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Abstract

We describe a class of regular holonomic D-modules on complex sym-
metric matrices attached to the action of the general linear group.

1 Introduction

The theory of D-modules is a generalization of the classical theory of linear
algebraic differential equations of one variable (for instance the hypergeometric
differential equation or the Legendre differential equation seen as a Gauss-Manin
connection). It develops geometric aspects (monodromy, singularities) as well
as algebraic geometry. Moreover this theory is central for other domains of
mathematics: singularity theory, intersection cohomology and perversity, Lie
groups, rigid analytic geometry. Perhaps the first systematic use of D-modules
appeared in [22]. Since then there have appeared several articles by Kashiwara
and others. We should also mention the contribution of B. Malgrange. Last but
not least we mention the work of A. Beilinson and J. Bernstein regarding the
algebraic aspect of the theory. Among the D-modules we single out a class of
objects of utmost importance: holonomic D-modules with regular singularities.
One of the main problem in the D-modules theory consists in the classification of
these objects. Let us point out that several authors have taken an interest in it,
notably L. Boutet de Monvel [1], P. Deligne [4], R. MacPherson and K. Vilonen
[13] see also [3], [6], [14], [20], [23] etc. One knows by the Riemann-Hilbert cor-
respondence (see. [8]) that there is a general equivalence between the category
consisting of regular holonomic DV -modules with characteristic variety Σ and
the category consisting of perverse sheaves on V (where V denotes a complex
manifold) with microsupport Σ. This gives a classification of regular holonomic
D-modules theoretically, but in practice the classification of perverse sheaves
is not always much simpler. A more accessible problem is as follows: given a
complex manifold V on which a Lie group acts linearly with finitely many orbits
(Vj)j∈J ; the problem is to classify regular holonomic DV -modules whose char-
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acteristic variety is contained in the union of conormal bundles (Σ :=
⋃
j∈J

T ∗VjV )

to these orbits. Closely equivalent: those that admit a good filtration stable
by infinitesimal generators of the group. These modules form a full category
denoted ModrhΣ (D). Here are some examples of such modules:

Example 1 The DV -module OV is generated by an homogeneous section of
degree 0 namely e0 = 1V satisfying the following relations:

∑

1≤i≤j≤n

xij∂ije0 = 0 where xij = xji, ∂ij :=
∂

∂xij
, X = (xij) ∈ V , (1)

det

(
1

2
∂̃ij

)
e0 = 0, where ∂̃ii := 2∂ii and ∂̃ij := ∂ij for i �= j. (2)

Example 2 The DV -module B{0}|V (the Dirac mass supported by {0}) is gen-

erated by an homogeneous section e
−
(n+1)
2 n

of degree −n(n+1)2 satisfying the

equations:

∑

1≤i≤j≤n

xij∂ije−n(n+1)
2

= −
n (n+ 1)

2
e
−n(n+1)

2
and det (X) e

−n(n+1)
2

= 0. (3)

Example 3 The DV -module OV
(

1
det(X)

)
/OV is generated by an homogeneous

section e−n =
1

det(X) modOV of degree −n such that

∑

1≤i≤j≤n

xij∂ije−n = −ne−n and det (X) e−n = e0 = 1V . (4)

In this paper we consider the linear action of the general linear group GLn (C)
on the vector space V := S2 (Cn) of complex symmetric matrices. There are
(n+ 1) orbits Vk (0 ≤ k ≤ n): the set of rank k symmetric matrices in V . Note
that here there is a natural algebra associated to this situation: the (graded) al-
gebra A of (polynomial coefficients) differential operators acting on C [det (X)]
polynomials of the symmetric determinant, which is the quotient of the algebra
A of SLn (C)-invariant operators on V by the annihilator of C [det (X)] (see.
section 3).
The main result of this paper is the theorem 18 saying that there is an equiv-
alence of categories between the category ModrhΣ (D) consisting of regular holo-
nomic D-modules as above and the category Modgr(A) consisting of graded
A-modules of finite type for the Euler vector field on V . The algebra A is
described simply by generators and relations (see. Proposition 8) thanks to
Capelli identities given by R. Howe and T. Umeda (see. [7, p. 587, 11.2]).
This also leads to the description of the category Modgr(A) as an “elementary”
category consisting of “colored diagrams” of finite dimensional vector spaces
and linear maps between them satisfying certain relations (Quiver category) on
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which one can see what are the simple or indecomposable objects (see. section
6). Throught the paper we assume that the reader has some familiarity with the
language of D-modules. He may consult the very nice book [10] that provides
a good account of an introduction to the general theory of D-modules (see also
[2]). Finally we should note that in previous papers the author has obtained
similar results for D-modules on Cn associated to the action of the orthogonal
group (see. [16]), and on Mn (C) the space of complex square matrices related
to the action of GLn (C)×GLn (C) (see. [17], [18], [19]).

2 Coherent DV -modules and homogeneous sec-
tions

Let M be a DV -module and θ :=
∑

1≤i≤j≤n

xij∂ij the Euler vector field on the

space of complex symmetric matrices V := S2 (Cn).

Definition 4 We say that a section s inM is homogeneous if dimCC [θ] s <∞.
This section is said to be homogeneous of degree λ ∈ C, if there exists j ∈ N
such that (θ − λ)js = 0.

We recall the following Theorem useful in the sequel:

Theorem 5 ([16, Theorem 1.3.]) If M is a coherent DV -module with a good
filtration (FkM)k∈Z stable by θ. Then
i)M is generated over DV by finitely many global sections (sj)j=1,··· ,q ∈ Γ (V,M)

such that dimCC [θ] sj <∞,

ii) For any k ∈ N, λ ∈ C, the vector space Γ (V, FkM)
⋂

⋃

p∈N

ker (θ − λ)p


 of

homogeneous global sections of FkM of degree λ is finite dimensional.

We have the following definition:

Definition 6 The action of the group G (preserving the good filtration) on
a DV -module M is given by an isomorphism u : p+1 (M)

∼
−→ p+2 (M) where

p1 : G × V −→ V is the projection on V and p2 : G × V −→ V , (g,X) �−→
g ·X defines the action of G on V (satisfying the associativity conditions).

Denote by G̃C := SLn (C) × C the universal covering of G and G̃ := SLn (C).
LetM be an object in ModrhΛ (DV ). We have the following proposition:

Proposition 7 ([16, Proposition 1.6.])The infinitesimal action of G onM lifts

to an action of G̃C (resp. G̃) on M, compatible with the one of G on V and
DV .
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3 G̃-Invariant differential operators on S2 (Cn)

This section consists in the description of the C-algebra A := Γ (V,DV )
G̃of

(polynomial coefficients) differential operators on symmetric matrices V which
are invariant under the action of the special linear group G̃ := SLn (C). It is
shown in [7, p. 587, (11.2.5)] that the canonical generators of Γ (V,DV )

GLn(C)

the algebra of GLn (C)-invariant differential operators are the Capelli operators

Pk :=
∑

|I|=|J|=k

det (XIJ) det
(
D̃IJ

)
, 1 ≤ k ≤ n (5)

where both I, J are subsets of N of cardinality k and XIJ is the submatrix of
X obtained by eliminating the rows not in I and the columns not in J with
D̃IJ :=

1
2

(
∂̃ij

)
, ∂̃ii = 2∂ii and ∂̃ij := ∂ij for i �= j. These operators commute:

Γ(V,DV )
GLn(C) = C [P1, · · · , Pn] (see.[7, p. 588]). (6)

Then we obtain generators of A by adding symmetric determinants δ := det (X)

and ∆̃ := det
(
D̃
)

. Note that here the Euler vector field θ = P1 =
∑

1≤i≤j≤n

xij∂ij .

Denote by J ⊂ A the two sided ideal annihilating G̃-invariant polynomials C [δ].

Proposition 8 A is generated by δ, θ, P2, · · · , Pn−1, ∆̃ subject to the following
relations modulo J

[θ, δ] = nδ,
[
θ, ∆̃
]
= −n∆̃, (7)

[Pk, Pl] = 0 for k, l = 1, · · · , n, (8)

δ∆̃ =
n−1∏

j=0

(
θ

n
+
j

2

)
, (9)

∆̃δ =
n−1∏

j=0

(
θ

n
+
j + 2

2

)
, (10)

[
∆̃, δ
]

=

(
θ+

n (n+ 1)

4

) n−1∏

j=2

(
θ

n
+
j

2

)
, (11)

Pk = Cnk

k−1∏

j=0

(
θ

n
+
j

2

)
, (12)

[Pk, δ] = (kCnk ) δ
k−1∏

j=1

(
θ

n
+
j

2

)
, (13)

[
Pk, ∆̃

]
= −kCnk





k−1∏

j=1

(
θ

n
+
j

2

)
 ∆̃ (14)

4



Before starting the proof of Proposition 8 we should introduce the Bernstein-
Sato polynomial associated with the symmetric determinants (see. [5, p. 74
Theorem]):

det
(
D̃IJ

)
δα = α

(
α+

1

2

)
· · ·

(
α+

k − 1

2

)
δα−1; (15)

In particular for k = n (Pn = δ∆̃) we have the Cayley’s determinantal Theorem:

∆̃δα = α

(
α+

1

2

)
· · ·

(
α+

n− 1

2

)
δα−1. (16)

This gives rise to the following formula:

Pkδ
α = Cknα

(
α+

1

2

)
· · ·

(
α+

k − 1

2

)
δα. (17)

To compute invariants of differential operators on the space V , we very first
remark that they should correspond (using symbols of differential operators) to
invariants of V

⊕
V ∗.

Proof. of Proposition 8. Let us consider the non commutative C-
algebra B := C

〈
δ, θ, P2, · · · , Pn−1, ∆̃

〉
. To see that A = B we first show

grA = grB. Let V ∗ be the dual of V and (X, ξ) be matrices in V × V ∗. Put

Xt:=




t 0 · · · 0

0 1
...

...
...

. . . 0
0 0 · · · 1



∈ V and ξ[tj ]:=




1 0 0 · · · 0
0 t1 0 0
...

. . .
. . .

...
0 0 · · · tn−1 0
0 0 · · · 0 tn



∈ V ∗.

The invariant polynomials pk
(
Xt, ξ[tj ]

)
are exactly the elementary symmetric

polynomials sk (tj) :=
∑

i1<···<ik

ti1 · · · tik for 1 ≤ k ≤ n. Let f = f (X, ξ) be a

polynomial in (X, ξ), there exists a polynomial q such that

f
(
Xt, ξ[tj ]

)
= q (t, t1, t2, · · · , tn) (18)

is a polynomial in variables t, t1, · · · , tn. As the variables tj remain in the same

orbit if they are permuted, we can see that if f is invariant then f
(
Xt, ξ[tj ]

)
is

a polynomial of t and the sk (tj), 1 ≤ k ≤ n i.e.

f
(
Xt, ξ[tj ]

)
= q̃ (t, s1 (tj) , · · · ,sn (tj)) . (19)
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Then the difference

f (X, ξ)− q̃ (det (X) , p1, p2, · · · , pn)

is a polynomial in (X, ξ) vanishing on the set ((n+ 1)-affine space) of
(
Xt, ξ[tj ]

)
.

Denote R :=
⊔
t,tj

G̃ ·
(
Xt, ξ[tj ]

)
the union of orbits of points

(
Xt, ξ[tj ]

)
in one

of affine spaces of V × V ∗. Assume f is invariant, then f − p is invariant and
vanishes on R. Since the union R is open in V × V ∗, then f − p vanishes
everywhere.

Thus grA = grB. (20)

Now, if Q is an invariant operator of degree m ≥ 0 (Q ∈ A), its symbol σ (Q)
is also invariant and according to (20) there is a polynomial g such that

σ (Q) (X, ξ) = g (det (X) , p1, · · · , pn−1,det (ξ)) . (21)

Then Q can be written as the sum of an operator T ∈ B (a polynomial in the
Pk’s, δ,∆̃) and R ∈ A an invariant operator of degree at most m− 1:

Q = T
(
δ, θ, P2, · · · , Pn−1, ∆̃

)
+R, with R ∈ A, deg (R) ≤ m− 1. (22)

By recurrence on the degree of the operator we see that Q is a polynomial in
the Pk’s, δ, ∆̃ that is Q ∈ B. Therefore

A = B. (23)

The remaining part is devoted to the proof of the relations (7),· · · ,(14). The
formulas (7) are obvious since the symmetric determinant is an homogeneous
polynomial of degree n. (8) holds since the Pk’s commute (see. (6)). One
obtains (9) and (10) (resp.(12)) using the Cayley formula (16) (resp. (17)).
Then (13), (14) follows from (12).

.
Denote by J ⊂ A the ideal generated by the relations (7), (9), (10). Put

A := A/J the quotient algebra of A by J . We have the following corollary:

Corollary 9 The quotient algebra A is generated by δ, θ, ∆̃ subject to the rela-
tions (7), (9), (10):

[θ, δ] = nδ,
[
θ, ∆̃
]
= −n∆̃,

δ∆̃ =
n−1∏

j=0

(
θ

n
+
j

2

)
,

∆̃δ =
n−1∏

j=0

(
θ

n
+
j + 2

2

)
.
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Proof. Let Q be in A, we decompose it into homogeneous components
(Q =

∑
j∈Z

Qj) Qj of degree jn (i.e. [θ,Qj ] = jnQj) so that if j = 0 then

Q0 = ϕ (θ) is a polynomial in θ. Indeed, Q0 acts on C [δ] then Q0 ∈ C
[
δ, ∂
∂(δ)

]

with δ ∂
∂(δ) =

1
n
θ. If j > 0 then ∆̃jQj = ψ (θ) is a polynomial in θ because

∆̃jQj is homogeneous of degree 0. Likewise if j < 0 then δ−jQj = φ (θ) is a
polynomial in θ. Thus for any Qj homogeneous of degree jn, its class modulo
J is of the form

Qj modJ =

{
δjφj (θ) if j ≥ 0
∆̃−jψj (θ) if j ≤ 0

(24)

where φj (θ), ψj (θ) are (polynomials) homogeneous of degree 0.

4 Holonomic DV -modules and G̃-invariant sec-
tions

In this section we prove that any regular holonomic DV -module whose charac-
teristic variety is contained in Λ is generated by finitely many global sections
which are invariant under the action of G̃. This result is at the heart of the
proof of the main theorem 18 established in the nex section.

Theorem 10 Let M be an object in the category ModrhΛ (DV ). Then M is

generated by finitely many G̃-invariant global sections.

For the proof, first we use the fact that such DV -modules are essentially
inverse images by the (symmetric) determinant map of D-modules over C. Next
we introduce some quotientDV -modules with support on the closure of G̃-orbits.

4.1 Inverse image of DC-modules

Denote by V k := {X ∈ V, rank (X) ≤ k} the set of symmetric matrices of rank
at most k. LetM be a DV -module in ModrhΛ (DV ). Here we take the restriction
ofM to a section of the projection defined by the determinant map δ : V −→ C,
X �−→ det (X). Then we can consider M as an inverse image by δ of a DC-
module N outside the hypersurface V n−1 := {X ∈ V / δ (X) = 0}. Recall that
the determinant map δ is submersive out of V n−2. Let i : C −→V , t �−→ Xt

with

Xt:=




t 0 · · · 0

0 1
...

...
...

. . . 0
0 0 · · · 1




,

be a section of the map δ. Denote by Z := i (C) its image.
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Lemma 11 Z is non characteristic for M i.e. T ∗ZV
⋂

Ch(M) ⊂ T ∗V V .

Proof. The line Z intersects the orbits Vn−1. So we prove that T ∗ZV⋂
T ∗Vn−1V is contained in the zero section T ∗V V . It suffices to check at the

point X0 (t = 0) which is the only point of the line Z above which the charac-
teristic variety Ch(M) has a non zero covector ξ0 �= 0. Note that this covector
ξ0 is parallel to dδ(the conormal bundle to determinantal variety) and on the
line Z we have dδ = dt �= 0, that is, ξ0 /∈ T

∗
ZV .

.
We should note thatM is canonically isomorphic to δ+i+ (M) in the neigh-

borhood of the line Z since Z is non characteristic forM (see. Lemma 11). The
sheaf HomDV

(
M, δ+i+M

)
is constructible (see.[10]) and also locally constant

on the fibers δ−1 (t), t ∈ C. As the group G̃ acts on the DV -modules M and
δ+i+M, it acts also on the sheaf HomDV

(
M, δ+i+M

)
and because of the ac-

tion of G̃ the strata are the (n+ 1) orbits of G̃ that is V0, V1, V2, · · · , Vn (see.
[12]). The sheaf HomDV

(
M, δ+i+M

)
has a canonical section u defined in the

neighborhood of Z (corresponding with the isomorphismM|Z
∼
−→ δ+i+ (M)|Z

which induces the identity on Z). We have the following proposition:

Proposition 12 The canonical isomorphism u :M|Z
∼
−→ δ+i+ (M)|Z , defined

in the neighborhood of Z such that i+.u = Id|Z, extends to V \V n−2.

Proof. The section u : M|Z
∼
−→ δ+i+ (M)|Z is defined out of V n−2 (the

singular part of the hypersurface V n−1 := δ−1 (0)). We take a closer look at
the orbits Vn = V \δ−1 (0) and Vn−1 = δ−1 (0) \V n−2. These orbits are simply
connected (see. [15]) and their fundamental group π1 (Vn) (resp. π1 (Vn−1)) acts
on the sheaf HomDV

(
M, δ+i+M

)
. This sheaf is trivial on Vn =

⋃

t�=0

δ−1 (t) and

on Vn−1 = δ−1 (0) \V n−2. Then u : M|Z
∼
−→ δ+i+ (M)|Z extends globally to

the union Vn ∪ Vn−1 = V \V n−2.

Note that the isomorphism of Proposition 12 holds out of V n−1:

M|V \V n−1
≃ δ+i+ (M)|V \V n−1

. (25)

To extends this isomorphism of DV -modules we need to study their associated
DV -modules of meromorphic sections with poles in the hypersurface V n−1 as
follows.

4.1.1 Meromorphic DV -modules

Denote byM := Γ[V |V n−1] (M) = lim−→
m

HomOV
(Im,M) (where I is the defining

ideal of V n−1) the algebraic module of meromorphic sections ofM with pole in
the hypersurface V n−1. We have a canonical homomorphism M−→M.
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Proposition 13 Let N be an holonomic DC-module with regular singularity at
t = 0. Assume that the operator of multiplication by t is invertible on N then

i) the operator of multiplication by δ is invertible on the inverse image δ+ (N ),
in particular

ii) the canonical homomorphism

δ+ (N )
∼
−→ δ+ (N ) (26)

is an isomorphism that is the meromorphic sections defined in V \V n−1 extend
to the whole V .

Proof. (i) follows from [11, Remark 1.1. p. 165] and [11, Lemma 1.2, p.166].
Next, recall [10] that we have an exact sequence 0→ Γ[V n−1] (M)→M→M

where Γ[V n−1] (M) = lim−→
m

HomOV
(OV /Im,M) is the subsheaf ofM of sections

annihilated by some power of I. Since δ gives a bijection on δ+ (N ), [11, Remark
1.1., p.165 ] asserts thatHk

[V n−1]

(
δ+ (N )

)
= 0 for any k. Then from the previous

exact sequence, we get δ+ (N ) ≃ δ+ (N ).

4.1.2 Extension of the isomorphism of DV -modules

From now on, we denote by N := i+M the restriction of the DV -moduleM to
the transversal line Z. According to an argument of Kashiwara, since M and
δ+N are regular holonomic and isomorphic out of V n−1 (see. (25)), then their
corresponding meromorphic modules are also isomorphic that is

M≃ δ+N . (27)

Consider the left exact functor

M−→M
(
≃ δ+N

)
. (28)

By using the basic fact that δ+N ≃ δ+N (see. relation (26) of Proposition 13)
and the morphism (28), we deduce that there exists a morphism

v :M−→ δ+N (29)

which is an isomorphism out of the hypersurface V n−1(see. relation (25)).

Lemma 14 The image v (M) ⊂ δ+N is a DV -module generated by its G̃-
invariant homogeneous global sections.
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4.2 Holonomic DV -modules with support on the G̃-orbits

Here we introduce some subquotient modules of δ+
(
OC
(
1
t

))
which will be used

in the proof of Theorem 10 above.
Denote by L := δ+

(
OC
(
1
t

))
= OV

(
1
δ

)
the DV -module generated by its G̃-

invariant homogeneous sections em := δ
m (wherem ≤ 0) satisfying the following

equations obtained from (16), (17)(0 ≤ k ≤ n)

δem = em+1, (30)

∆̃em = m

(
m+

1

2

)
· · ·

(
m+

n− 1

2

)
em−1, (31)

Pkem = Cnkm

(
m+

1

2

)
· · ·

(
m+

k − 1

2

)
em, (32)

Let Lm ⊂ L be submodules generated by e−m (m = 0, 1, · · · , n) in OV
(
1
δ

)
:

L0 := OV ⊂ L1 := DV δ
−1 ⊂ · · · ⊂ Ln := DV δ

−n. (33)

We consider the quotient modules of OV
(
1
δ

)
by the Ln−m−1 for m = 0, · · · , n,

Qm := OV

(
1

δ

)
/Ln−m−1 = OV

(
1

δ

)
/DV δ

−(n−m−1). (34)

Put ẽk := e−(n−k)modPn−m−1for k = 0, · · · ,m. Then the Qm are generated
by the family (ẽk)0≤k≤m of invariant homogeneous sections of degree −n (n− k)
satisfying the following equations obtained thanks to the relations (30), (32),
(31):

θẽk = −n (n− k) ẽk, 0 ≤ k ≤ m, (35)

δẽm = 0, (36)

det (XIJ) ẽm = 0, |I| = |J | = m+ 1, (37)

det
(
D̃IJ

)
ẽm = 0, |I| = |J | = m. (38)

Proposition 15
(i) The Qm := O

(
1
δ

)
/Pn−m−1 are DV -modules with support on V m.

(ii) Any section s ∈ Γ
(
V \Vm−1,Qm

)
of the DV -module Qm in the complemen-

tary of V m−1 extends to the whole V (m = 1, · · · , n− 1).

Proof. (ii) we should note that variety V m is smooth out of V m−1 and
normal along Vm−1 for m = 1, · · · , n−1. Next, the DV -module Qm is the union
of modules OV ẽk (0 ≤ k ≤m) such that the associated graded modules gr(Qm)
is the sum of modules OT∗

Vm
V ẽk (0 ≤ k ≤ m). In this case the property of

extension here is true for functions because V m is normal along V m−1.

.
We are now ready to prove the Theorem10.
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4.3 Proof of Theorem 10

Let us recall that the Qm := OV
(
1
δ

)
/DV δ

−n+m+1 are subquotient modules
generated by (ẽk)0≤k≤m and supported by Vm, m = 0, · · · , n (see. Proposition
15, (i)) .
We denote by M̃ ⊂ M the submodule generated over DV by G̃-invariant ho-

mogeneous global sections (i.e. M̃ := DV
{
u ∈ Γ (V,M)

G̃
,dimCC [θ]u <∞

}
).

We will see successively that the quotient module M�M̃ is supported by V m
(0 ≤ m ≤ n− 1), and the monodromy is trivial since Vm\V m−1 is simply con-
nected.
To begin with,M/M̃ is supported by V n−1: indeedM is isomorphic in V \V n−1
to a DV -module δ+ (N ) (see. relation (25) and Proposition 12). We may assume
that the operator of multiplication by t is invertible on N such that there exists
a morphism v :M−→ δ+ (N ) which is an isomorphism out of V n−1 (see. (29)
and (25)). The image v (M) is a submodule of δ+ (N ) so it is generated by its
G̃-invariant homogeneous global sections (see. Lemma 14). If s is a G̃-invariant
homogeneous global section of a quotient of M then s lifts to an invariant ho-

mogeneous global section s̃ of M (s̃ ∈ Γ (V,M)G̃, dimCC [θ] s̃ < ∞). This
means that M/M̃ is supported by V n−1. Next, if M is supported by V n−1,
it is isomorphic out of V n−2 to a direct sum of copies of Qn−1, then there is
a morphism M −→ QNn−1 whose sections extend (see. Proposition 15, (ii))
such that M/M̃ is supported by V n−2 because the submodules of Qn−1 are
also generated by their invariant homogeneous sections. In the same way by
induction on m, if M is with support on V m (0 ≤ m ≤ n− 2) then there is a
morphism M−→ QNm which is an isomorphism out of V m−1, such that M/M̃
is with support on V m−1 because the submodules of Qm are also generated by
their invariant homogeneous sections. Finally, if M is supported by V0 (the
Dirac module with support at the origin) then the result is obvious.

5 Main result

This section deals with the main theorem 18. Let W be the Weyl algebra on V

and A := Γ (V,DV )
G̃ ⊂ W the subalgebra of G̃-invariant differential operators.

We denoted A its quotient by J i.e. A := A/J where J is the ideal generated
by the relations (7), (9), (10) of Proposition 8. Then, we know from Corollary
9 that A is generated by the operators δ, θ, ∆̃ such that

[θ, δ] = nδ,
[
θ, ∆̃
]
= −n∆̃,

δ∆̃ =
n−1∏

j=0

(
θ

n
+
j

2

)
,

∆̃δ =
n−1∏

j=0

(
θ

n
+
j + 2

2

)
.

11



Denote by Modgr(A) the category consisting of graded A-modules T of finite
type such that dimCC [θ]u <∞ for ∀u ∈ T . In other words, T =

⊕

λ∈C

Tλ is a di-

rect sum of C-vector spaces (Tλ :=
⋃

p∈N

ker (θ − λ)p is finite dimensional) equipped

with three endomorphisms δ, ∆̃, θ of degree n, −n, 0, respectively and satisfying
the above relations, with (θ− λ) being a nilpotent operator on each Tλ.
Recall ModrhΛ (DV ) stands for the category whose objects are regular holonomic
DV -modules whose characteristic variety is contained in Λ.
IfM is an object in the category ModrhΛ (DV ), denote by Ψ(M) the submodule
of Γ (V,M) consisting of G̃-invariant homogeneous global sections u ofM such
that dimCC [θ]u <∞. Recall that (see. Theorem 5)

Ψ(M)λ := [Ψ (M)]
⋂

⋃

p∈N

ker (θ − λ)p




is the C-vector space of homogeneous global sections of degree λ of Ψ(M) and
Ψ(M) =

⊕

λ∈C

Ψ(M)λ. Then Ψ(M) is an object in the category Modgr(A). In-

deed, let (s1, · · · , sk) be a finite family of invariant homogeneous global sections
generating the DV -module M (see. Theorem 10), we can see that the family

(s1, · · · , sk) generates also Ψ(M) as a A-module: In fact, if s =
k∑
j=1

pj (X,D) sj

is an invariant section of M (pj ∈ Γ (V,DV )), denote by p̃j the average of pj
over SUn (C) × SUn (C) (compact maximal subgroup of G̃), then p̃j ∈ A. Let

fj = fj
(
δ, ∆̃, θ

)
be the class of p̃j modulo J that is fj ∈ A, then we also have

s =
k∑
j=1

p̃jsj =
k∑
j=1

fjsj .

Conversely, if T is an object in the category Modgr(A), one associates to it
the DV -module

Φ(T ) :=M0

⊗

A

T (39)

whereM0 :=W/J is a (W,A)-module. Then Φ(T ) is an object in the category
ModrhΛ (DV ).
Thus, we have defined two functors

Ψ : ModrhΛ (DV ) −→Modgr(A), Φ : Modgr(A) −→ModrhΛ (DV ). (40)

Now let us prove the two following lemmas:

Lemma 16 The canonical morphism

T −→ Ψ(Φ (T )), t �−→ 1⊗ t (41)

is an isomorphism, and defines an isomorphism of functors IdModgr(A) −→ Ψ◦Φ.

12



Proof. As above M0 := W/J . Denote by ε (the class of 1W modulo J )
the canonical generator of M0. Let h ∈ W, denote by h̃ ∈ A its average on
SUn (C)× SUn (C) and by ϕ the class modulo J that is ϕ ∈ A. Since ε is G̃-
invariant, we get h̃ε = h̃ε = εϕ. Moreover, we have h̃ϕ = 0 if and only if h̃ ∈ J ,
in other words ϕ = 0. Therefore the average operator (over SUn (C)×SUn (C))
W −→ A, h �−→ h̃ induces a surjective morphism of A-modules v :M0 −→ A.
More generally, for any A-module T in the category Modgr(A) the morphism
v ⊗ 1T is a surjective map

vT :M0

⊗

A

T −→ A
⊗

A

T = T (42)

which is the left inverse of the morphism

uT : T −→M0

⊗

A

T , t �−→ ε⊗ t (43)

that is (v ⊗ 1T ) ◦ (ε⊗ 1T ) = v (ε) = 1T . This means that the morphism uT
is injective. Next, the image of uT is exactly the set of invariant sections of

M0

⊗

A

T = Φ(T ) that is Ψ(Φ(T )): indeed if s =
p∑
i=1

hi ⊗ ti is an invariant

section inM0

⊗

A

T , we may replace each hi by its average h̃i ∈ A, then we get

s =

p∑

i=1

h̃i ⊗ ti = ε⊗

p∑

i=1

h̃iti ∈ ε⊗ T (44)

that is
p∑
i=1

h̃iti ∈ T . Therefore the morphism uT is an isomorphism from T to

Ψ(Φ (T )) and defines an isomorphism of functors.

Lemma 17 The canonical morphism

w : Φ (Ψ (M)) −→M. (45)

is an isomorphism and defines an isomorphism of functors Φ◦Ψ −→ IdModrhΛ (DV ).

Proof. As in the Theorem 10 the DV -module M is generated by a finite
family of invariant homogeneous global sections (si)i=1,··· ,k ∈ Ψ(M) so that
the morphism w is surjective. Now denote by Q the kernel of the morphism
w : Φ (Ψ (M)) −→ M. The DV -module Q is also generated by its invariant
homogeneous global sections that is by Ψ(Q). Then we get

Ψ(Q) ⊂ Ψ [Φ(Ψ(M))] = Ψ (M) (46)

where we used Ψ ◦ Φ = IdModgr(A) (see. the previous Lemma 16). Since the
morphism Ψ(M) −→M is injective (Ψ(M) ⊂ Γ (V, M)), we obtainΨ(Q) = 0.

13



Therefore Q = 0 (because Ψ(Q) generates Q) and the morphism w is injective.

Finally, we close this section by stating the following main result which is es-
tablished by means of the previous lemmas:

Theorem 18 The functors Φ and Ψ induce equivalence of categories

ModrhΛ (DV )
∼
−→Modgr(A). (47)

6 Colored diagrams associated with A-modules

In the category Modgr (A), objects are classified by finite colored diagrams of
C-linear maps. Actually a graded A-module T in Modgr(A) defines an infinite
diagram consisting of finite dimensional vector spaces Tλ (with (θ− λ) being a
nilpotent operator on each Tλ, λ ∈ C) and linear maps between them deduced
from the linear action of δ, ∆̃, θ:

· · ·⇄ Tλ
δ

⇄

∆̃

Tλ+n ⇄ · · · (48)

satisfying the relations (θ − λ)Tλ ⊂ Tλ,

δ∆̃ =
θ

n

(
θ

n
+
1

2

)
· · ·

(
θ

n
+
n− 1

2

)
on Tλ, (49)

∆̃δ =

(
θ

n
+ 1

)(
θ

n
+
3

2

)
· · ·

(
θ

n
+
n+ 1

2

)
on Tλ. (50)

Such a diagram is completely determined by a finite subset of objects and arrows.
.

Ideed we have:
.

A) If λ /∈ nZ, λ /∈ nZ+n
2 then the linear maps δ and ∆̃ are bijective:

T−λ ≃ Tλ+n. (51)

Therefore T is completely determined by one element Tλ equipped with the
nilpotent action of (θ− λ).

.
The remain part of the study is done in two parts according as n is even or odd.
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B) If n is odd, we distinguishe two cases:
.

B.1 For λ ∈ nZ. Then T is determined by degrees in −n(n+1)2 ≤ λ ≤ 0 that is
a diagram of n+3

2 elements

T
−n(n+1)

2

δ

⇄

∆̃

· · · ⇄ T−n
δ

⇄

∆̃

T0. (52)

In the other degrees δ or ∆̃ are bijective. Indeed, we have T0 ≃ δ
kT0 ≃ Tnk and

T
−n(n+1)

2
≃ ∆̃kT

−n(n+1)
2
≃ T

−n(n+1)
2 − nk

(k ∈ N) thanks to the relations (49),

(50). The operator δ∆̃ (resp. ∆̃δ) on Tλ has only one eigenvalue λ
n
(λ
n
+ 1

2)(
λ
n
+

1) · · ·
(
λ
n
+ n−1

2

)
(resp. (λ

n
+1)(λ

n
+ 3

2 ) · · ·
(
λ
n
+ n+1

2

)
) so that the equation (49)

(resp.(50)) has a unique solution θ of eigenvalue λ if λ is not a critical value.
Here λ = 0, −n2 , −n, · · · ,−

n2

2 ,−
n(n+1)

2 thus it is always the case.
.
.

B2. For λ ∈ nZ−n2 . Then T is determined by degrees in −n
2

2 ≤ λ ≤
−n
2 that is

a diagram of n elements
.

T
−n2

2

δ

⇄

∆̃

· · · ⇄ T− 3n
2

δ

⇄

∆̃

T−n
2

. (53)

In the other degrees δ, ∆̃ are bijective.
.
.

C) If n is even , we distinguishe two cases:
.

C.1 For λ ∈ nZ. Then T is determined by degrees in −n
2

2 ≤ λ ≤ 0 that is a
diagram of

(
n
2 + 1

)

T
−n2

2

δ

⇄

∆̃

· · · ⇄ T−n
δ

⇄

∆̃

T0. (54)

In the other degrees δ, ∆̃ are bijective.
.
.

C.2. For λ ∈ nZ−n2 . Then T is determined by degrees in −n(n+1)2 ≤ λ ≤ −n
2

thats is a diagram of (n+ 1) elements

T
−n(n+1)

2

δ

⇄

∆̃

· · · ⇄ T− 3n
2

δ

⇄

∆̃

T−n
2

. (55)

.
In the other degrees δ, ∆̃ are bijective..
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6.1 Some examples of irreducible diagrams

The following examples are provided to illustrate the theoretical results:

Example 19 The irreducible DV -module OV is generated by e0 := 1V an homo-
geneous section of degree 0 such that θe0 = 0 and ∆̃e0 = 0. Then its associated
graded A-module has a basis (eq) where q = nk (k ∈ N) such that ∆̃e0 = 0 and
satisfying the system:

S0 =





θeq = qeq (q = nk, k ∈ N)
δeq = eq+n,

∆̃eq =
n−1∏
j=0

(
q
n
+ j+2

2

)
eq−n

. (56)

Since ∆̃e0 = 0 (i.e ∆̃T0 = 0), the arrows on the left of T0 in the diagram vanish
that is

0← T0
δ

⇄

∆̃

Tn ⇄ · · · (57)

Example 20 The irreducible DV -module B{0}|V is generated by e
−n(n+1)

2
an

homogeneous section of degree −n(n+1)2 such that θe
−n(n+1)

2
= −n(n+1)2 e

−n(n+1)
2

and δe
−n(n+1)

2
= 0. Its associated A-module is obtained by Fourier transform

of that of OV . So its basis is (eq) where q = −n(n+1)2 − nk (k ∈ N) such that
δe
−n(n+1)

2
= 0 satisfying the system:

S1 =





θeq = qeq (q = −n(n+1)2 − nk, k ∈ N)

∆̃eq = eq−n,

δeq =
n−1∏
j=0

(
q
n
+ j

2

)
eq+n

(58)

Since δe
−n(n+1)

2
= 0 (i.e T

−n(n+1)
2

= 0), the arrows at the right of T
−n(n+1)

2
in

the diagram vanish that is

· · ·⇄ T
−n(n+3)

2

δ

⇄

∆̃

T
−n(n+1)

2
→ 0 (59)

Example 21 The irreducible DV -modules

Lk := Ln−k/Ln−k−1 := DV δ
−(n−k)/DV δ

−(n−k−1) (60)

are supported by the closure of the obits Xk for k = 0, · · · , n. Their correspond-
ing diagrams are determined by only one element T−n(n−k) with the nilpotent
action of (θ + n (n− k)).
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