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Abstract. We construct a nonarchimedean (or p-adic) analogue of the classical ternary Cantor
set C. In particular, we show that this nonarchimedean Cantor set C3 is self-similar. Furthermore,
we characterize C3 as the subset of 3-adic integers whose elements contain only 0′s and 2′s
in their 3-adic expansions and prove that C3 is naturally homeomorphic to C. Finally, from
the point of view of the theory of fractal strings and their complex fractal dimensions [7, 8],
the corresponding nonarchimedean Cantor string resembles the standard archimedean (or real)
Cantor string perfectly.

1. Introduction

Our goal in this article is to provide a good nonarchimedean (or p-adic) analogue of the classic
Cantor ternary set C and to show that it satisfies a counterpart of some of the key properties
of C in this nonarchimedean context. We also show that the corresponding p-adic fractal string,
called the nonarchimedean Cantor string and denoted by CS3, is an exact analogue of the ordinary
archimedean Cantor string, a central example in the theory of real (or archimedean) fractal strings
and their complex dimensions [7, 8]. Furthermore, we compute the geometric zeta function of CS3

and the associated complex fractal dimensions.
In a forthcoming paper [9], we will develop a general framework for formulating a theory of

self-similar p-adic (or nonarchimedean) strings and their complex fractal dimensions. Besides an-
swering a natural mathematical question, these results may be useful in various aspects of mathe-
matical physics, including p-adic quantum mechanics and string theory, where extensions from the
archimedean to the nonarchimedean setting have been extensively explored [12].

1.1. p-adic numbers. Let p ∈ N be a fixed prime number. For any nonzero x ∈ Q, we can always
write x = pv ·a/b, with a, b ∈ Z and for some unique v ∈ Z so that p does not divide ab. The p-adic
norm is a function | · |p : Q −→ [0,∞) given by

|x|p = p−v and |0|p = 0.

One can verify that | · |p is indeed a norm on Q. Furthermore, it satisfies a strong triangle inequality:
for any x, y ∈ Q, we have |x + y|p ≤ max{|x|p, |y|p}; the induced metric is therefore called an
ultrametric. This inequality is called the nonarchimedean property because for each x ∈ Q, |nx|p
will never exceed |x|p for any n ∈ N. The metric completion of Q with respect to the p-adic norm is
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the field of p-adic numbers Qp. More concretely, there is a unique representation of every z ∈ Qp:
z = avp

v + · · · + a0 + a1p + a2p
2 + · · · , for some v ∈ Z and ai ∈ {0, 1, . . . , p − 1} for all i ≥ v. An

important subspace of Qp is the unit ball, Zp = {x ∈ Qp : |x|p ≤ 1}, which can also be represented
as follows:

Zp = {a0 + a1p + a2p
2 + · · · | ai ∈ {0, 1, . . . , p − 1}, ∀i ≥ 0}.

Using this p-adic expansion, we can see that

(1) Zp =

p−1⋃

c=0

(c + pZp),

where c + pZp := {y ∈ Qp : |y − c|p ≤ 1/p}. Moreover, by the nonarchimedean property of the
p-adic norm, Zp is closed under addition and hence is a ring. It is called the ring of p-adic integers
and Z is dense in Zp. Note that Zp is compact and thus complete. (For general references on p-adic
analysis, see, e.g., [4, 11].) It is also known that there are topological models of Zp in the Euclidean
space Rd as fractal spaces such as the Cantor set and the Sierpińsky gasket [11, §I.2.5]. In fact,
Zp is homeomorphic to the ternary Cantor set. It is thus natural to wonder what exactly is the
nonarchimedean (or p-adic) analogue of the ternary Cantor set. We will answer this question in §2.

1.2. Ternary Cantor set. The classical ternary Cantor set, denoted by C, is the set that remains
after iteratively removing the open middle third subinterval(s) from the closed unit interval C0 =
[0, 1]. The construction is illustrated in Figure 1. Hence, the ternary (or archimedean) Cantor set
C is equal to

⋂∞

n=0
Cn.

...
...

...
...

C0

C1

C2

Cn

Figure 1. Construction of the archimedean Cantor set C =
⋂∞

n=0
Cn.

For comparison with our results in the nonarchimedean case, we state without proof the following
well-known results (see, e.g., [1, Ch. 9] and [2, p. 50]):

Theorem 1.1. The ternary Cantor set C is self-similar. More specifically, it is the unique nonempty,
compact invariant set in R generated by the family {Φ1, Φ2} of similarity contraction mappings of
[0, 1] into itself, where Φ1(x) = x/3 and Φ2(x) = x/3 + 2/3. That is,

C = Φ1(C) ∪ Φ2(C).

Theorem 1.2. The Cantor set is characterized by the ternary expansion of its elements as

C =
{

c ∈ [0, 1] : c = a0 +
a1

3
+

a2

32
+ · · · , ai ∈ {0, 2}, ∀i ≥ 0

}
.

We note that, as usual, we choose the nonrepeating ternary expansion here. Such a precaution
will not be needed in §2 for the elements of Q3 because the 3-adic expansion is unique.
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Figure 2. Cantor string (above); Cantor string viewed as a fractal harp (below).

1.3. Cantor fractal string. The archimedean (or real) Cantor string CS is defined as the com-
plement of the ternary Cantor set in the closed unit interval [0, 1]. By construction, the topological
boundary of CS is the ternary Cantor set C. The Cantor string is one of the simplest and most
important examples in the research monographs [7, 8] by Lapidus and van Frankenhuijsen. Indeed,
it is used throughout those books to illustrate and motivate the general theory; see also, e.g., [5]
and [6]. From the point of view of the theory of fractal strings and their complex dimensions [7,8],
it suffices to consider the sequence {ln}n∈N of lengths associated to CS. More specifically, these are
the lengths of the intervals of which the bounded open set CS ⊂ R is composed. Accordingly, the
Cantor string consists of 1 = m1 interval of length l1 = 1/3, 2 = m2 intervals of length l2 = 1/9,
4 = m3 intervals of length l3 = 1/27, and so on; see Figure 2.

Important information about the geometry of CS, e.g., the Minkowski dimension and the Minkowski
measurability ([5–8]), is contained in its geometric zeta function

(2) ζCS(s) :=

∞∑

n=1

mn · lsn =

∞∑

n=1

2n−1

3ns
=

3−s

1 − 2 · 3−s
for ℜ(s) > D,

where D = log 2/ log 3 is the Minkowski dimension of the ternary Cantor set. In addition, ζCS
can be extended to a meromorphic function on the entire complex plane C, as given by the last
expression in (2). The corresponding set of poles of ζCS is then given by

(3) DCS = {D + ıνp | ν ∈ Z},
where p = 2π/ log 3 is the oscillatory period of CS. Here and henceforth, we let ı :=

√
−1. The set

DCS is called the set of complex dimensions of the Cantor string; see Figure 5 in §3.
The general theme of the monographs [7, 8] is that the complex dimensions describe oscillations

in the geometry and the spectrum of a fractal string. In particular, there are oscillations of order
D in the geometry of CS and therefore its boundary, the Cantor set, is not Minkowski measurable;
see [6], [8, §1.1.2].

In §3, we will obtain a nonarchimedean (or p-adic) analogue of the Cantor string and establish
its main properties.
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2. Nonarchimedean Cantor set

Let Zp be the set of p-adic integers. The p-adic ball with center a ∈ Qp and radius p−n, n ∈ Z,
is the set

a + pnZp = {x ∈ Qp : |x − a|p ≤ p−n}.
Two interesting “nonarchimedean phenomena” are that each point of the p-adic ball is a center
and a p-adic ball is both open and closed. Moreover, every interval1 in Qp can be canonically
decomposed into p equally long subintervals, as in (1).

Consider the ring of 3-adic integers Z3. In a procedure reminiscent of the construction of the
classic Cantor set, we construct the nonarchimedean Cantor set. First, we subdivide T0 = Z3 into 3
equally long subintervals. We then remove the “middle” third T1 = 1+3Z3 and repeat this process
with each of the remaining subintervals. Finally, we define the nonarchimedean Cantor set C3 to be⋂∞

n=0
Tn; see Figure 3. The nonarchimedean analogue of Theorem 1.1 is given by Theorem 2.1:

...
...

...
...

T0

T1

T2

Tn

Z3

0 + 3Z3 1 + 3Z3 2 + 3Z3

0 + 9Z3 3 + 9Z3 6 + 9Z3 2 + 9Z3 5 + 9Z3 8 + 9Z3

Figure 3. Construction of the nonarchimedean Cantor set C3 =
⋂∞

n=0
Tn.

Theorem 2.1. The nonarchimedean Cantor set C3 is self-similar. More specifically, it is the unique
nonempty, compact invariant set in Qp generated by the family {Ψ1, Ψ2} of similarity contraction
mappings of Z3 into itself, where

(4) Ψ1(x) = 3x and Ψ2(x) = 3x + 2.

That is,
C3 = Ψ1(C3) ∪ Ψ2(C3).

Proof. From Figure 4, we can see that Ψ1(Tn) ∪ Ψ2(Tn) = Tn+1 for all n ≥ 0. Since each Ψi is
injective (i = 1, 2), we have Ψi(C3) = Ψi(

⋂
n Tn) =

⋂
n Ψi(Tn). Therefore,

Ψ1(C3) ∪ Ψ2(C3) =

∞⋂

n=0

(Ψ1(Tn) ∪ Ψ2(Tn)) =

∞⋂

n=0

Tn+1 = C3.

The Contraction Mapping Principle, applied to the complete metric space of all nonempty compact
subsets of Z3,

2 equipped with the Hausdorff metric induced by the 3-adic norm, shows that there

1We shall sometimes call the ball a + p
n

Zp an “interval”.
2Recall from §1.1 that Z3 itself is a complete metric space.
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is a unique invariant set of the family of similarity contraction mappings {Ψ1, Ψ2}. We refer to
Hutchinson’s paper [2] for a detailed argument in the case of arbitrary complete metric spaces.

...
...

...
...

Z3

Ψ1(Z3) 1 + 3Z3 Ψ2(Z3)

Ψ11(Z3) 3 + 9Z3 Ψ21(Z3) Ψ12(Z3) 5 + 9Z3 Ψ22(Z3)

Figure 4. Construction of the nonarchimedean Cantor set via an Iterated Func-
tion Scheme (IFS).

Theorem 2.2. Let Wk = {1, 2}k be the set of all finite words, on 2 symbols, of a given length
k ≥ 0. Then

C3 =

∞⋂

k=0

⋃

w∈Wk

Ψw(Z3),

where Ψw := Ψwk
◦ · · · ◦Ψw1

for w = (w1, . . . , wk) ∈ Wk and the maps Ψwi
are as in Equation (4).

Proof. For each k = 0, 1, 2, . . ., we have that
⋃

w∈Wk

Ψw(Z3) = Tk.

Hence, in light of Theorem 2.1, the result follows at once from the definition of C3; see Figure 4.
The following result is the nonarchimedean analogue of Theorem 1.2:

Theorem 2.3. The nonarchimedean Cantor set is characterized by the 3-adic expansion of its
elements. That is,

C3 =
{
κ ∈ Z3 | κ = a0 + a13 + a23

2 + · · · , ai ∈ {0, 2}, ∀i ≥ 0
}

.

Proof. First of all, observe that the inverses of Ψ1 and Ψ2 are, respectively,

Ψ−1
1 (x) =

x

3
and Ψ−1

2 (x) =
x − 2

3
.

Secondly, it is clear that for a′
i ∈ {0, 1, 2} and i = 0, 1, 2 . . . ,

(5) a′
0 + a′

13 + a′
23

2 + · · · ∈ 1 + 3Z3 ⇔ a′
0 = 1.

Now, let κ = a0 + a13 + a23
2 + · · · ∈ Z3 and suppose that some coefficients in its 3-adic expansion

are 1’s. We will show that κ must then be in the image of 1 + 3Z3 under some composition of the
maps Ψ1 and Ψ2. Let l ∈ N be the first index such that al = 1. Hence, aj = 0 or 2 for all j < l. If
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a0 = 0, then we apply Ψ−1
1 to κ, and if a0 = 2, then we apply Ψ−1

2 to κ. In both cases, we have
that

(6) Ψ−1
i (κ) = a1 + a23 + · · · + al3

l−1 + al+13
l + · · · .

Depending on whether a1 = 0 or 2, we apply Ψ−1
1 or Ψ−1

2 , respectively, to the above 3-adic expansion
(6). Proceeding in this manner, we will get

Ψ−1
w (κ) = al + al+13 + · · · ,

which is in 1 + 3Z3 for some k ∈ N and w ∈ Wk. Thus κ ∈ Ψw(1 + 3Z3). Since (1 + 3Z3) ∩ C3 = ∅
and Ψw is injective, we deduce that κ /∈ C3. Therefore, all of the digits of κ ∈ C3 must lie in {0, 2}.

Conversely, suppose that all of the coefficients in κ = a0 + a13 + a23
2 + · · · ∈ Z3 are 0′s or

2′s. Then, by the above observation (5), κ /∈ 1 + 3Z3. Moreover, κ /∈ Φw(1 + 3Z3) for any
w ∈ Wk, k = 0, 1, 2, . . ., since none of the coefficients ai is equal to 1. That is,

κ /∈
∞⋃

k=0

⋃

w∈Wk

Φw(1 + 3Z3) =: B.

But C3 ∩ B = ∅ and C3 ∪ B = Z3, as can be seen in Equation (8) and Theorem 3.3. Hence, κ ∈ C3,
as desired.

Theorem 2.4. The ternary Cantor set C and the nonarchimedean Cantor set C3 are homeomorphic.

Proof. Let φ : C → C3 be the map sending

(7)

∞∑

i=0

ai3
−i 7→

∞∑

i=0

ai3
i,

where ai ∈ {0, 2} for all i ≥ 0. We note that on the left-hand side of (7), we use the ternary
expansion in R, whereas on the right-hand side we use the 3-adic expansion in Q3. Then, clearly,
φ is a continuous bijective map from C to C3. Since both C and C3 are compact spaces in their
respective natural metric topologies, φ is a homeomorphism.

Remark 2.5. In view of Theorem 2.4, like its archimedean counterpart C, the nonarchimedean
Cantor set C3 is totally disconnected, uncountably infinite and has no isolated points.

3. Nonarchimedean Cantor string

The nonarchimedean (or p-adic) Cantor string is defined to be

(8) CS3 := (1 + 3Z3) ∪ (3 + 9Z3) ∪ (5 + 9Z3) ∪ · · · = Z3\C3,

the complement of C3 in Z3; see the “middle” parts of Figure 3. Therefore, by analogy with the
relationship between the archimedean Cantor set and Cantor string, the nonarchimedean Cantor set
C3 can be thought of as some kind of “boundary” of the nonarchimedean Cantor string. Certainly,
C3 is not the topological boundary of CS3 because the latter boundary is empty.

Since Qp is a locally compact group, there is a unique translation invariant Haar measure µH ,
normalized so that µH(Zp) = 1, and hence µH(a + 3nZ3) = 3−n; see [4], [11]. As in the real case in
§1.3, we may identify CS3 with the sequence of lengths ln = 3−n with multiplicities mn = 2n−1 for
n ∈ N.

The following theorem provides the exact analogue of Equations (2) and (3):
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Figure 5. The set of complex dimensions, DCS = DCS3
, of the archimedean and

nonarchimedean Cantor strings, CS and CS3.

Theorem 3.1. The geometric zeta function of the nonarchimedean Cantor string is meromorphic
in all of C and is given by

(9) ζCS3
(s) =

3−s

1 − 2 · 3−s
.

Hence, the set of complex dimensions of CS3 is given by

(10) DCS3
= {D + ıνp | ν ∈ Z},

where D = log 2/ log 3 is the dimension of CS3 and p = 2π/ log 3 is its oscillatory period.

Proof. By definition (see [9, 10]), the geometric zeta function of CS3 is given by

ζCS3
(s) := (µH(1 + 3Z3))

s + (µH(3 + 9Z))s + (µH(5 + 9Z3))
s + · · ·

=

∞∑

n=1

2n−1

3ns
=

3−s

1 − 2 · 3−s
for ℜ(s) > log 2/ log 3.

Furthermore, the meromorphic extension of ζCS3
to all of C is given by the last expression in the

above equation. The complex dimensions of CS3, defined as the poles of ζCS3
, are all the solutions

ω of the equation 1 − 2 · 3−ω = 0. These are precisely of the form

ω =
log 2

log 3
+ ıν

2π

log 3
, ν ∈ Z.

Remark 3.2. In [9, 10], we prove that D is the Minkowski dimension of CS3 ⊂ Z3. Clearly, D is
also the abscissa of convergence of the Dirichlet series defining ζCS3

.

The following result was used in the second part of the proof of Theorem 2.3:
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Theorem 3.3. With the same notation as in Theorem 2.2, we have that

CS3 =

∞⋃

k=0

⋃

w∈Wk

Ψw(1 + 3Z3).

Proof. For each k = 0, 1, 2, . . . , we let T̃k+1 = Z3\Tk+1, the complement of Tk+1 in Z3. Then

T̃k+1 =
⋃

w∈Wk

Ψw(1 + 3Z3).

Hence, in light of Theorem 2.1, we have that
∞⋃

k=0

⋃

w∈Wk

Ψw(1 + 3Z3) =

∞⋃

k=0

T̃k+1 =
⋂̃

Tk+1 = C̃3 = CS3,

by the definitions of C3 and CS3. See Figure 6.

...
...

...
...

Z3

0 + Z3 1 + 3Z3 = G 2 + Z3

0 + 9Z3 Ψ1(G) 6 + 9Z3 2 + 9Z3 Ψ2(G) 8 + 9Z3

Figure 6. Construction of the nonarchimedean Cantor string via an IFS.

Remark 3.4. The above theorem shows that G = 1 + 3Z3 is the generator of the nonarchimedean
Cantor string. This is a particular case of a more general construction of self-similar p-adic fractal
strings [9, 10]. Moreover, CS3 is not Minkowski measurable as a subset of Q3. In fact, in contrast
to the archimedean case ([8], Theorems 8.23 and 8.36), self-similar p-adic fractal strings are never
Minkowski measurable.

Acknowledgements: We would like to thank Scot Childress, Erin Pearse and Steffen Winter for
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