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Abstract
We consider the four-graviton amplitudes in CHL constructions providing four-dimensional N =
4 models with various numbers of vector multiplets. We show that in these models the two-loop
amplitude has a prefactor of 9?R*. This implies a non-renormalisation theorem for the R* term,
which forbids the appearance of a three-loop ultraviolet divergence in four dimensions in the four-
graviton amplitude. We connect the special nature of the R* term to the U(1) anomaly of pure

N = 4 supergravity.



I. INTRODUCTION

N = 4 supergravity in four dimensions has sixteen real supercharges and SU(4) for R-
symmetry group. The gravity supermutiplet is composed of a spin 2 graviton and two spin
0 real scalars in the singlet representation of SU(4), four spin 3/2 gravitini and four spin
1/2 fermions in the fundamental representation 4 of SU(4), and six spin 1 gravi-photons
in the 6 of SU(4). The only matter multiplet is the vector multiplet composed of one spin
1 vector which is SU(4) singlet, four spin 1/2 fermions transforming in the fundamental of
SU(4), and six spin 0 real scalars transforming in the 6 of SU(4). The vector multiplets
may be carrying non-Abelian gauge group from a N = 4 super-Yang-Mills theory.

Pure N = 4 supergravity contains only the gravity supermultiplet and the two real
scalars can be assembled into a complex axion-dilaton scalar S parametrizing the coset
space SU(1,1)/U(1). This multiplet can be coupled to n, vector multiplets, whose scalar
fields parametrize the coset space SO(6,n,)/SO(6) x SO(n,) [1].

N = 4 supergravity theories can be obtained by consistent dimensional reduction of
N = 1 supergravity in D = 10, or from various string theory models. For instance the
reduction of the A/ = 8 gravity super-multiplet leads to N = 4 gravity super-multiplet, four
spin 3/2 N = 4 super-multiplets, and six vector multiplets
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Removing the four spin 3/2 N = 4 supermultiplets leads to N/ = 4 supergravity coupled to
n, = 6 vector multiplets.

In order to disentangle the contributions from the vector multiplets and the gravity su-
permultiplets, we will use CHL models [2-4] that allow to construct N' = 4 four dimensional
heterotic string with gauge groups of reduced rank. In this paper we work at a generic point
of the moduli space in the presence of (diagonal) Wilson lines where the gauge group is
Abelian.

Various CHL compactifications in four dimensions can obtained by considering Zy orbi-
fold [3, 5, 6] of the heterotic string on T° x S1. The orbifold acts on the current algebra

and the right-moving compactified modes of the string (world-sheet supersymmetry is on
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the left moving sector) together with an order N shift along the S! direction. This leads
to four-dimensional A" = 4 models with n, = 48/(N + 1) — 2 vector multiplets at a generic
point of the moduli space. Models with (n,, N) € {(22,1), (14, 2), (10, 3), (6,5), (4,7)} have
been constructed. No no-go theorem are known ruling out the n, = 0 case although it will

probably not arise from an asymmetric orbifold construction ]

It was shown in [7H9] that tgtr(R') and tgtr(R?)? are half-BPS statured couplings of
the heterotic string, receiving contributions only from the short multiplet of the N/ = 4
super-algebra, with no perturbative corrections beyond one-loop. These non-renormalisation
theorems were confirmed in [I0] using the explicit evaluation of the genus-two four-graviton
heterotic amplitude derived in [ITHI3]. For the CHL models, the following fact is crucially
important: the orbifold action does not alter the left moving supersymmetric sector of the
theory. Hence, the fermionic zero mode saturation will happen in the same manner as it

does for the toroidally compactified heterotic string, as we show in this paper.

Therefore we prove that the genus-two four-graviton amplitude in CHL models satisfy
the same non-renormalisation theorems, due to the factorization at the integrand level of
the mass dimension ten 92 R* operator in each kinematic channel. By taking the field theory
limit of this amplitude in four dimensions, no reduction of derivative is found for generic
numbers of vector multiplets n,. Since this result is independent of n,, we conclude that
this rules out the appearance of a R* ultraviolet counter-term at three-loop order in four
dimensional pure N' = 4 supergravity as well. Consequently, the four-graviton scattering

amplitude is ultraviolet finite at three loops in four dimensions.

The paper is organized as follows. In section L] we give the form of the one- and two-loop
four-graviton amplitude in orbifold CHL models. Then, in section [[1l] we evaluate their field
theory limit in four dimensions. This gives us the scattering amplitude of four gravitons in
N = 4 supergravity coupled to n, vector multiplets. In section [[V]we discuss the implication

of these results for the ultraviolet properties of pure N = 4 supergravity.

Note: As this paper was being finalized, the preprint [14] appeared on the arXiv. In this
work the absence of three-loop divergence in the four-graviton amplitude in four dimensions

is obtained by a direct field theory computation.

1 We would like to thank A. Sen for a discussion on this point.



II. ONE- AND TWO-LOOP AMPLITUDES IN CHL MODELS

Our conventions are that the left-moving sector of the heterotic string is the supersym-
metric sector, while the right-moving contains the current algebra.

We evaluate the four-graviton amplitude in four dimensional CHL heterotic string models.
We show that the fermionic zero mode saturation is model independent and similar to the

toroidal compactification.

A. The one-loop amplitude in string theory

The expression of the one-loop four-graviton amplitude in CHL models in D = 10 — d

dimensions is an immediate extension of the amplitude derived in [15]

mi) Nl/ 274 z 11 dyz e Tnsicyza 2T 0) (IL.1)
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where A is a constant of normalisation, F := {7 = 7 +im,|7| > 1,|n| < 3,72 > 0} is a
fundamental domain for SL(2,7Z) and the domain of integration 7 is defined as T := {v =
v [t < 5,0 <P <l Z™) i the genus-one partition function of the CHL model.

The polarisation of the rth graviton is factorized as hlj) = €1’ &, We introduce the
notation tgF* := g He H WT L e,(u)r The quantity W) arises from the contractions of
the right-moving part of the graviton vertex operator

WO = ¢ (L @ () ) =t F* [ e eg, (I1.2)

4 IR -T(Z4
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with £ the quantity evaluated in [15]

1 1
by = Q- - QZ“—l—ﬁ ( ’flQ525”3”4T(u34)+perm5)+m (0"1726"3 T (112) T (v34)+perms)
(I1.3)

where

4
Qf =" k"M OP(vy,|r);  T(v):=0.P(v|7). (11.4)

r=1
We follow the notations and conventions of [16] [I7]. The genus one propagator is given by
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In the o/ — 0 limit relevant for the field theory analysis in section [[TI, with all the radii

1

P(vlr) =~ log (v

(1L5)

27’2

of compactification scaling like v/o/, the mass of the Kaluza-Klein excitations and winding
modes go to infinity and the genus-one partition function Zl("“) has the following expansion
in q = exp(—2in7)

Zm) — % +cd +0(q). (IL.6)
The 1/q contribution is the “tachyonic” pole, ¢} _ depends on the number of vector multiplets

and higher orders in ¢ coming from to massive string states do not contribute in the field

theory limit.

B. The two-loop amplitude in string theory

By applying the techniques for evaluating heterotic string two-loop amplitudes of [10HI3],

we obtain that the four-graviton amplitudes in the CHL models are given by

|d*Q[* - —_
MUY oy = No / %25”” / [[ v W® Y, e Crsicssa 2K W P00 (117)

(det Sm)*~ Py

where N3 is a normalization constant, Zg(n”)(Q, Q) is the genus-two partition function and

6 aX ikj-x(z]-) 4
(1L . ]E )( - ) =t F* [ e ehs. (IL.8)
<Hj:1 etkjx(z; > Pl

The tensor ;™ is the genus-two equivalent of the genus-one tensor given in ([L.3))

W(Q) = t8F4

1
B = QU QU+ —— QU QYT ()" + ——

50 2§V (149) T (v34) 4+ perms , (11.9)

1
Aa)?

this time expressed in terms of the genus-two bosonic propagator

P(r = m]Q) i= —log |[E(nr, 15| Q)P + 27(SmQ); ! (Sm / wr)(Sm / wy), (IL10)

where E(v) is the genus-two prime form,  is the period matrix and w; with I = 1,2 are
the holomorphic abelian differentials. We refer to [13, Appendix A] for the main properties
of these objects.



The Vs quantity, arising from several contributions in the RNS formalism and from the

fermionic zero modes in the pure spinor formalism [I8], [19], is given by
3Vs = (k1 — k) - (k3 — ka) A12A34 + (13)(24) + (14)(23) (IL.11)
with
Az, w) = wy(2)wa(w) — wy(w)wa(z) . (I1.12)
Using the identity Ai19Ass + A13A4 + A14As3 = 0 we have the equivalent form Ys =
=3 (8A14003 — tA1pA3y), where s = (ky + ko)?, t = (k1 + ky)? and u = (k1 + k3).
We use a parametrisation of the period matrix reflecting the symmetries of the field

theory vacuum two-loop diagram considered in the next section

Q.= [T B (IL13)
T3 T2+ T3
With this parametrisation the expression for ZQ("”)(Q,Q) is completely symmetric in the
variables q; = exp(2im7;) with I =1,2,3.
In the limit relevant for the field theory analysis in section [[TI} the partition function of

the CHL model has the following g;-expansion [20]

1 1

1

q149293 1<i<j<3 q:q; 1<i<3 qi

Z™) =

ITII. THE FIELD THEORY LIMIT

In this section we extract the field theory limit of the string theory amplitudes compacti-
fied to four dimensions. We consider the low-energy limit o/ — 0 with the radii of the torus
scaling like v/ so that all the massive Kaluza-Klein states, winding states and excited
string states decouple.

In order to simplify the analysis we make the following choice of polarisations (171, 27+ 377 477)
and of reference moment q1 = q2 = k3 and g3 = g4 = ki, such that 2tgF* = (k; k2)2 k3 k4]2,
and 4tgts R = (ky k) [ks ks]*. With these choices the expression for W@ reduces to

2 Qur conventions are that a null vector k> = 0 is parametrized by kaq = kaks. The spin 1 polari-
sations of positive and negative helicities are given by € (k,q)as = \/‘%aé‘*kw e (k,Qas = —\/%[de],
where ¢ is a reference momentum. One finds that tgFMt... FO+ = ¢, pMW— ... A= = 0 and

tsFO=FO=FO+FO+ = L (k) k) [y kg



W) = tts R (OP(v19) — OP(v14))(OP(va1) — OP(v24))(OP(v32) — OP(134)) (0P (vas) — OP(va3))

+ tats 1 O P(134) (0P (v12) — OP(v14)) (0P (v32) — OP(v34)) (IIL.1)

u

where s = (k; + k)%, t = (k1 + k4)? and u = (k; + k3)®. We introduce the notation
W@ = tts R (W 4w W),

The main result of this section is that the one-loop amplitudes factorizes a tgtgR* and
that the two-loop amplitudes factorizes a 9?tgtgR* term. A more detailed analysis will be

given in the work [20)].

A. The one-loop amplitude in field theory

In the field theory limit o/ — 0 and 7 — oo with ¢t = o/ fixed, we define v? = 7 w for
v=uvl+ir2

Because of the 1/ pole in the partition function the integration over 77 yields two
contributions

1
/‘%Zﬁwﬁﬂzﬂ+%ﬂ, (111.2)

1

2
where F(7,7) = Fy + @F; + c.c. + O(¢?) represents the integrand of the one-loop amplitude.
The bosonic propagator can be split in an asymptotic value for 75 — oo (the field theory

limit) and a correction [16]

P(v|t) = P*(v|r) 4+ P(v|7) (I11.3)
that write:
- ~w(?)? 1. |sin(v) 2
P (V|7') = 2—7_2 Z hl T
m 2
P@hy—_§:<1f¢fmSZ“”+QQ)+0@% (I1L.4)
m>1

where ¢ = exp(2in7) and C(7) is a zero mode contribution which drops out of the amplitude
due to the momentum conservation [16].
We decompose the asymptotic propagator P>®(v|t) = Z 7, P (w) + 0,(v) into a piece

that will dominate in the field theory limit



P (w) = w? — |,

and a contribution ds(v) from the massive string modes [16, appendix A]

L 1 2irmuy! —27|muy?|
(53(1/) = Z M € .
m##0

The expression for Q% and T in (IL.4) become

4
Qf = Q"' +0Q —m 3 K" sin(2m71,) 7+ 0(7")

r=1

T(v) = T (w) + 6T (v) + 27 cos(270) § + o(G?)

where
T
fTu E (2K“ + q1>
4
KM = Z k(r)nu‘w
r=1
4
q; = Z kM sign (w; — w,)
r=1
/
T (w) = ==(1 = 6(w)),
and
- s 4
5@[( ) Z k.(?")u 85 = —E Z Slgn "')M Z e—Sign(V?r) 2immiy,
r=1 m>1
5T(V) = 5255(5) — —7T Z me*SIgn(V?r)QmmVlr .
m>1

We introduce the notation

QW(w) = > ki-k P (wy),

1<i<j<4

such that 9,,QW = k; - QFT.

(111.5)

(I11.6)

(111.7)

(111.8)

(111.9)

(I11.10)

(IL.11)

(I11.12)

(I11.13)



In the field theory limit o’ — 0 the integrand of the string amplitude in (II.1)) becomes

d 1
MY = Ny tgty R / TZ / Hdwl QW) (I11.14)
2.JA

w =1

1 1
2 3 1+ck g+ o(q 1
x | dn / ”duil nyd (7') W 4wy
1 u

—3 —3 i=1 q
X exp ( Z 20 k; - k; (6 (vij) Z q sin®(vy;) + O(q )))
1<i<j<4 m>1

here N is a constant of normalisation. The domain of integration A, = [0, 1] is decomposed
into three regions Ay, = Apyy) U Asu) U A given by the union of the (s,t), (s,u) and
(t,u) domains. In the A(s+ domain the integration is performed over 0 < w; <w, <wz <1
where QW (w) = —sw; (w3 — wa) — t(was — wy)(1 — ws) with equivalent formulas obtained by
permuting the external legs labels in the (¢,u) and (s, u) regions (see [16] for details).

The leading contribution to the amplitude is given by

o) d .
Mim) N, t8t8R4 / 7'2d / Hdwl tQW (W) o (LIL15)
2 JA =1
3 1
1 _ B . X
G <( ) S 2l kst () + (WY 2w ) ,
2 i=1 0 1<iej<4 X

where (Wl + = W(l))|0 and (W + W2 )|1 are respectively the zeroth and first order in
the ¢ expansion of WZ-( ),
Performing the integrations over the v variables leads to the following structure for the

amplitude reflecting the decomposition in (I.1])

3
A=A spin 2) . (IIL.16)

M(nv) ]\/'1 7 ( 1 Mﬁzzl matter_|_Mi\;/1 8 4M41

The contribution from the N = 8 supergravity multiplet is given by the quantity evaluated
n [21]

MTS = tsts R / BT (2+¢€) (QW)27<, (I11.17)
Aw

where we have specified the dimension D = 4 — 2e and Q) is defined in ([I1.13). The

contribution from the A" = 4 matter fields vector multiplets is
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4
Mi\;/i:4 matter _ t8t8R4 7'('_ d3w|:r (1 + 6) (Q(l))flfe W2(1) +T (2 + 6) (Q(l))foe Wl(l)]

16 JA,
(IIL.18)
where W with i = 1,2 are the field theory limits of the W"’s
1 _ :
W2(1) = (2w — 1+ sign(ws — w2))(2wy — 1 4 sign(wy — wy)) (1 — d(way))
Wl(l) = 2(wy — ws)(sign(w; — wy) + 2ws — 1) X
X (sign(ws — wy) + 2wy — 1) (sign(ws — wsy) + 2we — 1). (II1.19)
Finally, the N' = 4 spin 3/2 gravitino multiplet running in the loop gives
=4 spin 3 ~
My TS = g R / PwT (2+ ) Wi (QW) 2, (I11.20)
Ay
where
WY = (sign(w; — ws) + 2wy — 1)(sign(wy — wi) + 2wy — 1) (I11.21)

+ (sign(ws — wsy) + 2wy — 1) (w3 — wo) .

Using the dictionary given in [22 23], we recognize that the amplitudes in (II1I.18)
and are combinations of scalar box integral functions I £D2472€) [0"] evaluated in
D = 4 — 2¢ with n = 4,2,0 powers of loop momentum and LEDZ(S*QE) ["] with n = 2,0
powers of loop momentum evaluated in D = 6 — 2¢ dimensions. The N = 8 supergravity
part in is only given by a scalar box amplitude function I iD:4_26)[1] evaluated in
D = 4 — 2¢ dimensions.

Those amplitudes are free of ultraviolet divergences but exhibit rational terms, in agree-
ment with the analysis of [24-27]. This was not obvious from the start, since superficial
power counting indicates a logarithmic divergence. More generally, in N' = 4 supergravity
models coupled to vector multiplets amplitudes with external vector multiplets are ultravi-

olet divergent at one-loop [28]F]

B. The two-loop amplitude in field theory

We will follow the notations of [29] section 2.1] where the two-loop four-graviton ampli-

tude in A/ = 8 supergravity was presented in the world-line formalism. In the field theory

3 We would like thank K.S. Stelle and Mike Duff for a discussion about this.
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FIG. 1. Parametrisation of the two-loop diagram in field theory. Figure (a) is the vacuum diagram
and the definition of the proper times, and figures (b) and (c) the two configurations contributing

to the four-point amplitude.

limit o/ — 0 the imaginary part of the genus-two period matrix {2 becomes the period matrix
K = o/SmQ of the two-loop graph in figure
L+ L L
K= """ 7 1. (I11.22)
Ly Lo+ L3

We set L; = o/ 7; and A = det K = L{Ly + L1L3 + LyLs. The position of a point on the
line [ = 1,2,3 of length L; will be denoted by t). We choose the point A to be the origin
of the coordinate system, i.e. t!) = 0 means the point is located at position A, and t®) = L,

on the [th line means the point is located at position B.

It is convenient to introduce the rank two vectors v; = tz(»li) ul) where
1 0 -1
ut) = ;o u® = ,oul® = . (I11.23)
0 1 -1

The v; are the field theory degenerate form of the Abel map of a point on the Riemann surface
to its divisor. The vectors u'? are the degenerate form of the integrals of the holomorphic
one-forms w;. If the integrations on each line are oriented from A to B, the integration
element on line i is du’ = dt; u). The canonical homology basis (A;, B;) of the genus two
Riemann surface degenerates to (0, b;), with b; = L; U Ls. Ls means that we circulate on the

middle line from B to A. With these definitions we can reconstruct the period matrix (([11.22])
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from

=

QU
<

L1
/ dtl—{—/ dts = Ly + L3
0

1
Lo
j{du :/ dt1+/ dt3:L2—|—L3
b
L3
% du - / dtg = L3
b1 0
]{ du - ut) = / dts = Ls, (111.24)
bo 0

in agreement with the corresponding relations on the Riemann surface fB[ wy = Q. In the

field theory limit, Vs (II.11)) becomes

3Ys = (k1 — ko) - (ks — ky) AETALT 1+ (13)(24) + (14)(23) (I11.25)
where
AT = e”u?“u&m . (I11.26)

Notice that AF T = 0 when the point i and j are on the same line (i.e. [; = [;). Therefore
Ys vanishes if three points are on the same line, and the only non-vanishing configurations
are the one depicted in figure [[b)-(c).

In the field theory limit the leading contribution to Yy is given by

S fOI'hZZQ 0r13:l4
YS =4t for ll = l4 or lg = l2 (11127)

w forly=lgorly=14.

The bosonic propagator in ([I.10)) becomes

P T (v; — vj) = —% d(v; —vj) + % (v; —v;)T K~ (v —vy) (I1.28)
where d(v; — v;) is given by 1) — tg-lj)] if the two points are on the same line [; = [; or
tgli) + tg-lj ) is the two point are on different lines [; # ;.

We find that

: () () .
sign(t;" —t. if i, =1
OijPQFT(vi — ’Uj) = (uz — Uj)TK_l(Ui — Uj) + / ) ! s (11129)

0 otherwise
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and

l; L .
26(t) — 1) it g, =1

05 Py " (v = v5) = (us — uy) K™ (ui — uy) + (II1.30)

0 otherwise

We define the quantity

QD = S ki kg PFT (v — vj). (I11.31)

1<i<j<4
In this limit the expansion of CHL model partition function ZQ(H”) is given by in (|[1.14])
where O(g;) do not contribute to the field theory limit. The integration over the real part

of the components of the period matrix projects the integrand in the following way

2 _
/ d3§ReQ ZQ(nU)F<Q, Q) == CnUFO—l-Fng—i-anv <F12+F13+F23>+bnv (F1+F2+F3) s (11132)

[NIES

where F(Q, Q) = FO + Z?:l @Fz + Zl§i<j§3 Cjz(ijj + q_lqg(jg F123 4+ c.c. + O(q#j,) represents
the integrand of the two-loop amplitude.
When performing the field theory limit the integral takes the formlﬂ

d3L;

MzJ(:;T;U) =N t8t8R4/ A2+e
0

7{ d't; Vs (W + WP e (I11.33)

The contribution of Wl(Q) yields two kinds of two-loop double-box integrals evaluated in
D =4 — 2¢; Iéi:;‘;%?x [("] with n = 4,2,0 powers of loop momentum and s/u [ (giﬁiﬁ?x 48
with m = 2,0 powers of loop momentum. Those integrals are multiplied by and overall factor
s X tgtg R, t X tgtg R* or u x tgtg R* depending on the channel according to the decomposition

of Ys in (I11.27)).

The contribution of W2(2) yields two-loop double-box integrals evaluated in D = 6 — 2¢;

I(D:G—Qe)

double—bow L] With n = 2,0 powers of loop momentum multiplied by 2 x tgtg R* or % X tgtg R4

or tgtgR* depending on the channel according to the decomposition of Yy in . We
therefore conclude that the field theory limit of the four-graviton two-loop amplitude of
the CHL models with various number of vector multiplets factorizes a 9*R* term in four
dimensions.

We remark that as in the one-loop case, the two-loop amplitude is free of ultraviolet

divergence, in agreement with the analysis of Grisaru [30].

4 A detailed analysis of these integrals will be given in [20].

13



IV. NON-RENORMALISATION THEOREMS

The analysis performed in this paper shows that the two-loop four-graviton amplitude in
N = 4 pure supergravity factorizes a 9*R* operator in each kinematical sector. This result
for the R* term holds point wise in the moduli space of the string theory amplitude. In
the pure spinor formalism this is a direct consequence of the fermionic zero mode saturation
in the two-loop amplitude. At higher-loop since there will be at least the same number of
fermionic zero modes to saturate, this implies that higher-loop four-graviton amplitudes will
factorize (at least) two powers of external momenta on a R* term.E] This is in agreement with
the half-BPS nature of the R* term in A' = 4 models. We are then lead to the following non-
renormalisation theorem: the R* term will not receive any perturbative corrections beyond
one-loop in the four-graviton amplitudes.

Since the structure of the amplitude is the same in any dimension, a four-graviton L-loop
amplitude with L > 2 in D dimensions would have at worst the following enhanced superficial
ultraviolet behaviour AP=2L=8 92R* instead of AP=2L=6 R expected from supersymetry
arguments [32]. This forbids the appearance of a three-loop ultraviolet divergence in four
dimensions in the four-graviton amplitude and delays it to four loops.

However, a fully supersymmetric R* three-loop ultraviolet counter-terms in four dimen-
sions has been constructed in [32], so one can wonder why no divergence occur. We provide
here a few arguments that could explain why the R* term is a protected operator in N' = 4
pure supergravity.

It was argued in [7HO] that R* is a half-BPS protected operator and does not receive
perturbative corrections beyond one-loop in heterotic string compactifications. These non-
renormalisation theorems were confirmed in [10] using the explicit evaluation of the genus-
two four-graviton heterotic amplitude derived in [TIHI3]. In D = 4 dimensions the CHL
models with 4 < n, < 22 vector multiplets obtained by an asymmetric orbifold construc-
tion satisfy the same non-renormalisation theorems. For these models the moduli space
is SU(1,1)/U(1) x SO(6,n,)/SO(6) x SO(n,). Since the axion-dilaton parametrizes the
SU(1,1)/U(1) factor it is natural to conjecture that this moduli space will stay factorized

and that one can decouple the contributions from the vector multiplets. If one can set to

5 Tt is tempting to conjecture that the higher-loop string amplitudes will have a form similar to the two-loop
amplitude in (II1.7)) involving a generalisation of Ys in ([I.11]), maybe given by the ansatz proposed in [31,

eq. (1.3)].
14



zero all the vector multiplets, this analysis shows the existence of the R* non-renormalisation
theorem in the pure N' = 4 supergravity case.

It was shown in [32] that the SU(1,1)-invariant superspace volume vanishes and the
R* super-invariant was constructed as an harmonic superspace integral over 3/4 of the full
superspace. The structure of the amplitudes analyzed in this paper and the absence of
three-loop divergence point to the fact that this partial superspace integral is an F-term.

The existence of an off-shell formulation for N' = 4 conformal supergravity and linearized
N = 4 supergravity with six vector multiplets [33-35] makes this F-term nature plausible
in the Poincaré pure supergravity.

What makes the N = 4 supergravity case special compared to the other 5 < N < 8 cases
is the anomalous U(1) symmetry [36]. Therefore even without the existence of an off-shell
formalism, this anomaly could make the R* term special and be the reason why it turns out
to be ruled out as a possible counter-term in four-graviton amplitude in four dimensions.
Because of the U(1)-anomaly, full superspace integrals of functions of the axion-dilaton

superfield S = S + - - - are allowed [32]

I= 5%4) /d4xd169 E(z,0) F(S) = /1214) /d4x V=g f(S) R* + susy completion, (IV.1)

suggesting a three-loop divergence in the higher-point field theory amplitudes with four
gravitons and scalar fields. Since one can write full superspace for 9?R* in terms of the
gravitino [ d'%0 E(z,0)(xY)?, one should expect a four-loop divergence in the four-graviton

amplitude in four dimensions.
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