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Abstract

We study to what extent wormholes can mimic the observational features of black
holes. It is surprisingly found that many features that could be thought of as “char-
acteristic” of a black hole (endowed with an event horizon) can be closely mimicked
by a globally static wormhole, having no event horizon. This is the case for: the
apparently irreversible accretion of matter down a hole, no-hair properties, quasi-
normal-mode ringing, and even the dissipative properties of black hole horizons,
such as a finite surface resistivity equal to 377 Ohms. The only way to distinguish
the two geometries on an observationally reasonable time scale would be through
the detection of Hawking’s radiation, which is, however, too weak to be of practical
relevance for astrophysical black holes. We point out the existence of an interesting
spectrum of quantum microstates trapped in the throat of a wormhole which could
be relevant for storing the information “lost” during a gravitational collapse.
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1 Introduction

One of the most striking predictions of Einstein’s theory of gravity is the existence of black
holes. Though these objects made their first appearance in the famous exact spherically
symmetric solution found by Karl Schwarzschild [I] a couple of months after Einstein
finalized his theory, it took many years, and the work of many physicists, to cristallize the
concept of black hole (see, e.g.,[2]). For a long time, a part of the physics community was
rather sceptical about the actual existence of black holes, but the situation has changed
in recent years, notably because of several different types of astronomical observations: in
X-ray binary systems, in galactic nuclei (including our home, the Milky Way), etc. For a
review of the astronomical evidence for black holes see [3].

Today black holes are part of the basic “toolkit” of physicists and astrophysicists, and
their existence in the real universe is taken for granted. It is, however, interesting to exam-
ine critically to what extent the current, or future, astrophysical data can observationally
prove the existence of black holes. Indeed, black holes are sophisticated theoretical con-
structs with many different properties and each observational evidence usually concerns
only one specific property. For instance, in many observations the “black hole candidates”
are mainly picked either because their inferred mass exceeds some theoretical limit, or
on the basis of their strong external gravitational field. Several authors have claimed
that some observations have probed, or will eventually probe, more characteristic fea-
tures of black holes, and notably the (essentially defining) existence of an event horizon.
For instance, Narayan and collaborators have argued that, in several examples, a black
hole candidate “does not have a surface, i.e. it must have an event horizon” [3, 4]. In a
different vein, it is also commonly argued that forthcoming gravitational wave data from
LIGO/Virgo/GEO will establish the existence and “unique” properties of black holes
either through the observation of the characteristic “quasi-normal mode” (QNM) ring-
ing frequencies of a newly formed hole [5], or from observational checks of the “unique”
structure of the black hole geometry guaranteed by “no-hair” theorems [6, [7].

A well-known, and useful strategy for gauging the extent to which observations can
really characterize the presence of general relativistic black holes is to consider “black
hole foils”, i.e. theoretical objects that mimic some aspects of black holes, while lacking
some of their defining features. Several examples of this strategy have been considered
in the past. For instance, would-be black holes within Rosen’s bimetric theory of gravity
[8], or, more recently, some “gravstar” models [9].

In this note, we consider a very simple type of black hole foil: a wormhole [10]. Though
a wormhole does not have an event horizon, and differs, in principle, in several other im-
portant ways from a black hole, we shall show here that, if a certain parameter entering its
definition is small enough, a wormhole is essentially astrophysically indistinguishable from
a black hole. Our final conclusion is that the possibly unique way of conclusively proving
the presence of a black hole (endowed with an horizon) would be to observe its Hawking
radiation [11]. And even this conclusion needs some qualification, because we shall see
that some features of wormholes naturally tend to mimic the quantum spectrum of black
holes, so that it is possible that some (to be defined) wormhole formation mechanisms
could lead to an Hawking-like radiation.



2  Wormbhole metric

We shall consider here a very simple type of wormhole spacetime, as described by the
metric
2 2y g2, 17
ds (g(r) + \°)dt” + )
where g(r) = 1— 29 This metric differs from the standard Schwarzschild metric [1] only
through the presence of the dimensionless parameter A\. When A\ = 0 we recover a black
hole of mass M with an event horizon located at the radius r = 2GM. By contrast, when
A # 0 the structure of the spacetime is dramatically different: there is no event horizon,
instead there is a throat at » = 2GM that joins two isometric, asymptotically flat regions.
This spacetime is an example of a Lorentzian wormhole [I0]. In three dimensions a similar
modification of the black hole metric was studied in [12] in an attempt to restore Poincaré
recurrences in black holes. The parameter A in the latter construction was chosen to be
exponentially small

+ 72(d6* + sin® 0d¢?) , (2.1)

\ ~ e dmGM? (2.2)

in order to reproduce the expected dependence of the Poincaré recurrence time on the
entropy of a black hole. Though we shall leave free the value of X in this paper, and discuss
what range of values for A is compatible with present and foreseeable observations, we
will see below that exponentially small values of the type of (Z.2) seem indeed adequate
for mimicking not only the classical, but also the quantum properties of a Schwarzschild
black hole.

The event horizon of the original black hole metric is replaced, in the wormhole metric
(210, by a high-tension distribution (a kind of brane) localized in a thin shell around the
center of the throat at r = 2G M. More precisely, with our simplifying choice of wormhole
metric (2.0), the stress-energy tensor distribution sustaining the throat has vanishing
energy density, but comprises radial and tangential tensions proportional to 1/A2.

In order to define globally the wormhole spacetime (2.2) we need to specify how
the spacetime is continued through the (geometrically regular) throat r = 2GM. The
Schwarzschild-type radial coordinate r is not well defined at r = 2GM. We should re-
place it, for instance, by the proper radial distance, say y = [oq;,dr/,/g. In terms of

y, one has, to leading order, the following expressions in the throat: g(y) = % and
r(y) = 2GM + 85—2M. Using the coordinate y we can now globally define the wormhole

spacetime in several different (physically inequivalent) ways. A first possibility (which is
the usual one when considering “wormholes”) is to decide that the variable y varies over
the full real line: —oco < y < +00. A second possibility is to impose some Zy symmetry
between y and —y, so that y effectively varies only on a half-line 0 < y < 400 (with
some Zy-symmetry boundary conditions at y = 0). We might prefer the first possibility if
we have in mind a multi-brane-world in which the collapse of a star establishes a bridge
between two previously separate brane-worlds. If, instead, we have in mind a unique
world, we might prefer imposing the second possibility, i.e. the idea that the collapse of
a star creates an “end-of-the-world” Zs-symmetric brane at r = 2G M, which is certainly
a logically allowed possibility. Note then that, in both cases, the wormhole spacetime
([2.2)) is globally static, the time Killing vector being everywhere timelike (while it became
spacelike beyond the horizon in the black hole case).

3



An immediate consequence of the metric (2.I]) is that time in the throat is extremely
slow from the point of view of a distant observer. Indeed, they are related by A,

tinr = )\tdist .

The throat thus mimics what happens at the event horizon of a black hole where time is
“frozen” [we recall that the old name (especially in Russia) for a black hole was a “frozen
star”]. The only difference from an actual horizon is that time does not completely stop in
the throat: if an observer makes observations during a time of order GM/A he or she will
resolve the processes happening in the throat and thus be able to distinguish a wormhole
from a black hole. Reciprocally, this preliminary remark suggests that if an observer only
looks at a wormhole during a finite time he or she might not be able to distinguish it from
a black hole. We shall see below, in several examples, that this is indeed the case, even
for phenomena that are usually considered as characteristically linked to the presence of
an horizon (such as no-hair properties, or dissipative properties). However, we shall see
that the observing time span needed to distinguish a wormhole from a black hole is not
GM/), as suggested by the above naive argument, but rather GM/In(1/\).

3 Geodesics

As first, and simplest example of the comparative phenomenology of wormholes versus
black holes, let us consider the motion of particles around a wormhole, and their fall
within the throat.

The (equatorial) geodesics in the metric (2.I]) are described by the equations

. E . L

i YT

. Lo gl
r2+g(r)(r—2+e)—g(r)+>\2E2 : (3.1)

where € = 0 for a null-like geodesic, e = 1 for a time-like geodesic, and where the overdot
denotes the derivative with respect to the proper time (or an affine parameter, in the null
case). E is the energy and L the angular momentum of the test particle (for simplicity

we consider a test particle of unit mass). In terms of the new coordinate p = [ gtf’wdr
the last equation in (B.1]) takes the standard form

PV = B
V() = () + W) (g ) (32

The consideration of the “effective potential” V(r) (or rather V(r(y)) to understand
what happens in the throat) then allows one to understand qualitatively the dynamics of
particles in the wormhole.

As soon as one is a little bit away from the throat, the dynamics is that for the
Schwarzschild metric plus (observationally negligible) small corrections proportional to A\2.
This shows that any observational feature which is not taking place very near r = 2GM
will be (for small enough A) the same in the wormhole foil than in a real black hole.
This is for instance the case for the emissivity properties of accretion disks, even those
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that crucially depend on relativistic dynamics features (like the presence of an innermost
stable circular orbit (ISCO)).

On the other hand, there is an important difference from the black hole case if we con-
sider, say, circular orbits with radius equal to (or very near) the throat radius r = 2GM.
Both for null and timelike geodesics, and for any value of the angular momentum L there
exists a circular orbit exactly located at r = 2G M. The energy and angular momentum
in this case are related by E? = )x%% + €). The derivative of the radial potential
vanishes 8,V = 0 for r = 2GM while the second derivative 82V (p)) = 52V, ghlr—2cn is
positive. Thus, this “throat-orbiting” circular orbit is stable. In addition, the positive
curvature of the effective potential at » = 2G M implies that there exist bound “elliptic”
orbits staying near r = 2GM.

An argument often evoked for distinguishing a black hole from other potential wells
is the absence of a “surface” in the black hole case, and the possibility for the horizon of
absorbing any amount of infalling matter [3[4]. The situation is a priori quite different in
the wormhole case because a look at the qualitative shape of the effective potential V (r(y))
shows that, for instance, particles falling from (just below) the ISCO must ultimately
bounce back up again from the wormhole throat

To study in more detail this “bounce” from a wormhole, let us focus for simplicity on
the case of radial timelike geodesics, with L = 0 and therefore V(1) = e(g(r) + A\?) (with
€ = 1). There are 3 cases. If E? > 1+ \? then a particle coming from infinity falls into
the wormhole. These geodesics are similar to the radial geodesics in the Schwarzschild
metric. If \2 < E? < 1+ A2 then the geodesic has a turning point y = ¥,, in which
y = 0. The coordinate of the turning point must solve the equation g(y,,) + A\? = E%.
There are exactly two solutions to this turning-point equation, a positive one v, > 0
and its opposite —y,,, < 0. If the wormhole connects two separate spaces, these turning
points are physically distinct, and the radial geodesic bounces back, in an oscillatory
manner, between them. In the Zs-symmetric case, the radial geodesic bounces between
the positive turning point and y = 0 (with half the period taken in the former case).
There is no analog of these geodesics in the case of the Schwarzschild metric. Finally,
if B2 < A% there is no solution to the geodesic equation. Note also that for null radial
geodesics( L = 0, € = 0, so that the effective potential vanishes) there are no oscillating
solutions in the two-separate-spaces case, the light irreversibly falls into the wormhole as
it does in the black hole. But, in the Zy-symmetric case, light bounces back at the throat
and exits from the mouth of the wormhole.

All this suggests that present observations of accreting (or formerly accreting) grav-
itational potential wells rule out their modelling as wormholes. However, as anticipated
above from the basic scaling (2)) it is crucial to study on what time scale the matter which
falls within a wormhole does come out again in our universe. Let us compute the coor-
dinate time taken by a particle (¢ = 1) to go (by geodesic motion) from a point outside
the wormhole, y = [ > 0 to a point inside the throat (say y = 0). The same calculation,
but now taken for e = 0, will give the coordinate time taken by a light signal to join a
point inside the throat (say y = 0) to a point outside the wormhole y = [ > 0. These
coordinate times are given by

lincluding L = 0, in which case one has an equilibrium position at fixed r and ¢.

2This conclusion holds in the case where y ranges over the full real line (in which case the effective
potential is made of two y-symmetric humps), as well as in the Zs-symmetric case where the effective
potential has only one hump, but where the particle bounces off when it reaches y = 0.
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Irrespectively of the type of the geodesic this time is dominated by the throat region, i.e.
the part of the integrals where g(y) ~ A% As both integrals are logarithmically divergent
in the black hole limit, A — 0, At ~ [dy/\/g ~ [dr/g(r), it is easily seen that the
leading term when \ # 0 is

At =2GM In % . (3.4)
This result shows that if A is small enough, it is impossible for observations extending on
some limited time scale T" to distinguish the provisory fall of matter in a wormhole from
the irreversible absorption of matter down the horizon of a black hole. For instance, if
we consider the candidate “massive black hole” ( with M ~ 3 x 10M,) at the center
of our Galaxy, and assume it started accreting matter 6 billion years ago, it could be a
wormhole if A < exp(—10%).

We clearly need exponentially small values of A to mimic observational facts. Note
that this would be precisely the case if we were using the value (2.2) above, as suggested
for quite different reasons in [12]. Actually, if we substitute here the value ([22)) for the
parameter A in the “wormhole bounce time scale” (3.4) we get

At = 167G*M? (3.5)

which is of the order of the Hawking evaporation time scale for a Schwarzschild black
hole. We shall come back below to this suggestive link between quantum black holes and
(classical and/or quantum) wormbholes.

Before discussing other phenomenological aspects of wormholes, let us mention a po-
tential difficulty with the wormhole model proposed here. In this paper we shall content
ourselves with a first-order treatment in which the matter and fields “falling into” a worm-
hole are considered as test-matter propagating in a given wormhole background. However,
the stress-energy tensor carried by all the matter that have accreted in the past onto a
wormhole (and that is, for all practical purposes, essentially “frozen” around the throat
r = 2G'M) will distort the background wormhole metric. However, it is well known [10]
that a wormhole requires that the “matter” making it up must violate (some form of) the
positive-energy condition (we saw that above in the fact that the energy density corre-
sponding to the metric (2.I]) vanishes, while the tension does not vanish). As the accreted
matter does satisfy the usual positive energy conditions, it is not clear how much accreted
matter can be allowed in before risking to destroy the wormhole throat. Actually, we
should provide a more complete definition of our wormholes as dynamical objects. For
instance, one should, in principle, discuss the dynamical structure of the “brane” located
at y = 0, and its possible interaction with the matter falling onto it. Even without such
a complete dynamical definition, we think that it is interesting to explore, as we do here,
how wormholes can be conceptually clarifying foils for black hole dynamics.



4  No-hair properties

As an example of the way wormholes can mimic the no-hair properties of black holes, let us
consider static axisymmetric (test) electric fields in a general wormhole background ds? =
—A(r)dt?+ B(r)dr?4+r%(d§?+sin? 0d¢?) . The static Maxwell equations , 9, (v/—gF*) = 0
reduce (when taking u = t) to a second-order differential equation (in r and 6) for the
electric potential A;. One easily separates the r and 6 dependence by factoring: A;(r,0) =
a(r)P/(cos ), where P(cos@) is a usual Legendre polynomial. This leads to the following
separated equation for the radial factor a(r)

A r?
\/gﬁr(ﬁ&u(r)) =1+ 1a(r) . (4.1)

Let us consider, for example, the wormhole metric A = g + A2, B = 1/g, taken in the Z,-
symmetric case. One generically sees that a solution which is regular and Z,-symmetric
in the throat ( da/dy = 0 at y = 0) will grow like r! at infinity. Therefore we indeed have
a no-hair property paralleling the one for black holes: the only solution which is regular
at the throat, and decaying at infinity, is the trivial one a(r) = 0 for any [ )

From this no-hair property one deduces that if one brings a point charge near the
throat » = 2GM (but parametrically far away from the r —2GM ~ 2GM)? “near-throat
limit”) this will generate an electric field which is essentially indistinguishable (modulo
corrections o< A\?) from the one generated near a black hole, i.e. an electric field which,
when seen from outside, erases the information about the location of the point charge and
looks like a spherically symmetric electric field centered on the hole (see [13]).

5 Quasi-normal mode ringing

It is often said that the observation by the LIGO/Virgo/GEO network of gravitational
wave detectors of the quasi-normal mode (QNM) ringing of a newly formed (rotating)
black hole will provide an excellent confirmation of the actual existence of black holes in
Nature [5]. Indeed, the definition of QNM modes depends in a crucial way on the presence
of an event horizon. Let us recall that the QNM modes are defined as complex-frequency
eigenmodes which satisfy the boundary conditions of being outgoing at radial infinity,
and ingoing towards the black hole horizon. To discuss what happens of QNM modes
in a wormhole background let us consider, for simplicity, the case of scalar field modes.
[Our physical discussion will make it clear that our conclusions apply to the more relevant
(tensor) gravitational excitations.]

For a mode of a scalar field of frequency w, ® = Lip(r)e "V, (6, ¢), we get a radial
equation in the Regge-Wheeler-Zerilli form, i.e. an effective Schroedinger equation

_,lvbzz + U(Z)w = wz,lvb )

T,y Ll +1
U(z) = - + ( = )(g(r) + A% . (5.1)
Here, a z subscript denote a z derivative, [ = 0, 1, 2,... and we have used as variable the

“tortoise” radial coordinate z = [,y dr\/g = fom ﬁ, which is usually denoted 7,
aly

3In the non-Z,-symmetric case, the monopolar case, [ = 0, is a special case in that there exists a
VA
r2

source-free everywhere regular solution parametrized by a charge @, namely 0ya(r) =
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and which is such that the radial part of the metric (ds?* = —Adt* 4+ Bdr?) is conformal to
2

—dt? + dz?. Inserting r., = g.(g + ’\7), we get the following explicit form for the effective

radial potential

_2GM W), 26M o 52)

r3

A2 2GM
o )‘l—

2 r 72

U(r)

(1+

For a wormhole connecting two separate spaces, the tortoise radial coordinate z varies
over the full real line, and this potential is made of two separate positive humps located
at the positive and negative values of z corresponding to r ~ 3GM. In the Z-symmetric
case we have only one hump, together with a suitable boundary condition at the throat
located at z = 0. Let us think in terms of the easily visualizable two-humped potential.
[The Z,-symmetric case consists anyway in retaining the z-even solutions of the other
case.|

This two-humped potential clearly has a very different spectrum than the usual black
hole effective potential which has only one positive hump located around r» ~ 3GM. If
we look for modes satisfying the usual QNM condition of being purely outgoing (both
towards z — +o0o and towards z — —o0) we will have a spectrum which is qualitatively
very different from the usual black hole QNM spectrum. Indeed, it will now contain modes
with a real part of the frequency lower than the maximum of the effective potential, and
a very small imaginary part. These modes are quasi-bound states (“resonances”) trapped
within the two-humped potential, with a small escape probability and a long lifetime.
There is no analog of these modes in the black hole case. As for the former black hole
QNM modes, they do not seem to play any prominent role anymore. Indeed, near, but
on the left of the rightmost hump, there will exist, for a general “wormhole QNM mode”,
a combination of left-moving and right-moving modes which has nothing to do with the
black hole QNM modes which are purely left-moving (i.e. away from the summit of the
potential).

Have we got here a clear observable distinction between a wormhole and a black hole?
In fact not. Indeed, the observable way in which one hopes to detect QNM ringing in
the black hole case consists in considering the signal emitted by a source falling into the
hole, i.e. a source starting at some large and positive value of z, and moving leftwards
towards smaller values of z. The observable signal emitted by this source is obtained,
in the time domain, by the convolution of the retarded Green function G (t — ¥, 2, 2')
corresponding to the Klein-Gordon-like (time-domain) equation (5.I]) with the source, say
d(2" — Zgeodesic(t')). It is true that the wormhole retarded Green function G (t — ¢, 2, 2)
is globally quite different in the wormhole spacetime, compared to the black hole case,
because there will be a combined diffusion effect due to the two potential humps. However,
if the observer looks at the emitted signal only over time scales much smaller than the
time it takes for a causal signal to go from a source event (', zgeodesic(t')) [located, say,
near the rightmost hump] to the leftmost hump, and then to scatter back to the right
until the observation event (¢, z), the observed signal will be the same as that computed
by using only the diffusion effect of the rightmost hump, i.e. the retarded Green function
of a black hole spacetime. And this computation, when done in the Fourier domain,
will exhibit phenomena linked to the usual black hole QNM modes. This indirect, but
physically clear reasoning, shows that if A is such that the time scale (84 is longer than
the observational time scale the signals emitted by a source falling into a wormhole will
contain the usual QNM ringing “signature of a black hole”, in spite of the absence of a



true horizon in the wormbhole case.

6 Dissipative properties

Let us now discuss whether wormholes can mimic the dissipative properties of black holes,
and notably the fact that they can be described as membranes having a finite electric
(surface) resistivity equal to 377 Ohms [I4] (as well as a finite (surface) viscosity [15]).
Indeed, the proof of these properties crucially relies on the presence of an horizon.

We might have here a good way of observationally discriminating wormholes from
black holes. For instance, we can consider the physical situation discussed in [I14]. An
electric current I is passed through a black hole, penetrating through the North pole
and exiting from the South pole@. This generates a certain stationary electromagnetic
field. The analysis in [14] of the regularity of the field structure on the event horizon
has shown that (even for a non-rotating hole) the magnetic field generated by the current
must be accompanied by a correlated electric field. It was then explicitly verified that
the latter electric field is responsible for generating an electric potential difference ( an
“EMF”) between the two poles such that Ohms’ law V' = RI is satisfied, with a resistance
R ~ 30 Ohms computable “as if” the black hole horizon were a conducting surface of
resistivity equal to 377 Ohms (i.e. 47). This electric potential difference is, in principle,
observable, and might actually play a significant role in magnetic-field based mechanisms
for extracting energy from black holes [16, [I7], which are believed to be important in
active galactic nuclei and other astrophysical processes.

If we pass a current I through a wormhole, we expect, at face value, to generate only
a magnetic field. More precisely, adopting the geometry of current injection of [I4], and
solving Maxwell equations for a general spherically symmetric wormhole background, we
find a solution involving a purely magnetic field strength

ol [B
Frommiole _ g4 — \/;de Adr . (6.1)

sin 6

This is consistent with [14], but represents only the magnetic part of the result

21 dr

Fblackholo — dA — (62)

sin 0

If that were all, the difference between the last two results would signal a clear physical
distinction between a wormhole and a black hole. However, (6.I]) has been derived by
looking for a stationary solution of Maxwell equations in a wormhole background. This
would be reasonable for a usual object through which passes a stationary current. But a
wormbhole is not a usual object, and we must take into account the crucial physical fact
which played an important role above. When A is very small, one must remember that
far from leading to a stationary state the charges (of opposite signs) continuously sent
onto the poles of a wormhole will appear (on usual external timescales) to accumulate on
the North and South poles of the r = 2GM throat, though the effect of these localized

4This can be realized by sending a flux of positive charges through the North pole, and a flux of
negative charges through the South pole.



accumulated charges will tend to uniformly spread out into a low-multipole electric field.
When thinking more about this rather complicated problem, one then realizes that we
can use the same arguments that we have used already above. It consists essentially
in saying that the retarded Green function (now considered for a Maxwell field) in a
wormhole spacetime will precisely mimic (if A is small enough) the black-hole retarded
Green function if one considers a source which started falling in a finite time ago, and an
observer having also a finite observing time window.

7  Quantum effects

Let us finally consider quantum effects in a wormhole metric, and compare them to the
black hole case.

We have already seen that in a wormhole spacetime there are classical geodesics, absent
in the Schwarzschild metric, which oscillate around the throat region. We therefore expect
that there will be corresponding quantum modes which are trapped within the throat.
Actually, we have already mentioned them above. Indeed, when considering, for simplicity,
a quantum scalar field ® propagating in a wormhole metric, we can decompose it in modes
of frequency w and angular momentum ([, m). This leads to the separated radial equation
written in equation (G5.1I) above.

The effective radial potential (5.2) reaches a minimum (positive) value min U =
%[% + [(I + 1)] at the center of the throat r = 2GM. Note that this minimum
value is positive, but tends to zero like the square of A\. This minimum is surrounded on
both sides by much higher positive maxima located around (we take the limit [ > 1 in

which these expressions simplify) r = i’f% and of value
max U = ——— (11 + 1) + 2) + —— (I + 1) + N2
AT (e VE 3 T 9GP 9"

As we already mentioned above when discussing QNM modes, the radial equation
(510 admits a discrete set of long-lived resonances within this potential well. The lowest
(nearly real) energy levels can be obtained by looking in the throat region r — 2GM <
2GM. There the relation between the coordinates r and z is given by r(z) = 2GM (1 +

A% sinh? 1car)- The effective radial potential takes the form (for arbitrary )

A2 A2

= samp L+ 20+ 1) + 1 (1 + U+ 1) sinh(

U(z) ) -

z
4GM
The discrete spectrum for this potential can be obtained in the WKB approximation [12],

™

1
= SR (L) (n+=),ne”z (7.1)

wn
2
where we defined A2 = X2(1 + (I 4 1)) and neglected terms of order A\ (and A?).

For [ = 0 the first discrete level appears far above the bottom of the potential well
86‘)2\% but far below the top of the potential. Thus, there is a large number N of discrete
levels inside this [ = 0 well. This number can be estimated as

V27, 1
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If we consider the case where \ is given by (2.2), we note that the number of bound states
is of the order of Ny ~ G'M?, which is of the same order as the entropy of the Schwarzschild
black hole. Note, however, that this was only the [ = 0 modes. If we consider [ # 0 modes
we will have a similar spectrum of quasi-bound states, and the number of bound states
for given values of I and m will be of order (for large I and neglecting A\? terms)

N, =~ - 827,/1(z+ 1) +§ In(1/X) ~ /Il +1) +§ GM? . (7.3)

It would be interesting to study more carefully whether these quasi-bound states could
be considered as analogs of the somewhat mysterious “black hole microstates” which are
supposed to be counted by the Bekenstein-Hawking entropy (see e.g. [18] for a review).
Even more interestingly, as the wormhole resonances discussed here are all unstable, it
is tempting to conjecture that they might somehow mimic the Hawking radiation. We
have in mind here a mechanism of the following sort. During the collapse leading to the
(assumed) formation of a wormhole, the quantum field ® will be left in a state where
many of the wormhole resonance modes will be excited. The modes which have a large
decay width I' = —Qw (like the ordinary QNM modes) will be radiated quite fast. But
the modes which are deep down within the double-humped potential well will have a very
small decay width I' and will slowly trickle out of the potential well, thereby generating
a nearly continuous radiation emitted by the wormhole.

However, though we anticipate that this “wormhole radiation” might (especially for
the choice ([Z2]) of \) coarsely model Hawking’s radiation, we do not think that it will
be possible to reproduce with precision the specific thermal-like grey-body spectrum pre-
dicted in [II]. Indeed, this spectrum is a delicate consequence of the fact that the modes
of a quantum field which “straddle” the event horizon get torn into two outgoing modes,
one of which exits at radial infinity in the form of a quasi-thermal spectrum.

8 Conclusions

In conclusion we considered a wormhole spacetime as a “foil” to a Schwarzschild black hole,
to learn to what extent the observational features of a black hole do really depend on the
presence of an event horizon. Indeed, unlike a black hole, a wormhole geometry is globally
static and does not have an event horizon. It was clear from the start that, as the two
spacetimes have a nearly identical geometry for r > 2G'M, they would have very similar
closed geodesics, and would therefore be practically indistinguishable in astronomical
observations that depend only on the external gravitational field. However, and more
surprisingly, we found that many observational features that were thought to crucially
depend on the presence of an event horizon were well mimicked by a wormhole, if the
parameter \ is sufficiently (exponentially) small. This includes, the apparently irreversible
accretion of matter down a hole, no-hair properties, quasi-normal-mode ringing, and even
the dissipative properties of black hole horizons, such as a finite surface resistivity equal
to 377 Ohms [14].

Finally, we conclude that the only ways to observationally distinguish a wormhole from
a black hole are: (1) either to observe classical phenomena (such as matter accretion) over
the long “wormhole bounce” time scale At = 2GM In 55 , (2) or to observe the Hawking
radiation presently coming out of a hole. Interestingly, there is a link between these two
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methods: when A takes the value (2.2)) suggested in [12] the classical wormhole bounce
time scale becomes comparable to the quantum evaporation time of a Schwarzschild black
hole At = 167G*M3. However, in the case where \ takes the value ([2:2) both methods
are unpractical because the time scale At = 167G?M? is much too large for usual astro-
physical masses, and/or the Hawking temperature is much too low (being much smaller
than the 3 K cosmological background).

It remains interesting to keep in mind that most of the phenomenology of black holes
does not really depend on the presence of an horizon, and also (though this deserves more
study) that a wormhole could somehow mimic the Hawking radiation, as well as may
provide a simple way of visualizing the microstates storing the information apparently
“lost” during a gravitational collapse. One would, however, need a more detailed model
of the formation of a wormhole to address this issue.
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