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Abstract

The hierarchy of equations belonging to two different but related integrable systems,
the Nonlinear Schrödinger and its derivative variant, DNLS are subjected to two distinct
deformation procedures, viz. quasi-integrable deformation (QID) that generally do not
preserve the integrability, only asymptotically integrable, and non-holonomic deformation
(NHD) that does. QID is carried out generically for the NLS hierarchy while for the
DNLS hierarchy, it is first done on the Kaup-Newell system followed by other members of
the family. No QI anomaly is observed at the level of EOMs which suggests that at that
level the QID may be identified as some integrable deformation. NHD is applied to the
NLS hierarchy generally as well as with the specific focus on the NLS equation itself and
the coupled KdV type NLS equation. For the DNLS hierarchy, the Kaup-Newell(KN)
and Chen-Lee-Liu (CLL) equations are deformed non-holonomically and subsequently,
different aspects of the results are discussed.
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1 Introduction

Completely integrable systems have many important and diverse physical applications
such as in water waves, plasma physics, field theory and nonlinear optics [1]. The stan-
dard procedure to study the integrable models is by using the Lax pair, exploiting the
zero curvature condition. Systems are considered to be integrable if they contain infinitely
many conserved quantities that give rise to the stability of the soliton solutions. These
constants of motion delineate the system dynamics, allowing them to be solved by the
method of Inverse Scattering Transform (IST) with appropriate variables [2, 3, 4]. An-
other interesting feature of integrable hierarchies is the fact that they possess a local
bi-hamiltonian structure [5, 6]. It is well-known that starting from a suitably chosen spec-
tral problem, one can set up a hierarchy of nonlinear evolution equations. One of the
important challenges in the study of integrable systems is to determine new such system
s which are associated with nonlinear evolution equations of physical significance.

The Nonlinear Schrödinger (NLS) equation, in one space and one time (1 + 1) dimen-
sions, is a very well known integrable PDE. It also incorporates semi-classical solitonic
solutions, that are physically realizable, and reflect a high degree of symmetry. The lat-
ter property corresponds to the infinitely many conserved quantities. There are different
variants of the NLS equation such as the coupled KdV type NLS, the generalized NLS,
the Kundu-Eckhaus equation, the dimensionless vector NLS etc [7, 8, 9, 10]. The deriva-
tive NLS (DNLS) equation is another celebrated system, its different examples being the
Kaup-Newell (KN)[11], the Chen-Lee-Liu (CLL) [12] and Gerdjikov-Ivanov (GI) equations
[13].

The concept of complete integrability is difficult to establish in case of field-theoretical
models because of their infinite number of degrees of freedom. Real physical systems are
definitely non-integrable; however, the importance of integrable models in the purview of
such systems stems from the fact that the study of continuous physical systems as slightly
deformed integrable models is of significant interest. It was recently shown that the sine-
Gordon model can be deformed as an approximate system, giving rise to a finite number
of conserved quantities [14, 15]. Some non-integrable models have been shown to possess
soliton-like configurations and display properties not significantly different from that of
solitons in integrable models, examples being the Ward modified chiral models and the
baby Skyrme models with many potentials [16].

The preceding discussion suggests that we may extend our reasoning beyond integra-
bility and introduce the concept of quasi (almost)-integrability. This was precisely the
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approach of Ferreira et. al. [16, 17] who considered the modified NLS potential of the
form V (|ψ|2)2+ε, with ε being a perturbation parameter, and proved that such models
possess an infinite number of quasi-conserved charges. Exact dark and bright soliton con-
figurations of QI NLS system [18, 19] have also been obtained, the latter possessing infinite
towers of exactly conserved charges, bringing the system back closer to integrability. QI
deformation has also been studied in supersymmetric SG models [20].

Another situation of current interest is the non-holonomic deformation of integrable
systems in which the system is perturbed in such a way that under suitable differential
constraints on the perturbing function, the system maintains its integrability [21]. It was
shown by Karasu-Kalkani et. al. [22] that the integrable sixth order KdV equation repre-
sented the non-holonomic deformation of the KdV equation preserving its integrability and
generating an integrable hierarchy. The terminology non-holonomic deformation (NHD)
was used by Kuperschmidt [23]. In Ref. [24] a matrix Lax pair, the N-soliton solution us-
ing IST as well as a two-fold integrable hierarchy were obtained by for the non-holonomic
deformation of the KdV equation. The work was extended in [25] to include the NHD of
both KdV and mKdV equations as well as their symmetries, hierarchies and integrability.
While studies on the non-holonomic deformation of DNLS and Lenells-Fokas equations
were carried out in [26], NHD of generalized KdV type equations was discussed in [27],
wherein a geometric angle was provided into the KdV6 equation. In this work, Kirrilov’s
theory of co-adjoint representation of the Virasoro algebra was used to generate a large
class of KdV6 type equations equivalent to the original equation. It was further shown
that the Adler-Kostant-Symes approach provided a geometric formalism to obtain non-
holonomic deformed integrable systems. NHD for the coupled KdV system was thereby
generated. In [28] the author extended Kupershmidt’s infinite-dimensional construction
to generate NHD of a wide class of coupled KdV systems, all of which follow from the
Euler-Poincaré-Suslov flows.

The purpose of the present work is to study the behavior of equations in the NLS
and DNLS hierarchies when subject to nonholonomic as well as quasi-integrable defor-
mations narrated above. The prior preserves integrability whereas the latter preserves
the same in a loose sense; having an infinite number of charges which are asymptoti-
cally conserved in the scattering of soliton-like solutions. These ‘quasi-integrable charges’
are not conserved in time and they do vary considerably during the scattering process.
However the values coincide with the scattering with the values they had before. Con-
servation properties of these QI systems are demonstrated mostly via numerical methods
[14, 15, 16, 17, 18, 19, 29] for the lower order hierarchical equations. On the other hand
nonholonomically deformed systems remain completely integrable [23, 24, 25, 26, 27, 28].
The fact that the deformation is applied to the temporal Lax component automatically
preserves the scattering data of the undeformed system [24, 25, 26]. The corresponding
deformation functions are exclusively position-dependent, making the final system conser-
vative given the original one being integrable subjected to higher order constraints. This
fact automatically identifies these nonholonomic deformations as semiholonomic, which
are affine in velocities [21]. The stress in the present work is on the detailed analysis
of these two class of deformations in case of NLS hierarchies. There is no attempt of
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comparison between the two given their distinct integrability properties (asymptotic vs
higher-order constraints). However, the study of these two deformations of a particular
class of systems in a way extends their integrability structure, leading to even higher order
derivative systems with particular asymptotic behaviors. We adopt the NLS and DNLS
hierarchies for this purpose as their integrability structures are well-documented. Further,
the explicit demonstration of QID and NHD are commonly realized for the lower-order
members of these two hierarchies [14, 17, 18, 19, 26, 30]. We try to realize the QID and
NHD genealogies of these two hierarchies which, to the best of our knowledge, has not
been done before.

The paper is organized as follows. Section 2 introduces the NLS hierarchy and points
to some specific equations therein. This is followed by a thorough analysis of the quasi-
integrable deformation of the equations in the NLS hierarchy. NHD is considered next,
first in a generalized format, followed by referencing particular equations of the hierarchy.
Section 3 repeats this exercise in respect of the DNLS hierarchy. Section 4 lists some
general conclusions and indicates how the work may be extended in future.

2 The NLS hierarchy

In this hierarchy, the space (L) and time (M) parts f the Lax pair are respectively given
by,

L =

(

− iλ q
r iλ

)

and M =

n
∑

m=0

λn−m

(

am bm
cm −am

)

. (1)

In the above, am, bm and cm are connected through the recurrence relations:

amx = qcm − rbm
bmx = −2ibm+1 − 2qam
cmx = 2icm+1 + 2ram

, (2)

with equations of motion at O
(

λ0
)

of spectral space spanned by λ as:

qt = bn,x + 2qan(≡ −2ibn+1)
1 and rt = cn,x − 2ran(≡ 2icn+1) (3)

Equations (2) are obtained by solving the adjoint representation of the spectral problem
or the ”stationary” equation Mx = [L,M ] while equations (3) derive from the zero cur-
vature condition Lt −Mx + [L,M ] = 0

Some specific values of am, bm and cm are as follows:

1m ≤ n.
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a0 = α a constant, b0 = 0, c0 = 0; (4)

b1 = iαq, c1 = iαr, a1 = 0; (5)

b2 = −α
2 qx, c2 =

α
2 rx, a2 =

α
2 qr; (6)

b3 =
iα
2 (−1

2qxx + q2r),
c3 =

iα
2 (−1

2rxx + qr2),
a3 =

iα
4 (rqx − qrx);

(7)

b4 =
α
8 (qxxx − 6qqxr),

c4 =
α
8 (−rxxx + 6qrrx),

a4 =
α
8 (q

2r2 + rxqx − qrxx − rqxx);
(8)

and so on.

The stationary equation Mx = [L,M ] can be rewritten as ,

( M)x − [L,M ] =
n
∑

m=0

λn−m

(

amx − qcm + rbm bmx + 2iλbm + 2qam
cmx − 2iλcm − 2ram −(amx − qcm + rbm)

)

,

which upon using the recurrence relations and simplifying reduces to,

(

0 −2ibn+1

2icn+1 0

)

. (9)

This leads to the NLS hierarchy of equations,

qt = −2ibn+1

rt = 2icn+1
. (10)

Successive equations of the hierarchy can be generated by putting n = 1, 2, 3 etc.
Putting n = 2, we obtain,

qt = −2ib3
rt = 2ic3

. (11)

Using the values of b3 and c3 from equation (6) we get,

qt = α(−1
2qxx + q2r)

rt = α(12rxx − qr2),
(12)

which constitute a system of NLS equations.
Setting n = 3 leads to,

qt = iα(−1
4qxxx +

3
2qqxr)

rt = iα(−1
4rxxx +

3
2qrrx)

, (13)

which are a pair of coupled KdV type NLS equations.
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2.1 Quasi-integrable deformation of NLS hierarchy

The Hamiltonians corresponding to the NLS hierarchy are,

H1 =

∫

x
qr,

H2 =

∫

x
(rqx − qrx) ,

H3 =
1

2

∫

x

(

qxrx + q2r2
)

,

H4 =

∫

x

(

qrxxx − 3q2rrx
)

,

... (14)

The corresponding Lax pair, which can be re-expressed as,

L = −iλσ3 + qσ+ + rσ−, M =
n
∑

m=0

λn−m (amσ3 + bmσ+ + cmσ−) , (15)

leads to the zero-curvature condition:

[

qt −
∑

m

λn−m (bm,x + 2amq + 2iλbm)

]

σ+ +

[

rt −
∑

m

λn−m (cm,x − 2ram − 2iλcm)

]

σ−

=
∑

m

λn−m (am,x + rbm − qcm)σ3, (16)

from where the EOM results atO
(

λ0
)

and consistency conditions of Eq. 2 atO (λm) , m ≤
n. It is to be noted that the RHS above vanishes by virtue of the first of Eq.s 2, so does the
O
(

λn 6=0
)

contributions of the coefficients on the LHS from the second and third ones of
the same set of equations, leaving out the EOMs at O

(

λ0
)

. On comparing the expressions
for the coefficients in Eq.s 5, 6, 7 and 8 to the expressions for the Hamiltonians in Eq. 14,
it is easy to see that,

bm = βm
δHm

δr
and cm = γm

δHm

δq
, (17)

where βm and γm are suitable constants with no sum intended over m.

Incorporating deformations of the systems in terms of the Hamiltonians, the curvature
is expressed as,

Ftx =

[

qt −
∑

m

λn−m

{(

βm
δHm

δr

)

x

+ 2amq + 2iλβm
δHm

δr

}

]

σ+
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+

[

rt −
∑

m

λn−m

{(

γm
δHm

δq

)

x

− 2ram − 2iλγm
δHm

δq

}

]

σ−

−
∑

m

λn−m

(

am,x + rβm
δHm

δr
− qγm

δHm

δq

)

σ3. (18)

In general, due to the deformations of Eq.s 17, this curvature does not vanish. However,
one can always consider the system, with first two coefficients vanishing, that leads to
two deformed EOMs with time-evolution. This is allowed as one can consider suitable q
and r dependence of the Hamiltonians Hms for a given set of ams. However, once that is
done, it is no longer necessary that the third coefficient in above vanishes, which is aptly
identified as the anomaly. This particular system is the quasi-deformed NLS hierarchy.
Of course a different choice could have been made with the last expression vanishing, but
that would necessarily have meant sacrificing the time-evolution equations for at least one
variable between q and r. Therefore, from this Quasi-Integrable (QI) mechanism, the set
of equations are,

qt =
∑

m

λn−m

{(

βm
δHm

δr

)

x

+ 2amq + 2iλβm
δHm

δr

}

,

rt =
∑

m

λn−m

{(

γm
δHm

δq

)

x

− 2ram − 2iλγm
δHm

δq

}

with non− vanishing anomalies :

Xm := qγm
δHm

δq
− am,x − rβm

δHm

δr
. (19)

The O
(

λ0
)

anomaly contribution, consistent with time evolution of the system, is,

Xn = qγn
δHn

δq
− an,x − rβn

δHn

δr
, (20)

with higher order contributions accommodated by corresponding deformed versions of
Eq.s 2.

Abelianization can be implemented at this point through suitable sl(2, c) rotation, es-
sentially yielding the on-shell non-zero-curvature condition [17],

F̃tx ≡ Xnσ3. (21)

To this end, we choose the gauge operator,

g̃ = exp

(

i

2
ϕb0
)

, (22)

over the following representation of sl(2, c) algebra:

bj = λjσ3, F j
1 =

λj

2
(κσ+ − σ−) , F j

2 =
λj

2
(κσ+ + σ−) , κ ∈ R;

[

bj , bk
]

= 0,
[

bj , F k
1,2

]

= F j+k
2,1 ,

[

F j
1 , F

k
2

]

=
κ

2
bj+k. (23)
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With the identification,

exp(2iϕ) = −κr
q
, (24)

this leads to,

L̃ = g̃Lg̃−1 + g̃xg̃
−1 = −ib1 + i

2
ϕxb

0 + 2i

√

qr

κ
F 0
1 ,

M̃ =
i

2
ϕtb

0 +
n
∑

m=0

{

amb
n−m +

(

1

κ
eiϕbm − e−iϕcm

)

Fn−m
1

+

(

1

κ
eiϕbm + e−iϕcm

)

Fn−m
2

}

. (25)

As EOMs are utilized, coefficients of σ± in Eq. 18 can be equated to zero as the deformed
EOMs, validating Eq. 22, as the σ3 ≡ b0 component remains the same for F̃tx → g̃Ftxg̃

−1

for g̃ of Eq. 22. Therefore:

F̃tx ≡
∑

m

λn−mXmb
0. (26)

Through another gauge transformation with respect to,

ḡ = exp





∞
∑

j=1

F−j



 , F−j = ξ−j
1 F−j

1 + ξ−j
2 F−j

2 (27)

an Abelian sub-algebra representation,

L̄ = −ib1 +
∞
∑

j=0

L−j
0 b−j , (28)

by choosing ξ−j
1,2s judiciously such that L̄ does not depend on F−j

1,2 . The other Lax com-
ponent acquires the general expression:

M̄ ≡
n
∑

m=0

λn−mamσ3 +
∞
∑

j=0

[

M−j
0 b−j +M−j

1 F−j
1 +M−j

2 F−j
2

]

, (29)

where M−j
1,2s contain sums containing bms and cms. However, their exact forms are not

relevant for calculating the QI anomalies.

From Eq. 22, the final curvature takes the form,

F̄tx := L̄t − M̄x +
[

L̄, M̄
]

≡ Xnḡb
0ḡ−1 := Xn

∞
∑

j=0

[

α−j
0 b−j + α−j

1 F−j
1 + α−j

2 F−j
2

]

, (30)
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at the lowest spectral order,

L−j
0,t −M−j

0,x = Xnα
−j
0 , (31)

leading to the anomalous charge conservation law,

d

dt
Qj = Γj ; where Qj =

∫

x
L−j and Γj =

∫

x
Xnα

−j
0 . (32)

Following Ferreira et. al.’s treatment [17] of utilizing the two Z2 transformations available
in the system, namely the sl(2, c) automorphism and space-time parity, the possible re-
duction of the parent algebra into Image and Kernel subspaces, allows to show that α−j

0 s
are parity-even. This additionally requires that q and r are so chosen that ϕ is odd under
parity. For those members of NLS hierarchy for which the same choice of q and r yields
parity-odd Xn (for example, the standard NLSE), Γj vanishes asymptotically, ensuring
quasi-integrability.

As a short summary of definite parity evaluation of α−j
0 s, let us introduce the Sl(2, c)

automorphism operator A and space-time parity operator P with actions:

A(bn) = −bn, A(Fn
1 ) = −Fn

1 , A(Fn
2 ) = Fn

2 ;

P : (x̃, t̃) → (−x̃,−t̃), x̃ = x− x0, t̃ = t− t0. (33)

Here (x0, t0) is any arbitrary origin. bns define the Kernel subspace, separating it from
the Image one:

G = Im +Ker; [bn,Ker] = 0, [bn,G] = Im. (34)

Thus L̄ in Eq. 28 lies in the Kernel subspace. As L̄ is effected neither by the hierarchy
order, nor by the QID, the constraints satisfied by ξ−j

1,2s are exactly like those evaluated

by Ferreira et. al. [17]. On considering different spectral order contributions to L̄, we
obtain:

L̄(1) = −ib1,

L̄(0) = i
[

b1,F−1
]

+ L̃(0), L̃(0) :=
i

2
ϕxb

0 + 2i

√

qr

κ
F 0
1 ,

L̄(−1) = i
[

b1,F−2
]

+
[

F−1, L̃(0)
]

− i

2!

[

F−1,
[

F−1, b1
]]

+ F−1
x ,

... (35)

Now considering definite and same parity for q and r, as ϕ is parity-odd, it is easy to see
from the first of Eq.s 25 that,

ΩL̃ ≡ −L̃, Ω := AP, (36)

true for each part of L̃. Then, from Eq.s 35,
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(1 + Ω)L̄(1) = 0,

(1 + Ω)L̄(0) ≡ i
[

b1, (1− Ω)F−1
]

,

ΩL̄(−1) ≡ −i
[

b1,ΩF−2
]

−
[

ΩF−1, L̃(0)
]

+
i

2!

[

ΩF−1,
[

ΩF−1, b1
]]

−F−1
x ,

... (37)

From the second equation above, as all spectral order contribution to L̄ are odd under
Ω-operation (Eq. 28), the LHS vanishes. So,

either (1− Ω)F−1 ∈ Ker or (1− Ω)F−1 = 0, (38)

where the second one conclusion is true by definition. Then, from the third of Eq.s 37,

(1 + Ω)L̄(−1) ≡ i
[

b1, (1− Ω)F−2
]

,

or, (1− Ω)F−2 = 0. (39)

Recursively in this way, one finds (1− Ω)F−j = 0 and therefore,

(1− Ω)g = 0. (40)

Now on considering the Killing form of the sl(2) loop algebra:

Tr (b
nbm) =

1

2
δn,−m, Tr

(

bnFm
1,2

)

= 0, Tr (⋆) := − i

2π

∮

dλ

λ
tr (⋆) , (41)

with the second trace over matrices, from Eq. 30,

α−j
0 = 2Tr

(

ḡb0ḡ−1bn
)

= 2Tr
(

A(ḡ)b0A(ḡ−1)bn
)

, (42)

as the Killing form is invariant under automorphism and bns are odd under the same.
Therefore,

P(α−j
0 ) ≡ 2Tr

(

Ω(ḡ)b0Ω(ḡ−1)bn
)

= 2Tr
(

ḡb0ḡ−1bn
)

≡ α−j
0 . (43)

Thus, following the last of Eq.s 32, for the anomaly Xn being parity-odd, we will have
quasi-conservation: Γj = 0.

The particular anomalies: From the expressions of the Hamiltonian in Eq.s 14 and
the definition of anomaly in the last of Eq.s 19, we have,

X1 = (γ1 − β1)qr,

X2 = −α
2
(qr)x − 2(γ2qrx + β2rqx),

X3 = 2(γ3 + β3)q
2r2 + β3rqxx − γ3qrxx − i

α

4
(rqxx − qrxx),

X4 = qγ4(rxxx − 6qrrx) + rβ4(qxxx − 6rqqx)−
α

8
(q2r2 + rxqx − qrxx − rqxx),

..., (44)
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where the expressions from Eq.s 5-8 have been utilized. As n = 2 gives the usual NLSE,
with q and r being parity-even, for γ2 = β2, we have X2 ∝ (qr)x which is parity-odd,
therefore serving the purpose of quasi-integrability (Ref. [17]). A similar result is obtained
for n = 4. However, for n = 1, 3, the corresponding anomaly is parity-even. By simple
observation of power of the variables in the NLS hierarchy, it is clear that only even

ordered systems can be quasi-integrable.

Explicit coefficients: For the sake of completion, we express the relations satisfied
by the ḡ coefficients in order to have L̄ in the Kernel subspace as follows:

O(0) : ξ−1
1 = 0, ξ−1

2 = −2
√

qr/κ,

O(1) : ξ−2
1 = −2i

(

√

qr/κ
)

x
, ξ−2

2 = −ϕx

√

qr/κ,

O(2) : ξ−3
1 = −iϕxx

√

qr/κ− 2iϕx

(

√

qr/κ
)

x
,

ξ−3
2 = 2

(

√

qr/κ
)

xx
− 1

2
(ϕx)

2
√

qr/κ− 4

3
κ (qr/κ)3/2 ,

O(3) : ξ−4
1 = 2i

(

√

qr/κ
)

xxx
− 4iκ

√

qr/κ
(

√

qr/κ
)

x
+

3

2
ϕxϕxx

√

qr/κ

+
3

2
(ϕx)

2
(

√

qr/κ
)

x
,

ξ−4
2 = ϕxxx

√

qr/κ+ 3ϕxx

(

√

qr/κ
)

x
+ 3ϕx

(

√

qr/κ
)

xx
− 1

4
(ϕx)

3
√

qr/κ

−10

3
κϕx(qr/κ)

3/2,

.... (45)

Thus, given the solution is known, the coefficients can be evaluated in principle. In accord
with these constraints, the ‘anomaly coefficients’ αn−m,−j

0 , for a given set of (n,m) are,

αn−m,0
0 = 1, αn−m,−1

0 = 0, αn−m,−2
0 =

κ

4

{

(

ξ−1
2

)2 −
(

ξ−1
1

)2
}

≡ qr,

αn−m,−3
0 =

κ

2

(

ξ−1
2 ξ−2

2 − ξ−1
1 ξ−2

1

)

≡ ϕxqr,

αn−m,−4
0 =

κ

4

{

2ξ−1
2 ξ−3

2 − 2ξ−1
1 ξ−3

1 +
(

ξ−2
2

)2 −
(

ξ−2
1

)2
}

+
κ2

96

{

(

ξ−1
1

)2 −
(

ξ−1
2

)2
}2

≡ 3

2
(qr)2 +

3

4
(ϕx)

2qr +
{

(
√
qr)x

}2 − 2
√
qr (

√
qr)xx ,

.... (46)

From Eq.s 32, Γ1 = 0, thereby imposing quasi-integrability for given (n,m). For the
anomaly Xn being a total derivative, Γ0 = 0 too. The charges are given as space-integral
of the coefficients of L̄:

L1
0 = −i, L0

0 =
i

2
ϕx, L−1

0 = iqr, L−2
0 =

i

2
ϕxqr,
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L−3
0 = −i

{

(
√
qr)x

}2
+
i

4
(ϕx)

2 qr +
i

2
(qr)2, · · · (47)

Among them, following Eq.s 46, the particular ones are conserved, namely, L−1
0 .

2.2 Non-holonomic deformation of NLS hierarchy

The non-holonomic deformation of the NLS hierarchy starts with the deformation of the
temporal Lax component in Eq. 1 by an amount,

δM =
∑

l

λlGl, Gl = alσ3 + blσ+ + clσ−. (48)

This effectively amounts to the modifications:

am → adm = am + an−m, bm → bdm = bm + bn−m, cm → cdm = cm + cn−m,

for l = n−m, (49)

with other values of l contributing through the remainder of δM , leading to the character-
istic non-holonomic constraints. Eq.s 2-8 are altered accordingly. From Eq. 16 the dual
set of equations appear as,

qt =
∑

m

λn−m
(

bdm,x + 2admq + 2iλbdm

)

,

rt =
∑

m

λn−m
(

cdm,x − 2radm − 2iλcdm

)

, (50)

accompanied by the set of non-holonomic constraints:

al,x = acl − rbl,

bl,x + 2ibl−1 + 2qal = 0,

cl,x = 2icl−1 + 2ral, where, l 6= n−m. (51)

Finally, Eq.s 10-13 are extended by the deformation parameters.

We illustrate the non-holonomic deformation by considering the specific example of
NLSE given by equation (11) with the choice α = −i. The spatial and temporal compo-
nents of the Lax pair of this equation are given by,

L = −iλσ3 + qσ+ + rσ−,

MOriginal = −iλ2σ3 + λ(qσ+ + rσ−) +−( i2)qrσ3 + ( i2qx)σ+ − ( i2rx)σ−, (52)

where the subscript indicates the time component prior to deformation. To obtain the
deformation, let us introduce,

MDeformed = i
2

∑

n=1 λ
−nG(n), (53)

12



where,

G(n) = anσ3 + gn+σ+ + gn−σ−. (54)

The spectral order n can take any integer value which directly or indirectly determines
the order of the constraint equations, and thereby, that of the resultant hierarchy itself,
as will be seen. The time part of the Lax pair takes the form

M̃ =MOriginal +MDeformed (55)

The zero curvature condition used with L and M̃ shows that while the positive powers
of λ are trivially satisfied, the zeroth power (or the λ free term) leads to the perturbed
dynamical systems (equations), while the negative powers of λ give rise to the differential
constraints. The deformed pair of the NLS equations are given by,

qt − i
2qxx + iq2r = −g1, g1 = g1+, (56)

rt +
i
2rxx − iqr2 = g2, g2 = g1−. (57)

Crucially, only the λ−1 term from MDeformed contributes in deforming the dynamical
equation, whereas all the other values of n > 1 contribute only to the constraint conditions,
and thereby to the hierarchy itself. Therefore, there is a clear sectioning in the spectral
space.
In order to elucidate this, we consider the simplest case of the perturbation MDeformed ≡
λ−1G(1). Then, on equating the λ−1 order coefficients of the generators σ3, σ+, σ− from
the zero curvature condition successively, we obtain the following individual constraint
conditions on the functions a, g1 and g2 as,

ax = qg2 − rg1, (58)

g1x + 2aq = 0, (59)

g2x − 2ar = 0. (60)

The foregoing equations can be shown to give rise to the differential constraint:

L̂(g1, g2) = rg1xx + qxg2x + 2qr(qg2 − rg1) = 0. (61)

On eliminating the deforming functions g1 and g2, we can derive a new higher order
equation as,

−r(qt − i
2qxx + iq2r)xx + qx(rt +

i
2rxx − iqr2)x

+2qr[q(rt +
i
2rxx − iqr2) + r(qt − i

2qxx + iq2r)] = 0,
(62)

which is a fourth order equation.

Next we consider the contribution up to the second order (n = 2) deformation of the
NLS equation:

MDeformed(λ) =
i
2(λ

−1G(1) + λ−2G(2)), (63)

13



where the function G(2) is given by,

G(2) = bσ3 + f1σ+ + f2σ−, (64)

and G(1) is already defined in equation (54). The zero-curvature condition is now applied
with L as before but MDeformed as defined in (63). The following results arise:

(i) No change occurs in the deformed NLS equations, as inferred above. From this, it
can immediately be concluded that no contribution from MDeformed with n > 1 can effect
the deformed NLS equation further, as their corresponding contribution will not occur at
the same spectral order (λ0) as that equation.

(ii) Picking up the terms in λ−1 from the zero curvature equation and equating the
coefficients of the generators σ3, σ+ and σ− successively, we are led to the following
individual constraints:

ax = qg2 − rg1, (65)

g1x + 2if1 + 2aq = 0, (66)

g2x − 2if2 − 2ar = 0. (67)

The preceding set of equations finally lead to the following differential constraint:

L̂(g1, g2) + 2i(rf1x − qxf2) = 0, (68)

with,

L̂(g1, g2) = rg1xx + g2xqx + 2qr(qg2 − rg1). (69)

On comparison with Eq.s 58 − 61, however, it is observed that the constraint conditions
do change due to the n = 2 contribution, yielding a more elaborate structure.

(iii) The terms in λ−2 give rise to a second constraint,

L̂(f1, f2) = 0, (70)

where the functional form of the above expression is already given by (69) while f1, f2
make up the argument in (70). However, from Eq.s 66−67, f1,2 are first order in derivatives
in g1,2. Therefore, the elimination of f1,2 from Eq. 70 in terms of q and r will now lead to
a fifth order differential equation, unlike the case with only n = 1 perturbation (Eq. 62).

Thus, this is an example where the perturbed equations are kept the same, but the
order of the differential constraint is increased recursively, thereby creating a new inte-
grable hierarchy for the NLS equation. We may also consider NHD of systems other than
the NLS system, with order of NHD focused on highlighting the complete spectral sector
that deforms the dynamics. Any different order extension to Mdeformed will only build-up
the constraint-induced hierarchy.

For the sake of completeness, we now discuss the coupled KdV type NLSE, for which
the space and time components of the Lax pair are given by:

L = −iλσ3 + qσ+ + rσ− and
MOriginal = −iλ3σ3 + λ2(qσ+ + rσ−) + λ[(− i

2qr)σ3 +
i
2qxσ+ − i

2rxσ−]
+[14(rqx − qrx)σ3 + (12q

2r − 1
4qxx)σ+ + (12qr

2 − 1
4rxx)σ−].

(71)
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MOriginal now includes a term in λ3 as compared to λ2 in the previous example of the
NLS equation. This would lead to a higher order dispersion term. We take MDeformed =
i
2λ

−1G(1) and therefore, M̃ = MOriginal +MDeformed. Then, on using the zero-curvature
condition, we arrive at the following deformed equations:

qt +
1
4qxxx − 3

2qqxr = −g1, (72)

and

rt +
1
4rxxx − 3

2rrxq = g2, (73)

along with the differential constraint:

L̂(g1, g2) = 0. (74)

In this example, the constraint is held fixed at its lowest level, but the order of the NLS
equation is increased (terms enter with higher order dispersion) and thus a new integrable
hierarchy is formed.

3 The DNLS hierarchy

In this case the Lax operator L is taken as,

L =

(

− iλ2 − is λq
λr iλ2 + is

)

. (75)

The M operator is slightly complicated given by,

M = Ṽ (n) +△n, (76)

where,

Ṽ (n) = (λ2n+2V )+, V =

(

a b
c −a

)

,

and the elements a, b and c are expanded in negative powers of λ. In the above △n =
2βa2(n+1)σ3(0), where β is a constant. σ3(0) is the loop algebra generator corresponding
to λ = 0. The coefficients of the elements a, b and c, when expanded in negative powers
of λ, are governed by the following recurrence relations:

amx = qcm+1 − rbm+1

bmx = −2ibm+2 − 2isbm − 2qam+1

cmx = 2icm+2 + 2iscm + 2ram+1

, (77)

from which it can be shown that,

a(m+1)x = (rsbm − qscm)− i

2
(qcmx + rbmx). (78)

In general it is found that:

a2j+1 = 0, b2j = 0, c2j = 0, (79)
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for j = 0, 1, 2, 3, ..... The zero-curvature equation leads to the following dynamical systems,

qt = b(2n+1)x + i(1 + 2β)qrb2n+1 + 2(1 + 2β)qa2(n+1)

rt = c(2n+1)x − i(1 + 2β)qrc2n+1 − (1 + 2β)ra2(n+1)
. (80)

These represent a coupled system of hierarchy of equations. Here, we have substituted,

s =
1

2
(1 + 2β)qr, (81)

following the equations of motion from zero-curvature condition, leading to the expression
of (qr)t, and also that at O

(

λ0
)

, (1 + 2β)a2n+2,x ≡ −ist.
Putting n = 1, we obtain,

qt = b3x + i(1 + 2β)qrb3 + 2(1 + 2β)qa4
rt = c3x − i(1 + 2β)βqrc3 − 2(1 + 2β)ra4.

(82)

After using 2s = (1 + 2β)qr , we obtain the following expressions for b3, c3 and a4 viz.

b3 = iqx − 2βq2r
c3 = −irx − 2βqr2

a4 =
1
2(rqx − qrx) + (2β + 1

4)iq
2r2.

(83)

Hence Eq. 82 yields,

qt = iqxx − (4β + 1)q2rx − 4βqqxr +
i
2(1 + 2β)(4β + 1)q3r2

rt = −irxx − (4β + 1)r2qx − 4βrrxq − i
2(1 + 2β)(4β + 1)q2r3.

(84)

Eq.s 84 represent coupled Kundu-type systems.
Several reductions of Eq. 84 are possible. On putting β = −1

2 , we get,

qt = iqxx + (q2r)x
rt = −irxx + (qr2)x,

(85)

which form a coupled Kaup-Newell (KN) system. β = −1
4 leads to,

qt = iqxx + qqxr
rt = −irxx + rrxq,

(86)

which is the coupled Chen-Lee-Liu (CLL) system. Finally, β = 0 yields,

qt = iqxx − q2rx +
i
2q

3r2

rt = −irxx − r2qx − i
2q

2r3,
(87)

which is a coupled GI system. Putting r = q∗ in the above system of equations leads to
further reductions, e. g. setting r = q∗ in 84 leads to,

qt = iqxx − (4β + 1)q2q∗x − 4β|q|2qx + iβ(4β + 1)|q|4q, (88)

which again represents Kundu type equation.

16



3.1 Quasi-integrable deformation of DNLS hierarchy

We consider the set of KN equations,

qt = iqxx + (q2r)x and rt = −irxx + (qr2)x, (89)

obtained for β = −1/2, as the starting-point for the QI deformation of DNLS system.
The specific Lax pair for this system is,

L = −iλ2σ3 + λqσ+ + λrσ− and

M ≡
(

λ2a2 − 2iλ4
)

σ3 +
(

λb3 + λ3b1
)

σ+ +
(

λc3 + λ3c1
)

σ−, (90)

with,

a2 = −iqr, b1 = 2q, c1 = 2r, b3 = iqx + q2r and c3 = −irx + r2q. (91)

This system originates from a Hamiltonian,

H =
1

2

∫

x

(

iqxr − irxq − q2r2
)

, (92)

corresponding to the PB structure,

{q(x), r(y)} =
1

2
(∂x − ∂y)δ(x− y), (93)

following the usual definition of time-evolution: αt = {α,H}.

To attain the QI deformation of the system in Eq. 89, the following identifications are
made:

Eq := qt − iqxx −
(

δH

δr
+ iqxx

)

x

= 0 and Er := rt + irxx −
(

δH

δq
+ irxx

)

x

= 0, (94)

corresponding to the coefficients,

a2 = − i

2

δ2H

δqδr
, b3 = iqx +

δH

δr
+ iqxx and c3 = −irx +

δH

δq
+ irxx. (95)

The corresponding curvature tensor takes the form,

Ftx ≡
{

λEq + λ3
(

δH

δq
+ irxx −

1

2
r
δ2H

δqδr

)}

σ+ +

{

λEr + λ3
(

δH

δr
+ iqxx −

1

2
q
δ2H

δqδr

)}

σ−

+Xσ3; where,

X := λ2
[

i

2

(

δ2H

δqδr

)

x

+ q

(

−irx +
δH

δq
+ irxx

)

− r

(

iqx +
δH

δr
+ iqxx

)]

. (96)

Now, if the Hamiltonian H is deformed, Eq.s 94 will represent the deformed EOMs,
whereas X will represent the QI anomaly at a different spectral order, vanishing identically
for the undeformed system.
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Before embarking on quasi-deformation, a few points are to be taken note of:

1. The standard Abelianization will be different, as the anomaly X is of a different
order than the EOMs; unlike the case of SG, SSG, NLS or KdV systems.

2. However upon Abelianization, for some α−j
0 being constant, only X will take part in

the conservation expression:
dQ

dt
=

∫

x
X .

So having it as a total derivative or to be parity odd will do. Looking at its expression
in Eq.s 96, this will amount to having the term:

q
δH

δq
− r

δH

δr

as a total derivative. Albeit, this is subjected to finding constant terms as coefficient
of a particular order in the sl(2) gauge rotation of the Ftx.

3. Alternatively, to utilize parity and automorphism properties of the system to estab-
lish quasi-integrability, It should be possible in the same line as Ferreira et. al. as
the spectral order of σ3 term is different that those of σ± in the expression for L in
Eq.s 90.

It is to be noticed that the spatial Lax component of the KN system in Eq. 90 is just
λ times that for the NLS systems. Therefore, we perform a gauge-rotation by the same

operator as that in Eq. 22, that leads to λ times the expression in the first of Eq.s 25, i.
e.,

L̃ ≡ −ib2 + i

2
ϕxb

1 + 2i

√

qr

κ
F 1
1 . (97)

Here also, there is an underlying sl(2, c) loop algebra, exactly similar to that explained in
Eq.s 23. From the above equation, it is clear that all the generic structures regarding the Z2

symmetry treatment of the system will pass through, leading to a parity-even counterpart
to α−j

0 of Eq.s 32 and 43. Therefore, the only job left is to determine the parity property
of the current anomaly term X , whose expression has already been determined. For the
sake of completeness, we provide the expression for the temporal Lax component below:

M̃ ≡
(

i

2
ϕt + λ2a2 − 2iλ4

)

σ3 + eiϕ
(

λb3 + λ3b1
)

σ+ + e−iϕ
(

λc3 + λ3c1
)

σ−. (98)

As both single and double space derivatives appear explicitly only with q and r in Eq.s
96, for definite parity solutions q and r, the anomaly cannot have definite parity and thus
the corresponding Γjs do not vanish in general. However for particular form of H, the
overall X can still be odd. Additionally, if it is a total derivative, then for particular α−j

0 s

with ∂xα
−j
0 = 0, the corresponding charges will be conserved, yielding quasi-integrability.
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In order to determine the coefficients α−j
0 s, we consider the rotated Lax component,

L̄ = ḡL̃ḡ−1 + ḡxḡ
−1, (99)

and impose the condition that it is confined to the sub-algebra spanned by bns. The
corresponding constraints are:

O(1) : ξ−1
1 = 0, ξ−1

2 = −2
√

qr/κ,

O(0) : ξ−2
1 = 0, ξ−2

2 = −ϕx

√

qr/κ

O(−1) : ξ−3
1 = −2i

(

√

qr/κ
)

x
, ξ−3

2 = −4

3
κ (qr/κ)3/2 − 1

2
(ϕx)

2
√

qr/κ,

O(−2) : ξ−4
1 = −iϕxx

√

qr/κ− 2iϕx

(

√

qr/κ
)

x
,

ξ−4
2 = −1

4
(ϕx)

3
√

qr/κ− 3κϕx (qr/κ)
3/2 ,

.... (100)

The above relations are to be implied while evaluating the coefficients in the expression
of,

F̄tx = ḡF̃txḡ
−1, (101)

leading to the expressions:

α0
0 = 1, α−1

0 = 0, α−2
0 =

κ

4

{

(

ξ−1
2

)2 −
(

ξ−1
1

)2
}

≡ qr,

α−3
0 =

κ

2

(

ξ−1
2 ξ−2

2 − ξ−1
1 ξ−2

1

)

≡ ϕxqr,

α−4
0 =

κ

4

{

2ξ−1
2 ξ−3

2 − 2ξ−1
1 ξ−3

1 +
(

ξ−2
2

)2 −
(

ξ−2
1

)2
}

+
κ2

96

{

(

ξ−1
1

)2 −
(

ξ−1
2

)2
}2

≡ 3

2
(qr)2 +

1

4
(ϕx)

2qr,

.... (102)

Therefore, from observation alone, for order j = 1, the corresponding charge is conserved
and for j = 0, the same is true given X is a total derivative. These criteria may lead to
quasi-integrability. The charges are given as space-integral of the coefficients of L̄:

L2
0 = −i, L1

0 =
i

2
ϕx, L0

0 = iqr, L−1
0 =

i

2
ϕxqr, L−2

0 =
i

4
(ϕx)

2qr+
i

2
(qr)2, · · · (103)

Among them, following Eq.s 102, the particular ones are conserved, namely, L−1
0 .

To study the quasi-integrable deformation for other members of the DNLS hierarchy,
the form of the corresponding Hamiltonian is essential. From Ref. [31], the general form
of the Hamiltonian for the DNLS hierarchy is given as,
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HD
j =

1

2j
{4a2j+2 − rb2j+1 − qc2j+1} , j ≥ 1, (104)

wherein Eq.s 79 has been effectively considered. This enables general definitions of the
form: γk = γk

(

δHD
k /δq, δHD

k /δr
)

, where γ stands for (a, b, c), which explicitly are:

a2j+2 = −i j
2

(

HD
j − r

δHD
j

δr
− q

δHD
j

δq

)

, b2j+1 = −2j
δHD

j

δr
, c2j+1 = −2j

δHD
j

δq
. (105)

This enables us to incorporate QIDs directly at the level of Lax pair coefficients. Then
from Eq.s 80, the most general curvature expression for the deformed system can be
expressed as,

FD
tx ≡

[

λqt + 2λ2n+2
∑

j

λ−(2j+1)j

(

δHD
j

δr

)

x

+ 4iλ2n+2

{

λ2 +

(

1

2
+ β

)

qr

}

×
∑

j

λ−(2j+1)j
δHD

j

δr
+ 2iλq

{

λ2n+2
∑

j

λ−(2j+2) j − 1

2

(

HD
j−1 − r

δHD
j−1

δr
− q

δHD
j−1

δq

)

+βn

(

HD
n − r

δHD
n

δr
− q

δHD
n

δq

)

}]

σ+

+
[

λrt + 2λ2n+2
∑

j

λ−(2j+1)j

(

δHD
j

δq

)

x

− 4iλ2n+2

{

λ2 +

(

1

2
+ β

)

qr

}

×
∑

j

λ−(2j+1)j
δHD

j

δq
− 2iλr

{

λ2n+2
∑

j

λ−(2j+2) j − 1

2

(

HD
j−1 − r

δHD
j−1

δr
− q

δHD
j−1

δq

)

+βn

(

HD
n − r

δHD
n

δr
− q

δHD
n

δq

)

}]

σ−

+
[

− i

(

1

2
+ β

)

(qr)t − λ2n+2
∑

j

λ−(2j+2) j − 1

2

(

HD
j−1 − r

δHD
j−1

δr
− q

δHD
j−1

δq

)

x

+inβ

(

HD
n − r

δHD
n

δr
− q

δHD
n

δq

)

x

−2λ2n+3







q
∑

j

λ−(2j+1)j

(

δHD
j

δq

)

− r
∑

j

λ−(2j+1)j

(

δHD
j

δr

)







]

σ3. (106)

In the above, at O(λ1), the coefficients of σ± represents deformed coupled equations of
the hierarchy, while the coefficient of σ3 is the anomaly term. It is to be noted that
the constraints of Eq.s 77 that lead to Eq.s 79 are still valid as only the forms of he
coefficients (a, b, c) have been generalized. This essentially ensures that there will be no

anomaly contribution at O(λ1) or at any odd order in general. This is a crucial fact as
there will be no QI anomaly at the level of EOMs, and thus the QID should be identified
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as some integrable deformation, and thus can possibly be identified with some NHD. At
other spectral orders, however, there will be anomaly contributions, which can directly
be determined from Eq. 106. Then, quasi-conserved charges can be determined in accord
with Eq.s 102.

3.2 Non-holonomic deformation of DNLS hierarchy

To discuss the non-holonomic deformation of the equations in the DNLS hierarchy, atten-
tion is first focused on the Kaup-Newell system with the Lax pair given in Eq.s 90. The
modified temporal component of the Lax pair is given as M̃ =Moriginal+Mdeformed, with
Moriginal given by Eq.s 90 and

Mdeformed = i(G(0) + λ−1G(1) + λ−2G(2)), (107)

where,

G(0) = wσ3 +m1σ+ +m2σ−, (108)

G(1) = aσ3 + g1σ+ + g2σ−, (109)

G(2) = bσ3 + f1σ+ + f2σ−. (110)

Using the zero-curvature relation, we obtain the following deformed equations:

qt − i
2qxx − 1

2(q
2r)x + 2g1 − 2iqw = 0, (111)

rt +
i
2rxx − 1

2(qr
2)x − 2g2 + 2irw = 0. (112)

Further, we obtain the following conditions on the different components of the deforming
functions G(i): m1 = 0, m2 = 0, a = 0, f1 = 0, f2 = 0 and bx = 0 which implies that
b = b(t) only.

We are, therefore, left with the following deforming functions:

G(0) = w(x, t)σ3,

G(1) = g1(x, t)σ+ + g2(x, t)σ−,

G(2) = b(t)σ3.

(113)

Moreover, the following constraints are obtained:

g1x = −2q(x, t)b(t),
g2x = 2r(x, t)b(t),
wx = qg2 − rg1.

(114)

It is possible to obtain new nonlinear integrable equations by resolving the constraint
relations and expressing all the perturbing functions through the basic field variables. To
this end, we put,

q = ux, r = vx, (115)

where u = u(x, t) and v = v(x, t). Equation (115) used in equation (114) allows us to
express g1, g2 and w in terms of b(t), u and v only as follows :
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g1 = −2b(t)u,
g2 = 2b(t)v,
w = 2b(t)uv +K(t),

(116)

where K is again a function of t only. On eiminating g1, g2 and w from equations (111) and
(112), we can rewrite the coupled perturbed (deformed) DNLS equations in the following
form:

uxt − i
2uxxx − 1

2(u
2
xvx)x − 4ub(t)− 2iux(2b(t)uv +K(t)) = 0, (117)

vxt +
i
2vxxx − 1

2(uxv
2
x)x − 4vb(t) + 2ivx(2b(t)uv +K(t)) = 0. (118)

These are coupled evolution equations which are non-autonomous with arbitrary time-
dependent coefficients b(t) and K(t). Clearly, no more constraints are left at this stage.
Equations (117) and (118) generalize the coupled system of Lenells-Fokas equations by
including a nonlinear derivative term as well as a higher order dispersion term. Also, it
is to be noted that in this system both λ0 and λ−1 (i. e. n = 0, 1) effects the dynamics,
whereas n > 2 contributions only build the hierarchy up.

We now consider the Chen-Lee-Liu (CLL) system for which the Lax pair is given by,

L = λ2
(

−i 0
0 i

)

+ λ

(

0 q
r 0

)

+

(

0 0
0 i

2qr

)

, (119)

and,

M = 2λ4
(

−i 0
0 i

)

+ 2λ3
(

0 q
r 0

)

+ λ2qr

(

−i 0
0 i

)

+ λ

(

0 iqx +
1
2q

2r
−irx + 1

2qr
2 0

)

+

(

0 0
0 −1

2(rqx − rxq) +
i
4r

2q2

)

.

(120)
We consider,

Mdeformed = i(G(0) + λ−1G(1) + λ−2G(2)), (121)

with G(0) = wσ3, G
(1) = g1σ+ + g2σ−, G

(2) = bσ3 where we have taken the cue from
the preceding discussion in choosing the form of the matrices G(0), G(1) and G(2). On
taking M̃ = M +Mdeformed, and imposing the zero-curvature condition, we are led to the
following deformed CLL equations:

qt = iqxx + qqxr − 2g1 + 2iqw, (122)

and,
rt = −i− rxx + rrxq + 2g2 − 2irw. (123)

The following differential constraints are also obtained:

iwx = qg2 − rg1, (124)

g1x + 2qb+ i
2qrg1 = 0, (125)

and,
g2x − 2rb− i

2qrg2 = 0. (126)
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We further get bx = 0 which implies that b is a function of t only. However, it may
be noted that it is not possible in this case to resolve the constraints and express the
perturbing functions through the basic field variables by re-defining these variables. This
is due to the presence of a nonlinear term in (125) and (126).

4 Discussion and conclusion

Two different deformation techniques are considered in this paper, both being applied
to equations belonging to the NLS and DNLS families. For the NLS hierarchy, the QI
deformation is done in detail yielding the particular anomalies, the explicit coefficients
and the like. In case of DNLS, QID is first applied to the Kaup-Newell system and then
for other members of the hierarchy leading to the significant observation that there cannot
be any QI anomaly at the level of EOMs which means that in this case, the QID may be
identified as some integrable deformation.

NHD is first generically applied to the NLS hierarchy followed by specific cases; first
in case of the NLS equation itself and then for the coupled KdV type NLSE. In case of
the DNLS hierarchy, NHD is carried out on two different systems, viz. the Kaup-Newell
and Chen-Lee-Liu equations. The two different deformation procedures, one exactly pre-
serving integrability (by construction) and the other only asymptotically, applied to two
separate hierarchies, demonstrate an extended class of dynamical systems. These de-
formed systems, both (non-holonomically) integrable or/and quasi-integrable, adds to the
known hierarchies as possible dynamical systems which could be of physical interest with
possibly new aspects. Simultaneous application of these techniques to other families of
integrable systems and/or their supersymmetric generalizations will be the topic for our
future investigation.

Acknowledgement: The research of KA is supported by the TÜBITAK 2216 grant num-
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