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Abstract

We consider the four-graviton amplitudes in CHL constructions providing four-dimensional N =

4 models with various numbers of vector multiplets. We show that in these models the two-loop

amplitude has a prefactor of ∂2R4. This implies a non-renormalisation theorem for the R4 term,

which forbids the appearance of a three-loop ultraviolet divergence in four dimensions in the four-

graviton amplitude. We connect the special nature of the R4 term to the U(1) anomaly of pure

N = 4 supergravity.
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I. INTRODUCTION

N = 4 supergravity in four dimensions has sixteen real supercharges and SU(4) for R-

symmetry group. The gravity supermutiplet is composed of a spin 2 graviton and two spin

0 real scalars in the singlet representation of SU(4), four spin 3/2 gravitini and four spin

1/2 fermions in the fundamental representation 4 of SU(4), and six spin 1 gravi-photons

in the 6 of SU(4). The only matter multiplet is the vector multiplet composed of one spin

1 vector which is SU(4) singlet, four spin 1/2 fermions transforming in the fundamental of

SU(4), and six spin 0 real scalars transforming in the 6 of SU(4). The vector multiplets

may be carrying non-Abelian gauge group from a N = 4 super-Yang-Mills theory.

Pure N = 4 supergravity contains only the gravity supermultiplet and the two real

scalars can be assembled into a complex axion-dilaton scalar S parametrizing the coset

space SU(1, 1)/U(1). This multiplet can be coupled to nv vector multiplets, whose scalar

fields parametrize the coset space SO(6, nv)/SO(6)× SO(nv) [1].

N = 4 supergravity theories can be obtained by consistent dimensional reduction of

N = 1 supergravity in D = 10, or from various string theory models. For instance the

reduction of the N = 8 gravity super-multiplet leads to N = 4 gravity super-multiplet, four

spin 3/2 N = 4 super-multiplets, and six vector multiplets

(21, 3/28, 128, 1/256, 070)N=8 = (21, 3/24, 16, 1/24, 01+1)N=4 (I.1)

⊕ 4 (3/21, 14, 1/26+1, 04+4̄)N=4

⊕ 6 (11, 1/24, 06)N=4 .

Removing the four spin 3/2 N = 4 supermultiplets leads to N = 4 supergravity coupled to

nv = 6 vector multiplets.

In order to disentangle the contributions from the vector multiplets and the gravity su-

permultiplets, we will use CHL models [2–4] that allow to construct N = 4 four dimensional

heterotic string with gauge groups of reduced rank. In this paper we work at a generic point

of the moduli space in the presence of (diagonal) Wilson lines where the gauge group is

Abelian.

Various CHL compactifications in four dimensions can obtained by considering ZN orbi-

fold [3, 5, 6] of the heterotic string on T 5 × S1. The orbifold acts on the current algebra

and the right-moving compactified modes of the string (world-sheet supersymmetry is on
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the left moving sector) together with an order N shift along the S1 direction. This leads

to four-dimensional N = 4 models with nv = 48/(N + 1)− 2 vector multiplets at a generic

point of the moduli space. Models with (nv, N) ∈ {(22, 1), (14, 2), (10, 3), (6, 5), (4, 7)} have

been constructed. No no-go theorem are known ruling out the nv = 0 case although it will

probably not arise from an asymmetric orbifold construction.1

It was shown in [7–9] that t8tr(R4) and t8tr(R2)2 are half-BPS statured couplings of

the heterotic string, receiving contributions only from the short multiplet of the N = 4

super-algebra, with no perturbative corrections beyond one-loop. These non-renormalisation

theorems were confirmed in [10] using the explicit evaluation of the genus-two four-graviton

heterotic amplitude derived in [11–13]. For the CHL models, the following fact is crucially

important: the orbifold action does not alter the left moving supersymmetric sector of the

theory. Hence, the fermionic zero mode saturation will happen in the same manner as it

does for the toroidally compactified heterotic string, as we show in this paper.

Therefore we prove that the genus-two four-graviton amplitude in CHL models satisfy

the same non-renormalisation theorems, due to the factorization at the integrand level of

the mass dimension ten ∂2R4 operator in each kinematic channel. By taking the field theory

limit of this amplitude in four dimensions, no reduction of derivative is found for generic

numbers of vector multiplets nv. Since this result is independent of nv, we conclude that

this rules out the appearance of a R4 ultraviolet counter-term at three-loop order in four

dimensional pure N = 4 supergravity as well. Consequently, the four-graviton scattering

amplitude is ultraviolet finite at three loops in four dimensions.

The paper is organized as follows. In section II we give the form of the one- and two-loop

four-graviton amplitude in orbifold CHL models. Then, in section III we evaluate their field

theory limit in four dimensions. This gives us the scattering amplitude of four gravitons in

N = 4 supergravity coupled to nv vector multiplets. In section IV we discuss the implication

of these results for the ultraviolet properties of pure N = 4 supergravity.

Note: As this paper was being finalized, the preprint [14] appeared on the arXiv. In this

work the absence of three-loop divergence in the four-graviton amplitude in four dimensions

is obtained by a direct field theory computation.

1 We would like to thank A. Sen for a discussion on this point.
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II. ONE- AND TWO-LOOP AMPLITUDES IN CHL MODELS

Our conventions are that the left-moving sector of the heterotic string is the supersym-

metric sector, while the right-moving contains the current algebra.

We evaluate the four-graviton amplitude in four dimensional CHL heterotic string models.

We show that the fermionic zero mode saturation is model independent and similar to the

toroidal compactification.

A. The one-loop amplitude in string theory

The expression of the one-loop four-graviton amplitude in CHL models in D = 10 − d

dimensions is an immediate extension of the amplitude derived in [15]

M(nv)
4,1−loop = N1

∫
F

d2τ

τ
2− d

2
2

Z(nv)
1

∫
T

∏
1≤i<j≤4

d2νi
τ2

W(1) e−
∑

1≤i<j≤4 2α′ki·kjP (νij) , (II.1)

where N1 is a constant of normalisation, F := {τ = τ1 + iτ2, |τ | ≥ 1, |τ1| ≤ 1
2
, τ2 > 0} is a

fundamental domain for SL(2,Z) and the domain of integration T is defined as T := {ν =

ν1 + iν2; |ν1| ≤ 1
2
, 0 ≤ ν2 ≤ τ2}. Z(nv)

1 is the genus-one partition function of the CHL model.

The polarisation of the rth graviton is factorized as h
(r)
µν = ε

(r)
µ ε̃

(r)
ν . We introduce the

notation t8F
4 := tµ1···µ88

∏4
r=1 k

(r)
µ2r−1 ε

(r)
µ2r . The quantity W(1) arises from the contractions of

the right-moving part of the graviton vertex operator

W(1) := t8F
4
〈
∏4

j=1 ε̃
j · ∂̄X(zj)e

ikj ·x(zj)〉
〈
∏4

j=1 e
ikj ·x(zj)〉

= t8F
4

4∏
r=1

ε̃(r)νr t
ν1···ν4
4;1 , (II.2)

with t̂ν1···ν44;1 the quantity evaluated in [15]

t̂ν1···ν44;1 := Qν1
1 · · ·Qν4

4 +
1

2α′
(Qν1

1 Q
ν2
2 δ

ν3ν4T (ν34)+perms)+
1

4α′2
(δν1ν2δν3ν4T (ν12)T (ν34)+perms) ,

(II.3)

where

Qµ
I :=

4∑
r=1

k(r)µ ∂̄P (νIr|τ); T (ν) := ∂̄2
νP (ν|τ) . (II.4)

We follow the notations and conventions of [16, 17]. The genus one propagator is given by
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P (ν|τ) := −1

4
log

∣∣∣∣θ1(ν|τ)

θ′1(0|τ)

∣∣∣∣2 +
π(ν2)2

2τ2

. (II.5)

In the α′ → 0 limit relevant for the field theory analysis in section III, with all the radii

of compactification scaling like
√
α′, the mass of the Kaluza-Klein excitations and winding

modes go to infinity and the genus-one partition function Z(nv)
1 has the following expansion

in q̄ = exp(−2iπτ̄)

Z(nv)
1 =

1

q̄
+ c1

nv
+O(q̄) . (II.6)

The 1/q̄ contribution is the “tachyonic” pole, c1
nv

depends on the number of vector multiplets

and higher orders in q̄ coming from to massive string states do not contribute in the field

theory limit.

B. The two-loop amplitude in string theory

By applying the techniques for evaluating heterotic string two-loop amplitudes of [10–13],

we obtain that the four-graviton amplitudes in the CHL models are given by

M(nv)
4,2−loop = N2

∫
|d3Ω|2

(det=mΩ)5− d
2

Z(nv)
2

∫ 4∏
i=1

d2νiW(2) Ys e−
∑

1≤i<j≤4 2α′ki·kjP (νij) (II.7)

where N2 is a normalization constant, Z(nv)
2 (Ω, Ω̄) is the genus-two partition function and

W(2) := t8F
4
〈
∏4

j=1 ε
j · ∂̄X(zj)e

ikj ·x(zj)〉
〈
∏4

j=1 e
ikj ·x(zj)〉

= t8F
4

4∏
i=1

ε̃νii t
ν1·ν4
4;2 . (II.8)

The tensor tν1·ν44;2 is the genus-two equivalent of the genus-one tensor given in (II.3)

tν1···ν44;2 = Qν1
1 · · ·Qν4

4 +
1

2α′
Qν1

1 Q
ν2
2 T (ν34)δν3ν4 +

1

4(α′)2
δν1ν2δν3ν4T (ν12)T (ν34)+perms , (II.9)

this time expressed in terms of the genus-two bosonic propagator

P (ν1 − ν2|Ω) := − log |E(ν1, ν2|Ω)|2 + 2π(=mΩ)−1
IJ (=m

∫ ν2

ν1

ωI)(=m

∫ ν2

ν1

ωJ) , (II.10)

where E(ν) is the genus-two prime form, Ω is the period matrix and ωI with I = 1, 2 are

the holomorphic abelian differentials. We refer to [13, Appendix A] for the main properties

of these objects.
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The YS quantity, arising from several contributions in the RNS formalism and from the

fermionic zero modes in the pure spinor formalism [18, 19], is given by

3YS = (k1 − k2) · (k3 − k4) ∆12∆34 + (13)(24) + (14)(23) , (II.11)

with

∆(z, w) = ω1(z)ω2(w)− ω1(w)ω2(z) . (II.12)

Using the identity ∆12∆34 + ∆13∆42 + ∆14∆23 = 0 we have the equivalent form YS =

−3 (s∆14∆23 − t∆12∆34), where s = (k1 + k2)2, t = (k1 + k4)2 and u = (k1 + k3)2.

We use a parametrisation of the period matrix reflecting the symmetries of the field

theory vacuum two-loop diagram considered in the next section

Ω :=

τ1 + τ3 τ3

τ3 τ2 + τ3

 . (II.13)

With this parametrisation the expression for Z(nv)
2 (Ω, Ω̄) is completely symmetric in the

variables qI = exp(2iπτI) with I = 1, 2, 3.

In the limit relevant for the field theory analysis in section III, the partition function of

the CHL model has the following q̄i-expansion [20]

Z(nv)
2 =

1

q̄1q̄2q̄3

+ anv

∑
1≤i<j≤3

1

q̄iq̄j
+ bnv

∑
1≤i≤3

1

q̄i
+ cnv +O(qi) . (II.14)

III. THE FIELD THEORY LIMIT

In this section we extract the field theory limit of the string theory amplitudes compacti-

fied to four dimensions. We consider the low-energy limit α′ → 0 with the radii of the torus

scaling like
√
α′ so that all the massive Kaluza-Klein states, winding states and excited

string states decouple.

In order to simplify the analysis we make the following choice of polarisations (1++, 2++, 3−−, 4−−)

and of reference momenta2 q1 = q2 = k3 and q3 = q4 = k1, such that 2t8F
4 = 〈k1 k2〉2 [k3 k4]2,

and 4t8t8R
4 = 〈k1 k2〉4 [k3 k4]4. With these choices the expression for W(g) reduces to

2 Our conventions are that a null vector k2 = 0 is parametrized by kαα̇ = kαk̄α̇. The spin 1 polari-

sations of positive and negative helicities are given by ε+(k, q)αα̇ := qαk̄α̇√
2 〈q k〉 , ε

−(k, q)αα̇ := − kαq̄α̇√
2 [q k]

,

where q is a reference momentum. One finds that t8F
(1)+ · · ·F (4)+ = t8F

(1)− · · ·F (4)− = 0 and

t8F
(1)−F (2)−F (3)+F (4)+ = 1

16 〈k1 k2〉2 [k3 k4]
2
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W(g) = t8t8R
4 (∂̄P (ν12)− ∂̄P (ν14))(∂̄P (ν21)− ∂̄P (ν24))(∂̄P (ν32)− ∂̄P (ν34))(∂̄P (ν42)− ∂̄P (ν43))

+
t8t8R

4

u
∂̄2P (ν24)(∂̄P (ν12)− ∂̄P (ν14))(∂̄P (ν32)− ∂̄P (ν34)) , (III.1)

where s = (k1 + k2)2, t = (k1 + k4)2 and u = (k1 + k3)2. We introduce the notation

W(g) = t8t8R
4 (W(g)

1 + u−1W(g)
2 ).

The main result of this section is that the one-loop amplitudes factorizes a t8t8R
4 and

that the two-loop amplitudes factorizes a ∂2t8t8R
4 term. A more detailed analysis will be

given in the work [20].

A. The one-loop amplitude in field theory

In the field theory limit α′ → 0 and τ2 →∞ with t = α′τ2 fixed, we define ν2 = τ2 ω for

ν = ν1 + iν2.

Because of the 1/q̄ pole in the partition function (II.6) the integration over τ1 yields two

contributions ∫ 1
2

− 1
2

dτ1Z(nv)
1 F (τ, τ̄) = F1 + c1

nv
F0 , (III.2)

where F (τ, τ̄) = F0 + q̄F1 + c.c.+O(q̄2) represents the integrand of the one-loop amplitude.

The bosonic propagator can be split in an asymptotic value for τ2 →∞ (the field theory

limit) and a correction [16]

P (ν|τ) = P∞(ν|τ) + P̂ (ν|τ) (III.3)

that write:

P∞(ν|τ) =
π(ν2)2

2τ2

− 1

4
ln

∣∣∣∣sin(πν)

π

∣∣∣∣2
P̂ (ν|τ) = −

∑
m≥1

(
qm

1− qm
sin2(mπν)

m
+ c.c.

)
+ C(τ), (III.4)

where q = exp(2iπτ) and C(τ) is a zero mode contribution which drops out of the amplitude

due to the momentum conservation [16].

We decompose the asymptotic propagator P∞(ν|τ) = π
2
τ2 P

FT (ω) + δs(ν) into a piece

that will dominate in the field theory limit
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P FT (ω) = ω2 − |ω| , (III.5)

and a contribution δs(ν) from the massive string modes [16, appendix A]

δs(ν) :=
∑
m 6=0

1

4|m|
e2iπmν1−2π|mν2| . (III.6)

The expression for Qµ
I and T in (II.4) become

Qµ
I = QFT µ

I + δQµ
I − π

4∑
r=1

k(r)µ sin(2πν̄Ir) q̄ + o(q̄2) (III.7)

T (ν̄) = T FT (ω) + δT (ν̄) + 2π cos(2πν̄) q̄ + o(q̄2) ,

where

QFT µ
I := −π

2
(2Kµ + qµI ) (III.8)

Kµ :=
4∑
r=1

k(r)µ ωr (III.9)

qµI :=
4∑
r=1

k(r)µ sign(ωI − ωr) (III.10)

T FT (ω) =
πα′

t
(1− δ(ω)) , (III.11)

and

δQµ
I (ν̄) =

4∑
r=1

k(r)µ ∂̄δs(ν̄Ir) = −iπ
2

4∑
r=1

sign(ν2
Ir)k

(r)µ
∑
m≥1

e−sign(ν2Ir) 2iπmν̄Ir (III.12)

δT (ν) = ∂̄2δs(ν̄) = −π2
∑
m≥1

me−sign(ν2Ir) 2iπmν̄Ir .

We introduce the notation

Q(1)(ω) :=
∑

1≤i<j≤4

ki · kj P FT (ωij) , (III.13)

such that ∂ωi
Q(1) = ki ·QFT

i .
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In the field theory limit α′ → 0 the integrand of the string amplitude in (II.1) becomes

M
(nv)
4;1 = N1 t8t8R

4

∫ ∞
0

dτ2

τ
2− d

2
2

∫
∆ω

3∏
i=1

dωi e
tQ(1)(ω) × (III.14)

×
∫ 1

2

− 1
2

dτ1

∫ 1
2

− 1
2

4∏
i=1

dν1
i

1 + c1
nv
q̄ + o(q̄2)

q̄
(W(1)

1 +
1

u
W(1)

2 ) ×

× exp

( ∑
1≤i<j≤4

2α′ ki · kj

(
δs(νij)−

∑
m≥1

q̄ sin2(πν̄ij) +O(q̄)

))
,

here N1 is a constant of normalisation. The domain of integration ∆ω = [0, 1]3 is decomposed

into three regions ∆w = ∆(s,t) ∪ ∆(s,u) ∪ ∆(t,u) given by the union of the (s, t), (s, u) and

(t, u) domains. In the ∆(s,t) domain the integration is performed over 0 ≤ ω1 ≤ ω2 ≤ ω3 ≤ 1

where Q(1)(ω) = −sω1(ω3 − ω2)− t(ω2 − ω1)(1− ω3) with equivalent formulas obtained by

permuting the external legs labels in the (t, u) and (s, u) regions (see [16] for details).

The leading contribution to the amplitude is given by

M
(nv)
4;1 = N1 t8t8R

4

∫ ∞
0

dτ2

τ
2− d

2
2

∫
∆ω

3∏
i=1

dωi e
tQ(1)(ω) × (III.15)

×
∫ 1

2

− 1
2

4∏
i=1

dν1
i

((
W(1)

1 +
1

u
W(1)

2

)∣∣∣∣
0

(c1
nv
−

∑
1≤i<j≤4

2α′ ki · kj sin2(πν̄ij)) +

(
W(1)

1 +
1

u
W(1)

2

)∣∣∣∣
1

)
,

where (W(1)
1 + 1

u
W(1)

2 )|0 and (W(1)
1 + 1

u
W(1)

2 )|1 are respectively the zeroth and first order in

the q̄ expansion of W(1)
i .

Performing the integrations over the ν1
i variables leads to the following structure for the

amplitude reflecting the decomposition in (I.1)

M
(nv)
4;1 = N1

π4

4

(
c1
nv
MN=4 matter

4;1 +MN=8
4;1 − 4M

N=4 spin 3
2

4;1

)
. (III.16)

The contribution from the N = 8 supergravity multiplet is given by the quantity evaluated

in [21]

MN=8
4;1 = t8t8R

4

∫
∆ω

d3ω Γ (2 + ε) (Q(1))−2−ε , (III.17)

where we have specified the dimension D = 4 − 2ε and Q(1) is defined in (III.13). The

contribution from the N = 4 matter fields vector multiplets is
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MN=4 matter
4;1 = t8t8R

4 π
4

16

∫
∆ω

d3ω
[
Γ (1 + ε) (Q(1))−1−εW

(1)
2 + Γ (2 + ε) (Q(1))−2−εW

(1)
1

]
(III.18)

where W
(1)
i with i = 1, 2 are the field theory limits of the W(1)

i ’s

W
(1)
2 =

1

u
(2ω2 − 1 + sign(ω3 − ω2))(2ω2 − 1 + sign(ω1 − ω2)) (1− δ(ω24))

W
(1)
1 = 2(ω2 − ω3)(sign(ω1 − ω2) + 2ω2 − 1)×

× (sign(ω2 − ω1) + 2ω1 − 1)(sign(ω3 − ω2) + 2ω2 − 1) . (III.19)

Finally, the N = 4 spin 3/2 gravitino multiplet running in the loop gives

M
N=4 spin 3

2
4;1 = t8t8R

4

∫
∆ω

d3ω Γ (2 + ε) W̃
(1)
2 (Q(1))−2−ε, (III.20)

where

W̃
(1)
2 = (sign(ω1 − ω2) + 2ω2 − 1)(sign(ω2 − ω1) + 2ω1 − 1) (III.21)

+ (sign(ω3 − ω2) + 2ω2 − 1)(ω3 − ω2) .

Using the dictionary given in [22, 23], we recognize that the amplitudes in (III.18)

and (III.20) are combinations of scalar box integral functions I
(D=4−2ε)
4 [`n] evaluated in

D = 4 − 2ε with n = 4, 2, 0 powers of loop momentum and I
(D=6−2ε)
4 [`n] with n = 2, 0

powers of loop momentum evaluated in D = 6 − 2ε dimensions. The N = 8 supergravity

part in (III.17) is only given by a scalar box amplitude function I
(D=4−2ε)
4 [1] evaluated in

D = 4− 2ε dimensions.

Those amplitudes are free of ultraviolet divergences but exhibit rational terms, in agree-

ment with the analysis of [24–27]. This was not obvious from the start, since superficial

power counting indicates a logarithmic divergence. More generally, in N = 4 supergravity

models coupled to vector multiplets amplitudes with external vector multiplets are ultravi-

olet divergent at one-loop [28]3.

B. The two-loop amplitude in field theory

We will follow the notations of [29, section 2.1] where the two-loop four-graviton ampli-

tude in N = 8 supergravity was presented in the world-line formalism. In the field theory

3 We would like thank K.S. Stelle and Mike Duff for a discussion about this.
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FIG. 1. Parametrisation of the two-loop diagram in field theory. Figure (a) is the vacuum diagram

and the definition of the proper times, and figures (b) and (c) the two configurations contributing

to the four-point amplitude.

limit α′ → 0 the imaginary part of the genus-two period matrix Ω becomes the period matrix

K := α′=mΩ of the two-loop graph in figure 1

K :=

L1 + L3 L3

L3 L2 + L3

 . (III.22)

We set Li = α′ τi and ∆ = detK = L1L2 + L1L3 + L2L3. The position of a point on the

line l = 1, 2, 3 of length Ll will be denoted by t(l). We choose the point A to be the origin

of the coordinate system, i.e. t(l) = 0 means the point is located at position A, and t(l) = Ll

on the lth line means the point is located at position B.

It is convenient to introduce the rank two vectors vi = t
(li)
i u(li) where

u(1) :=

1

0

 , u(2) :=

0

1

 , u(3) :=

−1

−1

 . (III.23)

The vi are the field theory degenerate form of the Abel map of a point on the Riemann surface

to its divisor. The vectors u(i) are the degenerate form of the integrals of the holomorphic

one-forms ωI . If the integrations on each line are oriented from A to B, the integration

element on line i is duli = dti u
(li). The canonical homology basis (Ai, Bi) of the genus two

Riemann surface degenerates to (0, bi), with bi = Li∪ L̄3. L̄3 means that we circulate on the

middle line from B to A. With these definitions we can reconstruct the period matrix (III.22)
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from ∮
b1

du · u(1) =

∫ L1

0

dt1 +

∫ L3

0

dt3 = L1 + L3∮
b2

du · u(2) =

∫ L2

0

dt1 +

∫ L3

0

dt3 = L2 + L3∮
b1

du · u(2) =

∫ L3

0

dt3 = L3∮
b2

du · u(1) =

∫ L3

0

dt3 = L3 , (III.24)

in agreement with the corresponding relations on the Riemann surface
∮
BI
ωJ = ΩIJ . In the

field theory limit, YS (II.11) becomes

3YS = (k1 − k2) · (k3 − k4) ∆FT
12 ∆FT

34 + (13)(24) + (14)(23) (III.25)

where

∆FT
ij = εIJu

(li)
I u

(lj)
J . (III.26)

Notice that ∆FT
ij = 0 when the point i and j are on the same line (i.e. li = lj). Therefore

YS vanishes if three points are on the same line, and the only non-vanishing configurations

are the one depicted in figure 1(b)-(c).

In the field theory limit the leading contribution to YS is given by

YS =


s for l1 = l2 or l3 = l4

t for l1 = l4 or l3 = l2

u for l1 = l3 or l2 = l4 .

(III.27)

The bosonic propagator in (II.10) becomes

P FT
2 (vi − vj) := −1

2
d(vi − vj) +

1

2
(vi − vj)T K−1 (vi − vj) , (III.28)

where d(vi − vj) is given by |t(li)i − t
(lj)
j | if the two points are on the same line li = lj or

t
(li)
i + t

(lj)
j is the two point are on different lines li 6= lj.

We find that

∂ijP
FT
2 (vi − vj) = (ui − uj)TK−1(vi − vj) +

sign(t
(li)
i − t

(lj)
j ) if li = lj

0 otherwise
, (III.29)
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and

∂2
ijP

FT
2 (vi − vj) = (ui − uj)TK−1(ui − uj) +

2δ(t
(li)
i − t

(lj)
j ) if li = lj

0 otherwise
. (III.30)

We define the quantity

Q(2) =
∑

1≤i<j≤4

ki · kj P FT
2 (vi − vj) . (III.31)

In this limit the expansion of CHL model partition function Z(nv)
2 is given by in (II.14)

where O(qi) do not contribute to the field theory limit. The integration over the real part

of the components of the period matrix projects the integrand in the following way∫ 1
2

− 1
2

d3<eΩZ(nv)
2 F (Ω, Ω̄) = cnvF0 +F123 +anv (F12 +F13 +F23)+bnv (F1 +F2 +F3) , (III.32)

where F (Ω, Ω̄) = F0 +
∑3

i=1 q̄iFi +
∑

1≤i<j≤3 q̄iq̄jFij + q̄1q̄2q̄3 F123 + c.c.+ O(qiq̄i) represents

the integrand of the two-loop amplitude.

When performing the field theory limit the integral takes the form4

M
(nv)
4;2 = N2 t8t8R

4

∫ ∞
0

d3Li
∆2+ε

∮
d4ti YS [W

(2)
1 +W

(2)
2 ] eQ

(2)

. (III.33)

The contribution of W
(2)
1 yields two kinds of two-loop double-box integrals evaluated in

D = 4− 2ε; I
(D=4−2ε)
double−box[`

n] with n = 4, 2, 0 powers of loop momentum and s/u I
(D=4−2ε)
double−box[`

m]

with m = 2, 0 powers of loop momentum. Those integrals are multiplied by and overall factor

s× t8t8R4, t× t8t8R4 or u× t8t8R4 depending on the channel according to the decomposition

of YS in (III.27).

The contribution of W
(2)
2 yields two-loop double-box integrals evaluated in D = 6 − 2ε;

I
(D=6−2ε)
double−box[`

n] with n = 2, 0 powers of loop momentum multiplied by s
u
× t8t8R4 or t

u
× t8t8R4

or t8t8R
4 depending on the channel according to the decomposition of YS in (III.27). We

therefore conclude that the field theory limit of the four-graviton two-loop amplitude of

the CHL models with various number of vector multiplets factorizes a ∂2R4 term in four

dimensions.

We remark that as in the one-loop case, the two-loop amplitude is free of ultraviolet

divergence, in agreement with the analysis of Grisaru [30].

4 A detailed analysis of these integrals will be given in [20].
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IV. NON-RENORMALISATION THEOREMS

The analysis performed in this paper shows that the two-loop four-graviton amplitude in

N = 4 pure supergravity factorizes a ∂2R4 operator in each kinematical sector. This result

for the R4 term holds point wise in the moduli space of the string theory amplitude. In

the pure spinor formalism this is a direct consequence of the fermionic zero mode saturation

in the two-loop amplitude. At higher-loop since there will be at least the same number of

fermionic zero modes to saturate, this implies that higher-loop four-graviton amplitudes will

factorize (at least) two powers of external momenta on a R4 term.5 This is in agreement with

the half-BPS nature of the R4 term in N = 4 models. We are then lead to the following non-

renormalisation theorem: the R4 term will not receive any perturbative corrections beyond

one-loop in the four-graviton amplitudes.

Since the structure of the amplitude is the same in any dimension, a four-graviton L-loop

amplitude with L ≥ 2 inD dimensions would have at worst the following enhanced superficial

ultraviolet behaviour Λ(D−2)L−8 ∂2R4 instead of Λ(D−2)L−6R4, expected from supersymetry

arguments [32]. This forbids the appearance of a three-loop ultraviolet divergence in four

dimensions in the four-graviton amplitude and delays it to four loops.

However, a fully supersymmetric R4 three-loop ultraviolet counter-terms in four dimen-

sions has been constructed in [32], so one can wonder why no divergence occur. We provide

here a few arguments that could explain why the R4 term is a protected operator in N = 4

pure supergravity.

It was argued in [7–9] that R4 is a half-BPS protected operator and does not receive

perturbative corrections beyond one-loop in heterotic string compactifications. These non-

renormalisation theorems were confirmed in [10] using the explicit evaluation of the genus-

two four-graviton heterotic amplitude derived in [11–13]. In D = 4 dimensions the CHL

models with 4 ≤ nv ≤ 22 vector multiplets obtained by an asymmetric orbifold construc-

tion satisfy the same non-renormalisation theorems. For these models the moduli space

is SU(1, 1)/U(1) × SO(6, nv)/SO(6) × SO(nv). Since the axion-dilaton parametrizes the

SU(1, 1)/U(1) factor it is natural to conjecture that this moduli space will stay factorized

and that one can decouple the contributions from the vector multiplets. If one can set to

5 It is tempting to conjecture that the higher-loop string amplitudes will have a form similar to the two-loop

amplitude in (II.7) involving a generalisation of Ys in (II.11), maybe given by the ansatz proposed in [31,

eq. (1.3)].
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zero all the vector multiplets, this analysis shows the existence of the R4 non-renormalisation

theorem in the pure N = 4 supergravity case.

It was shown in [32] that the SU(1, 1)-invariant superspace volume vanishes and the

R4 super-invariant was constructed as an harmonic superspace integral over 3/4 of the full

superspace. The structure of the amplitudes analyzed in this paper and the absence of

three-loop divergence point to the fact that this partial superspace integral is an F-term.

The existence of an off-shell formulation for N = 4 conformal supergravity and linearized

N = 4 supergravity with six vector multiplets [33–35] makes this F-term nature plausible

in the Poincaré pure supergravity.

What makes the N = 4 supergravity case special compared to the other 5 ≤ N ≤ 8 cases

is the anomalous U(1) symmetry [36]. Therefore even without the existence of an off-shell

formalism, this anomaly could make the R4 term special and be the reason why it turns out

to be ruled out as a possible counter-term in four-graviton amplitude in four dimensions.

Because of the U(1)-anomaly, full superspace integrals of functions of the axion-dilaton

superfield S = S + · · · are allowed [32]

I = κ4
(4)

∫
d4xd16θ E(x, θ)F (S) = κ4

(4)

∫
d4x
√
−g f(S)R4 + susy completion , (IV.1)

suggesting a three-loop divergence in the higher-point field theory amplitudes with four

gravitons and scalar fields. Since one can write full superspace for ∂2R4 in terms of the

gravitino
∫
d16θ E(x, θ)(χχ̄)2, one should expect a four-loop divergence in the four-graviton

amplitude in four dimensions.
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