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The gravitational polarizability properties of black holes are compared and contrasted with their
electromagnetic polarizability properties. The “shape” or “height” multipolar Love numbers hl of
a black hole are defined and computed. They are then compared to their electromagnetic analogs
h

EM
l . The Love numbers hl give the height of the l-th multipolar “tidal bulge” raised on the horizon

of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test mass
m, in the limit where m gets very close to the horizon.

PACS numbers: 04.70.Bw; 04.20.Jb

I. INTRODUCTION

In Newtonian gravity, the quantitative theory of the “gravitational polarizability” of elastic, self-gravitating
bodies was pioneered by Love [1], who introduced two dimensionless measures of the response of an elastic body
to an external tidal solicitation. To define them, let us first decompose the external tidal potential into multipolar
components, say Uext =

∑

Ul =
∑

Tlr
lPl(cos θ), where the coefficient Tl measures the strength of the l-th multipolar

component of the external tidal field. The first “Love number”, hl, measures, essentially, the ratio between the l-th
multipolar component of the distortion of the shape of the considered elastic body and Tl, while the second “Love
number”, kl, measures the ratio between the l-th order multipole moment induced in the elastic body and Tl.

In the membrane approach to black holes (BH’s) [2, 3, 4, 5, 6, 7], BH’s are treated as elastic objects, en-
dowed with usual physical properties. This raises the issue of defining and determining the BH analog of the Love
numbers hl and kl. Some time ago, Suen [8] made an attempt at defining and computing k2, i.e. the quadrupole
moment induced in a BH by an external quadrupolar tidal field. He surprisingly found that, with his definition of
the multipole moments of a distorted BH, the tidally induced quadrupole moment was opposite to the externally
applied quadrupolar tidal field (which would mean k2 < 0, in contrast with usual elastic bodies, which have kl > 0).
This unexpected result might well be due to the inappropriateness of the definition of induced multipole moments
adopted in [8]. For recent discussions of the subtleties inherent in any definition of the multipole moments of BH’s,
see, e.g., [9] and [10]. In the present paper, we shall not try to address these subtleties, and we shall, instead, focus
on the computation of hl, i.e. on the quantitative measure of the tidal distortion of the shape of a BH.
Pioneering investigations of the tidal distortion of BH’s were performed by Manasse [11] and Hartle [12, 13] (see also
[14]). Further investigations are due to D’Eath, [15, 16], and, more recently, to Poisson and collaborators [17, 18].
Though these papers explicitly discussed the quadrupolar (l = 2) tidal distortion of BH’s, they did not consider
higher multipolar orders of tidal distortion, nor did they explicitly compute the value of the h2 Love number. In
addition, there are sign errors in some formulas of [12], which would affect the computation of h2.

The first purpose of this paper is to compute the “shape distortion” Love numbers hl of a BH, for all values
of l ≥ 2. Let us mention that a recent investigation of the Love numbers of neutron stars [10] has found that in the
formal limit where the compactness cNS = GM/R of a neutron star tended to the compactness of a BH, cBH = 1/2,
the c-dependent hl Love numbers of neutron stars tended to the BH hl values determined in this paper. The sequence
of hl’s is a way of parameterizing the tidal effects due to a disturbing mass m located far away from the considered
BH. We shall also be interested in studying the distortion of the shape of a BH when the disturbing mass gets
very near the surface of the BH. In this respect, we will find it useful to compare and contrast the gravitational
polarizability of BH’s to their electric polarizability properties. Let us recall that Hanni and Ruffini [19] pioneered the
study of the electric polarizability properties of BH’s, and introduced the notion of the charge density, σ, induced on
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the BH horizon by an external charge q. Below, we shall use the concept of induced charge density to define electric
analogs of the hl Love numbers, which we shall compare to the gravitational ones. Then, we shall also compare the
evolution of the gravitational, or electric, induced effects as the external tidally-influencing mass m, or charge q,
approach the horizon. [Ref [20] has considered the tidal distortion of the horizon of a BH by nearby (moving) masses,
but has mainly used a “Rindler approximation” which replaces the BH horizon by a null hyperplane in a Minkowski
background].

The paper is organized as follows. In Section II, the notion of gravitational shape Love number of a BH is
introduced. It is defined as the dimensionless ratio between the l-th multipolar component of the deformation of
the horizon geometry of a BH and the l-th multipolar component of the external tidal potential generated by a
static axisymmetric distribution of faraway masses. In Section III, one introduces the notion of electromagnetic
Love number by considering the influence of a distribution of faraway charges on the charge density induced on the
surface of a BH. The case of a test charge approaching the BH horizon is examined in Section IV, while the case of
an infinitesimal mass approaching the BH horizon is considered in Section V. The paper ends by some concluding
remarks.

II. MULTIPOLAR TIDAL DISTORTION OF THE “SHAPE” OF A BH UNDER THE INFLUENCE OF

FARAWAY MASSES

We wish to describe a physical situation where a BH of mass M is immersed in a generic, stationary, axisymmetric
tidal field generated by faraway sources. For simplicity, we shall only consider here the static (non-rotating) case.
This situation can be described by the Weyl class of static axisymmetric vacuum solutions of Einstein’s equations,
see, e.g., [21] and references therein. The line element of a Weyl metric, in Weyl coordinates, reads

ds2 = −e2ψdt2 + e2(γ−ψ)
(

dρ2 + dz2
)

+ ρ2e−2ψdφ2. (1)

Einstein’s vacuum equations then imply the following equations for the functions ψ = ψ(ρ, z) and γ = γ(ρ, z)

∂2ψ

∂ρ2
+

1

ρ

∂ψ

∂ρ
+
∂2ψ

∂z2
= 0, (2a)

∂γ

∂ρ
= ρ

[

(

∂ψ

∂ρ

)2

−
(

∂ψ

∂z

)2
]

, (2b)

∂γ

∂z
= 2ρ

∂ψ

∂ρ

∂ψ

∂z
. (2c)

The linear differential equation (2a) is identical to the 3-dimensional axisymmetric (φ-independent) Laplace equation
in cylindrical coordinates. Therefore, we can think of ψ as being (minus) the Newtonian potential U =

∑

Gm/r
generated by an ensemble of axisymmetric bodies: ψ ≡ −U . Without loss of generality, the potential U can be
decomposed as U = UM + Uext, where UM refers to the BH of mass M that we consider, and Uext accounts for
the external contribution(s). We recall that UM (for a Schwarzschild BH) corresponds, in Weyl coordinates, to the
Newtonian potential generated by a “rod”, along the z axis, of linear mass density µ = 1/(2G) and of coordinate
length ∆z = 2GM . The two remaining non-linear field equations for the metric variable γ can be solved by means of
a line integral. The superposition of two or more axisymmetric bodies implies the presence of interaction terms in the
function γ: γ = γ(UM ) + γ(Uext) + γint(UM , Uext), where γint is bilinear (and non-local) in UM and Uext. We shall
consider situations where the “central” BH of mass M is in “equilibrium” within Uext, i.e. where the “elementary
flatness” condition limρ→0 γ = 0 is satisfied along the portions of the z axis that touch the BH horizon. [As is
well-known, a non-vanishing γ0 ≡ limρ→0 γ can be interpreted as the presence of a supporting strut or string]. This
condition implies the constraint that Uext takes the same value at the North Pole (z = +GM) than at the South Pole
(z = −GM) of the BH [22, 23, 24]:

UNPext = USPext . (3)

Since the Newtonian potential U obeys a three-dimensional φ independent Laplace equation, Uext can be decomposed
in an axial-multipole expansion in spherical coordinates as

Uext =

∞
∑

l=0

Ul =

∞
∑

l=0

Tlr
l
WPl(cos θW ). (4)
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Here, (rW , θW , φ) denote the spherical coordinates associated (as if one were in flat space) to the Weyl coordinates
(ρ, z, φ), i.e. ρ = rW sin(θW ), z = rW cos(θW ).
The coefficients Tl in Eq. (4) measure the strength of the l-th multipolar tidal field within which the considered
BH is immersed. We are aware of the fact that the definition of the Tl’s used here heavily relies on the quasi-linear
properties of the Weyl solutions. We think, however, that, in the linear approximation to tidal effects, i.e. in the
formal limit where Tl → 0, for all l’s, the Tl’s become unambiguously defined (and gauge-invariant, as they can read
off at r ≫ GM). In general, Uext (and therefore each Tl) can be thought of as containing the superposition of the
tidal fields due to a stationary ensemble of faraway (axisymmetrically distributed) masses. A particularly simple
configuration is that where Uext is generated by a single BH of mass m, located along the z axis at z = D ≫ GM .
[In this limit, the effect of any “string” supporting the perturbing mass m (and the BH) becomes negligible [20]]. As
D ≫ GM , there exists a wide region (with GM ≪ rW ≪ D) where space is nearly flat and where we can expand

Uext =
Gm

√

r2W +D2 − 2rWD cos θW
(5)

as

Uext =

∞
∑

l=0

Gm

Dl+1
rlWPl(cos θW ). (6)

This shows that, in this case, the normalization of the tidal coefficients Tl is such that

Tl(m) =
Gm

Dl+1
. (7)

Let us also indicate (from [22]) the structure of the Weyl solution describing a “central” BH of mass M , tidally
distorted by several BH’s of mass mi, described by rods of density 1/(2G) located in the intervals [bi−Gmi, bi+Gmi]
along the z axis. The solution is described by

ψ = ψM + ψext = ψM +
∑

i

ψmi
(8a)

γ = γM + γext = γM +
∑

i

γmi
+ 2

∑

i

γMmi
+
∑

i,j

γmimj
+ C, (8b)

where (using henceforth G = 1 for simplicity)

ψM =
1

2
ln

[

R+
M +R−

M − 2M

R+
M +R−

M + 2M

]

, (9a)

γM =
1

2
ln

[

(R+
M +R−

M )2 − 4M2

4R+
MR

−
M

]

, (9b)

and where each mi-dependent contribution reads (when suppressing the index i for readability)

ψm =
1

2
ln

[

R+
m +R−

m − 2m

R+
m +R−

m + 2m

]

, (10a)

γm =
1

2
ln

[

(R+
m +R−

m)2 − 4m2

4R+
mR

−
m

]

, (10b)

γMm =
1

4
ln

[

E(M+,m−)E(M−,m+)

E(M+,m+)E(M−,m−)

]

, (10c)

with γmimj
given by a similar expression (obtained by replacing M → mi, m→ mj).

Here,

R±
M =

√

ρ2 + (Z±
M )2, R±

m =

√

ρ2 + (Z±
m)2, (11a)

Z±
M = z ±M, Z±

m = z − (b ∓m), (11b)

E(M±,m±) = ρ2 +R±
MR

±
m + Z±

MZ
±
m. (11c)
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In Eq. (8b), C denotes an integration constant which must be chosen (after having satisfied the condition (3)) so that
limρ→0 γ vanishes on the portions of the z axis which touch the “central” BH. When the condition (3) is satisfied,
and the constant C in (8b) is suitably chosen, it has been shown [22, 23, 24] that the locus ρ = 0, z ∈ [−M,M ], is
a smooth (Killing) horizon. To see that its structure is that of distorted BH, one would need to replace the Weyl
coordinates (ρ, z, φ) first by Schwarzschild-like coordinates (R, θS , φ), such that

ρ =
√

R2 − 2MR sin θS , (12a)

z = (R −M) cos θS , (12b)

and then by (horizon-regular) Kruskal (or Eddington-Finkelstein) coordinates. For our present purpose, which is to
read off the distorted geometry of the horizon R = 2M (ρ = 0), it will be enough to consider the geometry (1) in
Schwarzschild-like coordinates, i.e. using the following consequences of Eqs. (9a), (9b), (11) and (12)

e2ψM = 1 − 2M

R
, (13a)

e2(γM−ψM ) = [(R −M)2 −M2 cos2 θS ]−1, (13b)

ds2 = −e2ψext

(

1 − 2M

R

)

dt2 + e2(γext−ψext)

[

dR2

1 − 2M
R

+R2dθ2S

]

+ e−2ψextR2 sin2 θSdφ
2. (13c)

Here, as indicated in the particular case of (8), ψext and γext are defined such that ψ = ψM + ψext, γ = γM + γext,
where ψM and γM are the undistorted “Schwarzschild” values (9a) and (9b).
It is easily seen that Eqs. (2) imply that the following equality

[γext − 2ψext]ρ=0 = const ≡ 2u (14)

holds on the horizon (ρ → 0). Here, u is the common value of Uext ≡ −ψext at the North and South Pole. Restricting
the geometry (13c) to t = t0 = const and R = R0 = const (and then taking the limit R0 → 2M), and using Eq. (14),
allows us to read off the geometry induced on the horizon:

ds2|R=2M = (2Meu)2
[

1

β(µ)
dµ2 + β(µ)dφ2

]

, (15)

where we have introduced the convenient variable

µ ≡ cos θS =
( z

M

)

ρ=0
, (−1 ≤ µ ≤ +1), (16)

and where the function β(µ) describing the distorted horizon geometry is given by

β(µ) = (1 − µ2)β̂(µ), (17a)

β̂(µ) = e2(Ūext(µ)−u). (17b)

Here Ūext(µ) = −ψext|ρ=0 is the value of Uext along the horizon, and u ≡ UNPext = USPext = −ψNPext = −ψSPext is, as above,
the common value of Uext at the North and South Pole.
Note that the prefactor giving the overall length scale of the horizon geometry is not the mass parameter M entering
the Weyl metric, but rather the “blueshifted” mass parameter

Mu = Meu. (18)

While the mass parameter M is equal [24] to the Komar mass of the central BH, Eq. (15) shows that the irreducible

mass [25, 26] of the central BH is

Mirr ≡
√

A

16πG2
= Mu, (19)

where A denotes the area of the horizon. If we were to consider a physical process where our ensemble of gravi-
tationally interacting masses would change their relative positions in an adiabatic manner, we should be careful to
maintain all the irreducible masses (i.e. all the individual BH entropies) fixed during the process. This would mean
that the Komar mass parameters M , mi would need to change as the relative positions change, so as to compensate
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the variation of the blueshift factor eu in Eq. (18). However, as our purpose is to study the fractional distortion of
the horizon geometry associated to external tidal fields, we will, in the following, factor out the overall scale factor
(2Mu)

2 in Eq. (15) and focus on the shape of the β(µ)-dependent conformal geometry defined by the square bracket
on the right-hand side of Eq. (15).

It can be easily proven that the Gauss curvature K = 1
2R

(2) = 1
2R

αβ
αβ of the distorted horizon geometry

(15) is given in terms of the second µ-derivative of the function β(µ) by

(2Mu)
2K = −1

2
β

′′

(µ). (20)

As a check on Eq. (20), one can verify the Gauss-Bonnet theorem:

∫ ∫

KdA =

∫ ∫

dµdφ

[

−1

2
β

′′

]

= −π
[

β
′

(µ)
]+1

−1
= 2π

[

β̂(+1) + β̂(−1)
]

. (21)

When the horizon is regular, i.e. when Eq. (3) is satisfied so that β̂NP = β̂SP = 1, Eq. (21) yields
∫ ∫

KdA = 4π as
necessary for a horizon having the topology of a 2-sphere.

Let us now insert in Eq. (20) our general parametrization (4) of an external tidal field by the sequence of
tidal coefficients Tl. To do so, we must replace the Weyl-associated “spherical coordinates” rW , θW entering Eq. (4)
in terms of ρ, z, before taking the (singular) horizon limit ρ → 0, z → Mµ which defines the horizon value of Uext

entering the definition of the function β(µ), Eq. (17a). For instance, the l = 2 term in Eq. (4) would be rewritten as

r2WP2(cos θW ) = r2W
3 cos2 θW − 1

2
=

1

2

(

3z2 −
(

ρ2 + z2
))

= z2 − 1
2ρ

2, (22)

whose horizon limit is simply z2 = (Mµ)2. More generally, it is easy to see (using Pl(1) = 1) that the horizon limit
of rlWPl(cos θW ) is simply zl = (Mµ)l, so that

Ūext(µ) = Uext|horizon =
∑

l

TlM
lµl. (23)

Subtracting the value of Uext|horizon at the North Pole µ = +1 finally yields the following explicit link between the
Gauss curvature of the horizon and the sequence of external tidal coefficients Tl:

(2Mu)
2K(µ) = −1

2

∂2

∂µ2

[

(1 − µ2)e2
P

l TlM
l(µl−1)

]

. (24)

At this stage, it is natural to decompose also the (scaled) Gauss curvature in multipolar components, say

(2Mu)
2K(µ) ≡

∑

l

clPl(µ). (25)

Before deriving a formula giving the coefficients cl of the multipolar expansion of the Gauss curvature, let us note the
two general, exact results

c0 = 1, (26a)

c1 = 0. (26b)

Eq. (26a) is a restatement of the Gauss-Bonnet theorem checked above. As for the result (26b), it follows from the
general structure (20) with a function β(µ) satisfying (17a) and (17b). Indeed, c1 is given by

c1 = −3

4

∫ +1

−1

dµµβ
′′

(µ) = −3

4

[

µβ
′ − β

]+1

−1
. (27)

Using the expression (17a), where β̂ takes the value 1 at both endpoints, on easily finds that c1 necessarily vanishes.

The orthogonality properties of the Legendre polynomials,
∫ +1

−1 Pl(µ)Pl′ (µ) = 2δll′ /(2l + 1), then yield the following
expression for the general cl’s as functions of the sequence of the Tl’s:

cl = −2l+ 1

4

∫ +1

−1

dµPl(µ)
∂2

∂µ2

[

(1 − µ2)e2
P

l′
Tl′M

l′ (µl′−1)
]

. (28)
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Note that cl is a non-linear function of all the l′’s, with l′ being a priori unrelated to l. To better understand this
function, we can however expand the exponential in Eq. (28) in powers of the Tl’s. In so doing, and in using the

orthogonality of Pl(µ) to all the powers µl
′

when l′ < l, one finds that cl is the sum of a “principal” contribution
∝ Tl, plus two types of extra contributions: (i) linear in Tl′ , which arise only with l′ = l + 2, l + 4, l + 6 etc; and (ii)
non-linear in Tl′ , which can be quadratic ∝ T 2, cubic ∝ T 3, etc. Summarizing, we have the structure

cl = nlTlM
l + nl,2Tl+2M

l+2 + nl,4Tl+4M
l+4 + ...+

∑

l
′
l
′′

nll′ l′′Tl′Tl′′M
l
′

+l
′′

+ ... , (29)

where the nl’s, etc., denote some numerical coefficients.
In the “linear” approximation to tidal effects (i.e. in the formal limit Tl′ → 0) we can neglect the non-linear
contributions ∝ T 2, T 3 etc. In addition, if we focus, for simplicity, on the case where the (minimum) distance D to
the external masses creating Uext becomes large, we find, in view of Tl ∼ 1/Dl+1, Eq. (7), that the contributions
proportional to Tl+2n are parametrically smaller than the “principal” contribution ∝ Tl by a factor (M/D)2n which
tends to zero. In this double limit, we conclude that a kind of Hooke’s law is valid in that the l-th multipolar
component of the horizon curvature, cl, is proportional to the l-th tidal strength coefficient Tl, i.e.

cl ≃ nlTlM
l, (30)

where

nl = − (2l+ 1)

2

∫ +1

−1

dµPl(µ)
∂2

∂µ2

[

(1 − µ2)(µl − 1)
]

=

=
(2l + 1)

2
(l + 2)(l + 1)

∫ +1

−1

dµPl(µ)µl = (l + 2)(l + 1)
2l(l!)2

(2l)!
.

(31)

Finally, we conclude that, in the leading approximation, the Gauss curvature induced by a general external tidal
potential reads (remembering the exact results of (26a) and (26b))

(2Mu)
2K(µ) ≃ 1 +

∞
∑

l=2

(l + 2)(l + 1)
2l(l!)2

(2l)!
M lTlPl(µ). (32)

Let us now convert this result in terms of the “shape” Love number hl. We define this number, in the present general
relativistic setting, by paralleling the definition Love used in Newtonian gravity [1]. The basic idea is to write, for each
multipole l, the specific potential energy g0(δR)l associated to the l-th “tidal bulge” of height (δR)l as hl times the
external tidal potential, evaluated (as it would be in Newtonian gravity) at the undisturbed radius of the considered
object , i.e.

g0(δR)l = hlU
ext
l (R0), (33)

or, equivalently,

(

δR

R0

)

l

= hl
U ext
l (R0)

g0R0
. (34)

Here, g0 = GM/R2
0 denotes the (Newtonian) surface gravity of the considered object. We recall that the same

(Newtonian-looking) formula is also used in BH theory to define the (renormalized) surface gravity of a Schwarzschild
BH, if, as we shall do, one defines the “radius” of a BH as its (areal) radius R0 = 2GM . [In view of the remarks
above, and of our focus on the linear approximation to tidal effects, we shall not worry here about the possible
distinction between the Komar mass M and the irreducible mass Mu = Meu ≃M(1 + u+ O(u2)).]. As for Uext(R0)
we define it, as it would be done in Newtonian gravity, by taking the analytic continuation down to R = R0 of the l-th
multipolar order asymptotic Newtonian potential. In the (intermediate) asymptotic domain R0 ≪ R ≪ D the external
tidal potential (4) can be written in Schwarzschild-type coordinates (R, θS), Eqs. (12), as Uext ≃

∑

l TlR
lPl(cos θS).

Formally continuing this Newtonian-like expression down to R = R0, with fixed Schwarzschild-like colatitude θS ,
leads to

Uext(R0, µ) =
∑

l

U ext
l (R0)Pl(µ) =

∑

l

TlR
l
0Pl(µ), (35)
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where, in agreement with Eq. (18), we have identified cos θS with the variable µ used in the study of the horizon
geometry above.
Summarizing, the “shape” (or “height”) Love numbers hl are defined by writing

(

δR

R0

)

l

= hl
TlR

l
0

g0R0
= hl

Rl+1
0

GM
. (36)

In order to compare (36) to our result Eq. (32) above, we need to convert a general multipolar expansion of the Gauss
curvature, say,

R2
0K = 1 +

∑

l≥2

clPl(µ) (37)

into a corresponding “height” expansion, say (denoting ǫl ≡ (δR/R0)l)

δR(µ)

R0
=
∑

l

ǫlPl(µ). (38)

This is naturally done by defining ǫl so that the Gauss curvature on the 2-surface X(θ, φ) = (R0+δR(µ))N(θ, φ) (with
N1 = sin θ cosφ, N2 = sin θ sinφ, N3 = cos θ) embedded in an auxiliary 3-dimensional Euclidean space, coincides
with Eq. (37). A straightforward calculation shows that this coincidence is obtained (in first order in the perturbation
away from a round sphere) if

cl = [l(l + 1) − 2]ǫl ≡ (l − 1)(l + 2)ǫl. (39)

Note in passing that any eventual l = 1 contribution ǫ1 in (38) is cancelled in the corresponding curvature expansion.
This agrees with the general result (26b) above, and allows us to consider only multipolar orders l ≥ 2.
Finally, by combining Eqs. (36),(34), (35) and (39), we find that the l-th shape Love number of a BH is given by

hl =
l + 1

l − 1

(l!)2

2(2l)!
. (40)

In particular, we find for the first values of l:

h2 =
1

4
, h3 =

1

20
, h4 =

1

84
. (41)

We see that hl diminishes rapidly as l increases.

Note that all these Love numbers are smaller than 1. This contrasts with the Love numbers of a perfect-
fluid star in Newtonian gravity which are given in terms of their “second” Love numbers kl by hNewton

l = 1+2kNewton
l

[10], so that hNewton
l > 1 (because kNewton

l > 0). In the recent work [10], it was, however, found that the shape Love
numbers hNSl of a general relativistic fluid star (say a neutron star) have a strong dependence on the self-gravity
of the star, and that hNSl continuously decrease, as the “compactness parameter” c = GM/R increases, from the
Newtonian value hNewton

l > 1 down to a value close to the above black hole values, hBHl , as the compactness reaches
its maximum possible value. It was also found that the function hNSl (c) becomes equal to hBHl as the compactness
parameter c is formally continued to the black-hole value cBH = 1/2.

Using the Stirling approximation, one finds that, for large values of l,

hl ≃
√

2πl

22l+1
, (42)

so that hl essentially decreases as 4−l. This rather fast decrease of hl, as l increases, has useful practical consequences.
Indeed, in the physically most relevant case where one is interested in the tides raised on a certain BH of mass M by
another BH (of mass m), located1 at a distance D, we see that the tidal expansion, Eq. (6), of Uext (which, from a

1 Note the that extra linear terms nl,2Tl+2M l+2 + ... that we neglected in Eq. (29) are, in order of magnitude, essentially equivalent to

correcting the distance D entering Tl ∝ D−l−1 in the leading term nlTlM
l by D → D(1+ c2M2/D2 +c4M4/D4)+ .... Such corrections

include, in particular, possible effects of coordinate transformations on D.
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Newtonian point of view, would be expected to converge on the horizon as a geometric series
∑

l(R0/D)l) raises on
the horizon a tide whose height converges like

δR

R0
∼

∞
∑

l=2

m

M

√
l

(

R0

4D

)l+1

Pl, (43)

which is essentially a geometric series ∼∑l(
R0

4D )l. The appearance of R0

4D instead of R0

D
implies a rather fast conver-

gence, even when D is not much larger than R0. Physically, this means that keeping into account only the quadrupolar
tide ∝ h2 will probably suffice to give a good estimate of the full tide, even when the companion BH is rather near.
In a later section, we shall, however, see that this conclusion no longer holds when m ≪M and when the mass m is
allowed to come very near the horizon of M . By contrast, when m ∼M , the finite size of the horizon of m does not
allow the distance D to become smaller that some minimum value Dmin ∝M +m, so that one might hope, in view of
the remarks above, that the quadrupolar tide alone might give a good estimate of the tidal deformations of both holes
down to the point where they formally touch. In the case of the quadrupolar tide, one knows from other studies [11, 17]
that a good measure of the l = 2 tidal field T2 is given by some component of the Riemann (or Weyl) tensor, which,
in the exterior of a Schwarzschild BH of mass m is ∝ m/R3, where R is the usual (areal) Schwarzschild coordinate
(rather, say, than the Weyl radial coordinate distance D that we have been using up to now.). This leads one to expect

that, when m and M are comparable, m will raise on M a tide of height (δR/R0)M ≃ h2
m
R3

R3

0

M
P2 ∼ 1

4
m
M

(

R0(M)
R

)3

.

Upon “contact”, i.e. when R = R0(M) + R0(m) = 2(M + m), we get (δR/R0)M ∼ 1
4

mM2

(m+M)3 . This result would

predict a maximum deformation δR/R0 ∼ 1/27, reached when M = 2m.
We have tried to further study the tidal deformations of comparable-mass BH’s by considering the multi-black-hole
Weyl solutions recalled in Eqs. (8) and (11) above. The problem, however, is that these solutions do not allow one
to study, in a physically relevant way, a process where two nearly isolated BH’s get very near each other. Indeed,
the total configuration will always include some struts or strings, that are necessary for global equilibrium. One can
arrange two BH’s, among N , to be free of such strings. However, when these two “central” BH’s get close to each
other, one will need other BH’s (supported by strings) to become also very close to the central BH’s. This generates
additional strong forces and accelerations (related to l = 1 tidal terms) that mess up the pure l = 2 tidal heights
coming from the (free fall) gravitational interaction of the two central holes. As a consequence, we could not use Weyl
solutions to check the above prediction that coalescing BH’s are only slightly deformed.
Instead, we could, however, use well separated, multi-black-hole Weyl solutions to check the values of the first few
Love numbers. For instance, one can take an asymmetric 3-black-hole Weyl solution, made of a central BH of mass
M (“located” at z = 0, i.e. corresponding to a “rod” in the interval z ∈ [−M,M ]), and of two “satellite” BH’s: one
of mass m1 located at z = b1 > 0, and one of mass m2 located at z = −b2 < 0. One then considers a limit where
b1 ∼ b2 tend to infinity (e.g. keeping m1 ∼ m2 finite). In this limit, one can expand the solution (8) and (11) in
inverse powers of b1 and b2. One finds that, by using a suitable constant C in Eq. (8b), and by tuning m2 (given m1,
b1 and b2) so that

m1

b21
+M2m1

b41
=
m2

b22
+M2m2

b42
+ O

(

1

b5

)

, (44)

one can arrange to have the central BH of mass M to hold in equilibrium without supporting struts (i.e. with

limρ→0 γ = 0 on both sides of the z axis, and therefore with a smooth horizon and β̂NP = β̂SP = 1). Then, we find
that the Gauss curvature of the central horizon reads

(2Mu)
2K = 1 + 8M2

(

m1

b31
+
m2

b32

)

P2 + 8M3

(

m1

b41
− m2

b42

)

P3 + O
(

1

b5

)

. (45)

Using the definition above of the Love numbers, one easily checks that this result is equivalent to h2 = 1/4 and
h3 = 1/20, in agreement with our general formula above.

III. ELECTROMAGNETIC CASE: INFLUENCE OF FARAWAY CHARGES ON THE SURFACE

CHARGE DENSITY OF A BH

As a contrast to the gravitational polarizability properties of BH’s, let us now consider their electric polarizability
properties. For simplicity, we consider a physical situation where an uncharged BH of mass M is immersed in a
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general electric field generated by a static axisymmetric configuration of faraway charges.
The background metric of the Schwarzschild black hole is

ds2 = −
(

1 − 2M

R

)

dt2 +
1

1 − 2M
R

dR2 +R2
(

dθ2 + sin2 θdφ2
)

. (46)

In the linearized approximation, the electromagnetic field Fµν = ∂µAν −∂νAµ generated by the faraway charges must
satisfy (outside the location of the charges)

Fµν;ν = 0. (47)

Eq. (47) yields a second-order partial differential equation for the scalar potential A0 = −V . [Here V denotes the usual
electric potential such that the electric field E = −∇V = +∇A0.] Assuming that all the charges that generate A0 are
at a distance D ≫ 2M , we can, as in the gravitational case, consider that, in the intermediate domain 2M ≪ R ≪ D
(where the spacetime is approximately flat), the potential A0 admits a flat-space multipolar expansion of the general
type

Aasympt
0 (R, θ) =

∞
∑

l=0

τlR
lPl(cos θ). (48)

Here the coefficients τl ∼ +∂lA0 ∼ +∂l−1E are the electric analogs of the tidal coefficients Tl ∼ +∂lU ∼ +∂l−1g
that entered the asymptotic tidal expansion of the external gravitational potential Uext, Eq. (4). The sign convention
is chosen so that a uniform electric field E = Eez directed along the positive z axis corresponds to τ1 = +E. In
addition, the normalization of the τl’s is such that, in the particular case where the electric field that we consider is
generated by a point-like test charge q located at a large distance D along the z axis (in a flat region), τl is simply
equal to

τl = − q

Dl+1
, (49)

so that the asymptotic scalar potential reads

Aasympt
0 = −Vasympt = − q√

r2 +D2 − 2rD cos θ
= −

∞
∑

l=0

q

Dl+1
rlPl(cos θ). (50)

Let us now take into account the effect of the background spacetime curvature, Eq. (46). Because of the spherical
symmetry of the background, and the assumed axisymmetry, one can decompose the exact A0 = −V in a series of
Legendre polynomials, say

A0 =

∞
∑

l=0

al(R)Pl(cos θ) ≡
∞
∑

l=0

√

1 − 2M

R
wl(R)Pl(cos θ), (51)

where the functions wl(R) ≡ al(R)/
√

1 − 2M/R can be shown to obey the differential equation

(

1 − R̄2
) d2wl
dR̄2

− 2R̄
dwl
dR̄

+

[

l(l + 1) − 1

1 − R̄2

]

wl = 0 (52)

where R̄ = R/M − 1. Following [27], we remark that Eq. (52) has the form of a general Legendre equation (m = 1),
and admits two independent solutions, which can be expressed in terms of the associated Legendre functions of the
first and second kind, P 1

l (R̄) and Q1
l (R̄), respectively. As a result, the expansion (51) contains two classes of radial

functions al(R): one class of solutions, say gl, is regular on the horizon, and behaves like Rl for R → ∞, while the
other, say fl, is logarithmically singular (except when l = 0) on the horizon and behaves like R−(l+1) for R → ∞. We
are interested here in the unique radial solution al(R) that is regular on the horizon and grows like Rl when R → ∞,
i.e. the gl’s, (so that the corresponding term in Eq. (51) can match the term ∝ τlR

l in Eq. (48)). Such a solution is
given by g0 = 1 when l = 0, and

gl(R) =
(2M)l(l − 1)!l!

(2l)!
(R − 2M)

dPl(R/M − 1)

dR
, when l 6= 0, (53)
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where the normalization of (53) is chosen such that gl(R) ≃ Rl for R → ∞. With this normalization, the unique,
horizon-regular solution of (47) which asymptotically agrees with (48) (and corresponds, when l = 0, to an uncharged
BH) reads

A0 =

∞
∑

l=0

τlgl(R)Pl(cos θ). (54)

Let us now consider what is the “charge density” σ [19] induced on the horizon of the BH by the electromagnetic
field, namely

σ ≡ 1

4π

[

dA0

dR

]

R=2M

= − 1

4π

[

dV

dR

]

R=2M

. (55)

Decomposing σ into multipoles,

σ(cos θ) =

∞
∑

l=1

σlPl(cos θ), (56)

and using the identity

[

d

dx
Pl(x)

]

x=1

=
l(l + 1)

2
, (57)

one easily finds that (with R0 = 2M)

4πR0σl = hEMl τlR
l
0, l ≥ 1 (58)

where

hEMl =
l!(l + 1)!

(2l)!
. l ≥ 1 (59)

On the left-hand side of Eq. (58) we have introduced the quantity 4πR0σl which has the dimension of an electric
potential, i.e. the same dimension as the l-th multipolar component τlR

l
0 of the asymptotic electric potential A0

(formally evaluated for a radius R = R0 = 2M). Eq. (58) is the electric analog of Eq. (33): its right-hand side
contains the R → R0 continuation of a “tidal” potential, while its left-hand side contains the “effect” of its tidal
potential on the horizon (here the induction of a charge density). We can therefore consider that the dimensionless
proportionality coefficient hEMl entering the linear relation (58) is the electric analog of the hl Love number (hence
our notation).
It is interesting to note that this “electric Love number” is rather similar to its gravitational analog. It is related to
it by the simple factor

hEMl = 2(l − 1)hl. (60)

The first few values are hEM1 = 1, hEM2 = 1/2, hEM3 = 1/5. For large values of l, hEMl decays as

hEMl ∼ l
√

2πl

4l
. (61)

As in the gravitational case, we can therefore expect that, as long as the inducing charge q is at a distance D & R0,
its “electric tidal” effect will be dominated by the lowest multipole, i.e., in the present case, by the induction of a
dipolar charge distribution 4πσ1 = hEM1 τ1, i.e., (using our result hEMl = 1) 4πσ1 = Easympt where Easympt is the
asymptotic (R0 ≪ R ≪ D) electric field strength.

In this respect, it is also interesting to compare the electric Love numbers of a BH to those of a conducting
sphere in flat space. We recall that a BH is analogous to a conducting sphere in that, at equilibrium, it is an
equipotential surface [19], and that, in a general non-equilibrium situation, it exhibits dissipative properties (Ohm’s
law, Joule’s law) similar to those of a conducting shell with surface resistivity equal to 4π = 377Ω [2, 3, 4, 5]. The
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general “tidal” l-th multipolar component of the electric potential around an uncharged, conducting sphere of radius
R0 (in flat space) is easily found to be

A0(R, θ) = τ0 +

∞
∑

l=1

τl

(

Rl − R2l+1
0

Rl+1

)

Pl(cos θ). (62)

Computing the corresponding multipole-expanded charge density σ, Eq. (55), we then deduce from the definition
(58), the flat-space values of the electric Love number of a conducting sphere

hsphere
l = 2l+ 1. (63)

Note that these flat-space values are larger than 1 and they grow with l (hsphere
1 = 3, hsphere

2 = 5). This contrasts
with the corresponding BH values (hBH1 = 1, hBH2 = 1/2) that decrease with l.

IV. ELECTROMAGNETIC CASE: NEAR-HORIZON LIMIT

Up to now, we have been considering (both in the gravitational case and in the electromagnetic one) a BH
immersed in the (gravitational or electromagnetic) “tidal field” generated by a configuration of faraway sources. To
complete our understanding of tidal effects, it is, however, interesting to consider also the case where a mass m, or
a charge q, gets very close to the horizon. As a prelude to studying the gravitational case, we shall consider in this
section the case where an external test electric charge gets very close to the horizon of a Schwarzschild BH. This was
the situation studied long ago by Hanni and Ruffini [19].

We then consider a test charge q located2 at z = D along the positive z axis (θ = 0). Outside the radial
location of the charge, the multipolar components al(R) of A0(R, θ), Eq. (51), satisfy Eq. (52) (after the

transformation al(R) = wl(R/
√

1 − 2M/R)). Above, it was enough for our purpose to consider only the
asymptotically-growing, horizon-regular solution of (52), for which al(R) is given by Eq. (53). Now, we need to
consider also the asymptotically-decreasing, horizon-singular solution of (52), for which al(R) is given by [27]

fl(R) = − (2l + 1)!

2l(l + 1)!l!M l+1
(R− 2M)

dQl(
R
M

− 1)

dR
, ∀l (64)

The normalization of fl(R) has been chosen so that

fl(R) ≃ R−(l+1), R → ∞. (65)

In terms of the two radial solutions gl(R) and fl(R), one can write [27] the electric scalar potential generated by a
charge q located at z = D as

A0 = −V = −q
∑

l

[fl(D)gl(R)Θ(D −R) + fl(R)gl(D)Θ(R −D)]Pl(cos θ), (66)

where Θ(x) denotes the usual step function.
Inserting the result (66) into the definition (55) of the induced charge density (and using again the result (57) used
above to compute the electric Love numbers) leads to the following result for the l-th multipolar component of the
charge density induced on the surface of the BH

4πR0σl = − l!(l + 1)!

(2l)!
qfl(D)Rl0 = −hEMl qfl(D)Rl0. (67)

This result can be interpreted in two ways. On the one hand, one can view it as an application of the general
definition of Love numbers, Eq. (58), but with the understanding that, when the charge q gets near the horizon,
one must replace the usual “EM tidal moment” τl = −q/Dl+1 by τl(D) = −qfl(D). On the other hand, one can
alternatively (in the spirit of Love’s original definition) wish to continue to define τl as being simply the “Coulombian”

2 Note that, in this subsection, D denotes a Schwarzschild-coordinate radial distance.
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values τl = −q/Dl+1, in which case one can say that the Love number hEM in Eq. (58) must be dressed by a distance-
dependent correcting factor, say tEMl (D) ≡ Dl+1fl(D) (with tl(D) → 1 as D → ∞), so that hEMl (D) = hEMl tEMl (D)
plays the role of a distance-dependent effective Love number in

4πR0σl = −hEMl tEMl (D)
q

Dl+1
Rl0 = −hEMl (D)

q

Dl+1
Rl0. (68)

Using Eq. (64) to evaluate fl(D) and remembering that [28] Ql(x) = 1
2Pl(x) log x+1

x−1 − P̄l−1(x), where P̄l−1(x) is

a polynomial of order l − 1, one finds that the correcting factor tEMl (D) ≡ Dl+1fl(D) grows, as D decreases from
infinity down to D = R0 = 2M , from 1 to a horizon value equal to

tEMl (2M) =
(2l + 1)!

l!(l + 1)!
. (69)

Inserting the result (69) into the definition of the “dressed”, distance-dependent Love number leads to the following
horizon value for the dressed Love number

hEMl (2M) = hEMl tEMl (2M) = 2l+ 1. (70)

Note that, while the bare “faraway” Love numbers hEMl decreased roughly as 4−l as l increased, the dressed, near-
horizon effective Love numbers (70) now increase linearly in l. This linear increase with l is the multipole-expanded
version of the result found in Hanni and Ruffini [19] that, as the charge q (with, say, q > 0) gets near the horizon, the
induced charge density becomes nearly uniformly distributed on the horizon, apart from a strongly negative charge
distribution, localized in a small patch “below” the charge q. Indeed, the limiting result (70) corresponds, when
inserted in Eq. (68), to a charge distribution on the horizon given by (we recall that, by construction, the monopolar
component σ0 vanishes because the BH is uncharged)

σ =

∞
∑

l=1

σlPl(cos θ) = − q

4πR2
0

∞
∑

l=1

(2l+ 1)Pl(cos θ) = − q

4πR2
0

[2δ(1 − µ) − 1] , (71)

where δ(1−µ) denotes a Dirac-delta distribution localized at µ = 1− (with the convention
∫ 1

a
dµδ(1−µ) = 1, ∀a < 1).

Here we have (formally) applied the general theorem on the Legendre expansion of a function f(µ) on the interval
µ ∈ [−1,+1], namely

f(µ) =
∞
∑

l=0

flPl(µ), (72a)

fl =
2l + 1

2

∫ +1

−1

dµf(µ)Pl(µ) (72b)

to the distribution f(µ) = 2δ(1 − µ).
Note also that the result (70) coincides with the Love number of a conducting sphere in flat space, Eq. (63). This
can be interpreted as meaning that, in the near-horizon limit, the electromagnetic interaction between the charge q
and the horizon becomes localized in a small patch below q, and that such a localized behaviour applies also to the
interaction between a charge in flat space which becomes very close to a conducting sphere.

V. GRAVITATIONAL CASE: NEAR-HORIZON LIMIT

After this incursion into the electromagnetic analogs of tidal effects, let us come back to the gravitational case. We
wish now to consider the gravitational analog of the Hanni-Ruffini study [19], i.e. the tidal deformation of the horizon
by a test mass, m≪M , in the limit where m gets very close to the horizon. To do this, it is convenient to start from
the general result derived above for the curvature of the horizon, namely

(2Mu)
2K(µ) = −1

2
∂2
µ

[

(1 − µ2)e2(Ūext(µ)−u)
]

. (73)

Correlatively, the coefficients cl of the multipolar expansion of K(µ),

(2Mu)
2K(µ) = 1 +

∞
∑

l=2

clPl(cos θ), (74)
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(where we used our general results (26a) and (26b) above) are given by

cl = −2l+ 1

4

∫

dµPl(µ)∂2
µ

[

(1 − µ2)e2(Ūext(µ)−u)
]

. (75)

Here, Ūext(µ) is the value on the horizon of the Weyl-Newton external potential Uext, which is a solution of the
axisymmetric, flat-space Laplace equation. We have in mind here a general configuration where Uext is generated by
a stationary axisymmetric configuration of masses, mi, which include, among other sources, a test mass m≪M very
close to the horizon.
Let us consider the limiting case where all the external masses are test masses: mi/M → 0. In this limiting situation,
Uext ( and u = UNPext = USPext ) formally tends to zero, and we can replace Eqs. (73) and (75) by their linearized
approximations:

(2Mu)
2K lin − 1 = −∂2

µ

[

(1 − µ2)
(

Ūext(µ) − u
)]

, l ≥ 2, (76a)

clinl = −2l+ 1

2

∫ +1

−1

dµPl(µ)∂2
µ

[

(1 − µ2)Ūext(µ)
]

. (76b)

In Eq. (76b) we have used the fact that, for l ≥ 2, the µ-independent term u = UNPext does not contribute to cl.
Finally, as clinl , Eq. (76b), is a linear function of Uext, we can consider that each clinl is given by a sum over the various
external masses, say, clinl = clinl (m) +

∑

i c
lin
l (mi). In the following, we shall focus on the contribution clinl (m), where

m is a test mass which is very close to the horizon 3. The individual contribution clinl (m) is obtained by inserting in
the right-hand side of Eq. (76b) the ρ→ 0 limit of −ψm, where ψm is given by Eq. (10a). As we are considering the
test-mass limit m/M → 0, we can simplify this logarithmic expression for Um = −ψm by expanding the logarithm

in powers of 2m/(R+
m + R−

m), and then by approximating (R+
m + R−

m)/2 simply by
√

ρ2 + (z − b)2. This yields the
simple, Newton-like result

Um ≃ m
√

ρ2 + (z − b)2
. (77)

Then, taking the horizon limit (i.e. ρ → 0) and replacing z by Mµ according to Eq. (16) leads to the explicit result
(we assume, for definiteness, that b > M > 0, i.e. that the mass m is near the North Pole, µ = +1):

clinl (m) = −2l+ 1

2

∫ +1

−1

dµPl(µ)∂2
µ

[

m(1 − µ2)

b−Mµ

]

. (78)

There are now two ways to discuss what happens when b decreases from b ≫ M down to b ≃ M . [We recall that b
is the Weyl-coordinate distance, so that the horizon is located at b = M .] A first way consists in noticing that the
integral (78) can be explicitly expressed in terms of the Legendre functions of the second kind. Indeed, using [28]

Ql(x) =
1

2

∫ +1

−1

Pl(y)
dy

x− y
, (79)

we can reexpress Eq. (78) as

clinl (m) = (2l + 1)
m

M
(b̂2 − 1)∂2

b̂
Ql(b̂), (80)

where b̂ = b/M .
Similarly to our discussion of the electromagnetic case, we can then re-interpret the result (80) by writing the l-th
multipolar component of the adimensionalized horizon curvature “raised” by an external test mass m at Weyl distance
b in the form

[

(2Mu)
2K lin

]

l
≃ clinl (m)Pl(µ) = (l − 1)(l + 2)hltl(b)

m

(b+M)l+1

Rl+1
0

M
Pl(µ), (81)

3 Though the present linear approximation allows us to focus, independently from the other masses mi, on the contribution clin
l

(m),
one should keep in mind that the various masses are not totally independent from each other as they must respect the “equilibrium
condition” (3), which is needed for ensuring the regularity of the metric on the portions of the z axis that touch the “central” BH of
mass M .
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where hl is the bare, faraway gravitational Love number, Eq. (34), and where tl(b) is a distance-dependent correcting
factor (normalized so that tl(b) → 1 as b → +∞): here we conventionally replaced the factor 1/Dl+1 in the electro-
magnetic definition (68) by 1/(b+M)l+1 to ensure that these “Coulombian” factors agree both when b → +∞ and
on the horizon.
Comparing Eq. (80) to Eq. (81), we get

(l − 1)(l + 2)hltl(b)

(

2M

b+M

)l+1

= (2l + 1)(b̂2 − 1)∂2
b̂
Ql(b̂). (82)

If we now formally4 let ǫ = b −M tend to zero, i.e. b̂ = b/M ≡ 1 + ǫ̂ (with ǫ̂ ≡ ǫ/M) tend to 1, one finds that

(b̂2 − 1)∂2
b̂
Ql(b̂) ≃

1

ǫ̂

[

1 − l(l + 1)ǫ̂+ O(ǫ̂2)
]

, (83)

the crucial point being that the coefficient of the leading term ǫ̂−1 = (b̂ − 1)−1 in the right-hand side is equal to 1,
independently from the value of l. In other words, the near-horizon limit of the multipolar coefficients of the curvature
is (ǫ = b−M)

clinl (m)|b→M = (2l+ 1)
m

ǫ
, (84)

and this result can be interpreted (similarly to the electromagnetic case (70)) as coming from the horizon limit of a
distance-dependent “dressed” Love number hl(b),

hl(M + ǫ) = hlτl(M + ǫ) ≃ 2l+ 1

(l − 1)(l + 2)

M

ǫ
. (85)

In other words, the correcting factor τl(b) grows, as b → M , in a strongly l-dependent manner (roughly ∼ 4+l), and
this growth compensates the usual behaviour (hl ∼ 4−l) of the faraway Love number. The second way to obtain the
simple final result (84) is to explicate the second µ derivative entering Eq. (78) so as to obtain:

clinl (m) = (2l+ 1)
m

M

∫ +1

−1

dµPl(µ)
b̂2 − 1

(b̂ − µ)3
≃

≃ (2l + 1)
m

ǫ

∫ +1

−1

dµPl(µ)
2ǫ̂2

(1 + ǫ̂− µ)3
.

(86)

Then one notices that, in the near-horizon limit ǫ̂ = ǫ/M → 0, the function δǫ̂(1 − µ) = 2ǫ̂2(1 + ǫ̂ − µ)−3 =

∂µ[ǫ̂
2(1+ǫ̂−µ)−2] gets localized near µ = 1− and has an integral

∫ +1

a
dµδǫ̂(1−µ) = [ǫ̂2(1+ǫ̂−µ)−2]1a = 1−ǫ̂2(1+ǫ̂−a)−2

which tends to 1. In other words, δǫ(1 − µ) → δ(1 − µ) as ǫ̂ → 0. Using Pl(1) = 1, we then obtain another proof of
the limiting result (84).
Inserting the result (84) in the multipolar expansion (74), we then see that the contribution to K coming from a mass
m tends, as m approaches the horizon (ǫ = b−M ≪M) towards

(2Mu)
2K lin(m) ≃ m

ǫ

∞
∑

l=2

(2l+ 1)Pl(µ). (87)

Using, as we did in the near-horizon electromagnetic case above, the multipolar decomposition of the Dirac-delta
distribution 2δ(1 − µ), we can sum the series (87) to get

(2Mu)
2K lin(m)

∣

∣

ǫ≪M
≃ m

ǫ
[2δ(1 − µ) − 1 − 3µ] . (88)

This result is the gravitational analog of the electromagnetic result (71). It shows that, modulo a global smooth
curvature linear in µ, the tidal horizon curvature generated by a near-horizon mass m is localized in a small patch

4 As our analysis here assumes Uext ≪ 1, we should always keep m/ǫ ≪ 1. In other words, the coordinate distance to the horizon,
ǫ = b − M , should tend to zero less rapidly than m/M .
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“below” the mass m. Similarly to the electromagnetic case, this result could also be formulated in saying that, in the
near-horizon limit, the tidal curvature, being localized in a small patch on the horizon (as witnessed by the integrand

∝ (b̂2 − 1)/(b̂− µ)3 in Eq. (86)), could also be computed by replacing the real curved horizon by a flat-space horizon
or “Rindler horizon” (as done in [6, 20]).
We will, however, get a more interesting result (which has no electromagnetic analog) by considering the “shape
distortion” of the horizon associated to the tidal curvature (88). Using our general result (39), the multipolar
expansion of the corresponding near-horizon shape distortion is

δR(µ)

R0
=
m

ǫ

∞
∑

l=2

2l+ 1

l(l+ 1) − 2
Pl(µ). (89)

To sum this new series, we apply the differential operator ∆ + 2, where ∆ denotes the Laplacian on the unit sphere
(with ∆Pl(µ) = −l(l+ 1)Pl(µ)) to Eq. (89) and find that δR(µ) satisfies the differential equation

ǫ

m
(∆ + 2)

δR

R0
= 1 + 3µ− 2δ(µ− 1), (90)

where ∆, acting on an axisymmetric function, can be replaced by ∂µ(1 − µ2)∂µ. This yields a second-order ODE
for δR(µ). The presence of a delta-function singularity on the right-hand side indicates that δR(µ) must have a
∼ ln(1 − µ) singularity at µ → 1 (and no singularity at µ → −1, contrarily to the Q0(µ) Legendre function, which
satisfies (∆ + 2)Q0 = 0, modulo two delta-singularities at µ = 1 and µ = −1). One then easily finds a particular
solution of (90) of the form (∆ + 2)

(

− 1
2 − µ ln(1 − µ)

)

= 1 + 3µ − 2δ(µ − 1). The general solution of (90) is then
obtained by adding to this particular solution a general regular solution of (∆ + 2)f(µ) = 0, i.e. a multiple of
P1(µ) = µ. One can determine this multiple by requiring (as needed from the absence of l = 0 and l = 1 contributions
in (89)) that

∫

dµP1(µ)δR(µ) = 0. Finally, this uniquely determines the sum (89) to be

δR(µ)

R0
=
m

ǫ

[

−1

2
− µ ln(1 − µ) + µ(ln 2 − 4

3
)

]

. (91)

The corresponding shape is illustrated in Fig. 1 (for a prefactor m/ǫ = 1/30). This Figure shows the “height”
of the tide raised on the horizon by a mass m, in the limit where the location b of the mass tends to the horizon
(b → M , keeping m/ǫ = m/(b −M) finite and small). When ǫ is kept non zero (even beyond the prefactor m/ǫ),
one finds that the logarithmic “spike” at µ = cos θ = 1 (North Pole) is rounded off on the characteristic angular scale

θc ∼
√

(b −M)/M , corresponding to the multipolar orders lc ∼ θ−1
c ∼

√

M/ǫ. [The characteristic multipolar order
lc can be read off the next-to-leading term in the expansion on the right-hand-side of Eq. (83).]

VI. CONCLUSION

We compared and contrasted the gravitational polarizability properties of black holes (BH) with their electromagnetic

polarizability properties. Our main results are:

1. The definition and computation of the infinite sequence of “shape” (or “height”) Love numbers hl of a BH,
where l = 2, 3, 4... is the multipolar order. The result is given by Eq. (40): hl essentially measures the ratio
between the “height” of the l-th tidal bulge raised on the horizon of a BH and the corresponding external l-th
tidal potential Uext(R0) (analytically continued down to the horizon R0 = 2GM). Contrary to the Newtonian
hl Love numbers of a perfect-fluid star which are larger than 1 [10], we found that the Love numbers of a BH
are smaller than 1, and tend rapidly (and exponentially) toward zero as l increases, e.g. h2 = 1/4, h3 = 1/20,

h4 = 1/84,..., hl ≃
√

2πl/22l+1. In a related recent work [10], it was found that the height Love numbers of a
neutron star approach those of a BH as the “compactness” c = GM/R of the star formally tend towards the
BH value cBH = 1/2.

2. The corresponding definition of a sequence of electromagnetic Love numbers hEMl (l = 1, 2, 3, ...). These essen-
tially measure the ratio between the l-th multipolar charge induced on the horizon of a BH and the corresponding
external l-th multipolar electric potential (analytically continued down to the horizon). Here again we found
that the electric Love numbers of a BH (given in Eq. (59)) are much smaller than those of a conducting sphere
in flat space (63), and tend rapidly (and exponentially) toward zero as l increases: hEM1 = 1, hEM2 = 1/2,

hEM3 = 1/5, ..., hEMl ≃ l
√

2πl/22l. In addition, we found that they are simply related to the gravitational
height Love numbers: hEMl = 2(l− 1)hl.
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FIG. 1: Shape of a meridian section of the “tidal bulge” raised by a test-mass m located at the North Pole of the horizon of a
BH.

3. The comparative study of the gravitational and electromagnetic polarizability properties as the “polarizing”
mass or charge approaches the horizon. Both cases can be described by replacing the “bare”, faraway Love
numbers, by some “dressed”, distance-dependent factor tl(b)hl or tEMl (D)hEMl . We found that the gravitational
(respectively electromagnetic) dressing factors tl(b) (resp. tEMl (D)) compensate, in the near-horizon limit, the
exponential decrease of hl (resp. hEMl ), and lead, in the gravitational case, to a specific “spiky” shape for the
distorted horizon given by Eq. (91), and illustrated in Fig. 1.
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