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Abstract

We explore the Z2 graded product C`10 = C`4 ⊗̂C`6 as a finite in-
ternal space algebra of the Standard Model of particle physics. The
gamma matrices generating C`10 are expressed in terms of left multi-
plication by the imaginary octonion units and the Pauli matrices. The
subgroup of Spin(10) that fixes an imaginary unit (and thus allows to
write O = C⊕C3 expressing the quark-lepton splitting) is the Pati-Salam
group GPS = Spin(4) × Spin(6)/Z2 ⊂ Spin(10). If we identify the pre-
served imaginary unit with the C`6 pseudoscalar ω6 = γ1 · · · γ6, ω2

6 = −1,
then P = 1

2
(1 − iω6) will be the projector on the extended particle sub-

space, including the right-handed (sterile) neutrino. We express the gen-
erators of C`4 and C`6 in terms of fermionic oscillators aα, a

∗
α, α = 1, 2

and bj , b
∗
j , j = 1, 2, 3 describing flavour and colour, respectively. The in-

ternal space observables belong to the Jordan subalgebra of hermitian
elements of the complexified Clifford algebra C ⊗ C`10 which commute
with the weak hypercharge 1

2
Y = 1

3

∑3
j=1 b

∗
j bj − 1

2

∑2
α=1 a

∗
αaα. We only

distinguish particles from antiparticles if they have different eigenvalues
of Y . Thus the sterile neutrino and antineutrino (both with Y = 0) are
allowed to mix into Majorana neutrinos. Restricting C`10 to the particle
subspace, which consists of leptons with Y < 0 and quarks, allows a natu-
ral definition of the Higgs field Φ, the scalar of Quillen’s superconnection,
as an element of C`14, the odd part of the first factor in C`10. As an ap-
plication we express the ratio mH

mW
of the Higgs and the W -boson masses

in terms of the cosine of the theoretical Weinberg angle.

∗Extended version of a lecture presented at the Workshop Octonions and the Standard
Model, Perimeter Institute, Waterloo, Canada, February-May 2021, and at the 14th Interna-
tional Workshop Lie Theory and Its Applications to Physics (LT 14), Sofia, June 2021.
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1 Introduction

The elaboration of the Standard Model (SM) of particle physics was completed
in the early 1970’s. To quote John Baez [B21] 50 “years trying to go beyond
the Standard Model hasn’t yet led to any clear success”. The present paper be-
longs to an equally long albeit less fashionable effort to clarify the algebraic (or
geometric) roots of the SM, more specifically, to find a natural framework fea-
turing its internal space properties. After discussing some old ideas motivating
our approach among others, we review some recent developments, clarifying on
the way the role of different projection operators, expressed in terms of Clifford
algebra pseudoscalars and their interrelations.

Most ideas on the natural framework of the SM originate in the 1970’s,
the first decade of its existence. (Two exceptions: the Jordan algebras were
introduced and classified in the 1930’s [J, JvNW]; the noncommutative geometry
approach originated in the late 1980’s, [C, DKM, CL] and is still vigorously
developed by Connes and collaborators [CC, CCS, CIS, NS].)

First, early in 1973, the ultimate division algebra, the octonions1 were in-
troduced by Gürsey2 and his student Günaydin [GG, G] for the description of
quarks and their SU(3) colour symmetry. The idea was taken up and extended
to incorporate all four division algebras by G. Dixon (see [D10, D14] and earlier
work cited there) and is further developed by Furey [F14, F15, F16, F, F18,
FH1, FH]. Dubois-Violette (D-V) arrives at the octonions via the quark-lepton
symmetry and the unimodularity of the colour group [D16]. Thus, the octonions
appear with an additional complex structure,

O = C⊕ C3 , (1.1)

preserved by the subgroup SU(3) of the automorphism group G2 of O.

1.1 Octonions as a composition algebra.
The Cayley-Dickson construction

One can in fact provide a basis free definition of the octonions starting with the
splitting (1.1). To this end one uses the skew symmetric vector product and the
standard inner product on C3 to define a noncommutative and non-associative
distributive product xy on O and a real valued nondegenerate symmetric bilinear
form 〈x, y〉 = 〈y, x〉 such that the quadratic normN(x) = 〈x, x〉 is multiplicative:

N(xy) = N(x)N(y) for N(x) = 〈x, x〉 (1.2)

(cf. [D16, TD]). Furthermore, defining the real part of x ∈ O by Rex = 〈x, 1〉
and the octonionic conjugation x→ x∗ = 2〈x, 1〉 − x, we shall have

xx∗ = N(x)1I⇔ x2 − 2〈x, 1〉x+N(x)1I = 0 . (1.3)

1For a pleasant to read review of octonions, their history and applications – see [B02].
2See Witten’s eloquent characterization of his personality and work in the Wikipedia entry

on Feza Gürsey (1921-1991).

2



A unital algebra with a non-degenerate quadratic norm obeying (1.2) is called
a composition algebra.

Another basis free definition of the octonions O and of their split version Õ can be given
in terms of quaternions by the Cayley-Dickson construction. We represent the quaternion as
scalars plus vectors

H = R⊕ R3, x = u + U, y = v + V, u, v ∈ R, U, V ∈ R3,

xy = uv − 〈U, V 〉+ uV + Uv + U × V (1.4)

with the vector product U × V ∈ R3 satisfying

U × V = −V × U, (U × V )×W = 〈U,W 〉V − 〈V,W 〉U . (1.5)

The product (1.4) is clearly noncommutative but one verifies that it is associative. The

Cayley-Dickson construction defines the octonions O and the split octonions Õ in terms of a
pair of quaternions and a new “imaginary unit” ` as:

x = u + U + `(v + V ), `(v + V ) = (v − V )` ,

`2 =

{
−1 ⇒ x ∈ O

1 ⇒ x ∈ Õ .
(1.6)

1.2 Jordan algebras; grand unified theories;
Clifford algebras

D-V suggests that classical observables (real valued functions) are replaced by an
algebra of functions on space-time with values in a finite dimensional euclidean
Jordan algebra3. As a particularly attractive choice, which incorporates the idea
of quark-lepton symmetry, D-V proposes [D16] the exceptional Jordan algebra
of 3× 3 hermitian matrices with octonionic entries,

J8
3 = H3(O) . (1.7)

This approach is further pursued in [TD, TD-V, DT, T, DT20].

A second development, Grand Unified theory (GUT), anticipated during the
same 1973 by Pati and Salam [PS], became for a time mainstream4. Fundamen-
tal chiral fermions fit the complex spinor representation of Spin(10), introduced
as a GUT group by Fritzsch and Minkowski and by Georgi. A preferred sym-
metry breaking yields the maximal rank semisimple Pati-Salam subgroup,

GPS =
Spin(4)× Spin(6)

Z2
⊂ Spin(10),

Spin(4) = SU(2)L × SU(2)R, Spin(6) = SU(4) . (1.8)

We note that GPS is the only GUT group which does not predict a gauge trig-
gered proton decay. It is also encountered in the noncommutative geometry
approach to the SM [CCS, BF]. In general, GUTs provide a nice home for

3These algebras are defined and classified in [JvNW]; for concise reviews see Sect. 3.2 in
[D16] and Sect. 2 of [T].

4For an enlightening review of the algebra of GUTs and some 40 references see [BH].
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the fundamental fermions, as displayed by the two 16-dimensional complex con-
jugate “Weyl spinors” of Spin(10). Their other representations, however, like
the 45-dimensional adjoint representation of Spin(10) are much too big, involve
unobserved beasts like leptoquarks which cause difficulties.

A central role in our approach will be given to the Clifford algebra5 C`10,
viewed as a Z2-graded tensor product [F16, F, T21]:

C`10 = C`4 ⊗̂C`6 . (1.9)

The complexified Clifford algebra has a single faithful irreducible representation
(IR) of dimension 25 = 32 which fits precisely the fundamental (anti)fermions
of one generation. Clifford algebras were also applied to the SM in the 1970’s –
see [CG] and references therein. There are two new points in our approach.

1) We use the presence of the octonions with a preferred complex structure
in C`8+ν , ν = 0, 1, 2 to derive the gauge group of the SM (for C`9),

GSM = S(U(2)× U(3)) (1.10)

and its left right symmetric extension (for C`10) [B] (see also the talks of J. Baez
[B21], K. Krasnov [K21] and L. Boyle at the Perimeter Institute Workshop, as
well as [FH1, FH, T21]). One relies, in particular, on the nonassociativity of the
octonions (as emphasized in [K]) which implies noncommutativity of left and
right multiplication Lx, Ry (x, y ∈ O).

2) We make essential use of the Z2 grading of the Clifford algebra. The Higgs
field, which intertwines left and right chiral fermions, belongs to the odd part
of the factor C`4 in (1.9) [DT20, T21]. This fits perfectly the super-connection
approach to the SM, pioneered by Ne’eman [N] and Fairlie [F79] well before the
notion was coined (and named) by mathematicians [Q, MQ].

Octonions by themselves are not fitted to describe observables. Their Jordan
subalgebra of hermitian elements consists just of the real numbers. They do
enter however the Jordan spin factors Jν2 of degree ν ≥ 7 whose associative
envelopes are C`ν+1 (as well as the exceptional Jordan algebra (1.7)):

Jν2 ⊂ C`′ν+1(ν = 7, 8, 9, · · · ), dim(Jν2 ) = ν + 2, J8
2 ⊂ J8

3 . (1.11)

As already noted, for ν = 8, 9 their Clifford envelopes may describe the internal
space observables of one generation of fundamental fermions. It will be recalled
in Sect. 3 that the gauge group of the SM (1.10) is recovered by considering
the restriction of J8

3 to J8
2 . More precisely, GSM appears as the intersection

of two subgroups of the automorphism group F4 of J8
3 : the centralizer Fω4 of

ω ∈ SU(3)c ⊂ F4, ω2+ω+1 = 0 and Spin(9), the stabilizer of J8
2 , the subalgebra

of 3× 3 matrices in J8
3 with zero first row and first column:

GSM = Fω4 ∩ Spin(9) ⊂ F4 , (1.12)

5Aptly called geometric algebra by its inventor – see [DL].
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Fω4 =
SU(3)c × SU(3)

Z3
, ω(z+Z) = z+ exp

(
2πi

3

)
Z, z ∈ C, Z ∈ C3 . (1.13)

(x = z + Z being a realization of the splitting (1.1), [TD-V].) We shall see,
however, that the representation of GSM, obtained by restriction from Spin(9)
only involves SU(2)L-doublets, it has no room for eR, uR, dR. This is, in fact, a
manifestation of a general result (see, e.g. [CD], Proposition 15.2 (p. 674)): the
only simple compact gauge groups allowing to accomodate chiral fermions are
SU(n), n ≥ 3, Spin(4n+ 2) and E6.

2 Triality realization of Spin(8); C`−6

2.1 The action of octonions on themselves.
Spin(8) as a subgroup of SO(8)× SO(8)× SO(8)

The group Spin(8), the double cover of the orthogonal group SO(8) = SO(O),
can be defined (see [Br, Y]) as the set of triples (g1, g2, g3) ∈ SO(8)× SO(8)×
SO(8) such that

g2(xy) = g1(x) g3(y) for any x, y ∈ O . (2.1)

If u is a unit octonion, u∗u = 1, then the left and right multiplications by u are
examples of isometries of O

|Lu x|2 = 〈ux, ux〉 = 〈x, x〉, |Ru x|2 = 〈xu, xu〉 = 〈x, x〉 for 〈u, u〉 = 1 . (2.2)

Using the Moufang identity6

u(xy)u = (ux)(yu) for any x, y, u ∈ O , (2.3)

one verifies that the triple g1 = Lu, g2 = LuRu, g3 = Ru satisfies (1.1) and
hence belongs to Spin(8). It turns out that triples of this type generate Spin(8)
(see [Br] or Yokota’s book [Y] for more details).

The mappings x → Lx and x → Rx are, of course, not algebra homomor-
phisms as Lx and Ry generate each an associative algebra while the algebra of
octonions is non-associative. They do preserve, however, the quadratic relation
xy∗ + yx∗ = 2〈x, y〉1I:

LxLy∗ + LyLx∗ = 2〈x, y〉1I = RxRy∗ +RyRx∗ . (2.4)

Eq. (2.4), applied to the span of the first six imaginary octonion units ej ,
j = 1, · · · , 6, setting Lej =: Lj , Rej =: Rj becomes the defining relation of the
Clifford algebra C`−6:

LjLk + LkLj = −2δjk = RjRk +RkRj , j, k = 1, · · · , 6 . (2.5)

6See [S16] for a reader friendly review of Moufang loops and for a glimps of the personality
of Ruth Moufang (1905-1971).

5



In general, LxLy 6= Lxy (and similarly for R), but remarkably, as noted in [F16],
the relation (e1(e2(e3(e4(e5(e6 ea)))))) = e7 ea is satisfied for all a = 1, · · · , 8,
so that

L1L2 · · ·L6 = Le7 =: L7, R1R2 · · ·R6 = Re7 =: R7 . (2.6)

While LaRa = RaLa (for a ∈ O) the non-associativity of the algebra of oc-
tonions is reflected in the fact that for x 6= y, Lx and Ry, in general, do not
commute.

2.2 C`−6 as a generating algebra of O and of so(O)

The Lie algebra so(8) is spanned by the elements of negative square of C`−6. If
we denote the exterior algebra on the span of L1, · · · , L6 by

Λ∗ ≡ Λ∗C`−6 = Λ0 + Λ1 + · · ·+ Λ6
(

Λ1 = Span
1≤j≤6

Lj , Λ6 = {RL7}
)

then so(8) = Λ1 + Λ2 + Λ5 + Λ6. A basis of the Lie algebra, given by

Lα8 = 1
2 Lα, Lαβ = − 1

4 [Lα, Lβ ], α, β = 1, · · · , 7 (2.7)

obeys the standard commutation relations (CRs)

[Lab, Lcd] = δbc Lad − δbd Lac + δad Lbc − δac Lbd,

Lab = 1
4 (LaL

∗
b − LbL∗a), a, b, c, d = 1, 2, · · · , 8 (2.8)

(and similarly for Rab). Each element of so(8) of square −1 defines a complex
structure. (For a review of this notion in the context of Clifford algebras and
spinors – see [D-V].) Following [FH] we shall single out the Clifford pseudoscalars
L7 and R7 (2.6) (called volume forms in the highly informative lectures [M] and
Coxeter elements in [T11]). We shall use the (mod 7) multiplication rules of
[B02] for the imaginary octonion units

Liej(= eiej) = −δij + fijk ek, fijk = 1

for (i, j, k) = (1, 2, 4)(2, 3, 5)(3, 4, 6)(4, 5, 7)(5, 6, 1)(6, 7, 2)(7, 1, 3) (2.9)

and fijk is fully antisymmetric within each of the above seven triples. The
Clifford pseudoscalar is naturally associated with the Cartan subalgebra of so(6)
spanned by

(L13, L26, L45) as L7(e1, e2, e4) = (e3, e6, e5) . (2.10)

We can write

L7 = 23L13L26L45 (as 2L13 = L1L
∗
3 = −L1L3 etc.) (2.11)

The infinitesimal counterpart of (2.1) reads

Tα(x, y) = (Lα x)y + x(Rα y) for α, x, y ∈ O, α∗ = α ,

i.e. Tα = Lα +Rα . (2.12)
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There is an involutive outer automorphism π of the Lie algebra so(8) such that

π(Lα) = Tα, π(Rα) = −Rα, π(Tα) = Lα (π2 = id) . (2.13)

As proven in Appendix A

π(Lab) = Eab where Eab ec = δbc ea−δac eb (a, b, c = 1, 2, · · · , 8, e8 = 1) (2.14)

(Lab), (Eab) and (Rab) provide three bases of so(8), each obeying the CRs (2.8).
They are expressed by each other in terms of the involution π:

Lab = π(Eab), Eα8 = Lα8 +Rα8, α = 1, · · · , 7 . (2.15)

We find, in particular – see Appendix A:

L7 = 2L78 = E78 − E13 − E26 − E45 ,

R7 = 2R78 = E78 + E13 + E26 + E45 = −L78 − L13 − L26 − L45 . (2.16)

While L78 = 4L13L26L45 (2.11) commutes with the entire Lie algebra spin(6) =
su(4) the u(1) generator

C1 = L13 + L26 + L45 centralizes u(3) = u(1)⊕ su(3) ⊂ su(4) (2.17)

(that is the unbroken part of the gauge Lie algebra of the SM). The reader may
verify the identity R2

7 = −1 for the right hand side of (2.16) using the relations

L2
jk = −1

4
, C2

1 = −3

4
+ 2C2, −C1L07 = C2 := L13L26 + L13L45 + L26L45 .

(2.18)
The above relations will be useful for the study of higher Clifford and Lie

algebras that involve so(8) (expressed in terms of Lab or Rab) as a subalgebra.
We shall apply them in the next section to the chain of nested Clifford algebras
and their derivation (Lie) algebras

(C`−6 ⊂)C`8 ⊂ C`9 ⊂ C`10 ↔ so(8) ⊂ so(9) ⊂ so(10) . (2.19)

In order to accomodate the duality between antihermitian symmetry generators
(of a compact gauge group) and the corresponding conserved hermitian observ-
ables within the same (internal space counterpart of) Haag’s [H] field algebra
we need multiplication by an imaginary unit. Thus the algebraic counterpart of
Nœther’s theorem (cf. [B20]) requires a complexification of the algebras (2.19).
In particular, the Cartan subalgebra of so(8) singled out by the complex struc-
ture L7 is spanned by the four commuting hermitian elements

2i L78, 2i Lj 3j (mod 7) = 2i(L13, L26, L45) (j = 1, 2, 4) (2.20)

of square one, where the complex imaginary unit i (i2 = −1) commutes with the
octonion units eα. We shall single out the u(3) Lie subalgebra of the derivation
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algebra su(4) = so(6) that contains the colour su(3) by identifying its centralizer
u(1) with the sum of the operator 2i Lj3j (2.20). It is a multiple of the observable

B − L =
2i

3
(L13 + L26 + L45) , (2.21)

the difference between the baryon and the lepton numbers. B − L takes eigen-
values ± 1

3 for (anti)quarks and ∓1 for (anti)leptons so that

[(B − L)2 − 1][9(B − L)2 − 1] = 0 . (2.22)

3 C`10 = C`4 ⊗̂C`6 as internal space algebra

3.1 Equivalence class of Lorentz like Clifford algebras

Nature appears to select real Clifford algebras C`(s, t) of the equivalence class
of C`(3, 1) (with Lorentz signature in four dimensions) in Elie Cartan’s classi-
fication7:

C`(s, t) = R[2n], for s− t = 2(mod 8), s+ t = 2n . (3.1)

They act on 2n dimensional Majorana spinors that transform irreducibly under
the real 2n dimensional representation of the spin group Spin(s, t). If γ1, · · · , γ2n
is an orthonormal basis of the underlying vector space Rs,t then the Clifford
pseudoscalar defines a complex structure

ωs,t = γ1 · · · γ2n, 2n = s+ t, ω2
s,t = −1 , (3.2)

which commutes with the action of Spin(s, t). Upon complexification the re-
sulting Dirac spinor splits into two inequivalent 2n−1-dimensional complex Weyl
(or chiral) spinor representations irreducible over C under Spin(s, t). The cor-
responding projectors ΠL and ΠR on left and right spinors are given in terms
of the chirality χ which involves the imaginary unit i:

ΠL = 1
2 (1− χ), ΠR = 1

2 (1 + χ), χ = iωs,t ,

χ2 = 1I⇔ Π2
L = ΠL, Π2

R = ΠR, ΠLΠR = 0, ΠL + ΠR = 1I . (3.3)

Another interesting example of the same equivalence class (also with indef-
inite metric) is the conformal Clifford algebra C`(4, 2) (with isometry group
O(4, 2)). We shall demonstrate that just as C`−6 was viewed (in Sect. 2) as the
Clifford algebra of the octonions, C`(4, 2) plays the role of the Clifford algebra
of the split octonions (cf. (1.6)):

x = v+V + `(w+W ), v, w ∈ R, V = iV1 + jV2 + kV3, W = iW1 + jW2 + kW3

i2 = j2 = k2 = ijk = −1, `2 = 1, V ` = −`V . (3.4)

7For any associative ring K, in particular, for the division rings K = R,C,H, we denote by
K[m] the algebra of m×m matrices with entries in K.
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Indeed, defining the mapping

i→ γ−1, j → γ0, `→ γ1, j`→ γ2, `k → γ3, `i→ γ4

[γµ, γν ]+ = 2ηµν1I, η11 = η22 = η33 = η44 = 1 = −η−1,−1 = −η00 (3.5)

we find that the missing split-octonion (originally, quaternion) imaginary unit
k (= ij = −ji) can be identified with the C`(4, 2) pseudoscalar:

ω4,2 = γ−1 γ0 γ1 γ2 γ3 γ4 → k, ω2
4,2 = −1, [w4,2, γν ]+ = 0 . (3.6)

The conjugate to the split octonion x (3.4) and its norm are

x∗ = v − V − `(w +W ), N(x) = xx∗ = v2 + V 2 − w2 −W 2

so that the isometry group of Õ is O(4, 4).

As we are interested in the geometry of the internal space of the SM, acted
upon by a compact gauge group we shall work with (positive or negative) def-
inite Clifford algebras C`2`, ` = 1(mod 4). The algebra C`−6, considered in
Sect. 2, belongs to this family (with ` = −3). For ` = 1 we obtain the Clifford
algebra of 2-dimensional conformal field theory; the 1-dimensional Weyl spinors
correspond to analytic and antianalytic functions. Here we shall argue that for
the next allowed value, ` = 5, the algebra C`10 = C`4 ⊗̂C`6 (1.9), fits beauti-
fully the internal space of the SM, if we associate the two factors to colour and
flavour degrees of freedom, respectively. We shall strongly restrict the physical
interpretation of the generators γab

(
= 1

2 [γa, γb], a, b = 1, · · · , 10
)

of the deriva-
tions of C`10 by demanding that the splitting (1.9) of C`10 into C`4 and C`6
is preserved. This reflects the demand of preserving the lepton-quark splitting
(1.1) and amounts to select a first step of symmetry breakings of the GUT group
Spin(10) leading to the semisimple Pati-Salam group (Spin(4) × Spin(6))/Z2

(1.8). Furthermore, recalling the discussion of Sect. 2, we identify the first seven
γα with multiples of the left imaginary units Lα.

3.2 Realization in terms of Fermi oscillators

We start with a basis of γ-matrices adapted to the chain of subalgebras (2.19):

γα = σ0 ⊗ ε⊗ Lα, σ0 = 1I2 =

(
1 0
0 1

)
, ε = iσ2 =

(
0 1
−1 0

)
, α = 1, · · · , 7,

γ8 = σ0 ⊗ σ1 ⊗ 1I8, γ9 = σ2 ⊗ σ3 ⊗ 1I8, γ10 = σ1 ⊗ σ3 ⊗ 1I8, (3.7)

σk being the 2×2 hermitian Pauli matrices. The internal space algebra C`4 ⊗̂C`6
is most suggestively expressed in terms of Fermi oscillators [F ] setting (in the
notation of [T21]):
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1
2 (γ1 + iγ3) = b1, ( 1

2 (γ1 − iγ3) = b∗1) ,

1
2 (γ2 + iγ6) = b2,

1
2 (γ4 + iγ5) = b3

=⇒ iγ13 = [b∗1, b1], iγ26 = [b∗2, b2], iγ45 = [b∗3, b3]
(
γjk =

1

2
[γj , γk]

)
; (3.8)

γ7 = a2 + a∗2, iγ8 = a2 − a∗2 ; γ9 = a1 + a∗1, iγ10 = a1 − a∗1 ;

[aα, a
∗
β ]+ = δαβ , [bj , b

∗
k]+ = δjk, [a(∗)α , b

(∗)
j ]+ = 0 . (3.9)

We shall use five pairs of commuting orthogonal projections:

πα = aαa
∗
α, π

′
α = a∗αaα = 1− πα, α = 1, 2; pj = bjb

∗
j = 1− p′j , j = 1, 2, 3,

(3.10)
α (= 1, 2) and j (= 1, 2, 3) playing the role (roughly) of flavour and colour
indices, respectively. In fact, the weak hypercharge Y involves both:

1

2
Y =

1

3

3∑
j=1

b∗j bj −
1

2

2∑
α=1

a∗αaα =
1

3
(p′1 + p′2 + p′3)− 1

2
(π′1 + π′2) =

=
1

2
(π1 + π2)− 1

3
(p1 + p2 + p3) . (3.11)

The left and right chiral (weak) isospin components are expressed entirely in

terms of a
(∗)
α :

IL+ = a∗1 a2, I
L
− = a∗2 a1, [IL+, I

L
−] = 2IL3 = π′1π2 − π1π′2 = π′1 − π′2 ;

IR+ = a2 a1, I
R
− = a∗1 a

∗
2, [IR+ , I

R
− ] = 2IR3 = π1π2 − π′1π′2 = π2 − π′1 . (3.12)

We note that the projection on non-zero left and right isospin are mutually
orthogonal:

P1 := (2IL3 )2 = π′1π2 + π1π
′
2(= P 2

1 ), P ′1 := (2IR3 )2 = π1π2 + π′1π
′
2(= (P ′1)2) ,

P1P
′
1 = 0, P1 + P ′1 = 1 . (3.13)

The generators of su(3)c, on the other hand, are written in terms of b
(∗)
j :

Ta = 1
2b
∗λa b, λa ∈ H3(C), trλ = 0, trλa λb = 2δab, a, b = 1, · · · , 8 . (3.14)

The u(1) generator (corresponding to C1 (2.17)) is a multiple of B − L (2.21)

B − L =
i

3
(γ13 + γ26 + γ45) =

1

3

3∑
j=1

[b∗j , bj ] =
1

3

∑
j

(p′j − pj) . (3.15)

The states of the fundamental (anti)fermions are given by the primitive
idempotents of C`10, represented by the 25 = 32 different products of the five

10



pairs of basic projectors π
(′)
α , p

(′)
j (3.10). All but two of them are labelled by the

eigenvalues of the weak hypercharge Y = B − L + 2IR3 (3.11) and the electric
charge

Q =
1

2
Y + IL3 =

1

3

3∑
j=1

b∗j bj − a∗2 a2 =
1

3
(p′1 + p′2 + p′3)− π′2 . (3.16)

Setting |Q,Y 〉 and 〈Q,Y | for the corresponding ket and bra vectors we find:

(νL) = ` π′1π2 = |0,−1〉〈0,−1| = |νL〉〈νL| ,
(eL) = ` π1π

′
2 = | − 1,−1〉〈−1,−1| = |eL〉〈eL| , ` := p1 p2 p3 ;

(eR) = ` π′1π
′
2 = | − 1,−2〉〈−1,−2| = |eR〉〈eR| ; (3.17)

(ujL) = qj π
′
1π2 = | 23 ,

1
3 〉〈

2
3 ,

1
3 | = |u

j
L〉〈u

j
L| , q1 = p1 p

′
2 p
′
3(= p1 p

′
3 p
′
2) etc.

(djL) = qj π1π
′
2 = | − 1

3 ,
1
3 〉〈−

1
3 ,

1
3 | = |d

j
L〉〈d

j
L| ; j = 1, 2, 3,

(ujR) = qj π1π2 = | 23 ,
4
3 〉〈

2
3 ,

4
3 | = |u

j
R〉〈u

j
R| ,

(djR) = qj π
′
1π
′
2 = | − 1

3 ,−
2
3 〉〈−

1
3 ,−

2
3 | = |d

j
R〉〈d

j
R| ,

qj = pj p
′
k p
′
` for (j, k, `) ∈ Perm(1, 2, 3) , (3.18)

where j stands for the colour label. (As the colour is unobservable we do not
bother to assign to it eigenvalues of the diagonal operators iγ13, iγ26, iγ45.)

Remark. – The factorisation of the primitive idempotents (3.17) (3.18) into bra
and kets include choices. We demand, following [T21], that they are hermitian

conjugate elements of C`10, homogeneous in a
(∗)
α and b

(∗)
j such that the kets

corresponding to a left(right)chiral particle contains an odd (respectively even)
number of factors. The result is:

|νR〉 = ` π1π2(= 〈νR| = (νR)) , |νL〉 = a∗1|νR〉 = a∗1π2 ` ,

|eL〉 = IL−|νL〉 = π1a
∗
2 ` , |eR〉 = a∗1|eL〉 = a∗1a

∗
2 ` ;

|djL〉 = π1a
∗
2 qj , |u

j
L〉 = IL+|d

j
L〉 = a∗1π2 qj ,

|djR〉 = a∗1|d
j
L〉 = a∗1a

∗
2 qj , u

j
R = a1|ujL〉 = π1π2 qj , (3.19)

qj = pj p
′
k p
′
`, j, k, ` ∈ Perm(1, 2, 3), i.e. q1 = p1 p

′
2 p
′
3 = p1 p

′
3 p
′
2 etc. We note

that all above kets as well as all primitive idempotents (3.18) obey a system of
5 equations (specific for each particle), aα|νR〉 = 0 = bj |νR〉, a∗1|νL〉 = a2|νL〉 =
0 = bj |νL〉, α = 1, 2, j = 1, 2, 3, etc. so that they are minimal rigth ideals in
accord with the philosophy of Furey [F16].

The exceptional pair consists of the right handed sterile neutrino νR and
its antiparticle νL, both with Q = 0 = Y . They could be distinguished by
introducing a third quantum number, IR3 or B − L,

2IR3 = L−B (= 1 for νR and −1 for νL).

11



It is argued in [T21] that, if the generator of the centre 1
2Y (3.11) of the gauge Lie

algebra of the SM is superselected, [WWW], chiral particles and antiparticles are
mandatory separated iff Y 6= 0. The sterile neutrino and its antiparticle (both
with Y = 0) can mix (as they do in the popular theory of neutrino oscillations)
into a Majorana neutrino. We shall return to the implications of this assumption
in Sect. 4 below. Here we shall stay with the majority’s convention and include
the right handed (sterile) neutrino νR, such that

(2IR3 − 1)|νR〉 = 0 (= Y |νR〉 = Q|νR〉) , (3.20)

in the list of 16 particle states. The corresponding list of antiparticle projectors
is obtained by exchanging primed and unprimed πα and pj , reversing the signs
of Q,Y (and IR3 ) and exchanging left and right. The sum of four flavours (3.17)
and (3.20) of leptons and (3.18) of quarks gives the 4-dimensional projector `
on leptons and the 12 dimensional projector q on coloured quarks:

` = (νL) + (eL) + (νR) + (eR) = p1 p2 p3, `
2 = `, tr ` = 4 ; (3.21)

qj = (ujL) + (djL) + (ujR) + (djR) = pj p
′
k p
′
`, qi qj = δijqj , tr qj = 4 ;

(j, k, `) ∈ Perm(1, 2, 3), q = q1 + q2 + q3 = q2, tr q = 12 . (3.22)

3.3 Expressing the C`6 pseudoscalar in terms of
(anti)particle projectors

We now proceed to displaying a remarkable relation between the total particle
and antiparticle projectors

P = `+ q, P ′ = `′ + q′ P(′)2 = P(′),PP ′ = 0, P + P ′ = 1I32

`′ = p′1 p
′
2 p
′
3 , q

′ = p′1 p2 p3 + p1 p
′
2 p3 + p1 p2 p

′
3 , (3.23)

and the C`6 counterpart of the complex structure L7 (2.11), proposed as a first
step in the sequence of symmetry breakings of the Spin(10) GUT in [FH].

We define the C`6 pseudoscalar in the graded tensor product (1.9) by

ω6 = γ1γ2 · · · γ6 = −γ13 γ26 γ45 = σ0 ⊗ ε6 ⊗ L7 = −1I4 ⊗ L7

γjk = 1
2 [γj , γk] , L7 = L1 · · ·L6 , (3.24)

implying (in view of (3.8))

iω6 = (p′1− p1)(p′2− p2)(p′3− p3) = P ′−P((P ′−P)2 = P ′+P = 1I32) . (3.25)

We thus find that the C`6 pseudoscalar complex structure ω6 gives rise to the
projector

P =
1− iω6

2
(P2 = P, trP = 16) (3.26)

12



on the particle subspace, invariant under the Pati-Salam group GPS (1.8), which
preserves the splitting (1.9).

If we omit the first factor σ0 (the 2×2 unit matrix) from γa for a = 1, · · · , 8,
(3.2), we obtain an irreducible representation of C`8. We keep the same Fermi
oscillator realization (3.8) for the C`8 γ-matrices, so that, in particular

iγ13 = [b∗1, b1] = p′1−p1, iγ26 = [b∗2, b2] = p′2−p2, γ45 = [b∗3, b3] = p′3−p3 . (3.27)

Thus iω6 is given by the same expression (3.20) for C`8 (but with trP = 8) and
for C`9 but has a smaller invariance Lie algebra

u(4) = su(4)⊕ u(1) ⊂ so(8) for C`8 ; su(4)⊕ su(2) ⊂ so(9) for C`9 . (3.28)

Inspired by [K21, FH] we shall display in both cases the complex structure given
by the Clifford pseudoscalar corresponding to the right action of the octonions:

ωR6 = γR1 · · · γR6 for γRα = ε⊗Rα α = 1, · · · , 7 . (3.29)

We shall view, following [FH], its invariance group, GLR, as the second of the
nested subgroups of Spin(10): (Spin(10) ⊃)GPS ⊃ GLR · · · ⊃ GSM · · · in the
sequence of consecutive symmetry breakings. Written in terms of the colour
projectors pj and p′j the hermitian pseudoscalar iωR6 assumes the form:

iωR6 = 1
2 (P ′ − P − 3(B − L)) = `+ q′ − `′ − q , (3.30)

since
L = `− `′ , 3B = q − q′ . (3.31)

While the term P ′ − P (3.25) commutes with the entire derivation algebra
spin(6) = su(4) of C`6 the centralizer of B−L in su(4) is u(3) – see Proposition
A2 in Appendix A. It follows that the commutant of ωR6 in so(8) is u(3)⊕ u(1)
while its centralizer in so(9) is the gauge Lie algebra GSM = su(3)+su(2)+u(1)
of the SM; finally, in so(10), ωR6 is invariant under the left-right symmetric
extension of GSM:

GLR = su(3)c ⊕ su(2)L ⊕ su(2)R ⊕ u(1)B−L . (3.32)

Furthermore, as proven in [K], the subgroup of Spin(9) that leaves ωR6 invariant
is precisely the gauge group8 GSM = S(U(2) × U(3)) (1.10) of the SM (with
the appropriate Z6 factored out). One is then tempted to assume that C`9, the
associative envelope of the Jordan algebra J8

2 = H2(O), may play the role of
the internal algebra of the SM, corresponding to one generation of fundamen-
tal fermions, with Spin(9) as a GUT group [TD, DT]. We shall demonstrate
that although GSM appears as a subgroup of Spin(9) its representation, ob-
tained by restricting the (unique) spinor irreducible representation (IR) 16 of
Spin(9) to S(U(2) × U(3)) only involves SU(2) doublets, so it has no room

8As noted in the introduction the correct GSM was earlier obtained as the stabilizer of the
automorphism ω of order 3 (see (1.12), (1.13)).
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for (eR), (uR), (dR) (3.17) (3.18). We shall see how this comes about when re-
stricting the realization (3.12) of IL and IR to Spin(9) ⊂ C`9. It is clear from
(3.9) that only the sum a1 + a∗1 = γ9 (not a1 and a∗1 separately) belongs to
C`9. So the su(2) subalgebra of spin(9) corresponds to the diagonal embedding
su(2) ↪→ su(2)L ⊕ su(2)R:

I+ = IL+ + IR+ = (a∗1 + a1) a2 = γ9 a2, I− = IL− + IR− = a∗2γ9

2I3 = 2IL3 + 2IR3 = [a2, a
∗
2] = π2 − π′2 . (3.33)

In other words the spinorial IR 16 of Spin(9) is an eigensubspace of the projector
P1 = (2IL3 )2. It consists of four SU(2)L particle doublets and of their right chiral
antiparticles. More generally, as recalled in the introduction the only simple
orthogonal groups with a pair of inequivalent complex conjugate fundamental
IRs, are Spin(4n+ 2). They include Spin(10) but not Spin(9).

There is one more pseudoscalar, ω4, associated with the first factor, C`4, of
the tensor product (1.9):

ω4 = γ7 γ8 γ9 γ10 = [a1, a
∗
1][a∗2, a2] = P1 − P ′1 , (3.34)

P1 = π′1π2 + π1π
′
2 is the projector (3.13) on the subspace with (2IL3 )2 = 1 and

P ′1 = π1π2 + π′1π
′
2 is its orthogonal complement. (We have ω2

4 = 1; such a ω4 is
called a pseudo complex structure.)

The C`10 pseudoscalar ω10 = ω6 ω4 defines the (spin(10) invariant) chirality

χ = iω10 = iω6 ω4 = (P ′ − P)(P1 − P ′1) = ΠR −ΠL . (3.35)

It gives rise to the projector

ΠL =
1− χ

2
= PP1 + P ′P 1

1 (3.36)

on the left chiral particles (four SU(2)L doublets) and the 8 antiparticles (the
conjugates to the eight right chiral SU(2)L-singlets).

A direct description of the IR 16L of Spin(10) acting on CH⊗ CO is given
in [FH1]. (Here CH and CO are a short hand for the complexified quaternions
and octonions: CH := C⊗RH.) The right action of CH on elements of CH⊗CO
which commutes with the left acting spin(10), is interpreted in [FH1] as Lorentz
(SL(2,C)) transformation of (unconstrained) 2-component Weyl spinors.

The left-right symmetric exension GLR (3.32) of GSM has a long history,
starting with [MP] and vividly (with an admitted bias) told in [S17]. It has
been recently invigurated in [HH, DHH]. The group GLR was derived by Boyle
[B] starting with the automorphism group E6 of the complexified exceptional
Jordan algebra CJ8

3 and following the procedure of [TD-V].
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4 Particle subspace and the Higgs field

4.1 Particle projection and chirality

Theories whose field algebra is a tensor product of a Dirac spinor bundle on a
spacetime manifold with a finite dimensional “quantum” internal space usually
encounter the problem of fermion doubling [GIS] (still discussed over 20 years
later, [BS]). It was proposed in [DT20] as a remedy to consider the algebra
PC`10P where P is the projector (3.18) on the 16 dimensional particle sub-
space (including the hypothetical right-handed sterile neutrino). The resulting
subspace is Z2 graded by the chirality operator separating left and right chiral
particles (with antiparticles projected out):

χP = iω10 P = P(ΠR −ΠL) , PΠL = PP1 , (4.1)

where P1 (3.13) projects on SU(2)L doublets. The Dirac operator 6D = γµDµ

(Dµ = ∂µ + Aµ) anticommutes with space-time chirality γ5 = i γ1γ2γ3γ0 and
hence intertwines – like the Higgs field – left and right chiral spinors. This has
motivated Connes and coworkers [C, CL, CC] to introduce an internal space
Dirac operator in the framework of noncommutative (almost commutative) ge-
ometry that involves the Higgs field. Following the pioneering work of Ne’eman
and Fairlie [N, F79], Thierry-Mieg and Ne’eman [T-MN] developed effectively a
superconnection approach to the SM, prior to its introduction (and naming) in
mathematics [Q]. (For later reviews and more references – see [R, BMV, T-M].)
The Clifford algebra approach with the chirality operator χP (4.1), developed in
[DT20] appears to be ideally suited for a geometric interpretation of the Higgs
field. (An alternative approach to internal space connection involving scalar
fields is been pursued by Dubois-Violette and coworkers for over thirty years
[DKM, D-V, D21].) It turns out that there is another unanticipated benefit in
introducing the projector P: it kills odd polynomials of colour carrying Fermi
operators:

Pb(∗)P = 0 (= PC`16 P) for ω6 C`
1
6 = −C`16 ω6 (4.2)

while projecting a∗α into non-zero odd elements:

Pa(∗)α P = Pa(∗)α = a(∗)α P , [Paα,Pa∗β ]+ = δαβ P . (4.3)

One may thus place the Higgs field in the odd part, C`14, of the first factor C`4
of the product (1.4) and hence mediate the breaking of the electroweak flavour
symmetry without affecting the quark colour SU(3)c symmetry which is known
to be exact. While the odd part C`16 of C`6 maps the particle subspace into its
orthogonal complement the u(3) generators 1

2 [b∗j , bk] ∈ C`06 are projected onto

non-zero elements of C`06 obeying the same CRs; in particular, for (j, k, `) a
permutation of (1, 2, 3) we have

P b∗j bk P = qk b
∗
j bk qj = b∗j bk p

′
` =: Bjk ⇒ [Bjk, Bk`] = Bj` . (4.4)
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4.2 The Higgs as a scalar part of a superconnection

Let D be the Yang-Mills connection 1-form of the SM,

D = dxµ(∂µ +Aµ(x)) ,

iAµ = W+
µ I

L
+ +W−µ I

L
− +W 3

µI
L
3 +

N

2
Y Bµ +Gaµ Ta , (4.5)

where Y, IL and Ta are given by (3.11), (3.12) and (3.14), respectively, Gaµ is
the gluon field, Wµ and Bµ provide an orthonormal basis of electroweak gauge
bosons. Then one defines a superconnection D by

D = χD + Φ , Φ =
∑
α

(φα a
∗
α − φα aα) . (4.6)

(We omit, for the time being, the projector P in Aµ and Φ.) The factor χ (first
introduced in this context in [T-M]) insures the anticommutativity of Φ and χD
without changing the Yang-Mills curvature D2 = (χD)2.

The projector P (3.23) on the 16 dimensional particle subspace that includes
the hypothetical right chiral neutrino (and is implicit in (4.6)) was adopted in
[DT20]. By contrast, particles are only distinguished from antiparticles in [T21]
if they have different quantum numbers with respect to the Lie algebra of the
SM. In fact, GSM = s(u(2)⊕ u(3)) is precisely the Lie subalgebra of GLR (3.29)
which annihilates the sterile (anti)neutrino:

GSM = {α ∈ GLR;α(νR) = 0 = α(νL)(= α(a1a2 b1b2 b3 + b∗3 b
∗
2 b
∗
1a
∗
2 a
∗
1)) . (4.7)

Thus, in [T21] P is restricted to the 15-dimensional projector Pr on the restricted
particle space:

Pr = P − (νR) = q + `r , `r = `(1− π1π2) . (4.8)

The projected odd operators a
(∗)
α in the lepton sector,

`r aα `r = `(1− π1π2) aα, `r a
∗
α `r = ` a∗α(1− π1π2)⇒

`r a1 `r = ` a1π
′
2, `r a2 `r = ` a2 π

′
1, `r a

∗
1 `r = ` a∗1π

′
2, `r a

∗
2 `r = ` a∗2 π

′
1 , (4.9)

have modified anticommutation relations. In fact, they provide a realization
of the four odd elements of the 8-dimensional simple Lie superalgebra s`(2|1)
whose even part is the 4-dimensional Lie algebra u(2) of the Weinberg-Salam
model of the electroweak interactions (see [T21] for details). It is precisely the
Lie superalgebra proposed in 1979 independently by Ne’eman and by Fairlie
[N, F79] (and denoted by them su(2|1)) in their attempt to unify su(2)L with
u(1)Y (and explain the spectrum of the weak hypercharge). Let us stress that
the representation space of s`(2|1) consists of the observed left and right chiral
leptons (rather than of bosons and fermions like in the popular speculative
theories in which the superpartners are hypothetical). Note in passing that the
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trace of Y on negative chirality leptons (νL, eL) is equal to its eigenvalue on
the unique positive chirality (eR) (equal to −2) so that only the supertrace of
Y vanishes on the lepton (as well as on the quark) space. This observation is
useful in the treatment of anomaly cancellation (cf. [T-M20]).

We shall sketch the main steps in the application of the superconnection (4.6)
to the bosonic sector of the SM emphasizing specific additional hypotheses used
on the way (for a detailed treatment see [T21]).

The canonical curvature form

D2 = D2 + χ[D,Φ] + Φ2, [D,Φ] = dxµ(∂µΦ∗[Aµ,Φ]) (4.10)

satisfies the Bianchi identity

DD2 = D2D (⇒ χ(dΦ2 + [A, φ2] + [Φ, DΦ]+) = 0) , (4.11)

equivalent to the (super) Jacobi identity of our Lie superalgebra. It is important
that the Bianchi identity, needed for the consistency of the theory still holds if
we add to D2 a constant matrix term with a similar structure. Without such a
term the Higgs potential would be a multiple of Tr Φ4 and would only have a
trivial minimum at Φ = 0 yielding no symmetry breaking. The projected form
of Φ (4.6) and hence the admissible constant matrix addition to Φ2 depends on
whether we use the projector P (as in [DT20]) or Pr (as in [T21]). In the first

case we just replace a
(∗)
α with a

(∗)
α P. In the second, however, the odd generators

for leptons and quarks differ and we set:

Φ = `[(φ1a
∗
1 − φ1a1)π′1 + (φ2 a

∗
2 − φ2 a2)π′2] + ρq

2∑
α=1

(φα a
∗
α − φα aα) , (4.12)

where ρ (like N in (4.5)) is a normalization constant that will be fixed later.
Recalling that ` and q are mutually orthogonal (`q = 0 = q`, `+ q = P) we find

Φ2 = `(φ1φ2 I
L
+ + Φ1φ2 I

L
− − φ1φ1π′2 − φ2 φ2π′1)

−ρ2q(φ1φ1 + φ2 φ2) (φα = φα(x)) . (4.13)

This sugggests defining the SM field strength (the extended curvature form) as

F = i(D2 + m̂2) , m̂2 = m2(`(1− π1 π2) + ρ2q) (4.14)

(m̂2 = m2P for the 16 dimensional particle subspace of [DT20]).

4.3 Higgs potential and mass formulas

This yields the bosonic Lagrangian

L(x) = Tr
{

1
2FµνF

µν − (∂µΦ + [Aµ,Φ])(∂µΦ + [Aµ,Φ])
}
−V (Φ) (4.15)
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where the Higgs potential V (Φ) is given by

V (Φ) = Tr (m̂2 + Φ2)2 − 1
4m

4 = 1
2 (1 + 6ρ4)(φφ−m2)2 . (4.16)

Minimizing V (Φ) gives the expectation value of the square of φ = (φ1, φ2):

〈φφ〉 = φm1 φm1 + φm2 φm2 = m2, for Φm =

2∑
α=1

φma a
∗
α(`π′3−α + ρq) + c · c . (4.17)

(The superscript m indicates that φα take constant in x values depending on
the mass parameter m.) The mass spectrum of the gauge bosons is determined
by the term −Tr [Aµ,Φ][Aµ,Φ] of the Lagrangian (4.15) with Aµ and Φ given
by (4.5) and (4.17) for φα = φmα . The gluon field Gµ does not contribute to
the mass term as C`06 commutes with C`14. The resulting quadratic form is,
in general, not degenerate, so it does not yield a massless photon. It does so
however if we assume that Φm is electrically neutral (i.e. commutes with Q
(3.16)):

[Φm, Q] = 0⇒ φm2 = 0 (= φm2 ) . (4.18)

The normalization constant N(= tg θw) is fixed by assuming that 2IL3 and
NY are equally normalized:

N2 =
Tr (2IL3 )2

TrY 2
=

3

5

(
= (tg θw)2 ⇒ sin2 θw =

3

8

)
. (4.19)

As Y (νR) = 0 = IL3 (νR) this result for the “Weinberg angle at unification scale”
is independent on whether we use P or Pr. If one takes the trace over the
leptonic subspace the result would have been (tg θw)2 = 1

3 (⇒ sin θw = 1
2 , [F79])

closer to the measured low energy value.

Demanding, similarly, that the leptonic contribution to Φ2 is the same as
that for a coloured quark (which gives ρ = 1 for the unrestricted projector P)
we find

ρ2 =
Tr(`(1− π1π2)Φ2)

Tr qj Φ2
=
Tr(π′1π

′
2 φφ+ π′1π2 φ2 φ2 + π1π

′
2 φ1 φ1)

4φφ
=

1

2
.

(4.20)

The ratio
m2
H

m2
W

, on the other hand is found to be

m2
H

m2
W

= 4
1 + 6ρ4

1 + 6ρ2
=

{
4 for ρ2 = 1 ([N], [DT20])
5
2 for ρ2 = 1

2 ([T21])
. (4.21)

The result of [T21], much closer to the observed value, can also be written in the
form m2

H = 4 cos2 θW m2
H , where θW is the theoretical Weinberg angle (4.19).

18



5 Outlook

5.1 Coming to C`10

The search for an appropriate choice of a finite dimensional algebra suited to
represent the internal space F of the SM is still going on. Our road to the choice
of C`10, adopted in this survey, has been convoluted.

In view of the lepton-quark correspondence which is embodied in the splitting
(1.1) of the normed division algebra O of the octonions, the choice of Dubois-
Violette [D16] of the exceptional Jordan algebra F = H3(O) (1.7) looked par-
ticularly attractive. We realized [TD, TD-V] that the simpler to work with
subalgebra

J8
2 = H2(O) ⊂ H3(O) = J8

3 (5.1)

corresponds to the observables of one generation of fundamental fermions. The
associative envelope of J8

2 is C`9 = R[16] ⊕ R[16] with associated symmetry
group Spin(9). It was proven in [TD-V] that the SM gauge group GSM (1.10)
is the intersection of Spin(9) with the subgroup Fω4 (1.13) of the automorphism
group F4 of J8

3 that preserves the splitting (1.1) of O, yielding (1.12).

So we were inclined to identify Spin(9) as a most economic GUT group. As
demonstrated in Sect. 3.3, however, the restriction of the spinor IR 16 of Spin(9)
to its subgroup GSM gives room to only half of the fundamental fermions: the
SU(2)L doublets; the right chiral singlets, eR, uR, dR, are left out. It was thus
recognized that the Clifford algebra C`10 (which also involves the octonions)
does the job.

After a synopsis of the triality realization of Spin(8) on the octonions (Sect. 2)
the present survey starts directly with the (complexified) Clifford algebra C`10
displaying in Sect. 3.1 its salient features which place it in the same equiva-
lence family under the Cartan classification as the Lorentzian Clifford algebra
C`(3, 1). The particle interpretation of C`10 is dictated by the choice of a (max-
imal) set of five commuting operators in the derivation algebra so(10) of C`10.
It follows the presentation of C`10 by the Z2 graded tensor product (1.9),

C`10 = C`6 ⊗̂C`4 , (5.2)

which is preserved by the Pati-Salam subgroup GPS (1.8) of Spin(10). This
led us to presenting all chiral leptons and quarks of one generation as mutually
orthogonal idempotents (3.17) (3.18).

Furay [F] arrived (back in 2018) at the tensor product (5.2) following the
R ⊗ C ⊗ H ⊗ O road. In fact, Clifford algebras have arisen as an outgrow
of Grassmann algebras and the quaternions9. The 32 products eaεν(= ενea),
a = 1, · · · , 8 (e8 = 1I), ν = 0, 1, 2, 3 of octonion and quaternion units may

9The Dublin Professor of Astronomy William Rowan Hamilton (1805-1865) and the Stet-
tin Gymnasium teacher Hermann Günter Grassmann (1809-1877) published their papers, on
quaternions and on “extensive algebras”, respectively, in the same year 1844. William King-
dom Clifford (1845-1879) combined the two in a “geometric algebra” in 1878, a year before
his death, aged 33, referring to both of them.
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serve as components of a Spin(10) Dirac (bi)spinor, acted upon by C`10 (with
generators (3.7) involving the operators Lα of left multiplication by octonion
units) – cf. [FH1].

5.2 Two ways to avoid fermion doubling

There are two inequivalent possibilities to avoid fermion doubling within C`10.
One, adopted in [DT20, T21] and in Sect. 3 of the present survey consists in
projecting on the particle subspace, which incorporates four SU(2)L doublets
and eight SU(2)L (right chiral) singlets, with projector

P = `+ q =
1− iω6

2
, ` = p1 p2 p3 , q = q1 + q2 + q3 (5.3)

(see (3.22), (3.23) and (3.25)). Here ω6 is the C`6 pseudoscalar, the distin-
guished complex structure, used in [FH] as a first step in the “cascade of sym-
metry breakings”. The particle projector (5.3) is only invariant under the Pati-
Salam subgroup (1.8) of Spin(10). The more popular alternative, adopted in
[FH1], projects on left chiral fermions (4 particle doublets and 8 antiparticle
singlets) with projector (3.36), defined in terms of the C`10 chirality χ = iω10:

ΠL =
1− χ

2
= PP1 + P ′P ′1 (P + P ′ = 1 = P1 + P ′1) , (5.4)

where P1 projects on SU(2)L doublets, invariant under the entire Spin(10). The
components of the resulting 16L are viewed in [FH1] as Weyl spinors; the right
action of (complexified) quaternions (which commutes with the left spin(10)
action) is interpreted as an s`(2,C) (Lorentz) transformation.

The difference of the two approaches which can be labeled by the projectors
P and ΠL (on left and right particles and on left particles and antiparticles,
respectively) has implications in the treatment of generalized connection (in-
cluding the Higgs) and anomalies. Thus, for the ΠL (anti)leptons (νL, eL), eL,
νL we have vanishing trace of the hypercharge, tr ΠLY = 0. For P leptons,
(νL, eL), νR, eR, the traces of the left and right chiral hypercharge are equal:
tr(PΠLY ) = −2 = tr(PΠRY ), so that, as noted in Sect. 4.2, only the super-
trace vanishes in this case. The associated Lie superalgebra fits ideally Quillen’s
notion of super connection. A real “physical difference” only appears under the
assumption that the electroweak hypercharge is superselected and the parti-
cle projector is restricted to the projector Pr on the 15-dimensional particle
subspace (with the sterile neutrino νR, with vanishing hypercharge, excluded).
Then the leptonic (electroweak) part of the SM is governed by the Lie superal-
gebra s`(2|1), whose four odd generators are given by third degree monomials in

a
(∗)
α , the C`4 Fermi oscillators. The replacement of P by Pr breaks the quark-

lepton symmetry: while each coloured quark qj appears in four flavours, the
colourless leptons are just three. This yields a relative normalization factor be-
tween the quark and leptonic projection of the Higgs field and allows to derive
(in [T21]) the relation (see (4.21))

m2
H = 5

2 m
2
W = 4 cos2 θthm

2
W , (5.5)
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where θth is the theoretical Weinberg angle, such that tg2 θW = 3
5 . The relation

(5.5) is satisfied within 1% accuracy by the observed Higgs and W± masses.

5.3 A challenge

What is missing for completing the “Algebraic Design of Physics” – to quote
from the title of the 1994 book by Geoffrey Dixon – is a true understanding of the
three generations of fundamental fermions. None of the attempts in this direc-
tion [F14, D16, T, B] has brought a clear success so far. The exceptional Jordan
algebra J8

3 = H3(O) (1.7) with its built in triality was first proposed to this end
in [D16] (continued in [DT]); in its most naive form, however, it corresponds
to the triple coupling of left and right chiral spinors with a vector in internal
space, rather than to three generations of fermions. As recalled in (Sect. 5.2 of)
[T] any finite-dimensional unital module over H3(O) has the (disappointingly
unimaginative) form of a tensor product of H3(O) with a finite dimensional real
vector space E. It was further suggested there that the dimension of E should
be divisible by 3 but the idea was not pursued any further. Boyle [B] proposed
to consider the complexified exceptional Jordan algebra whose automorphism
group is the compact form of E6. This led to a promising left-right symmetric
extension of the gauge group of the SM but the discussion has not yet shed new
light on the 3 generation problem.
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Appendix A

Inter relations between the L, E, and R bases of so(8)

The imaginary octonion units e1, · · · , e7 obey the anticommutation relations of
C`−7,

[eα, eβ ]+ := eαeβ + eβeα = −2 δαβ , α, β = 1, · · · , 7 (A.1)

and give rise to the seven generators Lα = Leα of the Lie algebra so(8):

Lα8 := 1
2 Lα =: −L8α , Lαβ := [Lα8, L8β ] ∈ so(7) ⊂ so(8) . (A.2)

For α 6= β there is a unique γ such that

Lα eβ = fαβγ eγ = ±eγ , fαβγ = −fβαγ = fγαβ . (A.3)

The structure constants fαβγ (which only take values 0,±1) obey for different
triples (α, β, γ) the relations

fαβγ = fα+1 β+1 γ+2 = f2α,2β,2γ (mod 7) . (A.4)

The list (2.9) follows from f124 = 1 and the first equation (A.4), taking into
account relations like f679 ≡ f672 (mod 7) etc. Note that for fαβγ 6= 0 fαβγ
are the structure constants of a (quaternionic) su(2) Lie algebra. They are not
structure constants of so(7) ⊂ so(8).

Define the involutive outer automorphism π of the Lie algebra so(8) by
its action (2.13) on left and right multiplication Lα and Rα of octonions by
imaginary octonions α = −α∗:

π(Lα) = Lα +Rα =: Tα , π(Rα) = −Rα ⇒ π(Tα) = Lα . (A.5)

In the basis (A.1) (A.3) of imaginary octonion units eα (α = 1, · · · , 7), setting
e8 = 1I and Lα8 = 1

2 Lα (A.2), Rα8 = 1
2 Rα = −R8α, we define Eab by the

second relation (2.14)

Eab ec := δbc ea − δac eb , a, b, c = 1, · · · , 8 (e8 = 1) . (A.6)

Proposition A.1 – Under the above assumptions/definitions we have

π(Lab) = Eab (for Lαβ := [Lα8, L8β ] , Lα8 = 1
2 Lα = −L8α) . (A.7)

Proof. – From the first equation (A.5) and from (A.1) (A.2) and (A.6) it follows
that

Eα8 = Lα8 +Rα8 = π(Lα8) . (A.8)

The proposition then follows from the relations

Lαβ = [Lα8, L8β ] , Eαβ = [Eα8, E8β ] (A.9)
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and from the assumption that π is a Lie algebra homomorphism.

Corollary. – From (A.7) and the involutive character of π it follows that,
conversely,

π(Eab) = Lab . (A.10)

To each α = 1, · · · , 7 there correspond 3 pairs βγ such that Lβγ and Eβγ
commute with Lα and among themselves and allow to express Lα = 2Lα8 in
terms of Eα8 and the corresponding Eβγ :

L1 = 2L18 = E18 − E24 − E37 − E56 ,

L2 = 2L28 = E28 + E14 − E35 − E67 ,

L3 = 2L38 = E38 + E17 + E25 − E46 ,

L4 = 2L48 = E48 − E12 + E36 − E57 ,

L5 = 2L58 = E58 + E16 − E23 − E47 ,

L6 = 2L68 = E68 − E15 + E27 − E34 ,

L7 = 2L78 = E78 − E13 − E26 − E45 , or Lα = Eα8 −
∑
β<γ

fαβγ Eβγ . (A.11)

Recalling that Eab = π(Lab) (A.8) and the fact that π is involutive, so that
π(Eab) = Lab (A.10) we deduce, in particular,

2E78 = L78 − L13 − L26 − L45 ,

R7 = 2E78 − 2L78 = −L78 − L13 − L26 − L45 , (A.12)

thus reproducing (2.16).

We now proceed to displaying the commutant of iω6 and iωR6 in so(7 + j),
j = 1, 2, 3.

Proposition A.2 – While the Lie algebra spin(6) = su(4) commutes with L7,
the commutant of R7 (A.12) in su(4) ⊂ s`(4,C) is u(3)(⊂ s`(4,C)) given by

u(3) =


3∑

j,k=1

Cjk[b∗j , bk] ; Cjk ∈ C , Ckj = −Cjk

 (A.13)

in the fermionic oscillator relalization of C`6(C) (the bar over Cjk standing for
complex conjugation).

Proof. – The fact that L7 = 2L78 commutes with the generators Lαβ (α, β =
1, · · · , 6) of so(6) follows from (2.8). To find the commutant of R7 (A.12) it
is convenient to use the fermionic realization of the complexification s`(4,C)
of su(4) which is spanned by the 9 commutators [b∗j , bk] in (A.13) and the 6
products

bj bk = −bk bj , b∗j b∗k = −b∗k b∗j , j, k = 1, 2, 3, j 6= k . (A.14)
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The sum L13 +L26 +L45 in (A.12) is a multiple of B −L (3.10), the hermitian
generator of the centre of s`(3,C),

B − L
(

=
i

3
(γ13 + γ26 + γ45)

)
=

1

3

3∑
j=1

[b∗j , bj ] . (A.15)

The relations

[B − L, b∗j b∗k] = 2
3 b
∗
j b
∗
k , [B − L, bj bk] = − 2

3 bj bk ,[[
B − L, [b∗j , bk]

]]
= 0 , j, k = 1, 2, 3, j 6= k , (A.16)

show that the commutant of B − L (and hence of R7) in su(4) is u(3).

Corollary. – The commutant of ωR6 in so(8) is u(3)⊕ u(1); the commutant of
ωR6 in spin(9) is the gauge Lie algebra of the SM:

GSM = {a ∈ spin(9) ; [a, ωR6 ] = 0} = u(3)⊕ su(2) . (A.17)
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Quantenmechanik, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. I, 41,
(1933) 209217.

[JvNW] P. Jordan, J. von Neumann, and E. Wigner, On an algebraic gener-
alization of the quantum mechanical formalism, Ann. Math., 36 (1934)
29-64.

[K] K. Krasnov, SO(9) characterization of the standard model gauge group,
J. Math. Phys. 62:2 (2021) 021703; arXiv:1912.11282v2 [hep-th].

[K21] K. Krasnov, Spin(8, 9, 10), octonions and the standard model, Talk at
the Workshop: Octonions and the Standard Model, PI, 2021.

[M] G.W. Moore, Quantum symmetries and compatible Hamiltonians, Notes
for Physics 695, Rutgers Univ., December 2013 (267 p.).

27



[MQ] V. Matthai, D. Quillen, Superconnections, Thom classes, and covariant
differential forms, Topology 25 (1986) 85-110.

[MP] R.N. Mahapatra, J.C. Pati, “Natural” left-right symmetry, Phys. Rev.
D11 (1975) 2558-2561.

[N] Y. Neeman, Internal subgroup prediction of the Goldstone-Higgs particle
mass, Phys. Lett. B81:3-4 (1979) 309-310.

[NS] J.D.H. van Nuland, W.D. van Suijlekom, One loop corrections to the
spectral action, arXiv:2107.08485.

[PS] J. Pati, Abdus Salam, Unified Lepton-Hadron Symmetry and a Gauge
Theory of the Basic Interactions, Phys. Rev. D 8:4 (1973) 1240-1251.

[Q] D. Quillen, Superconnections and the Chern character, Topology 24 (1985)
85-95.

[R] G. Roepstorff, Superconnections and the Higgs field, J. Math. Phys. 40
(1999) 2698-2715; arXiv:hep-th/9801040.
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