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Abstract. We construct an additive functor from the category of separable C∗-algebras
with morphisms enriched over Kasparov’s KK0-groups to the category of noncommutative
K-correspondences NCCK

dg, whose objects are small DG categories and morphisms are given
by the equivalence classes of some DG bimodules up to a certain K-theoretic identification.
Motivated by a construction of Cuntz we associate a pro C∗-algebra to any simplicial set,
which is functorial with respect to proper maps of simplicial sets and those of pro C∗-
algebras. This construction respects homotopy between proper maps after enforcing matrix
stability on the category of pro C∗-algebras. The first result can be used to deduce derived
Morita equivalence between DG categories of topological bundles associated to separable C∗-
algebras up to a K-theoretic identification from the knowledge of KK-equivalence between
the C∗-algebras. The second construction gives an indication that one can possibly develop
a noncommutative proper homotopy theory in the context of topological algebras, e.g., pro
C∗-algebras.

Introduction

Experts believe that in any category of noncommutative spaces correspondence-like mor-
phisms should also be included, e.g., ‘motivated morphisms’ in [42]. Such morphisms are
given by some bimodules or generalizations thereof that induce well-defined morphisms
on most (co)homological constructions that we know. Such correspondences can be nat-
urally seen as morphisms over some desirable enrichments of the category of noncommu-
tative spaces, for instance, additive or spectral ones. Furthermore, most of the interesting
(co)homological invariants that we know should factor through this category. The philoso-
phy closely adheres to that of motivic homotopy theory [26] but including noncommutative
objects. Bearing in mind the relative importance of K-theory, we study certain categories,
which we call noncommutative K-correspondence categories, whose morphisms naturally in-
clude those between topological K-theories. More precisely as a category of noncommutative
K-correspondences in the operator algebraic setting we consider the well-known category
KKC∗ with Kasparov’s bivariant K-theory elements as morphisms, which, in fact, has a tri-
angulated structure [45]. This category seems to have the good formal properties to be
considered as an absolute correspondence category, at least in the context of separable C∗-
algebras. Indeed, this category appears in the context of noncommutative motives in [15].
The additivized Morita homotopy category of DG (differential graded) categories Hmo0, whose
construction was outlined in [62], is potentially a good candidate for the absolute category of
noncommutative correspondences in the setting of DG categories. Kontsevich calls the same
category as the category of noncommutative motives in [40]. All additive invariants of DG
categories factor through this category [62]. However, for the applications that we have in
mind a more decisive localization is needed. In certain applications to (co)homological dual-
ity statements in physics one would like to construct morphisms which induce isomorphisms
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between topological K-theories (or other generalized cohomology theories). Therefore, we
invert morphisms which induce homotopy equivalences between Waldhausen’s K-theory spec-
tra [63] of DG categories and further perform a group completion of the morphisms. This
construction is admittedly not entirely satisfactory as the author is unaware of good method
of inverting a class of maps in a combinatorial model category (see however [2]). We also
show how this category is related to the topological K-theory of separable C∗-algebras. It is
plausible that some other localization will be beneficial for a different application. From our
point of view, one can obtain duality results fairly easily if one is less ambitious, i.e., instead
of trying to prove absolute equivalence of DG or A∞-categories, if one tries to prove them
after a suitable localization one can be more successful.

In the first section we describe the noncommutative DG K-correspondence category NCCK
dg

and the noncommutative C∗-K-correspondence category KKC∗ . Then we construct our addi-
tive functor TopK

fib : KKC∗ −→ NCCK
dg (see Theorem 1.16). The functor TopK

fib(£) roughly sends
a unital C∗-algebra to its bounded DG category of complexes of vector bundles (or finitely
generated projective modules). At the heart of this construction lies Quillen’s description of
the K0-group of nonunital algebras [52], which is particularly well behaved for C∗-algebras.
The interest lies mostly in isomorphisms and by functoriality this result implies that an
isomorphism in KKC∗ would translate to an isomorphism of DG categories in NCCK

dg. It is clear

that isomorphisms in NCCK
dg are weaker than those in Hmo0. In the classification programme

of C∗-algebras the Kirchberg–Phillips Theorem states that two stable Kirchberg algebras are
KK-equivalent if and only if they are ∗-isomorphic [39, 50] and therefore KK-equivalent stable
Kirchberg algebras will have isomorphic DG categories of topological bundles, whose isomor-
phisms will be more tractable. This result is probably by itself not very interesting as it is
purely a topological statement. However, by incorporating more structures into a C∗-algebra
(for example, a curved topological DGA) one can hopefully produce more instances of non-
commutative dualities as in [4, 5, 6] simply from the well studied KK-isomorphisms. Purely
in the operator algebraic context the connection between KK-dualities and noncommutative
T-dualities have been explored in [9, 10]. The functor TopK

fib seems to be related to some
nontrivial isomorphisms like the Fourier–Mukai type dualities for tori (see Example 1.20).
One can also deduce that for any nuclear separable C∗-algebra £ the DG category TopK

fib(£)
is invariant in NCCK

dg under strong deformation if £ and its strong deformation are suitably
homotopy equivalent (see subsection 1.6). Similar results at the level of K-theory groups
already exist in the literature [22] (see also [56] for a survey). We also discuss the concept
of homological T-dualities and its connection with that of topological C∗-K-correspondences
briefly (see subsection 1.7). It would be interesting to extend our construction of TopK

fib(£)
to the context of purely algebraic bivariant K-theory developed by Cortiñas–Thom [18], at
least in the H-unital case. Furthermore, it is also plausible that our additive functor could
be promoted to an exact functor between triangulated categories, by localizing DGcat along
the nonconnective K-theory spectrum (see [63])

The second section is inspired by some emergent connections between homotopy theory
and noncommutative topology. Several problems in noncommutative topology, including the
Baum–Connes conjecture, have some level of properness built into them. From our point of
view the objects themselves need not be finite (or compact) but the maps interconnecting
them should be proper in some suitable manner and compose well to form a category. Cuntz
constructed a universal noncommutative C∗-algebra using generators and relations from a
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locally finite simplicial complex to give a conceptual understanding of the Baum–Connes
assembly map in [20]. We associate a noncommutative pro C∗-algebra to any simplicial
set (without any finiteness assumption), which is functorial with respect to proper maps of
simplicial sets (see Definition 2.7). Then we show that our construction induces a functor
between the category of simplicial sets with, what we call, proper homotopy classes of proper
maps between them and the matrix stabilized category of pro C∗-algebras with homotopy
classes of proper or nondegenerate maps between them. Although we mostly deal with the
category of pro C∗-algebras with proper ∗-homomorphisms between them, in order to enforce
matrix stability we enlarge the morphisms by corner embeddings, which are not proper, and
invert these maps formally. However, the formal inverses of the corner embeddings are in
some sense proper. Another sticking point is that we cannot ensure that our construction
produces continuous ∗-homomorphisms between pro C∗-algebras. Therefore we work with
arbitrary ∗-homomorphisms which become automatically continuous if the domain pro C∗-
algebra is actually a σ-C∗-algebra or a countable inverse limit of C∗-algebras. It seems
plausible that without enlarging the category of C∗-algebras to include certain limits of
topological ∗-algebras, it is not possible to construct a Quillen model category structure on
it. After appropriate enlargement (containing pro C∗-algebras) there does exist a cofibrantly
generated model category structure with KK∗-equivalences (or K∗-equivalences) as weak
equivalences [33]. Our result might suggest that the matrix stabilized category of pro C∗-
algebras with proper maps between them is amenable to noncommutative proper (or infinite)
homotopy theory as explained in, e.g., [3]. The author recently learnt that a very general
framework of homotopy theory in the context of C∗-algebras has been developed by Østvær
[47].

Although the two sections presented in this article seem unrelated the author hopes to
make the connection clearer in future.

A general remark is in order here. A C∗-algebra or an abstract DG category is not very
geometric in nature. The appropriate objects for geometry should be something close to
Connes’ spectral triples (see, e.g., the reconstruction Theorem [13]) and presumably a pre-
triangulated DG category whose homotopy category is geometric in the sense of Kontsevich
[41]. Therefore, our results should be viewed in the realm of noncommutative topology on
which interesting geometric structures can be built. In particular, our K-correspondence cat-
egories should be regarded as purely topological (not in the sense of a topological enrichment)
categories. In order to make the constructions a bit more sensitive to the norm structures
on the topological algebras, one might consider replacing the DG category of C-linear spaces
(noncommutative point) throughout by the DG category associated to the category of lo-
cally convex topological vector spaces, which admits the structure of a quasiabelian category
[58, 51].

Notations and conventions: We do not assume our algebras to be commutative or unital
unless explicitly stated so. In Section 1 we require our C∗-algebras to be separable, which
from the point of view of topology requires the spaces to be metrizable. Many constructions
in geometry require paracompactness (or an argument involving partition of unity) and from
that perspective the separability assumption is quite natural. Moreover, the technical issues
of KK-theory are properly understood only in the separable case. The focus of Section 2 is
combinatorial topology and hence we do away with the separability assumption and in fact
we work with a larger category of pro C∗-algebras or inverse limit C∗-algebras. We are going
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to work over a ground field k and while working with C∗-algebras the field k will be tacitly
assumed to be C. Unless otherwise stated, all functors are also assumed to be covariant and
appropriately derived (whenever necessary), although we shall use the underived notation
for brevity, e.g., we shall write ⊗ for ⊗L. The tensor products of C∗-algebras are suitably
completed and since in all cases one of the algebras is nuclear we do not need to worry about
the distinction between maximal and minimal tensor products. Throughout this article we
make use of the language of model categories and simplicial homotopy theory whose details
we have left out. The standard references for them are [53, 32, 30, 27].

Acknowledgements. The author is extremely grateful to P. Goerss, B. Keller, Matilde
Marcolli, R. Meyer, Fernando Muro, J. Rosenberg, G. Tabuada and B. Toën for several
email correspondences answering various questions. The author would like to thank Benôıt
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in an initial draft of the article. The mistakes that might remain are solely the author’s
responsibility. The author also gratefully acknowledges the hospitality of the department of
mathematics at the University of Toronto, Fields Institute and Institut des Hautes Études
Scientifiques, where much of this work was carried out.

1. Noncommutative K-correspondence categories

The general philosophy in this paradigm is that an object can be studied by its category
of representations. This category of representations could be endowed with an abelian,
triangulated, differential graded (DG) or some symmetric monoidal structure. It appears
that dealing with abelian or triangulated categories is deficient from the homotopy theoretic
point of view. It is better to work with the entire RHom complex of morphisms, which
retains cochain level information rather than simply the zeroth cohomology group as in
triangulated categories. Hence, from our perspective the appropriate category structure is
that of a category enriched over cochain complexes, i.e., a DG category.

It is often convenient to localize along certain morphisms for various purposes. For
(co)homological constructions in geometry localizing along quasi-equivalences seems quite
natural. This leads us to Keller’s construction of the derived category of a DG category,
which is essentially the category of modules (or representations) of the DG category up to
homotopy. This derived category is itself is a triangulated category and for most practical
purposes it suffices to work with this triangulated category of modules over the DG category
or some suitable triangulated subcategory thereof. We recall some basic facts about DG
categories and noncommutative geometry below. There is some freedom in choosing the
way one would like to represent the known constructions in geometry in this setting. Let us
reiterate that the noncommutative K-correspondence categories introduced below should be
viewed simply as topological models.

1.1. The category of small DG categories DGcat. The basic references for the back-
ground material, that we require, about the category of small DG categories are [37] and [62].
In this setting the noncommutative spaces are viewed as small DG categories, i.e., categories
enriched over the symmetric monoidal category of cochain complexes of k-linear spaces. Let
DGcat stand for the category of all small DG categories. The morphisms in this category are
DG functors, i.e., (enriched) functors inducing morphisms of Hom-complexes. Henceforth,

4



unless otherwise stated, all DG categories will be small. We provide one generic example of
a class of DG categories which will be useful for later purposes.

Example 1.1. Given any k-linear category M it is possible to construct a DG category
Cdg(M) with cochain complexes (M•, dM) over M as objects and setting Hom(M•, N•) =
⊕nHom(M•, N•)n, where Hom(M•, N•)n denotes the component of morphisms of degree n,
i.e., fn : M• → N•[n] and whose differential is the graded commutator dM ◦fn−(−1)nfn◦dN .
It is easily seen that the zeroth cocycle category Z0(Cdg(M)) reduces to the category of cochain
complexes over M and the zeroth cohomology category H0(Cdg(M)) produces the homotopy
category of complexes over M. Thus, given any DG category C the category H0(C) is called
the homotopy category of C. If the objects of Cdg(M) are taken to be chain (instead of
cochain) complexes over M one needs to set the n-th graded component of the morphism
Hom(M•, N•)n = Hom(M•, N•[−n]).

Now we recall the notion of the derived category of a DG category as in [36]. Let D be a
small DG category. A right DG D-module is by definition a DG functor M : Dop → Cdg(k),
where Cdg(k) denotes the DG category of cochain complexes of k-linear spaces. We denote
the DG category of right DG modules over D by Ddg(D). It generalizes the notion of a right
module over an associative unital k-algebra A. Indeed, viewing A as a category with one
object ∗ such that End(∗) = A, a functor from the oposite category to k-linear spaces is
just a k-linear space M (the image of ∗) with a k-algebra homomorphism Aop → Endk(M)
making M a right A-module. Every object X of D defines canonically what is called a
free or representable right D-module X∧ := HomD(−, X). A morphism of DG modules
f : L → M is by definition a morphism (natural transformation) of DG functors such that
fX : LX → MX is a morphism of complexes for all X ∈ Obj(D). We call such an f a
quasi-isomorphism if fX is a quasi-isomorphism for all X, i.e., fX induces isomorphism
on cohomologies. The derived category D(D) of D is defined to be the localization of the
category Ddg(D) with respect to the class of quasi-isomorphisms. The category D(D) attains
a triangulated structure with the translation induced by the shift of complexes and triangles
coming from short exact sequence of complexes. The Yoneda functor X 7→ X∧ induces an
embedding H0(D)→ D(D).

Definition 1.2. The triangulated subcategory of D(D) generated by the free DG D-modules
X∧ under translations in both directions, extensions and passage to direct factors is called
the perfect derived category and denoted by per(D). Its objects are called perfect modules.
A DG category D is said to be pretriangulated if the above-mentioned Yoneda functor induces
an equivalence H0(D)→ per(D).

Remark 1.3. The homotopy category of a pretriangulated category has a triangulated cat-
egory structure which is idempotent complete. There is a canonical DG version, denoted
by perdg(D), whose homotopy category is per(D). The construction is analogous to that of
Example 1.1. Considering an associative unital algebra A as a DG category one finds that
per(A) is equivalent to the homotopy category of bounded complexes of finitely generated
projective modules over A.

1.2. The Morita model structure on DGcat. A DG functor F : C → D is called a Morita
morphism if it induces an exact equivalence F ∗ : D(D)→ D(C). There are many equivalent
formulations of a Morita morphism. The one that we have chosen is perhaps the most direct
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generalization to the derived setting of (algebraic) Morita morphism as an equivalence of
module categories. Thanks to Tabuada [62] we know that DGcat has a cofibrantly generated
Quillen model category structure, where the weak equivalences are the Morita morphisms
and the fibrant objects are pretriangulated DG categories. The category of noncommutative
spaces NCSdg is defined to be the localization of DGcat with respect to the Morita morphisms,
i.e., the Morita homotopy category of DGcat. One should bear in mind that a Morita
morphism is, in general, weaker than what is called a quasi-equivalence, which generalizes
the concept of a quasi-isomorphism. Given any DG category A one constructs perdg(A) as its
pretriangulated replacement or fibrant replacement. Using the fibrant replacement functor
it is possible to view NCSdg as a full subcategory of DGcat localized along quasi-equivalences
consisting of pretriangulated DG categories.

The category NCSdg has an inner Hom functor which we denote by repdg(−, ?) [64]. For the
benefit of the reader we recall briefly its construction. Given any DG category A one can
construct a Cdg(k)-enriched model category structure on the DG category of right DG A-
modules Ddg(A), whose homotopy category turns out to be equivalent to the derived category
of A [64]. Let Int(A) denote the category of cofibrant-fibrant objects of this model category,
which may be regarded as a Cdg(k)-enrichment of the derived category of A. If C and D are
DG categories then their inner DG category repdg(C,D) is by definition Int(Ddg(Dop ⊗ C)).

A DG functor φ : C → D naturally gives rise to a Dop ⊗ C-module Mφ, i.e., Mφ(−⊗?) =
HomD(φ(?),−). This is one advantage of working in the DG setting, i.e., every morphism
(not necessarily isomorphisms) in NCSdg becomes a generalized DG bimodule morphism or
a noncommutative correspondence. In the geometric triangulated setting, e.g., when the
triangulated category is of the form Db(Coh(X)) for some smooth and proper variety X,
such a result is true only for exact equivalences [46].

1.3. A convenient localization of DGcat. Waldhausen’s K-theory construction K pro-
duces a functor DGcat −→ HoSpt, where HoSpt is the (triangulated) homotopy category of
spectra. More precisely, given any DG category A one constructs a Waldhausen category
structure on the category of perfect right A-modules with cofibrations as module morphisms
which admit a (graded) retraction and weak equivalences as quasi-isomorphisms. Then one
applies Waldhausen’s machinery [65] to this category. The homotopy groups of this spec-
trum are by definition the Waldausen K-theory groups of the DG category A. We may
perform a localization LK(DGcat) with respect to the class of morphisms inverted by K, i.e.,
morphisms f such that (K(f)) is a (connective) homotopy equivalence of spectra.

The category DGcat is combinatorial, i.e., it is cofibrantly generated model category and
its underlying category is locally presentable (see, e.g., [1] for the generalities). Indeed, it is
cofibrantly generated by construction and the underlying category is locally presentable as
follows: if V is a locally presentable symmetric monoidal category then the category of small
V-enriched categories is also locally presentable [38] and the category of cochain complexes
over k is clearly locally presentable. Now any combinatorial model category is Quillen
equivalent to a left proper and simplicial model category [23]. Therefore we may define
LK(DGcat) as a Bousfield homological localization [8, 7] and avoid set-theoretic problems.
This drastic localization has the effect that all DG categories which are ‘indistinguishable at
the level of K-theory spectra up to homotopy’ become isomorphic in the homotopy category
HoLK(DGcat). The category HoLK(DGcat) enjoys the property that the K-theory functors
Ki : DGcat −→ Ab factor through it, where Ab is the category of abelian groups.
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We call a category semiadditive if it has a zero object, it has finite products and coproducts,
the canonical map from the coproduct to the product (which exists thanks to the zero object)
is an isomorphism and it is enriched over discrete commutative monoids.

Lemma 1.4. The category HoLK(DGcat) is semiadditive.

Proof. It was shown in [62] that the homotopy category of DGcat is pointed, i.e, it has a zero
object and it has finite products and coproducts. The canonical map from a finite coproduct
to the product of DG categories induces an isomorphism between their Waldhausen K-theory
spectra, since K is an additive invariant [24, 63]. Therefore, this map is invertible in NCCK

dg.
The addition (commutative monoid operation) of morphisms f, g : C → D is defined by the
following composition of arrows

C ∆→ C × C (f,g)→ D ×D ∼= D
∐
D ι→ D,

where ∆ is the diagonal map and ι is the fold map, induced by the universal property of the
coproduct applied to two copies of the map idA : A → A, i.e., it is the dual of the diagonal
map.

�

Now we may apply the monoidal group completion functor to the morphism sets (enriched
over monoids) of HoLK(DGcat) to obtain certain categories enriched over abelian groups.
Since the monoids here are discrete a näıve group completion suffices. Products, coproducts
and the zero object remain unaffected. Therefore, by construction we end up with an additive
category. We define this additive category as our noncommutative K-correspondence category
in this framework and denote it by NCCK

dg. There is a canonical functor HoLK(DGcat) −→
NCCK

dg which is identity on objects and sends each morphism monoid to its group completion
via the canonical map. Since Hmo0 is the universal additive invariant [63] the functor K on
DGcat factors through Hmo0 and there is a commutative diagram (with additive functors)

Hmo0
K //

##F
F

F
F

F
HoSpt

NCCK
dg

K

;;vvvvvvvvv

Remark 1.5. An enriched (over HoSpt) version of NCCK
dg can be obtained by performing

the topological group completion given by ΩB(−), which is the classifying space functor B
followed by the loop functor Ω.

1.4. Noncommutative C∗-K-correspondence category KKC∗. The category of commu-
tative separable C∗-algebras corresponds to that of metrizable topological spaces. Kasparov
developed KK-theory by unifying K-theory and K-homology into a bivariant theory and ob-
tained interesting positive instances of the Baum–Connes conjecture [35, 34]. A remarkable
feature of this theory is the existence of an associative Kasparov product on the KK-groups.
A categorical point of view of KK-theory making use of the Kasparov product to define
compositions was proposed in [28]. The category of C∗-algebras with morphisms enriched
over Kasparov’s bivariant KK0-groups plays the role of the category of noncommutative
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correspondences in the realm of noncommutative geometry à la Connes (see, for instance,
[17, 15]). We denote this category by KKC∗ . Morphisms in the KK0-groups can be expressed
as homotopy classes of even Kasparov bimodules. Somewhat miraculously in the end one
finds that all the analysis disappears and the morphisms are purely determined by topologi-
cal data. Let us reiterate that it is not quite clear how geometric an abstract C∗-algebra is.
Connes provided a convenient framework of spectral triples to incorporate geometric struc-
tures into the picture [14]. A promising candidate for the category of spectral triples has been
put forward in [43]. The category KKC∗ may be regarded as a convenient model for the op-
erator algebraic noncommutative K-correspondence category, where most of the well-known
geometric examples fit in nicely. There is a canonical functor ι : SepC∗ −→ KKC∗ , where SepC∗

is the category of C∗-algebras with ∗-homomorphisms. The functor ι is identity on objects
and makes the target of a ∗-homomorphism a bimodule in the obvious manner. Let K denote
the algebra of compact operators on a separable Hilbert space. We set AK := A⊗K.

Remark 1.6. There is a counterpart of NCSdg in the world of C∗-algebras, which we denote
by NCSC∗. For the details we refer the readers to [44], where it was called the category of
correspondences in the operator algebraic setting. We regard this category as a category of
noncommutative spaces where stably isomorphic algebras are identified. For separable C∗-
algebras being stably isomorphic is equivalent to being Morita–Rieffel equivalent [11]. The
objects of NCSC∗ are C∗-algebras and a morphism A → B is an isomorphism class of a
right Hilbert BK-module E with a nondegenerate ∗-homomorphism f : AK → K(E). There
is a canonical functor SepC∗ −→ NCSC∗ which is the universal C∗-stable functor on SepC∗

(Proposition 39 loc. cit.).

In what follows we shall use KK (resp. K) and KK0 (resp. K0) interchangeably.

1.5. The passage from KKC∗ to NCCK
dg. For any C∗-algebra A the mapping A → A ⊗ K

sending a 7−→ a ⊗ π, where π is any rank one projection, is called the corner embedding.
This map is clearly nonunital. A functor from SepC∗ is called C∗-stable if the image of the
corner embedding under the functor is an isomorphism. The definition of an exact sequence
in SepC∗ is simply a diagram isomorphic to 0 → I → A → A/I → 0, where I is a closed
two-sided ideal in A. Such a diagram is also known as an extension diagram. Since we
are working with C∗-algebras, such extensions are pure, i.e., an inductive limit of k-module
split extensions (see Theorem A.4. of [67]). It is further called split exact if it admits a
splitting ∗-homomorphism s : A/I → A (up to an isomorphism). A functor from SepC∗

to a Quillen exact category is called split exact if it sends a split exact sequence of C∗-
algebras to a distinguished short exact sequence in the target exact category. An abelian
(resp. additive) category admits a natural exact structure, where the distinguished exact
sequences are the natural short exact sequences (resp. direct sum diagrams). Higson proved
that Kasparov’s bivariant K-theory is the universal C∗-stable and split exact functor from
SepC∗ to an exact category, i.e., given any exact category C and a C∗-stable and split exact
functor F : SepC∗ → C, there is a unique functor F̃ : KKC∗ −→ C such that F̃ ◦ ι = F [28, 29].
Such a functor is automatically homotopy invariant [29].

In this section we construct a covariant functor TopK
fib : KKC∗ −→ NCCK

dg. Our strategy

would be to show that the functor TopK
fib is a C∗-stable and a split exact functor on SepC∗

so that we can apply the universal property of KK-theory to deduce that it factors through
the category KKC∗ .
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The category NCSC∗ is the category of C∗-algebras with some generalized morphisms, in
which Morita–Rieffel equivalent C∗-algebras become isomorphic (see Remark 1.6). A C∗-
algebra A is called stable if A ∼= A ⊗ K, e.g., the algebra of compact operators K is itself
stable. In NCSC∗ any C∗-algebra A is isomorphic to a stable C∗-algebra functorially, viz., its
own stabilization AK.

Given a split exact diagram in SepC∗

0 // A
i // B

j // C //

s
zz

0

there exists a morphism t : B → A in KKC∗ , which makes it a direct sum diagram. Since
KK-theory is morally the space of morphisms between K-theories, we would like our DG
category to be a categorical incarnation of K-theory, even for nonunital algebras.

Let us briefly recall a construction of Quillen [52], which turns out to be useful to this end.
Given any (possibly nonunital) k-algebra A, with unitization Ã, we consider the category
TopK

dg(A) whose objects are complexes U of right Ã-modules, which are homotopy equivalent

to bounded complexes of finitely generated projective modules over Ã, such that U/UA is
acyclic. We enrich the category TopK

dg(A) over cochain complexes as explained in Example

1.1 to make it a k-linear DG category. So the zeroth cocycle category Z0(TopK
dg(A)) forms a

subcategory of the category of perfect complexes over Ã. Observe that Z0(TopK
dg(A)) is also

a Waldhausen category with the weak equivalences (resp. cofibrations) pulled back from the
associated Waldhausen category structure on the category of perfect right TopK

dg(A)-modules,
which are precisely the homotopy equivalences, i.e., maps which become isomorphisms in
the homotopy category H0(TopK

dg(A)), (resp. monomorphisms with a graded splitting). The

Grothendieck group of Z0(TopK
dg(A)) can be identified with the free abelian group generated

by the homotopy classes of its objects and relations coming from short exact sequences of
complexes, which are split in each degree, i.e., Waldhausen’s K0-group.

In general there is an exact functor from Z0(TopK
dg(A)) to the Waldhausen category of

all perfect complexes over Ã whose K-theory spectrum is canonically homotopy equivalent
to Quillen’s algebraic K-theory spectrum (obtained, for instance, by Q-construction). This
induces a map of spectra K(Z0(TopK

dg(A))) → Kalg(A). Observe that excision holds for
algebraic K-theory of C∗-algebras [61] and so it makes sense to talk about the algebraic
K-theory spectrum of a nonunital C∗-algebra. As a result there is a canonical map at the
level of Grothendieck groups K0(TopK

dg(A)) → K0(A) := K0(Ã)/K0(k), where K0(Ã) (resp.
K0(k)) can be identified with the Grothendieck group of stable isomorphism classes of finitely
generated projective modules over Ã (resp. k). This map turns out to be an isomorphism
when A is a C∗-algebra (Proposition 6.3 in [52]). For any unital algebra ? let hoFP(?) denote
the category of complexes over it which are homotopy equivalent to a complex of finitely
generated projective modules. Then it follows that there is a canonical map from TopK

dg(A)

to the kernel of the map − ⊗Ã Ã/A : hoFP(Ã) → hoFP(Ã/A) = hoFP(k) in DGcat, which
becomes an isomorphism in NCCK

dg.
Any ∗-homomorphism g : A→ B between possibly nonunital C∗-algebras extends uniquely

to a unital map (preserving the adjoined unit) g̃ : Ã→ B̃ between their unitizations. Then
one can consider B̃ as an Ã-B̃-bimodule (left structure is given by the map g̃), which gives
rise to a functor g∗ := − ⊗Ã B̃ : TopK

dg(A) → hoFP(B̃). However, the composition of g∗
9



with the map hoFP(B̃) → hoFP(B̃/B) = hoFP(k) is 0 and hence the image of g∗ lies in-
side TopK

dg(B). In the definition of g∗ we take the algebraic tensor product. Therefore, our

construction A 7→ TopK
dg(A) is functorial with respect to ∗-homomorphisms.

Lemma 1.7. The functor TopK
dg : SepC∗ −→ NCCK

dg is C∗-stable.

Proof. It is known that if two separable (more generally σ-unital) C∗-algebras are stably iso-
morphic then they are Morita–Rieffel equivalent [11]. Since A and AK are stably isomorphic
there are, by definition, Morita–Rieffel equivalence bimodules AXAK and AKX

′
A, satisfying

certain conditions, see e.g., [54]. Then X can be made into a left (resp. right) unitary
module over the unitization Ã (resp. ÃK) of A (resp. AK) by setting (a, λ)x = ax + λx for
(a, λ) ∈ Ã. Similarly one makes X ′ into a left ÃK and right Ã-module. One can check that(

Ã X
X′ ÃK

)
defines a Morita context. Now by Corollary 3.2. of [52] one deduces that X ⊗A −

and X ′ ⊗AK − induce inverse equivalences between TopK
dg(A) and TopK

dg(AK) in NCSdg. �

In the case when a ∗-homomorphism can be represented as a Morita context, for instance,
if we restrict our attention only to ∗-isomorphisms, then using TopK

dg we do get isomorphisms

in NCSdg via explicit DG functors. Let (−)gpd denote the underlying groupoid of a category.
As a consequence of the above result we obtain a functorial construction at the level of
groupoids between noncommutative spaces.

Corollary 1.8. There is an induced functor TopK
dg : NCSC∗

gpd −→ NCSdg
gpd.

Remark 1.9. In fact, Theorem 4.2. of [52] asserts that up to a Morita context TopK
dg(£)

is independent of the embedding of £ in a unital C∗-algebra as a closed two-sided ideal,
which, coupled with the main result of [24], ensures that the functor K satisfies excision,
i.e., whenever 0 → A → B → C → 0 is an exact sequence of C∗-algebras K(TopK

dg(A)) →
K(TopK

dg(B))→ K(TopK
dg(C)) is a (weak) homotopy fibration.

Note that the category NCSdg does not involve any K-theoretic localization. Since the C∗-
stability property of TopK

dg is actually achieved in NCSdg
gpd it is independent of the K-theoretic

localization. The localization will be needed now to prove its split exactness.

Lemma 1.10. The functor TopK
dg : SepC∗ −→ NCCK

dg is split exact.

Proof. For any split exact sequence

0 // A
i // B

j // C //

s
zz

0 ,

applying TopK
fib we obtain the diagram

TopK
dg(A)

I=i! // TopK
dg(B)

J=j! // TopK
dg(C)

S=s!

~~

,

where JI = 0 and JS = idTopK
dg(C). One can construct ker(J) in the Karoubian closure of

NCCK
dg, because SJ : TopK

dg(B)→ TopK
dg(B) is a projection, and obtain the following diagram

10



(1) TopK
dg(A)

κ

���
�
�

I

&&LLLLLLLLLL

0 // ker(J)
I // TopK

dg(B)
J // TopK

dg(C)

S

~~
// 0,

where the existence of κ follows from the universal properties of ker(J). Our aim is to show
that κ is an isomorphism in NCCK

dg.
We may apply Waldhausen’s K-theory spectrum functor K to the above diagram (1) and
by Remark 1.9 it follows that K(κ) is an isomorphism in the homotopy category of spectra,
whence κ is an isomorphism in NCCK

dg.
�

Now for some technical benefits we modify our functor TopK
dg slightly. For any C∗-algebra

£ we define TopK
fib(£) = perdg(TopK

dg(£)) (see Definition 1.2 and the remark thereafter).
The functor perdg is simply the fibrant replacement functor in DGcat, the canonical Yoneda
map θ£ : £ → perdg(£) being an isomorphism. Hence it induces a homotopy equivalence
at the level of K-theory spectra. A map f : £ → £′ in SepC∗ induces an unnatural map
f! : perdg(TopK

dg(£)) → perdg(TopK
dg(£′)) (in the same direction) by setting f! = θ£′f∗θ

−1
£ .

Therefore, TopK
fib(£) is a covariant functor SepC∗ −→ NCCK

dg.

Remark 1.11. For any unital C∗-algebra £ the category TopK
fib(£) is our DG model (up to

a derived Morita equivalence) for the bounded derived category of finitely generated projective
right £-modules.

Remark 1.12. Observe that by definition the image of TopK
fib is a k-linear pretriangulated

DG category. The advantage of pretriangulated DG categories is that one can construct
cones and cylinders of morphisms functorially in them. The application of perdg also creates
some flexibility to bring in more analysis into the picture. For instance, instead of taking
DG functors with values in chain complexes over k one could take functors with values in
the category of chain complexes over the quasiabelian category of topological vector spaces
[58, 51]. Conceivably one could still prove a result similar to Theorem 1.16 below, which we
leave for the readers to figure out.

Lemma 1.13. The functor TopK
fib : SepC∗ −→ NCCK

dg is C∗-stable and split exact.

Proof. The assertions follow from Lemma 1.7 and Lemma 1.10 since perdg(£) is simply a
fibrant replacement of £ in the Morita model category DGcat. �

Lemma 1.14. The functor TopK
fib : SepC∗ −→ NCCK

dg is homotopy invariant.

Proof. This is an immediate consequence of Theorem 3.2.2. of [29] which says that any
C∗-stable and split exact functor on SepC∗ is automatically homotopy invariant. �

Now we prove a Proposition which shows that our functor TopK
fib encodes topological K-

theory. The proof is modelled along the lines of ibid..

Proposition 1.15. Let A be any C∗-algebra. Then K(TopK
fib(A)) is homotopy equivalent to

the connective cover Ktop(A)〈0〉 of the topological K-theory spectrum.
11



Proof. By Lemma 1.13 we may replace A by AK and use the fact that TopK
dg(£) ∼= TopK

fib(£)
in NCSdg. For the benefit of the reader we now recall a standard dimension shifting argument
for stable C∗-algebras using the exact sequence 0 → C0((0, 1)) ⊗ AK → C0([0, 1)) ⊗ AK →
AK → 0.

As discussed above there is a map of spectra K(TopK
dg(AK)) → Kalg(AK) which induces

an isomorphism at the level of K0. Using Remark 1.9 we obtain the following map of exact
sequences [set Kdg

i (£) = πi(K(TopK
dg(£))), C0([0, 1))⊗AK) = ConeAK and C0((0, 1))⊗£ =

Σ£]

Kdg
1 (ConeAK) //

��

Kdg
1 (AK)

��

// Kdg
0 (ΣAK)

��

// Kdg
0 (ConeAK)

��

// Kdg
0 (AK)

��

Kalg
1 (ConeAK) // Kalg

1 (AK) // Kalg
0 (ΣAK) // Kalg

0 (ConeAK) // Kalg
0 (AK) .

We know that the three vertical arrows from the right are isomorphisms. Now we exploit
the homotopy invariance of Kdg

i and Kalg
i and the fact that ConeAK is contractible (see,

e.g., Theorem 4.2.7. of [29]) to deduce that Kdg
i (ConeAK) = Kalg

i (ConeAK) = 0, whence

the boundary maps Kalg
1 (AK) → Kalg

0 (ΣAK) and Kdg
1 (AK) → Kdg

0 (ΣAK) are isomorphisms.

It follows immediately that Kdg
1 (AK) → Kalg

1 (AK) is an isomorphism. The isomorphisms

Kdg
i (AK)→ Kalg

i (AK) for i > 2 follow easily by induction.
Thanks to the Theorem of Suslin–Wodzicki [61] we know that the algebraic K-theory

spectrum is (connectively) homotopy equivalent to the topological K-theory spectrum of a
stable C∗-algebra (see also, e.g., Theorem 1.4. of [55]). Since AK is stable, K(TopK

dg(AK)) is
actually homotopy equivalent to the connective cover of the topological K-theory spectrum
of AK, which in turn is homotopy equivalent to Ktop(A)〈0〉. �

Now we state the main Theorem in this section.

Theorem 1.16. The functor TopK
fib factors through KKC∗; in other words, we have the fol-

lowing commutative diagram of functors:

SepC∗
TopK

fib //

ι
##FFFFFFFFF

NCCK
dg .

KKC∗
TopK

fib

;;v
v

v
v

v

Proof. We have already checked that the functor TopK
fib is C∗-stable (Lemma 1.13) and split

exact (Lemma 1.10). It remains to apply Higson’s characterization of KK as the universal
C∗-stable and split exact functor on SepC∗ [28, 29]. �

Corollary 1.17. An isomorphism in KKC∗ implies an isomorphism in NCCK
dg. In other words,

KK-equivalence implies (K-correspondence like) derived DG Morita equivalence up to a K-
theoretic identification, or Morita-K equivalence, for brevity. It is known that two unital
rings with equivalent derived categories of modules have isomorphic (algebraic) K-theories
[24]. We have the following sequence of implications for C∗-algebras

Morita–Rieffel equiv.⇒ KK-equiv.⇒ Morita-K equiv.⇒ isom. top. K-theories.
12



Remark 1.18. Any C∗-stable and split exact functor on SepC∗ satisfies Bott periodicity [29]
(see also [21]). Hence the functor TopK

fib will also have this property.

It is useful to know that the functor TopK
fib : KKC∗ −→ NCCK

dg exists by abstract reasoning.
However, in order to make the situation a bit more transparent we make use of a rather
algebraic formulation of KK-theory [19]. For any C∗-algebra A let A ∗ A denote the free
product (which is the coproduct in SepC∗) of two copies of A and let qA be the kernel of
the fold map A ∗ A → A. It was shown in ibid. that A (resp. B) is isomorphic to qA
(resp. BK) in KKC∗ and KK(A,B) ∼= [qA,BK], i.e., homotopy classes of ∗-homomorphisms
qA→ BK. Roughly, the algebra qA is expected to play the role of a cofibrant replacement of
A and BK that of a fibrant replacement of B with respect to some model structure with KK∗-
equivalences as weak equivalences. This goal has been accomplished in a larger category [33],
where all objects are fibrant and a minor modification of qA acts as a cofibrant replacement
[33]. One benefit of this approach is that Kasparov’s product can be viewed simply as a
composition of ∗-homomorphisms, which is quite often easier to deal with. In order to define
the abelian group structure one proceeds roughly as follows: for any φ, ψ ∈ [qA,BK] one
defines φ ⊕ ψ : qA → M2(BK) as

(
φ 0
0 ψ

)
. Then one argues that M2(BK) is isomorphic to

BK in KKC∗ and fixing such an isomorphism θ one sets φ + ψ := θ(φ ⊕ ψ). We can exploit
this fact by concluding that if A is isomorphic to B in KKC∗ then TopK

fib(qA) is isomorphic to
TopK

fib(BK) in NCCK
dg by an explicit DG functor induced by the ∗-homomorphism qA → BK

that is invertible in KKC∗ .

Proposition 1.19. The functor TopK
fib : KKC∗ −→ NCCK

dg is additive.

Proof. We simply use the fact that any direct sum diagram in KKC∗ can be expressed as
a split exact diagram involving only ∗-homomorphisms applying q(−) and − ⊗ K several
times, both of which produce isomorphic objects in KKC∗ , and then apply the split exactness
property of TopK

fib.
�

Example 1.20. Let A = C(E) be the C∗-algebra of continuous functions on a complex
elliptic curve E. Topologically E is isomorphic to a 2-torus T2. It is known that K(A) is
isomorphic to Z2. Using the fact that A belongs to the Universal Coefficient Theorem class
one computes KK(A,A) ' M(2,Z).

The group of invertible elements can be identified with GL(2,Z). Let Db(E) be the bounded
derived category of coherent sheaves on E. Since all autoequivalences of Db(E) are geometric
in nature (see, e.g., Theorem 3.2.2. of [46]), they definitely give rise to automorphisms of
TopK

fib(A); in other words, there is a group homomorphism Aut(Db(E)) → Aut(TopK
fib(A)).

The automorphism group Aut(Db(E)) can be described explicitly (see, e.g., Remark 5.13. (iv)
[12]). It maps surjectively onto SL(2,Z) with a non-canonical splitting defined by sending
the generators of SL(2,Z) to some specific Seidel–Thomas twist functors.

It is clear that the group Aut(Db(E)) is bigger than GL(2,Z) since it contains Pic0(E)
as a subgroup. The SL(2,Z) part of Aut(Db(E)) can be described by the Seidel–Thomas
twist functors, which can also be seen as Fourier–Mukai transforms [59] and it seems that
KK-equivalences can account for them.

The automorphism groups of commutative C∗-algebras in KKC∗ are computable from their
K-theories using the Universal Coefficient Theorem [57]. As the example suggests, for any
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locally compact Hausdorff topological space X the group AutKKC∗ (C0(X)) always maps to
AutNCCKdg(TopK

fib(C0(X)) and gives some idea about the automorphisms of the DG derived

category of topological vector bundles of X. However, the automorphism group in NCCK
dg will

typically be larger than the automorphism group of derived categories consisting of exact
equivalences up to a natural transformation.

1.6. E-theory and strong deformations up to homotopy. The Connes–Higson E-
theory [16] is the universal C∗-stable, exact and homotopy invariant functor. Recall that a
functor F is exact if it sends an exact sequence of C∗-algebras 0→ A→ B → C → 0 to an ex-
act sequence F (A)→ F (B)→ F (C) (exact at F (B)). It is known that any exact and homo-
topy invariant functor is split-exact. Therefore, there is a canonical induced functor KKC∗ −→
E, where the category E consists of C∗-algebras with bivariant E0-groups as morphisms. This
functor is fully faithful when restricted to nuclear C∗-algebras; in fact, by the Choi–Effros
lifting Theorem KK∗(A,B) ∼= E∗(A,B) whenever A is nuclear. Thus, restricted to nuclear
C∗-algebras there are maps E0(A,B) ∼= KK0(A,B)→ HomNCCKdg

(TopK
fib(A),TopK

fib(B)).

Let B∞ := Cb([1,∞), B)/C0([1,∞), B), where Cb denotes bounded continuous functions,
be the asymptotic algebra of B. An asymptotic morphism between C∗-algebras A and B is
a ∗-homomorphisms φ : A→ B∞.

A strong deformation of C∗-algebras from A to B is a continuous field A(t) of C∗-algebras
over [0, 1] whose fibre at 0, A(0) ∼= A and whose restriction to (0, 1] is the constant field with
fibre A(t) ∼= B for all t ∈ (0, 1].

Given any such strong deformation of C∗-algebras and an a ∈ A one can choose a sec-
tion αa(t) of the continuous field such that αa(0) = a. Suppose one has chosen such a
section αa(t) for every a ∈ A. Then one associates an asymptotic morphism by setting
(φ(a))(t) = αa(1/t), t ∈ [1,∞). Let ΣA := C0((0, 1), A) be the suspension of A. Then
the Connes–Higson picture of E-theory says that E0(A,B) ∼= [[ΣAK,ΣBK]], where [[?,−]]
denotes homotopy classes of asymptotic morphisms between ? and −. Let φ be an asymp-
totic morphism defined by a strong deformation from A to B. Then we call the class of φ
in E0(A,B) a strong deformation up to homotopy from A to B. If A is nuclear, e.g., if A
is commutative, whenever the class of φ is invertible in E0(A,B), we deduce that TopK

fib(A)
and TopK

fib(B) are isomorphic in NCCK
dg.

1.7. Homological T-dualities. A sigma model roughly studies maps Σ → X, where Σ
is called the worldsheet (Riemann surface) and X the target spacetime (typically a 10-
dimensional manifold in supersymmetric string theories). Mirror symmetry relates the sigma
models of type IIA and IIB string theories with dual Calabi–Yau target spacetimes. In open
string theories, i.e., when Σ has boundaries, the boundaries are constrained to live in some
special submanifolds of the spacetime X. Such a submanifold also comes equipped with a
special Chan-Paton vector bundle and together they define a topological K-theory class of X
via the Gysin map. The D-brane charges correspond to such K-theory classes [66]. The ho-
mological mirror symmetry conjecture of Kontsevich predicts an equivalence of triangulated
categories of IIA-branes (Fukaya category) on a Calabi–Yau target manifold X and IIB-

branes (derived category of coherent sheaves) on its dual X̂. This equivalence would induce
an isomorphism between their Grothendieck groups and it was argued that the Grothedieck
group of the category of A-branes on X, at least when the dimension of X is not divisible
by 4, should be isomorphic to K1

top(X) [31]. Strominger–Yau–Zaslow argued that sometimes
14



when X and X̂ are mirror dual Calabi–Yau 3-folds one should be able to find a generically
T3-fibration over a common base Z

(2) X
T-duality //_______

��>>>>>>>> X̂ ,

~~~~~~~~~

Z

such that mirror symmetry is obtained by applying T-duality fibrewise [60]. Since T-
duality is applied an odd number of times it interchanges types (IIA ↔ IIB). Sometimes
using Poincaré duality type arguments it is possible to identify topological K-theory with
K-homology. Kasparov’s KK-theory naturally subsumes K-theory and K-homology and it
was shown in [10] that certain topological T-duality transformations (even including more
parameters like H-fluxes, which we did not discuss here) can naturally be seen as KK1-
classes between suitably defined continuous trace C∗-algebras capturing the geometry of
the above diagram 2. As argued above, whilst an odd number of T-duality transformations
interchanges types (IIA↔ IIB), an even number preserves it and corresponds to a KK0-class.
Therefore, a topological C∗-K-correspondences or a KK0-class is an abstract generalization
of an even number of T-duality transformations (or T2n-dualities), viewed as an equivalence
of IIB-branes (or IIA-branes) on the same target manifold and inducing an isomorphism at
the level of K-theory. Since KK-theory is Bott periodic one can also use the identification
KK1(£,£′) ∼= KK0(£,C0((0, 1))⊗£′).

2. Simplicial sets and pro C∗-algebras

In this section we construct a pro C∗-algebra from a simplicial set and show that the
construction is functorial with respect to proper maps between simplicial sets and pro C∗-
algebras. We also show that this construction respects homotopy of proper maps after
stabilizing the category of pro C∗-algebras with respect to finite matrices.

2.1. Generalities on simplicial sets and pro C∗-algebras. The standard reference for
simplicial aspects of topology is [27]. Let ∆ be the cosimplicial category, i.e., the category
whose objects are finite ordinals [n] := {0, 1, · · · , n} and whose morphisms are monotonic
nondecreasing maps. Its morphisms admit a unique decomposition in terms of coface and
codegeneracy maps, which satisfy certain well-known relations. Let Set be the category of
all sets. By a simplicial set we mean a functor Σ : ∆op −→ Set and a morphism of simplicial
sets is a natural transformation between these functors. We denote by SSet the category of
simplicial sets. The elements of Σ[n] are called the n-simplices (or n-dimensional simplices)
and the images of the coface and codegeneracy maps in ∆ are called the face (denoted by
di) and degeneracy maps (denoted by sj). An n-simplex σ is called degenerate if it is of the
form σ = si(τ) for some (n− 1)-simplex τ . Degenerate simplices are needed to ensure that
maps of graded sets exist, even if the target simplicial set has no nondegenerate simplex in
a particular dimension. Simplicial sets provide a combinatorial description of topology. The
singular simplices functor and the geometric realization functor are adjoint functors between
the category of compactly generated and Hausdorff topological spaces and that of simplicial
sets, which induce inverse equivalences between their homotopy categories with respect to
their natural model category structures.
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A pro C∗-algebra is a complete Hausdorff topological ∗-algebra over C whose topology is
determined by its continuous C∗-seminorms, i.e., a net {aλ} converges to 0 if and only if p(aλ)
tends to 0 for every C∗-seminorm p on it. For any pro C∗-algebra B let us denote the closure
of A ⊂ B by A. It is known that every pro C∗-algebra has an approximate identity (Corollary
3.12 [48]). A morphism of pro C∗-algebras is a ∗-homomorphism and we do not require them

to be continuous. We call such a morphism f : A → B proper if f(A)B = B. These maps
are also known as nondegenerate maps in the literature. Such maps were considered in the
context of C∗-algebras in [25] and they correspond to proper maps between locally compact
spaces under Gelfand–Naimark duality. Let us denote the category of pro C∗-algebras with
proper ∗-homomorphisms by ProC∗prop. Of course, the category of C∗-algebras with proper
∗-homomorphisms is a full subcategory of ProC∗prop. Typical examples of commutative pro
C∗-algebras are of the form C(X), i.e., complex valued continuous functions on a compactly
generated Hausdorff space X with the topology of uniform convergence on compact subsets.
Note that such an algebra is always unital. Given any pro C∗-algebra A and a C∗-seminorm p
on it, define the closed ideal ker(p) = {a ∈ A | p(a) = 0}. Then A/ker(p) is a C∗-algebra and
the C∗-seminorms naturally form a directed family, such that A ∼= lim←−p A/ker(p), where this

limit is taken in the category of topological ∗-algebras with continuous ∗-homomorphisms
and not in SepC∗ , which also has all small limits and colimits. Given any pro C∗-algebra A one
can define a new pro C∗-algebra C([0, 1], A), where every C∗-seminorm p on A defines a C∗-
seminorm p′ on C([0, 1], A) by p′(f) = supx∈[0,1]p(f(x)). This enables us to define the notion
of homotopy of maps between two pro C∗-algebras. Given two morphisms f1, f2 : A → B
in ProC∗prop we say that f1 is homotopic to f2 (written as f1 ∼ f2) if there is a commutative
diagram in ProC∗prop

B

A

f1

99tttttttttttt h//

f2 %%JJJJJJJJJJJJ C([0, 1], B)

ev0

OO

ev1

��
B

and we call h the homotopy map.
Many other well-known constructions available at the level of C∗-algebras can also be

performed in the category of pro C∗-algebras. More details on pro C∗-algebras can be found
in [48, 49]. One of the main results of [48] is that the category of commutative unital pro C∗-
algebras is equivalent to the category of quasitopological spaces, which contains the category
of compactly generated spaces as a full subcategory.

Remark 2.1. In general, a ∗-homomorphism between pro C∗-algebras need not be automat-
ically continuous. However, if the domain is a σ-C∗-algebra, i.e., its topology is determined
by a countable family of C∗-seminorms, then automatic continuity holds (Theorem 5.2 of
[48]). The category of commutative unital σ-C∗-algebras with unital ∗-homomorphisms is
equivalent to that of countably compactly generated spaces, i.e., spaces which appear as a
countable direct limit of compact spaces, with continuous maps.
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2.2. Simplicial sets and posets. Let us denote the set of nondegenerate simplices of Σ by
Nd(Σ). Also set Nd>1(Σ) := {σ ∈ Nd(Σ) | dim(σ) > 1}. Note that Nd(Σ) = Σ[0]∪Nd>1(Σ).
Any degenerate simplex σ can be written as s1 · · · sn(τ), where τ is a nondegenerate simplex
which is uniquely determined by σ. Then σ is said to be a degeneracy of τ . Given any
simplicial set Σ we define a map (of sets)

χ : Σ → Nd(Σ)

σ =

{
σ if σ is nodegenerate,

τ if σ = si1 · · · sin(τ) and τ nondegenerate.

The set Nd(Σ) is actually a poset once we set σ1 6 σ2 if σ1 is an iterated face of σ2. Any
poset can be viewed as a category and thus we may construct the nerve of Nd(Σ), which we
denote by B(Σ). The assigment Σ 7→ Nd(Σ) is functorial as any map f : Σ1 → Σ2 in SSet

induces a map (functor) of posets f∗ : Nd(Σ1) → Nd(Σ2) sending σ 7→ χ(f(σ)). Note that
dim(f∗(σ)) 6 dim(σ) and f∗(Σ1[0]) ⊂ Σ2[0].

2.3. The construction of a pro C∗-algebra from a simplicial set. The idea of the
construction presented here is inspired by the one of Cuntz [20] in the context of locally
finite simplicial complexes.

A quiver is an oriented graph with a set of vertices V and oriented edges E. There are two
maps s, t : E → V such that if x = v1 → v2 is an edge in E then s(x) = v1 (source map) and
t(x) = v2 (target map). Any poset can be viewed as a quiver. Our construction is a slight

modification of the path algebra of a quiver. Let us denote by Nd(Sd(Σ)) the quiver obtained
by adjoining for every edge x in the poset Nd(Σ) an edge x∗ in the opposite direction, i.e.,

s(x) = t(x∗), t(x) = s(x∗). The quiver Nd(Σ) will have the same set of vertices as the poset

Nd(Σ), but unlike Nd(Σ) will also have oriented cycles. The vertices of Nd(Σ) correspond
to nodegenerate simplices of Σ. This quiver may have infinitely many vertices and edges.
An oriented path γ of length n in a quiver is just a sequence of edges γ = x1 · · · xn such that
t(xi) = s(xi+1) for all i = 1, · · ·n − 1. The source and the target maps can be extended to
paths by setting s(γ) = s(x1) and t(γ) = t(xn). Let Λ be the partially ordered set consisting

of finite subsets of vertices of Nd(Σ) (ordered by inclusion of finite subsets).
An element a of a pro C∗-algebra A is called positive and denoted a ≥ 0 if a = u∗u for

some element u ∈ A. Now one can construct a pro C∗-algebra ProC∗(Σ) as the universal pro
C∗-algebra with positive generators v, for every vertex v of Nd(Σ) and some other generators
x, for every oriented edge x in Nd(Σ), and x∗ its formal adjoint denoting the edge in the

opposite direction in Nd(Σ), satisfying the relations:

(1) xy =

{
concatenation of x and y if t(x) = s(y),

0 otherwise,

(2) xx∗ = s(x), x∗x = t(x)

(3) vx =

{
x if s(x) = v,

0 otherwise,

(4) xv =

{
x if t(x) = v,

0 otherwise,
17



(5) limλ∈Λ

∑
v∈λ vw = w for all vertices w ∈ Nd(Σ), (convergence in any C∗-seminorm).

N. C. Phillips introduced certain types of relations in [49], which he called weakly admissible
(Definition 1.3.4. ibid.) and it was shown that any set of generators with such relations
admits a universal pro C∗-algebra (Proposition 1.3.6. ibid.). Our relations are readily seen
to verify all the conditions of weak admissibility. Weakly admissible relations are only
expected to be preserved under finite products of representations in C∗-algebras, as opposed
to arbitrary products.

Remark 2.2. Depending on one’s taste one might also want to regard ProC∗(Σ) as a modified
graph pro C∗-algebra. Note that the monomials in the generators (or the oriented paths
containing only edges in the poset Nd(Σ)) correspond to the nondegenerate simplices of the
nerve of the poset Nd(Σ), which is closely related to the subdivision of Σ. Each oriented path
records some information about the manner in which the target simplex is connected to other
simplices. However the vertices are not viewed as trivial loops and they do not act as a family
of orthogonal projections. The finite sums of the generators corresponding to the vertices are
made to act like an approximate identity, in other words, a noncommutative partition of
unity. Therefore, if Σ has countably many nondegenerate simplices then ProC∗(Σ) is σ-
unital.

The above remark suggests that the algebra ProC∗(Σ) essentially models the nerve of
the poset Nd(Σ), which we denote by B(Σ). In fact, it does a little more. It models the
nerve of the groupoid obtained by formally inverting all morphisms in Nd(Σ). With some
foresight, we require a regularity property on our simplicial sets. This property will play no
role in this article but for some of the applications that we have in mind it is good to impose
this condition. Therefore, given any simplicial set Σ we first subdivide it to form a regular
simplicial set Sd(Σ) and then apply the construction ProC∗ to it. Subdivision of a simplicial
set is a functorial construction and more details about it can be found in, e.g., [27]. Moreover,
it is known that Σ and B(Σ) need not have the same homotopy type. The simple example
of a simplicial circle Σ with only one nondegenerate 0-simplex and one nondegenerate 1-
simplex, whose boundaries are identified with the unique 0-simplex produces a B(Σ) which
is contractible. Therefore, sending Σ 7→ B(Σ) is not a good operation from the point of view
of homotopy theory. However, it is known that if Σ is a regular simplicial set, then B(Σ)
has the right homotopy type.
We define our functor RepproC∗ as one whose map on objects is the composition ProC∗ ◦ Sd.
Its behaviour on morphisms will be defined below.

Lemma 2.3. If Sd(Σ) has finitely many nondegenerate simplices v1, · · · , vn then p(vi) = 1
for any C∗-seminorm p on RepproC∗(Σ).

Proof. By definition vi ≥ 0 for all vertices vi ∈ Nd(Σ), whence uviu ≥ 0 for any u ∈
Nd(Sd(Σ)) since x ≥ 0 ⇒ y∗xy ≥ 0 and u∗ = u. Thus we obtain

∑
i vivjvi = v2

i which
implies that vivjvi 6 v2

i for all j = 1, · · · , n. For the term corresponding to j = i we get
v2
i − v3

i ≥ 0 and vi commutes with it, whence vi(v
2
i − v3

i ) ≥ 0. Thus, v4
i 6 v3

i 6 v2
i implying

p(v4
i ) = p(vi)

4 6 p(v2
i ) = p(vi)

2. This shows that p(vi) 6 1 and the relations (3) and (4)
imply that p(vi) > 1 for any vi ∈ Nd(Σ). �

Remark 2.4. If Σ is finite, i.e., Σ has only finitely many nondegenerate simplices, which
implies that the geometric realization of Σ is compact and Hausdorff, then Sd(Σ) also has
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finitely many nondegenerate simplices and RepproC∗(Σ) is unital with the sum of all the ver-
tices of Nd(Sd(Σ)) acting as the identity.

Thus, from the above Lemma, we conclude that for finite simplicial sets (or compact topo-
logical spaces) the construction actually yields a genuine unital C∗-algebra by putting a bound
on the norms of all the generators. Indeed, the norms of the generators corresponding to the
edges are bound by those of the vertices, which is evident from the relation (2).

For any pro C∗-algebra A let b(A) denote the set of bounded elements in A, i.e., b(A) =
{a ∈ A | supp p(a) <∞, p C∗-seminorm on A}. It is shown in [49] that b(A) equipped with
this supremum norm is a C∗-algebra. If A = C(X), i.e., the algebra of continuous functions
on some topological space X, then b(A) = Cb(X), i.e., the algebra of bounded continuous
functions on X. The construction A 7→ b(A) is functorial with respect to ∗-homomorphisms
(not necessarily continuous). Therefore, one can compose our functor RepproC∗ with the
functor A 7→ b(A) to obtain a genuine C∗-algebra, but, this construction will lose a lot of
information if the simplicial set is not finite.

Example 2.5. Let ∆n := Hom∆(−, [n]). Then ∆0 is a simplicial set with only one degenerate
simplex in each dimension (except in dimension 0, which has only one element) and one finds
RepproC∗(∆

0) ∼= C.

Example 2.6. Now ∆1 is a simplicial set with two 0-simplices {a, b} and one nondegenerate
1-simplex, which we call c. The poset Nd(Sd(∆1)) looks like

d e

a

x1

@@��������
b

x2

^^========

x3

@@��������
c

x4

^^========

,

where a, b, c are the 0-simplices and d, e the nondegenerate 1-simplices. Then the graph
Nd(Sd(∆1)) is

d

x∗1xx x∗2 &&

e

x∗3xx x∗4 &&a

x1

77

b

x2

ff
x3

88

c

x4

ff .

The univeral C∗-algebra RepproC∗(∆
1) is described by the obvious relations coming from

multiplications of paths in this quiver, e.g., x1x2 = 0, bx2 = x2, x∗2b = x∗2, (a+b+c+d+e) = 1
and so on. On the other hand, the C∗-algebra C([0, 1]) is the universal C∗-algebra with a
presentation R := {1, y | y > 0, 1 > 0, ‖y‖ 6 1, ‖1 − y2‖ 6 1, 1y = y1 = y, 12 = 1}. Sending
y 7→ id and 1 7→ 1 defines a representation of the generators in C([0, 1]) and hence a map
C∗(R) → C([0, 1]). The inverse map is obtained by applying continuous functional calculus
to the element y ∈ C∗(R).

2.4. Functoriality with respect to proper maps. The construction RepproC∗ is functorial
only with respect to a genuine subset of morphisms of simplicial sets. We propose the
following definition of a proper map between simplicial sets.

19



Definition 2.7. A map f : Σ1 → Σ2 of simplicial sets is proper if the induced map Nd(f) :
Nd(Σ1)→ Nd(Σ2) between posets is proper, i.e., preimage of any element in the target poset
is finite.

For instance, suppose f : Σ→ ∆0 is a map of simplicial sets such that Σ has infinitely many
nondegenerate simplices. The poset of ∆0 consists of just its 0-simplex and its preimage is all
of Nd(Σ) under the induced map on posets. Therefore, such a map is not proper as it should
be. Topologically it is mapping a noncompact space to a point. Since Nd : SSet −→ Posets

is a functor, it can be checked that the composition of proper maps is again proper so that
simplicial sets with proper maps form a category. We denote the category of simplicial
sets with proper maps by SSetprop. The subdivision of a finite simplicial set is once again
finite. If f : Σ1 → Σ2 is a proper map of simplicial sets then Sd(f) is also proper as the
preimage of any element in Nd(Σ2) is at most the subdivision of the finite simplicial set
generated by the finitely many preimages of f in Nd(Σ1), i.e., Sd : SSetprop −→ SSetprop is
a functor. Given any proper map of simplicial sets f : Σ1 → Σ2 one defines the induced map
f̃ : RepproC∗(Σ2)→ RepproC∗(Σ1) by its value on the generators v [vertex in Nd(Sd(Σ2))] and

x, x∗ [edges in Nd(Sd(Σ2))]

f̃(v) =

{∑
w, w ∈ f−1(v),

0 if f−1(v) = ∅,

f̃(x) =

{∑
y, y edge such that s(y) ∈ f−1(s(x)), t(y) ∈ f−1(t(x)),

0 if no such y exists,

f̃(x∗) = f̃(x)∗.
By the properness of f the sum on the right hand side in the first two cases is always

finite. It is easy to check that relations (1), (2), (3) and (4) are satisfied and relation (5) is
verified by the following Proposition. For any simplicial set Σ let us write V (Σ) for the set
of vertices of Nd(Sd(Σ)).

Proposition 2.8. Whenever limλ

∑
v∈λ vw = w in C∗(Σ2), limλ

∑
v∈λ f̃(v)f̃(w) = f̃(w) in

C∗(Σ1), where λ runs through finite subsets of V (Σ2).

Proof. Let us set aΩ =
∑

ω∈Ω ω for any finite Ω ⊂ V (Σ). For any b ∈ Nd(Σ1) and given
any ε > 0, there is a finite Ω ⊂ V (Σ1) such that p(aΩ′b − b) < ε for all Ω′ ⊃ Ω and C∗-

seminorm p on C∗(Σ1). Then f(Ω) is a finite subset of Σ2 and f̃(af(Ω)) =
∑

f(v)∈f(Ω) v. Since

f−1(f(Ω)) ⊃ Ω we obtain p(f̃(aΩ′′)b − b) = p(
∑

w∈Ω′′ f̃(w)b − b) < ε for every Ω′′ ⊃ f(Ω).

Now we may replace b by f̃(w), w ∈ V (Σ2) to deduce lim
∑

v∈λ f̃(v)f̃(w) = f̃(w).

It is clear that if f is a map between finite simplicial sets then the induced map f̃ is a
unital map of unital C∗-algebras. �

Lemma 2.9. Then map f̃ is a proper map of pro C∗-algebras.

Proof. The proof of the above Proposition actually shows that {aλ =
∑

v∈λ f̃(v)}, as λ runs
through finite subset of Σ2, acts as an approximate identity in RepproC∗(Σ1). Since each
aλb ∈ f(RepproC∗(Σ2))RepproC∗(Σ1), one finds that for any b ∈ RepproC∗(Σ1), b = limλ aλb lies

in f(RepproC∗(Σ2))RepproC∗(Σ1). �

Corollary 2.10. The construction RepproC∗ defines a functor (SSetprop)
op → ProC∗prop.
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2.5. Mn-stabilization and proper homotopy diagrams. Let A be any algebra and
Mn(A) the algebra of n×n matrices over A. There is a corner embedding map A→Mn(A)
sending a 7→ Mij, with M11 = a and Mij = 0 otherwise. We would like to formally invert
such maps. Clearly such maps are not proper, but their formal inverses are! So we enlarge
the morphisms of ProC∗prop by adjoining such maps and all compositions. Then we formally

invert the corner embeddings and denote the Mn-stabilized category by ProC∗stabprop.

Remark 2.11. The collection of all corner embeddings is a genuine class of morphisms
and if one inverts them one might potentially run into set-theoretic problems. Restricted to
class of σ-C∗-algebras, it is clear that the resulting category is a subcategory of the model
category consisting of ν-sequentially complete l.m.c. C∗-algebras as constructed in [33] and
the localization can be carried out inside this model category. For more general pro C∗-
algebras this localization is potentially set-theoretically problematic and makes sense only in
some enlarged universe.

The product of two simplicial sets Σ1 × Σ2 is defined to be (Σ1 × Σ2)[n] = Σ1[n]× Σ2[n]
with coordinatewise face and degeneracy maps. Note that this is not the categorical product
in SSetprop. In fact, products do not exist in SSetprop in general. It is possible that (σ, σ′) be
nondegenerate in Σ1 ×Σ2 although both σ and σ′ are degenerate in Σ1 and Σ2 respectively,
as σ and σ′ can be degeneracies by dissimilar sequences of degeneracy maps.

If f1, f2 : Σ1 → Σ2 are two maps between simplicial sets then a simplicial homotopy
between f1 and f2 is a commutative diagram

(3) ∆0 × Σ1 = Σ1

f1

&&MMMMMMMMMMM

d0×1
��

∆1 × Σ1

γ // Σ2 ,

∆0 × Σ1 = Σ1

d1×1

OO

f2

88qqqqqqqqqqq

.

where d0, d1 are maps induced by the coface operators and γ is called the homotopy operator.
Simplicial homotopy of maps is not an equivalence relation in general. It is so if the target
simplicial set is fibrant. So one considers the equivalence relation generated by simplicial
homotopy relation and by taking the equivalence classes of maps one obtains a näıve homo-
topy category of simplicial sets. If in the above diagram all the maps are proper we obtain
a proper homotopy diagram. Note that the maps di × 1, i = 1, 2 and id are always proper.
We denote by HoSSetprop the category of simplicial sets with proper homotopy classes of
proper maps between them, i.e., we identify two maps f1 and f2 whenever there is a proper
homotopy diagram as above.

Proposition 2.12. If f1, f2 : Σ1 → Σ2 are properly homotopic then f̃1 and f̃2 are homotopic
in ProC∗stabprop.

Proof. Let γ be a homotopy between f1 and f2. Then applying the contravariant functor
RepproC∗ to the simplicial homotopy diagram (3) above we obtain
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RepproC∗(Σ1)

RepproC∗(Σ2)

f̃1
55llllllllllllll

γ̃ //

f̃2 ))SSSSSSSSSSSSSS
RepproC∗(∆

1 × Σ1) .

d̃0×1̃

OO

d̃1×1̃
��

RepproC∗(Σ1)

.

Let us define a map

η : RepproC∗(∆
1 × Σ1) → C([0, 1],M2(RepproC∗(Σ1)))

δ 7→
[
t 7→ ωt

(
(d̃0×1̃)(δ) 0

0 (d̃1×1̃)(δ)

)
ω−1
t

]
,

where δ is any generator of RepproC∗(∆
1 × Σ1), t ∈ [0, 1] and ωt =

(
cos(πt

2
) sin(πt

2
)

−sin(πt
2

) cos(πt
2

)

)
is the

rotation homotopy matrix.
Upon identifying C([0, 1],M2(RepproC∗(Σ1))) ' C([0, 1],RepproC∗(Σ1)) via the formal proper

inverse of the corner embedding and composing η with it, we obtain a map RepproC∗(Σ2)→
C([0, 1],RepproC∗(Σ1)), which we continue to denote by η. It is readily seen that evt=i ◦ η =

d̃i × 1̃, i = 0, 1. Thus one obtains the required homotopy diagram (with homotopy operator
η ◦ γ̃)

RepproC∗(Σ1)

RepproC∗(Σ2)

f̃1
55lllllllllllll

γ̃ //

f̃2 ))RRRRRRRRRRRRR
RepproC∗(∆1 × Σ1)

d̃0×1̃

OO

d̃0×1̃
��

η // C([0, 1],RepproC∗(Σ1)) .

evt=0

jjUUUUUUUUUUUUUUUU

evt=1ttiiiiiiiiiiiiiiii

RepproC∗(Σ1)

�

As a consequence we obtain our main Theorem in this section. Let us denote the category
of pro C∗-algebras with homotopy classes of maps in ProC∗stabprop by HoProC∗stabprop.

Theorem 2.13. The functor RepproC∗ induces a functor between the categories (HoSSetprop)
op

and HoProC∗stabprop.

The essential image of this functor is possibly an interesting class of noncommutative
pro C∗-algebras. Its objects admit simplicial descriptions. We expect the matrix stabi-
lized category of pro C∗-algebras with proper maps to be a natural domain to develop a
noncommutative proper homotopy theory.

22



References
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[18] G. Cortiñas and A. Thom. Bivariant algebraic K-theory. J. Reine Angew. Math., 610:71–123, 2007.
[19] J. Cuntz. A new look at KK-theory. K-Theory, 1(1):31–51, 1987.
[20] J. Cuntz. Noncommutative simplicial complexes and the Baum-Connes conjecture. Geom. Funct. Anal.,

12(2):307–329, 2002.
[21] J. Cuntz, R. Meyer, and J. M. Rosenberg. Topological and bivariant K-theory, volume 36 of Oberwolfach
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[23] D. Dugger. Combinatorial model categories have presentations. Adv. Math., 164(1):177–201, 2001.
[24] D. Dugger and B. Shipley. K-theory and derived equivalences. Duke Math. J., 124(3):587–617, 2004.
[25] S. Eilers, T. A. Loring, and G. K. Pedersen. Morphisms of extensions of C∗-algebras: pushing forward

the Busby invariant. Adv. Math., 147(1):74–109, 1999.
[26] E. M. Friedlander, A. Suslin, and V. Voevodsky. Introduction. In Cycles, transfers, and motivic homology

theories, volume 143 of Ann. of Math. Stud., pages 188–238. Princeton Univ. Press, Princeton, NJ, 2000.
[27] P. G. Goerss and J. F. Jardine. Simplicial homotopy theory, volume 174 of Progress in Mathematics.
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