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Abstract

The paper puts together some loosely connected observations, old
and new, on the concept of a quantum field and on the properties of
Feynman amplitudes. We recall, in particular, the role of (exceptional)
elementary induced representations of the quantum mechanical con-
formal group SU (2, 2) in the study of gauge fields and their higher spin
generalization. A recent revival of the (Bogolubov-)Epstein-Glaser ap-
proach to position space renormalization is reviewed including an ap-
plication to the calculation of residues of primitively divergent graphs.
We end up with an optimistic outlook of current developments of an-
alytic methods in perturbative QFT which combine the efforts of the-
oretical physicists, algebraic geometers and number theorists.
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1 Introduction

Before embarking in philosophy one should learn to calculate.
N.N. Bogolubov, advice to young theoretical physicists.

In June 1968 a grand style Symposium on Contemporary Physics was held
in Trieste celebrating the inauguration of the new building of the Abdus
Salam International Centre for Theoretical Physics. The most memorable
lectures of the symposium were those pertaining to an evening series entitled
From a Life in Physics®. Tt included the recollections of four Nobel Prize
winners, Bethe, Dirac, Heisenberg and Wigner, all in their sixties. People
like Heisenberg and Dirac, the pioneers of quantum theory, were accustomed
to lead the way, to create new trends, not to follow others’ changing fashions.
It is sad but true that the most original minds (including even Einstein!) get
at some point out of touch with the current problems in the theory. We were
charmed by the stories of the heroic past but were not so much interested
in the latest contributions of the founding fathers. Some less creative theo-
rists, whose predilection is to help understand the intuitive visions of their
predecessors stand a chance to keep longer abreast of what is going on.

[ have been studying quantum field theory (QFT) for over 56 years (start-
ing in 1956, right after graduating the University of Sofia). My first teacher
on the subject became N.N. Bogolubov whose textbook [BS] appeared in
1957. (In the course of time my views of the field have been also influenced
by the approaches of Arthur Wightman and Rudolf Haag - well before the
books [SW, Ha] became available.) Subsequently, I was mostly learning from
my students and younger collaborators. With no attempt to exhaust their
list let me single out Anatolii Oksak with whom we studied infinite compo-
nent fields since the mid 1960’s [OT, OT69, OT70] and who was instrumental
in completing the book [BLOT]; Gerhard Mack and Detlev Buchholz the col-
laboration with whom [MT, DMPPT] and [BMT] has proved beneficial to
our group in Sofia. An outgrow of our joint work with Mack was the study of
exceptional elementary representations of the conformal group by Vladimir
Dobrev, Valya Petkova and Galen Sotkov, surveyed in Sect. 2.2. A renewal
of interest in higher dimensional conformal QFT was started at the turn of
the century with my youngest collaborator, Nikolay Nikolov [NT, NT05] and
continued with my (once student) long term partner Yassen Stanev (now in

2A 76-page booklet, so entitled, prefaced by Abdus Salam, containing all six evening
lectures, was published as “A special supplement of the IAEA Bulletin, in English only.”



Rome)[NST03], Karl-Henning Rehren [NRT08], and Bojko Bakalov [BNRT].
Dirk Kreimer taught me - through his work with David Broadhurst at ESI,
his spectacular collaboration with Alain Connes, [Kr, CK], and his later work
with Spencer Bloch, [BEK, BK] - both at ITHES - that renormalization is a
beautiful and lively subject. I keep learning (and appreciating) it while pur-
suing our (still continuing) joint project [NST, NST12] with a veteran in the
field, Raymond Stora, and with Nikolov.

Following the advice of my first teacher in QFT I'll refrain from philoso-
phizing and keep my comments down to earth - and close to the calculations.

2 The role of the conformal group in QFT

2.1 Fields versus particles

There has been a tension between the field and the particle picture in QFT
since its inception. Particles correspond to unitary positive energy irreducible
representations (IRs) of the Poincaré group. According to the classification
of Wigner [W39] they are labeled by the mass m > 0 and the spin (or he-
licity for m = 0) s. They are constructed as representations induced by the
invariance subgroup of a particle momentum. Local fields, on the other hand,
are characterized by their dimension d and by an IR (j;,72) (of dimension
(271 + 1)(2j2 + 1)) of the quantum mechanical Lorentz group SL(2,C). As-
suming that in QFT we privilege fields, [Ho|, one can ask whether there is
a representation theoretic relation between the Lorentz weight and the scale
dimension, and between them and the associated particle characteristics. A
unexpected answer is suggested by studying the conformal symmetry of the
limit theory of massless fields. It is provided by the elementary induced repre-
sentations (EIRs) of the quantum mechanical conformal group C = SU(2,2),
a four-fold cover of the simple ”geometric conformal group” SOy (4,2)/{£1}
that appears as the group of local causal automorphisms of space time (cf.
[F'S, S]). There are two ways to describe the EIRs of C, [M, T]. One is to
view them as induced by irreducible representations (IRs) of the stability
subgroup of a point, say x = 0; this is an 11-parameter parabolic subgroup
P C C which can be written as a semidirect product of three factors:

P=MAN(=Nx(MxA)), M=SL2C), A=R,, (2.1)



A is the 1-parameter subgroup of dilations x — pz, p > 0 commuting with
Lorentz transformations and N is the 4-parameter (abelian) subgroup of spe-
cial conformal transformations® n. : v — (x + 2%¢)(1 + 2xc + 22c*)~1. The
invariant subgroup N C P (with nilpotent Lie algebra) has only trivial finite
dimensional IR. Thus the inducing representations of P are labeled precisely
by the triple [d; j1, j2| giving the IRs of R, x SL(2,C) that characterize local
fields. The second approach, appropriate to positive energy (highest weight)
representations, uses induction from the IRs of the maximal compact sub-
group K = S(U(2) x U(2)) € C. These are again labeled by triples of
the above type with (ji,j2) now standing for an IR of the semisimple part
SU(2) x SU(2) of K while for the EIRs that admit a unitary positive energy
subrepresentation d appears as the minimal eigenvalue of the generator H
of the centre U(1) of K, interpreted as the conformal Hamiltonian. Globally
conformal invariant (GCI) fields [NT] transform under proper (rather than
projective) EIRs of C for which the twist d — j; — jo is an integer. Following
[T] we shall call such triples [d; ji, jo] integer points in the space of EIRs:

E]RIX:[d;jl,jQ], GCI:d—jl—jQGZ. (22)

Such integer EIRs have the good sense to admit both lowest and highest
weight subrepresentations, thus giving room to (free) fields that admit a
decomposition into a positive and a negative frequency part. Adding the
requirement of Hilbert space (or Wightman) positivity, i.e. demanding that
the space generated by the action of a GCI (smeared quantum) field on the
vacuum admits a (non-trivial) subspace realizing a unitary positive energy
irreducible representation of C we will deduce that the twist should be pos-
itive: d — j; — jo = 1,2,.... (Twist one only appears for free chiral fields
- i.e, for j1jo = 0.) Remarkably, these are precisely the constraints that
single out relativistic fields appearing in a local QFT (when no conformal or
scale invariance is assumed, d is to be identified with the naive ”canonical”
dimension of the field in units of inverse length).

A digression: massless fields are important for QFT in more than one way. They
naturally split into chiral (irreducible under SL(2,C)) components. The recognition that
left and right chiral fields interact differently was basic to the formulation of the standard
model of particle physics. As noted in (Appendix G to) [MZ12] the understanding of spin

one massless fields led to the notion of gauge symmetry and to the theory of Maxwell and

3 As n. acts on Minkowski space M = R*! with singularities one should view (classical)
conformal fields as sections of a C vector bundle on the conformal compactification of M.
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Yang-Mills fields; a massless interacting spin two field gives rise to the (invariant under
diffeomorphisms) Einstein gravity; higher spin fields (see [FV, V12] and references in the
latter paper) may provide a new point of departure for string theory. One can trace a
parallel between starting with the zero-mass limit in the fundamental laws of QFT and
Galileo’s neglecting friction and recognizing the role of inertial frames which paved the way
to creating classical mechanics. From this point of view we are still in the formative period
of QFT. The hope that masses may emerge without being put in by hand is supported by
the idea of dimensional transmutation [F] and by lattice results in ”QCD lite” -see [W12].

Lorentz invariant (massless) field equations are only conformal invariant
for special integer EIRs, namely those corresponding to twist one. This
condition is indeed obeyed by the Dirac (or Weyl) and the Maxwell equations.
Conserved currents appear just as twist two integer EIRs as in the familiar
cases of the electromagnetic current and the stress-energy tensor. They are
also intertwined with gauge fields (and their generalizations), as we proceed
to demonstrate.

2.2 Gauge fields as exceptional EIRs

Gauge fields and conserved currents turn up as special relatives (having the
same eigenvalues of the Casimir operators) to the finite dimensional IRs*.

Every finite dimensional IR appears as a subrepresentation of an EIR y_,
for which d + j; + j2 =: 1 — v is a non-positive integer (so that v = 1,2, ...).
It is convenient to express the labels d, ji, j2, in terms of v, the total spin
¢ = j; + j» and another positive integer n = 2jo + 1 (= 1,...,20 + 1). (2js
being the number of symmetrized dotted SL(2,C)-indices.) There are six
partially equivalent EIRs, which we label by the value of d +/¢ —1: xy_, =
and their duals x_, (= [3+(+v, %%, £ — 251]), Yo, X» Which can be combined
in two exact sequences (where we identify the EIRs x with the corresponding
space-time bundles):

(0=)X-v = X0 = Xn(—0)
(2.3)
(0 <_)>2—1/ — )NCO — Xn(<_ O)

The arrows indicate differential intertwining operators of order v and n,
respectively (and the image of each map is the kernel of the subsequent).

4Here we outline the results of [PS, PST] - an outgrow of [DMPPT, DP, KG, T81].



The dual EIRs ¥ (with d = 4 — d and j; and j, interchanged) of the second
line are partially equivalent to the x’s above them. There are also differential
intertwining maps of order 2¢ + 2 — n (not indicated above) xo — X, and
Xn — Xo- For (v,£,n) = (1,0,1) we obtain the equations related to a gauge
field. The arrow on the top row pointing to xq is the gradient, mapping a
dimensionless scalar function s to a pure gauge field d,s. The two arrows
originating in xo map the 4-vector A, (of dimension 1) onto the (anti)selfdual
projections of its curl. The two arrows ending in X, and the one originating
there are divergences; the vanishing of the map yo — x_, on the image of
the two preceding maps expresses the conservation of the Maxwell current.
One may speculate about the relation of other exceptional EIRs to the gauge
theory of higher spin fields. In particular, the sextuplet labeled by (v, ¢, n) =
(1,1,2) appears to be related to a conformal gauge theory of gravity. More
generally, we can single out the series of symmetric tensor representations
corresponding to v =1, n=¢+ 1, £ = 0,1, .... They have vanishing higher
order Casimir invariants®:

Co(1,0,0+1) =20(( +3), C5 = 0 = C. (2.4)

The above construction extends to arbitrary space-time dimension D [KG]. We shall
summarize the case of even D = 2h in which there are D + 2 relatives of any finite
dimensional IR (see also Appendix B.4 of [TMP]; for odd D the number of relatives is
D+1). The EIRs of the 4-fold cover Spin(D, 2) of the D-dimensional conformal group are
labeled by A + 1 numbers: x = (d;l1,...,1;) where Iy — la,...,ln_1 — || are non-negative
integers. The dual representation x = (D —d;ly,...,ln_1, —lp) contains a finite dimensional
subrepresentation if v := d — D — Iy + 1 is a positive integer. Setting xp = (I + h,l1 +
vl ol 1), xane1 = (2h— 141, L+, k), xon = 2h+1 +v =114, .., 11),
we can write the counterpart of the second row of (2.3) as x5, = Xat1 — ... = xp- In
particular, for v = 1 the kernel of the last arrow corresponds to the twist D — 2 conseved

(tensor) currents. The case h = 2 is recovered for Iy = £ (= j1 + j2), la = j1 — Jo.

2.3 Higher spin conserved currents

So far we only came across a class of representations of the conformal group
appearing in the beginnings of field theory. Let me allude to a couple of more
advanced - and more recent - applications.

°In general, Co = ({+1—n)2 + Ll +2)+ (L +v+3)(l+v —1),C3 = (d—2)(j1 —
J2)Gi+ i+ 1) ==+ 1) +1—n)(l+1+v), Cy=n20+2—n)2+1-2[({+1)*+
C+1—n)[l+rv+ 12+ 1+ U+rv+1)2[(l+rv+1)2=2(=0forn=0+1,v=1).
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The wealth of 2-dimensional conformal field theories (CFT) uncovered
by Belavin, Polyakov and Zamolodchikov in 1984 (preceded by the lonely
Thirring model of 1958), stimulated attempts to extend at least some of the
results and techniques to higher dimensions. Nikolov and I tried to general-
ize the notion of a (chiral) vertex algebra by exploiting the concept of global
conformal invariance [NT, N, NT05]. This worked smoothly in even space
time dimensions and led to CFT models with Huygens locality, rational cor-
relation functions and an infinite number of conservation laws. Recent work
of Maldacena and Zhiboedov [MZ], motivated by the AdSy/C FT correspon-
dence, considered a 3D CFT with a higher spin symmetry. They reproduce
in 3D (with no Huygens locality) an argument and part of the results of
[BNRT] stating that (for D = 3) any theory with an infinite number of con-
served currents is generated by normal products of free fields. This can be
viewed as an extension of the Coleman-Mandula theorem [CM67] to the case
of a CFT (a theory with no mass gap and, typically, no scattering matrix).
The role of the S-matrix as a basic observable is replaced by the correlation
functions of the stress-energy tensor - as suggested long ago by Mack [M77]
(and elaborated recently by a number of authors - see [Z13, BHKSZ] and
references therein). All this made me think that the proper generalization of
a (2D) chiral algebra, valid for both even and odd dimensions, is precisely
a CFT with an infinite set of conserved currents [T12]. Conserved (sym-
metric) tensors in D space-time dimensions appear for twist D — 2 (twice
that of a free massless field). The attention towards theories with higher
conservation laws stimulated a renewed interest in the study of conformal
3-point functions of conserved (tensor) currents (see an important early con-
tribution by Stanev [S88], demonstrating that the general 3-point function of
the stress-energy tensor is a linear combination of three free field structures,
and the outcome of later work in [GPY, MZ, St, Z]). It led, in particular,
to the following generalization of the Weinberg-Witten theorem [WWB80]:
Let ¢4(x) be a massless (free) field that transforms under the representation’
s+ 1;5,0](s = 0,1/2,1,...) of C). The necessary and sufficient condition
for the existence of a conserved rank r (and twist two) tensor current J.(z),
such that the conformal invriant 3-point function < ¢s(x1)ps(x2)*J(x3) >
does not vanish, is r > 2s [St, T12] (¢% transforming under [s + 1;0, s]).

6The corresponding UPEIRs of U(2,2), describing massless particles of any helicity
were proven to remain irreducible when restricted to its Poincaré subgroup [MT69]. Note
that these IRs do not belong to the exceptional series described in Sect. 2.2.



The Thirring model was a source of inspiration for introducing (by Wilson
and others) the notion of anomalous dimension signaling the use of projec-
tive representations of the conformal group (or, equivalently, representations
of the infinite-sheet universal cover of C). The now fashionable N = 4 super-
conformal Yang-Mills model also involves fields of anomalous dimensions and
may be viewed as a far going 4D generalization of the Thirring model. Mack
and I constructed, back in the 1970’s [MT], a skeleton QFT with conformal
invariant dressed vertex functions and propagators (involving anomalous di-
mensions) that is free of divergences (work later surveyed in [TMP, T07]). A
closely related work led us, together with my students, to the study of con-
formal partial wave expansions DMPPT]|. A fresh retrospective view of these
developments and their relation to the ”dual resonance models”, provided by
Mack [M09], is currently taken up by a young Portuguese team [CGP].

3 Renormalization in configuration space

3.1 Wightman versus time-ordered Green functions

Quantum field theory encountered serious problems - the appearance of di-
vergent integrals in perturbation theory - from its inception. The founding
fathers were even ready to abandon it, anticipating yet another revolution
in the theory. A new generation of pragmatically minded physicists on the
wake of the war used instead judiciously the renormalization ideas of H.
Kramers and others of the 1930’s, transforming them into concrete recipes
for getting finite numbers out of the mess. Moreover, these numbers gave
amazingly good fits to high precision experimental results. The problem arose
for mathematically inclined theorists to disentangle sense from nonsense and
provide a coherent picture of QFT. If the practical S-matrix calculations (in-
cluding the mass, charge and wave function renormalization) were performed
in momentum space, nearly all attempts to give a precise formulation of the
basic principles of QFT are using the position space picture. The oscillation
between the position and momentum space approaches is a trademark of
perturbative renormalization (an early manifestation of the now fashionable
concept of duality - realized by the good old Fourier transform). While the
notion of a causal S-operator was introduced by Ernst Stueckelberg and his
collaborators (D. Rivier, T.A. Green, A. Petermann) back in 1950-53 and



taken up by Bogolubov and his school (as reviewed in [BS]), A.S. Wight-
man proposed his version of axiomatic QFT (see [SW, BLOT]| and references
therein). It provides an instructive example of the interplay between a nice
mathematical outlook and the stuff needed by physicists.

Wightman distributions are boundary values of analytic functions in a
tube domain” and can be multiplied. As a result, correlation functions of
normal products of derivatives of free fields are well defined distributions. In a
dilation invariant (massless) QFT they are dilation covariant (homogeneous)
boundary values of elementary functions. They form a graded (by the degree
of homogeneity) algebra generated by 2-point functions of the type

P(II?12>

Wi=——=, Zpp=21—23, pi2= (33%2 + i0$?2)1/27
12
D—1
r? =x? — (a°)?, x? =) (2%)? (3.1)
=1

(modulo obvious relations); here P = Pj5 is a homogeneous polynomial and
m = mig is a positive integer (that is even for even space-time dimension
D). A nice object - and no divergences in sight - should not everybody be
happy? But, in order to set up a perturbation theory allowing to compute
physical quantities - scattering amplitudes, form factors, magnetic moments
- one needs time-ordered Green functions (that are invertible - unlike the
Wightman functions - under the convolution product). Here resurges the
problem of ultraviolet divergences albeit in a tamed and more respectable
form: as a problem of extension of distributions.® A simple example of what
is involved is provided by (the powers of ) the Wightman and the time ordered

I only learned recently, reading a ”golden oldie” [W], that the idea to consider Green
functions in the upper half-plane of the eigenvalue parameter "not as trivial at that time
as it has now become” goes back to a 1910 paper by Hermann Weyl.

8We are not going to touch upon other complications involving large distance behaviour:
existence of adiabatic asymptotic limits, control over mass shell singularities - for whose
study the momentum space picture still appears to be more appropriate.



2-point functions of a free massless scalar field in 4D:

Glon) =< 0T (elopolaplo == { 12} forzd 7

1

Ry B e

1

Am2pt,

w(z12) =< 0lp(z1)p(22)[0 > = (32)

If n > 1 then the powers of the propagator G"(x) are only unambiguously
defined for x # 0. Their extension to distributions on the entire Minkowski
space M involves a renormalization ambiguity - a distribution with support
at the origin. Moreover, if we demand that the renormalization map is linear
(in particular, that the extension of zero is zero) then it cannot commute with
all derivatives - it has to involve anomalies. Indeed, while w(z) (and G(x)
away of the origin) satisfy the d’Alembert equation, Jw(xz) = 0, the time
ordered Green’s function obeys the inhomogeneous equation O G(z) = id(x)
(where §(z) is the 4-dimensional Dirac d-function). Thus, had we assumed
that renormalization commutes with derivatives we would have to violate
linearity allowing that the renormalization of zero may be id(x).

Dualities are chiefly used to reduce a large parameter asymptotics to a
small parameter one. From this point of view it is natural to overturn the
habit of just looking at momentum space, and begin studying ultraviolet -
small distance - singularities in position space. That was a natural starting
point for the work of Bogolubov - a mathematician set to master QFT -
and was implemented systematically by Epstein and Glaser [EG] (for later
developments and further references - see [BBK]). Some 30 years later when
developing perturbative QF T and writing down operator product expansions
on a curved background became the order of the day, it was realized that it
is the x-space approach which offered a way to their implementation - see
[BF, DF, HW]. There should be, therefore, no surprise that this approach
attracts more attention now than forty years ago when it was conceived.
Our interest, triggered by Raymond Stora, a reputed master of the field,
started with the observation that Hormander’s treatment of the extension of
homogeneous distributions (Sect. 3.2 of [H]), when generalized to associate
homogeneous ones, becomes tailor-made for studying the ultraviolet renor-
malization problem; that is particularly transparent in a massless QFT. For
us, [NST, NST12], a renormalization is a map (satisfying certain conditions)
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from a space of integrable functions defined on a dense open subset of RY
(outside the singularities) to distributions on RY. This way of reformulating
the renormalization problem has given enough ground for an invitation [FHS]
addressed to sceptical theorists to “stop worrying and love QFT”. The rest
of my talk provides some highlights of our work.

3.2 Causal factorization

Let me start with the basic requirement of causal factorization which allows
to define the ultraviolet renormalization of an arbitrary graph by induction
in the number of vertices. For the sake of simplicity I shall only spell out its
euclidean version [NST12].

Assume that all contributions of diagrams with less than n points are
renormalized. If then I' is an arbitrary connected n-point graph its renor-
malized contribution should satisfy the following inductive factorization re-
quirement. Let the index set I(n) = {1,...,n} labeling the vertices of I' be
split into any two non-empty non-intersecting subsets

](71) = ]iLJ ]é (]i §£ @ s ]é §£ @ y ]& N ]é = @).

Let Uy, 1, be the open subset of RP™ = (RP)*™ such that (z1,...,z,) ¢ U, 1,
whenever there is a pair (i,j) such that i € I, j € I,. Let further GI
and G¥ be the contributions of the subgraphs of I" with vertices in I; and
I, respectively. For each such splitting our distribution GE, defined on all
partial diagonals, exhibits the euclidean factorization property:

G =G [ ] G | G on U, (3.3)
ielq
Jj€l
where G; are factors (of type (3.1) with p;; replaced by the euclidean dis-
tance) in the rational function Gr and are understood as multipliers on Uy, j,.
This property is inspired by the Minkowski space causal factorization of
Epstein-Glaser [EG] in which one replaces the product of G;; by a product of
(equally oriented) Wightman functions W;; (3.1) and applies the wave-front
criterion ([H] Chapter VIII) - see the second reference [NST].

11



4 Residues. A finite renormalization

4.1 Renormalization of primitively divergent graphs

From now on we shall restrict our attention to the case of a massless theory in
which Feynman propagators are elementary homogeneous functions like (3.2).
We say that a homogeneous ”bare” Feynman amplitude G(Z) (corresponding
to a connected graph) is (superficially) divergent if the degree of homogeneity
—r of the density G(Z)Vol is non-positive. Realizing the inductive proce-
dure suggested by the factorization requirement of the preceding section one
starts with the renormalization of primitively divergent graphs - i.e. divergent
graphs without subdivergences. The following proposition (see Theorem 2.3
of [NST12]) may serve as a definition of both a distribution valued residue
Res and a primary renormalization map Py : S'(RV\{0}) — S'(RY).
Proposition. If G%(Z) is a homogeneous distribution of degree —d on RN\ {0}
(d=N+r > N) and r = r(Z) is a semi-norm on RN then

1

rGY(Z) — = (Res G)(¥) = G"(Z) + O(e) (G" =P G); (4.1)
€

here G" is the extended - renormalized distribution, Res G is a distribution

with support at the origin whose calculation is reduced to the case d = N of

a logarithmically divergent graph by using the identity

—1)F . )
ResG = ( ') Oy - .. 0 (Res(z™ ... 2" Q))(Z) (4.2)
k!
where summation is understood over all repeated indexes iy, ..., 1. from 1 to

N. If G°(%) is homogeneous of degree —N then
Res G(Z) = (resG°) 6(Z)  (for (£ + N) G°(Z) = 0) (4.3)

where
N
res GV = / GO(7) Z(—l)j_l o drt ALdn L A daN (4.4)
r=1 .

Jj=1

is independent of the value of v (here taken as one) since the form under the
integral sign is homogeneous and closed. (A hat,”, over an argument means,
as usual, that this argument is omitted.)

12



Let me illustrate the computation of a residue with a known example,
”the wheel with n spokes” (see [B, BrK]| and earlier work of D.J. Broadhurst
cited there). It is a primitively divergent 4D n-loop Feynman amplitude.
Choosing the origin of the coordinate system at the center of the wheel and
labeling the remaining vertices by 0, 1, ..., L(= n—1) (as in [B]) we can write:

G(zo, 1, ..., 2L HaﬁZ.CE”_H )N, 2 = 0, (4.5)

which we shall parametrize by the spherical coordinates of the n independent
4-vectors x;:

T, =rw, 1,>0, w=1, i=0,1,2,..,L. (4.6)

(For n = L+ 1 = 3 we recover the complete 4-point graph of the ¢* theory.)
Setting

G = (%0) G, (4.7)

we shall compute its residue by first integrating the corresponding ana-
lytically regularized density Gf Vol over the angles w;, using the old trick
[CKT, B, KTV]. of expanding each propagator = az with in Gegenbauer poly-

nomials (see Appendix). Taking the homogenelty of the integrand (and the
convergence of the 4L dimensional integral) into account we find

res G,, = |Sg|r§/d4x1 . /d4a:LGn(x0,x1, ce XL (4.8)

In order to compute this expression we use, following Broadhurst® [B], the
relation

d .l’k
PL($07'IL+1 = H/ 2 2
™ 0 mm+1

d4.’L'k
= / 5 Pe—1(z0, 74) PL—i(Th, Tpg1) (4.9)

2

9A modernized version of this derivation, that makes use of the important concept of
single-valued multiple polylogarithms, is contained in [S13], Example 3.31.
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which yields

o . 0
P _ Z : 1 Sinn
2
T sin n#
forr? = o cost < e c! 1(0059)) :

Cuslr) = = > (1 ) (1.10)

Inserting the result in (4.8) we find (for L=n —1,r =1):

2n — 2

resG,, = 2%2"(
n—1

)C(2n—3). (4.11)

The notion of residue does not depend on the renormalization procedure
or on the above choice of a seminorm. We shall sketch an alternative calcu-
lation which uses instead a norm for the analytic regularization of GG,,,

Ge = (%) Gn, R=max(ro,ri...,7L); (4.12)

instead of the integration over R*" in (4.8), here we will only have a sum of
integrals over finite simplexes, obtained from the standard one

I: To(: 1) 2 1 Z T (2 0) (413)

by a permutation of the subscripts o : (1,2,...,L) — (01,02,...,07) (the
symmetry of the integrand allowing to choose R = ry and multiply the result
by n=L+1):

resG, = n/d4x05(r0—1)/ d4x1.../ d*zp Gp(zo,71,...,2L)
r1<1 rr <1

= (L+1) Z res, Gry1 (4.14)

oS,

where res, Gy is the integral of

GL+1(T17"'7TL) Z:/ dwo.../ deGL+1(wO,T1W1,...,TLCUL) (415)
S3 S3
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over the simplex 1 > r,, > ... > r,, > 0. It turns out that the angular
integral (4.15) is a polylogarithmic function whose argument depends on the
sector of radial variables (see Appendix). In the case of the standard simplex
(4.13) we have:

L—1
res; G, = n(27?) / drl / dﬂLzL 1(r?)

= 20" Ligp_1 (1) = 2nm®"¢(2L — 1) = 2n7r2”C(2n -3). (4.16)

Next we observe that there is a subset SL of the symmetric group Sy of
|S£1)| = 271 elements o yielding the same residue: res, G,, = res; G, (given
by (4.16)). To prove that there are at least 2L~! such permutations we
proceed by induction in L using the relation

res, G, = res,_, G, forn—o=(n—o0y,...,n—o0r), n=L+1. (4.17)

For L = 2, the first step of the induction, this relation is reduced to the
observation that the residue (4.16) for the standard simplex is equal to that
for the “reversed” one: rg > ry > ry. (This suffices to reproduce the result
(4.11) for the physically relevant case n = 3 : res G3 = 127°¢(3).) To go from
n to n+1 we relable the indices 1, ..., L as 2,...,n(= L+1) in each of the 21!
permutations of Sg) and insert 1 on the left. The resulting o’s together with

the permutations n + 1 — o are the required 2¥ elements of SV, The rest of
the proof is relegated to the Appendix where the computation of res G,, for
n =4,5,6 as a sum of integrals over simplexes is also sketched.

The above calculations exhibits a general feature that goes beyond prim-
itively divergent graphs: the reduction at each step of the renormalization
to an one-dimensional problem in a radial scale parameter (while there is no
problem in integrating the remaining angular variables). This remark has
been used systematically in [NST, NST12]; lately it was also exploited in the
momentum space picture [BKr]. The appearance of (-values in similar com-
putations (that is given a motivic interpretation in [BEK]) has been detected
in early work of Rosner [R]. Broadhurst and Kreimer [BrK], [Kr] related it
to the topology of graphs.

4.2 A possible redefinition of time-ordered products

As demonstrated in [N09] having carried out (inductively) the renormaliza-
tion satisfying causal factorization one can, for any local QF T model, recon-
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struct the Epstein-Glaser time-ordered products T'(¢1(x1)...¢,(x,,)) where ¢;
are arbitrary Wick monomials in (derivatives of) the basic fields. In partic-
ular, the renormalized time-ordered product is translation invariant:

"0

OT (¢1(21)...6n(xn)) = TO(1(1)...n(w)) for 0=

i=1

(4.18)

T

It is seldom stressed that in practice one uses a stronger requirement: com-
mutation of time-ordering with all derivatives which yields conservation of
momentum at each vertex of a Feynman graph (a more restrictive property
than the total momentum conservation!). As explained before the result-
ing renormalization cannot originate from a linear extension map; it satisfies
instead the action Ward identity [DF]. We shall denote the corresponding
time-ordered product by T4y ;. Happily, given a translation invariant 7', one
can reconstruct Ty by a finite renormalization. To this end we introduce
a basis of balanced derivatives, say Oy 1 = 8?01 8;?“ 1=1,..n—1, and set
Tt (08307320561 (21)..- 00 (@) = T (D30 1261 (21).- S ()

(4.19)
It is easy to verify that for 7" satisfying (4.18) Taw thus defined does com-
mute with all derivatives.

The above remarks illustrate the fact that different consistent approaches
to renormalization may have conflicting requirements (like linearity vs. ac-
tion Ward identity). We see however that to pass from one consistent scheme
to another one does not have to redo the infinite renormalization. In the
above example we had just to transform one (well defined) time-ordered
product into another.

5 Outlook

Quantum field theory which once signaled, according to Freeman Dyson
[D72], a divorce between mathematics and physics, now seems to be the
best common playground of the two sciences. Not only did renormalization
theory, which was viewed as a liability, become respectable in the above
sketched framework. Combined with the idea of dimensional transmutation
[F], it gives the best hope for solving the fifth Millennium Prize Problem of the
Clay Mathematics Institute (the existence of a mass gap in a pure Yang-Mills
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theory with a nonabelian, simple, compact gauge group); the inherent calcu-
lations of residues/periods is fascinating and attractive to mathematicians -
cf. [BrK, B13, BKr, S13] and references cited there. Recent work [St13, AD]
indicates that the study of globally conformal invariant QFT models, initi-
ated in [NT], is unlikely to go beyond composites of free fields. This makes
all the more attractive the introduction and study (by a number theorist
[B04]) of the shuffle algebra of single valued multiple polylogarithms (SVMP)
which allowed to write down two-loop off shell conformal 4-point functions (in
N = 4 super Yang-Mills theory) in a closed analytic form [DDEHPS]. Appli-
cation of conformal invariance to perturbative calculations was enhanced by
the discovery of dual conformal invariance (for momentum-like coordinates)
[IDHSS, DHKS]|. Combined with the standard (x-space) conformal invari-
ance, it yields an infinite dimensional Yangian symmentry. Recent work of
mathematical physicists and algebraic geometers which applies this symme-
try and can be traced back from [ABCGPT, GGSVV] suggests that one can
construct (up to a common infrared divergent factor that cancels out in the
ratios of successive approximations) a conformally invariant scattering ma-
trix of massless ”gluons”. Similar tools (including SVMP) appear in realistic
QCD calculations applicable to current experiments at LHC - see [DDDP].

It seems to be an exciting time for a new generation of mathematical
physicists to enter the scene!

Acknowledgments. It is a pleasure to thank Dirk Kreimer for his invita-
tion and hospitality at the Humboldt University, Berlin Conference Quantum
Field Theory, Periods and Polylogarithms, and I'Institut des Hautes Etudes
Scientifiques, Bures-sur-Yvette for hospitality during the completion of these
notes. I thank David Broadhurst, Nikolay Nikolov, Yassen Stanev and Ray-
mond Stora for sharing their insight with me.

Appendix. Sums of integrals over simplices
yielding a decomposition of Catalan’s numbers

According to (4.14) (4.15) the residue of the wheel graph with L + 1 spokes
is given by
resGro = (L+1) 7" Y"1, (A1)

ogESy,
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where

T, = Ydrgy [Tt drey [T drgy, dwi \
o = 3 L+1 wo,lel,- -TLWL)-
o To1 Jo To2 0 ToL s3 T

(A.2)
The integral over the spherical angles w; can be computed in D = 2\ + 2
dimensional space-time using the relations

_ _ Tij
(#5)7 = 07+ 7 = ) = e 3 (22) O,
1 n=0 ZJ
Rij = max(ry, ), ryg=min(r,r), i#j, i,5=123. (A.3)

We shall also use the integral formula

A A A[S*AH A
dw Cm(wl w) Cn (WQ W) = T N 5mn On (wl w2) ) (A4)
S2A+1 n—+ A
where |[SP ] = 2&% is the volume of the unit hypersphere in D = 2\ + 2
dimensions.
For the trivial (identity) permutation in D = 4 dimensions we have, in
accord with (4.16),

d " d "=t d
I1—2L+1/ Tl/ 7'2‘”/ TLLLLZL 1(7“L)—2L22L 1( ):QQ(QL—:[)
(A.5)

where

L€ =35 (La(©)= (-, La() = CH). (A

We constructed in Sec. 4.1 287! permutations o = (o1,...,0L) of (1,..., L)

for which Z, = 7;. For L > 2 there are more permutations and for all ¢’s not
covered by that construction the integral (A.1) is a fraction of Z;. If o5
interchanges L — 2 with L — 1 then the corresponding integral Z, := Z, is

OL—2
T(= To(L)) = 24+ / tdn / g / et droeg / T dry
o 0 rL—1 Jo rL—2 Jo rL
. T 977 1
LZL_l ( 3 ) = C(QL - ].) = = Il . (A?)
r7_q 2
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There are (L — 2)2L72 permutations o which yield the same value (A.7) of
the integral Z,. The remaining o € Sy, (that appear for L > 3) give smaller
fractions of Z;. For even L = 2¢ the smallest such fraction is!® ¢!=2; for
L=20+11itis (£/(¢+1)!)~'. The corresponding multiplicities are glven by
2012 and £!(¢ 4 1)!, respectively. A representative permutation with minimal
value of the integral Z, in each case is given by o = (2,4, ...2¢,1,3,....,20F 1).
Here are three examples that exhaust (along with (A.5), (A.7) and (A.8))
the possible values of Z,, for L < 5:

25/ drg /7"2 drs /T3 dry /” dm <r1r4>
Liz314) = 3
T3

(there are 2L=4(L — 3)(L + 4) dlfferent permutations o € Sy, L > 3 yielding
the same Z, = iL; in particular, the eight permutations for L = 4 are

obtained from the pair (2314)(2413) by applying (o1 =)os :
(a,b,c,d) — (a,b,d,c) and n — o (4.17));

1

T(14235) = C( )= 811’ (A.9)
1 1
Lis2135) = 6 ¢(9) = o —=1. (A.10)

There are 274(L — 4)[M + 1] permutations o 6 S, L > 4 giving the
value 7, for I,, and 25~ 33(L 4) other which give 5 Z;.

In view of (4.11) we have in general

1 (2L
a%; 7, =2CL¢(2L — 1), CL_L—+1<L) (A.11)

where (', are the Catalan numbers. Let s stand for the set of permutations
o with the same value of the integral I,:

1
I,=—T(c€s), ny=1,2 4,8, 12, 16, 24, .... (A.12)

One verifies that the number ng divides the cardinality |s| of the subset
s(= sM)). Defining

10This and some subsequent results are obtained by Javor Boradjiev (in preparation).
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Np(ng) = |s|/ns, so that Cp = ZNL(nS) (A.13)

we find (setting (z)+ = 2 (z + |z]))
N (1) =257 Np(2) = 287%(L = 2), Ni(4) = 287°(L = 3)4 (L + 4),
Np(8) = 28" T(L — 4) [HEE 4 1), N (12) = 25°5(L — 4) 4, ...,
Np(24) = 25"(L = 5) (L +2), ..., N1(36) = 2"7°(L — 5),. (A.14)

There is an intriguing alternative way to define the positive integers
Npi(ns) (A.13). In order to state it we first recall one of the many character-
istics of the Catalan numbers. C7, is equal to the number of permutations
o € §1, which avoid configurations of the type

b.o.o.coooa... for a,b,ceN, 1<a<b<c<L. (A.15)

If we denote by as; C s the subset of allowed permutations in s (that avoid
the configurations (A.15)) then it turns out that N (ns) is nothing but the
number of elements |a4| in as.

The above formulae allow to recover Egs. (A.11) (A.13) for L < 5.
One can also verify it numerically for higher L’s. It may be instructive to
find a general formula for Np(n,), thus obtaining a decomposition of the
Catalan number Cp, for any L into a sum of positive integers characterizing
the different contributions of the integrals Z,.
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