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We study topological A-type string on an arbitrary two dimensional target space. Using the

Virasoro constraints, proven by A. Okounkov and R. Pandharipande, we find an explicit

formula for the partition function. The target space field theory reproducing this partition

function is proposed. This field theory has infinite set of deformations which are overlooked

by the standard definition of the topological string. We also discuss the relations to the

multi-trace deformations of gauge theories, and make contact with quantum integrable

systems. In addition, the target space theory can be in turn coupled to gravity, thereby

realizing the topological string version of M. Green’s “worldsheets for worldsheets” idea.
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1.
Topological strings are a continuous source of inspiration for gauge and string theo-

rists. They can be studied on their own, for the purely mathematical reasons. Sometimes

the amplitudes of the topological string can be viewed as the subset of the “physical”

superstrings. The topological strings produce exact all-loop results [1], from which one

hopes to gain some intuition about the quantum theory of gravity, perhaps even at the

non-perturbative level. For example, the topological strings give a realization of the quan-

tum space foam picture [2]. The topological strings of A and B type play a crucial rôle in

describing the compactifications of II string theories on Calabi-Yau manifolds, which gives

rise to the N = 2 theories in four dimension. The partition function Z(t) of a topological

string, of A or B type, depends on a some set of couplings t, which correspond to the

cohomology of the target space of string theory, valued in some sheaf. For example, for

the B model on a Calabi-Yau manifold X of complex dimension d, the coupling constants

t belong to

HB(X) =
d⊕

p,q=0

Hp(X,ΛqTX) ≈ Hd−∗,∗(X) ,

while for A model the couplings are valued in

HA(X) =
d⊕

p,q=0

Hp(X,ΛqT ∗X) ≈ H∗,∗(X) ,

In addition, every operator O, describing these couplings, comes with the so-called gravi-

tational descendents σk(O), k = 0, 1, 2, . . .. Thus the full set of couplings of the topological

string is an infinite dimensional space

HA,B(X)⊗C[[z]]

where we using a formal variable z to label the gravitational descendents:

σk(O)↔ O⊗ zk

In the case d = 3 the gravitational descendents decouple for k > 0, except for the dilaton

σ1(1), which corresponds to the string coupling constant h̄. The (disconnected) partition

function of the topological string

ZX(t; h̄) = exp
∞∑
g=0

h̄2g−2Fg(t) ,
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where t ∈ HA,B(X), is a generating function of genus g topological string diagrams. For

the B model these diagrams can be identified with Feynman diagrams of a certain quan-

tum field theory on X, the so-called Kodaira-Spencer theory [1]. For the A model the

analogous theory, the so-called theory of Kähler gravity [3] is expected to be non-local and

is constructed only in the large volume limit where the non-local effects are exponentially

suppressed.

In this note we shall construct the Kähler gravity theory for the two dimensional

X and will find that it is a local theory of an infinite number of fields. The proofs and

derivations will appear in a companion paper [4].

Duality CY vs. R4: topological string−− supersymmetric gauge theory.

A topic which keeps attracting attention of many researchers in the field, is the duality

between the topological strings on local Calabi-Yau manifolds and the chiral sector in the

four dimensional N = 2 and N = 1 supersymmetric gauge theories. The simplest example

of that duality is the geometrical engineering of [5]. One starts with an ADE singularity,

i.e. a quotient C2/ΓG, fibered over a CP1 so that the total space is a (singular) Calabi-

Yau manifold. By resolving the singularities one obtains a smooth non-compact Calabi-

Yau manifold XG. If one views the IIA string on XG × R1,3 as a large volume limit

of a compactification on a Calabi-Yau manifold with the locus of ADE singularities over

an isolated rational curve, then the effective four dimensional theory will decouple from

gravity. Moreover one can be model the effective theory on the four dimensional N = 2

theory with the MacKay dual ADE gauge group G, where the resolution of singularities of

XG corresponds to fixing a particular vacuum expectation value of the adjoint scalar. Then

the prepotential of the low-energy effective theory is given by the genus zero prepotential

of the type A topological string on XG (more precisely, it is the prepotential of the five-

dimensional gauge theory compactified on a circle which arises in this way [6][7], in order

to see the four dimensional prepotential one has to go to a certain scaling limit in the CY

moduli space [5]).

Duality Σ vs. R4: topological string−− supersymmetric gauge theory.

Another remarkable duality between the chiral sector of the four dimensional N = 2

theories and the topological strings on the two dimensional manifolds was discovered in

[8] and further studied in [9]. It is based on the comparison of the instanton calculus in
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the four dimensional gauge theory [10] and the Gromov-Witten/Hurwitz correspondence

of [11]. The physics of that correspondence involves the theory on a fivebrane wrapped on

a Riemann surface. One can actually stretch the duality beyond the realm of the physical

superstrings and conjecture a powerful S-duality at the level of the topological strings only

[12], leading to the concept of the topological string version of M-theory, or Z-theory [13]

[14].

The duality of [8](see also a paper on the mathematically related subject [15] and

recent works on the duality with N = 1 four dimensional theories [16]) identified the

disconnected partition function of the topological string on CP1 in the background with

the arbitrary topological descendents of the Kähler form σk(ω) turned on. The couplings

tωk (up to a k-dependent factor) are identified with the couplings of the operators∫
d4ϑ tr Φk+2

in the N = 2 gauge theory:

∞∑
k=0

tωk
k!

∫
C

σk(ω)↔
∞∑
k=0

tωk
(k + 2)!

∫
R4|4

d4xd4ϑ tr Φk+2 (1.1)

where in the left hand side we write the worldsheet couplings. In this paper we shall deepen

the duality discovered in the original paper [8].

Duality Σ vs.Σ: topological string−− two dimensional gauge theory.

About fifteen years ago D. Gross has proposed to attack the problem of finding the large

N gauge theory description in terms of some kind of string theory via the analysis of

the two dimensional gauge theories. By carefully analyzing the ’t Hooft limit of the two

dimensional Yang-Mills theory on a Riemann surface Σ D. Gross and W. Taylor have

identified many features of the corresponding string theory, while [17] have proposed a

new kind of topological string theory. An important aspect of the construction of [17] was

the realization of the fact that the topological Yang-Mills theory (which is the perturbative

limit of the physical Yang-Mills theory) can be described by the Hurwitz theory. The latter

counts ramified coverings of a Riemann surface Σ. In this paper we shall find a different

version of the string field theory, the one corresponding to the A type topological strings

on a Riemann surface Σ. It will turn out to be a kind of an infinite N gauge theory,
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but most likely not the ordinary ’t Hooft large N limit of the gauge group with the finite

dimensional gauge group like SU(N) or SO(N).

Worldsheets for worldsheets.

In [18] M. Green has proposed to study the two dimensional string backgrounds as the

theories of worldsheets for yet another string theories. With the advent of the string

dualities a few interesting examples of this construction were invented. For example, M-

theory fivebrane wrapped on K3 becomes a heterotic string on T3. This is not exactly

a realization of the [18] idea as we are using the localized soliton to generate the string.

One could try to study the CY4 or Spin(7) compactifications of the Type II string [19].

but this is difficult due to the lack of the detailed knowledge of the moduli spaces of these

manifolds. In this paper we shall approach this problem in the context of the topological

string.
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V ery large phase space of the topological string.

The conventional formulation of the A model assigns to every cohomology class eα ∈
H∗(X) of the target space X an infinite sequence of observables σk(eα), k = 0, 1, 2, . . ..

The corresponding couplings tαk parameterize the so-called large phase space. For k = 0

one gets the small phase space. Viewed from the worldsheet, the observable σk(eα) is the

k-th descendent of eα. However, if we think of these observables in terms of the target

space we should say that σk(eα) is the dim(X)− deg(eα)-descendent of some local BRST

invariant observable Ok:

σk(eα) ∼
∫
X

eα ∧ O(dim(X)−deg(eα))
k (1.2)

The gravitational descendents of the top cohomology class of X therefore correspond to

the zero-observables O(0)
k of the target space theory, and as such they are the simplest to

study. This is why we shall use as the starting point the so-called stationary sector of the

theory [11], where only the couplings of these observables are turned on. The observables

which are the hardest ones to study are the descendents of the puncture, i.e. unit operator.

These correspond to the dim(X)-observables constructed out of Ok and in the standard

paradigm of the topological field theory correspond to the deformations of the space-time

Lagrangian.

When the topological theory is a twisted version of the supersymmetric field theory,

these deformations correspond to the F -terms of the supersymmetric theory. In two dimen-

sions they are the superpotential deformations, in four dimensions they are the prepotential

deformations. Whatever is their interpretation, the target space theory has more observ-

ables. Indeed, the product of two local observables Ok and Ol and higher order products

cannot be expressed, in general, as linear combinations of Ok. In analogy with the gauge

theory which we shall make much more precise, the observables Ok correspond to the single

trace operators, while the products Ok1Ok2 . . .Okp , for p > 1, correspond to the multi-trace

operators. Thus the full space of deformations of the target space theory will involve cou-

plings Tα,ν
~k

, where α label the cohomology of X, ν label the gravitational descendents in

the sense of the topological gravity on X (in the problem studied in this paper, X is a two

dimensional manifold and ν is a non-negative integer), and ~k = (k1 ≥ k2 ≥ k3 ≥ . . . ≥ kp)
is a partition labelling the multi-trace operators. We call the space of all these couplings

the Very large phase space. We shall write an expression for the partition function of the

5



topological string on the Very large phase space in genus zero (target space). The prob-

lem of finding the special coordinates on the Very large phase space, which is in a sense

equivalent to the problem of constructing the full quantum gravity dressed string theory

partition function, is beyond the scope of the present paper. Nevertheless the formulation

of the problem for the general target space X is more important then the possible solution

of the problem we can anticipate from the gauge theory analogy for X = Σ, a Riemann

surface.

The partition function ZX

In this paper we study the case where X is a Riemann surface of genus h. The partition

function ZX of the A-model on a Riemann surface X is a function of an infinite set of

couplings, t = (tαn) where α = 1, . . . ,dimH∗(X) = 2h + 2 and n ∈ Z≥0. We introduce

some additive basis eα of the cohomology of X, eα ∈ H∗(X,C). We have:

ZX(t; h̄, q) =

exp
∞∑

g,n;β=0

∑
~k,~α

h̄2g−2qβ

n!

n∏
i=1

tαiki

∫
Mg,n(X,β)

n∧
i=1

ev∗i (eαi) ∧ ψ
ki
i

(1.3)

where we used the standard notations [20] for the moduli space Mg,n(X,β) of degree β

genus g stable maps to X with n punctures, the evaluation maps:

evi : Mg,n(X,β) −→ X (1.4)

defined as:

evi (C, x1, . . . , xn;φ) = φ(xi) (1.5)

where (C, x1, . . . , xn;φ) is the stable map with the n punctures x1, . . . , xn. Finally, in (1.3)

we have the first Chern classes of the tangent lines ψi = c1(TxiC) at the i’th marked point.

Following [21] it is convenient to think of the partition function ZX as of the functional

on the space of positive loops valued in H∗(X). Thus, let us introduce the H∗(X)-valued

function:

t(z) =
∞∑
n=0

1
n!

tnzn , tn =
2h+2∑
α=1

tαn eα ∈ H∗(X) (1.6)
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of a formal variable z. In addition we introduce another function, related to t(z), the

Legendre transform of the antiderivative ∂−1(z − t(z)),

Ft(x) = x z(x)− 1
2z

2(x) +
∞∑
k=0

1
(k + 1)!

tk zk+1(x), (1.7)

where z(x) ∈ H∗(X) solves:

x = z(x)− t (z (x)) (1.8)

and is given by the following formal power series in tk’s:

z(x) ≡ x+
∞∑
n=1

1
n!

[tn(x)](n−1) = x+ t(x) + t(x) · t′(x) + . . . (1.9)

Note that even though x ∈ C = H0(X), z(x) ∈ H∗(X) is an inhomogeneous cohomology

class.

We shall present our results in two forms: the mathematical and the physical. The

mathematical formula is explicit but is not fully transparent. The physical formula is

conceptually more appealing but it requires some preparations so we shall present it after-

wards.
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The mathematical formula

represents ZX(t) as a sum over partitions λ (the basic notions of the theory of partitions

are recalled in the main body of the paper). Given a partition λ = (λi)i≥1, let fλ(x)

denote its profile:

fλ(x) = |x | +
∞∑
i=1

|x− h̄ (λi − i+ 1) | − |x− h̄ (λi − i) | + |x− h̄ (−i) | − |x− h̄ (−i+ 1) |

(1.10)

Define Sλ(t) as:

Sλ(t) =
1

2h̄

∫
R

dx f ′′λ (x)
∫
X

Ft(x) +

1
2h̄

∫
R

dx f ′′λ (x)
∫
X

e(X) ·∆t(x) +

1
8

∫ ∫
R2

dx1dx2 f
′′
λ (x1)f ′′λ (x2)

∫
X

e(X) ·Gt(x1, x2)

(1.11)

where e(X) = c1(TX) is the Euler class of X,

χ(X) =
∫
X

e(X) = 2− 2h ,

and the functions ∆t and Gt are the particular solutions to the finite difference equations:

∆t(x+ 1
2 h̄)−∆t(x− 1

2 h̄) =

(x+ t0) log
(
x+ t0

z(x)

)
−
∞∑
l=2

1
l!

{
l∑

m=2

1
m

}
tl zl(x) ,

(1.12)

(the right hand side is a formal power series in x)

Gt(x1 + 1
2 h̄, x2 + 1

2 h̄)−Gt(x1 − 1
2 h̄, x2 + 1

2 h̄)

−Gt(x1 − 1
2 h̄, x2 + 1

2 h̄) + Gt(x1 − 1
2 h̄, x2 − 1

2 h̄)

= log
(

z(x1)− z(x2)
h̄

)
,

(1.13)

which we specify in [4]. The mathematical formula is:

ZX (t; h̄, q) =
∑
λ

(−q)|λ|exp
(
Sλ(t)
h̄

)
(1.14)
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We derive it in [4] using the Virasoro constraints proven in [22].

The physical formula: A model version

identifies ZX(t) with the partition function of a two dimensional gauge theory on X. The

gauge theory in question is a twisted N = 2 super-Yang-Mills theory with the gauge group

G, to be specified momentarily, perturbed by all single-trace operators, commuting with

the scalar supercharge Q. More precisely, ZX is equal to the generating function of the

correlators of all 2, 1, and 0-observables (we remind the relevant notions in the main body

of the paper), constructed out of the single-trace operators

Ok = Coeffuk TrH euφ , (1.15)

that is:

ZX(t; h̄, q) =〈
exp −

∫
X

[ ∞∑
k=0

2h+2∑
α=1

h̄k−1+ degeα
2 t̂αk eα ∧ O

(2−degeα)
k+1

] 〉

t̂2h+2
0 = t2h+2

0 − log (q) + χ(X)log (h̄)

t̂11 = t11 − 1
(1.16)

and the other times t̂αk = tαk . The gauge group G consists of certain unitary transformations

of a Hilbert space H. Its definition will be given in the main paper [4].

The physical formula: B model version

represents ZX(t) as a partition function of a Landau-Ginzburg theory with the worldsheet

X. The N = 2 supersymmetric Landau-Ginzburg theory without topological gravity

is determined by the following data: a target space, which is a complex manifold U , a

holomorphic function W, and a top degree holomorphic form Ω on U . The target space

U is an infinite-dimensional disconnected space. Its connected components Uλ are labelled

by partitions λ. Each component is isomorphic to C∞, the space of finite sequences of

complex numbers. The superpotential is given by the regularized infinite sum

W =
∞∑
i=1

[(
λi − i+ 1

2

)
zi − 1

2z
2
i +

∞∑
k=0

tk
(k + 1)!

zk+1
i

]
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The top degree form is given by the formal product:

Ω =
∞∧
i=1

dεi (1.17)

where

1 +
∞∑
i=1

εit
i =

∞∏
i=1

(1 + tzi)

Of course the infinite-dimensionality of various ingredients involved means that this is not

the conventional B model. However the theory provides a regularization of the infinite

products and sums above.

Very large phase space extension

In the worldsheet formulation the Very large phase space observables are non-local. In

the language of topological string, the insertion of the observable O0,0,...,0(x1, . . . , xk)[α],

where xi ∈ C, [α] ∈ H∗(X) corresponds to the condition that the points x1, . . . , xk of the

worldsheet are mapped to the same point f ∈ X sitting in a cycle representing [α].

Note that the non-local string theories describing multi-trace deformations of gauge

theories were recently studied in the context of the AdS/CFT correspondence [23].

On the very large phase space the function W becomes a generic symmetric function

of zi’s which is formally close to the function
∑∞
i=1(λi − i+ 1

2 )zi − 1
2z

2
i :

Wλ =
∞∑
i=1

(λi − i+ 1
2 )zi − 1

2p2 + w(p1, p2, . . .)

w(p) =
∑
~k

T̃k1k2...kl
k1!k2! . . . kl!

pk1pk2 . . . pkl ,

(1.18)

while the holomorphic top form is given by (1.17). The three point function on a sphere

is given by the regularized version of Grothendieck residue:

Cαβγ =
∑
λ

∑
pλ:dWλ(pλ)=0

Φα(pλ)Φβ(pλ)Φγ(pλ)
HessΩ(Wλ)

(1.19)

where α, β, γ are partitions, Φα,β,γ are some formal power seria in pk’s, generalizing Schur

functions,

pk =
∑
i

zki := k! Coeffuk
∑
i

euzi
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and HessΩ(Wλ) is the regularized determinant, defined as a ratio of the determinant of

the derivative map Det (dWλ) : detT −→ detT ∗ and Ω2 viewed as an element of det⊗2T ∗,
where T is the tangent space TpλU at the critical point pλ of Wλ.

The couplings T̃~k in (1.18) are most likely not the flat (or special) coordinates on

the Very large phase space. The flat coordinates T~k are obtained from T̃~k by a formal

diffeomorphism. To find them is the first step in understanding the target space quantum

gravity.

So far we were discussing the standard topological string on X. The target space

turns out to be a topological field theory. In two dimensions such a theory is a relatively

simple construction.

All one needs to determine is a commutative associative algebra A, and a functional

〈·〉 : A→ C.

In our case the algebra is just the algebra of symmetric functions. Indeed, we discussed

so far the generators of this algebra, Ok, k = 0, 1, 2, . . .. We should be able to multiply

Ok’s. In this way we shall get arbitrary polynomials of Ok’s. We may allow a formal power

series in the generators Ok’s with the assumption that such a series is well-defined once

we substitute

Ok(λ) = Coeffuk+1

∞∑
i=1

e
u z

(
λi−i+

1
2

)
(1.20)

for an arbitrary partition λ.

We computed the functional for the large phase space:

〈O〉 =
∑
λ

e−r(λ,t1)O(λ) (1.21)

We should consider the algebra A together with its space of deformations. The latter is

the space of the couplings T~k.

The two dimensional topological field theory can be coupled to the topological gravity.

This is the target space gravity.

We can describe its observables directly in target space. We can also discuss its

worldsheet definition. The latter is potentially interesting for more realistic quantum

gravity theories.

The target space definition is the following. Consider the moduli spaceMX of complex

structures on X. The topological string amplitudes are independent of the choice of the

complex structure on X. However, one can generalize them, so that they would define
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closed differential forms onMX . Moreover, we can consider non-compact Riemann surfaces

X, i.e. curves with punctures.

Michael B. Green has proposed in [18] to study the two dimensional string backgrounds

as the theories of worldsheets for yet another string theories. Our approach gives a concrete

realization of that proposal.
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