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ABSTRACT. We construct a nonarchimedean (or p-adic) analogue of the classical ternary Cantor
set C. In particular, we show that this nonarchimedean Cantor set Cs is self-similar. Furthermore,
we characterize C3 as the subset of 3-adic integers whose elements contain only 0’s and 2’'s
in their 3-adic expansions and prove that Cs is naturally homeomorphic to C. Finally, from
the point of view of the theory of fractal strings and their complex fractal dimensions [7, §],
the corresponding nonarchimedean Cantor string resembles the standard archimedean (or real)
Cantor string perfectly.

1. INTRODUCTION

Our goal in this article is to provide a good nonarchimedean (or p-adic) analogue of the classic
Cantor ternary set C and to show that it satisfies a counterpart of some of the key properties
of C in this nonarchimedean context. We also show that the corresponding p-adic fractal string,
called the nonarchimedean Cantor string and denoted by CS3, is an exact analogue of the ordinary
archimedean Cantor string, a central example in the theory of real (or archimedean) fractal strings
and their complex dimensions [7, 8]. Furthermore, we compute the geometric zeta function of CSs
and the associated complex fractal dimensions.

In a forthcoming paper [9], we will develop a general framework for formulating a theory of
self-similar p-adic (or nonarchimedean) strings and their complex fractal dimensions. Besides an-
swering a natural mathematical question, these results may be useful in various aspects of mathe-
matical physics, including p-adic quantum mechanics and string theory, where extensions from the
archimedean to the nonarchimedean setting have been extensively explored [12].

1.1. p-adic numbers. Let p € N be a fixed prime number. For any nonzero x € Q, we can always
write = p¥-a/b, with a,b € Z and for some unique v € Z so that p does not divide ab. The p-adic
norm is a function | - |, : Q — [0, 00) given by

lzl[p =p™" and [0[, =0.

One can verify that |- |, is indeed a norm on Q. Furthermore, it satisfies a strong triangle inequality:
for any z,y € Q, we have |z + y|, < max{|z|,,|y|p}; the induced metric is therefore called an
ultrametric. This inequality is called the nonarchimedean property because for each x € Q, |nz|,
will never exceed |z|, for any n € N. The metric completion of Q with respect to the p-adic norm is
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the field of p-adic numbers Q,. More concretely, there is a unique representation of every z € Q,:
Zz=ayp’ + - +ag+ap+ap?+---, for some v € Z and a; € {0,1,...,p— 1} for all i > v. An
important subspace of Q) is the unit ball, Z, = {z € Q, : |z|, < 1}, which can also be represented
as follows:
Ly = {ag+aip+asp®*+--- | a; €{0,1,...,p—1}, Vi > 0}.

Using this p-adic expansion, we can see that

p—1
(1) Lp = U(C—i—pr),

c=0
where ¢ + pZ, = {y € Q, : |y — ¢|[, < 1/p}. Moreover, by the nonarchimedean property of the
p-adic norm, Zj, is closed under addition and hence is a ring. It is called the ring of p-adic integers
and Z is dense in Z,. Note that Z, is compact and thus complete. (For general references on p-adic
analysis, see, e.g., [4, 11].) It is also known that there are topological models of Z, in the Euclidean
space R? as fractal spaces such as the Cantor set and the Sierpinisky gasket [11, §1.2.5]. In fact,
Z, is homeomorphic to the ternary Cantor set. It is thus natural to wonder what exactly is the
nonarchimedean (or p-adic) analogue of the ternary Cantor set. We will answer this question in §2.

1.2. Ternary Cantor set. The classical ternary Cantor set, denoted by C, is the set that remains
after iteratively removing the open middle third subinterval(s) from the closed unit interval Cy =
[0,1]. The construction is illustrated in Figure 1. Hence, the ternary (or archimedean) Cantor set
C is equal to ()~ Ch.

Co

Cy

Cs

FIGURE 1. Construction of the archimedean Cantor set C = (,—, Cy.

For comparison with our results in the nonarchimedean case, we state without proof the following
well-known results (see, e.g., [1, Ch. 9] and [2, p. 50]):

Theorem 1.1. The ternary Cantor set C is self-similar. More specifically, it is the unique nonempty,
compact invariant set in R generated by the family {®1, P2} of similarity contraction mappings of
[0,1] into itself, where ®1(x) = x/3 and P2(x) = x/3 +2/3. That is,

C=9:(C)uU Dy(C).
Theorem 1.2. The Cantor set is characterized by the ternary expansion of its elements as

C:{CE[O,I] : c:ao+%+%+---, ai6{0,2},w20}.
We note that, as usual, we choose the nonrepeating ternary expansion here. Such a precaution
will not be needed in §2 for the elements of Q3 because the 3-adic expansion is unique.
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FIGURE 2. Cantor string (above); Cantor string viewed as a fractal harp (below).

1.3. Cantor fractal string. The archimedean (or real) Cantor string CS is defined as the com-
plement of the ternary Cantor set in the closed unit interval [0, 1]. By construction, the topological
boundary of CS is the ternary Cantor set C. The Cantor string is one of the simplest and most
important examples in the research monographs [7, 8] by Lapidus and van Frankenhuijsen. Indeed,
it is used throughout those books to illustrate and motivate the general theory; see also, e.g., [5]
and [6]. From the point of view of the theory of fractal strings and their complex dimensions [7,8],
it suffices to consider the sequence {l, }nen of lengths associated to CS. More specifically, these are
the lengths of the intervals of which the bounded open set CS C R is composed. Accordingly, the
Cantor string consists of 1 = my interval of length Iy = 1/3, 2 = my intervals of length lo = 1/9,
4 = mg intervals of length I3 = 1/27, and so on; see Figure 2.
Important information about the geometry of CS, e.g., the Minkowski dimension and the Minkowski

measurability ([5-8]), is contained in its geometric zeta function

& 27171 3—s

(2) Ces(s) =Y mn 15 =Y = for R(s) > D,
n=1

gns  1-2-37°

n=1
where D = log2/log3 is the Minkowski dimension of the ternary Cantor set. In addition, (cs

can be extended to a meromorphic function on the entire complex plane C, as given by the last
expression in (2). The corresponding set of poles of (¢s is then given by

(3) Des ={D+wp | v € Z},

where p = 27/ log 3 is the oscillatory period of CS. Here and henceforth, we let 2 := v/—1. The set
Des is called the set of complex dimensions of the Cantor string; see Figure 5 in §3.

The general theme of the monographs [7, 8] is that the complex dimensions describe oscillations
in the geometry and the spectrum of a fractal string. In particular, there are oscillations of order
D in the geometry of CS and therefore its boundary, the Cantor set, is not Minkowski measurable;
see [6], [8, §1.1.2].

In §3, we will obtain a nonarchimedean (or p-adic) analogue of the Cantor string and establish
its main properties.
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2. NONARCHIMEDEAN CANTOR SET

Let Zj, be the set of p-adic integers. The p-adic ball with center a € Q, and radius p~™", n € Z,

is the set

a+p"Z,={x€Qp:|z—al,<p "}
Two interesting “nonarchimedean phenomena” are that each point of the p-adic ball is a center
and a p-adic ball is both open and closed. Moreover, every interval® in Qp can be canonically
decomposed into p equally long subintervals, as in (1).

Consider the ring of 3-adic integers Zs. In a procedure reminiscent of the construction of the
classic Cantor set, we construct the nonarchimedean Cantor set. First, we subdivide Ty = Z3 into 3
equally long subintervals. We then remove the “middle” third 77 = 1+ 3Z3 and repeat this process
with each of the remaining subintervals. Finally, we define the nonarchimedean Cantor set Cs to be
Mo~ Tn; see Figure 3. The nonarchimedean analogue of Theorem 1.1 is given by Theorem 2.1:

Z3
To
T 0+ 37 1437 2 4 374
TS 04973 3+ 973 6 + 973 2+ 973 5+ 973 8 + 973
T,

FIGURE 3. Construction of the nonarchimedean Cantor set C3 = ﬂzozo 1.

Theorem 2.1. The nonarchimedean Cantor set Cs is self-similar. More specifically, it is the unique
nonempty, compact invariant set in Q, generated by the family {¥1, Uy} of similarity contraction
mappings of Zs into itself, where
(4) Uy(z) =3z and Ty(z) =3+ 2.
That is,

Cs = \111(63) U \112(63).
Proof. From Figure 4, we can see that U1(T},) U Uo(T},) = T,,+1 for all n > 0. Since each ¥, is
injective (i = 1,2), we have ¥;(C3) = V;(,, Tn) = ,, ¥i(Th). Therefore,

\111(63) @] \112(63) = ﬂ (\Ifl(Tn) @] \Ifg(Tn)) = m Thy1 = Cs.
n=0 n=0
The Contraction Mapping Principle, applied to the complete metric space of all nonempty compact
subsets of Z3,2 equipped with the Hausdorff metric induced by the 3-adic norm, shows that there

IWe shall sometimes call the ball a + p"Zp an “interval”.
2Recall from §1.1 that Zs itself is a complete metric space.
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is a unique invariant set of the family of similarity contraction mappings {¥U, U5}. We refer to
Hutchinson’s paper [2] for a detailed argument in the case of arbitrary complete metric spaces.

L3

U, (Zs) 14 3Zs Uy(Zs)

U11(Z3) 3+ 9Zs W91 (Z3) V15(Z3) 5+ 9Zs Uao(Z3)

FIGURE 4. Construction of the nonarchimedean Cantor set via an Iterated Func-
tion Scheme (IFS).

Theorem 2.2. Let W, = {1,2}F be the set of all finite words, on 2 symbols, of a given length

k>0. Then
=) U Yul(2s),
k=0 weWy
where Wy, := Uy, 00 Wy, forw = (w1,...,w;) € Wy and the maps V., are as in Equation (4).

Proof. For each k =0,1,2,..., we have that
U vul(Zs) =T

weWy
Hence, in light of Theorem 2.1, the result follows at once from the definition of C3; see Figure 4.
The following result is the nonarchimedean analogue of Theorem 1.2:

Theorem 2.3. The nonarchimedean Cantor set is characterized by the 3-adic expansion of its
elements. That is,

03:{H€Z3 | K =ap+ a3+ a3 +--- ,a; € {0,2}, ViZO}.

Proof. First of all, observe that the inverses of U1 and W5 are, respectively,

-2
U () = % and W;'(z) = z 7
Secondly, it is clear that for a € {0,1,2} and i =0,1,2...,
(5) ap +ai3+ay3® +--- €1+ 3%Z3 & ap = 1.

Now, let kK = ag + 413 + 4232 + - - - € Z3 and suppose that some coefficients in its 3-adic expansion
are 1’s. We will show that x must then be in the image of 1 + 3Z3 under some composition of the
maps ¥; and W,. Let I € N be the first index such that a; = 1. Hence, a; =0 or 2 for all j < [. If
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ag = 0, then we apply \I!fl to k, and if ag = 2, then we apply \Ilgl to k. In both cases, we have
that

(6) \11;1(“):a1+a23+"-+a13l_1+al+13l+...'

Depending on whether a; = 0 or 2, we apply \I!fl or ¥y L respectively, to the above 3-adic expansion
(6). Proceeding in this manner, we will get

Ul k)=a+a 134+,

which is in 1 + 3Zs for some k € N and w € Wj,. Thus & € U,,(1 + 3Z3). Since (1 +3Z3)NC3 =0
and U, is injective, we deduce that k ¢ Cs. Therefore, all of the digits of x € C3 must lie in {0, 2}.

Conversely, suppose that all of the coefficients in £ = ag + @13 + a23%> + --- € Z3 are 0's or
2's. Then, by the above observation (5), x ¢ 1+ 3Zs. Moreover, k ¢ ®,,(1 + 3Z3) for any
w e Wi, k=0,1,2,..., since none of the coefficients a; is equal to 1. That is,

ke ) U ®w(l+323) =B
k=0 weWy,
But C3N B =) and C3 U B = Z3, as can be seen in Equation (8) and Theorem 3.3. Hence, « € Cs,
as desired.

Theorem 2.4. The ternary Cantor set C and the nonarchimedean Cantor set C3 are homeomorphic.

Proof. Let ¢ : C — C3 be the map sending

) S s e
1=0 1=0

where a; € {0,2} for all i > 0. We note that on the left-hand side of (7), we use the ternary
expansion in R, whereas on the right-hand side we use the 3-adic expansion in Q3. Then, clearly,
¢ is a continuous bijective map from C to C3. Since both C and Cs are compact spaces in their
respective natural metric topologies, ¢ is a homeomorphism.

Remark 2.5. In view of Theorem 2.4, like its archimedean counterpart C, the nonarchimedean
Cantor set Cs is totally disconnected, uncountably infinite and has no isolated points.

3. NONARCHIMEDEAN CANTOR STRING
The nonarchimedean (or p-adic) Cantor string is defined to be
(8) CS;3 = (1+3Z3)U (3+9Z3)U (5+923)U-~' = Zg\Cg,

the complement of C3 in Zs; see the “middle” parts of Figure 3. Therefore, by analogy with the
relationship between the archimedean Cantor set and Cantor string, the nonarchimedean Cantor set
C3 can be thought of as some kind of “boundary” of the nonarchimedean Cantor string. Certainly,
Cs is not the topological boundary of CS3 because the latter boundary is empty.

Since Q, is a locally compact group, there is a unique translation invariant Haar measure i,
normalized so that pg(Z,) = 1, and hence pg(a+3"Zs) = 37"; see [4], [11]. As in the real case in
§1.3, we may identify CS3 with the sequence of lengths [,, = 3~" with multiplicities m,, = 2"~ for
n € N.

The following theorem provides the exact analogue of Equations (2) and (3):
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FIGURE 5. The set of complex dimensions, D¢s = Des,, of the archimedean and
nonarchimedean Cantor strings, CS and CSs.

Theorem 3.1. The geometric zeta function of the nonarchimedean Cantor string is meromorphic
in all of C and is given by

3—8
9) Cesy(s) = T-2.3+
Hence, the set of complex dimensions of CSs is given by
(10) Des, = {D+wp | v ez},

where D =log2/log3 is the dimension of CS3 and p = 2w/ log3 is its oscillatory period.
Proof. By definition (see [9, 10]), the geometric zeta function of CSj is given by

Cess(s) == (pa(l+3Z3))" + (na (3 +9Z))° + (um (5 + 9Z3))* + - --
o0 n—1 s
= 2 23n5 = 1 _32 : 375 fOI' %(8) > log 2/ 10g3'

Furthermore, the meromorphic extension of (¢s, to all of C is given by the last expression in the
above equation. The complex dimensions of CS3, defined as the poles of (¢s,, are all the solutions
w of the equation 1 — 2-37“ = (0. These are precisely of the form

log 2 2

w= %8 w—w, v € 7.

log 3 log 3
Remark 3.2. In [9, 10/, we prove that D is the Minkowski dimension of CSs C Zs. Clearly, D is
also the abscissa of convergence of the Dirichlet series defining (cs,.

The following result was used in the second part of the proof of Theorem 2.3:



8 MICHEL L. LAPIDUS AND LU’ HUNG

Theorem 3.3. With the same notation as in Theorem 2.2, we have that

CS3 = G U (1 +32s).

k=0 weWj
Proof. For each k =0,1,2,..., we let ﬁ: = Zs\Tk+1, the complement of Ty in Zz. Then
Tin= |J Wu(l+3Zs).
weWy,
Hence, in light of Theorem 2.1, we have that

U U ‘I’w(1+3Z3)=Uﬁ;ZﬁTkH:@:C«S&
k=0

k=0 weWy
by the definitions of C3 and CS3. See Figure 6.

Zs3
0+ Zs 143%s =G 2+ Zs

0+ 9Z3 T,(G) 6 + 9Zs 2+ 9Zs U,(G) 8 + 973

FIGURE 6. Construction of the nonarchimedean Cantor string via an IFS.

Remark 3.4. The above theorem shows that G = 1 + 3Z3 is the generator of the nonarchimedean
Cantor string. This is a particular case of a more general construction of self-similar p-adic fractal
strings [9, 10]. Moreover, CSs is not Minkowski measurable as a subset of Q3. In fact, in contrast
to the archimedean case ([8], Theorems 8.23 and 8.536), self-similar p-adic fractal strings are never
Minkowski measurable.
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