−→ V̄

The desired statement easily follows from the following three claims:
(1) Im χ is divisible by p;
(2) ψ : V → V̄ is an epimorphism;
(3) V̄ = Z(p).
Assume that ϕ is an epimorphism. Since ψ is also an epimorphism,

we can chose an element x ∈ Hp(G × X,Kp+1) such that ψϕ(x) = 1.
Then, by (1), 1 = ϕ̄χ(x) is p-divisible. This gives a contradiction. We
prove (1) in Lemma 4.9, (2) in Proposition 4.10 below. Finally, (3)
appears in the proof of 4.10 as an indirect result. �

Lemma 4.9. Im χ is divisible by p.

Proof. This follows from the above mentioned (see the proof of Lemma 4.7)
decomposition

(4.6) Hp(G×X,Kp+1) =
∐
i>0

ciCH
p−i(X)

and the fact that the map CH i(X) → CH i(X̄) is a multiplication by
p due to Proposition 4.6. �

Proposition 4.10. The map ψ : V → V̄ is an epimorphism.

Proof. First, consider the BGQ spectral sequence converging to the K-
groups of the Severi–Brauer variety X. Since (p − 1)! is invertible in
the coefficient ring, this spectral sequence has no non-trivial differen-
tials affecting the two highest diagonals. Moreover, if the base field is
algebraically closed, all the differentials in the spectral sequence vanish
(see [MS, 8.6.2]).

The infinity term of BGQ consists of consequent factor-filtration
groups of K(X). Taking into account the triviality of differentials
mentioned in the previous paragraph, there exist boundary maps:

(4.7) Hp−1(X,Kp−1+m)→ Km(X)(p−1),
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where m = 0, 1, 2. These maps are isomorphisms for m = 0, 1. Pro-
vided that the base field is algebraically closed, they are isomorphisms
also for m = 2.

Since (p−1)! is invertible in the coefficient ring, the topological filtra-
tion coincide with the γ-filtration. The desired filtration is generated
by the image of the corresponding γ-operation.

Later we need one additional definition. For a quasi-compact locally
Noetherian scheme Y , let A be a sheaf of algebras on Y locally isomor-
phic in the étale topology on Y to the sheaf of split algebras Mn(OY ).
In other words, A is an Azumaya algebra on Y . Consider now the
category P(Y ;A), whose objects are sheaves of left A-modules, which
are locally free coherent OY -modules. Morphisms in this category are
OY -module ones, compatible with the A-module structure.

Definition 4.11. We setK∗(Y ;A) = K∗(P(Y ;A)), where on the right-
hand side we have Quillen’s K-functor construction.

By Quillen’s computation ofK-groups of Severi–Brauer varieties, [Qu]
one has isomorphisms: Km(X)(p−1) ' Km(D⊗(p−1)). Denoting D⊗(p−1)

by D, we obtain the maps: Hp−1(Xg,Kp−1+m)
ρm→ Km(F (g);D) for

m = 0, 1, 2, which are isomorphisms for m = 0, 1 and isomorphism for
m = 2 provided that the base-field is algebraically closed. As a result,
one gets the map of complexes ρ∗:
(4.8)

R0
p−1,p+1

ρ2

��

// R1
p−1,p

ρ1
��

// R2
p−1,p−1

ρ0
��

K2(F (G);D) //
∐

g∈G(1) K1(F (g);D) //
∐

g∈G(2) K0(F (g);D),

inducing the epimorphism map ρ̃ on the middle-term homology groups.
The latter map becomes an isomorphism after passing back to the
algebraic closure. The middle-term homology group in the bottom line
can be rewritten as H1(G,K2;D). Let us consider the base-change
diagram corresponding to the morphism Spec k̄ → Spec k:

(4.9) V
ψ //

ρ̃
��

V̄

H1(G,K2;D)
ω // H1(Ḡ,K2; D̄).

Observe now, that Ḡ = SLn(k̄) and H1(Ḡ,K2; D̄) = H1(SLn,K2) =
Z(p) with a natural choice of a generator, given by the first Chern class
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(see [Su, Theorem 2.7]). Consider another base-change diagram:

(4.10) H1(G,K2;D)
ω // H1(SLn,K2)

K1(G;D)
f //

c1

OO

K1(SLn)

c̄1

OO

Consider the universal element α ∈ K1(G;D) defined as in [Su, Section
4]. It is constructed in such a way that its image f(α) inK1(SLn) is the
universal matrix element. Then, due to [Su, Theorem 2.7], c̄1f(α) = 1.
Hence, the map ω is an epimorphism and so is ψ. �
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