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Abstract

We introduce a kinetic model to study the dynamics of ions in ag-
gregates of cells and tissues. Different types of communication chan-
nels between adjacent cells and between cells and intracellular space
are considered (ion channels, pumps and gap junctions). We shows
that stable transmembrane ionic Nernst potentials are due to the co-
existence of both specialised ion pumps and channels. Ion pumps or
channels alone do not contribute to an equilibrium transmembrane po-
tential drop. The kinetic parameters of the model straightforwardly
calibrate with the Nernst potentials and ion concentrations. The
model is based on the ATPase enzymatic mechanism for the ions Na™,
K™, and it can be generalised for other ion pumps. We extend the
model to account for electrochemical effects, where transmembrane
gating mechanism are introduced. In this framework, axons can be
seen as the evolutionary result of the aggregation of cells through gap
junctions, which can be identified as the Ranvier nodes. In this kinetic
framework, the injection of current in an axon induces the modifica-
tion of the potassium equilibrium potential along the axon.

Keywords: ATPase, electrophysiology, sodium-potassium gates, gap junc-
tions, axons, diffusion.



1 Introduction

The main goal of this paper is to derive a mathematical model describing
the electrophysiology states of cells and tissues, derived from the laws of
molecular dynamics and chemical kinetics. This model describes the trans-
port of several types of ions in cells and tissues, including mechanisms of
transmembrane transport through channels, pumps or gap junctions.

Cells can be arranged in three-dimensional structures, in two-dimensional
layers, or in linear arrays. Several biological functions are done inside the
cell, as protein production and regulation. To fulfil these functions nutri-
ents migrate through intracellular spaces and enter into the cell through ion
channels, pumps or gap junctions. Ion channels are holes on the cellular
membrane, through which nutrients and other substances can flow. Pumps
are active proteins that selectively transport specific ions from the inside to
the outside of the cell, and vice versa. Gap junctions are intercellular con-
nections between the cytoplasm of adjacent cells. Ton channels, pumps and
gap junctions can be opened or closed.

The adenosine triphosphate (ATP) molecule is a nucleotide responsible
for the transport of energy to cells in organisms, [2]. It provides the necessary
energy for metabolic reactions to occur inside the cell (1 glucose — 2 ATP).
This process of energy delivery to the cell is controlled by ions, Na™ and
K™*, among others, which mediate the dephosphorylation/phosphorylation
of ATP, followed by the hydrolysation of ADP, releasing energy to the cell in
an exergonic reaction.

The ATP mechanism is controlled by the fluxes of Na®™ and K™ ions
from outside to the inside of the cell and vice versa. Other ions like Cl™,
H* and Ca®' may also be present. These fluxes induce different steady
concentrations of ions in the interior and in the exterior of cells, which can
be measured by the difference of potential between the inside and the outside
the cell. The values of the equilibrium potential drop measured relative to
the outside potential are in the range —20 mV to —80 mV (neurones), [19],
and characterises the electrophysiological state of cells or tissues.

To describe the electrophysiological state of a cell, Hodgkin and Huxley
(HH) made a phenomenological electric model of the cell membrane. This
model predictions have been compared with data from patch clump exper-
iments with a squid neurone, [12]. Their results were so remarkably close
to the experimental observations that this model become the inspiration for
modern electrophysiological models, [13, 14, 15]. The HH model introduces
two assumptions. Firstly, the pumping mechanism between the exterior and
the interior of cells behave as an electric circuit with a capacitor in par-
allel with a variable resistance and a battery. Secondly, there is a gating



mechanism responsible for the opening and closing of ion channels in cell
membranes. This gating mechanism is based on the premise that the rates
between the open and close states of gates depend on the transmembrane
potential drop. Other derived mechanisms have been proposed in [3, 5, 15].

More recently, several experiments concentrated on the importance of
electrical signalling for the induction and maintenance of several biological
functions in organisms, [1, 17, 4]. For example, it has been shown that the
ATPase mechanisms, regulating the ion concentrations inside and outside
cells and the electrostatic potential drop across cellular membranes, might
be important for regeneration of tissues, [1].

Independently of the enormous success of the HH model, both from the
experimental and theoretical point of view, it is importante to obtain a
derivation of this model from the first principles of molecular dynamics. This
is one of the goals of this paper.

This paper is organised as follows. In the next section, we derive the basic
linear kinetic model, describing the propagation of ions in aggregates of cells
and tissues. In this section, the main biochemical and physical assumptions
based on ATPase mechanisms are introduced. The basic model equations
reduce to a system of linear reaction-diffusion equations, two equations for
each ion type. This basic model contains the effects of ion pumps, channels
and gap junctions. In section 3 and following the proposal of Hodgkin and
Huxley, [12], we introduction of voltage dependent gates for ion channels.
This makes the new model equations dependent of the potential drop across
cellular membranes. This general model admits any type of voltage depen-
dent gating mechanism, and, by construction, may also describe the effect
of patch clump experiments. Numerical solutions for the sodium-potassium
dynamics are analysed in section 4, including the effect of patch clamp type
experiments in cells and tissues. In section 5, we summarise and discuss the
conclusions of this paper.

2 Derivation of the basic molecular dynamics
model

We consider a bidimensional arrangement of cells in the plane. The cells may
communicate with each other through gap junctions, or through the fluid that
fils the intercellular space. The communication with the intercellular fluid is
done through ion channels and pumps, figure 1.

To describe the kinematics of Na™ and K ions between the intracellu-
lar regions and the cytoplasm of cells, we start by modelling the pumping



Figure 1: A two-dimensional arrangement of cells in a tissue. Ion channels,
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pumps and gap junctions are indicated by “c”, “p” and “g”, respectively.

mechanism of these ions. The model introduced here is based on the ATPase
enzymatic mechanism for NaK pumps of Chapman, Johnson and Kootsy,
[8], and adapted by Enderle and Bronzino, [11, pp. 483]. This mechanism is
described by the system of kinetic diagrams

My ATP;
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where E represents the transmembrane enzyme ATPase and the subscripts
“i” and “0” refer to its localisation, inside or outside the cell. The enzyme E
has the index “i” or “0” because it is a transmembrane carrier protein and its
action can be from the inside to the outside and vice versa. The first diagram
represents the production of ATP, eventually by glucose, and the k;’s are rate
constants. The kinetic equations (1) are possible kinetic realisations of the

ATPase stoichiometric dephosphorylation mechanism
ATP; + 3Na) + 2K —ADP; + P; + 3Na + 2K (2)

The temporal variation of concentrations of all the substances in (1) and
(2) can be described by differential equations derived from the mass action
law. However, the diagrams (1) and (2) are associated with two very differ-
ent model approaches, with different parameters and eventually with different
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temporal behaviour. In order to maintain the model sufficiently detailed and
consistent with the physical and the chemical microscopic mechanisms oc-
curring in tissues and cells, we expand the molecular collisions in (1) evolving
three and four molecules to a more realistic bimolecular collisional mecha-
nisms. We substitute the mechanisms in the second and fifth equations in
(1) by bimolecular collisional diagrams:

Naj + Ez ﬁ) C1
3Na! + E; SN (NagE); — 4 Na/ +¢ NP (3)
Naj + ¢ =25 (NalE);

and
(EP), + K 22 4,

K +dy — (K5 EP),,

(EP), + 2K =% (KJEP), {

where ¢y, co and d; are intermediate complex states.
Besides NaK pumps, cells have ion channels. We consider (open) channels
for the ions Na®™, K* and Cl™. In these cases, the exchange of ions through
channels follows a diffusion type process which can be described by the kinetic

mechanisms

k1o
Na/ = Na;
k1o

K =K/ (5)

where the the constants kqg, k11 and ki are the rates of transfer of matter
through the channels.

The kinetic mechanism (1), (3), (4) and (5) describe the osmotic/diffusion
processes of ions across the cell membrane, mediated by NaK pumps and open
ion channels.

To apply the mass action law to the mechanisms (1), (3), (4) and (5),
we first introduce the following steady state simplifying assumptions, ¢; = 0,
dy = 0, (NajE), = 0, (NajEP). = 0, (NajEP)’ = 0, (EP), = 0, d; = 0,
(KyEP), = 0 and (K5 E)/, = 0, where the apostrophe refers to time deriva-
tives. Under these conditions, and using the Mathematica software package
kinetics ([10]), the concentrations of the non steady substances evolve in time



according to the system of linear equations
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where E; > 0 is a constant related with the concentration of ATPase (trans-
membrane protein). Clearly, the system of equations (6) are not linearly
independent and Na}(¢) + Naj () = Nal(0) + NaS(0), Kl (¢t) + K (t) =
K7 (0) + K;7(0) and CI (t) + Cl; (t) = CI(0) + CI; (0), for every t > 0.

The system of equations (6) describes the establishment of a steady con-
centration of ions inside and outside a cell. Equating to zero the right hand-
side of equations (6), it follows that the steady state concentration of ions
inside and outside of a cell are

k1o 3Ciks
Nat* = Na0——2 4 Na0———"2
B = N S 2k + 3C ke
klO
Nat* = Na0——20
K ko + 3Cks
1 Cikak1o
K = —K0 — Na0
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1
g
al,” = 5Cl0
1
7 = —Cl
al;* = 5,

where Na0 = Nal (0) + Na; (0), KO = K} (0) + K;(0) and Cl0 = CI,(0) +
C1;(0). From (7), we have Na > Na, K < K in agreement with exper-
imental data, [19]. Moreover, a simple analysis shows that this steady state
is stable, for any positive choice of the rate constants. From this model,
we conclude that the NaK pumps are responsible for the establishment of a
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difference in the concentrations of the ions Na® and K' between the inside
and the outside of the cell. On the other hand, if a cell has NaK pumps and
no channels, at steady state, sodium ions would fully concentrate outside the
cell, and potassium ions inside the cell.

At this stage, some remarks are necessary. Firstly, the system of equation
(6) is linear, provided the rate constants do not change with time or are func-
tion of the transmembrane potential drop. In the case of the Hodgkin-Huxley
model, we have a similar situation but the transmembrane conductivities (k;)
can change with the transmembrane potential drop, [15]. Secondly, in cells
and in equilibrium situations, it is reported a difference in the chlorine steady
state concentration between the inside and the outside of (mammalian) cells
(Cl; > Cl;), [19], which is not the case for the steady state (7), where
a pure diffusive mechanisms for chlorine ions has been considered. There-
fore, in real cellular systems, it may exist some active mechanism of chlorine
pumping similar to the ATPase mechanism.

We assume further that ions can diffuse along the intercellular spaces
and also in the cytoplasm of cells through gap junctions. Due to the low
concentrations of ions in tissues, of the order of the millimole per litre, the
repulsive or attractive electric field effects between charged ions can be ne-
glected. Therefore, extending the model equations (6), the dynamic of ions in
an agglomerate of cells or tissue is described by the linear system of reaction-
diffusion equations

( ONaj + + + +
ot = —klo(Nao — Nai ) + 3]€2E1Nal + DN%ANaO
Na;
86?1 = kl()(Naj — Naj) — BkgElNa;’— + DNaiANaj
8K3— + + + +

ot = _kll(KO - Kz ) - 2k2E1NaZ + DKOAKO

81; = l{fll(Kj— - K:_) + kaElNaj_ + DKlAKj_
oCl;

ato = —km(Cl; — Cl:) + DCIOAC1;
oCl;

5 = kia(Cl; = CI) + Dey ACK,

where Dyg,, Dna;y Dk,, Dk;, Dci, and D¢y, are sodium, potassium and
chlorine diffusion coefficients, and A is the Laplace operator in one, two or
three space variables. The diffusion coefficients Dy, , Dk, and D¢, cor-
respond to diffusion along intercellular spaces, and the diffusion coefficients
Dy, Dk, and D¢y, correspond to ion diffusion along gap junctions. In prin-
ciple, Dyq;, < Dna,, Dk, < Dk, and D¢y, < Dey,. Although not explicitly
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represented, all concentration variables depend on time ¢, and space variables
x, y and eventually z.

For the case of two space variables, we can think of a tissue of cells
arranged in a two dimensional plane and with all cells connected by gap
junctions to their closest neighbours. If Dy,, = Dk, = D¢, = 0, there are
no gap junctions connecting adjacent cells.

In equations (8), the first terms on the right hand side correspond to the
effect of ion channels. The terms with the constant E; describe the effect of
the NaK pump.

In a tissue of cells in steady state, these equations show that concentra-
tions of Na™ and K™ are different inside and outside cells, inducing a trans-
membrane potential drop across cellular membranes. This transmembrane
potential drop is determined according to the Goldman law, [18],

/{ZT PKK+ + PNQNa + PCICI_

v =(V:,, =V
mem = (Vin, — Vout) = o PKK + PyoNa + Pg,Cl’

(9)

where Py, Px and Pg; are electric permeability constants, k is the Boltz-
mann constant, T is the absolute temperature and e is the electric charge.
Moreover, the Nernst potentials of each ion species is defined by the relation
Vy = kT In([C)}/[C]}) /e or V = KT In([C]; /[C];)/e, [C] represents ion
concentrations.

In figure 2a), we show the time evolution of ion concentrations inside and
outside one single cell, as well as the transmembrane potential, calculated
from (6) and (9). In figure 2b), we show the time variation of the equilibrium
Nernst potential. The parameters have been chosen in order to obtain Nernst
potential values of the same order of magnitude of the values observed in the
HH squid biological model, for the temperature T' = 6.3 °C. Theses figures
show that the kinetic model just derived here describes well the osmotic and
the electrophysiological equilibrium of a single cell.

The equations (8) with (9) define the basic model for the study of bio-
electric phenomena in spatial distributions of cells. For this basic model,
the potencial drop across cellular membranes does not affect the dynamics
of ions.

As the system of equations (8) is linear, simple basic arguments show
that, in extended spatial regions with zero flux of ions at the boundaries, the
ion concentrations converge to the spatially homogeneous equilibrium values
(7). Different choices of the parameter values does not change qualitatively
the steady state concentration along arrays, layers or three-dimensional ar-
rangements of cells.
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Figure 2: a) Time evolution of concentration of ions inside and outside a
cell, and transmembrane potential (Vinem ), calculated from (6) and (9). The
parameter values are: ky = 1.0, k1o = 3/14, ki3 = 4/19, ko = 1.0, E; = 1.0,
Pyo = 0.019, P = 1.0 and Pg = 0.38, [?]. Initial conditions: Nal(0) =
0.125 mol, K}(0) = 0.100 mol, C1;(0) = 0.015 mol, Na; (0) = 0.035 mol,
K;F(0) = 0.005 mol, CI; (0) = 0.05 mol. Equilibrium ion concentrations are:
Na/* = 150 mmol, Na;* = 10 mmol, K" = 5 mmol, K}* = 100 mmol
and CIJ* = Cl;* = 32.5 mmol. Equilibrium membrane potential Vij e =
—41.4 mV. b) Time variation the equilibrium Nernst potentials for each ion.
For these parameter values, the Nernst equilibrium membrane potentials are
reached in the limit ¢t — oo, V3, = 65 mV, Vg = =72 mV and V7, =0 mV,
where v = KT /e = 24.08 mV.

3 The electrophysiology model

One of the important discoveries of the electrophysiology of the cell is the
dependence of the aperture of ion channels on the potential drop between
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the inside and the outside of the cells. This dependence has been successfully
explored by Hodgkin and Huxley, [12], and subsequente developments, [15,
14, 13].

ion channels can open or close as a function of the potential difference
between the inside and the outside of cells. To be more specific, if k represents
any of the rate constant in any of the mechanisms in (5), as in Hodgkin and
Huxley, [12], we assume the existence of a (phenomenological) gate variable
g(V), with 0 < g(V') < 1, such that the opening and the closing mechanisms
of channels can be described by new rate constants l%ign that are related with
the old ones through

]%ion = Qkigion(vmem)a (10)
where, from (5), i = 10,11,12, Vinem is the potential difference across the
two sides of the ion channel. As channels can be open or closed, [15], a
simple hypothesis is to assume that the gating function has a sigmoidal shape

described by a logistic function

1
1 + e~ %ion(Vmem—Vicn)’

(11)

Gion(Vmem) =
., 1s the equilibrium Nernst potential of the corresponding ion, and
Gion 18 & positive or negative constate measuring the sensitivity of the channel
to changes in Vimem around V? . From the gating function choice in (11), it
follows that g(V;,) = 1/2 and ¢'(V*) = qion/4. The gating functions g, (V)
are similar to the Hodgkin and Huxley a(V') and (V') functions, [12].
We now introduce into equations (8) the gating mechanism just described.
For that, we take the system of equations (8) and the equation (9), and we

make the generic substitution (10) for the corresponding channel. So, we

where
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obtain

( dNag + + + +
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dNa; + + + +
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dK: + + + +
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dKj_ + + + +
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where V' is the potential drop calculated across cell membranes, and g;,, (V)
is given by (11). In the last equation in (12), we added the extra term Ri
describing external perturbations. R is a resistance and i(x,t) is a current.
This extra term might describe patch clamp experiments, where an elec-
trode is introduce in a tissue at spatial coordinate x. The value of 7 can be
positive or negative, depending if the current is injected extracellularly or
intracellularly.

Due to the parameterisation in (10), equation (12) has the steady state
solution (7), with Vinem given by (9).

If the diffusion coefficients of the different ions inside and outside cells are
the same, then adding the pair of equations of each ion, we obtain diffusion
equations for the sum of each ion’s concentrations. In this case, this implies
that the sum of concentration evolve in time along the spatial domain as a
pure diffusive process, independently of the gating mechanism.

Equations (12) is the model for the study the time and spatial evolution of
ion concentrations and transmembrane potentials in tissues, single cells and
also neurones. Equations (12) have been derived from the first principles
of chemical kinetics. From the electrophysiology point of view, their results
should lead to effects similar to the ones found in the Hodgkin-Huxley model
for the propagation of action potentials in axons.
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4 The dynamics of ions

We consider the dynamics of the sodium, potassium and chlorine ions. To
simplify, we consider the propagation along a one dimensional array of cells.
Equations (12) also describe the propagation of an action potential along an
axon. For that, we assume that the axon of a neurone can be seen as an array
of cells connected through gap junctions, these gap junctions may correspond
to the Ranvier nodes, figure 3. In this case, the diffusion coefficients of ions
for the propagation in the cytoplasm or in the intercellular space should
have the same order of magnitude. So, we have assumed that Dy,, = Dyq,,
Dy, = Dk, and D¢y, = D¢y, As we have seen in the previous section, a non
homogenous distribution of ions inside and outside the cell will evolve to the
uniforme distribution.

extracellular space

FTNTNTN

Figure 3: Model of a neurone as an aggregate of cells connected by gap junc-
tions. The location of the gap junctions (“g”) may be seen as the localisation
of the Ranvier nodes of the axon. Ion channels and pumps are represented

by “c” and “p”, respectively.

To numerically analyse the solutions of the reaction-diffusion equations
(12), with zero flux boundary conditions, we used a calibrated and validated
algorithm for the numerical integration of reaction diffusion-equations, min-
imising numerical errors [9]. We have considered a one-dimensional spatial
regions of lengths L, divided into N intervals of length Az = L/N, with
N = 100. To minimize the numerical integration error, we made the choices
dt = Ax? /(6 max{D;}), where max{D;} is the maximum value of all the dif-
fusion coefficients in the model equations (12) (see [9] for details). The Gold-
man law (9) has been calibrated for "= 6.3 °C, with 7 = kT'/e = 24.08 mV,
and time is measured in milisecond.

To analyse numerically the solutions of the model equation (12) for sodium,
potassium and chlorine, we have considered a one dimensional domain of
length L = 10 cm, with zero flux boundary conditions, and, at time ¢t = 0,
a random initial distribution of the three ions were chosen, as shown in fig-
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ure 4. After some time, the concentrations of ions evolves to the uniform
distribution, as well as the membrane potential. For other choices of the
diffusion coefficients, the spatial distribution of ions becomes uniform.
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Figure 4: a)-c) Time evolution of the sodium, potassium and chlorine concen-
trations along a one dimensional domais of length L = 10 c¢m, calculated from
(12) and (11), with zero flux boundary conditions. We considered a spatial
discretisation divided into N = 100 intervals. We show the initial random
concentration of ions and their spatial distribution at time ¢t = 33.3 ms, in-
side (in) and outside (out) the cells in the one-dimensional array of cells. In
¢), the concentrations of chlorine inside and outside the cells have the same
distribution. The diffusion coefficients are Dy,, = Dk, = D¢, = 0.01 and
Dyo, = Dg, = D¢, = 0.01, and the other parameters are v = 24.08 mV,
Px = 1.0, Py, = 0.019, Pg; = 0.38, kg = 3/14, k11 = 4/19, k12 = 1.0,
ky = 1.0, E; = 1.0, gnva = qx = gor = 1 and R = 0. d) Spatial distribution
of the membrane potential along the spatial region, calculated from the last
equation in (12), at the indicated instants of time.

To analyse the effect of a localised injected current in the one-dimensional
array of cells, simulating the propagation of ion concentrations along the
one-dimension axon of length L, we have considered an external source of
current with parameters Ri(x,t) = —100 mV, for z € [L/2—2Ax, L/242Axz],
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Figure 5: Time evolution of the sodium (a), potassium (b) and chlorine (c)
concentrations along a one-dimensional domain of length L = 10 cm, calcu-
lated from (12) and (11), with zero flux boundary conditions and random
initial conditions. We depict the concentrations of ions inside (in) and out-
side (out) the cells in the tissue. In d), we show the time evolution of the
transmembrane potential. In this simulation, we have introduced an external
current in the central region of the spatial domain: Ri(x,t) = —100 mV, for
x € [L/2 —2Ax,L/2 + 2Ax], where Az = 1 mm. We show the initial ran-
dom concentration of ions and their spatial distribution at time ¢t = 33.3 ms.
The parameters of these simulations are: Dy, = Dk, = D¢, = 0.01 and
Dyo, = Dk, = Dey, = 0.01, v = 24.08 mV, ky, = 3/14, kx = 4/19, ka = 1.0,
E; =1.0 and qn, = qx = qc1 = 10.0.

superposed to a random initial distribution of ions. For a time ¢t > 30 ms, the
concentrations of sodium and potassium are numerically close to the steady
state. The results are depicted in figure 5. The injected current affects the
steady state distribution of ions along the one-dimensional domain only if
the parameters qnq, gk and q¢; are large enough. Comparing figure 5a) with
figure 5b), the injected current changed the spatial distribution of potassium,
but the spatial distribution of sodium is almost unchanged. This is expected,
due to the difference of permeabilities between sodium and potassium. On
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the other hand, comparing figure 4b) with figure 5b, the only difference
observed is on the steady state distribution of potassium. Action potential
signals are not observed as in the HH model, [6]. This implies that the model
introduced in this paper and the HH model, based essentially on the same
assumptions, both lead to different predictions.

5 Conclusions and final remarks

We have derived an electrophysiology kinetic model for the dynamics of ions
in cells and tissues, based on the NaK ATPase energy storage mechanism,
together with a voltage dependent gating mechanism. However, other pump-
ing mechanisms are also possible and the model can be straightforwardly
extended or adapted. One of the important properties of the model is the
straightforward calibration of the kinetic parameters with equilibrium Nernst
potentials and ion concentrations.

We have considered that cells in tissues may communicate with the sur-
rounding cells through gap junctions, and communicate with the extracellular
space through (open) channels and pumps made of transmembrane proteins.
The first conclusion derived from the one cell model is that the non-zero equi-
librium potential drop across cellular membranes is due to the simultaneous
existence of pumps and channels specialised for specific ions. Ions without
specialised transmembrane pumps do not contribute to the non-zero trans-
membrane potential. Moreover, if a cell has a NaK pumps and no channels,
at steady state, sodium ions would fully concentrate outside the cell, and
potassium ions would fully concentrate inside the cell.

The simple incorporation in the model of open channels for Cl™ ions,
shows that, to be consistent with the existence of an equilibrium non-zero
transmembrane C1™ potential ([19]), a chlorine specialised pump should exist.

In the model derivation, we have considered that, for each ion family,
there are two diffusion coefficients, one responsible for the extracellular ion
dispersion and other for the intracellular dispersion. With this assumption
an axons can be seen as the (evolutionary) result of the aggregation of cells
through gap junctions. These gap junctions may correspond to the Ranvier
nodes.

In a patch clump experiment, this model predicts that ion concentrations
reach a steady state. The parameter calibration for sodium and potassium
Nernst potentials show that current forcing of axons induce a change on the
potassium resting potential, and the transmembrane potential drop along
the axon also reaches a steady state.

Despite the similarities between the kinetic model of this paper and the
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HH model, based on the basic assumptions used in their derivations, they
show different predictions. The discrepancies may be due to different causes:
i) to an improper gating mechanism, which can be easily modified in the
model equations; ii) to the deficient calibration of diffusion coefficients or
gate parameters ¢; iii) to a new biochemical mechanism responsible for action
potential signalling. In fact, several authors have addressed the need of a
more detailed derivation to the HH electric analog model, [5] and [3], and a
precise calibration of the action potential effects, [16, 20, 7].
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