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Abstract

Expository notes which combine a historical survey of the devel-
opment of quantum physics with a review of selected mathematical
topics in quantization theory (addressed to students that are not com-
plete novices in quantum mechanics).

After recalling in the introduction the early stages of the quan-
tum revolution, and recapitulating in Sect. 2.1 some basic notions of
symplectic geometry, we survey in Sect. 2.2 the so called prequantiza-
tion thus preparing the ground for an outline of geometric quantization
(Sect. 2.3). In Sect. 3 we apply the general theory to the study of basic
examples of quantization of Kähler manifolds. In Sect. 4 we review the
Weyl and Wigner maps and the work of Groenewold and Moyal that
laid the foundations of quantum mechanics in phase space, ending with
a brief survey of the modern development of deformation quantization.
Sect. 5 provides a review of second quantization and its mathematical
interpretation. We point out that the treatment of (nonrelativistic)
bound states requires going beyond the neat mathematical formaliza-
tion of the concept of second quantization. An appendix is devoted
to Pascual Jordan, the least known among the creators of quantum
mechanics and the chief architect of the “theory of quantized matter
waves”.

1First part of a famous aphorism of Edward Nelson that ends with “but second quanti-
zation is a functor”. To quote John Baez [B06] “No one is a true mathematical physicist
unless he can explain” this saying.
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1 Introduction: historical remarks

Quantum mechanics - old and new - has been an active subject for nearly a
century. Even if we only count textbooks the number is enormous - and keeps
growing. My favourite is Dirac’s [D30]. These notes are addressed to readers
with a taste in the history of the subject and in its mathematical foundations.
An early monograph on the mathematical meaning of quantum mechanics is
John von Neumann’s [vN]. For more recent texts - see [FY, Mac, T] among
many others. The latter book also contains a well selected bibliography.
Sources on the history of the subject include [MR, Dar, Sch, PJ07].

1.1 First steps in the quantum revolution

Quantum theory requires a new conceptual basis. Such a drastic change of
the highly successful classical mechanics and electrodynamics was justified
by the gradual realization at the turn of 19th century that they are inad-
equate in the realm of atomic phenomena. Four theoretical breakthroughs
prepared the creation of quantum mechanics.

1900: Following closely the Rubens-Kurlbaum experiments in Berlin
Max Planck (1858-1947) found the formula for the spectral density ρ(ν, T )
of the black-body radiation as a function of the frequency ν and the absolute
temperature T :

ρ(ν, T ) =
8πhν3

c3

1
eβhν − 1

, β =
1
kT

. (1.1)

Here k is Boltzmann’s2 constant, h is the Planck’s constant representing
the quantum of action (that becomes a hallmark of all four breakthroughs
reviewed here). It looks like a miracle that such a formula should have been
found empirically. At the time of its discovery nobody seems to have real-
ized that it is closely related to the well known generating function of the
Bernoulli3 numbers, and, more recently, to modular forms. (For a derivation
based on the theory of free massless quantum fields on conformally compact-
ified space that emphasizes the relation to modular forms - see [NT]; it has

2Ludwig Boltzmann (1844-1906) founded the statistical interpretation of thermody-
namics which Planck originally tried to overcome.The expression for the entropy in terms
of probability S = klogW is carved on Boltzmann’s gravestone in Vienna (see [Bl]).

3Jacob Bernoulli (1654-1705) is the first in the great family of Basel’s mathematicians.
The Bernoulli numbers appear in his treatise Ars Conjectandi on the theory of probability,
published posthumously, in 1713.
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been also related to index and signature theorems - see e.g. [H71] Sect. 2.)
Planck did not stop at that. He found the prerequisites for its validity (wild
as they sounded at that time). First he assumed that the energy consists
of finite elements, quanta proportional to the frequency ν of the light wave,
ε = hν. Secondly, he recognized that the quanta should be indistinguish-
able, thus anticipating the Bose-Einstein statistics, discovered more than
two decades later (see [P] Sect. 19a).That is how Planck, conservative by
nature, started, at the age of 42, the scientific revolution of the 20th century.

1905: Albert Einstein (1879-1955) was the first to appreciate the revo-
lutionary character of Planck’s work. The light-quantum is real: it may kick
electrons out of a metal surface, thus giving rise to the photoelectric effect.
One can judge how far ahead of his time Einstein went with his bold hypoth-
esis by the following comment of Planck et al. who recommended him, in
1913, for membership in the Prussian Academy: “In sum, ... there is hardly
one among the great problems in which modern physics is so rich, to which
Einstein has not made a remarkable contribution. That he may sometimes
have missed the target, as, for example, in his hypothesis of light-quanta,
cannot really be held too much against him ...” ([P], 19f). Robert Mi-
likan (1868-1953) who confirmed Einstein’s prediction in 1915 (Nobel Prize
in 1923) could not bring himself to believe too in the “particles of light”.
Even after Einstein was awarded the Nobel Prize in 1921 “especially for his
work on the photoelectric effect” leading physicists (like Bohr, Kramers4

and Slater) continued to feel uncomfortable with the wave-particle duality.
1911-13: As Ernest Rutherford (1871-1937) established in 1911 the

planetary atomic model: light electrons orbiting around a compact, massive,
positively charged nucleus, a highly unstable structure according to the laws
of classical electrodynamics, it became clear that atomic physics requires new
laws. Niels Bohr realized in 1913 that the emission and absorption spectra,
the fingerprints of the atoms ([B05]), can be explained as transitions between
stationary states5 and he derived Balmer’s formula for the spectrum of the
hydrogen atom (see [P86] 9(e)). In the words of the eloquent early textbook
on quantum mechanics, [D30], “We have here a very striking and general
example of the breakdown of classical mechanics - not merely an inaccuracy
of its laws of motion but an inadequacy of its concepts to supply us with a

4The Dutch physicist Hendrik Anthony (“Hans”) Kramers (1894-1952) was for nearly
10 years, 1916-26, the senior collaborator of Niels Bohr (1885-1962) in Copenhagen.

5In 1910 the Austrian physicist Arthur Haas (Brno, 1884 - Chicago,1941) anticipated
Bohr’s model in his PhD thesis. His result was originally ridiculed in Vienna. Bohr
received the Nobel Prize for his model of the atom in 1922.
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description of atomic events.”
1923-24: Inspired by the coexistence of wave-particle properties of light

quanta, Louis-Victor, prince de Broglie (1892-1987) predicted the wave prop-
erties of all particles. His prediction was confirmed in 1927 by two indepen-
dent experiments on electron diffraction. De Broglie was awarded the Nobel
Prize in Physics in 1929.

1.2 The glorious years: 1925-1932

Whenever we look back at the development of physical theory in the period
between 1925 and 1930 we feel the joy and the shock of the miraculous.

Rudolf Haag

Quantum mechanics appeared in two guises: Werner Heisenberg (1901-
1976) and Paul Dirac (1902-1984) thought it as a particle theory, Louis de
Broglie and Erwin Schrödinger (1887-1961) viewed it as a wave mechanics
[Sch]. Although their equivalence was recognized already by Schrödinger,
only the transformation theory provided a general setting for seeing the com-
peting approaches as different representations/pictures of the same theory.
It was developed chiefly by Pascual Jordan and Dirac (see Appendix).

In July 1925 a hesitating Heisenberg handed to his Göttingen professor
Max Born (1882-1970) the manuscript of a ground breaking paper6 “Quan-
tum theoretical reinterpretation of kinematic and mechanical relations” (for
an English translation with commentary - see [SQM]) - and left for Ley-
den and Cambridge. Heisenberg ends his paper with an invitation for “a
deeper mathematical study of the methods used here rather superficially”.
Born soon recognized that Heisenberg was dealing without realizing it with
matrix multiplication. He shared his excitement with his former assistant,
Wolfgang Pauli (1900-1958), asking him to work out together the proper
mathematical reformulation of Heisenberg’s idea, but Pauli answered in his
customary irreverent style: “Yes, I know, you are fond of tedious and com-
plicated formalism. You are only going to spoil Heisenberg’s physical ideas
with your futile mathematics.” ([Sch] p. 8). Only then Born made the right
choice turning to the 22-year-old Jordan. It was Jordan who, following the
idea of his mentor, first proved what is now called “the Heisenberg com-
mutation relation”, 2πi(pq − qp) = h - and is carved on the gravestone of
Born. Dirac, who discovered it independently during the same 1925, related

6conceived (after a 7 months stay at Copenhagen) while he was recovering from hay
fever on Helgoland, a tiny island in the North Sea - see [T05].
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it to the Poisson7 bracket {q, p} = 1. Unlike his friend Pauli, Heisenberg
welcomed the development of the apparatus of matrix mechanics. Decades
later he speaks of the lesson drawn from revealing the nature of noncom-
mutative multiplication: “If one finds a difficulty in a calculation which is
otherwise quite convincing, one should not push the difficulty away; one
should rather try to make it the centre of the whole thing.“ ([MR] 3, III.1).
Before Born-Jordan’s paper was completed he began participating in the
work - first with letters to Jordan from Copenhagen. The collaboration
(Dreimännerarbeit - the work of the three men [BHJ]) was fruitful albeit
not easy. Heisenberg believed that they should start with physically inter-
esting applications rather than first expanding the apparatus, including the
theory of the electromagnetic field, as Born and Jordan were proposing. He
insisted that they just postulate the canonical commutation relations (CCR)
for a system of n degrees of freedom ([MR] 3, III.1)8:

i[pj , qk] = ~δjk (~ =
h

2π
) , [pj , pk] = 0 = [qj , qk] , j, k = 1, 2, ..., n , (1.2)

rather than to try to derive them from the Hamiltonian equations of motion,
following the wish of his coauthors. After a quarter of a century, Wigner9 re-
turned to the question ”Do the equations of motion determine the quantum
mechanical commutation relations?” (Phys. Rev. 1950). It triggered the
discovery of parastatistics (by Green, Messiah, Greenberg) and their super
Lie-algebraic generalization (by Palev). The last section, devoted to radi-
ation theory, was written by Jordan alone ([MR] 3, IV.2). It contains the
first quantum mechanical derivation of Planck’s black-body-radiation for-
mula, a topic belonging to the realm of quantum electrodynamics. Decades
later, in 1962, talking to Van der Waerden (the editor of [SQM], 1903-1995),
Jordan says that this is his single most important contribution to quantum
mechanics, a contribution that remained unknown and unappreciated.

A week before the appearance of [BHJ], on January 27, 1926, in the wake
of an inspiring vacation, Schrödinger submitted the first of a series of four
papers entitled “Quantization as an eigenvalue problem”. Just because his
formulation of wave mechanics based on an “wave equation” is looking quite
different from the picture, drown by Heisenberg, Born, Jordan and Dirac, it
widened the scope of quantum theory and made it ultimately more flexible.

7Siméon-Denis Poisson (1781-1840) introduced in his Traité de mécanique, 1811, the
notion of momentum p = ∂T

∂q̇
, T being the kinetic energy.

8The reduced Planck’s constant ~ was introduced by Dirac in his book [D30].
9Jeno (later Eugene) Wigner (Budapest, 1902 - Princeton, 1995) was awarded the

Nobel Prize in Physics in 1963.
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1.3 Beginning of a mathematical understanding

Mathematicians are like Frenchmen: whatever you tell them they translate
into their own language and forthwith it becomes something entirely different.

J.W. Goethe (1749-1832)

After Dirac discovered the simple relation between commutators and
Poisson brackets (PB) of coordinates and momenta,

[q, p] = i~{q, p} (= i~), (1.3)

it appeared tempting to postulate a similar relation for more general ob-
servables (that is, real functions on phase space10). This leads immediately
to an ordering problem. The simple commutation relation (CR)

1
2

[q2, p2] = i~(qp+ pq) (1.4)

suggests using suitably symmetrized products11. This indeed allows to fit
the simple-minded quantization rule in the case of second degree polynomials
of p and q. For general cubic polynomials, f(p, q), g(p, q) (and canonical PB
- see Sect. 2.1) one cannot always have a relation of the type

[f, g] = i~{f, g} (1.5)

no matter how f, g and the right hand side are ordered.12 The property
of being quadratic (or linear), on the other hand, is not invariant under
canonical transformations. “One cannot expect to be able to quantize a
symplectic manifold without some additional structure”[GW]. (A general
result of this type was established over two decades after the discovery of
quantum mechanics - see [G46, V51].) One can at best select a subset of
observables for which (1.5) is valid. If the problem admits a continuous
symmetry then it is wise to choose its Lie algebra generators among the
selected dynamical variables. The above mentioned example of (symmetric)

10The story of the appearance of the concept of phase space in mechanics, or rather,
the tangled tale of phase space is told in [N].

11A systematic completely symmetrized ordering (see Sect. 4.1) was introduced in [We]
by Hermann Weyl (1885-1955), a student of David Hilbert (1862-1943), whose fame as
one of the last universal mathematicians approaches that of his teacher.

12The equation (1.5) does have a solution in terms of vector fields that will be displayed
in Sect. 2.2 below; we shall also explain why this solution is physically unsatisfactory.
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quadratic polynomials in p and q is of this type: for a system of n degrees
of freedom these polynomials span the Lie algebra sp(2n,R) corresponding
to a projective representation of the real symplectic group Sp(2n,R) that is
a true representation of its double cover13, the metaplectic group Mp(2n),
the authomorphism group of the CCR (1.2). It is a noncompact simple
Lie group whose nontrivial unitary irreducible representations (UIR) are all
infinite dimensional. Another physically important example, considered by
Jordan and Heisenberg in [BHJ] is the angular momentum - the hermitean
generators of the Lie algebra so(3) of the (compact) rotation group (and of
its two-fold cover SU(2) that gives room to a half-integer spin14 s):

M = r× p + s , [Mx,My] = i~Mz etc. (Mz = xpy − ypx + sz). (1.6)

The following elementary exercise recalls how the representation theory of
compact Lie groups and the CR (1.6) can be used to compute the joint spec-
trum of Mz and M2 := M2

x +M2
y +M2

z (which commute among themselves).
Exercise 1.1 (a) Use the form

[Mz,M±] = ±~M± , [M+,M−] = 2~Mz for M± = Mx ± iMy (1.7)

of the CR (1.6) to prove that the spectrum of Mz in any irreducible (finite
dimensional) representation of SU(2) has the form

(Mz−m~)|j,m >= 0 , m = −j, 1−j, . . . , j−1, j , j = 0,
1
2
, 1,

3
2
, . . . . (1.8)

(b) Use the relation

M2 = M2
z +

1
2

(M+M− +M−M+) = M2
z + ~Mz +M+M− (1.9)

to prove that (M2 − j(j + 1)~2)|j,m >= 0.
(Hint: use the relation M−|j,−j >= 0(= M+|j, j >).)
In general, however, there is no “optimal algorithm” to quantize a given

classical system. That’s why it is often said that quantization is an art15

13That is not a matrix group; more about Mp(2n) and its applications can be found in
the monographs [F, deG] as well as in Secs. 3 and 4 of [T10] and references therein.

14The story of spin is told in [Tom]; for its relation to Clifford algebras - see [T11].
15Words Ludwig Faddeev used in the discussion after Witten’s talk on [GW] in Lau-

sanne, March, 2009, alluding to the Lax ordering in the quantization of integrable systems
[F]. A year later Witten’s student used the same words as a title of Sect. 2 of [G10].
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Here are three examples in which we know what quantization means. The
most familiar one is M = R2n equipped with the canonical symplectic form

ω = dp ∧ dq =
n∑
j=1

dpj ∧ dqj , (1.10)

with a given choice of affine structure in which pi and qj are linear func-
tions on M . Another important example is a cotangent bundle M = T ∗Q,
equipped with a contact form θ = pdq, q ∈ Q, p ∈ T ∗qQ, which can be quan-
tized in a natural way in terms of a half-density on Q. Similarly, there is a
natural procedure to quantize a Kähler 16 manifold (see Sect. 2.1) by taking
holomorphic sections of the appropriate line bundle. These examples partly
overlap. We may, for instance, introduce a complex structure on R2n setting

√
2zj = qj − ipj ⇒ dp ∧ dq = idz ∧ dz̄. (1.11)

These two ways of viewing the classical phase space are not exactly equiv-
alent, however. Each new structure reduces the natural invariance group of
the theory. If the group preserving the affine structure of R2n is GL(2n,R),
the symmetry group of the Kähler form (1.11) is its subgroup U(n) - the in-
tersection of the orthogonal and the real symplectic subgroups ofGL(2n,R) :
U(n) ' O(2n) ∩ Sp(2n,R).

2 Introduction to geometric quantization

We begin with Baez’s explanation [B06] why quantization is a mystery.
“Mathematically, if quantization were ’natural’ it would have been a

functor from the category Symp whose objects are symplectic manifolds
(=phase spaces) and whose morphisms are symplectic maps (=canonical
transformations) to the category Hilb whose objects are Hilbert spaces and
whose morphisms are unitary operators.” Actually, there is a functor from
Symp to Hilb which assigns to each (2n-dimensional) symplectic manifold

16The German mathematician Erich Kähler (1906-2000) introduced his hermitean met-
ric in 1932 while at the University of Hamburg. See about his work and personality R.
Brendt, O. Riemenschneider (eds), E. Kähler, Mathematical Works, de Gruyter, Berlin
2003; see in particular the articles by S.-S. Chern and by R. Brendt and A. Bohm.
The quantization of Kähler manifolds is a lively subject of continuing interest - see, e.g.
[AdPW], [Hi], [GW], [W10], [G10]. We shall survey it in Sect. 3, below.
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M (or (M,ω)) the Hilbert space L2(M) (with respect to the measure as-
sociated with the symplectic form ω on M , given by (1.10) in the simplest
case of an affine phase space). This is the so called prequantization which
will be sketched in Sect. 2.2 below.17

2.1 Elements of symplectic geometry

Hamiltonian Mechanics is geometry in phase space.
Vladimir Arnold (1937-2010), 1978.

The language of categories. The reader should not be scared of terms like cat-

egory and functor: this language, introduced by Eilenberg and MacLane and developed

by Grothendieck and his school, has become quite common in modern mathematics and

appears to be natural for an increasing number of problems in mathematical physics -

including quantization (and homological mirror symmetry - cf. [G10]). For a friendly in-

troduction - see [B06]; among more advanced mathematical texts the introductory material

of [GM], including the first two chapters, is helpful. We recall, for reader’s convenience, a

couple of informal definitions. A category C consists of a class of objects, X,Y ∈ C and of

non-intersecting sets of maps Hom(X,Y ), called morphisms and denoted as ϕ : X → Y

whose composition is associative. We note that the definition of a category only involves

operations on morphisms, not on objects. A functor F : C → D between two categories is

a map X → F (X) between objects, together with a map ϕ→ F (ϕ) between morphisms,

such that F (ϕψ) = F (ϕ)F (ψ) whenever ϕψ is defined; in particular, F (idX) = idF (X).

An important example is the fundamental group which may be viewed as a functor from

the category of topological spaces to the category of groups (with the corresponding ho-

momorphims as morphisms).

We proceed to defining some basic notions of symplectic differential ge-
ometry, a subject of continuing relevance for mathematical physics, with a
wealth of competing texts - see, for instance, [Br, CdS, deG, F, M, V].

The tangent bundle TM of a differentiable manifold M is spanned by
vector fields or directional derivatives, - i.e., first order homogeneous dif-
ferential operators Xi(x)∂i that are linear combinations of the derivatives
∂i := ∂

∂xi
in the neighbourhood of each point with local coordinates xi. The

17For a reader’s friendly review of various quantization methods (and a bibliography of
266 titles) - see [AE]. For later more advanced texts on prequantization - see [WZ, ZZ];
prequantization is the first step to the geometric quantization [Wo] of Kostant and Souriau
that grew out of Kirillov’s orbit method [K99]. It is reviewed in the very helpful lecture
notes [B], available electronically, and is the subject of recent research [H90, AdPW]; it is
also briefly discussed among other modern approaches to quantization in [GW, G10].
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cotangent bundle consists of 1-forms, spanned by the differentials dxi viewed
as linear functionals on vector fields, such that

dxi(∂j) = (dxi, ∂j) = δij (δij = diag(1, ..., 1)), for ∂j =
∂

∂xj
. (2.1)

One also assumes that ∂i anticommutes with dxj . Denoting the contraction
with a vector field X by X̂ we shall have, for instance,

∂̂qdp ∧ dq = −dp. (2.2)

We note that a contraction of a vector field X with a differential form ω is
more often written as iXω. One also uses the notion of a tensor field T rs (x)
(contravariant of rank r and covariant of rank s) defined as an element of the
tensor product (TxM)r⊗ (T ∗xM)s (smoothly depending on x). In construct-
ing higher rank exterior differential forms we use the anticommutativity of
d with odd differentials; if r is the rank of the form ωr, then:

d(ωr ∧ α) = (dωr) ∧ α+ (−1)rωr ∧ dα (d2 = 0). (2.3)

We say that ωr is a closed form if dωr = 0; it is called exact if there exist
an (r − 1)-form θ such that ωr = dθ. Denoting the additive group of closed
r-forms by Cr and its subgroup of exact forms (boundaries) by Br we define
the r-th cohomology group as the quotient group

Hr(M)(= Hr(M,R)) = Cr/Br. (2.4)

Another important concept, the Lie18 derivative LX along a vector field
X (for a historical survey - see [Tr]), can be defined algebraically demanding
that: (1) it coincides with the directional derivative along X on smooth
functions: LXf = Xf ; (2) it acts as a derivation (i.e., obeys the Leibniz
rule) on products of tensor fields:

LXS ⊗ T = (LXS)⊗ T + S ⊗ LXT ; (2.5)

(3) it acts by commutation on vector fields: LXY = [X,Y ]; (4) acting on a
differential form it satisfies Cartan’s19 magic formula

LXω = X̂dω + dX̂ω, in particular, LXdω = dLXω. (2.6)
18The Norvegian mathematician Sophus Lie (1842-1899) devoted his life to the theory

of continuous transformation groups.
19Élie Cartan (1869-1951) introduced the general notion of antisymmetric differential

forms (1894-1904) and the theory of spinors (1913); he completed in his doctoral thesis
(1894) Killing’s classification of semisimple Lie algebras.
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A symplectic manifold: is defined as a manifold with a non-degenerate
closed 2-form. (A non-degenerate 2-form ω on a 2n-dimensional manifold
is characterized by the fact that the corresponding Liouville20 volume form
ω∧n is nonzero.) If one writes the symplectic form in local coordinates as
ω = 1

2ωijdx
i ∧ dxj , ωij = −ωji then the skew-symmetric matrix (ωij) is

invertible and its inverse, (P ij), defines Poisson brackets among functions
on M :

{f, g} = P ij∂if∂jg for ∂i =
∂

∂xi
, P ikωkj = δij . (2.7)

Each symplectic manifold is even dimensional and orientable. In the neigh-
bourhood of each point it admits local Darboux21 coordinates (pi, qj) in which
the symplectic form ω is given by the canonical expression (1.10).

To each function f on the symplectic manifold (M,ω) there corresponds
a Hamiltonian22 vector field Xf such that X̂fω := ω(Xf , .) = df(.). In the
above affine case it is given by:

Xf =
∂f

∂q

∂

∂p
− ∂f

∂p

∂

∂q
. (2.8)

The Poisson bracket between two functions on M is expressed in terms of
the corresponding vector fields as

{f, g} = Xfg = −Xgf = ω(Xg, Xf ) =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
. (2.9)

It follows that the commutator algebra of vector fields provides a represen-
tation of the infinite dimensional Lie algebra of Poisson brackets:

[Xf , Xg] = X{f,g}. (2.10)

A smooth manifold M equipped with a Poisson bracket (that is skew-
symmetric and satisfies the Jacobi identity is called a Poisson manifold.
It is clear from (2.9) that the PB gives rise to a derivation on the algebra

20Joseph Liouville (1809-1882) proved that a Hamiltonian time evolution is measure
preserving. His contributions to complex analysis and to number theory are also famous.

21Jean-Gaston Darboux (1842-1917) established the existence of canonical variables in
his study of the Pfaff problem in 1882.

22William Rowan Hamilton (1805-1865) introduced during 1827-1835 what is now called
Hamiltonian but also the Lagangian formalism unifying mechanics and (geometric) optics.
He invented the quaternions (discussed in Sect. 3.3 below) in 1843.
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of smooth functions on M which obeys the Leibniz23 rule, thus defining a
Poisson structure:

{f, gh} = {f, g}h+ g{f, h}. (2.11)

Poisson manifolds (which are symplectic if and only if the matrix P that
defines a Poisson bivector is invertible) are the natural playground of defor-
maton quantization (surveyed in Sect. 4 below).

A compact symplectic manifold should necessarily has a nontrivial second
cohomology group. It follows that a sphere Sn only admits a symplectic
structure for n = 2.

Exercise 2.1 Demonstrate that the 1-form

η1 = i
zdz̄ − z̄dz

2zz̄
=
xdy − ydx
x2 + y2

(2.12)

in the punctured plane C∗ = {z = x+ iy, (x, y) ∈ R2; r2 := x2 + y2 > 0} is
closed but not exact, albeit locally, around any non-zero point (x, y), it can
be written as a differential of a multivalued function,

η1 = dϕ forϕ = arcsin
y

r
= arccos

x

r
= arctg

y

x
. (2.13)

Prove that if η is an arbitrary element of H1(C∗), i.e. if
∫

S1 η = b 6= 0 then
the 1-form η − b

2πη1 is exact. (Hint: use the fact that the integral of dϕ
along the unit circle is 2π.)

A (pseudo)Riemannian24 manifold is a real differentiable manifold M
equipped with a nondegenerate quadratic form g at each point x of the
tangent space TM that varies smoothly from point to point. We shall be
mostly interested in the case of Riemannian metric in which the form g is
positive definite. An n-dimensional complex manifold can be viewed as a 2n
dimensional real manifold equipped with an integrable complex structure -
i.e., a vector bundle endomorphism J of TM (that is a tensor field of type
(1, 1)) such that J2 = −1.

Such an endomorphism (i.e. a linear map of TM to itself) of square −1 is called an
almost complex structure. An almost complex structure J and a Riemannian metric g
define a hermitean25 structure if they satisfy the compatibility condition

g(JX, JY ) = g(X,Y ). (2.14)

23Gottfried Wilhelm Leibniz (1646-1716), mathematician-philosopher, a precursor of
the symbolic logic, codiscoverer of the calculus - together with Isaac Newton (1642-1727).

24The great German mathematician Bernhard Riemann (1826-1866) introduced what
we now call Riemannian geometry in his inaugural (in fact test) lecture in 1854. More
about Riemann and his work can be found in [Mo].

25Named after the French mathemtician Charles Hermite (1822-1901), the first to prove
that the base e of natural logarithms is a transcendental number.
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Every almost hermitean manifold admits a nondegenerate fundamental 2-form ω(= ωg,J):

ω(X,Y ) := g(X, JY ) ⇒ ω(X,Y ) = ω(JX, JY )

= g(JX, J2Y ) = −g(JX, Y ) = −g(Y, JX) = −ω(Y,X). (2.15)

If the almost complex structure is covariantly constant with respect to the Levi-Civita26

connection then the fundamental form is closed (and hence symplectic):

5J = 0 ⇒ dωg,J = 0 (2.16)

(and, moreover, the so called Nijenhuis tensor NJ (of rank (2, 1)), related to J , vanishes;

this provides an integrability condition which is necessary and sufficient for the almost

complex structure to be a complex structure).

The endomorphism J of the tangent bundle TM defines an integrable
complex structure if M is a complex manifold with a holomorphic atlas
(including holomorphic transition functions) on which the operator J acts
as a multiplication by i. A Kähler manifold is a Riemannian manifold with a
compatible complex structure. (Introductory lectures on complex manifolds
in the context of Riemannian geometry are available in [V] . For a more
systematic study of Kähler manifolds the reader may consult the lecture
notes [Ba] and [M]. We shall deal with the quantization of Cn as a Kähler
manifold in Sect. 3.)

Complex forms admit a unique decomposition into a sum of (p, q)-forms
that are homogeneous of degree p in dzi and of degree q in dzj . The differen-
tial d can be decomposed into Dolbeault differentials ∂ and ∂̄ which increase
p and q, respectively:

∂ = dz ∧ ∂

∂z
, ∂̄ = dz̄ ∧ ∂

∂z̄
(d = ∂ + ∂̄). (2.17)

Similarly, one defines the Dolbeault cohomology groups Hp,q.

2.2 Prequantization

We shall see that even this first, better understood step to quantization does
not always exist: it imposes some restrictions on the classical mechanical
data; on the other hand, it requires the addition of some extra structure (a
comlex line bundle) to it, whose properties may vary. In other words, when
prequantiztion is possible, it is not, in general, unique.

The functions on M play two distinct roles in the prequantization: first,
the real smooth functions f(p, q) span the Poisson algebra A of (classical)

26The Italian mathematician Tullio Levi-Civita (1873-1941) is known for his work on
absolute differential (tensor) calculus.
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observables; second, the “prequantum states” are vectors (complex functions
Ψ(p, q) on M , square integrable with respect to the Liouville measure) in a
Hilbert space H. The prequantization requires to equip M with a complex
line bundle L. Another fancy way to state this is to say that the wave
function (both quantum and ”prequantum”) is a U(1)-torsor - only relative
phases (belonging to U(1)) have a physical meaning. (For an elementary,
physicist-oriented, introduction to the notion of torsor - see [B09].) We are
looking for a prequantization map P : A → PA where PA is an operator
algebra of “prequantum observables” acting on H and satisfying:

(i) P(f) is linear in f and P(1) = 1 (the identity operator in H);
(ii) it maps the Lie algebra of Poisson brackets into a commutator alge-

bra:
[P(f),P(g)] = i~P({f, g}) . (2.18)

(One may also assume a functoriality property - covariance under mapping
of one symplectic manifold to another - see e.g. requirement (Q4) in Sect.
3 of [AE].) The vector fields P(f) = i~Xf obey (2.18) but violate condition
(i) (since X1 = 0). There is, however, a (unique) inhomogeneous first order
differential operator which does satisfy both properties for the affine phase
space:

P(f) = i~Xf + f + θ(Xf ) , θ = pdq (ω = dθ) . (2.19)

Exercise 2.2 Verify (using θ(Xf ) = −p∂f∂p ) that

[P(f),P(g)] = P({f, g}). (2.20)

If we identify f with the classical Hamiltonian H then the term added
to XH is nothing but (minus) the Lagrangian: H−p∂H/∂p = −L. Viewing
H as the generator of time evolution and integrating in time we see that
the resulting phase factor in the wave function is highly reminiscent to the
Feynman path integral.

For the coordinate and momentum Eq. (2.19) gives, in particular,

P(q) = q + i~∂/∂p , P(p) = −i~∂/∂q . (2.21)

We observe that our prescription sends real observables f to hermitean
operators27 (a requirement hidden in the correspondence with (1.3)):

(iii) P(f)∗ = P(f) for real smooth functions f(p, q).
27One actually needs selfadjoint operators in order to ensure reality of their spectrum

but we won’t treat here the subtleties with domains of the resulting unbounded operators.
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The association f → P(f) is, nevertheless, physically unsatisfactory
since it violates simple algebraic relations between observables. For instance,
the prequantized image of the kinetic energy of a nonrelativistic particle,

H0 =
p2

2m
, p2 = p2

1 + p2
2 + p2

3, (2.22)

is
P(H0) = −i~∂pH0∂q −H0 6= H0(P(p)). (2.23)

The operator P(H0) violates, in particular, energy positivity.
The definition (2.19) applies whenever M is a cotangent bundle, M =

T ∗Q, so that the symplectic form is exact, ω = dθ. This is never the
case for a compact phase manifold (that would have had otherwise a zero
volume). In general, prequantization requires that ω/2π~ represents an
integral cohomology class in H2(M,R) - i.e., that its integral over any closed
(orientable) 2-surface in M is an integer. These are, essentially, the Bohr-
Sommerfeld(- Wilson)28 quantization conditions, discovered in 1915, before
the creation of quantum mechanics. For instance, a 2-sphere of radius r, S2

r is
(pre)quantizable (for a fixed value of the Planck constant ~) iff r = n~/2, n ∈
Z. In either case, the symplectic form does not change if we add an exact
form df to the contact form θ, satisfying (locally or globally) dθ = ω. Such
a change can be compensated by multiplying the elements of our Hilbert
space L2(M,ω) by the phase factor exp(if/~). This suggests that it is more
natural to regard P (f) as acting on the space of sections of a complex line
bundle L overM equipped with a connection D of the form:

D = d− i

~
θ , d = dxi∂i , ∂i ≡

∂

∂xi
⇒

DX = X − i

~
θ(X) (X = Xi∂i , θ = θidx

i ⇒ θ(X) = θiX
i) , (2.24)

where X is an arbitrary (not necessarily Hamiltonian) vector field, xi are
local coordinates on M (and we use the summation convention for repeated
indices). The curvature form of this connection coincides with our symplec-
tic form ω:

R(X,Y ) := i([DX , DY ]−D[X,Y ]) =
1
~

(Xθ(Y )− Y θ(X)− θ([X,Y ]))

28Bohr’s model was further developped by Arnold Sommerfeld (1868-1951). Four among
his doctoral students in Munich won the Nobel Prize in Physics. Sommerfeld himself was
nominated for the prize 81 times, more than any other physicist. The British physicist
William Wilson (1875-1965) discovered independently the quantization conditions in 1915.
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=
1
~
dθ(X,Y ) =

1
~
ω(X,Y ). (2.25)

In order to get an idea how an integrality condition arises from the existence of a her-
mitean connection compatible with the symplectic structure on a general phase manifold
we should think of an atlas of open neighbourhoods Uα covering the manifold M . The
quantum mechanical wave function is substituted by a section of our complex line bundle.
It is given by a complex valued function Φα on each chart Uα and a system of transition
functions gαβ for each non-empty intersection Uαβ = Uα ∩ Uβ , such that Φα = gαβΦβ on
Uαβ . Consistency for double and triple intersections requires the cocycle condition:

gαβgβα = 1, gαβgβγgγα = 1. (2.26)

If the contact 1-forms θα are related in the intersection Uαβ of two charts by θα = θβ+duαβ
then the hermiticity of the connection and the cocycle condition imply integrality of the
(additive) cocycle of uαβ :

gαβ = exp(i
uαβ
~

) ⇒ uαβ + uβγ + uγα = hnαβγ where nαβγ ∈ Z. (2.27)

The theorem that the above stated integrality condition for the symplectic form is nec-

essary and sufficient for the existence of a hermitian line bundle L with a compatible

connection D whose curvature is ω goes back (at least) to the 1958 book of André Weil

(1906-1998) [W].)

Looking at the example of the 2-sphere one can get the wrong impression
that the integrality condition for ω ∈ H2(M,R) can be always satisfied by
just rescaling the symplectic form. The simple example of the product of
two spheres S2

r×S2
s with incommensurate radii (i.e. for irrational r/s) shows

that this is not the case: there are (compact) symplectic manifolds that are
not prequantizable.

The equivalence classes of prequantizations (whenever they exist) are
given by the first cohomology group ofM with values in the circle group U(1)
or equivalently by the (U(1)-valued) characters of the fundametal group of
M :

H1(M,U(1)) = π1(M)∗. (2.28)

We shall illustrate this statement on the example of the cotangent bundle
to the circle, that is, on the cylindric phase space

M = T ∗S1 , ω = dp ∧ dϕ = dθ , θ = p dϕ , p ∈ R , 2πϕ ∈ R/Z. (2.29)

The fundamental group of the circle being π1(S1) = Z the group of its
characters coincides with U(1). We thus expect to have a continuum of
inequivalent prequantizations of (M,ω) labeled by elements of U(1). This
can be realized by adding to the connection D the closed form iλ dϕ (dϕ
is not exact since ϕ is not a global coordinate on the circle). Inserting
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this in (2.21) we find Pλ(p) = ~λ − i~ ∂
∂ϕ which gives rise to λ-dependent

inequivalent prequantizations for λ ∈ [0, 1).

2.3 From prequantization to quantization

Now it doesn’t seem to be true that God created a
classical universe on the first day and then quantized
it on the second day. John Baez [B06]

In spite of the necessary restrictions for its existence and of its non-
uniqueness, prequantization appears to provide a nice map from a sufficiently
wide class of complex line bundles over classical phase spaces to naturally
defined operator algebras on Hilbert spaces, so that our conditions (i), (ii)
(involving Eq. (2.18)) and (iii) are indeed satisfied. This procedure does
have a shortcoming of excess, however: the resulting prequantized algebra
and the corresponding Hilbert space are much too big. Matthias Blau,
[B], includes in his list of desiderata the following irreducibility requirement.
Consider a complete set of classical observables, like pi and qj in the simplest
case of an affine phase space, such that every classical observable is a function
of them; alternatively, we can characterize a complete set (f1, ..., fn) by the
property that the only classical observables which have zero Poisson brackets
with all of them are the constants. Blau then demands that their images
(Q(f1), ..., Q(fn)) under the quantization map Q(f) (from the algebra A
of classical observables to the quantum operator algebra A~) are operator
irreducible, that is if an operator A in A~ commutes with all Q(fj) then
it should be a multiple of the identity. If we allow all operators in Hilbert
space L2(M,ω) then we see that the prequantization violates this condition:
the operator p − P(p) = p + i~ ∂

∂q commutes with all P(p),P(q) (without
being a multiple of the identity). One may disagree with this objection on
the ground that multiplication operator by p is not of the form P(f). The
physical shortcoming, indicated in Sect. 2.2: the fact that the prequantized
nonrelativistic kinetic energy (2.23) is not proportional to the square of the
prequantized momentum and is not a positive operator appears to be more
serious. We shall therefore look for a quantization map Q which satisfies
- along with the conditions (i), (iii) (and a weakened version of (ii)) - a
condition that would guarantee the positivity of the quantum counterpart
of the square of a real observable. The following requirement appears to
achieve this goal in a straightforward manner.

(iv) If Q(f) is the image of the real observable f , then one should have
Q(f2) = Q(f)2.

18



Remark 2.1 In the framework of (formal) deformation quantization - see Sect. 4.2 -

one can only assume such an equality up to terms of order ~2. According to the Dar-

boux theorem (generalized by Sophus Lie (1842-1899) - see Sect. 4.2), every symplectic

manifold admits canonical coordinates with a locally constant Poisson bivector. A weaker

requirement that would be sufficient to ensure the positivity of the kinetic energy on

a cotangent bundle, consists in just demanding the validity of (iv) for functions of the

canonical momenta.

Baez [B06] conjectures that there is no positivity preserving functor from
the symplectic category to the Hilbert category. In fact, there is a result of
this type (of Groenewold and van Hove)29 for the algebra of polynomials of
p and q in an affine phase space. One has to settle to a weaker version of
requirement (ii) only demanding the validity of (2.18) (with P replaced by
Q) for some “suitably chosen” Poisson subalgebra of the algebra of observ-
ables. Quantization becomes an art for the physicist and a mystery for the
mathematician. To give a glimpse of what else is involved in the geometric
quantization we shall sketch the next step in the theory, defining the notion
of a polarization.

The quest for a mathematical understanding started after the art of
quantization was mastered and displayed on examples of physical interest.
Rather than following a mathematical intuition, geometric quantization at-
tempts to extract general properties of such known examples. The first
observation is that the state vectors should only depend on half of the phase
space variables, like in the Schrödinger picture. More precisely, one should
work with wave functions depending on a maximal set of Poisson commut-
ing observables. The right way to eliminate half of the arguments is to
consider sections of our line bundle that are covariantly constant along an
n-dimensional “integrable” subbundle S of vector fields. In other words, our
wave functions Ψ should satisfy a system of compatible equations:

DXΨ = 0 , X ∈ S ⇒ [DX , DY ]Ψ = 0 for X,Y ∈ S . (2.30)

It is clear from (2.25) that if the subbundle S is closed under commuta-
tion (in other words, if X,Y ∈ S ⇒ [X,Y ] ∈ S, that is, if the vector
fields in S are in involution) and if in addition the corresponding integral
manifold is (maximally) isotropic - i.e., ω(X,Y ) = 0 for X,Y ∈ S (and

29We shall say more about the Dutch theoretical physicist H.J. Groenewold and about
his paper [G46] in Sect. 4.1 below. In a pair of 1951 papers the Belgian physicist Leon
van Hove (1924-1990) refined and extended Groenewold’s result, showing effectively that
there exists no quantization functor consistent with Schrödinger’s quantization of R2n.
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dimS = 1
2dimM = n), then the compatibility (also called integrability)

condition in (2.30) is automatically satisfied. Such maximally isotropic sub-
manifolds are called Lagrangian. We are tacitly assuming here that the
dimensionality of S does not change from point to point. This is not an
innocent assumption. For M = S2 it means that a polarization would be
given by a nowhere vanishing vector field. On the other hand, it is known
that there is no such globally defined vector field on the 2-sphere. (In fact,
among the closed 2-dimensional surfaces only the torus has one.) The way
around this difficulty is to complexify the (tangent bundle of the) phase
space. Integrable Lagrangian subbundles are indeed more likely to exist on
TMC than on TM . Thus we end up with the following definition. A polar-
ization of a symplectic manifold (M,ω) is an integrable maximal isotropic
(Lagrangian) subbundle S of the complexified tangent bundle TMC of M .

We shall consider examples of two opposite types: real, S = S̄, and
Kähler polarizations, S ∩ S̄ = {0}, the types most often encountered in ap-
plications. As real polarizations are the standard lore of elementary quan-
tum mechanics we shall mention them only briefly, while devoting a separate
section to (complex) Kähler polarizations.

A real polarization is encountered typically in a cotangent bundle, M =
T ∗Q. In local coordinates S is spanned by the vertical vector fields ∂/∂p,
yielding the standard Schrödinger representation in which the coordinates
are represented as multiplication by q (rather than by the prequantum op-
erator P(q) (2.21)). When Q involves a circle (on which there is no global
coordinate) it is advantageous to replace the multivalued coordinate ϕ by a
periodic function as illustrated on the simplest example of this type T ∗S1

with contact form θ = pdϕ. In this case one can introduce global sections
Ψ (satisfying ∂

∂pΨ = 0) as analytic functions of e±iϕ. Then the spectrum of
the momentum operator is discrete:

Q(p) = i~Xp = −i ∂
∂ϕ
⇒ (Q(p)− n~)einϕ = 0, n ∈ Z. (2.31)

There is no symmetry between coordinate and momentum in this example.
As discussed in [B] the momentum space picture does not always exist in
T ∗Q and when it does it may involve some subtleties.

The question arises how to define the inner product in the “physical
Hilbert space” of polarized sections, - i.e., of functions on Q. We cannot
use the restriction of the Liouville measure since the integral over the fiber
diverges (for functions independent of p). If Q is a Riemannian manifold,
if, for instance, a metric is given implicitly via the kinetic energy, we can
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use the corresponding volume form on it. In general, however, there is
no canonical measure on the quotient space M/S ∼ Q. The geometric
quantization prescribes in this case the use of a half density, defined in
terms of the square root of the determinant bundle DetQ = ΛnT ∗Q, the
n-th skewsymmetric power of the cotangent bundle (see [AE], [B]).

3 Quantization of Kähler manifolds

3.1 Complex polarization. The Bargmann space

A (pseudo)Kähler manifold can be defined as a complex manifold equipped
with a non-degenerate hermitean form whose real part is a (pseudo)Riemannian
metric and whose imaginary part is a symplectic form (see Sect. 2.1). Just
as the real affine symplectic space (R2n, ω = dp ∧ dq) serves as a prototype
of a symplectic manifold with a real polarization, the complex space Cn,
equipped with the hermitean form

dz ⊗ dz̄ (≡
n∑
1

dzj ⊗ dz̄j) = g − iω , ω = idz ∧ dz̄ (3.1)

(g = 1
2(dz ⊗ dz̄ + dz̄ ⊗ dz)), can serve as a prototype of a Kähler manifold.

More generally, locally, any (real) Kähler form can be written (using the
notation (2.17)) as

ω = i∂∂̄K, (K = K̄, d = ∂ + ∂̄). (3.2)

It is instructive to start, alternatively, with a real 2n-dimensional symplectic vector
space (V = R2n, ω) . A complex structure is a (real) map J : V → V of square −1 -
see Sect. 2.1. (A 2-dimensional example is provided by the real skewsymmetric matrix
ε := iσ2 where σj are the hermitean Pauli matrices.) Such a J gives V the structure of
a complex vector space: the multiplication by a complex number a+ ib being defined by
(a+ ib)v = av + bJv. The complex structure J is compatible with the symplectic form ω
if

ω(Ju, Jv) = ω(u, v) for all u, v ∈ V. (3.3)

Then g(u, v) := ω(Ju, v) defines a non-degenerate symmetric bilinear form while the form

h(u, v) = g(u, v)− iω(u, v) is (pseudo)hermitean. We shall restrict our attention to Kähler

(rather than pseudo-Kähler) forms for which g and h are positive definite.

In our case (i.e. for ω appearing in (3.1)) the Kähler potential K and
the contact form θ are given by

K = zz̄, θ =
i

2
(zdz̄ − z̄dz). (3.4)
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The Hamiltonian vector fields corresponding to z and z̄ are then:

Xz = i
∂

∂z̄
, Xz̄ = −i ∂

∂z
⇒ {z, z̄} = i. (3.5)

We define the complex polarization in which Q(z) = z by introducing sec-
tions annihilated by the covariant derivative (2.24)

D̄ := D(
∂

∂z̄
) =

∂

∂z̄
+

1
2~

(zdz̄ − z̄dz)( ∂
∂z̄

) =
∂

∂z̄
+

z

2~
. (3.6)

The general covariantly constant section, - i.e., the general solution of the
equation D̄Ψ = 0 is

Ψ(z, z̄) = ψ(z)exp(−K
2~

), K = zz̄, (3.7)

where ψ(z) is any entire analytic function of z with a finite norm square

||Ψ||2 =
∫
|ψ(z)|2exp(−K

~
)d2nz <∞ (d2nz ∼ ωn). (3.8)

The Hilbert space B(= Bn) of such entire functions has been introduced
and studied by Valentine Bargmann (1908-1989), [B61], and we shall call
it Bargmann space. The multiplication by z plays the role of a creation
operator a∗. The corresponding annihilation operator has the form

a := Q(z̄) = i~Xz̄ +
∂

2∂z
K = ~

∂

∂z
+

1
2
z̄, (3.9)

the second term being determined by the condition that a commutes with
the covariant derivative D̄.

Exercise 3.1 Prove that a and a∗ are hermitean conjugate to each other
with respect to the scalar product in B defined by (3.8) and satisfy the CCR

[ai, aj ] = 0 = [a∗i , a
∗
j ] , [ai, a∗j ] = ~δij . (3.10)

Identify Bn with the Fock space of n creation and n annihilation operators
with vacuum vector given by (3.7) with ψ(z) = 1:

|0 >= exp(−K
2~

), ai|0 >= 0 =< 0| a∗j . (3.11)

Remark 3.1 Recalling the change of variables (1.11) we observe that
the quantum harmonic oscillator Hamiltonian H0 corresponds to the sym-
metrized product of a∗ and a:

H0 :=
1
2

(p2 + q2) =
1
2

(a∗a+ aa∗) = ~(z
∂

∂z
+
n

2
) +

1
2
zz̄. (3.12)

22



The additional term n
2 coming from the Weyl ordering reflects the fact that

the Fock (Bargmann) space carries a representation of the metaplectic group
Mp(2n) (the double cover of Sp(2n,R)) [W64] - see also [F], [deG], [T10]
and references therein. For another treatment of the harmonic oscillator,
using half forms, see [B].

3.2 The Bargmann space B2 as a model space for SU(2)

We shall now consider the special case n = 2 of (3.1), that provides a model
of the irreducible representations of SU(2). This example is remarkably
rich. In what follows we shall (1) outline the result of Julian Schwinger
(1918-1994) [Sc] and Bargmann [B62] (reproduced in [QTAM]) on the rep-
resentation theory of SU(2) as a quantization problem and will indicate its
generalization to arbitrary semi-simple compact Lie groups; (2) consider the
constraint

zz̄(= z1z̄1 + z2z̄2) = ~N (3.13)

where N is any fixed positive integer and study the corresponding gauge
theory which gives rise to the quantization of the 2-sphere. (3) In the next
subsection we shall display the hyperkähler structure ([Hi]) of C2 thus in-
troducing, albeit in a rather trivial context, some basic concepts exploited
recently - in particular, by Gukov and Witten [GW], [G10], [W10].

To begin with, we note that any Bargmann space B splits in an (or-
thogonal) direct sum of subspaces of homogeneous polynomials ψ(z) =
hk(z) (hk(ρz) = ρkhk(z)). Indeed, the associated wave functions Ψk (3.7)
span eigensubspaces of H0 of eigenvalues (k + n

2 )~, so that polynomials of
different degrees k are mutually orthogonal. For n = 2 the eigenvalues N
of H0/~ comprise all positive integers and give the dimensions of the corre-
sponding eigensubspaces carrying the irreducible representations of SU(2),
each appearing with multiplicity one.

This construction extends to an arbitrary semi-simple compact Lie group G by con-

sidering the subbundle of the cotangent bundle T ∗G obtained by replacing the fibre at

each point by the conjugate to the Cartan subalgebra of the Lie algebra of G (treated in

the case of G = SU(n) and its q-deformation in [HIOPT]).

We now proceed to the study of the finite dimensional gauge theory gen-
erated by the constraint (3.13) that gives rise to the eigensubspaces of the
oscillator’s Hamiltonian (3.12). This Hamiltonian constraint is obviously in-
variant under U(1) phase transformations generated by its Poisson brackets
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with the basic variables. Using the PB (3.5) and the CCR (1.2) and regard-
ing N of Eq. (3.13) first as a classical and then as a quantum dynamical
variable we find:

{N, z} = −iz, eiNαze−iNα = eiαz, eiNαae−iNα = e−iαa. (3.14)

For a fixed N Eq. (3.13) defines a 3-sphere S3 in C2 ∼ R4; it can be viewed,
according to (3.14) as a U(1) fibration over the 2-sphere S2(= S2(~N))
(known as the Hopf fibration).

Heinz Hopf (1894-1971) has introduced this fibration in 1931. It belongs to a family
of just three (non-trivial) fibrations in which the total space, the base space, and the fibre
are all spheres (and the following sequences of homomorphisms are exact):

0→ S1 ↪→ S3 → S2 → 0; 0→ S3 ↪→ S7 → S4 → 0; 0→ S7 ↪→ S15 → S8 → 0. (3.15)

This fact is related to the theorem of Adolf Hurwitz (1859-1919) identifying the normed

division algebras with the real and the complex numbers, the quaternions and the octonions

- see, e.g., [B02]. (The reals correspond to the sequence S0 ↪→ S1 → S1 where S0 = {±1}.)
In order to display (and quantize) the symplectic structure of S2(~N)) it

is advantageous to introduce three gauge invariant coordinates obeying one
relation (cf. our treatment of S1 in Sect. 2.3):

ξj = zσj z̄, j = 1, 2, 3, ⇒ ξ2 = (zz̄)2 = (~N)2. (3.16)

The reduction of the form ω (3.1) to the 2-sphere (3.16) is expressed in
terms of the Poincaré30 residue of the meromorphic 3-form

ω3 :=
dξ1 ∧ dξ2 ∧ dξ3

f(ξ)
, f =

1
2

(ξ2 − ~2N2) (3.17)

along the hypersurface f = 0. The Poincaré residue of a meromorphic
n-form

ωn =
g(z)
f(z)

dz1 ∧ ... ∧ dzn, (3.18)

where f and g are holomorphic functions, is defined as a holomorphic (n-1)-
form on the hypersurface f(z) = 0 which possesses a local extension ρ to Cn

such that ωn = df
f ∧ ρ. If ∂f

∂zj
|f=0 6= 0 in some neighbourhood U of a point

of the hypersurface f = 0, then

Resωn = g(z)(−1)j−1dξ1 ∧ ... ∧ dξj ∧ ... ∧ dξn
∂f
∂ξj

∣∣∣∣∣
f=0

(3.19)

30Jules Henri Poincaré (1854-1912) introduced his residue in 1887 - see [Poincare], 11.
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in U.
Exercise 3.2 Compute the residue of the 3-form (3.17) in terms of the

variables ξ and in terms of the spherical angles θ, ϕ,

ξ1 + iξ2 = 2z1z̄2 = ~Nsinθe−iϕ, (3.20)
ξ3 = z1z̄1 − z2z̄2 = ~Ncosθ (2z1z2 = ~Nsinθeiα).

Prove that the result coincides with the restriction of the form ω (3.1) to
the sphere (3.13) (with dN = 0). (Hint: prove that ω can be written as

ω =
~
2

(dN ∧ (dα− cosθdϕ) +Nsinθdθ ∧ dϕ) (3.21)

in spherical coordinates.)
Recalling that N is by assumption a positive integer (so that ~N belongs

to the spectrum of the oscillator Hamiltonian H0 (Eq. (3.12)) for n = 2 we
conclude that the integral of the symplectic form of the 2-sphere is quantized:∫

Resω3

4π~
=
N

4π

∫
S2

sinθdθ ∧ dϕ = N(= 1, 2, ...), (3.22)

thus reproducing the integrality of the second cohomology group.
The quantum counterpart of the gauge invariant variables ξj are the

components of the angular momentum; more precisely (cf. Sect. 1.3),

Mj =
1
2
a∗σja ⇒ [M3,M±] = ±~M±, [M+,M−] = 2~M3 (3.23)

where M± = M1 ± iM2 = a∗σ±a (M+ = a∗1a2, M− = a∗2a1).

3.3 C2 as a hyperkähler manifold

I then and there felt the galvanic circuit close; and the sparks which fell
from it were the fundamental equations between i, j and k...

W.R. Hamilton - letter to P.G. Tait, October 1858

Quaternions provide the real 4-dimensional space R4 with a structure of
a non-commutative normed star division algebra. We set

q = q0 + q1I + q2J + q3K, q∗ = q0 − q1I − q2J − q3K,

I2 = J2 = K2 = IJK = −1 ⇒ qq∗ = q∗q = |q|2 =
3∑

µ=0

(qµ)2. (3.24)

The imaginary quaternion units I, J,K can be defined as operators (real matrices) IL, JL,KL

in R4 which provide a real representation of the Lie algebra su(2):
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Iq = −q1 + q0I − q3J + q2K, Jq = −q2 + q3I + q0J − q1K,
Kq = −q3 − q2I + q1J + q0K

⇒ IL =

„
−ε 0
0 −ε

«
= −1⊗ ε, 1 =

„
1 0
0 1

«
, 0 =

„
0 0
0 0

«
,

ε =

„
0 1
−1 0

«
(= iσ2) ;

JL =

„
0 −σ3

σ3 0

«
= −ε⊗ σ3, σ3 =

„
1 0
0 −1

«
;

KL =

„
0 −σ1

σ1 0

«
= −ε⊗ σ1, σ1 =

„
0 1
1 0

«
.

(3.25)

The right multiplication by I, J,K gives rise to another set of operators IR, JR,KR

which commute with IL, JL,KL; the resulting six operators generate the Lie algebra

so(4) ' su(2)⊕ su(2).

One can introduce a complex symplectic form in C2 ∼ R4, setting

Ω = ωJ +iωK , ωJ = dz1∧dz2−dz̄1∧dz̄2, ωK = dz1∧dz̄1 +dz2∧dz̄2. (3.26)

Viewing (dz1, dz2, dz̄1, dz̄2) as a basis in the (trivial) cotangent bundle on R4 we can write:

ωJ = 1
2(dz, dz̄) ∧ J

(
dz
dz̄

)
, J =

(
ε 0
0 −ε

)
= σ3 ⊗ ε, dz = (dz1, dz2);

ωK = 1
2(dz, dz̄) ∧K

(
dz
dz̄

)
, K =

(
0 1
−1 0

)
= ε⊗ 1.

(3.27)
Here ωJ is a holomorphic form of type (2, 0) + (0, 2), ωK is of type (1, 1)
with respect to the complex structure defined by K. The form Ω (3.26), on
the other hand, is a holomorphic form of type (2, 0) in the complexification
C4 of R4 with respect to the complex structure I. This means that

Ω(X, (1 + iI)Y ) = 0, ∀X,Y ∈ TC4. (3.28)

Exercise 3.3 Deduce (3.28) using the identity

(J + iK)(1 + iI) = 0. (3.29)

Note that while the algebra of real quaternions H has no zero divisors the
above example shows that its complexification admits such divisors: none
of the two factors in the lefthand side of (3.29) is zero while their product
vanishes identically.
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We observe that the form (3.26) can be written in I-holomorphic coor-
dinates as a manifestly (2, 0)-form:

Ω = dw ∧ dz forw = z1 − iz̄2, z = z2 + iz̄1. (3.30)

We are now prepared to give a general definition. A smooth manifold
M is called hypercomplex if its tangent bundle TM is equipped with three
(integrable) complex structures I, J,K satisfying the quaternionic relation
of (3.24). If, in addition, M is equipped with a Riemannian metric g which
is Kähler with respect to I, J,K, - i.e., if they are compatible with g and
satisfy

5I = 0, 5J = 0, 5K = 0, (3.31)

where 5 is the Levi-Civita connection, then the manifold (M, I, J,K, g) is
called hyperkähler. This means that the holonomy of 5 lies inside the group
Sp(2n)(= Sp(n,H)) of quaternionic-Hermitian endomorphisms.

The converse is also true: a Riemannian manifold is hyperkähler if and only if its

holonomy is contained in Sp(2n). This definition is standard in differential geometry. (In

physics literature, one sometimes assumes that the holonomy of a hyperkähler manifold is

precisely Sp(n), and not its proper subgroup. In mathematics, such hyperkähler manifolds

are called simple hyperkähler manifolds. In algebraic geometry, the word “hyperkähler” is

essentially synonymous with “holomorphically symplectic”, due to the famous Calabi-Yau

theorem. The notion of a hyperkähler manifold is of a relatively recent vintage: it has

been introduced in 1978 (16 years after Bargmann’s paper) by Eugenio Calabi.

The above hyperkähler space C2 is closely related to the regular adjoint
orbit of sl(2,C):

−det
(
a b
c −a

)
= a2 + bc = λ 6= 0. (3.32)

The hyperkähler structure of (co)adjoint orbits of semisimple complex Lie
groups and the associated Nahm’s equation are being studied since over two
decades - see [Kr], [K96], as well as the lectures [Bi] and references therein.

4 Other approaches. From Weyl to Kontsevich

We are leaving out one of the most important topics of quantum theory:
the path integral approach that would require another set of lectures of
a similar size. A 94-page preprint of such lecture notes is available [Gr]
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with 93 references (up to 1992) including the pioneer work of Dirac (1933)
and Feynman31 (1948). The book [ZJ] is recommended as a highly readable
introduction to the subject. For a recent development in this area - see [W10].

We provide instead a brief historical introduction to deformation quanti-
zation starting in Sect. 4.1 with the forerunners of the modern development.
(Taking a more expansionist point of view and relating path integrals to star
exponentials - see [S98], Sect. II.3.2.1 - one can pretend to incorporate the
path integral approach into the vast domain of deformation quantization.)

4.1 Quantum mechanics in phase space

Prequantum mechanics lives in phase space - just like its classical antecedent.
The polarization or the choice of a maximal set of commuting observables,
however, breaks, in a sense, the symmetry among phase space variables.
Is that unavoidable? In 1927, in the wake of the appearance of quantum
mechanics and of the Heisenberg uncertainty relations, Hermann Weyl [We]
did propose a phase space formulation of quantization in which coordinates
and momenta are treated on equal footing. Weyl maps any classical observ-
able, i.e. any (smooth) function f on phase space, to an operator U [f ] in a
Hilbert space which provides a representation of the Heisenberg-Weyl group
of the CCR. In the simplest case of a 2-dimensional euclidean phase space
with coordinates (p, q) the Weyl transform reads:

U [f ] =
1

(2π)2

∫
...

∫
f(q, p)e

i
~ (a(Q−q)+b(P−p))dq dp dadb. (4.1)

Here P and Q are the generators of the Heisenberg Lie algebra (satisfying
the CCR) so that g(a, b, c) := ei(

aQ+bP
~ +c) is an element of the corresponding

Heisenberg-Weyl group (introduced by Weyl and associated by mathemati-
cians with the name of Heisenberg) satisfying the composition law

g(a1, b1, c1)g(a2, b2, c2) = g(a1 + a2, b1 + b2, c1 + c2 +
1
2

(a1b2− a2b1)). (4.2)

Given any group representation U [g], the operator U [ei(
aq+bp

~ +c)] (4.1) will
give the representation of the group element g(a, b, c).

31Richard Feynman (1918-1988) shared the Nobel Prize in Physics in 1965 with Julian
Schwinger (1918-1994) and Sin-Itiro Tomonaga (1906-1979).
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The Weyl map may also be expressed in terms of the integral kernel
matrix elements of the operator,

〈x|U [f ]|y〉 =
∫ ∞
−∞

dp
h
eip(x−y)/~ f

(
x+ y

2
, p

)
. (4.3)

The inverse of the above Weyl map is the Wigner map [W32], which takes
the operator back to the original phase-space kernel function f,

f(q, p) = 2
∫ ∞
−∞

dy e−2ipy/~ 〈q − y|U [f ]|q + y〉 . (4.4)

The Wigner quasi-probability distribution in phase space corresponding to a
pure state with wave function ψ(x) is given by

F (x, p) :=
1
π~

∫ ∞
−∞

ψ∗(x+ y)ψ(x− y)e2ipy/~ dy (4.5)

The qualification ”quasi” is necessary since the distribution F (x, p) may give
rise to negative probabilities. We refer to [M86], [Fe] (where more general
non positive distributions are considered - see below) and to the entertain-
ing historical survey [CZ] for an explanation of how Heisenberg’s uncertainty
relation is reflected in the phase space formulation and prevents the appear-
ance of physical paradoxes for an appropriate use of Wigner’s distribution
function. Someone, accustomed with the standard Hilbert space formalism
of quantum mechanics, may still wonder why should one deal with such a
strange formalism in which verifying a basic property like positivity of prob-
abilities needs an intricate argument. Are there problems whose solution
would motivate the use of the phase space picture? Unexpectedly, a posi-
tive answer to this question has come from outside quantum mechanics. A
little thought will tell us that, if we view q as a time coordinate and p as
a frequency, then the Wigner function may serve to characterize a piece of
music (or, more generally a sound signal) much better then having just a
probability density of frequencies alone. Indeed, starting with the 1980’s,
applications of the Wigner distribution to signal processing has become an
industry - see the monograph [MH] and references therein. For an applica-
tion to the decoherent history approach to quantum mechanics - see [GH]
and references to earlier work cited there.

The Wigner distribution (4.5) is real and has the property that if integrated in either p
or x it gives the standard quantum mechanical (positive) probability density with respect
to the non-integrated variable; for instance,Z

F (x, p)dp = |ψ(x)|2. (4.6)

29



Raymond Stora (private communication) has proposed another simple formula for the
quasi-probability distribution F = Fρ corresponding to a (positive) density operator ρ
and a pair of (normalized) eigenstates |α >, |β > labelled by the eigenvalues of two (in
general, non-commuting) hermitean operators which also satisfies these relations:

Fρ(α, β) =
1

2
(< α|β >< β|ρ|α > + < α|ρ|β >< β|α >);

X
β

Fρ(α, β) =< α|ρ|α > . (4.7)

This formula applies to operators like spin projections on two orthogonal axes whose

eigenvalues do not belong to an affine space, so that Wigner’s expression (4.4) would not

make sense. The appearance of negative probability is a common feature of all quasi-

probability distributions consistent with Bell’s theorem32 (as discussed in [M86] and [SR]

among others). The first to consider negative probabilities (in the context of quantum

theory) was none other than Dirac. In his Bakerian lecture [D42] (p. 8) he stated “Negative

energies and probabilities should not be considered as nonesense. They are well defined

concepts mathematically, like a negative sum of money...” The Wigner transform has the

extra property to be inverse to Weyl’s which, in turn, is related to Weyl’s (symmetric)

ordering. There is, however, nothing sacred about such an ordering (or about any other

ordering, for that matter). As mentioned earlier - see footnote 16 - Lax ordering naturally

appears instead of Weyl’s in the quantization of some integrable systems.

Using the Weyl form (4.2) of the CCR and the Weyl correspondence
von Neumann33 proved in 1931 [vN31] (see also [vN], [V58]) the essential
uniqueness of the Schrödinger representation in Hilbert space. For complete-
ness’ sake, he worked out the image of operator multiplication discovering
the convolution rule that defines the noncommutative composition of phase-
space observables - an early version of what came to be called ?-product.
In fact, once having the Weyl map f → U [f ] and its inverse and knowing
the operator product U [f ]U [g] we can define the star product f ? g as the
Wigner image of U [f ]U [g]. The result is:

f?g =
∫
dx1dp1

π~

∫
dx2dp2

π~
f(x+x1, p+p1)g(x+x2, p+p2)exp(

2i
~

(x1p2−x2p1)).

(4.8)
In fact, Weyl and Wigner introduced their maps for different purposes and neither of

them noticed that they were inverse to each other or thought of defining a noncommutative

32For a “probabilistic opposition” to the ussual interpretation of Bell’s theorem - see
[Kh].

33The Hungarian born brilliant mathematician and polymath John von Neumann (1903-
1957) made substantial contributions in a number of fields. In a short list of facts about
his life he submitted to the National Academy of Sciences of the USA, he stated ”The
part of my work I consider most essential is that on quantum mechanics, which developed
in Göttingen in 1926, and subsequently in Berlin in 1927-29. Also, my work on various
forms of operator theory, Berlin 1930 and Princeton 1935-1939;” - see also [V58].
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star product in phase space. This was done independently by two young novices during
World War II (see for more detail [CZ], [ZFC]).

The first was the Dutch physicist Hilbrand (Hip) Groenewold (1910-1996). After a
visit to Cambridge to interact with John von Neumann (1934-5) on the links between
classical and quantum mechanics, and a checkered career, working in Groningen, then
Leiden, the Hague, De Bilt, and several addresses in the North of Holland during World
War II, he earned his Ph.D. degree in 1946, under the Belgian physicist Léon Rosenfeld
(1904-1974) at Utrecht University. Only in 1951 was he offered a position in theoretical
physics at his Alma Mater in Groningen. It was his thesis paper [G46] that laid the
foundations of quantum mechanics in phase space. This treatise was the first to achieve
full understanding of the Weyl correspondence as an invertible transform, rather than
as an unsatisfactory quantization rule. Significantly, this work defined (and realized the
importance of) the star-product, the cornerstone of this formulation of the theory, ironi-
cally often also associated with Moyal’s name, even though it is not featured in Moyal’s
papers and was not fully understood by Moyal. Moreover, Groenewold first understood
and demonstrated that the Moyal bracket is isomorphic to the quantum commutator, and
thus that the latter cannot be made to faithfully correspond to the Poisson bracket, as
had been envisioned by Paul Dirac. This observation and his counterexamples contrasting
Poisson brackets to commutators have been generalized and codified to what is now known
as the Groenewold - Van Hove theorem.

The second codiscoverer of the star product José (Jo) Moyal (1910-1998) was born in

Jerusalem, then in the the Ottoman Empire, and spent much of his youth in Palestine.

After studying in France and Britain and working on turbulence and diffusion of gases

in Paris, he escaped to London (with the help of the physicist/writer C.P. Snow (1905-

1980)) at the time of the German invasion in 1940. While working on aircraft research

at Hartfield, Moyal developed his ideas on the statistical nature of quantum mechanics

and had an intense correspondence with Dirac34, who refused to believe that there could

be a ”distribution function F (p, q) which would give correctly the mean value of any

f(p, q)” even after Moyal found out - and wrote to Dirac - that such a function was

constructed by Wigner, Dirac’s brother in law... Moyal eventually published his work in

[M49], three years after Groenewold. Subsequent work on this topic, done during the next

15 years is reproduced in [ZFC]. The subject only attracted wider attention another fifteen

years later, after the work [BFLS] triggered the interest of mathematicians to deformation

quantization. Even then only references to Moyal surged dramatically while the work of

Groenewold is still rarely mentioned (for instance, the paper [G46] is not included among

the 78 refernces of the 2008 survey [B08] of deformation quantization).

34Feb 1944 - Jan 1946, reproduced in Ann Moyal Maveric Mathematician ANU E Press,
2006 (online).
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4.2 Deformation quantization of Poisson manifolds

The natural starting point for the study of quantization is a Poisson algebra
A - i.e., an associative algebra with a Poisson bracket that gives rise to a
Lie algebra structure and acts as a derivation (obeying the Leibniz rule) on
A. In the case of a classical phase space this is the (commutattive) algebra
of functions on a Poisson manifold. The aim is to deform the commutative
product to a ~ dependent noncommutative star (?-)product in such a way
that the star-commutator reproduces the Poisson bracket up to higher order
terms in ~:

f ? g − g ? f = i~{f, g}+O(~2). (4.9)

Deformation quantization is computing and studying an associative star
product, defined as a formal power series in ~:

f ? g = fg +
∞∑
n=1

~nBn(f, g), (4.10)

where Bn are bidifferential operators (bilinear maps that are differential
operators in each argument) and B1 is restricted by (4.9). Given the product
(4.10) we can extend it to the algebra A[[~]] of formal power series in the
parameter ~ (with coefficients in A) by bilinearity and ~-adic continuity:

(
∑
n≥0

fn~n) ? (
∑
n≥0

gn~n) =
∑

k,l≥0,m≥1

Bm(fk, gl)~k+l+m. (4.11)

One considers [W94] gauge transformationsG(~) : A[[~]]→ A[[~]] which pre-
serve the original Poisson algebra A; in other words, G(~) = 1+

∑
n≥1Gn~n

where Gn are (linear) differential operators. Two star products ? and ?
′

are
equivalent if they differ by a gauge transformation - i.e., if∑

j+k+l=n

Bl(Gj(f), Gk(g)) =
∑

l+m=n

Gm(B
′
l(f, g)), n = 1, 2, .... (4.12)

The problem, stated in [BFLS] (see also [W94]), is to find (cohomological)
conditions for existence of a star product and to classify all such products
up to gauge equivalence.

First of all, we note, following [K], that the associativity of the star
product implies the following relation for the first bidifferential operator B1

of the series (4.10):

fB1(g, h)−B1(fg, h) +B1(f, gh)−B1(f, g)h = 0. (4.13)
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If we view B1 as a linear map B1 : A⊗A → A then Eq. (4.13) shows that
it is a 2-cocycle of the cohomological Hochschild35 complex of the algebra
A (defined in Sect. 3.2.4 of [K]). Furthermore, one can annihilate the
symmetric part of B1 by an appropriate gauge transformation ([K] Sect.
1.2) thus ending up with B1(f, g) = i

2{f, g} - as a consequence of (4.9).
More generally, in attempting to construct recursively Bn one finds at each
stage an equation of the form δBn = Fn where Fn is a quadratic expression of
the lower (previously determined) terms. A similar equation arises for each
Gn in the gauge equivalence problem. The operator δ goes from bilinear to
trilinear (or from linear to bilinear) and is precisely the coboundary operator
for the Hochschild cohomology with values in A of the algebra A (see [W94]).

The simplest example of a star product is given by the Groenewold-
Moyal product (4.8), defined in terms of the Poisson bivector P (Sect. 2.1)
with constant coefficients which exists in an affine phase space. It is given
by (4.10) with

Bn(f, g) =
1
n!

(
i

2
Pjk ∂

∂yj
∂

∂zk
)nf(y)g(z)|y=z=x. (4.14)

Exercise 4.1 Verify (using (4.9), (4.10) and (4.14)) the relation

pq =
1
2

(p ? q + q ? p) = qp (q ? p− p ? q = i~). (4.15)

Remark 4.1 In most mathematical texts, including [K], the i-factors in (4.9) and (4.14)

are missing. (The Bourbaki seminar [W94] is a happy exception. There the parity con-

dition Bn(f, g) = (−1)nB̄n(g, f) which uses complex conjugation is also mentioned.) To

make formulas conform with physics texts one has to substitute the formal expansion pa-

rameter by i~. If a similar discrepancy in the writings of some of the founding fathers of

geometric quantization could be viewed as a negligence, in the case of deformation quan-

tization it seems to be a deliberate choice. Kontsevich is making the following somewhat

criptic Remark 1.5 in [K]: In general, one should consider bidifferential operators with

complex coefficients ... . In this paper we deal with purely formal algebraic properties ...

and work mainly over the field R of real numbers. ... it is not clear whether the natural

physical counterpart for the ’deformation quantization’ for general Poisson brackets is the

usual quantum mechanics. It is definitely the case for nondegenerate brackets, i.e. for

symplectic manifolds, but our results show that in general a topological open string theory

is more relevant.

35Gerhard Hochschild (1915-2010), a student at Princeton of Claude Chevalley (1909-
1984), introduced the Hochschild cohomology in 1945.
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If the Poisson bivector P has a constant rank, then according to a clas-
sical theorem by Lie (cited in [W94]) the Poisson manifold is locally iso-
morphic to a vector space with constant Poisson structure. Such regular
Poisson manifolds are, hence, locally deformation quantizable. The local
quantization can be patched together relatively easily if there exists a tor-
sionless linear connection such that P is covariantly constant [BFLS]. The
more difficult problem to prove existence of deformation quantization for
arbitrary symplectic manifolds which do not admit flat torsionless Poisson
connections has been solved by de Wilde and Lecomte and by Fedosov in
the 1980’s (see for reviews [W94] and [B08]). Weinstein ends his Bourbaki
seminar talk [W94] by asking the fundamental question ”Is every Poisson
manifold deformation quantizable?”. Three years later, Kontsevich [K] not
only gave an affirmative answer to this question but provided a canonical
construction of an equivalence class of star products for any Poisson man-
ifold. This result was cited among his ”contributions to four problems of
geometry” for which he was awarded the Fields Medal in Berlin in 1998.
The quantum field theoretic roots of this work were displayed in a series of
papers of Cattaneo and Felder (see [CF] and earlier work cited there).

As stressed in [GW], the convergence problem for the formal power series
involved in the star-product is still only studied on a case by case basis.

The vitality of the subject is witnessed by a continuing flow of interesting
papers - see e.g. [C07], [CFR], [LW] among many others.

5 Second quantization

... nothing gives greater pleasure to the conoisseur, ...
even if he is a historian contemplating it retrospec-
tively, accompanied nevertheless by a touch of melan-
choly. The pleasure comes from the illusion and from
the far from clear meaning; once the illusion is dissi-
pated, and knowledge obtained, one becomes indiffer-
ent... a theory whose majestic beauty no longer ex-
cites us. A 1940 letter of André Weil (from a French
prison, to his sister Simone) on analogy in mathemat-
ics, Notices of the AMS 52:3 (2005) 334-341 (p.339).

The story of inventing second quantization is the story of understanding
“quantized matter waves”, and ultimately, of creating quantum field theory.
Following its early stages (with a guide like [Dar]) one may appreciate the
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philosophical inclinations of the founding fathers which appear to be no
longer in the spirit of our days. It may also shed light on some of our
current worries ([S10]). But, first of all, we realize how difficult it has been
to come to terms with some ideas which now appear as a commonplace. One
such idea, put forward by Jordan in 1927 (following a vague suggestion by
Pauli - see [Dar], p. 230, footnotes 75. and 76.) and worked out in a final
form by Jordan and Wigner36 by the end of the year (l.c. pp. 231-232 and
[JW28]), was the introduction of the canonical anticommutation relations

[ai, aj ]+ := aiaj + ajai = 0 = [a∗i , a
∗
j ]+ , [ai, a∗j ]+ = δij (5.1)

as a basis of Fermi statistics (and indeed of the quantization of the electron-
positron field). The difficulty in accepting the canonical anticommutation
relation stems from the fact that they seem to violate the correspondence
principle: for ~→ 0 they become strictly anticommuting (Grassmann) vari-
ables, never encountered before in a classical system. It was natural for
Jordan to coin the term second quantization since he was quantizing the (al-
ready quantum) Schrödinger wave function (see Appendix). Dirac, on the
other hand, was concerned with quantizing a classical system: the electro-
magnetic radiation field, [D27]. This should help us understand why even
he, the codiscoverer of the Fermi-Dirac statistics, was not ready to accept
such a notion. In the Solvay congress of 1927 he “argues that [the Jordan-
Wigner’s quantization] is very artificial from a general point of view.” (see
[Dar], p. 239). Nearly half a century later Dirac remembers: “Bose statistics
... was connected ... to an assembly of oscillators. There was no such picture
available with the Fermi statistics, and I felt that was a serious drawback.”
(see [D], p. 140). Had Dirac applied the canonical anticommutation rela-
tions to his wonderful relativistic wave equation, he would not have needed
the “filled up infinite sea37 of negative-energy states”. Jordan in fact antici-
pated the spin statistics theorem (which states that integer spin fields locally
commute while half-integer spin fields locally anticommute) formulated and
proven some 12 years later by Markus Fierz (1912-2006) and Pauli (for a
pedagogical discussion of this theorem, its history and understanding - see
the 20-page-long paper [DS], available electronically, that contains over fifty
original references).

36Jeno (later Eugene) Wigner (Budapest, 1902 - Princeton, 1995) was awarded rela-
tively late (in 1963) the Nobel Prize in Physics “for ... the discovery and application of
fundamental symmetry principles”.

37A precise mathematical formulation of the Dirac sea, equivalent to the now standard
quantum theory of a Fermi field, has been only given recently, [D11].
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The mathematical formulation of second quantization is clean and el-
egant (and, in the spirit of the above cited letter of Weil, hides much of
the excitement). Second quantization, in the narrow sense of quantizing the
Schrödinger wave function, can be viewed as an attempt to get a quantum
description of a many-particle system from the quantum description of a sin-
gle particle. Starting from a single particle Hilbert space H one forms the
symmetric (or antisymmetric) tensor algebra S(H) (or A(H)) and completes
it to form a bosonic (or fermionic) Fock space 38 F = F(H). More generally,
one has a functor, called second quantization from the Hilbert category to
itself, which sends each Hilbert space to its Fock space, and each unitary
operator U to an obvious unitary map (built out of tensor products of U ’s).

Here is a toy example of a bosonic Fock space presented by Bernard Ju-
lia to the 1989 Les Houches Winter School on Number Theory and Physics,
which served a starting point of an interesting mathematical development
[BC] (which is still continuing, [CC]). One introduces (Bose) creation and
annihilation operators a(∗)

p , corresponding to the prime numbers, p = 2, 3, 5,
7, 11, .... The 1-particle state space is spanned by (unit) vectors |p > corre-
sponding to the primes while the Fock space F is spanned by vectors |n >
corresponding to all positive integers:

|vac >≡ |1 > , |n >=
∏

(a∗i )
ni∏

(ni!)
1
2

|1 > for n =
∏

(pi)ni . (5.2)

Thus the vacuum corresponds to the number 1; the states |4 = 22 >, |6 =
2×3 >, |9 >, |14 >, ... are 2-particle states etc. The number operator N such
that (N − n)|n >= 0 acts multiplicatively on product states:

N :=
∏
p

pa
∗
pap ⇒ N |p1...pk >= p1...pk|p1...pk > . (5.3)

If one introduces furthermore a logarithmic Hamiltonian that is additive
on product states then the partition function of the system, corresponding
to inverse temperature β, will be the Riemann zeta-function:

H = lnN ⇒ Z(β) := trF (e−βH) =
∞∑
1

1
nβ

= ζ(β) =
∏
p

(1− 1
pβ

)−1 . (5.4)

38The Saint Petersburg’s physicist Vladimir Fock (1898-1974) is also known for his de-
velopment of the Hartree-Fock method and its relativistic counterpart, the Dirac-Fock
equations, which led to the work of Dirac-Fock-Podolsky on quantum field theory, a pre-
cursor of Tomonaga’s Nobel prize winning formulation involving infinitely many times.
His ground-breaking work [F32], duly cited in the students’ paper [CF09], is oddly absent
from the list of references of the major treatise [Sch].
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Remark 5.1 Rather than using symmetrized or antisymmetrized tensor
products of 1-particle spaces we could use higher dimensional irreducible
representations of the permutation group corresponding to more general
permutation group or parastatistics which appear in the classification of su-
persellection sectors in the algebraic Doplicher-Haag-Roberts approach to
local quantum physics (for a review - see [H]). They can be reduced to
the familiar Bose and Fermi statistics (by the so called Green ansatz) at the
expense of introducing some extra degrees of freedom and a gauge symmetry.

The Fock space construction works nicely for free quantum fields as well
as in nonrelativistic quantum mechanics, whenever the Hamiltonian com-
mutes with the particle number. The tensor product construction is not
appropriate even for treating the nonrelativistic bound state problem. Con-
sider, indeed, the tensor product of the state spaces of two Galilean invariant
particles. According to a classical paper by Bargmann [B54] the quantum
mechanical ray representation of the Galilean group involves its central ex-
tension by the mass operator. Thus the mass of the tensor product of two
1-particle representations, equals to the sum of the masses of the two parti-
cles, should be conserved. On the other hand, we know that the mass of a
bound state differs from the sum of the constituent masses by the (negative)
binding energy 39(divided by c2). A similar contradiction is reached by con-
sidering the energy conservation implied by the Galilean invariance of the
tensor product. This example suggests that in the presence of interactions
one should consider a nontrivial coproduct, such that a symmetry generator
like the total energy is not necessarily additive. Although the idea of a Hopf
algebra deformation of second quantization has been explored by a number
of authors (see e.g. [CCT]), I am not aware of a work addressing the physical
bound-state problem in this manner.
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39This remark continues a discussion provoked by a Scholarpedia article on the subject.
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Appendix. Pascual Jordan (1902-1980)

Among the creators of quantum mechanics Pascual
Jordan is certainly the least known, although he con-
tributed more than anybody else to the birth of quan-
tum field theory. Olivier Darrigol [Dar]

Born in Hannover in a mixed German-Spanish family, well read in the
natural sciences, Pascual Jordan dreamed at the age of 14 to write “a big
book about all fields of science”. He taught himself calculus while in the
Gymnasium and ended up with a careful study of Mach’s Mechanik and
Prinzipien der Wärmelehre.40 Not satisfied with the teaching of physics
at the Technische Hohschule in Hannover he moved to Göttingen in 1923.
The (experimental) physics lectures there being too early in the morning,
he recalled (in an interview with T.S. Kuhn in 1963) to have become a
physicist “who never attended a course of lectures on physics”. By contrast
he became an active student of Richard Courant (1888-1972) and assisted
him in writing parts of the famous Courant-Hilbert’s book on Methods of
Mathematical Physics. Jordan only decided that he will pursue physics
(rather than mathematics) after he met Max Born (1882-1970), the newly
appointed director of the Institute of Theoretical Physics in Göttingen. “He
was ... the person who, next to my parents, exerted the deepest, longest
lasting influence on my life.”, wrote Jordan in a brief eulogy after Born’s
death ([Sch], p. 7). In the beginning he was just helping his teacher by
inserting formulas in the manuscript of Born’s Encyclopaedia article on the
dynamics of crystal lattices (see [MR], footnote 60), but soon he started
working on his own on the then hot topic of light quanta (starting with his
thesis of 1924). In early 1925 he was able to predict the existence of two new
spectral lines in neon (to be soon observed by Hertz41 - these were times
fecund in new discoveries!).

Jordan’s activity during the years 1925-28 was truly remarkable: while
Born was on vacation he wrote the first draft of their article (submitted two
months after Heisenberg’s). Then came the famous “three-man-paper” with
Born and Heisenberg, submitted in November, in which Jordan was the sole

40The Austrian physicist and philosopher Ernst Mach (1838-1916) had strong antimeta-
physical views that influenced his godson Pauli (as well as the young Einstein). Through-
out his life Jordan considered himself a disciple of Mach and referred to his positivistic
theory of knowledge [Dar]. (Other sources on P. Jordan: [PJ07], [Sch99], [Me], [S06].)

41Gustav Ludwig Hertz (1887-1975), Nobel Prize in Physics, 1925 (with James Frank),
is a nephew of Heinrich Hertz (1857-94), the discoverer of the electromagnetic waves.
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responsible for the part devoted to the radiation theory. As if that was not
enough, by the end of the year he submitted a paper on the “Pauli statistics”;
Max Born, an editor of Zeitschrift für Physik, took it with him on his way to
the United States for a lecture tour and ... forgot all about it until his return
to Göttingen six months later. In the meantime, its result was discovered
independently by Fermi and by Dirac42. In the bibliography given in [PJ07]
(pp. 175-206) one finds 8 titles (including a book) with the participation
of Jordan, published in 1926, 15 in 1927, 6 in 1928. Two of them are
concerned with the transformation theory (one of 1926 and another of 1927,
written in a friendly competition with Dirac - whom he thanks in the printed
version for mailing him his manuscript43). This work laid in effect the
mathematical and physical foundations of quantum mechanics. Five other
papers, the first two by Jordan alone [J27], the remaining three - with Oskar
Klein (1894-1977) [JK27], with Wigner (see footnote 33) [JW28] (on the
canonical anticommutation relations for fermions), and finally, with Pauli -
also of 1928, are concerned with the concept of second quantization, or in
other words, with the quantizaion of wave fields, thus laying the ground of
quantum field theory. It is difficult nowadays to fully appreciate the novelty
and the significance of this work. Why, for instance, should one quantize
the wave function of the already quantum Schrödinger equation? Here is an
unexpected for us reason. A problem that still worried physicists in the late
1920’s was the physical interpretation of the wave function. Schrödinger
was trying, in 1926, to give a realistic physical meaning to his waves, to
think of their modulus square, |ψ|2, as a kind of density of electronic matter
([Dar], p. 237). One of the obstacles to such an interpretation (raised by
the expert critic Pauli) was the necessity to introduce a multi-dimensional
configuration space to deal with several-body problems. Regarding ψ as
a field operator, Jordan restored in a way the 3-dimensional picture for
treating an arbitrary (even a changing) number of particles. Furthermore,
Jordan and Klein [JK27] were happy to discover that normal ordering in the
operator formalism allowed to eliminate in a natural way the infinite self-

42In the words of Stanely Deser, cited in [S06], we might have spoken about Jordanons
instead of fermions... Jordan himself used the term ”Pauli statistics”. A half a century
older Jordan [J] recalls that “in early discussions [Pauli] rejected the obvious idea of
extending the scope of his law. Later, as part of the Fermi-Dirac statistics, it attained the
status of a ... fundamental law in physics.” (No allusion to his priority!)

43As noted by Schroer [S06], there is a third nearly forgotten contributor to this subject,
Fritz London (1900-1954), better known for his study of the hydrogen molecule and the
superconductivity; London was the first to introduce, in 1926, the concept of a Hilbert
space in quantum mechanics.
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energy terms ([Dar], pp. 234-235). (The even more revolutionary fermionic
second quantization and its uneasy reception was discussed in Sect. 5.)

So why did not Jordan share the fame of his Göttingen colleagues? Not
only he did not get a Nobel Prize (in spite of the fact that the authors of
the “Dreimännerarbeit” were proposed twice to the Nobel committee by
Einstein during the late 1920’s [S06]), he was the only major contributor
to the development of quantum theory who did not attend the glorious
1927 Solvay conference (17 of whose 29 participants were or became Nobel
laureats - see [Sch], p. 6); during the 35 years he lived after the War he was
all but forgotten. The reasons for such a neglect are complex: they concern
Jordan’s personality and politics (and reflect the fact that our society praises
scientists not just for their scientific achievements).

To begin with, it has not been easy for the twenty-year-old newcomer to
Göttingen to withstand the brash and confident ways of his brilliant one or
two years older colleagues, Heisenberg and Pauli. According to Schweber,
[Sch] p. 7, “Jordan was rather short and his presentation of self reflected
his physical stature.” Besides, he badly stuttered, this made it difficult for
him to communicate with others and reinforced the impression of insecurity
which he left. The fact that he had affinity for mathematical problems
and techniques (including the study of Jordan algebras44 to which a joint
work with von Neumann and Wigner [JNW] (of 1934) is devoted) did not
enhance his popularity among physicists45 (or with the Nobel committee,
for that matter: even the great Poincaré (was nominated for but) did not
receive the Nobel Prize). As observed by Freeman Dyson, one has to stick
long enough to the field of his greatest success, if his aim is to get a Nobel
Prize. By contrast, faithful to the dream of his 14-year-old self to embrace
the whole of science, Jordan moved on in the 1930’s to problems in biology,
psychology, geology, and cosmology. He was one of the very first scientists
who subscribed before World War II to the big-bang hypothesis46. If, thus,

44It is a non-associative algebra characterized by the relation A2 ◦ (A ◦ B) = A ◦ (A2 ◦
B) (A2 = A ◦A) satisfied by the symmetric product A ◦B := 1

2
(AB +BA).

45His post-war student Engelbert Schücking, [Sch99], recounts: “Jordan was looked
down upon by Pauli and Heisenberg as more of a mathematician than a physicist”, and
”Herr Jordan was always a formalist”, Pauli once told me. Jordan, by contrast, has only
praise for Pauli - see his insightful essay [J].

46His cosmological ideas followed the theory of the Belgian priest and astronomer Mon-
signor Georges Lemâıtre (1894-1966) whose discovery of the redshift-distance relationship
was later ascribed to Edwin Hubble (1889-1953) - see [WN]. They were also inspired
by Dirac’s 1937 large number hypothesis). Jordan’s contributions were rediscovered and
became popular (without crediting their originator) decades later - see H. Kragh in [PJ07].
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in the late twenties and early thirties the lack of full recognition may be
traced to Jordan’s insufficient self-assertiveness and his uncommonly wide
interests, the way he was ignored after the War has to do with his politics.

The resentment against the humiliating Versailles treaty and the eco-
nomic hardship aggravated by exorbitant reparations were a fertile soil for
the springing of nationalist feelings and for the rise of political extremism. To
cite once more Schucking [Sch99]: ”Jordan had been a conservative national-
ist who published his elitists views in the right wing journal Deutsche Volk-
stum (German Heritage) under the pseudonym ’Domeier’. My Göttingen
teacher Hans Kopfermann ... wrote to Niels Bohr in May 1933: ’There is
a tendency among the non-Jewish younger scientists to join the movement
and to act as much as possible as a moderating element, instead of standing
disapprovingly on the sidelines’.” Indeed, Jordan was among the 8.5 mil-
lion Germans to join the National-Socialist (NS) Party after Hitler came to
power; he even took part in its semimilitary wing SA (the Storm Troopers
or “brown shirts” who became largely irrelevant after the ”Blood purge” of
1934 against their leaders). Much like the last liberal British Prime Minister
Lloyd George (see [CMM]), Jordan thought that the spread of communism
from Soviet Russia was the greatest danger and a national-socialist Germany
was the only alternative. Bert Schroer shares in [PJ07] the above cited ar-
gument that Jordan had the naive hope to convince some influential people
in the NS establishment that modern physics, as represented by Einstein
and especially by the new Copenhagen version of quantum physics, was the
best antidote against “the materialism of the Bolsheviks”. This view is cor-
roborated by Jordan’s book [J36] which is inspired (and refers approvingly
to) Bernhard Bavink47. Bavink argues that modern physics was thoroughly
anti-materialistic and in far better agreement with Christian belief than
classical physics (see H. Kragh in [PJ07] and references therein). Not sur-
prisingly, such views were not welcome by the Nazi authorities, obsessed,
as they were, by antisemitism. They accepted Jordan’s support but never
trusted him as he continued his association with (and was ready to publicly
praise) Jewish colleagues. He spent some 16 years, 1928-1944 in a rela-
tive isolation, at the small University of Rostock and was never assigned an
important war related task (as was, for instance, Heisenberg who did not
join the party). Jordan did only inflict harm on his own reputation: for
two years after the war he did not have any work. Born refused to witness
on his behalf, citing (in a letter responding to his request) the names of

47German physics teacher, philosopher of science and prolific author (1879-1947).
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his relatives who perished during the Nazi rule (see [B05]). Jordan only
passed eventually the process of denazification with the help of Heisenberg
and Pauli (and had to wait until 195348 to be allowed to advise PhD can-
didates). Once reinstated as a professor at the University of Hamburg, he
created a strong school of general relativity49(see [E09]). But Jordan did not
follow Pauli’s advice to stay away from politics. Opposing the manifesto of
the “Göttingen eighteen” (of April 1957, signed by Born and Heisenberg) -
against the nuclear rearmament of Germany - he wrote a counter article in
support of Adenauer’s policy claiming that the action of the eighteen endan-
gered world peace and undermined the stability in Europe. Max Born was
irritated by Jordan’s article but did not react in public. (His wife did not
hide her anger: she collected and published Jordan’s old political articles
under the title “Pascual Jordan, propagandist on the pay of CDU”.)

Eugene Wigner (Nobel Prize in Physics of 1963) nominated in 1979 (from
Princeton) his former colleague (and coauthor of [JW28]) for the Nobel
Prize, but to no avail: that year the Nobel Prize in Physics was shared among
Sheldon Glashow, Abdus Salam and Steven Weinberg - “three practitioners
of the art that Jordan had invented”, in the words of Schucking [Sch99].

Pascual Jordan died on July 31, 1980 in Hamburg, three months before
reaching 78, still working on his scalar-tensor theory of gravity.
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