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Mathematical structures:

On string theory applications in condensed matter physics.

Topological strings and two dimensional electrons

Prepared comment by Nikita Nekrasov1

Quantum field theorists have benefited a lot from ideas originating in the
condensed matter physics, the Higgs mechanism in the Standard Model and
the dual superconductor mechanism of confinement implemented in Seiberg-
Witten theory, just to name a few. We suggest that the time has come
to pay back. In this note we shall present an interesting model of electrons
living on a two dimensional lattice, and interacting with random electric field,
can be solved using the knowledge accumulated in the studies of superstring
compactifications.

1 Electrons on a lattice, with noisy electric

field

We start with describing the model. Consider the hexagonal lattice with
vertices coloured in two colours, black and white, say, so that only the vertices
of the different colours share a common edge. Let B,W denote the sets of
black and white vertices, respectively. We can view the edges as the maps
ei : B → W , e∗i : W → B, i = 1, 2, 3. The edge e1 points northwise, e2:
southeast, and e3 southwest. The set of edges, connecting black vertices
with white ones will be denoted by E. We have two maps: s : E → B and
t : E →W , which send an edge to its source and target.

The free electrons on the lattice are described by the Lagrangian

L0 =
∑

b∈B

∑

i=1,2,3

ψbψ
∗
ei(b)

=
∑

w∈W

∑

i=1,2,3

ψe∗
i
(w)ψ

∗
w (1.1)
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The variables ψb, ψ
∗
w are fermionic variables2.Our ”electrons” will interact

with the U(1) gauge field Ae, where e ∈ E. Let us introduce three (complex)
numbers ε1, ε2, ε3, and

ε = ε1 + ε2 + ε3 (1.2)

First we make the free Lagrangian (1.1) gauge invariant, by:

LψA =
∑

b∈B

3
∑

i=1

ψbe
iεAei(b)ψ∗

ei(b)
(1.3)

The gauge transformations act as follows:

ψb 7→ eiεθb, ψ∗
w 7→ e−iεθwψ∗

w, Ae 7→ Ae + θt(e) − θs(e) (1.4)

They preserve the Lagrangian (1.4) but the measure DψDψ∗ is not invariant,
there is an ”anomaly”. It can be cancelled by adding the following Chern-
Simons - like term to the Lagrangian (1.4)

LCS = −i
∑

b∈B

3
∑

i=1

εiAei(b) (1.5)

In continuous theory in two dimensions one can write the gauge invariant
Lagrangian for the gauge field using the first order formalism:

L2dYM =
∫

Σ
trEFA +

∑

k

tktrE
k (1.6)

where E is the adjoint-valued scalar, the electric field. In the conventional
Yang-Mills theory only the quadratic Casimir is kept in (1.6), t2 playing the
role of the (square) of the gauge coupling constant. In our case, the analogue

of the Lagrangian (1.6) would be LlatticeYM =
∑

f

(

hf
∑

e∈∂f ±Ae
)

+
∑

f U(hf ).
Note that in the continuous theory one could have added more general gauge
invariant expression in E, i.e. involving the derivatives. The simplest non-
trivial term would be: L = LYM +

∫

trg(E)∆AE where g is, say, polynomial.
Such terms can be generated by integrating out some charged fields. Our

2One can bosonize them, as:

ψb = eiϕb , ψ∗

w = e−iϕw

but we shall not discuss it here
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lattice model has the kinetic term for the electric field, as well as the lnear
potential (it is possible in the abelian theory):

LAh = i
∑

f



hf
∑

e∈∂f

±Ae



 −
∑

f

U(hf)(∆h)f − t
∑

f

hf (1.7)

where ∆ is the lattice Laplacian, and the ”metric” U(x) is a random field, a
gaussian noise with the dispersion law3:

〈U(x)U(y)〉 = D(x− y) ≡
∫ ∞

0
dt

e−t(x−y)

t(1 − etε1)(1 − etε2)(1 − etε3)
(1.8)

The partition function of our model is (we should fix some boundary condi-
tions, see below)

Z(t, ε1, ε2, ε3) =
∫

DUe−
∫

U(x)(D−1◦U)(x)
∫

DψDψ∗DADh eLψA+LCS+LAh

(1.9)

2 Dimers and three dimensional partitions

We now proceed with the solution of the complicated model above. The idea
is to expand in the kinetic term for the ψψ∗. The non-vanishing integral
comes from the terms where every vertex, both black and white, is repre-
sented by the corresponding fermions, and exactly once. Thus the integral
over ψ, ψ∗ is the sum over dimer configurations, weighted with the weight

∑

dimers

∏

e∈dimer

eiεAe (2.10)

Now the gauge fields Ae enter linearly in the exponential, integrating them
out we get an equation dh = ⋆ωdimer where ωdimer is the one-form on the
hexagonal lattice, whose value on the edge is equal to ±ε1,2,3 depending on

3the integral is regularized via

∫

dt

t
→

d

ds

∣

∣

∣

∣

∣

s=0

1

Γ(s)

∫

dt

t
ts

.
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its orientation ±ε depending on whether it belongs to the dimer configura-
tion or not. Everything is arranged so the that at each vertex v the sum of
the values of ω on the three incoming edges is equal to zero. The solution of
the equation on h gives what is called height function in the theory of dimers.
In our case it is the electric field. If we plot the graph of hf and make it to a
piecewise-linear function of two variables in an obvious way, we would get a
two dimensional surface, which is a boundary of a generalized three dimen-
sional partition. In order to make it a boundary of actual three dimensional
(or plane) partition, we have to impose certain asymptotic condiitions: that
asymptotically the graph of hf looks like the boundary of the positive octant
R3

+
4. Under these conditions, the final sum over dimers is equivalent to the

sum over three dimensional partitions of the so-called equivariant measure.
The three dimensional partition is a (finite) set π ⊂ Z3

+ whose complement
in π̄ = Z3

+\π is invariant under the action of Z3
+. In other words, the space

Iπ of polynomials in three variables, generated by monomials zi1z
j
2z
k
3 where

(i, j, k) ∈ π̄ is an ideal, invariant under the action of the three dimensional
torus T3. Let

chπ =
∑

(i,j,k)∈π q
i−1
1 qj−1

2 qk−1
3 , chπ̄(q) = 1

P (q)
− chπ (2.11)

P (q) = (1 − q1)(1 − q2)(1 − q3), qi = eεi (2.12)

chTM = 1/P (q) − P (q−1)chπ̄(q)chπ̄(q
−1) =

∑

α e
xα −

∑

α e
yα (2.13)

µπ(ε1, ε2, ε3) =
∏

α
yα
xα

(2.14)

|π| = chπ(1) (2.15)

(2.16)

The partition function of our model reduces to:

Z(t, ε1, ε2, ε3) =
∑

π

µπ(ε1, ε2, ε3)e
−t|π| (2.17)

3 Topological strings and S-duality

The last partition function arises in the string theory context. The ideals
Iπ are the fixed points of the action of the torus T3 on the moduli space of
zero dimensional D-branes in the topological string of B type on C3, bound

4i.e. as the function: h(x, y) = ε1i + ε2j + ε3k, x = i − (j + k)/2, y = (j − k)/2,
i, j, k ≥ 0, ijk = 0
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to a single D5-brane, wrapping the whole space. The equivariant measure
µπ is the ratio of determinants of bosonic and fermionic fluctuations around
the solution Iπ in the corresponding gauge theory. The parameter t is the
(complexified) theta angle, which couples to trF 3 instanton charge. This
model is an infinite volume limit of a topological string on compact Calabi-
Yau threefold. The topological string on Calabi-Yau threefold is the subsector
of the physical type II superstring on Calabi-Yau ×R4. It inherits dualities
of the physical string, like mirror symmetry and, more importantly for us, S-
duality. It maps the type B partition function (2.17) to the type A partition
function. The latter counts holomorphic curves on the Calabi-Yau manifold.
In the infinite volume limit it reduces to the two dimensional topological
gravity contribution of the constant maps, which can be evaluated to be:

Z(t, ε1, ε2, ε3) = exp
(

(ε1+ε2)(ε3+ε2)(ε1+ε3)
ε1ε2ε3

)

∑∞
g=0 t

2g−2 B2g−2B2g

2g(2g−2)(2g−2)!
(3.18)

= M(−e−it)
−

(ε1+ε2)(ε3+ε2)(ε1+ε3)

ε1ε2ε3 (3.19)

(3.20)

where M(q) =
∏∞
n=1(1 − qn)−n is the so-called MacMahon function.

4 Discussion

We have illustrated at the simple example that the string dualities can be
used to solve for partition functions of interesting statistical physics problems.
The obvious hope would be that the dualities are powerful enough to provide
information on the correlation functions as well. One can consider more
general lattices or boundary conditions (they correspond to different toric
Calabi-Yau’s). Also, it is tempting to speculate that compact CYs correspond
to more interesting condensed matter problems.

I am grateful to A.Okounkov for numerous fruitful discussions.
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