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1. Introduction

The classical theory of General Relativity is very well tested at the scale of our solar system.
This year, ninety years after the experimental verificationof General Relativity by Eddington and
Dyson on the island of Principe, the International Astronomy Year is being celebrated. Although
the understanding and mastering of General Relativity effects beyond the Newtonian limit has lead
to a high precision analysis of the energy loss of neutron star binary systems [1], the consequences
of General Relativity as a quantum theory are still elusive both experimentally and theoretically.
To understand the structure of our present universe the short comings of (quantum) gravity effects
for cosmology will have to be understood.

Contrary to gauge theories of spin at most one, a theoreticalanalysis of the quantization of
gravity is complicated by the non-linear nature of the gravitational interactions. It is possible
to make an effective field theory description of gravity [2, 3] however the complexity introduced
by interactions and the consequences of diffeomorphism invariance, makes a traditional Feynman
graph approach to perturbative gravity rather quickly intractable [4].

Witten’s proposal [5] of gauge theory as a twistor string theory combined with powerful meth-
ods based on on-shell unitarity have led to a rapid new progress in computational techniques for
scattering amplitudes. The past decade has seen crucial strides being taken in producing new results
for various standard model processes in pure QCD, heavy quark physics, mixed QCD/electroweak
processes (see [6] for a recent review) and on-shell gravityamplitudes in various dimensions. Sur-
prising and crucial to the rapid progress have been a discovered simplicity of S-matrix elements in
maximally supersymmetric gauge theories [7–9].

The application of on-shell unitarity methods greatly simplifies various computations by incor-
porating only physical gauge degrees-of-freedom. Howeversymmetries are often not completely
realized via such an approach and additional organizational principles are needed.

Clearly an optimal form for the tree level amplitude providethe first step and a theoretical
guidance for higher loop computations. The simplicity of tree amplitudes explains in part simplic-
ity at the loop level. But an additional understanding of theconsequences of symmetries at loop
orders is usually necessary for the full picture. In the caseof theories without color factors the
sum over all orderings of the external legs including all planar and non-planar contributions lead to
important on-shell cancelations simplifying the structure of QED and gravity amplitudes [10–12].
The constraints from maximal supersymmetry is as well rather poorly understood in perturbation
theory. For instance, in maximal supergravity four-graviton amplitudes display a much better ul-
traviolet behavior [4,13–18], than predicted by a superspace analysis [19–21].

We now know that loop amplitudes inN = 4 super-Yang-Mills which are leading in color
enjoy a dual conformal symmetry and that one-loop amplitudes in N = 8 supergravity satisfy a
no-triangle property [10,11,22–28]. Both of these properties put strong constraints on the basis of
integral functions in which amplitudes can be expanded. These properties are consequences of the
symmetries of the theory but are not so explicit in a unitarity based method. Their origin can be
made more explicit by considering a string theory realization of these theories [10,11,28].

In this talk we will discuss the recent progress for amplitudes in field theories without color
factors. We will focus especially on results forN = 8 supergravity amplitudes. We will discuss
new techniques for amplitude computations and consider thepossibility of recycling progress for
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computations of Yang-Mills amplitudes into results for gravity amplitudes via the Kawai-Lewellen-
Tye relations. We will also discuss how it is possible to uncover a fascinating simplicity of gravity
amplitudes via a combination of unitarity methods and the use of organizational inspiration from
string theory.

2. Amplitudes in Gauge Theory

2.1 Critical ultraviolet behavior of N = 4 perturbation

The maximally supersymmetric case ofN = 4 Yang-Mills is known to be perturbatively
ultraviolet finite inD ≤ 4 dimensions [20,29–31]. This can be shown by an implementation of half
(eight) of the total (sixteen) supersymmetries in the theory. This implies that theL-loop four-gluon
amplitude has a ultraviolet behavior dominated by

A
(D)

4;L ∼ Λ(D−4)L−4F4 . (2.1)

whereΛ is a ultraviolet cutoff. This power counting law implies finiteness in dimensionsD ≤ 4.
However, the situation is better than that because the CP-even termF4 is related by supersymmetry
to the CP-odd anomaly canceling termB∧F4 whereB is the NS-NS B-field. One therefore expect
these contributions to be one-loop exact [32–36]. This means that theL > 1 contributions must
have a low energy limit that behaves as∂ 2βL F4 with βL ≥ 1 for L ≥ 1, so that the prefactor contains
at least two extra powers of momentum. In fact, direct perturbative evaluations of the four gluon
amplitude [37,38] indicates thatβL = 1 for all L > 1, leading to the ultraviolet behavior of1

A
(D)

4;L ∼ Λ(D−4)L−6∂ 2 t8tr(F4) for L ≥ 2. (2.2)

We refer to [40] for a discussion of the ultraviolet behaviour of the sub-leading contributions in
the color factors. In a unitarity computations the behaviorof eq. (2.2) is directly obtained from an
explicit realization of the supersymmetry, by consideringdiagrams [38] constructed from the ‘rung
rule’ and via dual conformal symmetry [9,41]. The results from a unitarity based approach can be
independently confirmed by superspace methods as in ref. [19–21].

At one-loop order in four dimensions one can expand alln-point amplitudes in a set of basis
functions which consists of scalar boxes, triangles, bubble integrals and possibly rational poly-
nomial functions [42, 43]. This expansion in terms of basis functions is symbolically illustrated
in figure 1. The split-up in basis functions holds via kinematic restrictions for four-dimensional
momenta and because one-loop tensor integrals in amplitudes always can be reduced to scalar
integrals [42,44–46].

In D = 4−2ε dimensions the one-loopn-point amplitude will take the schematic form

A
(D)

n;1 = µ2ε
∫

dDℓ
Pn(ℓ)

ℓ2
1 · · ·ℓ2

n
. (2.3)

Here ℓ2
i = (ℓ− k1 − ·· · − ki)

2 are the propagators along the loop andPn(ℓ) is a polynomial in
the loop momentumℓµ . This polynomial is a function as well of the external momenta and the

1The tensort8 is defined in the appendix 9.A of volume II of [39].
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Figure 1: Basis of one-loop scalar integrals given by a) a scalar box with four propagators to be integrated
over, b) scalar triangles with three propagators and c) a scalar bubble integral with only two propagators. In
D = 4−2ε dimensions these diagrams carry all the ultraviolet and infrared divergences of the amplitudes.
Possible finite contributions to the amplitude are absorbedin a rational polynomial function.

helicities of the external states. The maximal dependence of the loop momentumℓ is n from the
three point coupling of the Yang-Mills theory. From the saturation of half of the supersymmetries
in the loop (i.e. eight supercharges)n is reduced ton− 4. Hence the numerator takes the form
Pn(ℓ) = ∑i O

i
4×P i

n−4(ℓ), whereO i
4 is a dimension four operator made from external momenta

and polarization vectors.

In each on-shell amplitude one can apply the following Passarino-Veltman reduction [47]
which trade one power of loop momentumℓ to a propagator

∫

dDℓ
2(ℓ ·k1)

ℓ2(ℓ−k1)2 (· · · ) =

∫

dDℓ
1

(ℓ−k1)2 (· · · )−
∫

dDℓ
1
ℓ2 (· · · ) . (2.4)

This identity is represented pictorially in figure 2. Since the numerator inn-point N = 4 Super
Yang-Mills one-loop amplitudes have at mostn− 4 powers of loop momenta aftern− 4 steps
of reductions (2.4) the complete amplitude can decomposed completely in a basis of scalar box
integral functions.
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l

l =

1
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2
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Figure 2: On-shell reduction of color ordered amplitudes.

2.2 QED amplitudes

We will now consider the one-loopn-photon amplitudes in massless QED. Furry’s theorem
apply here and dictates that amplitudes with an odd number ofexternal photon lines are vanishing.
Thus we only need to consider amplitudes with an even number of external lines.
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Each vertex will bring one power of momenta and make the numerator Pn(ℓ) a polynomial
with at mostn powers of loop momentumℓ ≡ ℓn. Because of up ton powers of loop momenta in
the numerator of then-point amplitude, one would expect via a succession of Passarino-Veltman
reductions that the one-loop amplitude could be expanded ina linear basis of scalar box, triangle
and bubble integral functions (see figure 1) and possible rational pieces.

l

l =

l

2
+ Dimension

shifted integrals

Figure 3: On-shell reduction of unordered amplitudes.

It was shown in ref. [12] that the one-loopn photon amplitude in massless QED is completely
expressible in terms of scalar box integral functions forn ≥ 8 external photons. The cancelation
of the scalar triangle and bubble functions was accounted for by the sum over the permutations
imposed by the absence of color factors. This is a consequence of the fact that unordered colorless
amplitudes satisfy a new type of reduction formula derived in [10] where two powers of loop
momenta are traded for a propagator factor as depicted in figure 3. Such a reduction formula is
reflecting the milder infrared behavior of colorless QED andgravity amplitudes compared to the
QCD amplitudes [48].

The reduction formula in figure 3 shows the appearance of dimension shifted integrals. These
can be shown to cancel in the physical amplitude by gauge invariance (In the string based formalism
used in [10,12] the cancelation makes use of a canceled propagator mechanism).

The application of this reduction formula gives that all one-loop amplitudes withn≥ 8 external
photons can be expressed as a linear combination of scalar box integral functions

A
1−loop

n =
i(µ2)ε

(4π)2−ε
Γ(1+ ε)Γ2(1− ε)

Γ(1−2ε) ∑
α={1m,2me,2mh,3m,4m}

∑
(i, j,k,l)

cα(i, j,k, l)Fα(i, j,k, l) . (2.5)

Here(i, j,k, l) is a parametrization of the four uncanceled propagators, defining the kinematic in-
variants of the scalar box functions [49]. We remark that this result is helicity independent and
generalizes to all helicity configurations the result derived by Mahlon for MHV amplitudes in
ref. [50].

We have in the previous equation introducedFα which is the dimensionless scalar box function
defined as in ref. [51]

Fα(i, j,k, l) =
i(2π)2−ε

2
((x2

13x
2
24−x2

12x
2
34+x2

23x
2
41)

2−4x2
13x

2
23x

2
24x

2
41)

1
2

∫

d4−2εx0

(2π)4−2ε

4

∏
i=1

1

x2
0i

, (2.6)

whereKµ
i = xµ

i −xµ
i+1 , with 1≤ i ≤ 4 andx5 = x1 andKi are the external momenta at each corner

of the scalar box functions. We have used the notationx2
i j = (xµ

i −xµ
j )

2.

5



On Amplitudes in Gravity and Gauge Theories N.E.J. Bjerrum-Bohr

The sum is over thed1 = n one-mass scalar box functions, thed2e = n(n−5)/2 two-mass easy
boxes, thed2h = n(n−5) two-mass hard boxes, thed3 = n(n−5)(n−6)/2 three-mass boxes, and
thed4 = n(n−5)(n−6)(n−7)/24 four-mass boxes [49]. Actually because of the soft limit relation
between the two-mass easy and the one-mass scalar box functions we have,

lim
K2→0

F2me(ki ,k j +K1,kk,kl +K2) = F1m(ki ,k j +K1,kk,kl ) , (2.7)

thus there is no need to distinguish between these functionsand separate them into two different
sets. This gives a total ofn(n−3)/2 functions.

Because of the vanishing of the multi-photon tree level amplitudes no infrared singularities of
the QED amplitudes are present

A
1−loop

n

∣

∣

∣

IR
∝

n

∑
i=1

(−(ki +ki+1)
2)−ε

ε
A

tree
n = 0. (2.8)

This lead ton(n−3)/2 relations for each independent kinematic invariant [49].However the set of
relations appear to be redundant. The vanishing of the infrared singularities imply that the one-loop
multi-photon amplitudes are given by a ultraviolet and infrared finite combination of the scalar
box functions. As well this guaranties that the amplitude isinvariant under the dual conformal
transformations of [9,41].

3. Amplitudes in Gravity

TheD-dimensional Einstein-Hilbert Lagrangian has the form:

L =
1

2κ2
(4)

∫

dDx
√−gR , (3.1)

where 2κ2
(4) = 2(2π)2 GN. Ignoring renormalisation issues it is possible to make a formal quanti-

zation of this action. It is conventional to usegµν ≡ ηµν + κ(4) hµν and work in harmonic gauge:
(∂ λ hµλ = 1

2∂µhλ
λ ). For this gauge choice the vertex rules for the three- and four-point Einstein

vertices can be found to be [52, 53]. However this traditional way of constructing amplitudes in
gravity lead to very cumbersome and unmanageable results. Explicitly we have for instance

V(3)
µα ,νβ ,σγ(k1,k2,k3) =

1
2

κ(4) sym
[

−P3(k1 ·k2ηµαηνβ ησγ)−P6(k1νk1β ηµαησγ)+P3(k1 ·k2 ηµνηαβ ησγ)

+2P6(k1 ·k2ηµαηνσ ηβγ )+4P3(k1νk1γ ηµαηβσ )−2P3(k1β k2µηανησγ)+2P3(k1σ k2γ ηµνηαβ )

+2P6(k1σ k1γ ηµνηαβ )+4P6(k1νk2γηβ µηασ )+4P3(k1νk2µηβσ ηγα)−4P3(k1 ·k2 ηανηβσ ηγµ)
]

.

(3.2)

Here ’sym’, denotes a symmetrization of each pair of indices: (µα), (νβ ), . . . and the mo-
mentum factors: (k1, k2, . . .) are to be associated with the index pairs: (µα , νβ , . . .) correspond-
ingly. The symbol: (P#) means that a #-permutation of indices and corresponding momenta has to
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carried out for this particular term. As seen the algebraic structure for the three-point vertex is al-
ready rather involved and complicated. At the level of Feynman diagram computations this vertex
structure combined with the generic factorial increase in complexity with an increasing number of
external legs makes it extremely difficult to compute amplitudes. Furthermore possible simplicity
of expressions are hidden in very involved cancelations between a factorially increasing number of
terms as the number of external legs increases.

In the on-shell amplitude the three-point vertex can be greatly simplified using the mass-shell
relationski ·k j = 0 for i, j = 1,2,3, and imposing the tracelessness conditionhµµ

1 = 0

V(3)(1,2,3) ≡ hµα
1 hνβ

2 hσγ
3 V(3)

µα ,νβ ,σγ (k1,k2,k3)=
κ(4)

2
hµα

1 hνβ
2 hσγ

3

(

k1µ ηνσ +perms
)(

k1α ηβγ +perms
)

.

We see that the three points vertex in the on-shell amplitudeactually takes the very suggestive form
V(3)

gravity ∼ (V(3)
YM)2 with VYM ∼ gYMhµ

1 hν
2hρ

3 (k1µ ηνσ + perms). This is a factorization which is highly
surprising from the Lagrangian perspective (3.2). Such a relation indicates clearly that the structure
of on-shelln-graviton amplitudes will take a simpler form than naïvely expected.

Field theory tree-level amplitudes can be derived in an infinite tension limit (α ′ → 0) of string
graviton amplitudes. A generaln-point scattering amplitude for a closed string will be connected
to that of two open strings through [54]:

M
(closed string)
n = κn−2 ∑

σ ,σ ′∈Sn/Zn

eiπΦ(σ ,σ ′)Aleft(open string)
n (σ(1), · · · ,σ(n))Aright(open string)

n (σ ′(1), · · · ,σ ′(n)) .

(3.3)
Hereσ andσ ′ are permutations inSn/Zn of the set of all permutations, but with cyclic rotations
removed andΦ(σ ,σ ′) is a phase factor depending on the kinematics invariants. The open string
amplitudes are the tree-level color-ordered gauge theory partial amplitudesAtree(open string)

n defined
as

A
tree

n (1,2, . . . ,n) = gn−2
YM ∑

σ∈Sn/Zn

Tr(Taσ(1)Taσ(2) · · ·Taσ(n))Atree(open string)
n (σ(1), . . . ,σ(n)) . (3.4)

TheTai are fundamental representation matrices for the Yang-Mills gauge groupSU(Nc), normal-
ized so that Tr(TaTb) = δ ab.

In the field theory limitα ′ → 0 this expression becomes

M
tree
n (1,2, · · · ,n) = κn−2 ∑

σ ,σ ′∈Sn/Zn

f σ ,σ ′

n−3 (si j )Atree
n (σ(1), · · · ,σ(n)) Ãtree

n (σ ′(1), · · · ,σ ′(n)) , (3.5)

where f σ ,σ ′

n−3 (si j ) is a homogeneous rational function of ordern− 3 in the kinematic invariants

si j = (ki +k j)
2, such thatf σ ,σ ′

n−3 (λ 2si j ) = λ 2(n−3) f σ ,σ ′

n−3 (si j ), assuring that the gravity tree amplitude
has the correct pole structures, andAtree

n (σ(1), · · · ,σ(n)) is the field theory limit of the open string
n-point amplitude.

The origin of the functionf σ ,σ ′

n−3 (si j ) can be understood as follows. If one rescales the external
momenta aski → λ ki then-gluon Yang-Mills amplitude scale as

Atree
n ∼ λ 4−n , (3.6)
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expressing the fact that the three- and four-point amplitudes lead to local interactions of respective
form tr([Aµ ,Aν ]∂ [µAν ]) and tr([Aµ ,Aν ][Aµ ,Aν ]). In the case of gravity since the Einstein-Hilbert
action (3.1) gives contributions of orderO(k2) to any number of external graviton we must have,

M
tree
n ∼ λ 2 . (3.7)

This implies that in the KLT relation (3.5) a rational function of ordern−3 in the external momenta
must multiply the product of Yang-Mills amplitudes. Tree-level amplitudes are presented in [54]
in this form. The functionf σ ,σ ′

(si j ) is a polynomial of ordern−3.
A particular case of the expression (3.5) is a left-right symmetric presentation of the gravity

amplitude [55,56] that is obtained by using the same basis offunctions for the left and right moving
open string amplitudes

M
tree
3 (1,2,3) = −i κ |Atree

3 (1,2,3)|2 , (3.8)

Using that

Atree
4 (i, j,k, l) =

1
si j skl

tm1···m8
8

4

∏
i=1

F (i)
m2i−1m2i , (3.9)

(with F (i)
mn = ki

mhi
n − ki

nhi
m and (i, j,k, l) being a permutation of the labels of the external states

{1,2,3,4}), it is immediate to massage the four-point KLT relation into a left/right-symmetric
form

M
tree
4 (1,2,3,4) = −i κ2 (

s13|Atree
4 (1,2,3,4)|2 +s12|Atree

4 (1,3,2,4)|2 +s14|Atree
4 (1,4,2,3)|2

)

.

(3.10)

At five-point order a left/right symmetric form valid for allhelicity configurations has been pre-
sented in [56]

M
tree
5 (1,2,3,4,5) = −i κ3 [

c1 |Atree
5 (1,2,3,4,5)|2 +c2 |Atree

5 (1,4,3,2,5)|2 (3.11)

+ c3 (Atree
5 (1,2,3,4,5)Ãtree

5 (1,4,3,2,5)+Atree
5 (1,4,3,2,5)Ãtree

5 (1,2,3,4,5))
]

,

where|An(1, · · · ,n)|2 = An(1, · · · ,n) Ãn(1, · · · ,n). In this form the coefficientsci (depending only
on the kinematic variables) are not always polynomials but can be rational functions of degree
n−3.

Such relations in field theory between gravity amplitudes assums of left/right products of color
stripped gauge theories have been confirmed [4, 54, 57] and explicitly presented for an arbitrary
number of legs in [22]. These relations do not require the existence of an underlying consistent
string theory and hold in any dimensions or massless matter [58, 59]. In particular field theoretic
derivations of relations of the form (3.5) have been presented in [56] and using helicity formalism
in four dimensions in [55,60].

3.1 Relations between N = 4 Super Yang-Mills and N = 8 Supergravity

The KLT relations presented in the previous section indicate that at the field theory level the
relation between gravity amplitudes and Yang-Mills amplitudes amounts to replacing gauge degree
of freedom of the Yang-Mills fields by Lorentz degrees of freedoms as follows

Aa
µ → ζµ

a . (3.12)
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Such a correspondence is compatible with extended supersymmetry and can be used naïvely to
promoteN = 4 super-Yang-Mills invariants into higher-derivativeN = 8 super-invariants.

Since the full diffeomorphism invariance carries even moresymmetry (For example Ricci
cycling identitiesRµ [νρσ ] = 0) it is however not possible to capture all of these by such a map [61].
The naïve application of the above substitution rule on the∂ 2 F4 operator would for instance lead
to a N = 8 supergravity amplitude with an apparent factorization ofthe operatorD2R4. This
would consequently make theL = 2 four-graviton amplitude diverge inD = 6 dimensions. This is
however contrary to explicit knowledge as this amplitude has been shown to be finite up toD ≤ 6
dimensions [62].

The main cause for this is that diffeomorphism invariance for N = 8 supergravity implies a
summation over all permutations of external legs. Thereby the invariantD2R4 ∼ (s+ t +u)R4 = 0
vanish by on-shell momentum conservation (the corresponding Yang-Mills operator∂ 2tr(F4) =

u tr(F1F2F3F4) + t tr(F1F2F4F3) + s tr(F1F3F2F4) does not vanish on-shell because different color
orderings have different kinematic factors). The first non-vanishing contribution is therefore of
orderD4R4. This provides a suitable structure for the two-loop amplitude kinematic factor. For the
higher-loop amplitudes which haveβL ≥ 3 for L ≥ 3 [13, 16] this does however neither give the
correct form.

One thus have to be careful with such arguments since gravitytheories carry symmetries be-
yond what is provided via two copies of the gauge transformations of Yang-Mills theories.

An important consequence of the full crossing symmetry in gravity theories is that infrared
divergences in quantum gravity can be treated as in QED. Theyare also much milder than in
color ordered theories like QCD. Hence although it looks like gravitational interactions are much
more complicated than gauge theory ones they have in fact additional simplicity. This is also the
case in QED which similarly has full crossing symmetry. Thishas the consequence that one-loop
QED andN = 8 supergravity loop amplitudes enjoy extra cancelations leading to the no-triangle
property [11,26].

3.2 No-triangle property of N = 8 supergravity amplitudes

Historically computations of one-loop amplitudes forN = 4 super Yang-Mills andN = 8
supergravity was first carried out by Green, Schwarz and Brink in ref. [63]. They obtained the four
point one-loop amplitude in both theories by taking the low energy limit of string theory:

A
loop(1,2,3,4) = Kopen× I4(s, t) ,

M
loop(1,2,3,4) = Kclosed

(

I4(s, t)+ I4(s,u)+ I4(t,u)
)

.
(3.13)

Here we have given the partial amplitude for the ordering of the external legs(1,2,3,4) and set
Kopen= st ×Atree

4 (1,2,3,4) = tm1···m8
8 ∏4

i=1 F(i)
m2i−1m2i and definedKclosed= stu×M tree

4 (1,2,3,4) =

KopenK̃open= κ4 t8t8R̂4. In this formulaI4(s, t) denotes the scalar box integral with legs attached
in the leading in color order 1234.s, t andu denotes the usual Mandelstam variables (coupling
constants have here been suppressed).

In the case ofN = 8 supergravity the loop momentum factor in the numerator of the n-
graviton one-loop amplitude in eq. (2.3) is given by a polynomial of degree at most 2n−8. Eight
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powers of momenta are canceled by supersymmetry. This implies the factorization of the operator
of dimension eight in front of the loop amplitude

P2n(ℓ) ∼ O8 ℓ2n−8, for ℓ ∼ ∞ . (3.14)

A power counting of infrared divergences based on the traditional color ordered Passarino-Veltman
reduction (see figure 2) ofN = 8 supergravity imply that the one-loop amplitude withn ≥ 7
gravitons would contain integral functions other than scalar box integrals,i.e. scalar triangles and
bubbles and rational polynomials. However explicit computations in ref. [22] of the five and six-
point MHV amplitudes evaluated using unitarity techniques surprisingly showed the amplitude to
consist solely of box integral functions. It was conjectured that this behavior should hold for all
MHV amplitudes via consistency of factorizations and an all-n ansatz consisting of box functions
in theMHV case was presented. In ref. [23]N = 8 supergravity were reanalyzed in the context
of new results and it was postulated that the ‘only boxes’ property was a general feature of all
N = 8 amplitudes in all helicity configurations. In ref. [24, 26]this was phrased the “no-triangle
hypothesis” forN = 8 and it was explicitly checked to hold for six-pointNMHV amplitudes and
higher.

The non-presence of all contributions more singular than the scalar box amplitude has the
same origin as in the case of the QED amplitude [10–12]. It is firstly due to crossing symmetry and
secondly to the decoupling of longitudinal modes from the diffeomorphism gauge invariance. For
theories with crossing symmetry the unordered reduction formula depicted (see figure 3) should be
applied.

A generalization of this result for multi-loop amplitudes is not straightforward since no generic
basis of integral functions are known for an arbitrary number of legs. The requirement of crossing
symmetry in colorless theories demands the presence of bothplanar and non-planar integrals in the
amplitude. This makes the construction of a basis of integral functions that captures the ultraviolet
and infrared behavior of higher loop amplitudes even more elusive [64–67].

3.3 Higher-loop Amplitudes

At L loop order linearized on-shell supersymmetry implies thatthe critical dimension for ul-
traviolet divergences in the four-graviton amplitude is given by

D ≥ 2+
cN

L
, (3.15)

indicating that supergravity theories are always finite in two dimensions. In the case whencN

is bounded from above the loop order for the appearance of thefirst logarithmic divergence is
determined by the value of 6≤ cN ≤ 18. cN depends on the implementation of the linearized on-
shell supersymmetries and determines also the mass dimension of the first possible counter-term to
the theory [14,68–71].

A L loop n-graviton amplitude has mass dimension

[M
(D)
n;L ] = mass(D−2)L+2 . (3.16)

The low energy limit of the four-graviton amplitude atL loops reads

[M
(D)
4;L ] = mass(D−2)L−(6+2βL) ∂ 2βLR4 , (3.17)
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where we have used thatN = 8 supergravity four-graviton amplitudes have a factor ofR4 and
allowed 2βL powers of derivatives to be distributed on the four Riemann tensors. The critical
dimension for ultraviolet divergences is given by

D ≥ 2+
6+2βL

L
. (3.18)

WhenβL = L at each loop order two extra powers of the external momenta are factorized and
the critical dimension for ultraviolet divergences is given by [13,14]

D ≥ Dc = 4+
6
L

. (3.19)

This is the same critical dimension asN = 4 super-Yang-Mills. By explicit evaluation of the
amplitude it has been shown to be valid in field theory up to four-loop order [16–18].

As soon asβL is bounded after some loop order, the theory will have an ultraviolet divergence
in four dimensions. The pure spinor formalism gives a counting of supersymmetric zero modes
which are valid in all dimensions between 4≤ D ≤ 11 whereN = 8 supergravity can be defined.
This construction implies [72] thatβL = L is valid for L ≤ 6 as long as the smallλ regulator is not
needed [40]. After six-loop order one needs to use the fully regulated version of the formalism [73]
and the question whetherβL still can increase is open [74]. In the case whenβL = 6 for L ≥ 6 the
critical dimension for the ultraviolet divergence is givenby D ≥ 2+18/L according to (3.18). This
indicates that in four dimensions the first divergence wouldoccur at nine-loop order [14].

The ruleβL = L is the optimal one for finiteness in four dimensions. When theincreasing
the loop orderL, with a growth ofβL slower thanL finiteness of the theory in four dimensions
is not possible. On the other hand ifβL grows faster thanL, the theory would too be finite. For
instance theL loop (planar and non planar) ladder diagrams of the four-graviton amplitudes are
all two-particle cut constructible and given by scalarϕ3 diagrams with a prefactor satisfying the
rule βL = 2(L− 1). These diagrams are ultraviolet finite forD ≤ 6. This means that the leading
ultraviolet divergences ofN = 8 amplitudes are not contained in these ladder diagrams.

The absence of triangles and bubbles at one-loop order implies via general factorization the-
orems that higher-loop amplitudes cannot contain diagramsfactorisable in one-loop amplitudes
where triangles or bubbles are present. This constraint affects the structure of the higher loop
amplitude [15] but is not a sufficient condition for perturbative finiteness. For this further subtle
cancelations between triangle free contributions are required [16].

4. Conclusions

The past two years have witnessed significant progress in thecomputation of loop amplitudes
in gauge theories. This progress for amplitude computations can be extended, in many cases, to the-
ories incorporating gravity. Via this our understanding perturbative maximalN = 8 supergravity
have improved.

It is clear that the rôle of extended supersymmetry in perturbative N = 8 supergravity is
beyond the superspace transformation properties of the product of twoN = 4 super-Yang-Mills
theories. Actually the vacuum structure ofN = 4 super-Yang-Mills andN = 8 supergravity
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theories are very different. The one ofN = 8 supergravity is given in four dimensions by the
homogeneous space ofE7(7)/(SU(8)R/Z2) [75]. While the transformational properties of the local
symmetry groupSU(8)R is like a ’square’ of the groupSU(4)R (corresponding to eachN = 4
super-Yang-Mills theory) there is no corresponding symmetry of the global groupE7(7) in N = 4
super-Yang-Mills.

TheE7(7) symmetry rotates the different vacua ofN = 8 supergravity and thus relates the per-
turbative contributions of the theory to the non-perturbative black hole production at high-energy.
This is required for a consistent definition of the theory [76].

The search for a fundamental theory of quantum gravity is still ongoing. In these years we
are gaining a much needed understanding of the concepts behind the formulation of such a theory.
In supergravity theories the rôle of string theory dualities is important for their quantization and
thus give us a framework for gathering further knowledge about quantum gravity, its fundamental
degrees of freedom and its relation to gauge theory. Resolving the questions of ultraviolet finiteness
of N = 8 supergravity and the validity of theβL = L rule [13] would indeed be remarkable and
provide huge implications for non-supersymmetric low-energy descriptions of quantum gravity
theories.
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