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Abstract
We evaluate in great details one-loop four-graviton field theory amplitudes in pure N =4 D = 4
supergravity. The expressions are obtained by taking the field theory limit of (4,0) and (2,2)
space-time supersymmetric string theory models. For each model we extract the contributions
of the spin 1 and spin 2 N' = 4 supermultiplets running in the loop. We show that all of those
construction lead to the same four dimensionnal result for the four-graviton amplitudes in pure

supergravity even though they come from different string theory models.



I. INTRODUCTION

The role of supersymmetry in perturbative supergravity still leaves room for surprises.
The construction of candidate counter-terms for ultraviolet (UV) divergences in extended
four dimensional supergravity theories does not forbid some particular amplitudes to have
an improved UV behaviour. For instance, the four-graviton three-loop amplitude in N' = 4
supergravity turns out to be UV finite [I], 2], despite the construction of a candidate counter-
term [3]. (Some early discussion of the three-loop divergence in N' = 4 has appeared in [4],

and recent alternative arguments have been given in [5].)

The UV behaviour of extended supergravity theories is constrained in string theory by
non-renormalisation theorems that give rise in the field theory limit to supersymmetric
protection for potential counter-terms. In maximal supergravity, the absence of divergences
untill six loops in four dimensions [6-8] is indeed a consequence of the supersymmetric
protection for %—, }L— and %—BPS operators in string [9, [10] or field theory [I1) 12]. In half-
maximal supergravity, it was shown recently [2] that the absence of three-loop divergence
in the four-graviton amplitude in four dimensions is a consequence of the protection of
the %—BPS R* coupling from perturbative quantum corrections beyond one-loop in heterotic
models. We refer to [I3HI5] for a discussion of the non-renormalisation theorems in heterotic
string.

Maximal supergravity is unique in any dimension, and corresponds to the massless sector

of type II string theory compactified on a torus. Duality symmetries relate different phases

of the theory and strongly constrain its UV behaviour [10, 12} T6-19].

On the contrary, half-maximal supergravity (coupled to vector multiplets) is not unique
and can be obtained in the low-energy limit of (4,0) string theory models—with all the
space-time supersymmetries coming from the world-sheet left-moving sector—or (2, 2) string
theory models—with the space-time supersymmetries originating both from the world-sheet
left-moving and right-moving sectors. The two constructions give rise to different low-energy
supergravity theories with a different identification of the moduli.

In this work we analyze the properties of the four-graviton amplitude at one-loop in pure
N = 4 supergravity in four dimensions. We compute the genus one string theory amplitude
in different models and extract its field theory limit. This method has been pioneered by
[20]. Tt has then been developped intensively for gauge theory amplitudes by [21], 22], then

2



applied to gravity amplitudes in [23] and [24]. In this work we will follow more closely the
formulation given in [25].

We consider three classes of four dimensional string models. The first class, on which
was based the analysis in [2], are heterotic string models. They have (4,0) supersymmetry
and 4 < n, < 22 vector multiplets. The models of the second class also carry (4,0) su-
persymmetry, they are type II asymmetric orbifolds. We will study a model with n, = 0
(the Dabholkar-Harvey construction, see [26]) and a model with n, = 6. The third class is
composed of type II symmetric orbifolds with (2,2) supersymmetry. For a given number of
vector multiplets, the (4,0) models are related to one another by strong-weak S-duality and
related to (2,2) models by U-duality [27), 28]. Several tests of the duality relations between
orbifold models have been given in [29].

The string theory constructions generically contain matter vector multiplets. By com-
paring models with n, # 0 vector multiplets to a model where n, = 0, we directly check
that one can simply subtract these contributions and extract the pure N’ = 4 supergravity
contributions in four dimensions.

We shall show that the four-graviton amplitudes extracted from the (4, 0) string models
match that obtained in [24, B0-35]. We however note that all of those constructions are
based on a (4, 0) construction, while our analysis covers both the (4,0) and a (2,2) models.
The four-graviton amplitudes are expressed in a supersymmetric decomposition into N =
4 s spin s supermultiplets with s = 1,%,2, as in [24, B0H35]. The N = 8 and N = 6
supermultiplets have the same integrands in all the models, while the contributions of the
N = 4 multiplets have different integrands. Despite the absence of obvious relation between
the integrands of the two models, the amplitudes turn out to be equal after integration in all
the string theory models. In a nutshell, we find that the four-graviton one-loop field theory
amplitudes in the (2,2) construction are identical to the (4,0) ones.

The paper is organized as follows. For each model we evaluate the one-loop four-graviton
string theory amplitudes in section [[I} In section [[TI] we compare the expressions that we
obtained and check that they are compatible with our expectations from string dualities.
We then extract and evaluate the field theory limit in the regime o — 0 of those string
amplitudes in section [[V] This gives us the field theory four-graviton one-loop amplitudes
for pure N = 4 supergravity. Section [V]contains our conclusions. Finally, the appendices [A]

and [B| contain details about our conventions and the properties of the CFT building blocks
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of our string theory models.

II. ONE-LOOP STRING THEORY AMPLITUDES IN (4,0) AND (2,2) MODELS

In this section, we compute the one-loop four-graviton amplitudes in four dimensional
N =4 (4,0) and (2,2) string theory models. Their massless spectrum contains an N’ = 4
supergravity multiplet coupled to n, N = 4 vector multiplets. Since the heterotic string is
made of the tensor product of a left moving superstring by a right moving bosonic string, it

only gives rise to (4,0) models. However, type II compactifications provide the freedom to

build (4, 0) and (2, 2) models [36].

A. Heterotic CHL models

We evaluate the one-loop four-graviton amplitudes in heterotic string CHL models in four
dimensions [37-39]. Their low-energy limits are (4, 0) supergravity models with 4 < n, < 22
vector supermultiplets matter fields. We first comment on the moduli space of the model,
then write the string theory one-loop amplitude and finally compute the CHL partition
function. This allows us to extract the massless states contribution to the integrand of the
field theory limit.

These models have the following moduli space:
\SU(1,1)/U(1) x SO(6,n,; Z)\SO(6,n,)/SO(6) x SO(n,), (I1.1)

where n, is number of vector multiplets, and T" is a discrete subgroup of SL(2,Z). For in-
stance, I' = SL(2,Z) for n, = 22 and I' = I'1(N) for the Zy CHL (4, 0) orbifold. (We refer to
appendix [A 3| for a definition of the congruence subgroups of SL(2,Z).) The scalar manifold
SU(1,1)/U(1) is parametrized by the axion-dilaton in the N' = 4 gravity supermultiplet.
The generic structure of the amplitude has been described in [2]. We will use the same

notations and conventions. The four—graviton amplitude takes the following forn(l]

(nw) 77 4 d*v; 0Q z(w B
MG = tgF / / 11 Q20 WP (11.2)
T<icj<a -
! The tg tensor defined in [0, appendix 9.A] is given by tgF?* = 4tr(FOFRFGFA)

tr(F(l)F(Q))tr(F(3)F(4)) + perms(2,3,4), where the traces are taken over the Lorentz indices. Setting
the coupling constant to one, tgF* = stA¢¢(1,2,3,4) where A'"¢¢(1,2,3,4) is the color stripped ordered

tree amplitude between four gluons.



where D = 10 — d, and NV is the normalization constant of the amplitude. The domains of
integration are F = {17 = 1 +imo; |11 | < %, 172> 1,7 > 0} and T := {v = vy +iwy; || <

%,O < vy <7} Then,
(L @ - 0X (et )
(20‘/)4<H?:1 eik]-~X(1/j)> ’

is the kinematical factor coming from the Wick contractions of the bosonic vertex operators

AN B

and the plane-wave part is given by <H?:1 e X)) = exp(Q) with

Q= Y 20k kP(vy), (I1.4)
1<i<j<4
where we have made use of the notation v;; := v; — v;. Using the result of [41] with our

normalizations we explicitly write

4
_ = 1~_~_~~_ 1~~~~_ _
wh = H er-QT+2—O/ (€1-Q1 €3-Qs €3-E4T(V34)+p€7“m8)+m (€€ €3-€4 T (112)T (v34)+perms)
r=1
(IL5)

where we have introduced

ol = Z k0P (v |7); T (v) == &*P(v|7), (IL.6)

r=1
with P(z) the genus one bosonic propagator. We refer to appendix for definitions and
conventions.

The CHL models studied in this work are asymmetric Zy orbifolds of the bosonic sec-
tor (in our case the right moving sector) of the heterotic string compactified on 7° x S*.
Geometrically, the orbifold rotates N groups of ¢ bosonic fields X* belonging either to the
internal T'¢ either to the T° and acts as an order N shift on the S'. More precisely,
if we take a boson X? of the (p + 1)-th group (p = 0,..., N — 1) of £ bosons we have
a€{pl,pl+1,...,p0 + (£ —1)} and for twists g/2,h/2 € {0,1/N,...,(N —1)/N} we get

Xz +7)= e”gp/N)_(“(z) ,

XUz +1) =e™P/NX(2), (I1.7)
We will consider models with (N,n,,¢) € {(1,22,16),(2,14,8),(3,10,6),(5,6,4),
(7,4,3)}. It is in principle possible to build models with (N,n,,¢) = (11,2,2) and

(N,n,,0) = (23,0,1) and thus decouple totally the matter fields, but it is then required to

compactify the theory on a seven- and eight-dimensional torus respectively. We will not
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comment about it further, since we have anyway a type Il superstring compactification with
(4,0) supersymmetry that already has n, = 0 that we discuss in section . This issue
could have been important, but it appears that at one-loop in the field theory limit there
are no problem to decouple the vector multiplets to obtain pure N/ = 4 supergravity. The

partition function of the right moving CFT is given by
(nw)
Z(4,0)het T |G| Z 40)het (IL.8)

where |G| is the order of the orbifold group i.e. |G| = N. The twisted conformal blocks Z"

are a product of the oscillator and zero mode part

Zha =20z (11.9)

(4,0)het — “osc latt

In the field theory limit only the massless states from the h = 0 sector will contribute and

we are left with:
(nw) L o0 0,
Z(470)h€t( ) N 2(4 0) het Z z 4go)het (1110)
{9}

The untwisted partition function (¢ = h = 0) with generic diagonal Wilson lines A, as

required by modular invariance, is

ZO ,0 F(6,24)(G7 A)

(4, O)het( T) = () (IT.11)

where I'(g 24 (G, A) is the lattice sum for the Narain lattice P®? TV & T g, g with Wilson
lines [42]. Tt drops out in the field theory limit where the radii of compactification R ~ v/a/

are sent to zero and we are left with the part coming from the oscillators

1
0,0
Z(4,o)het(7) — 7724—(7‘) . (I1.12)

At a generic point in the moduli space, the 480 gauge bosons of the adjoint representation
of Eg x Fg get masses due to Wilson lines, and only the £ gauge bosons of the U(1)* group
left invariant by the orbifold action [43], 44] stay in the matter massless spectrum.

The oscillator part is computed to be
N-1 '
ze=> 11 (%2“”“”) , (IL.13)
{g,h} p=0

where the twisted bosonic chiral blocks Z;?g are given in appendix . For h = 0, Z2%9 is

osc

independent of g when N is prime and it can be computed explicitly. It is the inverse of
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the unique cusp form fi.(7) = (n(7)n(N7))k+2 for I';(N) of modular weight ¢ = k + 2 =
24/(N + 1) with n, = 2¢ — 2 as determined in [43, 44]. Then (II.10]) writes

1 1 N -1
Saona = (m(ﬂ)% TR ) | (IL.14)

To conclude this section, we write the part of the integrand of (I1.2)) that will contribute

in the field theory limit. When o/ — 0, the region of the fundamental domain of integration
F of interest is the large 7 region, such that ¢t = o/7 stays constant. Then, the objects that

we have introduced admit an expansion in the variable ¢ = ¢*™ — 0. We find
1 _
Z(4,0)het = 5 +24+n,+0(q) . (IL.15)

Putting everything together and using the expansions given in (A.16]), we find that the
integrand in ([I.2)) is given by

ZamnaWPe? = T (WPe9) | + (n, +2) (WPe2) | +0(q)) - (11.16)

Order ¢ coefficients are present because of the 1/ chiral tachyonic pole in the non-
supersymmetric sector of the theory. Since the integral over 7 of ¢! (WB eg) ;0 vanishes,
as a consequence of the level matching condition, we did not write it. We introduce A, the
massless sector contribution to the field theory limit of the amplitude at the leading order

in o, for later use in sections [[I1 and

n 1 /m\4 _ , _ _
A =5 (5) 1P VP11 +a'8Q) + W21 Qly + (m, + 2WP)p) ,  (IL17)

where we have made used of the notations for the g-expansion

WE = WE| o+ qaWP|, + o(3),
Q=-7d1Q+déQ+qQl,+79l;+oq). (IT.18)

B. Type II asymmetric orbifold

In this section we consider type II string theory on two different kinds of asymmetric
orbifolds. They lead to (4,0) models with a moduli space given in , where the axion-
dilaton parametrizes the SU(1,1)/U(1) factor. The first one is a Zy orbifold with n, = 6.
The others are the Dabholkar-Harvey models [26] 45], they have n, = 0 vector multiplet.
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First, we give a general formula for the treatment of those asymmetric orbifolds. We then
study in detail the partition function of two particular models and extract the contribution
of massless states to the integrand of the field theory limit of their amplitudes. A generic
expression for the scattering amplitude of four gravitons at one-loop in type IIA and IIB
superstring is:

d? d? dv;
40)1] N/ T/T H Vi 0@ (I1.19)

1<i<j<4

a+b+ab

a,b=0,1
1 _ iz, % _T _ ~
> ﬁ Z (_1)a+b+uab(_1)(}(a,b,g,h) Zg’f;]Wa,Ea
| |a,5:0,1 ’
g,h

where N is the same normalization factor as for the heterotic string amplitude and
C(a,b,g,h) is a model dependent phase factor determined by modular invariance and
discussed below. We have introduced the chiral partition functions in the (a,b)-spin struc-

ture

6 [5] (0In)*
n(r)e
The value of p determines the chirality of the theory: pu = 0 for type IIA and g = 1 for

Z,, = Z,=0. (I1.20)

type IIB. The partition function in a twisted sector (h,g) of the orbifold is denoted Zg’gg :
Notice that the four dimensional fermions are not twisted, so the vanishing of their partition
function in the (a,b) = (1, 1) sector holds for a (g, h)-twisted sector: Z_ﬁ 7 = 0. This is fully
consistent with the fact that due to the lack of fermionic zero modes, this amplitude does
not receive any contributions from the odd/odd, odd/even or even/odd spin structures. We

use the holomorphic factorization of the (0, 0)-ghost picture graviton vector operators as
V00 — / Pz €D V(2)ED . V(z) e XED (I1.21)

with
70 o ()

BY i . V(z)=¢ B2 gk o, (11.22)

where we have introduced the field strengths F, ng,) = eg)ki ,— ek x and F ﬁi) = €ff) kiy— ks -

€D V(z) =D . 9X —i

The correlators of the vertex operators in the (a, b)-spin structure are given by W, ;, and

V_V(—z’l; defined by

<H§:1 e0) .V (z;) etk Xy, ~ <H§:1 e V(%) ez’kj-X(Zj)>a£
(20/)4<H?:1 eiks X (2)) ’ ab — (20/)4<H?:1 etk X (%)) ’

a,b —

(11.23)



We decompose the W, ;, into one part that depends on the spin structure (a,b), denoted
WF

ap» and another independent of the spin structure wh
Wap = Wio + WP, (I1.24)

this last term being identical to the one given in (II.3]). The spin structure dependent part

is given by the following fermionic Wick’s contractions:
Wiy = Ssap + Szian (I1.25)

where S,,.,5 arise from Wick contracting n pairs of world-sheet fermions. Note that the
contractions involving three pairs of fermion turns out to vanish in all the type II models by
symmetry. We introduce the notation Z{(i,...),(j,...)}:{1,2,3,4} -+ - for the sum over the ordered
partitions of {1,2,3,4} into two sets where the partitions {(1,2,3),1} and {(1,3,2),1} are
considered to be independent. In that manner, the two terms in can be written

explicitly:
1 N
84;11,1, = ﬁ Z Sa,b(zij)sa,b<zjz’)Sa,b(Zkl)Sa,b(Zlk) tI‘(F(Z)F(])) tI‘(F(k)F(l))
{(i7j)1(kvl)}:{1721374}
1 N
~ 53 Sa7b(z,~j)Sa7b(zjk)Savb(zkl)S%b(zh) tl"(F(Z)F(J)F(k)F(l)) (II26>
{(i,5,k,01)}={1,2,3,4}
1 (@) () L w0
S2;a,b = —? Z Sa,b(zij)sa,b<zji) tr(F F ) ( Qk 6 Ql -+ FE € T(Zkl)> .

{(i>j)7(kvl)}:{1727394}

Because the orbifold action only affects the right-moving fermionic zero modes, the left-

movers are untouched and Riemann’s identities imply (see appendix for details)

4
Y (1) Z, , Wy = (g) to . (I1.27)
a,b=0,1
ab=0

Notice that a contribution with less than four fermionic contractions vanishes. We now

rewrite ({[1.19):

d*r d?v;
Mo —/\/ — t8F4 / 1T Vi o (11.28)
F T T 1<icj<a
1
30 Z< 1>“*b“““’< 1)C@ban) ZhIV, ;.
a,b=0,1
g,h



For the class of asymmetric Zy orbifolds with n, vector multiplets studied here, the partition
function fobsym) = |G|t > gyh(—l)c(%b’g’h)Zg”f has the following low energy expansion
2 = tnet24ola);  ZE = —— (Dol ZET =0+ 0lg).
) \/a ’ \/a ’
(I1.29)
Because the four dimensional fermionic zero modes are not saturated we have Z{'}""™ = 0.

Since in those constructions no massless mode arises in the twisted h # 0 sector, this

sector decouples. Hence, at o(g) one has the following relation:

D7 (1) R ZEINY, s Woo — Woalya + (e +2)Woo + W)l . (IL30)

a,b=0,1
The contribution of massless states to the field theory amplitude is given by

n 1 /m\4 _ _ _ _
Aoy = 4 (§> tsF* (Woo = Woa)lyg + (o + 2)(Woo + Woa)lp) - (I1.31)

Using the Riemann identity ([1.27]) we can rewrite this expression in the following form

(nv) L m\4 4 ™t~y y A y
A =7 (5) 17 ((5) 17 + (00 = 6)Woo + Woa)lp +16Wiol ) . (11.32)

Higher powers of ¢ in W, or in Q are suppressed in the field theory limit that we discuss
in section [[V]

At this level, this expression is not identical to the one derived in the heterotic construc-
tion (I1.17). The type II and heterotic (4,0) string models with n, vector multiplets are
dual to each other under the transformation S — —1/S where S is the axion-dilaton scalar
in the NV = 4 supergravity multiplet. We will see in section [[TI] that for the four-graviton
amplitudes we obtain the same answer after integrating out the real parts of the positions
of the vertex operators.

We now illustrate this analysis on the examples of the asymmetric orbifold with six or

zero vector multiplets.

1. Ezample: a model with six vector multiplets

Let us compute the partition function of the asymmetric orbifold obtained by the action of
the right-moving fermion counting operator (—1)f% and a Z, action on the torus T° [29, [46].

The effect of the (—1)I% orbifold is to project out the sixteen vector multiplets arising from

10



the R/R sector, while preserving supersymmetry on the right moving sector. The moduli
space of the theory is given by with n, = 6 and I" = I'(2) (see [29] for instance).
The partition function for the (4,0) CFT Z, asymmetric orbifold model Z{Ef;fym)’("”:@ =
% Zg,h Zgl? with
ZVI(w) == (—1)90T T Z Ty Tl ) B } : (11.33)

where the shifted lattice sum I'(; ,) [Z ] is given in [29] and recalled in appendix The chiral
blocks Z,; have been defined in and I'(4 4) is the lattice sum of the T' 4. Using the fact
that F&Z) [Z] reduces to 0 for h =1, to 1 for h = 0 and that I'4 4y — 1 in the field theory
limit, we see that the partition function is unchanged in the sectors (a,b) = (0,0) and (0, 1)
while for the (a,b) = (1,0) sector, the (—1)* in (I1.33]) cancels the partition function when

summing over g. One obtains the following result :
Zéi)sym)’(nv:@ =Z00; Z(g?lsym)’(nv:m =201 Zl(:l(f =0 . (11.34)

Using (|A.6]), one checks directly that it corresponds to (I1.29) with n, = 6.

2. Ezxample: models with zero vector multiplets

Now we consider the type II asymmetric orbifold models with zero vector multiplets
constructed in [26] and discussed in [45].

Those models are compactifications of the type II superstring on a six dimensional torus
with an appropriate choice for the value of the metric GG;; and B-field B;;. The Narain lattice

is given by I'P?H = {p1. pr;pr, pr € Aw(9), pr — pr € Ar(g)} where Ar(g) is the root lattice

of a simply laced semi-simple Lie algebra g, and Ay (g) is the weight lattice.

The asymmetric orbifold action is given by |pr, pr) — €*™L L |pr, grpr) Where gg is an
element of the Weyl group of g and vy, is a shift vector appropriately chosen to avoid any
massless states in the twisted sector [26, 45]. With such a choice of shift vector and because
the asymmetric orbifold action leaves pj, invariant, we have (4,0) model of four dimensional
supergravity with no vector multiplets.

The partition function is given by

a 3
aym _ O3] 1 1B (IL.35)



where the sum runs over the sectors of the orbifold. For instance, in the Zg model of

Dabholkar-Harvey, one has g; € j x {%, %, S} with j = 0,...,8 and the same for h;. The

twisted conformal blocks are:

(i[@})g X (ﬁ)G if (g,h) = (0,0) mod 2,

Zh _ o (IL.36)
gp@wgwq%%%m%ijw¢(am mod 2.
1+g

The phase in (IT.19) is determined by modular invariance to be C(@, b, gr, hg) = o, (agh+

bhip + ).
In the field theory limit, we perform the low energy expansion of this partition function
and we find that it takes the following form for all of the models in [20] [45]:

asym),(n,= 1 asym),(n,= 1 asym),(n,=
2y =0 — =y 94o(q); 25T = — —240(q); 2G4 = 04 0(q),

Vi Vi
(I1.37)

which is ([1.29)) with n, = 0 as expected.

C. Type II Symmetric orbifold

In this section we consider (2,2) models of four dimensional N = 4 supergravity. These
models can be obtained from the compactification of type II string theory on symmetric
orbifolds of K3 x T?. The difference with the heterotic models considered in section is
that the scalar parametrizing the coset space SU(1,1)/U(1) that used to be the axio-dilaton
S is now the Kéahler modulus of the two-torus T2 for the type IIA case or complex structure
modulus for the type IIB case. The non-perturbative duality relation between these two

models is discussed in details in [29, [39).

Models with n, > 2 have been constructed in [36]. The model with n, = 22 is a
T*/Zy x T? orbifold, and the following models with n, € {14,10} are successive Z, orbifolds
of the first one. The model with n,, = 6 is a freely acting Z, orbifold of the T*/Zy x T? theory
that simply projects out the sixteen vector multiplets of the R/R sector. The four-graviton

amplitude can be effectively written in terms of the (g, h) sectors of the first Zs orbifold of
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the 7%, and writes

Ny d Vz
M) = N /T 11 e (IL38)

1<i<j<4

a+b+ab a+b+ab zh.g,(nv) Zh,g,(nv) Ay - _
4|G| Z Z (=1) Z.h Z@j; WaoWap + Wapas) s

—0 a,b=0,1
a,b=0,1

where N is the same overall normalization as for the previous amplitudes and Zhg () g

defined in appendix @ The term W, ;.5 is a mixed term made of contractions between
holomorphic and anti-holomorphic fields. It does not appear in the (4,0) constructions
since the left /right contractions vanish due to the totally unbroken supersymmetry in the
left-moving sector.

Two types of contributions arise from the mixed correlators

(e 9XED . 9X : eV) . 9XEV) . 9X - Hle e"kT'X(ZT))a,b@g.
4 ik X (2 ’
(20/)4<Hj e ( )>
<€(l) . 0X W) . O0X¢€ (k) . aX el aX H lkr‘X(ZT)>a,b;&,i)
(20& ) <Hj:1 etk; X(z])> )

with at least one OPE between an holomorphic and an anti-holomorphic operator. Ex-

1 _
Wa,b;&j) 7

(11.39)

Wi ah = (ig) # (k1)

plicitely, we find:

Wavbas = D, (Sas(vig))’(

{i.4,k,1}€{1,2,3,4}

a())? X tr(FOFWD )t (FE pO)
(4,5)#(k,1)

x (e(k).g(i)i'(k DD - eDT () + €O . Q 9. Q)+ (i ¢ )
k). Qk(e( ¢@) () .9, T(l i) ) J)T(l j)~(l 5, ))

* Z |Sap(vij)|* % (tr(FO FU)))2

{z’jkl}e{l 2,3,4}

X (“f EOF (e, 1) (V- DT (1, k) + O - g e<k>-Qk)+(km)) (I1.40)

where

T(i,7) = 0,05, P(v; — vj|T) = T (i — 0P (y; — Vj)) . (I1.41)

4 T2

Forgetting about the lattice sum, which at any rate is equal to one in the field theory limit,

@[l ome 5] one 5] o) 03] 0ir)o [ 52] (olr)

()6 | 14 (01))2 ()0 [ 1] (0)
(I1.42)

— Ch(_l)(a-i-h)g
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where ¢, is an effective number whose value depends on h in the following way: ¢y = 1 and
c1 = v/n, — 6. This number represents the successive halving of the number of twisted R/R
states. We refer to appendix |Bl for details.

The sum over the spin structures in the untwisted sector (g,h) = (0,0) is once again

performed using Riemann’s identities:

4
3 (-l — (g) toF. (I1.43)
a,b=0,1
ab=0

In the twisted sectors (h,g) # (0,0) we remark that Zg:ll = Zg:é, 2117’8 = Z&’g, leé = 2,1,
and Z&”? = Zﬁ’é = ZS”& = 0, which gives for the chiral blocks in ([I.3§]):

(=D ZIWL, = 205 Woo —Wan),

a,b=0,1
ab=0

ST ()W, = 208 (Woo — Who) (I1.44)

a,b=0,1
ab=0

Z ( 1)a+b+abzl 1Wab — (%:11 (W()J . Wl,O) )

a,b=0,1
ab=0

Therefore the factorized terms in the correlator take the simplified form

§ : § : a+b+ab 1)a+5+‘_’Z_’Zh’Ith’9W oW, s
a,b “ab """,

4|G| g,h @,b=0,1
a,b=0,1
1 /m\8 1 2 1 2 1 2

(IL.45)

where tgtgR* is the Lorentz scalar built from four powers of the Riemann tensor arising at
the linearized level as the product tsts R* = tgF'* tsF™.

The mixed terms can be treated in the same way with the result

a+b+ab a+b+ab zh,g Zh,g _
Z Z 1) Za,b Za,[_) Wa,b;&,b

4|G| h a,b=0,1
a, b= 0,1
1 0 1 1,02 1 1,12
=~ 1Z051* Wo000 — Woron) + < 1200 P Wo000 = Wros) + 2 1 201 P Woai01 — Wit
8 8 8

(I1.46)

2 This Lorentz scalar is the one obtained from the four-graviton tree amplitude tgtg R* = stuM'"¢¢(1,2, 3, 4)

setting Newton’s constant to one.
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Since the conformal blocks ZZ’bg have the g-expansion (see (A.3)

1
205 = 7t 4/g+0(q); 250 =4vn, —6+0(q); 251 =4, —6+0(q),  (I1.47)

the massless contribution to the integrand of (I1.45]) is given by

1Ty |
Ay =5 () tstsB + 5 [Woolya = Woulva

2 1
+ 3 (W0,0;0,0|\/a - Wo,l;o,ﬂ\/a)
)

q%q° — 2W1,0;1,0|q0;[70> . (11.48)

2
+2(n, = 6) (|Woolo = Wigl| + [Wailg = Wiole

+2(n, — 6) (W0,0;0,0|q0;qo + Wo.1:01

We notice that the bosonic piece W in W, ;, in ([1.24)) cancels in each term of the previous
expression, due to the minus sign between the W, ’s in the squares.

The integrand of the four-graviton amplitude takes a different form in the (2,2) con-
struction compared with the expression for the (4,0) constructions in heterotic in
and asymmetric type II models in ([I.32]). We will show that after taking the field theory
limit and performing the integrals the amplitudes will turn out to be the same.

As mentioned above, for a given number of vector multiplets the type II (2,2) models are
only non-perturbatively equivalent (U-duality) to the (4,0) models. However, we will see
that this non-perturbative duality does not affect the perturbative one-loop multi-graviton
amplitudes. Nevertheless, we expect that both o' corrections to those amplitudes and am-
plitudes with external scalars and vectors should be model dependent.

In the next section, we analyze the relationships between the string theory models.

III. COMPARISON OF THE STRING MODELS
A. Massless spectrum

The spectrum of the type II superstring in ten dimensions is given by the following
GSO sectors: the graviton Gy, the B-field By, and the dilaton ® come from the NS/NS
sector, the gravitini ¢ and the dilatini A come from the R/NS and NS/R sectors, while the
one-form Cj; and three-form Cy;np come from the R/R sector in type the IIA string. The
dimensional reduction of type II string on a torus preserves all of the thirty-two supercharges

and leads to the N' = 8 supergravity multiplet in four dimensions.
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The reduction to N’ = 4 supersymmetry preserves sixteen supercharges and leads to the
following content. The NS/NS sector contributes to the N' = 4 supergravity multiplet and
to six vector multiplets. The R/R sector contributes to the N' = 4 spin % multiplet and to
the vector multiplets with a multiplicity depending on the model.

In the partition function, the first Riemann vanishing identity

> (—1etttetz,, =0, (IIL1)

a,b=0,1
reflects the action of the N' = 4 supersymmetry inside the one-loop amplitudes in the
following manner. The ¢-expansion of this identity gives
(i +8+ 0(\/§)> — (i -8+ 0(\/§)> — (164 o0(q)) =0. (I11.2)
Vi Vi
The first two terms are the expansion of Z and Z ;, the last one is the expansion of Z .
The cancellation of the 1/,/q terms shows that the GSO projection eliminates the tachyon
from the spectrum, and at the order ¢° the cancellation results in the matching between the
bosonic and fermionic degrees of freedom.
In the amplitudes, chiral N' = 4 supersymmetry implies the famous Riemann identi-

ties, stating that for 0 < n < 3 external legs, the one-loop n-point amplitude vanish (see

eq. (A.25)). At four points it gives:

4
> (=) Z Wy, = (f) ts Pt (I11.3)

2
a,b=0,1

In W, see ([1.25)), the term independent of the spin structure W# and the terms with less
than four fermionic contractions Sa.,;, cancel in the previous identity. The cancellation of

the tachyon yields at the first order in the g-expansion of ([1I.3])
Woolge — Woalpe =0. (111.4)

The next term in the expansion gives an identity describing the propagation of the N = 4

super-Yang-Mills multiplet in the loop

T\ 4
8(Waolgo + Woule = 2Wrolw) + Waolya = Woalya) = (5) tsF*. (TIL.5)

In this equation, one should have vectors, spinors and scalars propagating according to the

sector of the theory. In Wy, a = 0 is the NS sector, and a = 1 is the Ramond sector. The
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scalars have already been identified in (III.4]) and correspond to Wy o|,0 +Who,1]40. The vector,

being a massless bosonic degree of freedom should then correspond to Wo,o|\/§ — Woilys-
Finally, the fermions correspond to W o|,0. The factor of eight in front of the first term
is the number of degree of freedom of a vector in ten dimension, one can check that the

number of bosonic degrees of freedom match the number of fermionic degrees of freedom.

B. Amplitudes and supersymmetry

In this section we discuss the relationships between the four-graviton amplitudes in the
various N' = 4 supergravity models in the field theory limit. We apply the logic of the
previous section about the spectrum of left or right movers to the tensor product spectrum
and see that we can precisely identify the contributions to the amplitude, both in the (4, 0)
and (2,2) models. The complete evaluation of the amplitudes will be performed in section

As mentioned above, the field theory limit is obtained by considering the large 7 region,

and the integrand of the field theory amplitude is given by

14
2
A :/1 [T v A%, (I11.6)
—3 i=1
where X € {(4,0)het, (4,0)I1, (2,2)} indicates the model, as in (I1.17)), (I1.32]) or (I1.48)

respectively.
At one-loop this quantity is the sum of the contribution from n, N = 4 vector (spin 1)

supermultiplets running in the loop and the N' = 4 spin-2 supermultiplet
AR = gz 2 g5 b (I11.7)

For the case of the type Il asymmetric orbifold models with n, vector multiplets we

deduce from ([[1.32))

14

spin 1 /m\4 2

A(fl),o)lll 1 (5) tsF* /1 Hd%l Woolgo +Woilge) - (IIL.8)
~2 =1

Since tgF* is the supersymetric left-moving sector contribution (recall the supersymmetry
identity in (IIL3)), it corresponds to an A" = 4 vector multiplet and we recognize in (III.8)

the product of this multiplet with the scalar from the right-moving sector:

(11,1/24,06)n=1 = (11,1/24,06)Ar=4 ® (01)ar=0 - (I11.9)
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This agrees with the identification made in the previous subsection where Wy o|,0 + Wo 1|0

was argued to be a scalar contribution.

The contribution from the N = 4 supergravity multiplet running in the loop is given by

Aspz'n 2 1 <Z
( 4

v
i =1 (5) / L vt [20Wo0l + Woal) + Wasl s = Woalya)] - (TIL10)

—3 =1
The factor of 2 is number of degrees of freedom of a vector in four dimensions. Since
Z15"™ = 0+o(q) for the (4,0) model asymmetric orbifold construction, the integrand of the
four-graviton amplitude in does not receive any contribution from the right moving
R sector. Stated differently, the absence of W, o implies that both R/R and NS/R sectors
are projected out, leaving only the contribution from the NS/NS and R/NS. Thus, the four
N = 4 spin % supermultiplets and sixteen N = 4 spin 1 supermultiplets are projected
out, leaving at most six vector multiplets. This number is further reduced to zero in the

Dabholkar-Harvey construction [26].

From ([I1.10) we recognize that the N/ = 4 supergravity multiplet is obtained by the

following tensor product

(217 3/247 167 1/247 02)./\/:4 - (117 1/247 06)/\/:4 ® (11)./\/:0 . (11111)

The two real scalars arise from the trace part and the anti-symmetric part (after dualisation
in four dimensions) of the tensorial product of the two vectors. Using the identification of
Woolg + Woalge with a scalar contribution and the equation (A.31) we can now identify
Wl N Wl Vi with the contribution of a vector and two scalars. This confirms the

identification of W, o|,0 with a spin % contribution in the end of section [[II Al

Since

(3/21,14,1/2641, 0a12)v=1 = (11,1/24,06) =1 @ (1/2) n=0 , (IIL.12)

we see that removing the four spin % (that is, the term W g|p0) of the right-moving mass-
less spectrum of the string theory construction in asymmetric type II models removes the
contribution from the massless spin % to the amplitudes. For the asymmetric type II model,
using , we can present the contribution from the N = 4 supergravity multiplet in
a form that reflects the decomposition of the N' = 8 supergravity multiplet into N = 4
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supermultiplets

(217 3/287 1287 1/2567 O70)N=8 = (217 3/247 167 1/247 01+1)N=4

@ 4(3/21, 14, 1/264-1704-{-41)./\/':4 (11113)
@6 (117 1/247 OG)N:4 )
as
spin 2 spin 2 spin 1 spin 5
A(ZO)H = J\If’zs —6 A(Zo)u —4 A(4,0)12} J (II1.14)
where we have introduced the A/ = 8 spin 2 supergravity contribution
. 1 8
A2 = 2 <E> tets R, (IIL.15)
4 \2
and the N = 4 spin % supergravity contribution
(II1.16)

1 4
spin 3 4 2
AP 2 (g) t8F4/1HdVi1W1,o|qo.

(4,011 —
—3 =1

For the (2,2) models the contribution of the massless states to the amplitude is given

)
14
+ 2/ ) deil Wo0:0.0lg0:0 + Worolgoi0 — 2Wroolgoe) - (1IL17)

T2 =1

in ([[.48)). The contribution from a vector multiplet is

spin 1
apyt=2f

[N

2
+ )Wo,lfqo — Wl,O‘qO

4
[T ()Wo,0|q° — Wil
=1

ol

. 2 2 2
Usmg that ‘W070|q0 — W1,0|q0} = ‘W071|q0 — W170|q0| = %‘W070|q0 + W0,1|q0 — 2Wl,0|q0‘ as a

consequence of ([II.4), we can rewrite this as

N

. 2
spin 1 1 2
A(272) = /1 | | dl/z- ’W070|q0 + W0’1|q0 — 2W1?0|q0|
T2 1<igy<4

1 4
2
+ 2/ T v Wogooleg + Woroaleg = 2Wionolgge), (IL18)

—3 =1

showing that this spin 1 contribution in the (2,2) models arises as the product of two N' = 2
hypermultiplets @ = (2 X 1/27,2 X 02) =2

2% (11,1/24,06)p=4 = (2 X 1/21,2 X 02)pr=2 ® (2 X 1/21,2 X 03)pr=2 . (II1.19)
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The contribution from the A/ = 4 supergravity multiplet running in the loop (obtained

from (I1.48) by setting n, = 0) can be presented in a form reflecting the decomposition

in (TIT.13)

spin 3

spin 2 spin 2 spin 1 5
A(g,z) = AV - 6/4(5,2) - 4A(2,2) ?, (I11.20)
spin 3
where A(S 5~ 18 given by
spin 3 I spin2 1 : 1 2
A(z,z) = TgiwW=s T3y | H dv; |W0,o|\/a - W0,1|\/§‘ . (IIL.21)

T2 1<i<j<4
C. Comparing of the string models

The integrands of the amplitudes in the two (4,0) models in and and the
(2,2) models in take a different form. In this section we show first the equality
between the integrands of the (4,0) models, then that any difference with the (2,2) models
can be attributed to the contribution of the vector multiplets.

The comparison is done in the field theory limit where 75 — +o00 and o — 0 with ¢t = o'y
hold fixed. The real parts of the v; variables are integrated over the range —% <yl < % In
this limit the position of the vertex operators scale as v; = v} + imyw;. The positions of the
external legs on the loop are then denoted by 0 < w; < 1 and are ordered according to the

kinematical region under consideration. In this section we discuss the integration over the

v}’s only; the integration over the w;’s will be performed in section .

1. Comparing the (4,0) models

In the heterotic string amplitude (I1.17)), we can identify two distinct contributions; n,
vector multiplets and one N = 4 supergravity multiplet running in the loop. At the leading

order in ¢, the contribution of the vector multiplets is given by:

1 4
; 1 /m\4 2 _
spin 1
Al ophet = 5 <§> tsF* / 1 [[avi W (111.22)
—3 i=1

and the one of the supergravity multiplet by:

1 4

spin 1 T\ 4 2 — — _

A =5 (3) B /1 [T av! (V7151 + 0'8Q) + W0 Qs + 2W7|0) . (111.23)
—211=1
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The vector multiplets contributions take different forms in the heterotic construction
n ([I1.22)) and the type II models in ([II.8]). However using the expansion of the fermionic
propagators given in appendix , it is not difficult to perform the integration over v}

in ([IL.8]). We see that

[

/ H dv; Wl + Wailp) = 0. (I11.24)

3 1<i<j<4

Thus there only remain the bosonic part of W,;, and we find that the contribution of the

vector multiplet is the same in the heterotic and asymmetric orbifold constructions

Aspin 1 pspin 1 (11125)

(4,0)het — “}(4,0)I1

The case of the N' = 4 super-graviton is a little more involved. In order to simplify the
argument we make the following choice of helicity to deal with more manageable expressions:
(1t+,27+.377,477). We set as well the reference momenta ¢;’s for graviton i = 1,--- ,4
as follows, ¢ = ¢2 = k3 and g3 = q4 = k1. At four points in supersymmetric theories,
amplitudes with more + or — helicity states vanish. In that manner the covariant quantities
tsF'* and tgtgR* are written in the spinor helicity formalis s F* = (ky ko)” [ks kq]?, and
AtgtsR* = (ky ko)* [ks k]'. With this choice of gauge eV - e® = 0 for k = 2,3,4, e® . =
with { = 2,4 and only €? . ¢® £ 0. The same relationships hold for the scalar product
between the right moving € polarizations and the left and right moving polarizations . We
can now simplify the various kinematical factors, WP for the heterotic string and the W, ’s

for the type II models. We find WP = Lt F* WP where

WP = WP +

(I11.26)
with

WE = (0P(12) — 9P (14))(0P(21) — OP(24)) (9P (32) — OP(34))(IP(42) — P (43)),
WE = 0?P(24)(0P(12) — OP(14))(IP(32) — OP(34)). (I11.27)

3 A null vector k* = 0 is parametrized as kag = kaks where a, & = 1,2 are SL(2,C) two dimensional

spinor indices. The positive and negative helicity polarization vectors are given by e (k, q)aa := \/%‘*é"’m

and € (k,Q)aa = f[q ] where ¢ is a massless reference momentum. The self-dual and anti-self-dual
kaok kakg

field strengths read F 5 := o3 Finp = \/3 and F = "‘;an =— \/5‘3.
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In these equations it is being understood that P(ij) stands for P(v; — v;). We find as well
that WE, = Mg FAWE, with W, = Sy + Saiap Where

1
Stap = == (Sap(12)2S,4(34)* — S, p(1234) — S, (1243) — S, (1423))

28
Soap = %(873(12) OP(14))(0P(21) — OP(24))(S,5(34))? (I11.28)
1

£ (0P(32) — OP(34)) (9P (42) — OP(43))(S,4(12))?,

where we have used a shorthand notation; S, ;(ij) stands for S, (2 — z;) while S, ,(ijkl)
stands for Sq (2 — 2j)Sap(2j — 2k)Sap(zk — 21)Sap(z1 — 2;). With that choice of helicity, we
can immediately give a simplified expression for the contribution of a spin 1 supermultiplet

in the (4,0) models. We introduce the field theory limit of WE:

2 2
W= lim (-) / de W5, (I11.29)

In this limit, this quantity is given by W2 = W, + W, with

W, = E(ap(u) — OP(14))(0P(21) — OP(24))(OP(32) — OP(34))(OP(42) — OP(43)),
1

47 o ToU

where 0" P(w) is the n-th derivative of the field theory propagator ([11.35) and where o/7y
is the proper time of the field one-loop amplitude. We can now rewrite ([11.22)) and find

Wy = 92P(24)(0P(12) — OP(14))(OP(32) — OP(34)), (IT1.30)

spin 1 ™ 8
A =1 (5) tstsRWE. (ITL31)

Let us come back to the comparison of the N’ = 4 spin 2 multiplet contributions in the
type Il asymmetric orbifold model given in ([I1.10) and the heterotic one given in ([I1.23)).
We consider the following part of ([11.23])

/ de (WP1(1 + a/5Q) + W[ Ql). (I11.32)

2 =1
defined in the field theory limit for large 7.

The integral over the v} will kill any term that have a non zero phase eim(av] +bvg+evg+dug)

where a, b, ¢, d are non all-vanishing integers. In WIB we have terms of the form 90 P(ij) X
OP(ji)|g x (OP(kl) — OP(K'l'))(OP(rs) — 0P(r's’)). Using the definition of §P(ij) given
in (A.15)) and the order g coefficient of the propagator in (|A.14]), we find that

2
85P(2]) X ap(jz)|tj = _% SiH(Qﬂ'Vij) sign(wij)eQi”Sig“(“"j)”ﬁ s (11133)
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which integrates to —w2/4. All such terms with (ij) = (12) and (ij) = (34) contribute in
total to

% (g)4 (OP(12) — OP(14))(OP(21) — OP(24)) + (OP(32) — OP(34))(OP(42) — OP(43))]
(II1.34)

where here 0P(ij) is for the derivative of the propagator in the field theory JP(w; — w;)

given by

OP(w) = 2w — sign(w) . (I11.35)

The last contraction in W for (ij) = (24) leads to the same kind of contribution. However,
they will actually be cancelled by terms coming from similar contractions in W2B |- More
precisely, the non zero contractions involved yield

/2
(0*P(24)e9)|; = —a; ((:05(2771/24)621'”“33“(‘*’24)1’24 — QeZimsign(wat)vae sin(mr4)) . (IIL36)

which integrates to —a/m?/2. The o/ compensates the 1/a’ factor in ([I1.26) and this con-
tribution precisely cancels the one from (II1.33]) with (ij) = (24). Other types of terms with

more phase factors from the propagator turn out to vanish after summation. In all, we get

—7W3/4, where

Wy = —é ((0P(12) — 9P(14)) (9P (21) — DP(24)) + (DP(32) — OP(34)) (9P (42) — OP(43))

(I11.37)
Finally, let’s look at the totally contracted terms of the form 00P(ik)00P(kl)0dP(lj) x
dP(ij)|; that come from WPE|G. Those are the only terms of that type that survive the !
integrations since they form closed chains in their arguments. They give the following terms

7T4

Z§ sin(m/ij)sign(wik)sign(wkl)sign(wlj)eQi”(Sign("”k)”““+Sign(wkl)”’“l+Sign(w”)”’j) : (I11.38)
They integrate to 74/16 if the vertex operators are ordered according to 0 < w; < wy <
w; < wj <1 orin the reversed ordering. Hence, from Vle we will get one of the ordering we
want in our polarization choice, namely the region (s,t). From Wse?, a similar computation
yields the two other kinematical regions (s,u) and (¢,u). In all we have a total integrated
contribution of 7*/16. We collect all the different contributions that we have obtained, and
(LI1.23)) writes:

A 1 8
agnii=7 (5) tetsR' (1= 4wy +2WP), (111.39)
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where we used that tsts R* = tgF*ts F* and ([I1.29)), and (TT1.30)).

We now turn to the spin 2 contribution in the type II asymmetric orbifold models given

in ([I1.10). Using the g-expansion detailed in appendix , we find that

) 14
/ HdV WOO’\[ WOI‘\/ / HdV Woo|f Wo1|f>—2/inVi1W(fo|\/§-

o o T (mao)
We have then terms of the form 32;070 and S~4;070. Their structure is similar to the terms
in the heterotic case with respectively two and four bosonic propagators contracted. The
bosonic propagators do not have a /g piece and since Soo(12)?] 5 = So0(34)?| /g = 472 we
find that the terms in Sy give

/ Hdu Sa0l ja = —4 <g>4W3, (II1.41)

2 =1
including the 1/2* present in (I1.26). The S~4;070 terms have two different kind of contribu-
tions: double trace and single trace (see respectively first and second lines in (I1.26))). In

the spin structure (0,0) the double trace always vanishes in 54;070\ /g since

/ Hd L sin(my) / Hd ! —0. (IT1.42)
1 sin?(7up ) sin( TV;j) 1 sin? 7T1/kl)

=1

However the single trace terms are treated in the same spirit as for the heterotic string. Only
closed chains of sines contribute and are non zero only for specific ordering of the vertex
operators. For instance,

sin(7v;;)

— 4 ~ —(2m)* 111.43
s Sin(TFij) sin(ﬂukz) Sin(ﬂ'yli) To—00 ( 7T) ) ( )

for the ordering 0 < w; < w; < wy < w; < 1. Summing all of the contributions from 34;0,0
gives a total factor of —7*/16, including the normalization in ([1.26)). We can now collect
all the terms to get

1 8
AxS =1 (5) tstsR (L= 4wy +2W5), (TI1.44)

showing the equality with the heterotic expression

spin 2 spin 2
A io)het =A io)n (1I1.45)

We remark that the same computations give the contribution of the Spin—% multiplets in the

two models, which are equal as well and write :
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spin 5 spin 5 1 T\ 8
A(ZO)lfet A(Zo 121 =1 <§> tats R (W3 —2WP) (I11.46)

Thanks to those equalities for the spin 2, spin % and spin 1 in ([I1.25)), from now we will

use the notation Afi”g *with s =1,2,2.

The perturbative equality between these two (4,0) models is not surprising. For a given
number of vector multiplets n, the heterotic and asymmetric type II construction lead to
two string theory (4, 0) models related by S-duality, S — —1/.5, where S is the axion-dilaton
complex scalar in the N/ = 4 supergravity multiplet. The perturbative expansion in these
two models is defined around different points in the SU(1,1)/U(1) moduli space. The action
of N = 4 supersymmetry implies that the one-loop amplitudes between gravitons, which are

neutral under the U(1) R-symmetry, are the same in the strong and weak coupling regime.

2. Comparing the (4,0) and (2,2) models

In the case of the (2,2) models, the contribution from the vector multiplets is given
n ([11.18). The string theory integrand is different from the one in for the (4,0) as
it can be seen using the supersymmetric Riemann identity in . Let us first write the
spin 1 contribution in the (2,2) models. Performing the v} integrations and the same kind

of manipulations that we have done in the previous section, we can show that it is given by

spin 1 m 8 1
AT =3 <§> tsts R (W) + 5 Wa) . (I11.47)

This is to be compared with ([I1.31f). The expressions are clearly different, but will lead to

the same amplitude. In the same manner, we find for the spin %:

spin 3 1 T\ 8 1
Azt =2 (5) tsts R (W = 2((W5)? + 5 102)). (I1L.48)

This differs from (I11.46]) by a factor comming solely from the vector multiplets.
We now compare the spin 2 contributions in the (4,0) model in (II1.16) and the (2,2)
model in ([I1.21)). Again, a similar computation to the one we have done gives the contri-

bution of the spin 2 multiplet running in the loop for the (2,2) model:

spin 2 1 T\ 8 1
A(gz) =1 <§> tats R (1 — 4W3 + 2((W3)? + 5 Ws)) . (I11.49)
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We compare this with ([11.39) and ([I1.44) that we rewrite in the following form:

spin 2 __ L /m\8 4
Aoy = 1 \3 tgts ™ (1 — 4Ws + 2(Wy + Wy)) . (IT1.50)

The difference between the two expressions orginates again solely from the vector multiplet
sector. Considering the that the same relation holds for the contribution of the NV = 4 spin %
multiplets, we deduce that this is coherent with the supersymmetric decomposition (([11.13])
that gives
AR = AT 2+ 2(ATT T — AT ). (IT1.51)
The difference between the spin 2 amplitudes in the two models is completely accounted
for by the different vector multiplet contributions. The string theory models are related by
a U-duality exchanging the axion-dilaton scalar S of the gravity multiplet with a geometric
modulus [27, 28| [36]. This transformation affects the coupling of the multiplet running in
the loop, thus explaining the difference between the two string theory models. However at
the supergravity level, the four graviton amplitudes that we compute are not sensitive to

this fact and are equal in all models, as we will see now.

IV. FIELD THEORY ONE-LOOP AMPLITUDES IN A =4 SUPERGRAVITY

In this section we shall extract and compute the field theory limit o’ — 0 of the one-loop
string theory amplitudes studied in previous sections. We show some relations between loop
momentum power counting and the spin or supersymmetry of the multiplet running in the
loop.

As mentioned above, the region of the fundamental domain integration corresponding
to the field theory amplitude is 75 — oo, such that t = o/ 75 is fixed. We then obtain a
world-line integral of total proper time t. The method for extracting one-loop field theory
amplitudes from string theory were pioneered in [20]. The general method that we apply
consists in extracting the o(q)? terms in the integrand and taking the field theory limit was
developed extensively in [23 24, 47]. Our approach will follow the formulation given in [25].

The generic form of the field theory four-graviton one-loop amplitude for N' = 4 super-

gravity with a spin s (s = 1,3,2) N = 4 supermultiplet running is the loop is given by

. 4 4 M2€ It 3 . )
M? :<;> /O tT/A [ dwi e x A=, (IV.1)

D
™2 w =1
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where D = 4 — 2¢ and X stands for the model, X = (4,0)het, X = (4,0)] or X = (2,2)

while the respective amplitudes A% * are given in sections [[IT B and [[TI C} We have set the

overall normalization to unity.

The domain of integration A,, = [0, 1]® is decomposed into three regions A, = Ay U
Asu) U A given by the union of the (s,t), (s,u) and (¢,u) domains. In the A, domain
the integration is performed over 0 < w; < wy < w3 < 1 where Q(w) = —swq (w3 —ws) —t(wy—
wy)(1 — ws3) with equivalent formulas obtained by permuting the external legs labels in the
(t,u) and (s,u) regions (see [48] for details). We used that s = —(ky + k2)?, t = — (k1 + ky4)?
and u = — (k1 + k3)? with our convention for the metric (— + -+ - +).

We now turn to the evaluation of the amplitudes. The main properties of the bosonic and
fermionic propagators are provided in the appendix [A2 We work with the helicity config-
uration detailed in the previous section. This choice of polarization makes the intermediate

steps easier as the expressions are explicitly gauge invariant.

A. Supersymmetry in the loop

Before evaluating the amplitudes we discuss the action of supersymmetry on the structure
of the one-loop amplitudes. An n-graviton amplitude in dimensional regularization with
D = 4 — 2¢ can generically be written in the following way:

dDg N (S kl, 14
Mn;l — M26 / D 9 2 ( ) n—1 2 ) (IV2>
(2m)P (0 — k)2 (0= 307 ki)

where the numerator is a polynomial in the loop momentum ¢ with coefficients depending
on the external momenta k; and polarization of the gravitons ¢;. For ¢ large this numerator

behaves as M(e;, ky; £) ~ €*" in non-supersymmetric theories. In a N extended supergravity

theory, supersymmetric cancellations improve this behaviour, which becomes 2"V where
N is the number of four-dimensional supercharges:
V(e ki 0) ~ N for |l = 0. (IV.3)

The dictionary between the Feynman integral presentation given in (IV.2) and the structure
of the field theory limit of the string theory amplitude states that the first derivative of
a bosonic propagator counts as one power of loop momentum 9P ~ £, 9*P ~ (% while

fermionic propagators count for zero power of loop momentum S, ~ 1. This dictionary
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was first established in [47] for gauge theory computation, then applied to supergravity
amplitudes computations in [24] and more recently in [25].
With this dictionary we find that in the (4,0) model the integrand of the amplitudes have

the following behaviour

spin 1 4
A@m ~

spin 2
Ay’ ~C+ 1, (IV 4)

ARG~ 1 2 0t

The spin 1 contribution to the four-graviton amplitude has four powers of loop momentum
as required for an N = 4 amplitude according ([V.3). The A" = 4 spin 2 supermultiplet
contribution can be decomposed into an N = 6 spin % supermultiplet term with two powers
of loop momentum, and an ANV = 4 spin 1 supermultiplet contribution with four powers of
loop momentum. The spin 2 contribution has an N' = 8 spin 2 piece with no powers of
loop momentum, an N = 6 spin % piece with two powers of loop momentum and an N = 4
spin 1 piece with four powers of loop momentum.
For the (2,2) construction we have the following behaviour

agy' e~ O,

AT P (202 (IV.5)

AZD 2~ 1402+ ()

Although the superficial counting of the number of loop momenta is the same for each

3
)92

spin s = 1, 2, 2 in the two models, the precise dependence on the loop momentum differs in
the two models, as indicated by the symbolic notation ¢* and (¢2)?. This is a manifestation
of the model dependence for the vector multiplets contributions. As we have seen in the
previous section, the order four terms in the loop momentum in the spin % and spin 2 parts
are due to the spin 1 part.

At the level of the string amplitude, the multiplets running in the loop (spin 2 and spin 1)
are naturally decomposed under the A/ = 4 supersymmetry group. However, at the level of
the amplitudes in field theory it is convenient to group the various blocks according to the

number of powers of loop momentum in the numerator
spin s 4(2—s) 3
N=4s ~ L ’ §= 175’27 (IV6)
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which is the same as organizing the terms according to the supersymmetry of the corre-

sponding N/ = 4s spin s = 1, 2,2 supermultiplet. In this decomposition it is understood

)9
that for the two N' = 4 models the dependence in the loop momenta is not identical.

From these blocks, one can reconstruct the contribution of the spin 2 N' = 4 multiplet

that we are concerned with using the following relations

spzn

M;‘?m 2 Mspzn 2 4M 5 + 2Mspzn 1 (IV?)

where the index X refers to the type of model, (4,0) or (2,2).

This supersymmetric decomposition of the one-loop amplitude reproduces the one given
n [24], 30-35).

We shall come now to the evaluation of those integrals. We will see that even though the
spin 1 amplitudes have different integrands, i.e. different loop momentum dependence in

the numerator of the Feynmann integrals, they are equal after integration.

B. Model dependent part : A/ =4 vector multiplet contribution

In this section we first compute the field theory amplitude with an N = 4 vector multiplet
running in the loop for the two models. This part of the amplitude is model dependent as far
as concerns the integrands. However, the value of the integrals is the same in the different

models. Then we provide an analysis of the IR and UV behaviour of these amplitudes.

1. FEwaluation of the field theory amplitude

The contribution from the AN/ = 4 spin 1 vector supermultiplets in the (4,0) models is

spin > dt iy spin
Mg " = (—) T / / dPw e T e AT (IV.8)

where A?Z oy is given in (LIL31) for instance and @ defined in (A.17). Integrating over the

proper time t and setting D = 4 — 2¢, the amplitude reads
M7g ' = tsts R / Pwll (146 Q7 Wo+ T (246 Q> W] . (IV.9)
Ay
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The quantities Wy and Wy are given in ([I1.30)), they have the following form in terms of

the variables w;:

1
Wy = 3 (wo — ws)(sign(wy — wa) + 2we — 1)(sign(we — wy) + 2wy — 1)(sign(ws — wa) + 2ws — 1)
11
Wy = ~1a (2ws — 1 4 sign(ws — wy))(2ws — 1 + sign(w; — wa)) (1 — §(wayq)) - (IV.10)

Using the dictionary between the world-line propagators and the Feynman integral from the
string based rule [24] 25] [47], we recognize in the first term in (IV.9) a six dimensional scalar
box integral, and in the second term four dimensional scalar bubble integralsﬁ Evaluating

the integrals with standard techniques, we ﬁnd:ﬂ

spin 1 848 2
My~ = = (s — s(u—t)log (_u) — tu(log® ( u) + )) : (IV.11)

The crossing symmetry of the amplitude has been broken by our choice of helicity config-
uration. However, it is still invariant under the exchange of the legs 1 <» 2 and 3 < 4
which amount to exchanging ¢ and u. The same comment applies to all the field theory
amplitudes evaluated in this paper. This result matches the one derived in [24], 30-34] and
in particular [35] eq. (3.20)].

Now we turn to the amplitude in the (2,2) models:

spin * dt —7 w spin
My 1:( ) 2 / / d*w eI s AT (IV.12)

where Asggn) ! is defined in ([II18). After integrating over the proper time ¢, one gets

; 1
My = tsts R / Pwll(24€) Q27 (Ws)* + 5r(1 +6) QW (IV.13)
where W3 defined in ([I1.37)), is given in terms of the w; variables by
1
W3 = ~3 (sign(wy — wa) + 2wy — 1)(sign(wy — wy) + 2wy — 1)
1
+ 1 (sign(ws — wa) + 2wy — 1) (w3 —we). (IV.14)

There is no obvious relation between the integrand of this amplitude with the one for (4,0)

model in (IV.9). Expanding the square one can decompose this integral in three pieces that

4 In [25), [50] it was wrongly claimed that A" = 4 amplitudes do not have rational pieces. The argument
in [25] was based on a naive application of the reduction formulas for ' = 8 supergravity amplitudes to

N = 4 amplitudes where boundary terms do not cancel anymore.

5 The analytic continuation in the complex energy plane corresponds to the +ic prescription for the Feynman
propagators 1/(¢£2—m?2+ig). We are using the notation that log(—s) = log(—s—ic) and that log(—s/—t) :=
log((—s —ie)/(—t — ig)).
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are seen to be proportional to the (4,0) vector multiplet contribution in (IV.11]). A first

contribution is

tsts R 1 .
% / Pwll246€) Q2 Wi +T(1+6)Q ' Wy = 3 MTS ! (IV.15)
A, ’
and we have the additional contributions
tats R r2+e ,, . , 1 in
% /Ad% % ((sign(wi — wa) + 2wy — 1)(sign(wy — wi) + 2wy — 1))* = 1 Mipey
(IV.16)
and
t8t8R4 F (2 + 6) . 1 spin
6—4 /Adsw W ((81gn(w3 - C{JQ) + 2&]2 - 1)(&)3 — wg))Q = Z M(f,O) ! . (IVl?)
Performing all the integrations leads to
Myt = Mg (IV.18)

It is now clear that the vector multiplet contributions to the amplitude are equal in the
two theories, (4,0) and (2,2). It would be interesting to see if this expression could be
derived with the double-copy construction of [35].

In this one-loop amplitude there is no interaction between the vector multiplets. Since
the coupling of individual vector multiplet to gravity is universal (see for instance the N' = 4
Lagrangian given in [51, eq.(4.18)]), the four-graviton one-loop amplitude in pure N' = 4

supergravity has to be independent of the model where it come from.

2. IR and UV behaviour

The graviton amplitudes with vector multiplets running in the loop in (IV.11]) and ([V.18]
are free of UV and IR divergences. The absence of IR divergence is expected, since no spin 2
state is running in the loop. The IR divergence occurs only when a graviton is exchanged

between two soft graviton legs (see figure[l)). This fact has already been noticed in [30].

This behaviour is easily understood by considering the soft graviton limit of the coupling
between the graviton and a spin s # 2 state. It occurs through the stress-energy tensor

Vi (k,p) = T (p— k,p) where k and p are respectively the momentum of the graviton and
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FIG. 1. Contribution to the IR divergences when two external graviton (double wavy-lines) become

soft. If a graviton is exchanged as in (a) the amplitude presents an IR divergence. No IR divergences

are found when another massless state of spin different from two is exchanged as in figure (b).

of the exchanged state. In the soft graviton limit the vertex behaves as V* (p—k, p) ~ —kp”
for p* ~ 0, and the amplitude behaves in the soft limit as

de
k)l k)

d*¢
T (€ = Fy, )T (6,0 + ko) ~ (ky - K / 2, (IV.19
/gwogz(g.]ﬁ)(g,;%) v 1, T ( 9) ~ (k1 - k2) z ( )

~0
which is finite for small values of the loop momentum ¢ ~ 0. In the soft graviton limit,
the three graviton vertex behaves as V*(k, p) ~ k*k" and the amplitude has a logarithmic

divergence at ¢ ~ 0
(hy - h)? / wo (IV.20)
Y o PR (€ Ry) ' '

The absence of UV divergence is due to the fact that the R? one-loop counter-term is the

Gauss-Bonnet term. It vanishes in the four-point amplitude since it is a total derivative [52].

C. Model independent part

In this section we compute the field theory amplitudes with an N' = 8 supergraviton and
an N = 6 spin % supermultiplet running in the loop. These quantities are model independent

in the sense that their integrands are the same in the different models.

1. The N =6 spin % supermultiplet contribution

The integrand for the N' = 4 spin % supermultiplet contribution is different in the two
(4,0) and (2,2) constructions of the N' = 4 supergravity models. As shown in equa-
tions ([I1.46|) and. ([I1.48)), this is accounted for by the contribution of the vector multiplets.

3

However, we exhibit an N' = 6 spin 3

supermultiplet model independent piece by adding
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two N = 4 vector multiplets contributions to the one of an N = 4 spin 2 supermultiplet

spin 3 spin

3 3 .
My ? = M 2 4 2Mspm t (IV.21)

The amplitude with an A/ = 6 spin % multiplet running in the loop is

-6

/ dPwl (2+¢€) WsQ 27, (IV.22)
Aw

where W3 is given in ([V.14]). The integral is equal to the six dimensional scalar box integral
given in [35 eq. (3.16)] up to o(e) terms. We evaluate it, and get

spin 3 t8t8R4 —t
Moy ? = — 52 log® — )+ ) . (IV.23)

This result is UV finite as expected from the superficial power counting of loop momentum
in the numerator of the amplitude given in (IV.4). It is free of IR divergences because no
graviton state is running in the loop (see the previous section). It matches the one derived

in [24], 30-34] and in particular [35] eq. (3.17)].

2. The N =8 spin 2 supermultiplet contribution

We now turn to the A/ = 8 spin 2 supermultiplet contribution in ([V.7). It has already

been evaluated in [20], 49] and can be written as:

tsts R:

spin 2
My _g" =

/ dPwl (2+¢€) Q2 °. (IV.24)
Ay

Performing the integrations we have

—t —s —u
MEn? = 282 2 V.25
N=8 4 € Su + tu * st + ( )

log <;—§> log (;—2'5) log (;—5) log <;—§‘) log (;—;‘) log (;—5)
2 + + |
st tu us

_|_

where 2 is an IR mass scale. This amplitudes carries an € pole signaling the IR divergence
due to the graviton running in the loop.

Now we have all the blocks entering the expression for the N' = 4 pure gravity amplitude

in (IV-7).
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V. CONCLUSION

In this work we have evaluated the four-graviton amplitude at one-loop in N' = 4 super-
gravity in four dimensions from the field theory limit of string theory constructions. The
string theory approach includes (4,0) models where all of the supersymmetry come from the
left-moving sector of the theory, and (2,2) models where the supersymmetry is split between

the left and right moving sectors of the theory.

For each model the four-graviton one-loop amplitude is linearly dependent on the number
of vector multiplets n,. Thus we define the pure N' = 4 supergravity amplitude by sub-
traction of these contributions. This matches the result obtained in the Dabholkar-Harvey
construction of string theory models with no vector multiplets. We have seen that, except
when gravitons are running in the loop, the one-loop amplitudes are free of IR divergences.
In addition, all the amplitudes are UV finite because the R? candidate counter-term van-
ishes for these amplitudes. Amplitudes with external vector states are expected to be UV
divergent [53].

Our results reproduce the ones obtained with the string based rules in [24] 0] unitarity
based method in [31H34] and the double-copy approach of [35]. The structure of the string
theory amplitudes of the (4,0) and (2, 2) models take a very different form. There could have
been differences at the supergravity level due to the different nature of the couplings of the
vector multiplet in the two theory as indicated by the relation between the two amplitudes
in . However, the coupling to gravity is universal. The difference between the various
N = 4 supergravity models are visible once interactions between vectors and scalars occur,
as can be seen on structure of the N/ = 4 Lagrangian in [51], which is not the case in our
amplitudes since they involve only external gravitons. Our computation provides a direct

check of this fact.

The supergravity amplitudes studied in this paper are naturally organized as sum of
N = 4s spin s = 1, %, 2 contributions, with a simple power counting dependence on the
loop momentum ¢*?~%). Such a decomposition has been already used in the string based
approach to supergravity amplitudes in [24]. Our analysis reproduces these results, and
show that the N/ = 4 part of the four-graviton amplitude does not depend whether one start

from (4,0) or (2,2) construction. We expect amplitudes with external scalars or vectors to

take a different form in the two constructions.
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Appendix A: World-sheet CFT : chiral blocks, propagators.

In this appendix we collect various results about the conformal blocks, fermionic and

bosonic propagators at genus one, and their g-expansions.

1. Bosonic and fermionic chiral blocks

> The genus one theta functions are defined to be

0 [Z] (Z|T) _ Z q%(n—i-%)? €2i7r(z+%)(n+%) 7 (Al)

neL

and Dedekind eta function: .

n(r) =q= [J(1-q"), (A2)

n=1

where ¢ = exp(2in7). Those functions have the following ¢ — 0 behaviour:

em(o,r)=o; 9{(1)](0,7)2—2611/84—0@); 9[8](0,7):1”\@%@;

o[ 0 =1-2vi o n(r) =+ ol (A3)

> The partition function of eight world-sheet fermion in the (a, b)-spin structure, ¥(z+1) =
—(=1)22¥(2) and V(2 + 7) = —(—=1)®¥(z), and eight chiral bosons is

0 [3] (07)*

Ly = , A4
(1) n'*(7) Ay
it has the following behaviour for ¢ — 0
Zl,l = 07
Zvo =16+ 16°q + o(¢?),
1
1
Zoa = %—8+0(\/6)~
> The partition function of the twisted (X, V) system in the (a,b)-spin structure is
X(+1)= (D" X(2);  ¥(z+1)=—(=1)""0(z),
X+7)=(-1)¥X(2); Yk+7r)=—(-1)""0(z). (A.6)



The twisted chiral blocks for a real boson are
1/2
h,g — . —img —h?/2 77(7')
ZM[X] ie” Mg —0 [Hh] . (A.7)
1+g

The twisted chiral blocks for a Majorana or Weyl fermion are

1/2
[a+h]
—i 2 b+g
Zhp] = | emimalath)/2 /2 2l (A.8)
’ n(7)
The total partition function is given by
ZP (X, 0)] = ZMI[X)Z30 0] = ¢ 0 HRotelort) (A.9)
2. Bosonic and fermionic propagators
a. Bosonic propagators
Our convention for the bosonic propagator is
(2" (1) 2" (0)) one—toop = 20/ " P(v|T), (A.10)
with
2
1 0 [1} (v|7) T2
Pv|t)=—-1In 1 2 L C(r
(vI7) 4 10,0 H] (0]T) 27y (7)
9 i 2 mo a2
vy 1 |sin(7v) qm  sin®(mmv)
=——-In|———~| — .C. C A1l
o, 4| x ;(1—qm m Tee )0, (AL

where C(7) is a contribution of the zero modes (see e.g. [48]) that anyway drops out of the
string amplitude because of momentum conservation so we will forget it in the following.

We have as well the expansions

0, P(v|t) = %7 ZW — mq sin(2mv) + o(q) ,
OP(IT) = + b 2x? gcos(2mv) + ofa)
P(v|T) = 1 1 sin(m) m° qcos(2mv) + o(q
= 1
8,0, P(v|r) = % (?2 — 5@ () (A.12)



leading to the following Fourier expansion with respect to 14

2 o
0,P(v|r) = % (% — sign(vy)) + z% sign(vs) Z e2immsien(2)v _ o sin(27v) + o(q)
2
m#0
O2P(v|T) = % (126(1p) — 1) — 7* Z me2mmsien(v2v _ on2 o cos(27v) 4+ 0(q) . (A.13)
2

m2>1

Setting v = v; +iTew we can rewrite these expressions in a form relevant for the field theory
limit 7, — oo with ¢ = o'm kept fixed. The bosonic propagator can be decomposed in
an asymptotic value for 75 — oo (the field theory limit) and corrections originating from

massive string modes

mt

Pv|t)=— 5o P(w)+6P(v) —q sin2(7r1/) —q sin2(7r1?) + 0(q2) , (A.14)
and
1 .
_ 2 . _ 2imrmuy — 27| mug
Pw) =w* — |w|; 0P(v) = g _4]m\ e e (A.15)

m#0
The contribution d P corresponds to the effect of massive string states propagating between

two external massless states. The quantity Q defined in (I1.4)) writes in this limit
Q = —trQ(w) + a/6Q — 2w/ Z ki - k; (gsin®(rv;) + gsin®(71;5)) + o(q®),  (A.16)
1<i<j<4

where

Qw)= Y ki-kPlwy), 06Q=2 >  ki-kdP(v). (A.17)

1<i<j<4 1<i<j<4
b. Fermionic propagators

Our normalization for the fermionic propagators in the (a,b) spin structure is given by

a/

2
> In the even spin structure fermionic propagators are

0 [5] (zI7) 20 [}] (OI7)

(W (2)0"(0))one—toop = = Sap(2[T) - (A.18)

Sap(2|T) = —= : (A.19)
03] (Ol7) 0[1] (=)
The odd spin structure propagator is
9.0 [}
Sia(zlr) = 0:0 ;] eIr) (A.20)

0[1] (zlr)
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the fermionic propagator orthogonal to the zero modes is

Sia(2|r) = Sia(2]7) — 2in =2 = —40,P(z|7) . (A.21)

T2

The fermionic propagators have the following g-expansion representation [54]

T - "
Sia(z|T) = tan(r2) + 47TZ o sin(2nmz),
n=1

q .
Sl’()(Z’T) = m — 4772 W Sln(2nﬂ'2) s

Soo(zlT) = ——— —4r Yy —L—— sin((2n — )rz),

sin(7z) —~1+q" >
™ o qn_%
S = ——+4 —— sin((2n —1 . A.22
0a(el7) = ey 473 Ly s(@n = 1) (A22)

> Riemann supersymmetric identies written in the text ([1.27)) derive from the following
Riemann relation relation:
4 4
a
PORC el | AMICIEE] | [CICH (A.23)
a,b=0,1 i=1 i=1
with v} = L(—v1 + vo + v3 + 1) V) = 2(v1 — v2 + v3 + 1) V3 = 2(v1 + v2 — Vg + W4)
vy = %(vl + vy + v3 — vg). This identity can be written, in the form used in the main text,

as vanishing identities

> (=1 Z,,(r) =0, (A.24)
a,b=0,1
ab=0
> (=) Z (1) [ [ San(z) =0 1<n <3, (A.25)
a,b=0,1 r=1

ab=0
and the first non-vanishing one
4

> (=0 Z (1) [ [ Sanlzilr) = —(2m)*. (A.26)

a,b=0,1 =1
ab=0

with 21+ - ~+24 = 0 and where we used that 9.0 [}] (0|7) = 6 [(] (0|7)8 [;] (0|7)0 [{] (0]7) =

213 (7).
Two identies consequences of the Riemann relation in (A.23) are

g g 0] e (200G
So0(2) = Sio(z) =m(6 [1] (0l)) (W)

2 2 _ 2.0 4 820[1] (2]7) i
()~ 82(2) =20 | | 01r) (m) . (A7
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c. g-expansion
The g-expansions of the fermionic propagators in the even spin structure are given by

Sio(z|T) = — 4mgsin(27z) + 0(q2) ,

tan(mz)
So7o(z|7') =

— 4m\/q sin(mz) + o(q) , (A.28)

sin(7z)

8071(2‘7') =

Sn(r2) + 4w\ /q sin(mz) + o(q) .

Setting S;', = [[;—; Sap(2i|7) we have the following expansion

STy = Hﬂ'COt(ﬂ'Zi) (1 - 8quin2(7rzi)> + o(q?),
i=1

i=1

S0 = Hw(sin(ﬂzi))_l (1 — 4quin2(7rzi)> +0(q?%), (A.29)

i=1

Soq = Hﬁ(sin(wzi))_l <1 + 4q Z sinz(ﬁzi)> +o(q?) .

i=1 =1

Applying these identities with n = 2 and n = 4 we derive the following relations between

the correlators Wf , defined in ([1.25))

W(fo|q0 = W(fl|q°; W(fo|\/§ = —ch1|\/a- (A-3O)

Using the g-expansion of the bosonic propagator, it is not difficult to realize that W2 | vi =0,
and we can promote the previous relation to the full correlator W, ; defined in (I1.23) (using

the identities in (A.27)))
Woolg = Woalgo; Woolyg = —Woalyz- (A.31)

Other useful relations are between the g-expansion of the derivative bosonic propagator 0P

and the fermionic propagator S

TVo 1

OPW|T)p — iy _151,0(V|T)|q0 (A.32)
1
0PIy =+ 510I7)l -
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3. Congruence subgroups of SL(2,Z)

We denote by SL(2,7Z) the group of 2 x 2 matrix with integers entries of determinant 1.
For any N integers we have the following subgroups of SL(2,7Z)

[o(N) = € SL(2,72)| = mod N ; ,
c d c d 0 %
ab a b 1 %
['[(N) = € SL(2,7)| = mod N ; , (A.33)
cd cd 01
ab a b 10
['(N) = € SL(2,7)| = mod N
cd cd 01

They satisfy the properties that I'(N) C I'1(N) C I'o(V) € SL(2,7Z).

Appendix B: Chiral blocks for the type II orbifolds

We recall some essential facts from the construction of [29]. The shifted T2 lattice sum
writes
w h imgl-w P—%—i
T2 { } = > ety (B.1)
PL,pREF(272)+w%

where ¢ - w = mb’ + ayn’ where the shift vector w = (ar,b’) is such that w? = 2a-b =10

and
p?— \U(my + a1%) — (mg + a2§) + T(n1 + b1%> + TU(n2 + 1)2%)]2
b 2T2U2 ’
h h
P} = Pp=2(my +arg)(n' +'). (B.2)

T and U are the moduli of the 7%2. We recall the full expressions for the orbifold blocks :

Z,p = (I1.20) (h,g) = (0,0)
Z@2)hg . 2 (B.3)
ab (ath)g o[¢]oln)e[ 5] (0lr) :
4(_1) W(T)Sa[}ih] X 1—‘(2,2)(717 U) (h> g) 7é (07 0) )
1
g 1 oW W
2 =5 Y 2| rea 1] (3.1

h',g'=0
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1 1
; 1 1 h; hi, hy hy, he
Ziore L gn Lo gh { s ha, } - { , Vh g, ©5)
“ a, . (2,2) , Vh,
2 h1,91=0 2 ha,g2=0 9591, 92 g1, 92

For th n, = 6 model, the orbifold acts differently and we get

1

. 1 ! / h,

67h7 h7 w

ZOM9 = = N (—nyhere gl M . (B.6)
h',g'=0

In the previous expressions, the crucial point is that the shifted lattice sums I“(‘é ) [;ﬂ

act as projectors on their untwisted A’ = 0 sector, while the ¢’ sector is left free. We recall

now the diagonal properties of the orbifold action (see [29] again) on the lattice sums:

h, 0 h 0,h h h,h h
le,’u}g Y — l—\wl , le,wz Y — 1—1’1112 , le,’wg ) — leg , B7
22 {970} 22 [9} 22 [079} 22 {g} (22 {979} 22 {9} (B

The four dimensional blocks ZZ’Z;" have the following properties : Z;’f [8] = Z:l;q [Z] =

Z(Zf (ordinary twist); ZS}’? [’;} is a (4,4) lattice sum with one shifted momentum thus is
projects out the h = 0 sector. Equivalent properties stand as well for the n, = 10 model.
One has then in the field theory limit
(14);h, 0,0 ~0,1 1 1,0 1 1,1
Za,b ge{za,b7za,b7 5 abo §Za,b )

) 1 1
10):h, 00 ~01 1,0 1,1
Zc(L,b) ‘e {12 Zaps ZZ(L,IN ZZa,b}7
Zo ™ e {2, 20, 0,0}, (B.8)

from where we easily deduce the effective definition given in ([1.42) and the number cj,.
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