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1. Introduction

The classical theory of General Relativity is very well ggktt the scale of our solar system.
This year, ninety years after the experimental verificabbGeneral Relativity by Eddington and
Dyson on the island of Principe, the International AstrogoYear is being celebrated. Although
the understanding and mastering of General Relativityctsffieeyond the Newtonian limit has lead
to a high precision analysis of the energy loss of neutranksieary systems [1], the consequences
of General Relativity as a quantum theory are still elusigéhlexperimentally and theoretically.
To understand the structure of our present universe thé stinings of (quantum) gravity effects
for cosmology will have to be understood.

Contrary to gauge theories of spin at most one, a theoreditalysis of the quantization of
gravity is complicated by the non-linear nature of the gedional interactions. It is possible
to make an effective field theory description of gravity [Rh®wever the complexity introduced
by interactions and the consequences of diffeomorphis@arismce, makes a traditional Feynman
graph approach to perturbative gravity rather quicklyaaotable [4].

Witten’s proposal [5] of gauge theory as a twistor stringotiyecombined with powerful meth-
ods based on on-shell unitarity have led to a rapid new pssgre computational techniques for
scattering amplitudes. The past decade has seen crumakdbeing taken in producing new results
for various standard model processes in pure QCD, heavk ggsics, mixed QCD/electroweak
processes (see [6] for a recent review) and on-shell grawitglitudes in various dimensions. Sur-
prising and crucial to the rapid progress have been a disedww@mplicity of S-matrix elements in
maximally supersymmetric gauge theories [7-9].

The application of on-shell unitarity methods greatly dlifigs various computations by incor-
porating only physical gauge degrees-of-freedom. Howsyemmetries are often not completely
realized via such an approach and additional organizdtfmireciples are needed.

Clearly an optimal form for the tree level amplitude provithe first step and a theoretical
guidance for higher loop computations. The simplicity ektamplitudes explains in part simplic-
ity at the loop level. But an additional understanding of te@sequences of symmetries at loop
orders is usually necessary for the full picture. In the aafstheories without color factors the
sum over all orderings of the external legs including alhplaand non-planar contributions lead to
important on-shell cancelations simplifying the struetof QED and gravity amplitudes [10-12].
The constraints from maximal supersymmetry is as well rgpoerly understood in perturbation
theory. For instance, in maximal supergravity four-graviemplitudes display a much better ul-
traviolet behavior [4,13-18], than predicted by a suparsmalysis [19-21].

We now know that loop amplitudes i” = 4 super-Yang-Mills which are leading in color
enjoy a dual conformal symmetry and that one-loop amplgude/” = 8 supergravity satisfy a
no-triangle property [10, 11, 22—-28]. Both of these prdpsrput strong constraints on the basis of
integral functions in which amplitudes can be expanded sélpgoperties are consequences of the
symmetries of the theory but are not so explicit in a uniabdsed method. Their origin can be
made more explicit by considering a string theory realaatf these theories [10, 11, 28].

In this talk we will discuss the recent progress for ampkisiéh field theories without color
factors. We will focus especially on results fot” = 8 supergravity amplitudes. We will discuss
new techniques for amplitude computations and considepaissibility of recycling progress for
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computations of Yang-Mills amplitudes into results fongtaamplitudes via the Kawai-Lewellen-
Tye relations. We will also discuss how it is possible to wera fascinating simplicity of gravity
amplitudes via a combination of unitarity methods and the afsorganizational inspiration from
string theory.

2. Amplitudesin Gauge Theory

2.1 Critical ultraviolet behavior of .4 = 4 perturbation

The maximally supersymmetric case .of = 4 Yang-Mills is known to be perturbatively
ultraviolet finite inD < 4 dimensions [20,29-31]. This can be shown by an implementaf half
(eight) of the total (sixteen) supersymmetries in the thedhis implies that thé-loop four-gluon
amplitude has a ultraviolet behavior dominated by

,52%4(5) ~ \D-4L-4p4 2.1)

whereA\ is a ultraviolet cutoff. This power counting law implies femess in dimensiornd® < 4.
However, the situation is better than that because the @RtevmF* is related by supersymmetry
to the CP-odd anomaly canceling teBm F4 whereB is the NS-NS B-field. One therefore expect
these contributions to be one-loop exact [32—36]. This mdhat theL > 1 contributions must
have a low energy limit that behaves@#: F* with B > 1 for L > 1, so that the prefactor contains
at least two extra powers of momentum. In fact, direct pbstive evaluations of the four gluon
amplitude [37,38] indicates th@ = 1 for allL > 1, leading to the ultraviolet behavior’of

L~ NPTYER g%ty or L>2. )
Ay ~ NO=I-832t5tr(F4) for L > 2 2.2)

We refer to [40] for a discussion of the ultraviolet behaviofi the sub-leading contributions in
the color factors. In a unitarity computations the behawioeq. (2.2) is directly obtained from an
explicit realization of the supersymmetry, by considerifiggrams [38] constructed from the ‘rung
rule’ and via dual conformal symmetry [9, 41]. The resultenira unitarity based approach can be
independently confirmed by superspace methods as in ref2]19

At one-loop order in four dimensions one can expandgdbint amplitudes in a set of basis
functions which consists of scalar boxes, triangles, brilaiegrals and possibly rational poly-
nomial functions [42, 43]. This expansion in terms of basisctions is symbolically illustrated
in figure 1. The split-up in basis functions holds via kineimagéstrictions for four-dimensional
momenta and because one-loop tensor integrals in amitaleays can be reduced to scalar
integrals [42,44-46].

In D = 4— 2¢ dimensions the one-loappoint amplitude will take the schematic form

(0) _ ,2¢ [ 4o, Znl0)
P —“sfdfgnfg (2.3)
Here > = (¢ —k; —--- — k)? are the propagators along the loop a#ti(¢) is a polynomial in

the loop momentung”. This polynomial is a function as well of the external monzeanhd the

1The tensotg is defined in the appendix 9.A of volume Il of [39].



On Amplitudes in Gravity and Gauge Theories N.E.J. Bjerrum-Bohr

Figure1l: Basis of one-loop scalar integrals given by a) a scalar béx feur propagators to be integrated
over, b) scalar triangles with three propagators and c) lasbabble integral with only two propagators. In
D = 4— 2¢ dimensions these diagrams carry all the ultraviolet anchiefl divergences of the amplitudes.
Possible finite contributions to the amplitude are absomadrational polynomial function.

helicities of the external states. The maximal dependehtigeedoop momentunt is n from the
three point coupling of the Yang-Mills theory. From the sation of half of the supersymmetries
in the loop (.e. eight supercharges) is reduced tan— 4. Hence the numerator takes the form
Pa(l) =5, 04 x P _,(¢), whered} is a dimension four operator made from external momenta
and polarization vectors.

In each on-shell amplitude one can apply the following Passa/eltman reduction [47]
which trade one power of loop momentuhnto a propagator

2(¢ k)
D 1) D D ..
/d 6626 e /d (—— = kl /d 0= (). (2.4)

This identity is represented pictorially in figure 2. Sinbe nhumerator im-point .4~ = 4 Super
Yang-Mills one-loop amplitudes have at most- 4 powers of loop momenta after— 4 steps
of reductions (2.4) the complete amplitude can decompoeetpletely in a basis of scalar box
integral functions.

Figure2: On-shell reduction of color ordered amplitudes.

2.2 QED amplitudes

We will now consider the one-loop-photon amplitudes in massless QED. Furry’s theorem
apply here and dictates that amplitudes with an odd numbextefnal photon lines are vanishing.
Thus we only need to consider amplitudes with an even numnftexternal lines.



On Amplitudes in Gravity and Gauge Theories N.E.J. Bjerrum-Bohr

Each vertex will bring one power of momenta and make the natoeg?,(¢) a polynomial
with at mostn powers of loop momenturh= ¢,,. Because of up ta powers of loop momenta in
the numerator of the-point amplitude, one would expect via a succession of Passgeltman
reductions that the one-loop amplitude could be expandediimear basis of scalar box, triangle
and bubble integral functions (see figure 1) and possibierait pieces.

+ Dimension
i shifted integrals

Figure 3: On-shell reduction of unordered amplitudes.

It was shown in ref. [12] that the one-loophoton amplitude in massless QED is completely
expressible in terms of scalar box integral functionsrfor 8 external photons. The cancelation
of the scalar triangle and bubble functions was accountedyahe sum over the permutations
imposed by the absence of color factors. This is a consegusribe fact that unordered colorless
amplitudes satisfy a new type of reduction formula derivedli0] where two powers of loop
momenta are traded for a propagator factor as depicted irefigu Such a reduction formula is
reflecting the milder infrared behavior of colorless QED gnalvity amplitudes compared to the
QCD amplitudes [48].

The reduction formula in figure 3 shows the appearance ofrbina shifted integrals. These
can be shown to cancel in the physical amplitude by gaugeiamae (In the string based formalism
used in [10, 12] the cancelation makes use of a canceled gaopamechanism).

The application of this reduction formula gives that all éoep amplitudes witim > 8 external
photons can be expressed as a linear combination of scadantegral functions

i(U2)e T(1+€e)r?(1—¢)

1-loop _
“n (4m2¢  [(1-2e¢)

(i, ,k,DF2(i, j,k1). (2.5)
a={1m2me2mh3m4m} (i,j k)

Here(i, j,k,1) is a parametrization of the four uncanceled propagatoff#idg the kinematic in-
variants of the scalar box functions [49]. We remark thas tigisult is helicity independent and
generalizes to all helicity configurations the result dedivby Mahlon for MHV amplitudes in
ref. [50].

We have in the previous equation introdu¢€tiwhich is the dimensionless scalar box function
defined as in ref. [51]

P (i j k) = 1 il

2 2 2 2 2 2 \2 2.2 2 2 \3
— ((X[3X5a — X12X54 + X53%41)” — AX13X53%54X41) 2 / o= l_!xo_%’ (2.6)
. 1= i

whereK/' = x' —x{, ; , with 1 <i < 4 andxs = x; andK; are the external momenta at each corner

of the scalar box functions. We have used the notatjpr- (x' —x,).
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The sum is over thd; = none-mass scalar box functions, tie = n(n—5)/2 two-mass easy
boxes, thaly, = n(n—5) two-mass hard boxes, tlilg = n(n—5)(n— 6)/2 three-mass boxes, and
theds = n(n—5)(n—6)(n—7)/24 four-mass boxes [49]. Actually because of the soft lielation
between the two-mass easy and the one-mass scalar boxofisatée have,

KILTOFzme(ki’ k] + K17 kk7 kl + KZ) - Flm(kiu kj + Klu kk7 k| ) 9 (27)

thus there is no need to distinguish between these functindseparate them into two different
sets. This gives a total @i n— 3) /2 functions.

Because of the vanishing of the multi-photon tree level @omids no infrared singularities of
the QED amplitudes are present

k|+k|+1

o] = o, (2.8)

23
This lead ton(n— 3)/2 relations for each independent kinematic invariant [#8jwever the set of
relations appear to be redundant. The vanishing of theradraingularities imply that the one-loop
multi-photon amplitudes are given by a ultraviolet andanéd finite combination of the scalar

box functions. As well this guaranties that the amplitudénisariant under the dual conformal
transformations of [9, 41].

3. Amplitudesin Gravity

TheD-dimensional Einstein-Hilbert Lagrangian has the form:

_ 2—2/de\/_—9<%>, 3.1)
(4

where 2<(24) = 2(2m)? Gy. Ignoring renormalisation issues it is possible to makera& quanti-
zation of this action. It is conventional to ugg, = nuv + K4 hyy and work in harmonic gauge:
(02 hur = 20“h") For this gauge choice the vertex rules for the three- andfoint Einstein
vertices can be found to be [52, 53]. However this traditiamay of constructing amplitudes in
gravity lead to very cumbersome and unmanageable resuidiclHy we have for instance

3
VoS oy ke ka) =
1
SK(aySym| — Ps(Ky K2 NpuanvpNoy) — Ps(KivkigNuaNoy) + Pa(Ke - K2 NpvNaghoy)

+ 2Ps (K1 - ko nuanvanﬁy) + 4P3(k1vk1yrlua'7[30) - 2P3(k1[3k2unavrlay) + 2P3(klak2y’7uv’7aﬁ)

+ ZPG(klaklynuvnaB) +4P6(k1vk2ynﬁynaa) + 4P3(k1vk2unﬁanya) —4P3(ky - ko navnﬁonyu) .
(3.2)

Here 'sym’, denotes a symmetrization of each pair of indidesx), (vB), ... and the mo-
mentum factors: K, ko, ...) are to be associated with the index pairgo( v, ...) correspond-
ingly. The symbol: Px) means that a #-permutation of indices and correspondingenta has to
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carried out for this particular term. As seen the algebraigcture for the three-point vertex is al-
ready rather involved and complicated. At the level of Fegnrdiagram computations this vertex
structure combined with the generic factorial increaseommglexity with an increasing number of
external legs makes it extremely difficult to compute aroplés. Furthermore possible simplicity
of expressions are hidden in very involved cancelationeéen a factorially increasing number of
terms as the number of external legs increases.

In the on-shell amplitude the three-point vertex can bettyraamplified using the mass-shell
relationsk; - k; = 0 fori, j = 1,2, 3, and imposing the tracelessness condih% =0
VP(1,2,3) = PRIV (K ko ke) = %h‘f“hgﬁhgy(klunvwr perms (KiaNpy+permy .
We see that the three points vertex in the on-shell ampliaatigally takes the very suggestive form
Vg(fgvity ~ (Vﬁ},)z with Vy v ~ gy mhi hy 03 (k1inve + perms. This is a factorization which is highly
surprising from the Lagrangian perspective (3.2). Suchediom indicates clearly that the structure
of on-shelln-graviton amplitudes will take a simpler form than naivekpected.

Field theory tree-level amplitudes can be derived in aniiefitension limit @’ — 0) of string
graviton amplitudes. A generatpoint scattering amplitude for a closed string will be cecied
to that of two open strings through [54]:

_py\closed sting _ n-2 Zeind)(a,o’)ALEﬁ(Open SN (1), - -, o (n)) ARSNHOPEN SIS 579y L g (n)).
0,0'€S/Zn
(3.3)

Here o and g’ are permutations i%,/Zn of the set of all permutations, but with cyclic rotations
removed andpb(a,0’) is a phase factor depending on the kinematics invariants. open string
amplitudes are the tree-level color-ordered gauge thearjap amplitudesAle°Pe" StY gafined
as

ﬂgree(L 27 EERE) n) = g$_|\/|2 Z Tr (Taa(l)Taa(z) e Tag(n) ) Agee(open String(o-(l)a ceey U(n)) . (34)
UESn/Zn

TheT?# are fundamental representation matrices for the Yangsialuge grouU(N.), normal-
ized so that TfT2TP) = 52°.
In the field theory limita’ — 0 this expression becomes

L2, )=k Y ) (75 (81) A0 (L), -, o () ATS('(2),-- .0 (), (3.5)
0,0'€S,/Zn

where fnfﬁg’ (sj) is a homogeneous rational function of order 3 in the kinematic invariants
sj = (ki +k;j)?, such thatfrf’_’g,()\ 25)) = A2=3) frf’_’g/(s,-j ), assuring that the gravity tree amplitude
has the correct pole structures, aiff%(o(1),--- ,0(n)) is the field theory limit of the open string
n-point amplitude.

The origin of the functionfr?;g/ (sj) can be understood as follows. If one rescales the external
momenta ag; — A k; then-gluon Yang-Mills amplitude scale as

A~ AT, (3.6)
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expressing the fact that the three- and four-point ampsudad to local interactions of respective
form tr([Ay, AyJ0HAY)) and t([A,,A)][A¥,AV]). In the case of gravity since the Einstein-Hilbert
action (3.1) gives contributions of ordéi(k?) to any number of external graviton we must have,

M A2 (3.7)

This implies that in the KLT relation (3.5) a rational furastiof ordem— 3 in the external momenta
must multiply the product of Yang-Mills amplitudes. Trem#l amplitudes are presented in [54]
in this form. The functionf ‘m’(sj) is a polynomial of orden— 3.

A particular case of the expression (3.5) is a left-right sytric presentation of the gravity
amplitude [55,56] that is obtained by using the same badisations for the left and right moving
open string amplitudes

ME®(1,2,3) = —ik |ASeY(1,2,3)]2, (3.8)

Using that
1 4 .
AT, k1) = —— 0™ [T Ry 3.9
a s .k 1) TS 8 il:! Mpi 1My (3.9)

(with Fin = K. hi. —Kkihi - and (i, j,k,1) being a permutation of the labels of the external states
{1,2,3,4}), it is immediate to massage the four-point KLT relationoir left/right-symmetric
form

ME*1,2,3,4) = —iK? (s13]AT%(1,2,3,4) | + 512 AT, 3,2, 4)” + 514 |A]%(1,4.2,3) %) .
(3.10)

At five-point order a left/right symmetric form valid for dfielicity configurations has been pre-
sented in [56]

AME(1,2,3,4,5) = —ik3 [c1|AIP%(1,2,3,4,5)2 + ¢, |AI*%(1,4,3,2,5) 2 (3.11)
+ c3(AE®%(1,2,3,4,5)A1%%(1,4,3,2,5) + AL®(1,4,3,2,5)Al*%(1,2,3,4,5))] ,

where|An(1,---,n)|2 = An(1,--- ,n) Ay(1,---,n). In this form the coefficients; (depending only
on the kinematic variables) are not always polynomials lauit loe rational functions of degree
n—3.

Such relations in field theory between gravity amplitudesuass of left/right products of color
stripped gauge theories have been confirmed [4, 54, 57] golitidy presented for an arbitrary
number of legs in [22]. These relations do not require theterce of an underlying consistent
string theory and hold in any dimensions or massless m&&5P]. In particular field theoretic
derivations of relations of the form (3.5) have been presgiri [56] and using helicity formalism
in four dimensions in [55, 60].

3.1 Relations between .4 = 4 Super Yang-Millsand .4 = 8 Supergravity

The KLT relations presented in the previous section indi¢hat at the field theory level the
relation between gravity amplitudes and Yang-Mills amyalés amounts to replacing gauge degree
of freedom of the Yang-Mills fields by Lorentz degrees of ttems as follows

AL — 0 (3.12)
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Such a correspondence is compatible with extended supersymn and can be used naively to
promote.4” = 4 super-Yang-Mills invariants into higher-derivativé& = 8 super-invariants.

Since the full diffeomorphism invariance carries even mgymmetry (For example Ricci
cycling identitiesR,, (o) = 0) it is however not possible to capture all of these by suctap [61].
The naive application of the above substitution rule ondhE* operator would for instance lead
to a.# = 8 supergravity amplitude with an apparent factorizatiorthaf operatoD?R*. This
would consequently make the= 2 four-graviton amplitude diverge i = 6 dimensions. This is
however contrary to explicit knowledge as this amplitude been shown to be finite up < 6
dimensions [62].

The main cause for this is that diffeomorphism invarianae 6 = 8 supergravity implies a
summation over all permutations of external legs. TherébyirvariantD’R* ~ (s+t+u)R* =0
vanish by on-shell momentum conservation (the corresponifang-Mills operatod?tr(F4) =
utr(FiRRsFs) +t tr(FiRF4Fs) + str(FiFsFoF,) does not vanish on-shell because different color
orderings have different kinematic factors). The first manishing contribution is therefore of
orderD*R*. This provides a suitable structure for the two-loop amplt kinematic factor. For the
higher-loop amplitudes which hay& > 3 for L > 3 [13, 16] this does however neither give the
correct form.

One thus have to be careful with such arguments since grdngtyries carry symmetries be-
yond what is provided via two copies of the gauge transfaiematof Yang-Mills theories.

An important consequence of the full crossing symmetry Bviy theories is that infrared
divergences in quantum gravity can be treated as in QED. &heyalso much milder than in
color ordered theories like QCD. Hence although it looke Igkavitational interactions are much
more complicated than gauge theory ones they have in fadiaud simplicity. This is also the
case in QED which similarly has full crossing symmetry. Tihés the consequence that one-loop
QED and.#" = 8 supergravity loop amplitudes enjoy extra cancelatioaditey to the no-triangle
property [11, 26].

3.2 No-triangle property of .4 = 8 supergravity amplitudes

Historically computations of one-loop amplitudes fdr = 4 super Yang-Mills and/” = 8
supergravity was first carried out by Green, Schwarz andkBnimef. [63]. They obtained the four
point one-loop amplitude in both theories by taking the lowergy limit of string theory:

/"% (1,2,3,4) = Kopenx la(s 1),

| (3.13)
//ZOOp(L 2,3,4) = Kclosed(|4(s,t) +la(s,u) + I4(t, u)) .

Here we have given the partial amplitude for the orderinghef éxternal leg¢l,2,3,4) and set
Kopen= St x A¥®(1,2,3,4) = tg" "™ ", Fé{z)iflmzi and definedKcioseq= Stux .Z4%(1,2,3,4) =
KoperKopen: K*tgtsR. In this formulal,(s,t) denotes the scalar box integral with legs attached
in the leading in color order 1234s, t andu denotes the usual Mandelstam variables (coupling
constants have here been suppressed).

In the case of#" = 8 supergravity the loop momentum factor in the numeratorhefr
graviton one-loop amplitude in eq. (2.3) is given by a polyma of degree at mostr2- 8. Eight
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powers of momenta are canceled by supersymmetry. Thisasfile factorization of the operator
of dimension eight in front of the loop amplitude

Pon(l) ~ Og 178, for L~ oo, (3.14)

A power counting of infrared divergences based on the irawdit color ordered Passarino-Veltman
reduction (see figure 2) of#" = 8 supergravity imply that the one-loop amplitude with> 7
gravitons would contain integral functions other than acabx integralsi.e. scalar triangles and
bubbles and rational polynomials. However explicit conagions in ref. [22] of the five and six-
point MHV amplitudes evaluated using unitarity techniques surggigishowed the amplitude to
consist solely of box integral functions. It was conjectutbat this behavior should hold for all
MHYV amplitudes via consistency of factorizations and amalhsatz consisting of box functions
in the MHV case was presented. In ref. [23] = 8 supergravity were reanalyzed in the context
of new results and it was postulated that the ‘only boxespprty was a general feature of all
A =8 amplitudes in all helicity configurations. In ref. [24, 28]s was phrased the “no-triangle
hypothesis” for.#” = 8 and it was explicitly checked to hold for six-poiRMHYV amplitudes and
higher.

The non-presence of all contributions more singular thansitalar box amplitude has the
same origin as in the case of the QED amplitude [10-12]. Itsflfidue to crossing symmetry and
secondly to the decoupling of longitudinal modes from tHféedimorphism gauge invariance. For
theories with crossing symmetry the unordered reductiomdéta depicted (see figure 3) should be
applied.

A generalization of this result for multi-loop amplitudesiot straightforward since no generic
basis of integral functions are known for an arbitrary numdddegs. The requirement of crossing
symmetry in colorless theories demands the presence oplatar and non-planar integrals in the
amplitude. This makes the construction of a basis of intdgrections that captures the ultraviolet
and infrared behavior of higher loop amplitudes even mansiet [64—67].

3.3 Higher-loop Amplitudes

At L loop order linearized on-shell supersymmetry implies thatcritical dimension for ul-
traviolet divergences in the four-graviton amplitude igegi by
c
D > 2+'—f“, (3.15)
indicating that supergravity theories are always finitewo dimensions. In the case when,
is bounded from above the loop order for the appearance ofirficlogarithmic divergence is
determined by the value ofé c » < 18. ¢ 4 depends on the implementation of the linearized on-
shell supersymmetries and determines also the mass dinesfdhe first possible counter-term to
the theory [14,68-71].
A L loop n-graviton amplitude has mass dimension
4] = mas§®24+2, (3.16)

The low energy limit of the four-graviton amplitude latoops reads

[4,7)] = mas&P-2L-(6+28) g2B Rt (3.17)

10
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where we have used that” = 8 supergravity four-graviton amplitudes have a factoRbfand
allowed 3. powers of derivatives to be distributed on the four Riemamsaors. The critical
dimension for ultraviolet divergences is given by

6+2
D> 2+ %BL . (3.18)
Whenp, =L at each loop order two extra powers of the external momemtéaatorized and

the critical dimension for ultraviolet divergences is givgy [13, 14]

D > DC:4+§. (3.19)
This is the same critical dimension a§” = 4 super-Yang-Mills. By explicit evaluation of the
amplitude it has been shown to be valid in field theory up to-foap order [16-18].

As soon a$3, is bounded after some loop order, the theory will have amvitiiet divergence
in four dimensions. The pure spinor formalism gives a coyntf supersymmetric zero modes
which are valid in all dimensions betweerxdD < 11 where.#” = 8 supergravity can be defined.
This construction implies [72] thgd, = L is valid for L < 6 as long as the small regulator is not
needed [40]. After six-loop order one needs to use the feliylated version of the formalism [73]
and the question wheth@ still can increase is open [74]. In the case wifier= 6 for L > 6 the
critical dimension for the ultraviolet divergence is givenD > 2+ 18/L according to (3.18). This
indicates that in four dimensions the first divergence wadlcur at nine-loop order [14].

The rule . = L is the optimal one for finiteness in four dimensions. Whenitioeeasing
the loop ordei., with a growth of 3. slower thanL finiteness of the theory in four dimensions
is not possible. On the other handdf grows faster tham., the theory would too be finite. For
instance the. loop (planar and non planar) ladder diagrams of the fouvigna amplitudes are
all two-particle cut constructible and given by scafgr diagrams with a prefactor satisfying the
rule B = 2(L — 1). These diagrams are ultraviolet finite for< 6. This means that the leading
ultraviolet divergences off” = 8 amplitudes are not contained in these ladder diagrams.

The absence of triangles and bubbles at one-loop orderémpia general factorization the-
orems that higher-loop amplitudes cannot contain diagrati®risable in one-loop amplitudes
where triangles or bubbles are present. This constraiettaffthe structure of the higher loop
amplitude [15] but is not a sufficient condition for pertutisa finiteness. For this further subtle
cancelations between triangle free contributions areired(i16].

4. Conclusions

The past two years have witnessed significant progress icotmgutation of loop amplitudes
in gauge theories. This progress for amplitude computstiam be extended, in many cases, to the-
ories incorporating gravity. Via this our understandingtpdoative maximal/” = 8 supergravity
have improved.

It is clear that the rGle of extended supersymmetry in pbdiive .4 = 8 supergravity is
beyond the superspace transformation properties of thdupt®f two.4” = 4 super-Yang-Mills
theories. Actually the vacuum structure .of = 4 super-Yang-Mills and4” = 8 supergravity
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theories are very different. The one of = 8 supergravity is given in four dimensions by the
homogeneous space Bf7)/(SU(8)r/Z2) [75]. While the transformational properties of the local
symmetry groupSU(8)r is like a 'square’ of the grousU(4)r (corresponding to eacht” = 4
super-Yang-Mills theory) there is no corresponding synmnet the global grouges7) in 4" = 4
super-Yang-Mills.

TheEz(7) symmetry rotates the different vacua of = 8 supergravity and thus relates the per-
turbative contributions of the theory to the non-pertusigablack hole production at high-energy.
This is required for a consistent definition of the theory][76

The search for a fundamental theory of quantum gravity Is®@tgoing. In these years we
are gaining a much needed understanding of the conceptsdottd formulation of such a theory.
In supergravity theories the réle of string theory duaditie important for their quantization and
thus give us a framework for gathering further knowledgeuglomantum gravity, its fundamental
degrees of freedom and its relation to gauge theory. Regptiie questions of ultraviolet finiteness
of .4 = 8 supergravity and the validity of th& = L rule [13] would indeed be remarkable and
provide huge implications for non-supersymmetric lowfsggedescriptions of quantum gravity
theories.
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