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Surprising simplicity of N = 8 supergravity
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Abstract: Gravity amplitudes are via the Kawai-Lewellen-Tye relations intimately linked

to products of Yang-Mills amplitudes. Explicitly this show up in computations of N = 8

supergravity where the perturbative expansion and ultraviolet behaviour of this theory

is akin to N = 4 super-Yang-Mills at least through three loops. Full persistency to all

loop orders would be truly remarkable and imply finiteness of N = 8 supergravity in four

dimensions.
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1. Introduction

Since the discovery of quantum mechanics in the previous century, physicists have been pur-

suing a construction of a fundamental theory for quantum gravity. Quantum gravitational

effects appear to be essential in understanding the physics of very dense matter objects

such as the early universe and black holes. However, although the searches for a theory of

quantum gravity have been diverse, extensive and many, the fundamental concepts of such

a theory are still elusive. General relativity provides us with a very successful theory for

gravity which captures the apparent necessary knowledge for a complete treatment of the

gravitational attraction and its intimate connection with matter, space and time. However

general relativity is incompatible with basic quantum mechanical ideas such as operator

space and expectation values. A traditional approach to perturbative gravity through a La-

grangian description is possible although complicated by a divergent ultraviolet behaviour.

Progress has however been achieved this way through treating gravity as an effective field

theory [1].

For many years the combination of supersymmetry with a Lagrangian description of

quantum gravity was considered to be a way out of the troublesome ultraviolet divergent

behaviour of such a theory due to the introduction of extra fundamental symmetries. Such

theories was termed supergravity models. The possibly most famous one is the model of

maximal N = 8 supergravity [2, 3]. However with the advent of superstring theory in the

mid-1980ties such models were abandoned due a common belief of unavoidable divergences

in their perturbative expansion via power-counting arguments [4] relegating these theories

to low-energy effective descriptions of string theory.

In recent years, due to remarkable progress in computational techniques by combining

various input from string theory, extended supersymmetry and unitarity, there has been a

renewed interest in supergravity models for quantum gravity and it has become clear that
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N = 8 supergravity has a much better perturbative expansion than power-counting näıvely

predicts. Surprisingly the ultraviolet behaviour of N = 8 supergravity occurs explicitly to

be identical to the one of N = 4 super-Yang-Mills to at least three loops [5–12] and very

likely six loops [13,14]. If this identical UV-behaviour persists to all orders in perturbation

theory then N = 8 supergravity will be ultraviolet finite in four dimensions [13].

The massless spectrum of N = 8 supergravity can be seen as the tensorial product

of two copies of N = 4 super-Yang-Mills theories, through the Kawai-Lewellen-Tye rela-

tions [15] which are motivated by string theory. In these relations the massless supergravity

(closed string) vertex operators are written as the left/right product of Yang-Mills open

string vertex operators. One can hence organise N = 8 supergravity tree-level amplitudes

according to a relation [5, 16–19] which we will write schematically in the following way

Gravity ∼ (Yang-Mills) × (Yang-Mills’) . (1.1)

This simple relation between a theory of gravity and two gauge theories is observed directly

in on-shell S-matrix elements but appear to be rather odd at the level of the Lagrangian

and its interactions (This is true even if part of the Lagrangian is rearranged as a product of

Yang-Mills types of interactions at the two-derivative level [20,21] or for higher derivative

corrections [22].).

2. Supergravity amplitudes

A superficial power counting argument indicates that an L-loop n-graviton amplitude in

D-dimension behaves as

[M
(D)
L ] = mass(D−2)L+2 . (2.1)

This count can be compared to the superficial power counting of the four-gluon amplitude

in N = 4 super-Yang-Mills which is given by

[A
(D)
4;L ] = mass(D−4)L . (2.2)

For N = 4 super-Yang-Mills in four dimensions we see that the theory is at most loga-

rithmically diverging (since the coupling constant is dimensionless). The extended N = 4

supersymmetry guaranties perturbative finiteness [23,24]. Colour ordered amplitudes fac-

torise the dimension four operator F 4 at one-loop and the dimension six operator ∂2F 4 at

higher-loop order and hence satisfy the dimensional analysis

[A
(D)
4;L ] = mass(D−4)L−6 [∂2F 4] . (2.3)

This imply that L-loop four-point amplitudes in N = 4 super-Yang-Mills are ultraviolet

divergent in dimensions

D ≥ 4 +
6

L
. (2.4)

Thus implying perturbative ultraviolet finiteness in D = 4 dimensions (the negative mass

dimension reflect the infrared behaviour of the amplitude).
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The difference between the formulæ (2.1) and (2.3) reflects the difference in dimensions

of the coupling constant of the two theories. However this superficial power counting misses

dramatic simplifications taking place in on-shell amplitudes due to the extended N = 8

supersymmetry [14] and the rôle of (diffeomorphism) gauge invariance [9, 25].

String based methods for constructing higher-loop amplitudes indicate [13,14] that the

perturbative behaviour of N = 8 supergravity amplitudes is improved by the factorisation

of the dimension eight R4 operator together with extra powers of derivatives

[M
(D)
L ] = mass(D−2)L−6−2βL [∂2βLR4] , (2.5)

with the βL = L rule

β1 = 0; βL = L for 2 ≤ L . (2.6)

This leads to a superficial ultraviolet behaviour for N = 8 supergravity amplitudes of

[M
(D)
L ] = mass(D−4)L−6 [D2LR4] , (2.7)

which is similar to the ultraviolet behaviour in (2.3) for N = 4 super-Yang-Mills. When

the βL = L rule (2.6) is satisfied the N = 8 four-graviton supergravity amplitude has the

same critical dimension (2.4) for ultraviolet divergences as N = 4 super-Yang-Mills.

The validity of the βL = L rule to all orders in perturbation theory implies perturbative

finiteness of the four-graviton N = 8 supergravity amplitude in four dimensions.

3. N = 8 supergravity as a product of N = 4 Yang-Mills

On-shell recursion relations provide very simple means of constructing N = 8 supergravity

tree-level amplitudes from three-point vertices [26, 27]. Gravity three-point vertices are

given directly as squares of N = 4 super-Yang-Mills vertices. Thus the resulting massless

n-point tree-level amplitudes can be presented in a form involving terms with sums of

squares of three-point N = 4 super-Yang-Mills vertices [19].

At the field theory level this amounts to replacing the gauge degree of freedom of the

Yang-Mills fields by Lorentz degrees of freedoms as follows

Aa
µ → ζµ

a . (3.1)

Such a correspondence is compatible with extended supersymmetry and can be used

näıvely to promote N = 4 super-Yang-Mills invariants into higher-derivative N = 8 super-

invariants. However it is not possible to capture all of these by such a map [22] since the full

diffeomorphism invariance carries even more symmetry (For example Ricci cycling identi-

ties Rµ[νρσ] = 0). The näıve application of the above substitution rule would for instance

lead to a N = 8 supergravity amplitude with an apparent factorisation of the operator

D2R4. This would consequently make the L = 2 two-loop four-graviton amplitude diverge

D = 6 dimensions. However this is contrary to explicit knowledge since this amplitude has

been shown to be finite up to D ≤ 6 dimensions [5].
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The main reason for this glitch is that diffeomorphism invariance for N = 8 super-

gravity implies that one must sum over all permutations of external legs. Doing this makes

the invariant D2R4 ∼ (s + t + u)R4 = 0 vanish by on-shell momentum conservation.

Consequently the first non-vanishing contribution is of order D4R4. At two loop order

the operator D4R4 satisfies the rule β2 = 2 of eq. (2.6) providing the suitable structure

for the two-loop amplitude kinematic factor. However this does neither give the correct

contribution for the higher-loop amplitudes which have βL ≥ 3 for L ≥ 3 [10,13].

Thus we see that one has to be careful with such arguments since gravity theories have

symmetries which are beyond what is provided via two copies of the gauge transformations

of Yang-Mills theories.

An important consequence of the full crossing symmetry provided via the absence of

the concept of colour in gravity theories is that infrared divergences in quantum gravity

can be treated as in QED and are much milder than in colour ordered theories like QCD.

One benefit of the structure of gravitational interactions is that there are no divergences

for the emission of a soft graviton from a hard line contrary to massless QED [28]. This

indicates that although gravitational interactions looks much more complicated than gauge

theory ones important simplification occurs in on-shell amplitudes at tree-level. The fact

that gravity amplitudes are unordered implies the no triangle property of N = 8 supergrav-

ity loop amplitudes [8, 9] and puts non-trivial constraints on the structure of higher-loop

amplitudes [29].

4. Vacuum structure and E7 invariance

The βL = L rule can be derived up to six loops from the zero mode sector of the pure spinor

formalism [30] for four-graviton amplitudes. This shows that the rôle of extended super-

symmetry in perturbative N = 8 supergravity are beyond the superspace transformation

properties of the product of two N = 4 super-Yang-Mills theories. Further analysis show

that the vacuum structure of N = 4 super-Yang-Mills and N = 8 supergravity theories

are very different. Mathematically in four dimensions the vacuum of N = 8 supergravity

can be described by the homogeneous space of M = E7(7)/(SU(8)R/Z2). While the local

symmetry group SU(8)R transform as a ’square’ of the group SU(4)R (corresponding to

each N = 4 super-Yang-Mills theory) there is no concept of the symmetry of the global

group E7(7) in N = 4 super-Yang-Mills. The global E7(7) symmetry does put severe enough

constraints on counter terms N = 8 in supergravity to possibly protect the theory from

diverging before nine loops and in conjunction with the full crossing symmetry this could

be enough to imply finiteness of the theory in four dimensions. As a global symmetry

rotating the different vacua of N = 8 supergravity the E7(7) symmetry relates the pertur-

bative contributions to the non-perturbative black hole production at high-energy, which

are required for a consistent definition of the theory [31].

5. Discussion

Although we are still in the search for a fundamental theory of quantum gravity we are in
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these years gaining a much better understanding of the necessary concepts for a formulation

of such a theory. The rôle of dualities in supergravity theories is important for their

quantisation and such investigations provide a framework for gathering further knowledge

about quantum gravity, its fundamental degrees of freedom and its relation to gauge theory.

A clear understanding of the question of ultraviolet finiteness and the validity of the βL = L

rule [13] of N = 8 supergravity would indeed be remarkable and provide huge implications

for non-supersymmetric low-energy descriptions of quantum gravity theories.
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