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Abstract

In the present time, the ambition to offer global foundations for
mathematics, free of ambiguities and contradictions, covering the whole
spectrum of the mathematical activities, has been challenged by known
flaws induced by the use and abuse of “big” categories. Unless we
are ready to abandon a large part of fruitful trends in mathematical
research, we have to face head on the reality (or nightmare) of con-
tradictory mathematics. I’'m suggesting a possible escape by using a
theory of types to formalize the proofs of category theory.

The ghost of contradiction

In their pioneering paper on “Natural transformations”, Eilenberg and Mac
Lane stressed the importance of a new kind of constructions, now known as
functors. So far the known constructions in geometry would associate two
classes element by element, for instance a circle in a plane and its center.
Examples coming from topology were of a different kind associating glob-
ally to a space another space (like the loop space) or algebraic invariants
(like homotopy or homology groups). Also the question was raised of the
naturalness of some transformations, like the identification of a finite dimen-
sional vector space with its dual (not natural) or its bidual (natural). The
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insistence on transformations leads to a style of proof, which is “without
points”. Again, in his axiomatic description of the homology groups of a
group (or Lie algebra) as given in the 1950 Cartan Seminar, Eilenberg con-
siders a “construction” which to a group G associates the homology groups
H;(G;7Z) for instance. But he is not explicit about how to express such a
construction in the accepted paradigm of set theory. In Cartan-Eilenberg
book, there is also a description “without points” of the direct sum of two
modules. So, in the minds of the founding fathers of category theory, this
theory was a kind of superstructure on the existing mathematics, more at the
level of metamathematics.

In his epoch-making Tohoku paper, Grothendieck reversed this trend.
Inspired by the work of Cartan and his collaborators on sheaves and their
cohomology, Grothendieck introduced head on infinitary methods in category
theory. His purpose was to use direct limits to define the stalks of sheaves
in a categorical way, since one knew already many examples of sheaves in
a category, like sheaves of groups, of rings, etc... Also one of the greatest
discoveries of Grothendieck in this paper is the existence of injective objects
in a reasonable category (satisfying axiom AB 5%). Going back from this
abstract level, one can freely use injective sheaves, thereby greatly simplifying
the general theory of sheaves.

In so doing, Grothendieck was combining two lines of thought: the rather
metamathematical (hence finitary) methods of Eilenberg and Mac Lane, with
the infinitary methods of Bourbaki Topology and Algebra focusing on infi-
nite limits (direct or inverse) and universal problems. This marriage was
extraordinarily fruitful for mathematics, but a price had to be paid. Cate-
gorical reasoning was “proofs without points” but the new methods required
to consider the actual (not potential) totalities of all spaces, or all contin-
uous transformations between spaces. Immediately, the old ghosts of the
set-theoretic paradoxes resurfaced, like the Burali-Forti antinomy of the set
of all sets, or the Richard antinomy bearing on definable objects. A natural
development led to fundamental notions, like limit of a functor, representable
functor and Yoneda lemma, adjoint pair of functors. But the logical disease
remained, leading for instance to a questionable proof of the general existence
of an adjoint functor.

If category theory can easily be formulated within a framework of first-
order logic (and this led to Lawvere formulation of set theory in this spirit),
and if set theory received a proper axiomatization as the Zermelo-Frenkel sys-



tem, the combination of both proved explosive. Some cures were attempted,
like the use of universes by Grothendieck and Gabriel-Demazure. But this is
highly artificial, like all methods using a universal domain, and brings us to
the difficult (and irrelevant) problems of large cardinals in set theory.

At the moment, the situation is not unlike the one prevailing in the 18th
century in the infinitesimal calculus. Everyone knew that the existence of
infinitesimal quantities was questionable and that its use leads easily to con-
tradictions. Today, we know about the dangerous spots, where not to swim,
and try to stay away while continuing our exploration.

A possible exorcizing of ghosts

I would like to suggest a possible way out of this impasse. It seems to
me that the initial sin is the prevalent view about the underlying ontology
of mathematics. From a technical point of view, the Hilbert proposal of
encoding every mathematical object as a set has been extremely successful.
After the successful arithmetization of analysis, representing (in various ways:
Dedekind cuts,...) a real number as a collection (or set) of integers, or pairs
of integers, ..., all kinds of mathematical constructions yielded to the set
theoretic paradigm. But in the accepted way of thought, a set is defined only
after all of its elements have been created and put under control. So, speaking
of the set of cats (integers) means that you could call the roll of all the
cats (integers). So when we speak of the category of groups, all imaginable
groups should be present. This is the point of view of actual infinities in an
extensional sense. The undecidability of continuum hypothesis represents for
me an unescapable blemish of this “realistic” point of view about infinity.

The new approach should be based on a comprehension scheme. That is,
a set is described by the characteristic property of its elements: the set of cats
is defined by the property of being a cat, described as accurately as possible,
without any claim about the totality of existing cats. This is a standard
practice in typed languages in computer science. Typically, a programme

begins by instructions like
x : real

n : integer
t : boolean



declaring variables of various types (or sorts). Such a language embodies
rules to create new types out of old types, for instance the type

integer — real

is the type of sequences of real numbers. Usually, there is also available an
abstraction principle, in the form of a A\-operation

AT -t

to describe a function associating to z the value ¢ (described by a formula
containing x). So the framework is a typed \-calculus.

There have been recent advances in theoretical computer science, in the
form of various proof assistants (HOL Light, Mizar, Coq, Isabelle,...). They
are able to create completely formalized proofs of “real” mathematics, like
the prime number theorem, and check and guarantee their correctness.

I'm raising the challenge to translate the usual proofs of category theory
within such a system. What should be required is the existence of types like
cat (= categories), func (= functors),. .. So a standard sentence like: “Let C'
be a category” should be encoded by a declaration like:

C: cat.

There is no need to think of the totality of all possible categories. Of course,
a type like set would embody the category of sets.

Of course, the implicit strategy is the one of Russell when he invented
type theory to cure the diseases of set theory, like the set of all sets... I
would also like to mention that the inner logic of a topos looks very similar,
so we could perhaps formalize large segments of category theory within a
syntactically defined universal topos.



