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We study topological A-type string on an arbitrary two dimensional target space. Using the
Virasoro constraints, proven by A. Okounkov and R. Pandharipande, we find an explicit
formula for the partition function. The target space field theory reproducing this partition
function is proposed. This field theory has infinite set of deformations which are overlooked
by the standard definition of the topological string. We also discuss the relations to the
multi-trace deformations of gauge theories, and make contact with quantum integrable
systems. In addition, the target space theory can be in turn coupled to gravity, thereby

realizing the topological string version of M. Green’s “worldsheets for worldsheets” idea.
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L.

Topological strings are a continuous source of inspiration for gauge and string theo-
rists. They can be studied on their own, for the purely mathematical reasons. Sometimes
the amplitudes of the topological string can be viewed as the subset of the “physical”
superstrings. The topological strings produce exact all-loop results [1], from which one
hopes to gain some intuition about the quantum theory of gravity, perhaps even at the
non-perturbative level. For example, the topological strings give a realization of the quan-
tum space foam picture [2]. The topological strings of A and B type play a crucial réle in
describing the compactifications of II string theories on Calabi-Yau manifolds, which gives
rise to the NV = 2 theories in four dimension. The partition function Z(t) of a topological
string, of A or B type, depends on a some set of couplings ¢, which correspond to the
cohomology of the target space of string theory, valued in some sheaf. For example, for
the B model on a Calabi-Yau manifold X of complex dimension d, the coupling constants
t belong to .

Hp(X)= @ H(X,A"Tx) =~ H"**(X)
P,q=0

while for A model the couplings are valued in
d
Ha(X) = @ HP(X,A\T3) ~ H*(X)
p,q=0

In addition, every operator O, describing these couplings, comes with the so-called gravi-
tational descendents o1 (O), k = 0,1,2,.... Thus the full set of couplings of the topological

string is an infinite dimensional space
Ha,p(X) ® C[[2]]

where we using a formal variable z to label the gravitational descendents:
01 (0) = O ® 2F

In the case d = 3 the gravitational descendents decouple for k > 0, except for the dilaton
o1(1), which corresponds to the string coupling constant 4. The (disconnected) partition

function of the topological string

Zx(t;h) = exp Y BHTAF(L)

g=0
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where t € Hy p(X), is a generating function of genus g topological string diagrams. For
the B model these diagrams can be identified with Feynman diagrams of a certain quan-
tum field theory on X, the so-called Kodaira-Spencer theory [1]. For the A model the
analogous theory, the so-called theory of Kéhler gravity [3] is expected to be non-local and
is constructed only in the large volume limit where the non-local effects are exponentially
suppressed.

In this note we shall construct the Kéahler gravity theory for the two dimensional
X and will find that it is a local theory of an infinite number of fields. The proofs and

derivations will appear in a companion paper [4].
Duality CY wvs. R*: topological string —— supersymmetric gauge theory.

A topic which keeps attracting attention of many researchers in the field, is the duality
between the topological strings on local Calabi-Yau manifolds and the chiral sector in the
four dimensional N'= 2 and A/ = 1 supersymmetric gauge theories. The simplest example
of that duality is the geometrical engineering of [5]. One starts with an ADE singularity,
i.e. a quotient C2?/I'g, fibered over a CP' so that the total space is a (singular) Calabi-
Yau manifold. By resolving the singularities one obtains a smooth non-compact Calabi-
Yau manifold Xg. If one views the ITA string on Xg x R'3 as a large volume limit
of a compactification on a Calabi-Yau manifold with the locus of ADE singularities over
an isolated rational curve, then the effective four dimensional theory will decouple from
gravity. Moreover one can be model the effective theory on the four dimensional N = 2
theory with the MacKay dual ADE gauge group G, where the resolution of singularities of
X corresponds to fixing a particular vacuum expectation value of the adjoint scalar. Then
the prepotential of the low-energy effective theory is given by the genus zero prepotential
of the type A topological string on X (more precisely, it is the prepotential of the five-
dimensional gauge theory compactified on a circle which arises in this way [6][7], in order
to see the four dimensional prepotential one has to go to a certain scaling limit in the CY

moduli space [5]).
Duality 3 vs. R*: topological string —— supersymmetric gauge theory.

Another remarkable duality between the chiral sector of the four dimensional N' = 2
theories and the topological strings on the two dimensional manifolds was discovered in

[8] and further studied in [9]. It is based on the comparison of the instanton calculus in
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the four dimensional gauge theory [10] and the Gromov-Witten/Hurwitz correspondence
of [11]. The physics of that correspondence involves the theory on a fivebrane wrapped on
a Riemann surface. One can actually stretch the duality beyond the realm of the physical
superstrings and conjecture a powerful S-duality at the level of the topological strings only
[12], leading to the concept of the topological string version of M-theory, or Z-theory [13]
[14].

The duality of [8](see also a paper on the mathematically related subject [15] and
recent works on the duality with A/ = 1 four dimensional theories [16]) identified the
disconnected partition function of the topological string on CP! in the background with
the arbitrary topological descendents of the Kahler form oy (w) turned on. The couplings

t¥ (up to a k-dependent factor) are identified with the couplings of the operators
/ d*y tr @F 2

in the N' = 2 gauge theory:

— tLI: — t‘f; / 4 4 k+2
= — d*zd*d tr & 1.1
2 L7 o B Y

where in the left hand side we write the worldsheet couplings. In this paper we shall deepen

the duality discovered in the original paper [8].
Duality ¥ vs.X: topological string —— two dimensional gauge theory.

About fifteen years ago D. Gross has proposed to attack the problem of finding the large
N gauge theory description in terms of some kind of string theory via the analysis of
the two dimensional gauge theories. By carefully analyzing the 't Hooft limit of the two
dimensional Yang-Mills theory on a Riemann surface ¥ D. Gross and W. Taylor have
identified many features of the corresponding string theory, while [17] have proposed a
new kind of topological string theory. An important aspect of the construction of [17] was
the realization of the fact that the topological Yang-Mills theory (which is the perturbative
limit of the physical Yang-Mills theory) can be described by the Hurwitz theory. The latter
counts ramified coverings of a Riemann surface . In this paper we shall find a different
version of the string field theory, the one corresponding to the A type topological strings

on a Riemann surface . It will turn out to be a kind of an infinite N gauge theory,
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but most likely not the ordinary 't Hooft large N limit of the gauge group with the finite
dimensional gauge group like SU(N) or SO(N).

Worldsheets for worldsheets.

In [18] M. Green has proposed to study the two dimensional string backgrounds as the
theories of worldsheets for yet another string theories. With the advent of the string
dualities a few interesting examples of this construction were invented. For example, M-
theory fivebrane wrapped on K3 becomes a heterotic string on T3. This is not exactly
a realization of the [18] idea as we are using the localized soliton to generate the string.
One could try to study the CY4 or Spin(7) compactifications of the Type II string [19].
but this is difficult due to the lack of the detailed knowledge of the moduli spaces of these
manifolds. In this paper we shall approach this problem in the context of the topological

string.



Very large phase space of the topological string.

The conventional formulation of the A model assigns to every cohomology class e, €
H*(X) of the target space X an infinite sequence of observables ox(e,), k = 0,1,2,....
The corresponding couplings ¢} parameterize the so-called large phase space. For k = 0
one gets the small phase space. Viewed from the worldsheet, the observable oy (ey) is the
k-th descendent of e,. However, if we think of these observables in terms of the target
space we should say that oy (e, ) is the dim(X) — deg(e, )-descendent of some local BRST

invariant observable O:
or(ea) ~ / e, N\ Oédim(X)_deg(ea)) (1.2)
X

The gravitational descendents of the top cohomology class of X therefore correspond to
the zero-observables (9,({:0) of the target space theory, and as such they are the simplest to
study. This is why we shall use as the starting point the so-called stationary sector of the
theory [11], where only the couplings of these observables are turned on. The observables
which are the hardest ones to study are the descendents of the puncture, i.e. unit operator.
These correspond to the dim(X)-observables constructed out of Oy and in the standard
paradigm of the topological field theory correspond to the deformations of the space-time
Lagrangian.

When the topological theory is a twisted version of the supersymmetric field theory,
these deformations correspond to the F-terms of the supersymmetric theory. In two dimen-
sions they are the superpotential deformations, in four dimensions they are the prepotential
deformations. Whatever is their interpretation, the target space theory has more observ-
ables. Indeed, the product of two local observables Oy and O; and higher order products
cannot be expressed, in general, as linear combinations of Q. In analogy with the gauge
theory which we shall make much more precise, the observables Oy, correspond to the single
trace operators, while the products Oy, Ok, ... Oy, , for p > 1, correspond to the multi-trace
operators. Thus the full space of deformations of the target space theory will involve cou-
plings Tg’”, where « label the cohomology of X, v label the gravitational descendents in
the sense of the topological gravity on X (in the problem studied in this paper, X is a two
dimensional manifold and v is a non-negative integer), and k = (k1 > ko > kg > ... > ky)
is a partition labelling the multi-trace operators. We call the space of all these couplings

the Very large phase space. We shall write an expression for the partition function of the
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topological string on the Very large phase space in genus zero (target space). The prob-
lem of finding the special coordinates on the Very large phase space, which is in a sense
equivalent to the problem of constructing the full quantum gravity dressed string theory
partition function, is beyond the scope of the present paper. Nevertheless the formulation
of the problem for the general target space X is more important then the possible solution
of the problem we can anticipate from the gauge theory analogy for X = ¥, a Riemann

surface.

The partition function Zx

In this paper we study the case where X is a Riemann surface of genus h. The partition
function Zx of the A-model on a Riemann surface X is a function of an infinite set of
couplings, t = (t) where o = 1,...,dimH*(X) = 2h + 2 and n € Z>o. We introduce
some additive basis e, of the cohomology of X, e, € H*(X,C). We have:

2 n
exp Z Zhg q° tal/M /\eV en.) lf‘ (1.3)

g,n;8= Ok:a i=1 q”(X’B)z 1

where we used the standard notations [20] for the moduli space M, (X, 3) of degree 3

genus g stable maps to X with n punctures, the evaluation maps:
evi s Myn(X, ) — X (1.4)

defined as:
€vy (C7$17"'7$n;¢) = QZS(QE,L) (15)

where (C,z1,...,x,; @) is the stable map with the n punctures z1,...,z,. Finally, in (1.3)
we have the first Chern classes of the tangent lines ¢; = ¢1(7,,C) at the i’th marked point.
Following [21] it is convenient to think of the partition function Zx as of the functional
on the space of positive loops valued in H*(X). Thus, let us introduce the H*(X)-valued

function:
2h+2

=1
t(z) =) 2" by = D tre, € H(X) (1.6)
n=0 a=1



of a formal variable z. In addition we introduce another function, related to t(z), the

Legendre transform of the antiderivative 971 (z — t(2)),

Fe(z) =2 z(z) - %ZQ(JU)-FICZ:O (k+1)!tkz (), (1.7)
where z(x) € H*(X) solves:
x=1z(z) —t(z(x)) (1.8)
and is given by the following formal power series in t;’s:
=1 e
z) =2+ —[t"(@)" Y = s+ t(@) +t(@) (@) + . (1.9)
=l

Note that even though x € C = H°(X), z(z) € H*(X) is an inhomogeneous cohomology
class.

We shall present our results in two forms: the mathematical and the physical. The
mathematical formula is explicit but is not fully transparent. The physical formula is
conceptually more appealing but it requires some preparations so we shall present it after-

wards.



The mathematical formula

represents Zx (t) as a sum over partitions A (the basic notions of the theory of partitions
are recalled in the main body of the paper). Given a partition A = ()\;);>1, let fi(z)
denote its profile:

) = |z|+
Z|:c—h()\i—i+1)| —|z—h\i—i)| +|lz—h(=i)| —|z—h(—i+1)]

(1.10)

Sa(t) = ;h/ dz fi( >/XFt<x>+
df()/()At() (1.11)

// dzidzy f3 (1) fY (z )/ e(X) - Gz, x2)
R2
where e(X) = ¢1(TX) is the Euler class of X,

X(X) = [ e(x)=2-2n.

and the functions Ay and Gy are the particular solutions to the finite difference equations:

Ag(z + 3h) — Ag(z — 3h) =
> ! 1.12
() £ 7
(the right hand side is a formal power series in x)
Ge(z1 + 3h, 20 + 5h) — Ge(1 — $h, 22 + 3h)
— Gz — 3h, 22 + Lh) + Gy — Lh, 20 — 1) (1.13)
= log <—Z(m1) % Z(m)) ,

which we specify in [4]. The mathematical formula is:

Zx (t:h,q) =Y (—q)Mexp (SAFEt))

A

(1.14)




We derive it in [4] using the Virasoro constraints proven in [22].
The physical formula: A model version

identifies Zx (t) with the partition function of a two dimensional gauge theory on X. The
gauge theory in question is a twisted N/ = 2 super-Yang-Mills theory with the gauge group
G, to be specified momentarily, perturbed by all single-trace operators, commuting with
the scalar supercharge (). More precisely, Zx is equal to the generating function of the
correlators of all 2, 1, and 0-observables (we remind the relevant notions in the main body

of the paper), constructed out of the single-trace operators

Oy, = Coeff i« Try e*? | (1.15)
that is:
oo 2h+2 dege
(oo [ [E5 g nopio] )
X k=0 a=1

22 = 22 _og () + x(X)log ()

A=t

(1.16)

and the other times fg = t7. The gauge group G consists of certain unitary transformations

of a Hilbert space H. Its definition will be given in the main paper [4].
The physical formula: B model version

represents Zx (t) as a partition function of a Landau-Ginzburg theory with the worldsheet
X. The N = 2 supersymmetric Landau-Ginzburg theory without topological gravity
is determined by the following data: a target space, which is a complex manifold U, a
holomorphic function W, and a top degree holomorphic form € on U. The target space
U is an infinite-dimensional disconnected space. Its connected components U/ are labelled
by partitions A\. Each component is isomorphic to C*°, the space of finite sequences of

complex numbers. The superpotential is given by the regularized infinite sum

[e%e] [e%e]
t
W:Z ()\i—i+%)zi—%zf+zmzf+l



The top degree form is given by the formal product:

Q= A de (1.17)
=1

where
1+Zetl—H 1+ tz)
=1

Of course the infinite-dimensionality of various ingredients involved means that this is not
the conventional B model. However the theory provides a regularization of the infinite

products and sums above.
Very large phase space extension

In the worldsheet formulation the Very large phase space observables are non-local. In
the language of topological string, the insertion of the observable Qg .. o(x1,-..,x%)[a],
where x; € C, [a] € H,(X) corresponds to the condition that the points x1,...,z) of the
worldsheet are mapped to the same point f € X sitting in a cycle representing [«].

Note that the non-local string theories describing multi-trace deformations of gauge
theories were recently studied in the context of the AdS/CFT correspondence [23].

On the very large phase space the function ¥V becomes a generic symmetric function

of z;’s which is formally close to the function Y ;o (A — i + 3)z; — 322

o0

Wi = Z(/\i—@"f'%)zi—%pz-i—w(Pl,pQ,«u)
i=1

(1.18)
Z Thiko. i
kl'kQ k'pklpkg"'pkl 9

while the holomorphic top form is given by (1.17). The three point function on a sphere

is given by the regularized version of Grothendieck residue:

Crn =Y % Pa(pr)Ps(PA) Py (P2) (1.19)

A px:dWi(pAa)=0 HeSSQ(W)\)

where o, 3, v are partitions, ®, g~ are some formal power seria in py’s, generalizing Schur

pe =3 2k i= Kl Coeff,e 3 e
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and Hessq(W,) is the regularized determinant, defined as a ratio of the determinant of
the derivative map Det (dWy) : detT — detT* and Q? viewed as an element of det®?7*,
where 7 is the tangent space T}, U at the critical point py of Wj.

The couplings TE in (1.18) are most likely not the flat (or special) coordinates on
the Very large phase space. The flat coordinates T are obtained from TE by a formal
diffeomorphism. To find them is the first step in understanding the target space quantum
gravity.

So far we were discussing the standard topological string on X. The target space
turns out to be a topological field theory. In two dimensions such a theory is a relatively
simple construction.

All one needs to determine is a commutative associative algebra A, and a functional
() : A— C.

In our case the algebra is just the algebra of symmetric functions. Indeed, we discussed
so far the generators of this algebra, O, £k = 0,1,2,.... We should be able to multiply
Op’s. In this way we shall get arbitrary polynomials of O’s. We may allow a formal power
series in the generators Op’s with the assumption that such a series is well-defined once

we substitute

Ok(A) = Coeff x+1 Zeuz(/\i_z+2> (1.20)
i=1

for an arbitrary partition A.

We computed the functional for the large phase space:

() =Y e (1.21)
A
We should consider the algebra A together with its space of deformations. The latter is
the space of the couplings T%.

The two dimensional topological field theory can be coupled to the topological gravity.
This is the target space gravity.

We can describe its observables directly in target space. We can also discuss its
worldsheet definition. The latter is potentially interesting for more realistic quantum
gravity theories.

The target space definition is the following. Consider the moduli space M x of complex
structures on X. The topological string amplitudes are independent of the choice of the

complex structure on X. However, one can generalize them, so that they would define

11



closed differential forms on M x. Moreover, we can consider non-compact Riemann surfaces
X, i.e. curves with punctures.

Michael B. Green has proposed in [18] to study the two dimensional string backgrounds
as the theories of worldsheets for yet another string theories. Our approach gives a concrete

realization of that proposal.
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