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INSTANTONS BEYOND TOPOLOGICAL THEORY II

E. FRENKEL, A. LOSEV, AND N. NEKRASOV

Abstract. The present paper is the second part of our project in which we de-
scribe quantum field theories with instantons in a novel way by using the “infinite
radius limit” (rather than the limit of free field theory) as the starting point. The
theory dramatically simplifies in this limit, because the correlation functions of all,
not only topological (or BPS), observables may be computed explicitly in terms of
integrals over finite-dimensional moduli spaces of instanton configurations. In Part I
we discussed in detail the one-dimensional (that is, quantum mechanical) models of
this type. Here we analyze the supersymmetric two-dimensional sigma models and
four-dimensional Yang–Mills theory, using the one-dimensional models as a proto-
type. We go beyond the topological (or BPS) sectors of these models and consider
them as full-fledged quantum field theories. We study in detail the space of states
and find that the Hamiltonian is not diagonalizable, but has Jordan blocks. This
leads to the appearance of logarithms in the correlation functions. We find that
our theories are in fact logarithmic conformal field theories (theories of this type are
of interest in condensed matter physics). We define jet-evaluation observables and
consider in detail their correlation functions. They are given by integrals over the
moduli spaces of holomorphic maps, which generalize the Gromov–Witten invariants.
These integrals generally diverge and require regularization, leading to an intricate
logarithmic mixing of the operators of the sigma model. A similar structure arises in
the four-dimensional Yang–Mills theory as well.
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1. Introduction

Many two- and four-dimensional quantum field theories have two kinds of coupling
constants: the actual coupling g, which in particular counts the loops in the perturba-
tive calculations, and the topological coupling, ϑ, the theta-angle, which is the chemical
potential for the topological sectors in the path integral. These couplings can be com-
bined into the complex coupling τ and its complex conjugate τ .

For example, in the four-dimensional gauge theory one combines the Yang–Mills
coupling g and the theta-angle ϑ as follows:

(1.1) τ =
ϑ

2π
+

4πi

g2
, τ =

ϑ

2π
− 4πi

g2
.

For the two-dimensional sigma model with the complex target space X, endowed with
a Hermitian metric gij and a (1, 1) type two-form Bij one defines

(1.2) τij = Bij + igij , τ = Bij − igij

If dB = 0, then the two-form B plays the role of the theta-angle.

1.1. Weak coupling limit. We wish to study the dependence of the theory on τ , τ as
if they were two separate couplings, not necessarily complex conjugate to each other.
The resulting theory should greatly simplify in the limit when

(1.3) τ → −i∞ , τ is fixed .

This is the weak coupling limit, in which the theta-angle has a large imaginary part.
In two-dimensional sigma models, it is also known as the “infinite radius limit”. This
limit has been studied in the literature since the early days of the theory of instantons,
see, e.g., [15].

The reason for this simplification is that the path integral of the theory in this limit,
as described by a first-order Lagrangian, represents the “delta-form” supported on
the instanton moduli space, which is a union of finite-dimensional components labeled
by “instanton numbers”. Therefore the correlation functions are expressed as linear
combinations of integrals over these finite-dimensional components.

The idea is to use the theory in this weak coupling limit as the starting point for
investigating more realistic models corresponding the finite values of coupling constants.
In other words, we first describe the theory in this limit, and then develop a perturbation

theory around this point in the space of couplings in order to reach the theories defined
for other values of the coupling constants. In the framework of this perturbation theory
we could, in principle, compute all correlation functions in terms of finite-dimensional
integrals. A more detailed discussion of this point, along with a summary of our project,
may be found in [27].

We view this as a viable alternative to the conventional approach in quantum field
theory of using the perturbation theory around a Gaussian point describing a free field
theory. The advantage of our approach is that we do not need to impose from the
beginning a linear structure on the space of fields. On the contrary, the non-linearity
is preserved and is reflected in the geometry of the moduli space of instantons. This is
why we believe that our approach may be beneficial for understanding some of the hard
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dynamical questions, such as confinement, that have proved elusive in the conventional
formalism.

The 4D S-duality and its 2D analogue, the mirror symmetry, give us another tool
for connecting the theory at our special limit to the theories in the physical range of
coupling constants. In a physical theory, in which τ is complex conjugate to τ , the
S-duality sends τ 7→ −1/τ . It is reasonable to expect that S-duality still holds when
we complexify the coupling constants τ, τ . It should then act as follows:

τ 7→ −1/τ, τ 7→ −1/τ .

Now observe that applying this transformation to τ = −i∞ and finite τ , we obtain
τ ′ = −1/τ and τ ′ = 0. These coupling constants are already within the range of
physical values, in the sense that both the coupling constant g and the theta-angle ϑ
are finite! Therefore we hope that our calculations in the theory with τ = −i∞ could
be linked by S-duality (or mirror symmetry) to exact non-perturbative results in a
physical theory beyond the topological sector.

1.2. Topological sector. In supersymmetric models there is an important class of
observables, called the topological, or BPS observables, whose correlation functions are
independent of τ . They commute with the supersymmetry charge Q of the theory and
comprise the topological sector of the theory. Their correlation functions are closely
related to the Gromov–Witten and Donaldson invariants, in two-dimensional sigma
models and four-dimensional Yang–Mills theory, respectively. The perturbation away
from the point τ = −i∞ is given by a Q-exact operator, and therefore the correlation
functions of the BPS observables (which are Q-closed) remain unchanged when we
move away from the special point. This is the secret of success of the computation
of the correlation functions of the BPS observables achieved in recent years in the
framework of topological field theory: the computation is actually done in the theory
at τ = −i∞, but because of the special properties of the BPS observables the answer
remains the same for other values of the coupling constant. But for general observables
the correlation functions do change in a rather complicated way when we move away
from the special point.

We would like to go beyond the topological sector and consider more general correla-
tion functions of non-BPS observables. Multiple reasons for this are described in detail
in the Introductions to our earlier papers [26, 27], and we will not repeat them here.
Clearly, if we wish to use the model in the limit τ = −i∞ as a launchpad for studying
the models at more general values of the coupling constants, we must first understand
it as a full-fledged quantum field theory, beyond its topological sector.

In [26], to which we will henceforth refer as “Part I”, we have launched a program
of systematic study of the τ → −i∞ limit of the instanton models in one, two and four
dimensions. In Part I we have described in detail the one-dimensional models. These
are supersymmetric quantum mechanical models on Kähler manifolds X equipped with
a Morse function f . Here we analyze the supersymmetric two-dimensional sigma mod-
els and four-dimensional Yang–Mills theory, using the one-dimensional models as a
prototype.
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1.3. Sigma models. Let us describe briefly our results concerning two-dimensional
supersymmetric sigma models. The first step is to recast these models in the framework
of the quantum mechanical models that we have studied in Part I. For a fixed Riemann
surface Σ the space of bosonic fields in the supersymmetric sigma model with the target
manifold X is Maps(Σ,X), the space of maps Σ → X. If we choose Σ to be the cylinder
I × S1, then we may interpret Maps(Σ,X) as the space of maps from the interval I to
the loop space LX = Maps(S1,X). Thus, we may think of the two-dimensional sigma
model on the cylinder with the target X as the quantum mechanical model on the loop
space LX. Hence it is natural to try to write the Lagrangian of the sigma model in
such a way that it looks exactly like the Lagrangian of the quantum mechanical model
on LX with a Morse function f .

It turns out that if X is a Kähler manifold, this is “almost” possible. However,
there are two caveats. First of all, our function f is the so-called Floer function [21]
which has non-isolated critical points corresponding to the constant loops in LX, so
is in fact a Morse–Bott function. We can deal with this problem by deforming this
function so that it only has isolated critical points, corresponding to the constant loops
whose values are critical points of a Morse function on X (this amounts to considering
the sigma model in the background of a gauge field, as we explain in Section 7). The
second, and more serious, issue is that the Floer function f is not single-valued on LX,

but only on the universal (abelian) cover L̃X. In other words, it is an example of a
Morse–Novikov function, or, more properly, Morse–Bott–Novikov function. Because of
that, the instantons are identified with gradient trajectories of the pull-back of f to

L̃X .
Suppose that I = R with a coordinate t. In the limits t→ ±∞ a gradient trajectory

tends to the critical points of f on L̃X, which are the preimages of constant maps in
LX. Therefore the gradient trajectory may be interpreted as the map of the cylinder
compactified by two points at ±∞ to X, or equivalently, a map CP1 → X. Moreover,
the condition that it corresponds to a gradient trajectory of the Floer function f simply
means that this map is holomorphic. Thus, we obtain that the instantons of the two-
dimensional sigma model are holomorphic maps CP1 → X, and more generally, Σ → X,
where Σ is an arbitrary compact Riemann surface.

In order to describe the structure of the space of states of the two-dimensional sigma
model in the infinite radius limit, we first need to generalize our results obtained in
Part I to the case of Morse–Novikov and Morse–Bott–Novikov functions. (Actually,
examples of such functions arise already for finite-dimensional manifolds with non-
trivial fundamental groups.) Essentially, this amounts to considering the universal

(abelian) cover (which is L̃X in the case of sigma model). One also needs to impose
an equivariance condition on the states of the model corresponding to the action of the

(abelianized) fundamental groupH2(X,Z) on L̃X. Besides those changes, the structure
of the space of states in the limit τ → ∞ is similar to the one that we have observed
in our analysis of quantum mechanical models in Part I.

There are spaces of “in” and “out” states with a canonical pairing between them.
Each of them is isomorphic to the space of semi-infinite “delta-forms” on the loop space
LX supported on the subset of boundary values of holomorphic maps from the disc
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(which is the interior of the circle for the “in” states and the exterior for the “out”
states). These spaces of delta-forms may be described in terms of the familiar Fock
representations of the chiral and anti-chiral βγ, bc-systems (the chiral-anti-chiral de
Rham complex of X).

However, this ismorphism is not canonical because of the instanton effects which
cause non-trivial self-extensions between the spaces of semi-infinite delta-forms. These
extensions are similar to the extensions arising in quantum mechanics which we have
studied in detail in Part I. One consequence of this is that the Hamiltonian is not
diagonalizable, but has Jordan blocks. Another consequence is that our models are
logarithmic conformal field theories.

1.4. Logarithmic structure of the correlation functions. The logarithmic fea-
tures of our model are revealed upon the computation of the correlation functions. As
we discussed above, in the infinite radius limit the path integral localizes on the moduli
space of instantons, which are holomorphic maps Σ → X. Because we are dealing
here with a Morse–Bott–Novikov function, this moduli space now has infinitely many
connected components labeled by β ∈ H2(X,Z) (the moduli space is non-empty only
if the integral of the Kähler class ω of X over β is non-negative). All of them are
finite-dimensional.

The simplest class of observables of this model consists of the evaluation observables
corresponding to differential forms on X. Their correlation functions are given by inte-
grals of their pull-backs to the moduli spaces of holomorphic maps, or, more precisely,
their Kontsevich compactifications, under the evaluation maps.

Such correlation functions have been studied extensively in the literature for the
BPS observables, corresponding to closed differential forms on X. They are expressed
in terms of the Gromov-Witten invariants of X. However, in order to describe the
structure of the sigma model as a full-fledged quantum field theory (and, for instance,
observe that the Hamiltonian is non-diagonalizable), we must go beyond the topological
sector of the model and study correlation function of more general, non-BPS, observ-
ables. These observables include evaluation observables corresponding to differential
forms on X that are not closed.

In this paper we introduce an even larger class of non-BPS observables which we call
the jet-evaluation observables. They keep track of not only the value of a map Σ → X
at a point p ∈ Σ, but also its derivatives with respect to a local coordinate at p. These
observables correspond to differential forms not on X, but on its jet space JX, the
space of jets of holomorphic maps from a small disc to X. Their correlation functions
are signficantly more complicated than those of the evaluation observables. They are
again given by integrals over the (compactified) moduli spaces of holomorphic maps
Σ → X, but now these integrals may diverge at the boundary divisors and require
regularization. We have encountered the necessity of the regularization of instanton
integrals in Part I when studying one-dimensional quantum-mechanical models. An
immediate consequence of this regularization is the logarithmic mixing of operators:
the naive perturbative jet-evaluation operators are not well-defined as operators of the
full quantum field theory. They are only well-defined up to the addition of their “log-
arithmic partners”. This ambiguity is reflected in the ambiguity of the regularization
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of our integrals. Roughly speaking, to obtain a true operator of the non-perturbative
sigma model, we need to take a jet-evaluation observable in its perturbative definition
together with a consistent set of regularization rules for all of these integrals.

Together, operators and their logarithmic partners span finite-dimensional subspaces
in the space of operators (or, equivalently, states), on which the Hamiltonian acts
as a Jordan block. The logarithmic mixing is also responsible for the appearance of
logarithmic terms in the operator product expansion (OPE) of these operators, as we
will see in explicit examples below.

We note that the upper-triangular entries in the Jordan blocks are proportional to
the instanton parameters of the model, so their appearance is caused by the instanton
effects. When we move away from the point τ = −i∞ (that is, to finite radius), anti-
instantons contributions arise which cause the appearance of non-zero lower-triangular
entries, and the Hamiltonian becomes diagonalizable. In other words, Jordan blocks
appear because there are instantons, but no anti-instantons, in the infinite radius limit.

Thus, we find that the two-dimensional supersymmetric sigma model in the infinite
radius limit is a logarithmic conformal field theory with central charge 0. Theories of
this kind have been studied extensively recently (see, e.g., [34, 38, 35, 47, 16, 41] and
references therein), in part because of their applications to condensed matter physics.
The theory has a large chiral algebra, which is nothing but the space of global sections of
the chiral de Rham complex of X introduced in [40]. (The chiral algebra is not affected
by logarithms; only operators depending on both holomorphic and anti-holomorphic
coordinates are so affected.)

To illustrate these phenomena, we consider explicitly two important examples: the
first is the sigma model with an elliptic curve as the target. This is essentially a free
field theory which may be described at both finite and infinite radii. We explain what
the passage to the infinite radius means for these models. The second case of interest is
when the target manifold is P1. In [25] this model was described as a deformation of the
free field theory by holomortex operators. Here we revisit and rederive this description
and present numerous examples of correlation functions, OPE and logarithmic mixing
in this model.

In Part III of this paper we will consider similar structures in the N = (0, 2) super-
symmetric, as well as purely bosonic, sigma models. One of the motivations for the
study of these models is that when the target manifold is the flag variety of a simple
Lie group G, this model has an affine Kac–Moody algebra symmetry of critical level
(see [19, 23]), even though the theory is not conformally invariant. The correlation
functions in this model, coupled to a gauge field, may be viewed as solutions of systems
of linear differential equations on the moduli space of G-bundles on the worldsheet,
which arise naturally in the geometric Langlands correspondence.

1.5. Yang–Mills theory. The next step in our program is the investigation of the
four-dimensional gauge theory. Again, we start with the supersymmetric model, which
is a twisted N = 2 super-Yang–Mills theory with gauge group G on a four-dimensional
manifold M4, in the limit τ → −i∞ with fixed

τ =
ϑ

2π
+

4πi

g2
.
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Suppose that M4 = R × M3, where M3 is a compact three-dimensional manifold.
Let t denote the coordinate along the R factor. Then the Yang-Mills theory may
be interpreted as quantum mechanics on the space A/G of gauge equivalence classes
of G-connections on M3, with the Morse–Novikov function being the Chern–Simons
functional [3, 51]. However, there is again a new element, compared to the previously
discussed theories, and that is the appearance of gauge symmetry. The quotient A/G
has complicated singularities because the gauge group G has non-trivial stabilizers in
the space A. For this reason we should consider the gauged Morse theory on the space
A of connections itself.

This theory is defined as follows. Let X be a manifold equipped with an action of
a group G and a G-invariant Morse function f . Then the gradient vector field vµ∂xµ ,
where vµ = hµν∂xνf commutes with the action of G. Denote by V

µ
a∂xµ the vector

fields on X corresponding to basis elements Ja of the Lie algebra g = Lie(G). We
define a gauge theory generalization of the gradient trajectory: it is a pair (x(t) : R →
X,At(t)dt ∈ Ω1(R, g∗)), which is a solution of the equation

(1.4)
dxµ

dt
= vµ(x(t)) + Vµa(x(t))A

a
t (t).

The group of maps g(t) : R → G acts on the space of solutions by the formula

g : (x(t), At(t)dt) 7→
(
g(t) · x(t), g−1(t)∂tg(t) + g−1(t)At(t)g(t)

)
,

and the moduli space of gradient trajectories is, naively, the quotient of the space of
solutions of (1.4) by this action. However, because this action has non-trivial stabilizers
and the ensuing singularities of the quotient, it is better to work equivariantly with the
moduli space of solutions of the equations (1.4).

In Section 8 we develop a suitable formalism of equivariant integration on the moduli
space of gradient trajectories of the gauged Morse theory. We then apply this formalism
to the case when X = A, the space of connections on a three-manifold M3 and f is
the Chern–Simons functional (note that this formalism may also used to define gauged
sigma models in two dimensions, see Section 7.6). The corresponding equivariant in-
tegrals give us the correlation functions of evaluation observables of the Yang-Mills
theory in our weak coupling limit τ → −i∞. In the case of the BPS observables these
correlation functions are the Donaldson invariants [51]. They comprise the topological
(or BPS) sector of the theory.

We obtain more general (off-shell) correlation functions by considering more general,
i.e., non-BPS, observables. We will present some sample computations of these off-
shell correlation functions which exhibit the same effects as in one- and two-dimensional
models considered above. In particular, we will observe the appearance of the logarithm
function in the correlation functions. Moreover, we find the same kind of logarithmic
mixing that we have observed in two-dimensional sigma models. We also present an
example of instanton corrections to the OPE of some natural observables in the Yang–
Mills theory which involve logarithm. Thus, we conclude that the supersymmetric
Yang–Mills theory in the weak coupling limit is a logarithmic CFT in four dimensions.

1.6. Contents. The paper is organized as follows. In Section 2 we give the definition
of the two-dimensional sigma models and its infinite radius limit. We then interpret
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it as quantum mechanics on the the loop space of the target manifold X, equipped
with the Floer function. The multi-valuedness of the Floer function requires certain
modifications in the analysis of quantum mechanical models from Part I. Hence we dis-
cuss in Section 3 the general structure of quantum mechanics on non-simply connected
manifolds. Having developed the general theory, we go back to our main example, the
sigma models, in Section 4. We describe its space of states in terms of certain spaces of
delta-forms supported on semi-infinite ascending manifolds of the Floer function inside
the universal covering of the loop space of X. Algebraically, these are given in terms
of Fock modules over the βγ-bc-systems. In particular, the chiral algebra of the sigma
model may be identified with the chiral de Rham complex introduced in [40]. We isolate
an important subspace in the space of states: the space of differential forms on the jet
space of X. The corresponding operators are the jet-evaluation observables which we
study in detail in the subsequent sections. We also consider two examples: when X is
an elliptic curve and P1.

In Section 5 we take up the correlation functions. We first recall the definition
of a simplest ones, which are the Gromov–Witten invariants. Then we explain the
difference between the BPS (or topological) and non-BPS observables and explain why
it is important to go beyond the topological sector of the model. We give examples of
correlation functions of non-BPS observables and show how to extract from them some
unusual features of our model, such as the non-diagonalizability of the Hamiltonian.
The next section, Section 6, plays a special role. Here we look closely at the correlation
functions and the OPE of the jet-evaluation observables introduced in Section 4. We
give examples of logarithmic mixing of observables and explain the underlying reasons
for this phenomenon using the geometry of the moduli spaces of stable maps and the
description of the space of states in terms of consecutive extensions of spaces of delta-
forms.

In Section 7 we consider the sigma models in the background of a C×-gauge field.
These models correspond to a deformation of the Morse–Bott–Novikov function to a
Morse–Novikov function, with isolated critical points. This leads to simplifications in
the description of the space of states of the model and allows us to make a closer
contact with the results of Part I. In particular, we consider the case of the sigma
model with the target P1 and relate the formulas for the Hamiltonian involving the
so-called Cousin–Grothendieck operators obtained in Part I to the description of the
sigma model of P1 as a deformation of the free theory by holomortex operators.

In Section 8 we consider the four-dimensional supersymmetric Yang–Mills theory. We
explain how to modify the formalism developed in the previous sections in the presence
of gauge invariance. We then compute explicitly non-BPS correlation functions of the
SU(2) model in the one instanton sector using the ADHM construction of the moduli
space of anti-self-dual connections. We show that these correlation functions exhibit
the same kind of logarithmic behavior that we have seen the one- and two-dimensional
models.

Finally, in Section 9 we present our conclusions and outlook.
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2. Two-dimensional sigma models

In this section we give the definition of the supersymmetric two-dimensional sigma
model in the infinite radius limit. We then interpret it as quantum mechanics on the
loop space, equipped with a Morse–Bott–Novikov function.

2.1. Definition of the supersymmetric sigma model. Let X be a compact Kähler
manifold. We will denote by Xa, a = 1, . . . , N = dimX, local holomorphic coordinates

on X, and by Xa = Xa their complex conjugates. We write the metric as gabdX
adXb

and the Kähler form as

(2.1) ωK =
i

2
gabdX

a ∧ dXb.

We consider the type A twisted N = (2, 2) supersymmetric sigma model on a Rie-
mann surface Σ with the target manifold X. Given a map Φ : Σ → X, we consider
the pull-backs of Xa and Xa as functions on Σ, denoted by the same symbols. We
also have fermionic fields ψa ψa, a = 1, . . . , N , which are sections of Φ∗(T 1,0X) and
Φ∗(T 0,1X), respectively, and and πa and πa, which are sections of Φ∗(Ω1,0X) ⊗ Ω1,0Σ
and Φ∗(Ω0,1X) ⊗ Ω0,1Σ, respectively. The Levi-Civita connection on TX correspond-
ing to the metric gab induces a connection on Φ∗(TX). The corresponding covariant
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derivatives have the form

Dzψ
a = ∂zψ

a + ∂zX
b · Γabcψc,

Dzψ
a = ∂zψ

a + ∂zX
b · Γa

bc
ψc,

where Γabc = gab∂bgcb.
The standard action of the supersymmetric sigma model is

(2.2)

∫

Σ

(
1

2
λ(gab(∂zX

a∂zX
b + ∂zX

a∂zX
b)

+iπaDzψ
a + iπaDzψ

a +
1

2
λ−1Rabcdπaπbψ

cψd
)
d2z,

We are now in the same position in which we were in quantum mechanics (see formula
(2.6) in Part I), and our analysis will proceed along the same lines.

We start by describing the instantons and the anti-instantons of this model. Applying
the “Bogomolny trick” as in the quantum mechanical model of (see Part I, Section 2.3),
we may rewrite the bosonic part of the action as

λ

∫

Σ
d2z |∂zX|2 + λ

∫

Σ
Φ∗(ωK) = λ

∫

Σ
gab∂zX

a∂zX
bd2z + λ

∫

Σ

i

2
gabdX

a ∧ dXb,

or as

λ

∫

Σ
d2z |∂zX|2 − λ

∫

Σ
Φ∗(ωK) = λ

∫

Σ
gab∂zX

a∂zX
bd2z − λ

∫

Σ

i

2
gabdX

a ∧ dXb,

(here ωK is the Kähler form given by formula (2.1)). Thus, we see that in a given
topological sector, where

∫
Σ Φ∗ωK is fixed, the absolute minima of the action are given

by the holomorphic maps (satisfying ∂zX
a = 0) or the anti-holomorphic maps (satisfy-

ing ∂zX
a = 0). These are the instantons and the anti-instantons of the sigma models,

just like the gradient trajectories and the anti-gradient trajectories were the instantons
and the anti-instantons in quantum mechanics. Similarly, to their quantum mechan-
ical counterparts, the contributions of the instantons and anti-instantons to the path

integral are suppressed by the exponential factor1 e−λ|
R

Σ Φ∗(ωK)|.
The next step is to add to the action (2.2) the term

∫

Σ
Φ∗(B) =

∫

Σ
BabdX

a ∧ dXb,

where
B = BabdX

a ∧ dXb

is a closed two-form on X, called the B-field. Our goal is to enhance the effect of the
instantons and further suppress the anti-instantons. To this end we choose the B-field
to be of the form

B = −λωK + τ,

where
τ = τabdX

a ∧ dXb

1For holomorphic maps
R

Σ
Φ∗(ωK) ≥ 0 and for anti-holomorphic maps

R

Σ
Φ∗(ωK) ≤ 0.
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is another closed two-form.2 Note that it is analogous to the term (−λ− iτ)
∫
I df that

we added to the Lagrangian of the quantum mechanical model (see Sections 2.3–2.4 of
Part I). The resulting action reads

(2.3)

∫

Σ
d2z

(
λ|∂zX|2 + iπaDzψ

a + iπaDzψ
a +

1

2
λ−1Rabcdπaπbψ

cψd
)

+

∫

Σ
τabdX

a ∧ dXb.

The holomorphic maps (i.e., the instantons of our model) are the absolute minima of
this action, and they are no longer suppressed in the path integral, whereas the anti-
holomorphic maps (anti-instantons) are now doubly suppressed by the exponential

factor e−2λ|RΣ
Φ∗(ωK)|.

2.2. Infinite radius limit. We now wish to take the limit λ → ∞, in which the
metric on X becomes very large (hence the name “infinite radius limit”). In this limit
the instantons survive, but the anti-instantons disappear. In terms of the coupling
constants

τab = Bab +
i

2
λgab, τab = Bab −

i

2
λgab

it is the limit in which τab → −i∞, but the τab’s are kept finite.
As in quantum mechanics, in order to implement this limit we first pass to the first

order Langrangian (see [52, 5]):

(2.4)

∫

Σ

(
−ipa∂zXa − ipa∂zXa + λ−1gabpapb

+ iπaDzψ
a + iπaDzψ

a +
1

2
λ−1Rabcdπaπbψ

cψd
)
d2z +

∫

Σ
τabdX

a ∧ dXb

(compare with the action (2.12) in Part I). For finite values of λ, by eliminating the
momenta variables pa, pa using the equations of motion, we obtain precisely the action
(2.3). Therefore the two actions are equivalent for finite values of λ. But now we can
take the limit λ→ ∞ in the new action. The resulting action is

(2.5) − i

∫

Σ

(
pa∂zX

a + pa∂zX
a − πaDzψ

a − πaDzψ
a
)
d2z +

∫

Σ
τabdX

a ∧ dXb

(compare with formula (2.13) of Part I).
As in the quantum mechanical model, we may redefine the momentum variables as

follows:

(2.6) pa 7→ p′a = pa + Γbacπbψ
c, pa 7→ p′a = pa + Γbacπbψ

c.

Then the action (2.5) becomes

(2.7) − i

∫

Σ

(
p′a∂zX

a + p′a∂zX
a − πa∂zψ

a − πa∂zψ
a
)
d2z +

∫

Σ
τabdX

a ∧ dXb

2The action is CPT invariant if B = −B, i.e., if B is purely imaginary. However, like in quantum
mechanics, we break CPT invariance by considering a complex B-field with the real part equal to
−λωK .
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(compare with formula (2.16) in Part I). However, the transformation formulas for the
new momenta variables under the changes of coordinates now become more complicated
(see Section 4.1). They are similar to the quantum mechanical formulas (2.17) in Part
I.

2.3. Sigma model in the infinite radius limit as a CFT. The theory with the
action (2.7) appears to be a conformal field theory (CFT). Indeed, up to a topological
term

∫
Φ∗τ , the action is a curved version of the beta-gamma-bc system. In particular,

the stress-energy tensor is given by the formula:

(2.8) T = i(p′a∂zX
a + πa∂zψ

a)

which is invariant under the coordinate transformations. In the perturbative limit,
where we consider the sigma model with the target space a single coordinate patch
U ≈ Cn, the stress-tensor (2.8) forms a Virasoro algebra with the vanishing central
charge. At the same time, the following OPEs are obtained from the action (2.7):

pa(z)X
b(w) ∼ − iδba

z − w
, πa(z)ψ

b(w) ∼ − iδba
z − w

,

pa(z)X
b(w) ∼ − iδba

z − w
, πa(z)ψ

b(w) ∼ − iδba
z − w

.(2.9)

However, including non-perturbative effects makes the theory a logarithmic CFT, and
induces interesting corrections to the operator product expansions derived from (2.9).

2.4. Sigma model as quantum mechanics on the loop space. We now interpret
the supersymmetric sigma model in the infinite radius limit as a quantum mechanical
model on the loop space LX. Let Σ be a cylinder I × S1, where I is an interval. We
will view a map (I×S1) → X as a map I → LX, where LX = Maps(S1,X) is the loop
space of X.

We introduce coordinates t on I and σ on S1, so that σ is periodic with the period
2π. Then the holomorphic coordinate on Σ is z = t+ iσ. Using local holomorphic and
anti-holomorphic coordinates Xa and Xa on an open subset U ⊂ X, we may represent
a map S1 → U by the Fourier series

(2.10) Xa(σ) =
∑

n∈Z

Xa
ne

−inσ, Xa(σ) =
∑

n∈Z

Xa
ne
inσ.

Therefore we may use Xa
n,X

a
n as local holomorphic and anti-holomorphic coordinates

on the loop space LX. Let p′a,n and p′a,n be the Fourier coefficients of the corresponding

expansions of the momenta variables p′a and p′a, dual to Xa
−n and Xa

−n, respectively.
Note that we have

Xa
n = Xa

n, p′a,n = p′a,n.

Similarly, expanding in Fourier series, we obtain the fermionic variables

ψan, ψ
a
n, πa,n, πa,n, n ∈ Z.
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In terms of these variables, the action (2.7) on the cylinder may be rewritten as follows
(we ignore for a moment the last term

∫
Σ Φ∗(τ)):

− i

∫

I

(
∑

n∈Z

p′a,n

(
dXa

n

dt
+ nXa

n

)
+
∑

n∈Z

p′a,n

(
dXa

n

dt
+ nXa

n

)

−
∑

n∈Z

πa,n

(
dψan
dt

+ nψan

)
−
∑

n∈Z

πa,n

(
dψan
dt

+ nψan

))
dt

(up to the inessential factor of π). We recognize in this formula the action (see formula
(1.1) of Part I)

(2.11) S = −i
∫

I

(
p′A

(
dXA

dt
− vA

)
+ p′

A

(
dXA

dt
− vA

)
+

−πA
(
dψA

dt
− ∂vA

∂XB
ψB
)
− πA

(
dψA

dt
− ∂vA

∂XB
ψB

))
dt− iτ

∫
df,

of the quantum mechanical model associated to the loop space LX and the vector field

(2.12) v = −
∑

n∈Z

nXa
n

∂

∂Xa
n

−
∑

n∈Z

nXa
n

∂

∂Xa
n

In other words, we have written

p′a∂zX
a =

1

2
p′a(∂tX

a + i∂σX
a), p′a∂zX

a =
1

2
p′a(∂tX

a − i∂σX
a).

Thus, the above vector field v (which is real) corresponds to the vector field i∂σ when
acting on holomorphic coordinates and to −i∂σ when acting on anti-holomorphic coor-
dinates. Note that ∂σ is the natural vector field on LX corresponding to infinitesimal
rotation of the loop. Therefore this vector field comes from the natural U(1)-action
on LX corresponding to the loop rotation. Since X is a complex manifold, we may
complexify this action to a C×-action. The vector field v then comes from the action
of the subgroup R× ⊂ C×. The gradient flow is therefore given by the equations

∂tX
a + i∂σX

a = ∂zX
a = 0,(2.13)

∂tX
a − i∂σX

a = ∂zX
a = 0.(2.14)

These are the Cauchy–Riemann equations for the map Φ : Σ = I×S1 → X, and so the
gradient trajectories are the holomorphic maps with given boundary conditions.

Thus, we have interpreted the two-dimensional sigma model on the cylinder as a
quantum mechanical model of the type that we have studied previously. However, in
order to apply our results we need to represent the vector field v given by formula
(2.12) as the gradient vector field of a function f on LX: v = ∇f .3 Here we consider
a natural metric on LX induced by the metric g on X (and the measure dσ on S1). A

3Most importantly, our construction involves multiplication of the wave-functions by eλf , so we do
need to have f .
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tangent vector at a point γ : S1 → X is a section of the vector bundle γ∗(TX). Given
two such sections η1, η2, we define their scalar product as

∫

S1

〈η1, η2〉gdσ.

In order to construct the function f , we take the contraction of the above vector field
v with this metric on LX. This gives us a one-form β on LX, and if v = ∇f , then
β = df . If H1(LX,Q) = 0, then such f would exist. When we considered above
quantum mechanical models on a Kähler manifold X we had assumed that the set of
zeros of the vector field v on X was non-empty. It is known [22] that in this case
H1(X,Q) = 0 (actually, even H1(X,Z) = 0), and so the function f exists.

However, for a Kähler manifold X, the group H1(LX,Q) is always non-trivial. The
best we can do in this case is to construct a multi-valued Morse function, also known
as Morse–Novikov function [45], f on LX whose gradient is the vector field v. This

function becomes single valued when pulled back to a covering L̃X of LX. The critical

points of this function are the preimages of constant loops in L̃X, so this is strictly
speaking not a Morse–Novikov function, but a Morse–Bott–Novikov function. Another
important phenomenon is that at the critical points the Hessian of the function f has
infinitely many positive and negative eigenvalues, so only the relative index of two
critical points is well-defined. This indicates that the corresponding Morse–Novikov
complex computes “semi-infinite” cohomology of LX. These properties require that
we make some adjustments in our construction.

Before explaining how the theory changes when we take into account all of these
phenomena, we recall how to construct this function in our case. This construction goes
back to the work of Floer [21] (for the connection to two-dimensional sigma models,
see, e.g., [48]). Let us assume for simplicity that X is simply-connected, and so LX
is connected. Then any loop γ : S1 → X can be contracted to a point, and hence γ
may be extended to a map γ̃ : D → X, where D is a two-dimensional disc with the
boundary S1. Now set

(2.15) f(γ̃) =

∫

D
γ̃∗(ωK).

How does f depend on the choice of γ̃ extending a fixed loop γ? Let γ̃′ be another
such extension. Then gluing γ̃ and γ̃′ together along the boundary we obtain a map
Φ

eγ,eγ′ : S2 → X. It is clear from the definition that

f(γ̃) = f(γ̃′) +

∫

S2

Φ∗
eγ,eγ′(ωK).

Thus, as a function of γ ∈ LX, the function f is defined up to the addition of an
integral of the Kähler form ωK over cycles in H2(X,Z) represented by two-dimensional

spheres. Let L̃X be the space of equivalence classes of maps γ̃ : D → X modulo the
following equivalence relation: we say that γ̃ ∼ γ̃′ if γ̃|∂D = γ̃′|∂D and γ̃ is homotopically
equivalent to γ̃′ in the space of all maps D → X which coincide with γ̃ and γ̃′ on

the boundary circle ∂D. We have the obvious map L̃X → LX, which realizes L̃X
as a covering of LX. The group of deck transformations is naturally identified with
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H2(X,Z). Under our assumption that π1(X) is trivial, we have H2(X,Z) = π2(X) =

π1(LX), and L̃X is the universal cover of LX.

The function f defined by formula (2.15) is a single valued function on L̃X . It
is easy to see that its differential df is the pull-back of the one-form β obtained by
contracting the metric on LX with the vector field v. Indeed, consider the evaluation
map ev : LX×S1 → X and the projection pr : LX×S1 → LX. Then df is the pull-back

to L̃X of the one-form on LX which is the push-forward of ev∗(ωK) with respect to pr.
The value of this one-form on LX on a tangent vector η ∈ Tγ(LX) = Γ(S1, γ∗(TX)) is
the integral ∫

S1

〈γ∗η, ωK〉.

Using formula (2.1), we find that in terms of the local holomorphic coordinates Xa
n on

the loop space this one-form is equal to

−
∑

n∈Z

ngab(X
a
ndX

b
n + nXb

ndX
a
n),

which is precisely the contraction of the metric on LX and v. Thus, the vector field v
is indeed the gradient of the (multi-valued) function f .

Now we can identify the action (2.7) with the quantum mechanical action (2.11) on
the loop space LX equipped with the multi-valued function f given by formula (2.15).
In the next section we will discuss how the multi-valuedness of this function changes
the structure of the model.

3. Quantum mechanics with Morse–Novikov functions

In this section X denotes a compact finite-dimensional manifold, which is the target
space of a quantum mechanical model. We will focus on the effects in this model caused
by non-simply connectedness of X. For compact Kähler manifolds considered in Part I
the (abelianized) fundamental group is always trivial. Therefore we will consider here
the more general case of a smooth real Riemannian manifold X.

The quantum mechanics on a non-simply connected manifold has some interesting
new features. They stem from the fact that the space of paths on X is disconnected.
Thus the path integral, computing the amplitudes of propagation from one point on
X to another involves a sum over the connected components, which may be labeled by
the fundamental group π1(X). We will discuss how the instanton calculus developed
in Part I should be adjusted in this more general setting, with the aim of applying
the results to the case of the loop spaces that is relevant to the two-dimensional sigma
models (where the role of X is played by LX, the loop space).

3.1. Path integral analysis on non-simply connected manifolds. We study su-
persymmetric quantum mechanics on a smooth real compact Riemannian manifold X,
with a non-trivial fundamental group π1(X) 6= 0. In designing the path integral de-
scribing the kernel G(xi, xf ) of the evolution operator of getting from a point xi ∈ X
to a point xf ∈ X in this situation, a physicist faces a choice: either to fix a homotopy
class of paths connecting the points xi and xf , or to sum over all homotopy classes
with some weights. It is a well-known fact (see, e.g., [13]) that one should sum over all
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homotopy classes in order to get a unitary theory. However, there are different ways of
summing over them, which correspond to different sectors of the theory.

In order to define these sectors, it is convenient to introduce a closed one-form
b ∈ Z1(X) and change the action of the theory as follows:

(3.1) S −→ Sb = S + 2πi

∫
x∗b

The modification (3.1) does not modify the equations of motion. In fact, it only knows
about the homotopy class of a path. Moreover, up to boundary terms, it only depends
on the class [b] ∈ Z1(X)/Z1

Z
(X). The space of states becomes a direct sum, (or rather

a direct integral

(3.2)

∫

[b]∈Z1(X)/Z1
Z
(X)

H[b]

of orthogonal spaces, known as ϑ-vacuum superselection sectors). Each of these spaces
is isomorphic to the standard space of L2 differential forms on X, but the action of the
Hamiltonian on Hb depends on b:

Hb = {Qb,Q∗
b},

where Qb = Q0 +2πib∧ and Q∗
b is its adjoint. We will analyze this in more detail below.

Note that changing the one-form b by the real exact form b → b + dα, does not
change the physics of the problem, as this change can be compensated by the unitary
transformation

(3.3) Ψ −→ e−2πiα · Ψ
of the wave-functions. In particular, the spectrum of the Hamiltonian does not change.
This is why in (3.2) we have only the finite-dimensional space

(3.4) Z1(X)/Z1
Z(X) = H1(X,R)/H1(X,Z)

which labels different ϑ-sectors.
Now we shall generalize the standard discussion and allow complex-valued closed one-

forms b ∈ Z1
C
(X). We will then discuss the corresponding modification of the space of

states.
Let us recall the set-up of Part I, Section 2.3. We start with the Lagrangian of a

quantum mechanical model on X given by formula (2.6) of Part I:

(3.5) S =

∫

I

(
1

2
λgµν

dxµ

dt

dxν

dt
+

1

2
λgµν

∂f

∂xµ
∂f

∂xν
+

iπµDtψ
µ − igµν

D2f

DxνDxα
πµψ

α +
1

2
λ−1Rµναβπµπνψ

αψβ
)
dt.

Next, we modify it by adding the term −iϑ
∫
I df , where f is a Morse function. We

write ϑ = τ − iλ, where λ is the (real) parameter in front of the metric in the action
(3.5). Then we wish to take the limit λ → +∞ with τ finite and fixed. We observe
(see Part I, Section 3.2) that for finite λ the correlation functions of this model are
equivalent to the correlation functions of the model described by the Lagrangian (3.5)
with the additional term −iτ

∫
I df . However, there is a price to pay: we need to rescale
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the wave-functions of the “in” states by eλf , rescale the wave-functions of the “out”
states by e−λf and conjugate the observables by eλf . By making these transformations
we relate the correlation functions of the theory with the term −iϑ

∫
I df , where ϑ has a

large imaginary part, to those of the theory with the term −iτ
∫
I df , where τ is finite.

Let us revisit our formulas from Part I in the case of simply-connected X. The
supercharges and the Hamiltonian of the theory with the action (3.5), acting on the
space of L2 differential forms on X, read as follows (see formulas (2.4)–(2.4) of Part I)

Q = dλ = e−λfdeλf = d+ λdf∧

Q∗ = (dλ)
∗ =

1

λ
eλfd∗e−λf =

1

λ
d∗ + ιv,

H =
1

2
{Q,Q∗} =

1

2

(
−λ−1∆ + λ‖df‖2 + (Lv + L∗

v)
)
,

where v = ∇f (recall that for a vector field ξ we denote by Lξ its Lie derivative acting
on differential forms).

Next, consider the model with the action (3.5) plus the term −λ
∫
I df . Then the

supercharges and the Hamiltonian take the form (see formulas (3.4)–(3.6) of Part I):

Qλ = Q̃ = eλfQe−λf = d,(3.6)

Q∗
λ = Q̃∗ = eλfQ∗e−λf = 2ιv +

1

λ
d∗,(3.7)

Hλ = eλfHe−λf =
1

2
{Qλ, Q∗

λ} = Lv −
1

2λ
∆.(3.8)

Now let us also add the term −iτ
∫
I df to the previous action (so the net result is the

action (3.5) plus the term −iϑ
∫
I df). The corresponding supercharges and Hamiltonian

read

Qλ,τ = eiτfQλe
−iτf = d− iτdf∧,

Q∗
λ,τ = eiτfQ∗

λe
−iτf = 2ιv +

1

λ
(d∗ + iτ iv),

Hλ,τ = eiτfHλe
−iτf = Lv − iτ ‖v‖2 +

1

2λ

(
−∆ + τ (Lv + L∗

v) + iτ2 ‖v‖2
)
.(3.9)

In the case of simply-connected X, the Hamiltonians (3.9) and (3.8) are related by
conjugation with eiτf (and likewise for the supercharges). Therefore in the case of
simply-connected manifold X, this finite τ -term is not important (see the discussion at
the end of of Section 2.4 of Part I). That is why in most of the discussion of Part I we
had dropped this term. But on non-simply connected manifolds this term is important
as it corresponds to the choice of the “ϑ-vacuum” sector. Therefore we need to include
it in our formulas in this case.

3.2. Maximal abelian cover. In all of the above formulas the Hamiltonian and the
supercharges depend only on the vector field v. If H1(X,Z) = 0 (in particular, for
simply-connected X) there exists a function f on X such that v = ∇f , and we have
used this function in the above formulas. Let us suppose now that H1(X,Z) 6= 0.
Then v may still be written as ∇f , but f may be multi-valued, i.e., defined on the



INSTANTONS BEYOND TOPOLOGICAL THEORY II 19

H1(X,Z)-cover X̃ of X. This is the maximal abelian cover of X.4 The points of X̃
may be described as pairs (x, [I]), where x ∈ X and [I] is an equivalence class of a path
I connecting x with another, fixed, reference point x0 ∈ X. The equivalence relation
identifies two paths I and I ′ if the image of their difference in H1(X,Z) is equal to 0.

The group H1(X,Z) naturally acts on X̃.
Let bv be the closed one-form obtained by contracting v and the metric g on X

(thus, bv = df in the simply-connected case). Then the sought-after function f on X̃

is constructed as follows: its value at the point (x, [I]) ∈ X̃ is equal to
∫
I bv. Then we

have v = ∇f , in the sense that the vector field ∇f on X̃ is H1(X,Z)-invariant and

corresponds to the vector field v on X. Note also that df is the pull-back of bv to X̃.
In what follows, by a slight abuse of notation, we will sometimes write df for bv.

Let us consider the case when f is a function on X̃ that is not H1(X,Z)-invariant,
and hence gives rise to a multi-valued function on X. In this case conjugation by eiτf

is problematic, since it maps differential forms on X (i.e., H1(X,Z)-invariant forms on

X̃) to differential forms on X̃ , which are τ -equivariant. These are the forms ω ∈ Ω•(X̃)
such that

(3.10) µ∗ω = exp

(
iτ

∫

µ
df

)
ω, µ ∈ H1(X,Z).

We denote the space of such forms by Ω•
τ (X).

Thus, we find that there are two possible pictures for the Hamiltonian formalism
with non-zero τ (at finite λ for now): we may either consider the space Ω•(X) with
the Hamiltonian Hλ,τ (which tends to Lv + iτ‖v‖2 in the limit λ → ∞), or the space
Ω•
τ (X) with the Hamiltonian Hλ (which tends to Lv in the limit λ → ∞). Given an

eigenstate Ψ of Hλ,τ in Ω•(X), we obtain an eigenstate e−iτfΨ of Hλ in Ω•
τ (X).

However, as in the simply-connected case (see Part I, Section 3), in the limit λ →
∞ both spaces decouple into spaces of ”in” and ”out” states and undergo a violent
transformation which results in certain spaces of delta-forms. In the first picture, those

should be defined on X, and in the second – on X̃, with the two pictures again related
by the operator of multiplication by eiτf .

3.3. Ground states. The first question to consider is the structure of the ground
states. Here we encounter the following puzzle. In the case of simply-connected X
there were two obvious ground states (for all finite values of λ): the zero form 1 and
the top form e2λfvolg (see Part I, Section 3.5). But now the analogue of the ”in”

ground state 1 in Ω•(X) is the eigenfunction eiτf of Hλ,τ . However, this function is
not periodic, and hence it does not belong to the space of states (the corresponding
function in Ω•

τ (X) would be 1, which is not τ -periodic, and hence also not allowed). So,
naively, we could conclude that the ground state which is of degree 0 as a differential
form is absent in the spectrum of the theory. A similar analysis shows that the top
degree form would be absent as well.

4We will assume that H1(X, Z) has no torsion; otherwise, we have to take the quotient of H1(X, Z)
by its torsion subgroup.
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However, it may be easily shown by the path integral analysis that these non-periodic
wave-functions are in fact the correct ground states of the λ = ∞ theory.

The point is that we should view the function e−iτf on X not as a function, but
as a generalized function (or distribution) on X. As we explained in Part I, Section 4,
including such generalized functions into the spectrum is inevitable for the theory in
the limit λ→ ∞. Now we see that for non-simply laced manifolds X one has to allow
distributions with mild singularities (such as the jump of f across some hypersurface)
even for finite values of λ in order to have a consistent Hamiltonian formulation of the
theory. This type of singularity is similar, and actually milder, than the delta-form
type singularities we have encountered in the study of the excited states in the limit
λ → ∞ in case of simply-connected X, and which we will encounter below for non-
simple connected X as well. It might lead, in the worst case, to the Jordan block form
of the Hamiltonian (3.9) at λ = ∞.

Since it is not a priori obvious whether to allow such jumps of the eigenfunctions or
not, it is instructive to analyze this phenomenon in detail in the simplest possible case,
that of a circle S1. This will be done in the next section and will help us to confirm that
sometimes such discontinuous periodic functions are indeed bona fide eigenfunctions of
the Hamiltonian.

3.4. Example: X = S1. As an example, take X = S1, with the coordinate x ∼ x+2π,
and the Morse–Novikov function

(3.11) f(x) = µx+ cos(x).
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Figure 1. Morse–Novikov function on S1

3.4.1. Act I. We start with the model described by the action (3.5) with the additional
term (−iτ − λ)

∫
I df in the limit λ → ∞. We rewrite the corresponding action in the

first order formalism, following Part I, Section 2.3, like this:

S = −i
∫

I
p(ẋ− V (x))dt − i

∫

I
V (x)ẋdt,
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where our vector field is v = V (x)∂x, with

V (x) = µ− sin(x).

Suppose first that 0 < |µ| < 1. Then it has two critical points: x+ and x−, sinx± = µ,
with cosx+ < 0, cosx− > 0. Let us choose the branch f+(x) of f(x) such that it is
smooth at x+ and has a jump at x−:

f(x− − 0) = f(x− + 0) + 2πµ.

Let us also define the branch f−(x), which is smooth at x−, and jumps by 2πµ across
x+.

The Hamiltonian at λ = ∞ is given by the first order operator:

(3.12) H∞,τ = V (x) (∂x − iτV (x)) .

acting on the degree zero differential forms, i.e., functions on S1. It annihilates the
ground state wave-function:

Ψ(0)in(x) = e−iτf+(x).

Indeed, the δ(x − x−) term in H∞,τΨ
(0)in, due to the jump of f(x), is multiplied by

V (x−) = 0. The second ground state, a one-form, is given by the delta-form supported
at the attractive critical point x−:

Ψ(1)in(x) = eiτf−(x−) δ(x − x−)dx.

Analogously, the ”out” states are built using the branch f−(x):

Ψ(0)out(x) = eiτf−(x)(3.13)

Ψ(1)out(x) = eiτf+(x+)δ(x − x+)dx.(3.14)

This is in complete analogy with the analysis on CP1 presented in Part I, Section 3.5.
Now let us briefly discuss the excited states. By analogy with the analysis of Part I,

Section 3.7, we have two series of (generalized) ”in” eigenstates of the operator H∞,τ

on the zero degree forms corresponding to the two critical points (and similarly for
one-forms). The first of them is found to be proportional to

Ψ
(0)in
n,− =

1

(n− 1)!
∂n−1
w

(
e−iτf−(x)δ(w)

)
, n > 0,

where w is a new coordinate on S1 near x = x−, such that

(3.15) w = eκ−y, y =

∫ x

0

dx

V (x)
,

and the constant κ− is chosen so that the map x 7→ w is a local diffeomorphism near
x = x−:

(3.16) κ− = V ′(x−)

In our example κ− =
√

1 − µ2.
The corresponding eigenvalue of the Hamiltonian (3.12) is given by:

(3.17) En,− =
√

1 − µ2 n , n > 0

(the zero energy state is given by the wave-function Ψ(0)in).
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The second series of excited states on the the zero-forms are generalized eigenstates
of the Hamiltonian (3.12) given by the formula

Ψ
(0)in
n,+ = zne−iτf+(x),

where z is another coordinate on S1, which is related by the local diffeomorphism to x
near x+, where it vanishes:

(3.18) z = eκ+y, κ+ = V ′(x+).

In our example κ+ = −κ− and

z =
1

w
.

The Hamiltonian has Jordan blocks mixing the states Ψ
(0)in
n,+ and Ψ

(0)in
n+1,−.

There is also a similar picture for excited ”in” states among one-forms, and also for
the ”out” states.

3.4.2. Intermezzo. Consider a more general Morse–Novikov function

f(x) = µx+ ϕ(x)

with sufficiently small µ so that the vector field V (x) = f ′(x) has multiple zeroes xα
on S1:

µ+ ϕ′(xα) = 0.

The spectrum of the theory depends crucially on the ”weights”

κα = V ′(xα).

The spectrum can be either simple or degenerate. If the weights have ”resonances”, as
in the above example, the Hamiltonian has Jordan blocks, familiar from our analysis
in Part I. But for generic weights the spectrum is simple, and hence no Jordan blocks
arise. Note that we may set µ = 0.

3.4.3. Act II. Next, we increase |µ|. Once |µ| > 1, the vector field V (x)∂x has no
zeroes, and hence it can be brought to the normal form

(3.19) V (x)∂x =
2π

T
∂y,

where T is the period of revolution:

(3.20) T =

∫ 2π

0

dx

V (x)
,

and the periodic coordinate y ∼ y + 2π is given by the integral (3.15). The period T
in our case is given by:

(3.21) T =
2π√
µ2 − 1

.

Miraculously enough, we can now find perfectly smooth eigenfunctions of the Hamil-
tonian H∞,τ :

(3.22) Ψ(0)in
n = e−iτ(f(x)−µ y

T )+iny, n ∈ Z,



INSTANTONS BEYOND TOPOLOGICAL THEORY II 23

with the eigenvalues

(3.23) En = i
√
µ2 − 1 (n− τµ) .

Thus, we find that the spectrum is discrete and has a non-zero imaginary part.

3.4.4. Act III. Let us now compare our results with the standard example of the free
particle on the circle, which can be solved for finite λ. This is somewhat similar to
testing the λ = ∞ theory against the harmonic oscillator (see Part I, Sects. 3.3–3.4).

So, we take again X = S1, with the metric λdx2, x ∼ x + 2π. We consider the
function f = µx. In a sense, this function corresponds to the limit µ → ∞ of the
function from Section 3.4.3, where we neglect the contribution of the cosine function
cos(x). The Lagrangian, with the ϑ-term, is given by:

(3.24) Sϑ =

∫
λ

2

((
ẋ2 − µ2

)
+ iϑµẋ

)
dt,

where, as before ϑ = τ − iλ. The quantization of the model (3.24) is done in a standard
way, leading to the eigenstates, labeled by the integer n ∈ Z,

Ψn(x) =
1√
2π

exp inx,

of the Hamiltonian Hλ,τ with the energy

(3.25) En =
(n− ϑµ)2

2λ
+

1

2
λµ2 , n ∈ Z.

For real ϑ the spectrum is real, positive, discrete, and bounded from below. Now let
us rewrite (3.25) in terms of τ = ϑ+ iλ:

En,λ = iµ(n+ τµ) +
(n+ τµ)2

2λ
.

Clearly, the λ → ∞ limit of this expression with τ kept finite gives (3.23) up to the
replacement

µ→
√
µ2 − 1 .

3.4.5. Corrections in 1
λ ,

1
µ . The Hamiltonian for f(x) = µx + cos(x) can be obtained

from the one for f(x) = µx by perturbing it with the term sin(x)∂x (after the conju-

gation by eiτf(x)). The second order perturbation theory gives:

(3.26) En = (n+ τµ) (iµ+ ǫn)

(
1 +

2

(2iµ+ 4ǫn)2 − λ−2

)
,

where ǫn = n+τµ
2λ . In the limit λ→ ∞ we get

En ∼ iµ(n+ τµ)(1 − 1

2µ2
),

which is the expansion of
√
µ2 − 1. If we expand (3.26) in 1

λ , the first correction is
given by:

En ∼ (n+ τµ)

(
iµ(1 − 1

2µ2
) + ǫn(1 +

1

2µ2
)

)
.
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Note that there are two ways to describe the situation here. In one approach, we
deal with L2 functions on X = S1, and the Hamiltonian is ϑ-dependent:

Hλ,τ =
1

2λ
(−i∂x + (τ − iλ)µ)2 +

1

2
λµ2.

In the second approach, we lift the wave-functions to the covering space X̃ = R and
perform the gauge transformation

(3.27) Ψ(x) = eiϑf Ψ̃(x),

which maps the Hamiltonian to

Hλ = − 1

2λ
∂2
x +

1

2
λµ2,

making it τ -independent. The price to pay for the simpler form of the Hamiltonian is

the non-trivial π1(X) = Z-equivariance condition on the resulting wave-functions Ψ̃:

(3.28) Ψ̃(x+ 2π) = e−2πiϑµΨ̃(x),

which leads to the same spectrum (3.25) if the appropriate analytic conditions are
imposed.

3.4.6. Act IV. Let us now discuss a puzzle. It is well-known that in the presence of the
periodic potential, the energy levels split to form continuous bands [13], [1]:

(3.29) E(ϑ) = E0 +Ke−S0cosϑ,

where one assumes a generic periodic potential U(x):
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Figure 2. A typical periodic potential, i.e., a potential on S1.

and S0 is the instanton action, i.e.

S0 =

∫ √
U(x)dx

Now let us write
U(x) = λf ′(x)2
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and take our limit: λ→ ∞, ϑ→ −i∞, τ finite. The spectrum (3.29) becomes complex:

(3.30) E(τ) ∼ E0 +Ke−τ

This result should surprise us, since we are not in the situation of act III (see Sec-
tion 3.4.4) where the function f(x) had no critical points and the spectrum of Hamil-
tonian turned out to be imaginary. In the case at hands the function f(x) clearly has
the critical point(s) (which correspond(s) to the minima of U(x)). What is going on
here?

The resolution of the paradox is quite instructive. The superpotential f(x) in this
example is not a Morse function! Indeed, if we want to insist on the periodicity of df ,
not just ‖df‖2 then we have to admit that near the minimum of U(x) (in our example
it is unique) the function f(x) behaves as:

f(x) ∼ x|x| ,
or, if we want to achieve the same qualitative behavior with C∞-functions, f(x) ∼ x3,
a A2 singularity. Once we perturb it a little bit, two Morse critical points will occur,
and the spectrum will change dramatically – the eigenvectors will be replaced by the
adjoint eigenvectors as in the act I (Section 3.4.1).

3.5. From path integral to the space of states. Having analyzed in detail the case
X = S1, we turn to a general non-simply connected target manifold X.

Let θ be a (complex) one-form on X. Consider the quantum mechanical model
described by the action (3.5) plus the term −i

∫
I θ. Let us write

(3.31) θ = τ − iλdf,

where τ is another one-form. Recall that f is a priori a multi-valued function. In this
formula, df really stands for bv, the contraction of the vector field v with the metric
g. Formula (3.31) is a small generalization of the formulas above in which we had
τdf, τ ∈ C, for the one-form τ , so that θ = ϑdf . In fact, the one-form τ does not have
to be proportional to df .

The Hilbert space of states of this model is the space of L2 differential forms on X.
The question before us is to describe what happens with this space in the limit when
λ→ +∞, and τ is fixed.

As discussed in Part I, Section 3.2, the values of the “in” states of the theory at points
of X may be constructed as path integrals over maps from the half-line I = (−∞, 0]
to X. The value of the wave-function corresponding to a state Ψ at x ∈ X is given
by the path integral over those trajectories for which the end point 0 ∈ I goes to x.
Now, as explained in Part I, Section 3.2, the theory with the term −i

∫
I θ is equivalent

to the theory without this term, but in which the “in” states are multiplied by e
i

R x
x−

θ

and the “out” states – by e
−i

R x
x−

θ
(here x− is the boundary condition at −∞ ∈ I

corresponding to the choice of the vacuum). If θ were exact, these states would be
well-defined functions on X (as in our analysis in Part I). But we are now interested in
the case when θ is not exact. Then this integral depends on the choice of the integration
contour I going from x− to x.
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In fact, if we replace I by another path I ′ starting and ending at the same points,

the action will change by the factor e
i

R

[I]−[I′] θ, where we integrate θ over the closed
loop obtained by gluing together I and −I ′. Thus, the corresponding path integral is

naturally a function not on X, but on X̃ , the H1(X,Z)-covering X̃ of X (as before,
we assume here that H1(X,Z) has no torsion). As explained above, in Section 3.2,

the points of X̃ are pairs (x, [I]), where x ∈ X and [I] is a homotopy class of a path
I connecting x with another, fixed, point x0 ∈ X (corresponding to the boundary
condition at −∞). The equivalence relation identifies two paths I and I ′ if the image
of their difference in H1(X,Z) is equal to 0. Note that the group H1(X,Z) naturally

acts on X̃.
The “in” states of the model with the term −i

∫
I θ are therefore the differential forms

Ψ on X̃ satisfying the equivariance condition

(3.32) γ∗(Ψ) = ei
R

γ θΨ, γ ∈ H1(X,Z).

In the physical model θ is a real one-form. In this case the space of such states carries
a natural structure of a Hilbert space with the hermitean inner product given by the
formula

〈Φ|Ψ〉 =

∫

X
(⋆Φ) ∧ Ψ.

The equivariance conditions on Ψ and Φ give rise to factors that are inverse to each

other in this case, and so their product is a differential form on X̃ that is a pull-back of
a form on X which we can integrate over X (this is the appropriate version of the L2

condition in the non-simply connected case). In other words, the operation of complex
conjugation and Hodge star identifies the spaces of “in” and “out” states in this case.

The existence of a hermitean inner product is expected in a model described by a
CPT invariant action, as explained in Part I, Section 3.2. Our action is CPT invariant
precisely when θ is real. Note that there is a special case of this construction when
the lattice of periods

∫
γ θ in C is equal to 2πZ. Then the equivariance condition (3.32)

means that Ψ is a differential form onX, so the space of states is not affected. Therefore
we obtain a family of hermitean theories parametrized by H1(X,R)/2πH1(X,Z).

For our purposes, however, we wish to consider a complex one-form θ = −iλdf + τ ,
where λ is a real parameter which coincides with the factor in front of the metric in the
action (3.5). Let us assume that τ is a real one-form. We wish to take λ to +∞, while
keeping τ fixed. Adding this θ-term breaks the CPT invariance of the action, so that
we have, as before, separate spaces of “in” and “out” states. What are these spaces?

Let f be the function on X̃ defined by the formula f(x, [I]) =
∫
I β. Let us assume

that f has only isolated non-degenerate critical points on X̃ . In this case we will say
that f is a Morse–Novikov function on X (see [45]). Note that while f is not well-
defined on X, the gradient vector field ∇f and the corresponding C×-action φ descend

to X, by our assumption. Therefore the critical points of f on X̃ are the preimages of

the fixed points xα, α ∈ A, of φ on X. Let Sα be the set of preimages of xα in X̃. For
each α ∈ A, Sα is a torsor over H1(X,Z); in other words, H1(X,Z) acts on Sα simply
transitively, even though Sα cannot be canonically identified with H1(X,Z).
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As in Part I, we obtain the vectors in the “in” space of states by multiplying the

differential forms Ψ on X̃ satisfying equivariance condition (3.32) by eλf . These newly

rescaled states Ψ̃ then satisfy the equivariance condition

(3.33) γ∗(Ψ̃) = ei
R

γ τ Ψ̃, γ ∈ H1(X,Z).

Likewise, the vectors in the “out” space are obtained by multiplying the differential

forms Φ on X̃ satisfying the equivariance condition

γ∗(Φ) = e−i
R

γ
θΦ, γ ∈ H1(X,Z),

by e−λf . These new states Φ̃ satisfy the equivariance condition

(3.34) γ∗(Φ̃) = e−i
R

γ τ Φ̃, γ ∈ H1(X,Z).

Because the equivariance conditions (3.33) and (3.34) are opposite to each other, the
wedge product Φ ∧ Ψ is the pull-back of a differential form on X, which we integrate
over X. Hence we obtain a well-defined pairing between the spaces of “in” and “out”
states.

3.6. Spaces of delta-forms. The limit λ→ ∞ is now described in the same way as in
the case when f is a Morse function on X. Quasi-classical analysis, as in Part I, Section
3.8, shows that before multiplication by eλf , the wave-functions are concentrated near

the critical points of the Morse–Novikov function on X̃, where they are approximately
given by Gaussian type distributions. However, after we multiply them by eλf , the
terms in the Gaussian distribution corresponding to the positive eigenvalues of the
Hessian of f at the critical point disappear, whereas the ones corresponding to the
negative eigenvalues get doubled. As the result, we obtain delta-forms supported at

the strata of the decomposition of X̃ into the ascending manifolds with respect to f
(this analysis applies to the “in” states; for the “out” states we obtain delta-forms
supported at the descending manifolds).

Let X̃α,µ, α ∈ A,µ ∈ Sα, (resp., X̃α,µ) be the strata of the decomposition of X̃ into
the union of ascending (resp., descending) manifolds of the function f . The strata

X̃α,µ, µ ∈ Sα, are the inverse images in X̃ of the strata Xα ⊂ X of the decomposition

(3.35) X =
⊔

α∈A

Xα

coming from the C×-action φ on X, and similarly for the strata X̃α,µ. Let H̃in
α,µ be the

space of “delta-forms” supported on X̃α,µ ⊂ X̃ , defined as in Part I, Section 3.8. Set

H̃in
α =

∏

µ∈Sα

H̃in
α,µ.

The group H1(X,Z) naturally acts on H̃in
α,µ by shifting the index µ by γ ∈ H1(X,Z)

(recall that Sα is an H1(X,Z)-torsor).
The space of “in” states of our model in the limit λ → ∞ is then the subspace of

those vectors (Ψ̃in
α,µ) in

⊕
α∈A H̃in

α that satisfy the τ -equivariance condition

(3.36) Ψ̃in
α,µ+γ = ei

R

γ
τ Ψ̃in

α,µ, γ ∈ H1(X,Z).
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Therefore for a fixed α all vectors Ψ̃in
α,µ, Sα, are determined once we know one of them

(for a particular µ). Thus, we find that the space of states is non-canonically isomorphic
to
⊕

α∈A Hin
α , where Hin

α is the space of delta-forms on Xα defined in Part I, Section
3.8. The space of “out” spaces is defined similarly.

Both spaces should be viewed as subspaces of the spaces of equivariant distributions

on X̃ , as explained in Part I. The definition of these distributions requires regulariza-
tion. The effect of this regularization is that the “big” space of states is non-canonically

isomorphic to the direct sum of the subspaces H̃in
α , but has a canonical filtration whose

successive quotients are isomorphic to H̃in
α . In particular, the Hamiltonian is not di-

agonalizable, but has Jordan blocks, by the same mechanism as the one described in
Part I.

The space of “out” states is defined similarly, as a successive extension of spaces of

delta-forms supported at the strata X̃α,µ, α ∈ A,µ ∈ Sα.

Remark 3.1. In the case when X is a finite-dimensional Kähler manifold, equipped
with a C×-action with a non-empty set of fixed points (which has been our assumption
in this paper), we always have H1(X,Z) = 0 and so any closed one-form is exact (see
[22]). Therefore we do not need to consider the possibility that β is not exact, and so
the above discussion appears to be superfluous. But for infinite-dimensional manifolds,
such as the loop space LX and the space of connections on S3 which we consider below
in the context of four-dimensional Yang–Mills theory, this is no longer true, so the
above discussion will be useful in these cases.

Note, however, that “toy models” of Morse–Novikov quantum mechanics may already
be constructed on finite-dimensional manifolds. But we need to consider a real manifold
X with H1(X,Q) 6= 0. We have already considered above the new phenomena which
occur in the case of Morse–Novikov quantum mechanics in the example of X = S1. In
this more general situation we may still take the limit λ → ∞ of the corresponding
quantum mechanical model, and most of our results obtained in the case of Kähler
manifolds will carry over to this case. In particular, the space of “in” states of such a

model will be isomorphic to the subspace of equivariant states in
∏
α,µ H̃α,µ, where H̃α,µ

is the space of delta-forms on the descending manifolds X̃α,µ ⊂ X̃ of the Morse–Novikov
function. Note however that these strata are no longer isomorphic to Cn, and so we
obviously do not have a holomorphic factorization of the corresponding spaces of delta-
forms. In realistic non-simply connected finite-dimensional situation one encounters
various combinations of the two basic situations we have seen in the case of the circle:
the discrete real spectrum with Jordan blocks and the discrete imaginary spectrum
with periodic functions.

3.7. Non-isolated critical points. Up to now we have considered quantum mechan-
ics on a non-simply connected manifold X with a Morse–Novikov function f defined on

a covering X̃ of X. The assumption that f is a Morse–Novikov function means that its
critical points are isolated and non-degenerate. In this section we discuss what happens
when the fixed points are not isolated and f is a Morse–Bott–Novikov function. This
is precisely the situation we encounter in two-dimensional sigma models (where X is a
loop space).
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We have already discussed such quantum mechanical models in the case when X
is simply-connected in Part I, Section 6.5. Let us recall briefly the results of our
analysis. Thus, we are given a compact Kähler manifold X with a holomorphic C×-
action preserving the Kähler structure. We will assume that the set of fixed points of
this action is non-empty. Then, according to [22], there exists a Morse–Bott function f
such that its critical points are the fixed points of the C×-action. Let Cα, α ∈ A, be the
components of the fixed point set of the C×-action on X (under our old assumptions,
each Cα consisted of a single point). According to the results of [9, 11, 58], in this case
X still has decompositions

(3.37) X =
⊔

α∈A

Xα =
⊔

α∈A

Xα,

with the ascending and descending manifolds Xα and Xα defined in the same way as
before. Each Xα is a C×-equivariant holomorphic fibration over Cα. Each fiber is
isomorphic to Cnα , where nα is the number of positive eigenvalues of the Hessian of
f at the points of Cα. Moreover, locally over Cα, the bundle Xα is isomorphic to the
subbundle N+

α of the normal bundle to Cα ⊂ X spanned by the eigenspaces of the
Hessian of the function f with positive eigenvalues. In general, Xα does not have a
natural structure of a vector bundle; in other words, the transition functions between
local identifications of Xα with N+

α (or any other vector bundle) over open subsets of
Cα may not be linear. However, we will assume in what follows that they are algebraic
(that is, polynomial). This is the case when X is a projective algebraic variety (see
[9]). Thus, we can speak of functions on Xα that are polynomial along the fibers of the
projection Xα → Cα.

Likewise, Xα is also a C×-equivariant holomorphic bundle over Cα. Each fiber is
isomorphic to Cn−nα−dimCα . Locally, the corresponding bundle over Cα is isomorphic
to the subbundle N−

α of the normal bundle to Cα ⊂ X spanned by the eigenspaces of
the Hessian of the function f with negative eigenvalues. Again, we will assume that
the transition functions between local identifications of Xα with N−

α over open subsets
of Cα are algebraic.

Consider, for example, the case of X = CP2 with the C×-action corresponding to
f given by the formula (z1 : z2 : z3) 7→ (qz1 : z2 : z3). Then the fixed point set
has two components: the point C1 = (1 : 0 : 0) and the one-dimensional component
C2 = {(0 : z2 : z3)} isomorphic to CP1. The corresponding strata X1 and X2 are
the point (1 : 0 : 0) and its complement, respectively. Note that X2 is a line bundle
over C2 = CP1 isomorphic to O(1), which is also isomorphic to the normal bundle
of C2 ⊂ CP2. The strata X1 and X2 are the plane {(1 : u1 : u2)} and C2 = CP1,
respectively.

The description of the spaces of “in” and “out” states of this model is similar to the
one obtained previously in the Morse function case. Namely, Hin is isomorphic to the
direct sum of the spaces Hin

α , α ∈ A. Roughly speaking, each space Hin
α is the space

of L2 differential forms on Cα extended in two ways: by polynomial differential forms
in the bundle directions of Xα and by polynomials in the derivatives in the transversal
directions to Xα in X. More precisely, the states in Hα are L2 sections of vector bundles
over Cα. For example, in the case when X = CP2 we have X2 ≃ N+

2 , which is the line
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bundle O(1) over C2 = CP1. Then the purely bosonic part of H2 is the direct sum of

the spaces of L2 sections of the line bundles O(−1)⊗n ⊗ O(−1)
⊗n
, n, n ≥ 0. To include

the fermions, we need to add the corresponding spaces of differential forms, which are
defined similarly.

In particular, the ground states, on which the Hamiltonian Lv, where v = ∇f , acts
by zero, correspond to just the ordinary L2 differential forms on Cα. Given such a form
ωα, let ω̃α be its pull-back to Xα under the projection Xα → Cα. Then ω̃α defines a
“delta-like” distribution supported on Xα, whose value on η ∈ Ω•(X) is equal to

∫

Xα

ω̃α ∧ η|Xα .

While these are the ground states of the model at λ = ∞, only those of them which
correspond to harmonic differential forms ωα ∈ Ω•(Cα), α ∈ A, may be deformed to
ground states for finite values of λ.

Other elements of Hα are distributions obtained by applying to the distributions
ω̃α Lie derivatives in the transversal directions to Xα as well as multiplying them
by differential forms on Xα which are polynomial along the fibers of the projection
Xα → Cα. The definition of these distributions requires a regularization similar to the
one we used in the case of isolated critical points in Part I. Because of this regularization,
we obtain non-trivial extensions between different spaces Hin

α , and the action of the
Hamiltonian is not diagonalizable.

The space of ”out” states is defined in a similar fashion. As in the case of isolated
critical points, we have a canonical pairing between the two spaces.

Now we consider the case of non-simply connected (but connected) X and a Morse–

Bott–Novikov function f . The resulting picture is a combination of the case of Morse–
Novikov function discussed in Section 3.6 and the case of Morse–Bott function discussed
in this section. Namely, we have the decomposition (3.37) defined using the C×-action
corresponding to the vector field ξ, which is the holomorphic part of the gradient

vector field v = ∇f = ξ+ ξ. Let X̃α,µ, α ∈ A,µ ∈ Sα (resp., X̃α,µ), be the strata of the

decomposition of the H1(X,Z)-cover X̃ into the union of ascending (resp., descending)
manifolds of the function f . Here, as above, Sα is the H1(X,Z)-torsor of components

of the preimage of Cα in X̃ . The strata X̃α,µ, µ ∈ Sα, are the inverse images in X̃

of the strata Xα ⊂ X, and similarly for the strata X̃α,µ. Let H̃in
α,µ be the space of

“delta-forms” supported on X̃α,µ ⊂ X̃, defined as in Part I, Section 3.8. We set

H̃in
α =

∏

µ∈Sα

H̃in
α,µ.

The space of states of the Morse–Bott–Novikov quantum mechanical model is the space
of vectors

(Ψ̃in
α,µ) ∈

∏

α∈A,µ∈Sα

H̃in
α,µ

satisfying the τ -equivariance condition (3.36). As before, the spaces H̃in
α,µ are defined

as certain spaces of distributions on X̃ . Because of the regularization involved in the
definition of these distributions, there are non-trivial extensions between them, and
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the “big” space of states
⊕

α∈A H̃in
α is really a successive extension of the spaces H̃in

α,µ

(rather than a direct sum). Furthermore, the Hamiltonian is not diagonalizable, but
has Jordan blocks, as before.

Thus, the structure we obtain is very similar to the case of isolated critical points.
One essential difference is that we observe holomorphic factorization only in the fiber
directions of the maps Xα → Cα, but not along the manifolds Cα themselves.

4. Back to sigma models

We now apply the results of the previous section to the (type A twisted) two-
dimensional sigma models in the limit τ → ∞. As we explained in Section 2, such
a model, with the target being a Kähler manifold X, may be viewed as a quantum
mechanical model on the loop space X, corresponding to the Morse–Bott–Novikov
function f given by formula (2.15). These are precisely the types of models considered
in Section 3.

4.1. Space of states. According to the analysis of Section 3, in order to describe the
space of states of our model we need to find the set of critical points of our Morse–
Bott–Novikov function f on the loop space LX of a Kähler manifold X. This function
is the Floer function given by formula (2.15).

In order to simplify the exposition, we will assume throughout this section that
X is simply-connected, so that LX is connected (we will consider the case of a non-
simply connected X – namely, a torus – in Section 4.6). Then the critical points
of f are the constant maps. Thus, the set of critical points of f is the submanifold
X ⊂ LX, so it has only one component. We need to describe the corresponding

spaces H̃α,µ = H̃in
α,µ, in the notation of Section 3.7 (the spaces of “out” states may be

described similarly). Here α takes only one value (since the manifold of critical points
has only one component), so we will suppress this index. The other index µ runs over
a torsor over H1(LX,Z) = H2(X,Z), which is by definition the set of components of

the preimage p−1(X) of X ⊂ LX in the H1(LX,Z)-cover p : L̃X → LX. Since L̃X
is described in terms of maps from a two-dimensional disc D to X (see Section 2.4),
we actually have a canonical component in p−1(X). It consists of the (equivalence
classes of) constant maps D → X. Therefore this H2(X,Z)-torsor has a canonical
trivialization, and so the index µ really takes values in H2(X,Z). We therefore have

the spaces H̃µ, µ ∈ H2(X,Z). All of them are isomorphic canonically to each other, via
the action of the group H2(X,Z) on the covering. Let us describe the structure of one

of them; namely, H̃0.
By analogy with the results in the finite-dimensional case (which were based on the

semi-classical analysis of the wave-functions), H̃0 is the space of “delta-forms” on the

ascending submanifold L̃X0 ⊂ L̃X. (More precisely, we will use a particular model for

this space described below.) In terms of the description of L̃X as homotopy classes

of maps D → X, where D is a unit complex disc, given in Section 2.4, points of L̃X0

correspond to holomorphic maps D → X. Indeed, the gradient flows of our Morse–
Bott–Novikov function f correspond to the Cauchy–Riemann equations (2.13), (2.14)
for the maps D → X.
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To give a more concrete description of the space H̃0, we recall the explicit (local)
coordinates Xa

n,X
a
n, n ∈ Z, on the loop space LX, the momenta p′a,n, p

′
a,n, n ∈ Z, and

the corresponding fermionic variables

ψan, ψ
a
n, πa,n, πa,n, n ∈ Z,

introduced in Section 2.4.

Warning: to simplify notation, from now on we will denote p′a,n, p
′
a,n, by pa,n, pa,n,

and similarly for the corresponding fields.

The OPE (2.9) give rise to the usual commutation relations

[pa,n,X
b
m] = −iδbaδn,−m, [πa,n, ψ

b
m] = −iδbaδn,−m,(4.1)

[pa,n,X
b
m] = −iδbaδn,−m, [πa,n, ψ

b
m] = −iδbaδn,−m.(4.2)

4.1.1. The case of flat space. Consider first the case when X = CN . Technically, it
does not fall in the category of manifolds we consider, since it is not compact, but it
is instructive to consider it because it provides a useful local model for the compact
target manifolds. In this case holomorphic maps D → X are simply described by their
Taylor series

(4.3)
∑

n≤0

Xa
nz

−n, a = 1, . . . , N.

Hence we obtain a natural set of coordinates on the ascending manifold L̃X0 (actually,
in this case there is no covering, but we will keep the tilde in the notation); namely, Xa

n

and Xa
n, where a = 1, . . . , N ;n ≤ 0. Therefore, following the discussion in Section 3.7,

it is natural to define the space H̃0 of “delta-forms” supported on L̃X0 as the tensor
product of three spaces: the space of L2 differential forms on X = CN realized in terms
of the zero modesXa

0 ,X
a
0 and ψa0 , ψ

a
0 ; the space of polynomial functions in the remaining

coordinates on L̃X0, X
a
n, ψ

a
n, n < 0, and their complex conjugates; and the space of

polynomial functions in the “derivatives” in the transversal directions, pa,n, πa,n, n < 0,
and their complex conjugates.

The space H̃0 should be compared with the usual Fock representation of the free
βγ-bc system described by the superalgebra with the commutation relations (4.1) and
(4.2). It is the tensor product of the chiral Fock representation F0 generated by the
vacuum vector |0〉 satisfying

Xa
n|0〉 = ψan|0〉 = 0, n > 0, pa,m|0〉 = πa,m|0〉 = 0, m ≥ 0,

and its anti-chiral counterpart F0 generated by the vector |0〉 satisfying analogous
relations with respect to half of the the anti-holomorphic generators. Therefore

F0 = C[Xa
n, pa,m]n≤0,m<0 ⊗ Λ[ψan, πa,m]n≤0,m<0 · |0〉,(4.4)

F0 = C[Xa
n, pa,m]n≤0,m<0 ⊗ Λ[ψan, πa,m]n≤0,m<0 · |0〉.(4.5)

The tensor product F0 ⊗ F0 coincides with H̃0, except for the zero mode part. In

the case of H̃0 we have the space of L2 differential forms in the zero modes, whereas

in the case of F0 ⊗ F0 we have the space of polynomials in the zero modes. Thus, H̃0
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may be viewed as an L2 version of the tensor product of the Fock representations of
the chiral and anti-chiral free βγ-bc systems.

4.1.2. General Kähler manifolds. For a general Kähler target manifold X, the space H̃0

may be described in similar terms. Morally, this should be the space of “semi-infinite”

delta-forms supported on the stratum L̃X0 ⊂ L̃X, which consists of holomorphic maps
from the unit disc D to X. Let us choose a covering of X by coordinate patches
X = ∪βUβ, which each patch Uβ isomorphic to an open analytic subset of CN , providing
us with complex coordinates Xa, a = 1, . . . , N . Suppose that a map Φ : D → X sends
0 ∈ D to a point in Uβ. Then the restriction of Φ to a smaller disc D′ ⊂ D will also land

in Uβ. Therefore we obtain a map D′ → CN , which we may expand in Taylor series,
using the coordinates Xa, as in formula (4.3). Thus, we obtain a set of coordinates
Xa
n, n ≤ 0, on the space of maps Φ : D → X such that 0 7→ Uβ. These really capture

the jet of the holomorphic map Φ at the origin 0 ∈ D.5

On the other hand, a general loop γ : S1 → X, which is not the boundary value of a
holomorphic map D → X, may be expanded in the Fourier series in both positive and
negative directions, as in formula (2.10),

Xa(σ) =
∑

n∈Z

Xa
ne

−inσ,

where σ is the coordinate on the circle to which the coordinate z on the disc used in
formula (4.3) is related by the formula eiσ on the disc boundary |z| = 1. Therefore

Xa
n, n > 0, give us coordinates in the transversal directions to L̃X0 ⊂ L̃X.
Note that the differentials of the coordinatesXa

n, n 6= 0, and their complex conjugates

may be viewed as the fiberwise coordinates on the normal bundle to X ⊂ L̃X restricted
to Uβ ⊂ X. According to formula (2.12), the eigenspaces of the Hessian of the Floer
function with positive eigenvalues correspond to Xa

n, n < 0, and the eigenspaces of the
Hessian of the Floer function with negative eigenvalues correspond to Xa

n, n > 0.

This discussion suggests the following model for the space of semi-infinite delta-forms

supported on L̃X0 ⊂ L̃X.
Let ψan be the fermionic counterparts of the coordinates Xa

n corresponding to the
patch Uβ, and let pa,n, πa,n be the corresponding momenta variables. For each patch
Uβ we have the space of states of the free field theory described in the same way as
in Section 4.1.1, except that we need to replace the L2 condition by the smoothness
condition. The reason for this is the following. When we considered the sigma model
with the target CN , the L2 condition was imposed as the condition specifying the
behavior of the wave-functions at infinity. In the case of a compact Kähler manifold X
the L2 condition is is replaced by the gluing condition on overlaps of different patches.

These spaces should be glued on the overlaps Uβ∩Uγ . In other words, on the overlap
of any two patches Uβ ∩ Uγ we must define a transition function between the spaces
of states attached to them. Then these spaces would form a vector bundle over X,

5It is certainly possible that under the map Φ the entire disc D does not land in any given patch
Uβ . However, the values of the coordinates Xa

n, corresponding to a given patch Uβ , on such maps are
well-defined as long as Φ(0) ∈ Uβ .
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and a state in H̃0 would by definition be a global section of this vector bundle. More
concretely, it would be represented by a collection of local states on the patches, which
agree on the overlaps.

Describing the transition functions for this vector bundle amounts to describing how
the generating fields Xa(z), pa(z), etc., transform under general changes of coordinates

on the target manifold Xa = fa({X̃b}). The existence of consistent transition functions
is by no means obvious. In fact, in a purely bosonic version of the theory they may not
exist. This has to do with an anomaly which has been studied extensively in recent
years (see [40, 32, 6, 56, 44]). However, in the supersymmetric models that we are
considering now the anomaly cancels and the transformation formulas do exist. They
are given by the following formulas from [40]:

X̃µ(z) = gµ(Xµ(z)),

p̃µ(z) = :
∂f ν

∂X̃µ
pν : +

∂2fλ

∂X̃µ∂X̃α

∂gα

∂Xν
:πλψ

ν : ,

ψ̃µ =
∂gµ

∂Xν
ψν ,(4.6)

π̃µ =
∂f ν

∂X̃µ
πν .

Here we let the Greek indices µ, ν, ... take both holomorphic and anti-holomorphic

values, e.g., µ = a, a, etc., and we set fa = fa. We denote X̃µ = gµ({Xν}) the inverse

change of variables to X̃ν = f ν({X̃µ}). These formulas are checked by an explicit
computation (see [40]).

Thus, we obtain here the smooth (rather than holomorphic) version of the chiral de
Rham complex, as introduced in [40] and reviewed more recently in [8]. To avoid the
terminological confusion with the actual chiral de Rham complex of X involving only

holomorphic variables (which we consider below in Section 4.5), we will call H̃0 the
chiral-anti-chiral de Rham complex.

The transformation formulas for the fermions ψµ, πµ simply mean that they trans-
form as sections of the tangent and cotangent bundles to X, respectively, as expected.
The only surprise is the second term in the formula for the transformation of the mo-
menta pµ. This is due to the fact that the momenta variables we use here are the
transformed variables denoted p′µ at the end of Section 2.4. Had we used the original
momenta pµ, we would not have this term. But then the action would be given by
formula (2.5) rather than (2.7), which involves the covariant derivatives (with respect
to the Levi-Civita connection) rather than the ordinary derivative, with respect to the
local coordinates Xµ. Therefore there would be non-trivial OPEs between the momenta
variables themselves. We have avoided this by redefining the momenta pµ 7→ p′µ in for-

mula (2.6) (and changing the notation for p′µ back to pµ) at the cost of introducing an
inhomogeneous second term in the transformation formula (4.6) for the pµ’s (see [37]
for a discussion of this point).

Formulas (4.6), when rewritten in terms of the Fourier coefficients of the fields, give
rise to the transition functions of the bundles of spaces of states. It is clear from
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these formulas that this vector bundle is a successive extensions of tensor products of
symmetric (for bosonic variables) and exterior (for fermionic variables) powers of the
tangent and cotangent bundles on X and their complex conjugates (see [40] for more

details). This completes the definition of H̃0.

We now define, as in Section 3.7, the “big” space of states as the direct product

H̃ =
∏

µ∈H2(X,Z)

H̃µ,

with H̃µ being the space of “delta-forms” on L̃X supported on the ascending manifold

L̃Xµ of the component of the set of critical points of the Floer function f labeled by

µ. These spaces are canonically isomorphic to H̃0, described above. The big space of

states should be realized as a space of distributions on L̃X. For this reason, as we have
explained in detail in Part I and in Section 3 in the quantum mechanical setting, this
space is non-canonically isomorphic to the above direct product. Canonically, we only

have a filtration corresponding to the closure relations among the strata L̃Xµ ⊂ L̃X.

The associated graded pieces are isomorphic to H̃µ as in the quantum mechanical
models discussed above.

4.1.3. Definition of the space of states. We can now describe the space of states of our
sigma model (in the infinite radius limit τ → −i∞, as defined in Section 2). Such a
state is, by definition, a collection

(Ψ̃µ) ∈
∏

µ∈H2(X,Z)

H̃µ

satisfying the τ -equivariance condition

(4.7) Ψ̃µ+γ = e
R

γ τ Ψ̃µ, γ ∈ H2(X,Z).

Therefore we see that Ψ0 determines the remaining Ψµ, and so the space of states

is isomorphic to H̃0. However, this isomorphism is non-canonical because the direct
product decomposition of the “big” space of states is non-canonical.

The fact that the space of states of the sigma model in the infinite radius limit is

not canonically isomorphic to chiral-anti-chiral de Rham complex H̃0 is due to the

instanton effects. What it really means is that the identification of H̃0 with the space
of states is only valid perturbatively, that is, without the instantons. As we will see
below (and as we have already seen in quantum mechanics in Part I), the instanton

corrections occur precisely because of the intricate structure of extensions between the

spaces of delta-forms H̃µ. This leads to the non-diagonalizability of the Hamiltonian,
divergence of the correlation functions, logarithms in the operator product expansion
and other interesting phenomena. We will discuss this in more detail in Section 6.

4.2. The sigma model in the infinite radius limit as a logarithmic CFT. As in
the quantum mechanical case discussed in detail in Part I, the action of the Hamiltonian
of the two-dimensional sigma model can be read off the correlation functions. We will
now use this information to show that this Hamiltonian is non-diagonalizable and that
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the sigma model in the infinite radius limit is in fact a logarithmic conformal field
theory.

The Hamiltonian on each graded piece H̃µ of the “big” space of states is equal to

L0 + L0, where L0 is the 0th mode of the stress tensor T (z), generating the Virasoro
algebra with central charge 0, and L0 is its anti-holomorphic counterpart. In the free
βγ-bc conformal field theory corresponding to each patch Uβ these fields are given by
the usual formulas

T (z) = i : (pa(z)∂zX
a(z) + πa(z)∂zψ

a(z)) : ,(4.8)

T (z) = i :
(
pa(z)∂zX

a(z) + πa(z)∂zψ
a(z)

)
: .(4.9)

Thus, the Hamiltonian is diagonalizable on each graded piece H̃µ. However, the fact
that the big space of states is a successive extension of these pieces, rather than a
direct product, opens the door to potential non-diagonalizability of the Hamiltonian
of the sigma model. In other words, the true Hamiltonian may have Jordan blocks,
as we saw in the quantum mechanical models in Part I. In fact, we will compute
sample correlation functions below, and this will confirm that this is the case in sigma
models as well. In addition, we will compute explicitly the nilpotent corrections to
the Hamiltonian causing the Jordan blocks in the case of the target manifold P1 in
Section 7.5 (more precisely, we will do this for the sigma model on P1 in a background
gauge field).

What kind of Jordan block structure should we expect to see in the action of the
Hamiltonian on the space of states of the sigma model? Let us identify the space of

states of our model with H̃0 using the τ -equivariance condition (4.7). The nilpotent

entries of the Hamiltonian would bump Ψ0 ∈ H̃0 to some Ψ′ ∈ H̃γ ≃ H̃0 corresponding

to a stratum L̃Xγ , γ ∈ H2(X,Z) in the closure of L̃X0. We will call such γ negative,

because they have negative relative dimension compared to L̃X0. By the τ -equivariance

condition, this Ψ′ corresponds to Ψ′′ = e−
R

γ τΨ′ ∈ H̃0. Thus, the nilpotent entries of

the Hamiltonian will necessarily contain factors of the form e−
R

γ
τ for negative γ.

The Jordan block nature of the Hamiltonian implies that the sigma model in the
limit τ → ∞ is a logarithmic conformal field theory (LCFT). Note that the logarithmic
corrections to the Virasoro generators have non-perturbative character: they are caused
directly by the instantons!

The reason why we get Jordan blocks is the absence of anti-instantons in our model
at τ = −i∞. If they were present, the anti-instantons would contribute a small matrix
element under the diagonal in the Hamiltonian making it diagonalizable.

4.3. The observables. The observables of our model are obtained by the state–
operator correspondence from vectors in the space of states. Consider as a toy model
the case of X = CN . Then, as we discussed above, the space of states is essentially
the tensor product of the Fock representations of the chiral and anti-chiral βγ-bc sys-
tems. The corresponding fields are therefore normally ordered products of the basic
fields Xi(z), pi(z), etc., their derivatives and complex conjugates. For a general Kähler
target manifold X we have a sheaf of spaces of states which locally look like the spaces
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of states of the free theory. Therefore the states, as well as the fields, may be described
as collections of states (or fields) in these free theories which agree on overlaps.

For example, the zero modes generate a subspace in the space of states which is
isomorphic to the space Ω•(X) of differential forms on X. The corresponding fields are
locally generated by the fields Xa(z) and ψa(z): a globally defined smooth differential
form which locally, on a particular chart in X, is given by formula

ω = ωb1,...,bm;b1,...,bm
(Xa,Xa)dXb1 ∧ . . . ∧ dXbm ∧ dXb1 ∧ . . . ∧ dXbm

gives rise to the observable, whose restriction to this patch is

Oω = ωb1,...,bm;b1,...,bm

(
Xa(z),Xa(z)

)
ψb1(z) . . . ψbm(z)ψb1(z) . . . ψbm(z).

These are called the evaluation observables. However, there are many more observables
in the theory.

4.4. Jet-evaluation observables. First of all, we have an obvious generalization of
the evaluation observables involving higher derivatives of the fields Xµ, ψµ. To define
them, let JX be the space of ∞-jets of holomorphic maps from a small complex disc
D to X. Such a map is defined by its Taylor series

Xa(z) =
∑

n≤0

Xnz
−n,

or equivalently, by the values of its derivatives ∂nzX
a(z) at the origin in D (with re-

spect to some coordinates on an open subset Uβ in X which contains the image of
origin). These are formal power series, with no convergence condition assumed. We
have a natural forgetful map JX → X, whose fibers are complex affine spaces with the
coordinates Xa

n, n < 0. We will refer to JX as the jet space of X. It also goes by the
name jet scheme (see, e.g., [24], Sections 9.4.4 and 11.3.3).

Next, let Σ be a smooth algebraic curve. We introduce the bundle JX of jet spaces
over Σ whose fiber at p ∈ Σ is the space JpX of jets of holomorphic maps to X from a
small complex disc Dp around the point p. A more precise definition is as follows: let
AutO be the group of jets coordinate changes

z 7→ ρ(z) = a1z + a2z
2 + . . . ,

where a1 6= 0, and an, n > 1, are arbitrary complex numbers. (These are formal
coordinate changes, so we do not assume that the series converges anywhere.) This
group acts on JX as follows: Xa(z) 7→ Xa(ρ(z)). On the other hand, we have a
natural principal AutO-bundle AutΣ on Σ, whose fiber Autp at p ∈ X is the space
of jets of holomorphic local coordinates at p (see, e.g., [24], Ch. 6, for the precise
definition). If tp is one such jet of coordinates, then ρ(tx) is another, for any ρ ∈ AutO,
and for any two jets of coordinates, t′p, t

′′
p, there exists a unique ρ ∈ AutO such that

t′′p = ρ(t′p) (so that Autp is an AutO-torsor). Now we define JX as the associated
bundle

JX := AutΣ ×
AutO

JX.

Then the fiber of JX at p ∈ Σ is indeed the space of jets of maps Dp → X. If we
choose a particular coordinate z at p ∈ Σ, we identify Dp with D (the “coordinatized”
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disc), and hence the fiber JpX of JX at p with JX. But the above definition of JX is
independent of any such choices.

Next, let Ω•
vert(JX) be the sheaf of vertical differential forms on the bundle JX → X

(here “vertical” means that we consider differential forms only in the fiber directions
of this bundle). By definition, a jet-evaluation observable is a smooth global section of
Ω•

vert(JX). Locally, over an open subset U in Σ with a coordinate z, the bundle JX
may be trivialized: JX|U ≃ U×JX and so a vertical differential form is just a function
on U with values in differential forms on JX. Choosing an open subset Uβ ⊂ X with
holomorphic coordinates {Xa}, we can write such a form of degree (p, p) as follows

(4.10) Ω = AIJKL...(X
a(z),X

a
(z))dXi1

0 ∧ . . . dXim1
0 ∧ dXj1

−1 ∧ . . . ∧ dX
jm2
−1

∧ dXk1
−2 ∧ . . . ∧ dX

km3
−2 ∧ . . . ∧ dXi1 ∧ . . . ∧ dXkm3

−2 . . . ,

where the jet-scheme JX is coordinatized by:

Xa(z) = Xa
0 +Xa

−1z +Xa
−2z

2 + . . . ,

and m = m1 +m2 + . . . , m = m1 +m2 + . . ..
To the form Ω we then associate the operator

(4.11) OA = AIJKL...(X
a(t),X

a
(t))ψi1 . . . ψim1∂ψj1 . . . ∂ψjm2∂2ψ

k1 . . . ψ
i1
. . . ,

where I = i1i2 . . . im1 , J = j1j2 . . . jm2 , . . . , K = k1k2 . . . km3 , etc.
Introduce the following notation. For a partition λ = (λ1 ≥ . . . ≥ λn) we denote

n = ℓ(λ),

|λ| =
∑

i

λi,

and write

DλX =

ℓ(λ)∏

i=1

1

λi!
∂λi
z X, D

λ
X =

ℓ(λ)∏

i=1

1

λi!
∂λi
z X.

For instance,

D13
X = (∂X)3 , D2,1X =

1

2
∂2X∂X , D3X =

1

6
∂3X,

D
13

X = (∂X)3 , D
2,1

X =
1

2
∂

2
X∂X , D

3
X =

1

6
∂

3
X,

and so on. For the target space of complex dimension d we introduce operators labeled

by the colored partitions: ~λ = (λ(1), λ(2), . . . , λ(d)): the bosonic ones

D
~λX =

d∏

a=1

ℓ(λ(a))∏

i=1

1

λ
(a)
i !

∂
λ
(a)
i
z Xa ,

and the fermionic ones:

D
~λΨ =

d∏

a=1

na∏

i=1

1(
λ

(a)
i − i+ na − 1

)
!
∂
λ
(a)
i −i+na−1
z ψa ,
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where na = ℓ(λ(a)) is the number of rows in the Young diagram of the partition λ(a).

Analogously, we define the complex conjugate operators D
~λ
X,D

~λ
Ψ.

Then we formally expand:

(4.12) AIJKL...(X
a(t),X

a
(t)) =

∑

~λ,~µ

A
IJKL...|~λ~µ

(Xa
0 ,X

a
0)D

~λXD
~µ
X.

Similarly, the fermionic content of the operator (4.11) may be repackaged using colored
partitions:

(4.13) OA =
∑

~λ,~µ,~ν,~ρ

A~λ~µ~ν~ρ(X
a
0 ,X

a
0)D

~λXD
~ν
XD~µΨD

~ρ
Ψ.

On the overlaps Uβ ∩ Uγ we have transition functions defined explicitly by formulas
(4.6). It is easy to see that these are precisely the (classical) transition functions on
the jet bundle JX defined above.

Since these observables do not depend on the momenta variables pa(z), πa(z) and
their complex conjugates, they are “classical” in the sense that in perturbation theory
no normal ordering (or any other kind of regularization) is necessary to define them.
(We will see below that non-perturbatively even these observables require regulariza-
tion.) They transform in the same way as the classical jets (see formula (4.6)), without
any quantum correction terms. Hence this class of observables is the easiest to study
(beyond the ordinary evaluation observables).

Remark 4.1. Note that we have a tautological map JX → X corresponding to eval-
uating a jet of maps D → X at 0 ∈ D, Xa(z) 7→ Xa(0). Likewise, we have a map
JX → Σ×X, defined in the same way pointwise. Any differential form on X gives rise
to a differential form on the product Σ ×X (constant along the first factor), and, by
pull-back, on JX. The corresponding observables are the ordinary evaluation observ-
ables; they depend on the fields Xµ, ψµ, but not on their derivatives. Likewise, we may
consider the space JNX of N -jets of maps D → X; these are determined by the first
(N − 1) derivatives of Xa(z) at the origin. Let JNX be the corresponding bundle over
Σ. We have natural forgetful maps JX → JNX and JX → JNX (in fact, JX and JX
are the inverse limits of JNX and JNX, respectively, as N → ∞). The jet-evaluation
observables that depend only on the first (N − 1) derivatives of Xµ and ψµ correspond
precisely to the differential forms on JX obtained by pull-back from JNX. �

In addition to the jet-evaluation observables, which do not depend on the momenta
variables pa, πa and their complex conjugates, there are also observables that do depend
on them. For instance, each global vector field on X which locally reads as

v = vb(Xa,Xa)
∂

∂Xb
+ vb(Xa,Xa)

∂

∂Xb
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gives rise to the observable

v(z) = :vb(Xa(z),Xa(z))pb(z):

+ :
∂vb

∂Xc
(Xa(z),Xa(z))πb(z)ψ

c(z): + :
∂vb

∂Xc
(Xa(z),Xa(z))πb(z)ψ

c(z):

+ :vb(Xa(z),Xa(z))pb(z):(4.14)

+ :
∂vb

∂Xc
(Xa(z),Xa(z))πb(z)ψ

c(z): + :
∂vb

∂Xc
(Xa(z),Xa(z))πb(z)ψ

c(z): ,

which corresponds to the action of the Lie derivative Lv on the differential forms.
In particular, to purely holomorphic differential forms or vector fields correspond

purely chiral fields (i.e., the ones annihilated by ∂z). Yet more general fields may be
obtained from global differential operators on X. If these operators are holomorphic,
then we obtain fields from the chiral algebra of our model, also known as (the space
of global section of) the chiral de Rham complex. We will discuss it in more detail in
Section 4.5.

4.5. Chiral algebra of the sigma model and chiral de Rham complex. Now
consider the chiral algebra of the sigma model in the infinite radius limit. Because of
the state–operator correspondence, it is isomorphic to the space of states of the model
which are annihilated by the operator L−1 (a Fourier coefficient of the field T (z) given
by formula (4.9)) which corresponds to the derivative ∂z (the chiral states). Locally,
for each coordinate patch Uβ ⊂ X isomorphic to CN , we have the space of states of

the free theory on CN (more precisely, its version in which the L2 condition on the
zero modes is replaced by the smoothness condition, see Section 4.1). Its subspace of
states annihilated by the operator L−1 is therefore isomorphic to the Fock module F

of the free chiral βγ-bc system on Uβ, as defined in Section 4.1. A global chiral state
is therefore a collection of local chiral states Ψβ, that is, elements of the chiral Fock
module F corresponding to the patch Uβ , which are compatible on the overlaps Uβ∩Uγ .

Formulas (4.6) for the transformation of chiral fields under holomorphic changes
of coordinates coincide with the formulas given in [40]. Therefore we arrive at the
definition of the chiral de Rham complex from [40] (see also [24], Sect. 18.5). Thus, we
find that the chiral algebra of the sigma model in the infinite radius limit is the space

of global sections over X of the chiral de Rham complex, as was previously observed in
[25] (see also [37, 56]).

However, in contrast to most of the mathematical literature, we are not interested in
the chiral algebra per se. Rather, we are interested in the full quantum field theory in
the infinite radius limit τ → ∞, in which the chiral and anti-chiral sectors are combined
in a non-trivial way. Perturbatively, the space of states is isomorphic to the chiral-anti-
chiral de Rham complex discussed above. The inclusion of the instantons requires that
we take into account the non-trivial self-gluings of this space, realized as the space of

delta-forms on semi-infinite strata in L̃X . This changes the structure of the space of
states and the correlation functions and leads to the logarithmic mixing of states and
operators discussed in Section 5 below.
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We now consider some explicit examples of sigma models. As our first example we
take up the case of an elliptic curve T = C/(Z + Zτ). Though this is essentially a free
field theory, it is instructive to see how the familiar description of the space of states
at finite radius changes when we take the infinite radius limit τ → ∞. (In Section 5.5
we will compute the bosonic part of the partition function of this model and show how
it can be obtained as a limit of the well-known partition function of the free bosonic
field theory compactified on a torus.) We will then consider the target manifold CP1

and relate the description of the space of states given above with the one obtained in
[25] using “holomortex operators”.

4.6. The case of a torus. Consider the supersymmetric sigma model with the target
manifold elliptic curve T = C/2π(Z+ZT ), where T is in the upper-half plane. Note that
in our discussion above we had assumed that the target manifold is simply-connected.
The case at hand is different, as π1(T) = Z2. This means that the loop space LT

has components labeled by Z2, which we will denote by LTλ, λ ∈ Z2. In addition, the
Floer function is not single-valued on any of these components, and so it is necessary to
consider an H2(T,Z) = Z-covering of each of them. This covering is defined as follows:
for each component LTλ we have to choose a loop γ0

λ : S1 → T which is in the homotopy

class λ. Then points of the covering L̃Tλ are by definition pairs (γ, [γ̃]), where γ ∈ LTλ
and [γ̃] is the equivalence class of maps γ̃ : S × [0, 1] → T such that

γ̃(S1 × 0) = γλ0 , γ̃(S1 × 1) = γ,

modulo the equivalence relation identifying any two maps γ̃1, γ̃2 satisfying these bound-
ary conditions whose difference in H2(T,Z) is equal to 0. Then the Floer function (2.15)

lifts to a single-valued function on L̃Tλ (compare with the general construction in Sec-
tion 3.2).

Note that for λ = 0 we may choose as the initial loop γ0
0 any constant map and

then the definition of L̃T0 is the same as discussed above: we consider equivalence
classes of maps from the disc D to T. But for λ 6= 0 there are no maps D → T

which are in the homotopy class λ on the boundary. Instead, points of the covering
are represented by maps from the cylinder S1 × [0, 1] with prescribed image on one
boundary circle. This description enables us to identify each component LTλ with the
product of T, corresponding to the zero mode, and an infinite-dimensional vector space
corresponding to other modes (see formula (4.16) below). For λ = 0, our Floer function

becomes a Bott-Morse function on L̃T0; its critical points are the constant maps D → T

and their translates by the group Z of deck transformations of the covering. But on all
other components this function has no critical points. We are therefore rather in the
situation of a circle R/2πZ, equipped with the multi-valued function x 7→ µx considered
in Section 3.4. More precisely, we have that kind of function along the first factor of
the decomposition T × C∞, and along the second factor we are in the situation of the
target manifold X = C. Therefore the space of states also decomposes into the tensor
product of the space corresponding to the zero mode, which exhibits the same kind
of spectrum as in Section 3.4, and the space of delta-forms, or, more concretely, the
tensor product of Fock representations of the chiral and anti-chiral βγ-bc systems (see
Section 4.1), without the zero modes.
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Let us describe this space of states more explicitly. First of all, the states supported
on different components of LT are distinguished by different winding numbers, as in
the case of the sigma model at the finite radius. Therefore we obtain a decomposition
of the space of states6 H into sectors corresponding to different winding numbers

(4.15) H =
⊕

m,n∈Z

Hm,n.

To describe the sectors Hm,n, we expand a general smooth map from the circle with
coordinate σ, where σ ∼ σ + 2π, to T in Fourier series

(4.16) X(σ) = ωσ +X0 +
∑

n 6=0

Xne
−inσ,

where ω is the winding operator, which takes values in the lattice Z + ZT . It acts on
Hm,n by multiplication by m + nT . The zero mode X0 is a periodic variable taking
values in T = C/2π(Z + ZT ), and the remaining modes take arbitrary complex values.

The space Hm,n is generated by a vector |m,n〉, which is annihilated byXk, ψk, k > 0,
pk, πk, k ≥ 0, and their complex conjugates. Thus, we have

(4.17) Hm,n = Ω(X0,X0, ψ0, ψ0)⊗C[Xk, pk,Xk, pk]k<0 ⊗Λ[ψk, πk, ψk, πk]k<0 · |m,n〉,
where Ω(X0,X0, ψ0, ψ0) is the space of differential forms on T realized in terms of the
zero modes X0,X0, ψ0, ψ0. It is spanned by the monomials

(4.18) eir(X0T−X0T )/(T−T )+is(X0−X0)/(T−T )ψp0ψ
p
0, r, s ∈ Z, p, p = 0, 1.

Let us discuss the state–operator correspondence. The fields Ψm,n(z, z) correspond-
ing to the winding states |m,n〉 are versions of the holomortex operators7 introduced in
[25] in the case of the target manifold X = C×. These are analogues of the well-known
vortex operators responsible for the winding in the sigma model at finite radius. They
satisfy the OPE

X(z)Ψm,n(w,w) = (m+ nT ) log(z − w)Ψm,n(w,w) + . . . ,

X(z)Ψm,n(w,w) = (m+ nT ) log(z − w)Ψm,n(w,w) + . . .

Using this OPE, we find the fields Ψm,n(z, z) explicitly:

(4.19) Ψm,n(z, z) = ei
R z((m+nT )P+(m+nT )P),

where

e
R z(αP+βP ) := exp

(
α

∫ z

z0

p(w)dw + β

∫ z

z0

p(w)dw

)
.

This formula a priori depends on the choice of the point z0 and the contour of inte-
gration. However, under a correlation function this ambiguity disappears because of
the “charge conservation” condition: the total winding should be equal to zero. If this
condition is satisfied, then we can pair the integrals in the exponent to obtain a linear
combination of integrals between the points of insertion of these holomortex operators

6Here, as before, we discuss the space of “in” states; the structure of the space of “out” states is
similar.

7This terminology is a shorthand for “holomorphic vortex”.
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(see [25], Section 2.2, for more details). A more precise algebraic construction of these
fields as operators acting on H is obtained in the same way as in [25], Section 5.1.

To obtain the fields corresponding to other states in H, we use the description of H

given in formulas (4.17) and (4.18). This description gives us a natural basis of mono-

mials. We then replace the variables Xk and Xk by 1
(−k)!∂

−k
z X(z) and 1

(−k)!∂
−k
z X(z),

respectively, pk and pk by 1
(−k−1)!∂

−k−1
z p(z) and 1

(−k−1)!∂
−k−1
z p(z), respectively, and

similarly for the fermionic variables. The normally ordered product of these fields is
the field associated to a given monomial in the space of states.

4.7. The case of P1. Now we consider the supersymmetric sigma model with the
target manifold P1 = CP1. We can describe this model (in the infinite radius limit)
explicitly in the case of a special B-field; namely,

(4.20)
1

2
τ(δ

(2)
0 + δ(2)∞ ),

where δ
(2)
0 and δ

(2)
∞ are the delta-like two-forms on P1 supported at two fixed points,

0 and ∞, and τ is a complex parameter. We choose the overall factor 1
2 so that the

integral of the B-field is equal to τ . More generally, we could take τ1δ
(2)
0 + τ2δ

(2)
∞ , where

τ1 + τ2 = τ .
The states of our model have a path integral interpretation where we integrate over

maps from the two-dimensional disc D of radius 1 to P1. More precisely, the states are
represented by the path integrals of this form

(4.21) Φ(γ) =

∫

Φ:D→P1,Φ|
S1=γ

O1(z1) . . .On(zn)e
−S ,

where O1, . . . ,On are some observables, and z1, . . . , zn are their positions on D. As
we have stressed before, in the infinite radius limit the path integral localizes on the
holomorphic maps D → P1. Such a map may be described as a meromorphic function
on D. Let w+

1 , . . . , w
+
m be the zeros of this map and w−

1 , . . . , w
−
n the poles. Each zero

and pole give us a factor of q1/2 = eτ/2 in our path integral from the B-field (4.20).
Therefore we obtain that the result may be written as the following state of the

theory with the target C× = P1\{0,∞}:

(4.22)
∑

m,n

qm/2

m!

qn/2

n!

∫
Ψ+(w+

1 ) . . .Ψ+(w+
m)d2w+

1 . . . d
2w+

m

·
∫

Ψ−(w−
1 ) . . .Ψ−(w−

n )d2w−
1 . . . d

2w−
n · |A〉,

where |A〉 is a state in the theory on C× and Ψ+(w),Ψ−(w) are vertex operators in
this theory corresponding to the insertion of zeros and poles.

Summing up (4.22), we obtain

exp

(
q1/2

∫ (
Ψ+(w) + Ψ−(w)

)
d2w

)
· |A〉.
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This is a state in the theory with the target manifold C× which is deformed by the
operators q1/2Ψ+(w) and q1/2Ψ−(w). Thus, we obtain a free field realization of the
two-dimensional sigma model with the target manifold P1 and with the B-field (4.20),
as a deformation of the free field theory with the target C× by these operators. This
realization was found in [25]. Now we see that this deformation naturally arises in the
framework of the general formalism developed in the present paper.

The vertex operators Ψ±(w) have been determined explicitly in [25], Section 3.1:
these are the holomortex operators

(4.23) Ψ±(z) = e±i
R z(p(w)dw+p(w)dw)π(z)π(z),

where p(z), p(z) are the bosonic momenta variables corresponding to the realization of
C× as C/2πiZ, and π(z) and π(z) are the corresponding fermionic variables (a different
sign in the exponential, as compared with [25], is due to the fact that the action we
use here, and hence the corresponding OPE, differ by a sign from those used in [25]).
Using these formulas, we can express correlation functions of the sigma model with
the target P1 as multiple integrals of correlation functions of the free theory on C×.
Some examples of such integrals may be found in [25], and more examples are presented
below in Section 6.7.

Since the sigma model on P1 may be realized as a deformation of a free conformal
field theory by strictly marginal operators, we obtain that the Hamiltonian and the
supercharges in the theory on P1 may be obtained from those of the free theory by
some deformation. This deformation turns out to be “nilpotent”, in the sense that the
diagonalizable Hamiltonian of the free theory is deformed by an upper triangular matrix
giving rise to Jordan blocks. In quantum mechanics this mechanism was discussed in
detail in Part I. In the case of the sigma model on P1 in the background of a non-
trivial C×-gauge field an analogous derivation of the Hamiltonian will be given below
in Section 7.5.

These results may be generalized from P1 to other toric varieties, along the lines of
[25].

5. Correlation functions

From the Lagrangian point of view, the correlation functions are represented by the
path integral

〈O1(p1) . . .On(pn)〉 =

∫

Φ:Σ→X

O1(p1) . . .On(pn)e
−S ,

where S is the action (2.7). As discussed above (see Part I, Sections 2.4–2.6, for
the quantum mechanical version), this path integral localizes on holomorphic maps

Φ : Σ → X, and we obtain a sum over the topological types of such maps, which
correspond to the homology class of the image of Σ under Φ in H2(X,Z),

(5.1)
∑

β∈H2(X,Z)

e−
R

β
τ

∫

MΣ(X,β)

O1(p1) . . .On(pn)

(of course, only positive elements of H2(X,Z) with respect to the Kähler form will
give rise to non-trivial contributions). Here MΣ(X,β) denotes the moduli space of



INSTANTONS BEYOND TOPOLOGICAL THEORY II 45

holomorphic maps Φ from the parametrized Riemann surface Σ to X of degree β, i.e.,
such that [Φ(Σ)] = β. In what follows we will often assume that there are sufficiently
many marked points p1, . . . , pn on Σ, so that the marked curve has no continuous
automorphisms (this means that n ≥ 3 if Σ has genus 0 and n ≥ 1 if Σ has genus 1).
In this case we can interpret MΣ,(pi)(X,β) as the fiber of the map πg,n discussed below,
which will imply that the integral converges.

It is customary to choose a basis β1, . . . , βN of H2(X,Z). Then this sum becomes a

power series in qi = e
−

R

βi
τ
, i = 1, . . . , N .

In this section we consider these correlation functions in more details and compute
some explicit examples.

5.1. Gromov–Witten invariants. In the case when Oi, i = 1, . . . , n are evaluation
observables corresponding to closed smooth differential forms ωi, i = 1, . . . , n, on X,
these integrals are special cases of the Gromov–Witten invariants. More precisely, for
each point pi ∈ Σ, i = 1, . . . , n, we have the evaluation map

(5.2) evpi : MΣ(X,β) → X.

Now, for a given collection of differential forms ω1, . . . , ωn on X, the β-term in the sum
(5.1) is given by the integral

(5.3)

∫

MΣ(X,β)

ev∗
p1(ω1) ∧ . . . ∧ ev∗pn

(ωn).

Then, even though the moduli space MΣ(X,β) is not compact, the integral (5.3) is
convergent for smooth differential forms ωi on X, which is assumed to be compact.
This follows from the fact that the evaluation maps extend to the Kontsevich compact-
ification (the moduli space of stable maps), as we discuss below.

More general Gromov–Witten invariants are constructed as follows. Suppose that
(Σ, (pi)) does not admit any continuous automorphisms. Let Mg,n(X,β) be the moduli
space (more precisely, Deligne–Mumford stack) of the data (Σ, (pi),Φ), where Σ is a
genus g Riemann surface, p1, . . . , pn are distinct marked points on Σ, and Φ : Σ → X
is a holomorphic map. Then we have a projection πg,n : Mg,n(X,β) → Mg,n, where
Mg,n is the moduli space (or Deligne–Mumford stack) of genus g curves with n marked
points. MΣ(X,β) is nothing but the fiber of πg,n at (Σ, (pi)) ∈ Mg,n. We have the
evaluation maps

(5.4) evi : Mg,n(X,β) → X,

corresponding to evaluation at the ith point pi (so that evpi = evi |Mg,n×pi
). The general

Gromov-Witten invariants are obtained by taking the push-forward

(5.5) πg,n∗(ev
∗
1(ω1) ∧ . . . ∧ ev∗n(ωn)),

which is a differential form on Mg,n. In particular, (5.3) occurs as a special case when
the degree of this differential form is equal to zero, so we obtain a function on Mg,n.
Then its value at (Σ, (pi)) ∈ Mg,n is given by (5.3). More general observables give rise
to differential forms of positive degree on Mg,n.
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The fibers of the map πg,n are non-compact, hence a priori the integrals obtained via
this push-forward are not well-defined. To show that they are, we replace Mg,n(X,β)

by its compactification, the Kontsevich moduli space of stable maps Mg,n(X,β) and

Mg,n by its Deligne-Mumford compactification Mg,n. The map πg,n extends to a map

(5.6) πg,n : Mg,n(X,β) → Mg,n.

which is already proper (has compact fibers). The evaluation maps evi also extend to
Mg,n(X,β). Then the Gromov–Witten invariants may be defined by formula (5.5) with
πg,n replaced by πg,n. Since πg,n is proper, we see that these invariants are well-defined.
Hence the original integrals (5.1) are also well-defined (for smooth differential forms
ωi).

These are the correlation functions of what is often referred to as the “sigma model
coupled to gravity”, with the observables being the “cohomological descendants” of the
evaluation observables.

5.2. BPS vs. non-BPS. Among the observables, an important role is played by the
topological, or BPS observables. These are the observables annihilated by the total
supercharge Q + Q of the model. The supercharges Q and Q locally act on fields by the
formulas

Q · O(w,w) =

[∫
ipa(z)ψ

a(z)dz,O(w,w)

]
,

Q · O(w,w) =

[∫
ipa(z)ψ

a(z)dz,O(w,w)

]
.

In particular, the supercharge acts on evaluation observables Oω corresponding to the
differential forms ω as the de Rham differential d:

(Q + Q) · Oω = Odω.

Therefore the BPS evaluation observables correspond to the closed differential forms
on X.

In the above definition of the Gromov–Witten invariants we considered the BPS
observables corresponding to closed differential forms ωi, i = 1, . . . , n. However, any

differential form ω on X gives rise to a legitimate observable in our theory, and the
correlation functions of such observables are still given by the same integrals (5.3). The
difference is, of course, that unlike the correlation functions of the BPS observables, the
correlation functions of more general observables depend of τ , so this answer is correct
only at τ = −i∞.

Our goal in this paper is to go beyond the topological sector of the sigma model and
consider the correlation functions of non-BPS observables. The reasons for doing this
have already been explained in Part I and in the Introduction to this Part. Here we
want to stress that if we only consider the BPS observables, we will not be able to gain
any insights into the structure of the space of states of our theory beyond the ground
states.
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Indeed, from the Hamiltonian perspective, when Σ is the cylinder S × R, the corre-
lation function is given by the formula

(5.7) 〈O1(p1) . . .On(pn)〉 = 〈0|One(tn−1−tn)H . . . e(t1−t2)HO1|0〉,
Here ti denotes the time coordinate of the point pi (along the R factor of Σ), so that
|zi| = eti , and we assume that t1 < t2 < . . . < tn. Thus, in principle, we could
derive information about the spectrum of the Hamiltonian and its diagonalizability by
analyzing the correlation functions. For example, the appearance of terms of the form
(ti− ti+1)e

N(ti−ti+1) (which we will observe below), but not (ti− ti+1)
meN(ti−ti+1),m >

1, means that the Hamiltonian H has a Jordan block of size 2 with the generalized
eigenvalue N .

However, BPS observable are not suitable for this purpose. Indeed, since the vacuum
state is annihilated by Q, any correlation function of BPS observables (which commute
with Q) is automatically equal to 0 as soon as one of the observables is Q-exact, that is,
equal to the commutator of another observable and Q. This means that the correlation
functions of BPS observables only depend on their Q-cohomology classes. One can
modify any BPS observable by Q-exact terms so as to make it commute with Q and
Q∗, where [Q,Q∗]+ = H. Such a representative transforms a vacuum state, which is
annihilated by Q,Q∗ to a state, which is again annihilated by Q and Q∗, and hence by
their anti-commutator H. Therefore no excited states on which H acts non-trivially,
can arise in formula (5.7). Hence we do not learn anything about the spectrum of the
model. In contrast, non-BPS observables transform ground states to excited states,
and, as we will see below, we can learn a lot about the structure of the space of states
from their correlation functions.

In addition, considering non-BPS observables allows us to bring into play some im-
portant Q-exact observables, which are “invisible” in the BPS sector.

Examples are the observables corresponding to Lie derivatives with respect to vector
fields on X given by formula (4.14). These observables are Q-exact, as follows from the
Cartan formula Lv = {d, ıv} for the Lie derivative Lv.

This means that if we insert the observable v(z) into a correlation function of BPS
observables, then the result will always be zero. But these observables, and more
general observables of this type corresponding to differential operators on X, play a very
important role in the full theory. Indeed, on a Kähler manifold we often have a large
Lie algebra of global holomorphic vector fields, and the corresponding Lie derivatives
will belong to the chiral algebra of our theory (see Section 4.5 below). Hence they give
rise to non-trivial Ward identities which impose relations between correlation functions
in our model. But in order to obtain non-trivial correlation functions involving these
operators we must include non-BPS observables.

Let us summarize: the correlation functions of the supersymmetric sigma model
in the infinite radius limit are expressed in terms of integrals over finite-dimensional
moduli spaces of holomorphic maps. Our goal is to use them to obtain information
about the space of states of the theory and the action of the Hamiltonian. We are
particularly interested in the appearance of logarithms in the correlation functions
(when they are written in terms of coordinates zi on the worldsheet P1), which indicate
that the Hamiltonian is not diagonalizable.
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However, the correlation functions of the BPS observables which have been almost
exclusively studied in the literature up to now (and which correspond to the Gromov-
Witten invariants) do not contain logarithms. In order to observe the appearance of
logarithms, we must consider non-BPS observables. We note that the Hamiltonian is
also diagonalizable on all purely chiral (and anti-chiral) states; thus, the chiral algebra
of the theory, which we will discuss in more detail in Section 4.5 below, is free of
logarithms.

5.3. A simple example of non-BPS correlation function. As our first example,
we consider the target manifold X = CP1 and the worldsheet Σ = P1. Then the
instantons are holomorphic maps from the parametrized P1 to P1. The moduli spaces
are labeled by non-negative integers in this case corresponding to the degree of such
a map. The moduli space of degree d instantons Md = MP1(P1, 1) (in the notation of
Section 5.1) has complex dimension 2d+1. We consider the case when d = 1. Then the
corresponding moduli space M1 is isomorphic to PGL2(C). Consider the correlator of
the following evaluation observables:

(5.8) 〈Oω0(0)Oω∞(∞)OωFS
(1)Oh(z, z)〉d=1,

where

ω0 = δ(2)(x)d2x , ω∞ = δ(2)
(

1

x

)
d2x

|x|4 , ωFS =
d2x

(1 + |x|2)2 ,

(5.9) h =
1

1 + |x|2 .

The two-forms are closed, and hence correspond to BPS observables, but the function
h is not. Its inclusion allows us to observe the logarithmic effects.

The delta-function two-forms ω0, ω∞, supported at x = 0 and x = ∞, respectively,
reduce the integration over M1 to that over the locus consisting of the holomorphic
maps of the form

(5.10) x(w) = Aw.

Thus, (5.8) is equal to:

(5.11) q

∫
d2A

(1 + |A|2)2
1

1 + zz|A|2 ∝ −q
(

1

1 − zz
+
zz log(zz)

(1 − zz)2

)

(see Part I for details on the computation of integrals of this type) where q = e−τ is
the instanton factor. The z, z-dependence in (5.11) implies the logarithmic nature of
the two-dimensional conformal theory, in the same way as in the case of the quantum
mechanical models analyzed in Part I. We recall that from the Hamiltonian point of
view the correlation function is represented as the matrix element of the form (5.7).
Therefore the monomials (zz)n correspond to eigenstates of the Hamiltonian with the
eigenvalue n, whereas the terms log(zz) · (zz)n correspond to a Jordan block of size 2
with the generalized eigenvalue n. Therefore, expanding the right hand side of (5.11)
in powers of zz (here we assume that |z| < 1), we find that the spectrum of the
Hamiltonian contains all non-negative integers as well as Jordan blocks of size two with
the generalized eigenvalues equal to all positive integers.
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When we move away from the point τ = −i∞ (back to finite radius), anti-instantons
start making contributions. As the result, the Jordan blocks deform to matrices with
small non-zero entries below the diagonal, and the Hamiltonian becomes diagonalizable.

5.4. Spectrum from the genus one correlation functions. Next, we discuss the
genus one correlation functions in the sigma model with the target P1. We want to
use them to probe the spectrum of our theory, the way we probed the spectrum in the
analogous quantum mechanical models in Part I (using factorization over intermediate
states). Again, in order to detect the spectrum on the excited states, we need to throw
in some non-BPS observables.

The simplest correlation function of this type is that of the evaluation observables
with the periodic boundary conditions on the fermions. We keep the target space
X = P1, and the worldsheet Σ is the elliptic curve, with the modular parameter q =
exp(2πiτ). Let z denote the linear coordinate on Σ, so that

z ∼ z +m+ nτ, m, n ∈ Z.

Let Oω denote the evaluation observable corresponding to a differential form ω on the
target P1.

Let ω = ω(X,X)dXdX ∈ Ω2(P1), f ∈ C∞(P1). We start with the five-point function
〈

Oω0(z1)Oω∞(z2)Oω∞(z3)Oω(z4)Of (z5)

〉

q

=

(5.12)

∫

P1

ω

(
A
ϑ11(z4 − z1)ϑ(z4 − z0)

ϑ11(z4 − z2)ϑ(z4 − z3)
, Ā
ϑ11(z4 − z1)ϑ(z4 − z0)

ϑ11(z4 − z2)ϑ(z4 − z3)

)

×
∣∣∣∣
ϑ11(z4 − z1)ϑ(z4 − z0)

ϑ11(z4 − z2)ϑ(z4 − z3)

∣∣∣∣
2

d2A · f
(
A
ϑ11(z5 − z1)ϑ(z5 − z0)

ϑ11(z5 − z2)ϑ(z5 − z3)

)
,

where we chose for simplicity some of the observables to correspond to the delta-forms
supported at 0,∞ ∈ X, as indicated by the subscripts in (5.12) (compare with formula
(5.11)). These delta-forms force the holomorphic maps from Σ to X to be of the special
form:

X(z) = A
ϑ11(z − z1)ϑ(z − z0)

ϑ11(z − z2)ϑ(z − z3)
,

where A ∈ P1 is the remaining modulus, and z0 = z2 + z3 − z1. To illustrate our point
about the logarithmic nature of the sigma model Hamiltonian we take the further
simplifying limit, where z2, z3 → 0. Let us also take for ω the usual Fubini-Study form.
In this case the integral (5.12) simplifies to

∫

P1

d2x

(1 + |x|2|qeff |2)2
f(x)

where

qeff =
℘(z4) − ℘(z1)

℘(z5) − ℘(z1)
,
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where

x = A(℘(z5) − ℘(z1))

and ℘ is the Weierstrass’ function. The result can be now expanded in powers of q,
as qeff has such an expansion, following from the q-expansion of the ℘-function, and
will be of the form (5.11), i.e., with integer powers of q or with log(q) multiplying the
integer powers of q.

On the other hand, the correlation function (5.12) can be written as a trace:

TrH

(
(−1)F qHe−z5Hfe(z5−z4)HOωe

(z4−z1)HOω0e
z1HOω∞Oω∞

)
.

Thus the q-dependence of (5.4) gives us the information about the spectrum of con-
formal dimensions in our theory. It confirms the integrality of the spectrum and the
existence of Jordan blocks in the action of the Hamiltonian in the sigma model with
the target P1.

5.5. Sigma model on the torus: from finite to infinite radius. Consider the
sigma model with the torus T as the target manifold discussed in Section 4.6. An
attractive feature of this model is that the correlation functions may be computed
exactly at both finite and infinite radius, and this can help us learn how the correlation
functions behave in the limit of infinite radius, τ → ∞. After all, eventually we would
like to compute the (non-BPS) correlation functions in the sigma models at the finite
radius using those in the infinite radius limit as the starting point, by some sort of
perturbation theory.

The sigma model on the torus is also useful in that it allows us to see explicitly
how the spectrum of a well-defined unitary theory acquires an imaginary part or an
unbounded branch, in the τ → ∞ limit, as we have argued in Section 3.4 in the context
of quantum mechanics on the non-simply connected target manifolds.

5.5.1. Finite radius Hamiltonian. For the sake of generality consider the sigma model
on the 2d-dimensional torus T2d, with the translation invariant metric Gmn and the
antisymmetric two-form Bmn.

8 In Sections 5.5.1–5.5.4 we will consider the purely
bosonic theory. We will be interested in its partition function, which coincides with the
partition function of the bosonic sector of the supersymmetric sigma model. Then in
Section 5.5.5 we will add fermions.

The bosonic theory has the following action on Σ = S1 × I:

S =
1

4πα′

∫

Σ
Gmn (∂tX

m∂tX
n + ∂σX

m∂σX
n) + iBmn (∂tX

m∂σX
n − ∂σX

m∂tX
n) dσdt

where Xm, m = 1, . . . , 2d, correspond to the linear coordinates on T2d with the period
2π. We assume the worldsheet to have Euclidean metric dt2 + dσ2 , σ ∼ σ+ 2π. Thus
the path integral measure is

DX e−S

8Our notation in this section is slightly different from that of the main body of the paper. In
particular, what we called previously the field B is now B/4πα′. This is done in order to make the
notation consistent with the traditional physics notation; see e.g., [46].
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The momentum conjugate to Xm is then given by

Pm = i
δL

δ∂tXm
=

1

2πα′
(iGmn∂tX

n −Bmn∂σX
n) ,

and the Hamiltonian is

(5.13) H =
1

4πα′

∫

S1

dσ Gmn
(
2πα′Pm +Bmk∂σX

k
)(

2πα′Pn +Bnl∂σX
l
)

+

+Gmn∂σX
m∂σX

n =

∫

S1

πα′GmnPmPn + Jmn Pm∂σX
n +

gmn
4πα′

∂σX
m∂σX

n,

where

Jnm = GknBkm ,

gmn = Gmn +BamBbnG
ab ,

g = (1 − J2)G.

At the level of zero modes, we have

Xm ∼ Xm
0 + wmσ ,

and the Hamiltonian (5.13) reduces to

H0 =
1

4π

(
α′Gmnkmkn + 2Jmn kmw

n +
gmn
α′

wmwn
)
,

where km ∈ Z is the integer eigenvalue of the momentum zero mode,

−i ∂

∂Xm
0

= km ,

while wm ∈ Z is the winding number of the Xm coordinate.
The inclusion of the oscillators, that is, the harmonics Xm

l e
ilσ and Pm,le

−iσl with l ∈
Z 6=0, simply adds non-negative integers to the eigenvalues of the Hamiltonian (modulo
the zero point energies). Indeed, the B-dependence of the Hamiltonian on the Xm

l ,

Pm,l ∼ −i ∂
∂Xm,l

modes can be eliminated by the gauge transformation of the wave-

function

Ψ(X) −→
∏

l 6=0

e
1

4πα′ ilBmnXm
l Xn

−l · Ψ(X),

mapping the Hamiltonian on the non-zero modes to that of a system of harmonic
oscillators

α′GmnPm,lPn,−l +
l2

α′
GmnX

m
l X

n
−l

with the eigenvalues

(5.14) |l|
(
Nl +

1

2

)
, Nl ∈ Z≥0.
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5.5.2. The limit α′ → 0. The infinite radius limit that we are interested in is α′ → 0.9

The non-zero modes are not sensitive to the value of α′, as we see in (5.14). However,
the zero mode Hamiltonian (5.5.1) has a finite limit when α′ → 0 only if

gmn −→
α′→0

0 ⇐⇒ J2 −→
α′→0

1.

For a positive-definite metric Gmn and a real two-form Bmn the condition J2 = 1 is
impossible to fulfill.

However, we know that we should allow complex-valued Bmn for our limit to exist.
In this case J = iJ + α′δJ , where J is a complex structure on R2n. Let us write,

Bmn = i ωmn + α′Tmn,(5.15)

J = G−1ω , J2 = −1.(5.16)

Then we obtain

(5.17) H0 = iJnm

(
knw

m + iTmn′wmwn
′
)
,

with the characteristic imaginary part, exactly like in formula (3.23) for the energy
levels in the quantum mechanical model on the circle.

5.5.3. The partition function. Let us compute the partition function of the bosonic
sector of the supersymmetric sigma model on the torus,10 in the limit α′ → 0,

TrHbos
qL0qL0 .

It factorizes as a product of the zero mode part and the oscillator contribution. We
have:

H = L0 + L0,

and

L0 − L0 = 2

∫

S1

Pm∂σX
m = 2kmw

m + oscillators .

The partition function becomes:

(5.18) Z(q, q) =
1

|η(q)|2d
∑

~k,~w

q
1
2
(1+iJ)~k·~wq

1
2
(1−iJ)~k·~w (qq)iJT(~w,~w)

From the path integral point of view, we expect that the correlation functions may
be written as a sum over holomorphic maps. In the case at hand those are the maps
from the worldsheet torus Eτ = C/(Z + Zτ) to the target torus T2d, endowed with the
complex structure J. A holomorphic map Eτ → T2d exists if and only if there exist
integral vectors ~w∨, ~w ∈ Zd such that

~w∨T − 1

2
(1 + iJ)~w = 0,

~w∨T − 1

2
(1 − iJ)~w = 0.

9This is the limit denoted by τ → −i∞ in the main body of the paper, but in this section and the
next, τ denotes the complex modulus of the worldsheet torus rather than the coupling constant.

10The full supersymmetric partition function is in the topological sector and is equal to q times the
Euler characteristic of T2d, that is, 0.



INSTANTONS BEYOND TOPOLOGICAL THEORY II 53

Hence we should be able to represent our partition function Z(q, q), q = exp2πiτ , as a
sum of delta-functions corresponding to these constraints. We indeed obtain such an
expression using the Poisson resummation formula:

(5.19) Z(q, q) ∼
1

|η(q)|2d
∑

~w∨, ~w∈Zd

δ(2d)
(
~w∨T − 1

2
(1 + iJ)~w, ~w∨T − 1

2
(1 − iJ)~w

)
e−2πImTiJT(~w,~w) .

5.5.4. Comparison with the computation in the infinite radius limit. Let us compare
the limit (5.18) with the trace

TrHbos
qL0qL0 ,

computed directly in the infinite radius limit α′ → 0. Here Hbos is the bosonic part
of the space of states in the infinite radius limit that we have described in Section 4.6.
According to formulas (4.15) and (4.17), Hbos is the tensor product of the oscillator
part and the momentum/winding part. Formula (4.8) for the stress tensor shows that
the oscillators contribute the factor 1/η(q)2. The momentum/winding part is spanned
by the monomials of the form

(5.20) eir(X0T−X0T )/(T−T )+is(X0−X0)/(T−T ) ·ei
R

((m+nT )P+(m+nT )P), r, s,m, n ∈ Z.

(the first factor corresponds to momentum, see formula (4.18), and the second factor
corresponds to winding, see formula (4.19)). Formulas (4.8) and (4.16) show that L0

and L0 act on this state by the formulas

L0 = ip0ω, L0 = ip0ω.

In the simplest case when the B-field is zero, we have p0 = −i ∂
∂X0

, p0 = −i ∂
∂X0

, and so

they act on these states by the formulas

L0 =
(s− rT )(m+ nT )

T − T
, L0 = −(s− rT )(m+ nT )

T − T
.

Therefore we find that

(5.21) TrHbos
qL0qL0 =

1

η(q)2

∑

m,n,r,s∈Z

q(s−rT )(m+nT )/(T−T )q−(s−rT )(m+nT )/(T−T ).

This agrees with formula (5.18) in the case when d = 1 with the zero B-field. Indeed,
in this case the complex structure of the torus is uniquely determined by the metric:
T = T1 + iT2,

(5.22) G11 =
1

T2

√
G , G12 =

T1

T2

√
G , G22 =

|T |2
T2

√
G.

The remaining moduli of the torus are the volume and the B-field, which combine into:

(5.23) U =
1

α′

(
B12 + i

√
G
)
.
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We take a limit α′ → 0 while keeping U fixed. It means that B12 is taken to be complex
and that

(5.24) U = U − 2i

α′

√
G→ ∞.

When U = 0 we obtain formula (5.21). For non-zero U there is an additional factor

(qq)U |m+nT |2/(T−T ) on the right hand side. This corresponds to a shift of the eigenvalues
of L0 and L0 on the states (5.20) that is caused by the following redefinition of p0, p0

for non-zero B-field:

p0 7→ p0 − i
U

T − T
ω, p0 7→ p0 − i

U

T − T
ω.

5.5.5. Fermions. The fermionic contribution is universal, it does not depend on the
choice of the complex structure on T2d. The fermionic part of the action is

Sferm =

∫
(πa∂zψ

a + πa∂zψ
a
)d2z.

The Q-symmetry depends on the choice of the complex structure. In other words, the
sigma model has extended fermionic symmetry on T2d for d > 1. We shall not discuss
this any further.

6. Logarithmic mixing of jet-evaluation observables

The most striking illustration of the logarithmic nature of the two-dimensional sigma
model is the behavior of the correlation functions of the jet-evaluation observables in-
troduced in Section 4.4. In this section we discuss these correlation functions. They are
also given by integrals over the moduli spaces of stable maps, but we will see that in
general they diverge at the boundary divisors corresponding to “bubbles” on the world-
sheet. These integrals require regularization, and the ambiguity of the regularization
scheme introduces a non-trivial mixing of operators.

In other words, we find that each jet-evaluation observable OA introduced in Sec-
tion 4.4 is only well-defined perturbatively. The definition of a true operator of the
sigma model corresponding to it – and its correlation functions – requires regulariza-
tion. Depending on the regularization scheme, we obtain a priori different operators,
which differ from each other by a linear combination of other operators. Those are the
logarithmic partners of OA. Together with OA, the logarithmic partners span a subspace
in the space of operators – or the space of states, via the state–operator correspondence
– on which the Hamiltonian acts as a Jordan block.

This logarithmic mixing is in agreement with the description of the space of states
given in Section 4.1 as an extension of the spaces of delta-forms on the ascending

manifolds in L̃X. It is also analogous to the similar logarithmic phenomena that we
have observed and explored in quantum mechanical models in Part I.

6.1. Jet Gromov–Witten invariants. Recall the jet bundle JX over Σ, whose fiber
JpX over p ∈ Σ consists of jets of holomorphic maps from a disc Dp around the point
p to X. Given a holomorphic map Φ : Σ → X, we obtain a point in JpX; namely, the
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restriction Φ|Dp of Φ to Dp ⊂ Σ. Thus, we obtain the following generalization of the
map evp,

(6.1) J evp : MΣ(X,β) → JX,

Now recall that jet-evaluation observables are sections of the bundle Ω•
vert(JX) of ver-

tical differential forms on JX. Given n such observables ω̂1, . . . , ω̂n, we define their
correlation function as the following integral generalizing (5.3):

(6.2)

∫

MΣ(X,β)
J ev∗

p1(ω̂1) ∧ . . . ∧ J ev∗pn
(ω̂n).

These are the correlation functions of the observables of the sigma model involving
the fields Xa(z), ψa(z) and their complex conjugates and all of their derivatives, but
not the momenta variables pa(z), πa(z) and their complex conjugates and derivatives.11

These integrals are compatible with the integrals (5.3) in the following sense. Recall the
tautological map JX → X ×Σ from Section 4.4. If ω1, . . . , ωn are differential forms on
X and ω̂1, . . . , ω̂n are their pull-backs to JX via the composite map JX → X×Σ → X,
then the integral (6.2) is equal to (5.3). In other words, if the observables depend only
on Xa(z), ψa(z) and their complex conjugates, but not on their derivatives, then we
obtain the same answer as before.

To make this formula more concrete, let us choose local holomorphic coordinates
z1, . . . , zn at the points p1, . . . , pn. Then the fiber of JX at pi may be identified with the
space JX of jets of holomorphic maps from the coordinatized disc D to X. Therefore
we obtain a map

(6.3) Jevpi : MΣ(X,β) → JX,

sending Φ : Σ → X to Φ|Dpi
, written as a power series with respect to the coordinate

zi. Then we may define the corresponding correlation function by the same formula as
(6.2), but with J evpi replaced by Jevpi for all i = 1, . . . , n.

As in the case of the ordinary Gromov–Witten invariants, there is a problem in the
definition of these integrals as the moduli spaces MΣ(X,β) are non-compact. In the
case of the Gromov–Witten invariants this problem is cured by using their Kontsevich
compactification. The boundary strata of this compactification are not maps from Σ
to X, but maps to X from stable singular curves which are obtained by attaching to Σ
additional components of genus 0 (“bubbles”) with fewer than three marked points, so
that they are collapsed under the map to the moduli space of stable pointed curves (see
Figure 3). One can easily extend the evaluation maps evpi to this compactification.
But can we extend the jet-evaluation maps Jevpi?

11For a discussion of the correlation functions of the observables involving the momenta variables,
see [27], Section 5.
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Figure 3. Stable curves obtained by attaching “bubbles” to the original

curve.

6.2. A genus zero example. Let us consider the simplest example, the moduli space
MP1(P1, 1) of degree one maps from a genus 0 curve Σ = P1 with 3 marked points 0, 1,∞
to P1. In this case we have MP1(P1, 1) = M0,3(P

1, 1), in the notation of Section 5.1.
This moduli space is isomorphic to the group PGL2 of Möbius transformations on P1:

(6.4) Φ : z 7→ αz + β

γz + δ
.

We have an injective map

MP1(P1, 1) → P1 × P1 × P1

corresponding to evaluating Φ at the three points 0, 1,∞, whose image is the comple-
ment of the diagonals. Let X1,X2,X3 be the three P1-valued functions on the moduli
space MP1(P1, 1), which are just the three evaluation maps. The Kontsevich compact-
ification (the moduli space of stable maps)

MP1(P1, 1) = M0,3(P
1, 1)

is just the the blow-up of (P1)3 along the principal diagonal X1 = X2 = X3.
In terms of the Möbius coordinates (6.4) on MP1(P1, 1) ≃ PGL2, we have

X1 =
β

δ
, X2 =

α+ β

γ + δ
, X3 =

α

γ
.

These maps extend, tautologically, to the compactification. In addition to these evalu-
ation maps evpi = Xi on MP1(P1, 1), we have their jet analogues Jevpi , which pick out
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not just the values, but also all the derivatives of Φ at 0, 1,∞ with respect to the local
coordinates z, z − 1, z−1. We have:

Φ(z) =X1 +X31
zX12/X23

1 + zX12/X23
(6.5)

= X3 +X13
z−1X23/X12

1 + z−1X23/X12
(6.6)

Therefore the first derivative of Φ at z = ∞ (with respect to z−1) is equal to

(6.7) −z2dΦ

dz

∣∣∣∣
z=∞

=
αδ − βγ

γ2
=

(X1 −X3)(X2 −X3)

X1 −X2
.

Thus, we see that this is a well-defined function on MP1(P1, 1), but it cannot be extended
to the divisor in the Kontsevich compactification M0,3(P

1, 1) where X1 = X2! This
divisor consists of stable maps to P1 from an unstable curve that is a union of two
genus zero curves, one containing the points labeled 0, 1, and the other containing one
point ∞ (see Figure 4). Thus, the second component has two marked points (∞ and
the connecting points between the two components), and therefore is unstable as a
curve. As such, it has a continuous group of automorphisms, namely C×. Because of
this, the tangent space at the marked point ∞ is not well-defined as a vector space;
only its quotient by C× is well-defined. Therefore the derivative of Φ at this point is
not well-defined either, leading to the divergence in formula (6.7).

Figure 4. Degeneration of P1 with three points.

Likewise, we find that the first derivative of Φ at z = 0 (with respect to z) is equal
to

(X2 −X1)(X3 −X1)

X3 −X2
,

and at z = 1 (also with respect to z) it is

(X3 −X2)(X1 −X2)

X3 −X1
.
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Thus, we observe the same kind of divergence of the derivative of Φ at a given point
on the worldsheet P1 in the limit when the other two points are coming together.
(Note that, on the contrary, the derivative becomes zero when our point of evaluation
itself comes close to another point. In this case the two appear together on a stable
component, on which the map Φ becomes constant, and hence has zero derivative.)

Thus, we encounter an important geometric phenomenon, which, as we will see in
Sections 6.4 and 6.7, is responsible for the appearance of the logarithmic partners of
operators of the sigma model and for the logarithmic terms in the OPE of jet-evaluation
observables of the sigma model. The logarithmic nature of the sigma models in the
infinite radius limit may therefore be traced to the fact that the jet evaluation map
cannot be extended to the Kontsevich moduli space of stable maps.

6.2.1. Higher derivatives. For future use let us record here the expression for higher
derivatives DλX = DλΦ at z = 0 (we use the notation of Section 4.4)

(6.8) DλX = (X3 −X1)
ℓ(λ)

(
X1 −X2

X2 −X3

)|λ|

6.3. Generalization to higher genus. To understand better what is going on here,
it is instructive to consider the more general setting of Gromov–Witten invariants
described in Section 5.1, in which we are allowed to vary the pointed curve (Σ, (pi)).
Thus, we have the moduli space Mg,n(X,β) of triples (Σ, (pi),Φ) and a morphism

πg,n : Mg,n(X,β) → Mg,n,

as in Section 5.1. Now we define the moduli space Jg,n(X). This is a (non-trivial)
bundle over Mg,n, whose fiber over (Σ, (pi)) is Jp1X × . . . × JpnX (recall that JpiX is
the space of jets of holomorphic maps Dpi → X, where Dpi is a small disc around pi).
We have the jet analogues of the maps (5.4),

(6.9) J evi : Mg,n(X,β) → Jg,n(X),

sending

(Σ, (pi),Φ) 7→
(
Σ, (pi),

(
Φ|Dpi

))
.

Using these maps, we define the jet Gromov–Witten invariants (which may be viewed
as the correlation functions of the jet-evaluation observables of the sigma model with
the target X coupled to gravity) by the formula

(6.10) πg,n∗(J ev∗
1(ω̂1) ∧ . . . ∧ J ev∗n(ω̂n)),

of which (6.2) is a special case (when the degree of the resulting differential form on
Mg,n is equal to zero). Here ω̂i are vertical differential forms on Jg,n(X), with respect
to the map Jg,n(X) → Mg,n (as defined in Section 4.4).

But here we again face the problem that the fibers of the map πg,n are not compact.
To cure this problem, it is natural to use the Kontsevich moduli space of stable maps
Mg,n(X,β), as in Section 5.1. We also have the Deligne–Mumford moduli space Mg,n

of stable pointed curves (Σ, (pi)) of genus g with n marked points, which is a compact-
ification of Mg,n. The map πg,n extends to a map (5.6) which has compact fibers. We
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then try to define the regularized integrals by the formula

(6.11) πg,n∗(J ev∗
1(ω̂1) ∧ . . . ∧ J ev∗

n(ω̂n)).

However, to make sense of this formula, we need to extend the maps J evi to the
compactification Mg,n(X,β).

It is natural to try to extend Jg,n(X), which is a bundle over Mg,n, to a bundle

Jg,n(X) over the Deligne–Mumford compactification Mg,n, and then extend the maps
J evi.

In Mg,n the marked points p1, . . . , pn are always smooth, and therefore the jet space
JpiX makes sense even if Σ becomes a stable singular curve. Hence the bundle Jg,n(X)

over Mg,n extends to a bundle over Mg,n, which we denote by Jg,n(X). Its fiber over a
stable pointed curve (Σ, (pi)) is Jp1X×. . .×JpnX is again (Σ, (pi)) is Jp1X×. . .×JpnX.
We now wish to extend the maps (6.9) to maps

(6.12) J evi : Mg,n(X,β) → Jg,n(X).

However, here we encounter a problem. Namely, the points (Σ, (pi),Φ) in Mg,n(X,β)

may well correspond to unstable pointed curves (Σ, (pi)). An example is a curve Σ̃
which has two components, Σ0 and Σ′, where Σ0 is a genus zero component containing
exactly one marked point pi. We denote by p̃i the point of intersection of the two
components (see Figure 5). In fact, curves of this type constitute one of the boundary
divisors in Mg,n(X,β).

Figure 5. Stable curves corresponding to one of the divisors in Mg,n(X,β).

The restriction of Φ to Σ0 should have a non-zero degree β0; then the restriction
of Φ to Σ′ has degree β′ = β − β0. Now, the component Σ0 is unstable, and there-

fore it is collapsed under the map πg,n. In other words, the image of (Σ̃, (pi),Φ) is
(Σ′, (p1, . . . , p̃i, . . . , pn), with the point p̃i ∈ Σ′ replacing pi.

Recall first the situation with the ordinary evaluation maps evi. They take values

in X, and hence they extend easily to Mg,n(X,β): in the case of a singular curve Σ̃



60 E. FRENKEL, A. LOSEV, AND N. NEKRASOV

described above we just evaluate Φ at pi ∈ Σ0. We do not care that pi “disappears”
under the map πg,n and is replaced by p̃i (where the value of the map Φ would certainly
be different in general), because we do not use the Deligne-Mumford moduli space
Mg,n(X,β) in the definition of evi (only in the definition of the integrals (6.11)). Since

the evaluation maps extend to Mg,n(X,β) and the morphism πg,n is proper, we see that
the corresponding push-forward

πg,n∗(ev
∗
1(ω1) ∧ . . . ∧ ev∗n(ωn))

to Mg,n is well-defined. Hence the integrals (6.2) are also well-defined.
The situation is different for the jet-evaluation maps. They take values not in X,

but in a jet bundle Jg,n(X) over Mg,n. Note that we have a forgetful map t : Jg,n(X) →
Xn × Mg,n, which truncates the jets of maps Dpi → X to their values at pi, and
evi = pr1 ◦ti ◦ J evi; this factorization is the reason why the dependence on Mg,n

disappears when we consider the ordinary evaluation maps. The jet bundle Jg,n(X)
may be trivialized locally over Mg,n if we choose a family of local coordinates at the
points pi on Σ. Indeed, by definition, the value of the map J evi on (Σ, (pi),Φ) for
a smooth Σ is the jet of the restriction of Φ to the disc Dpi . Once we pick a local
coordinate at pi, we may view it as a point of JX = {D → X}. Hence we may pull
back differential forms on JX to Mg,n.

Now, when Σ degenerates to a singular curve described above, we would like to con-
sider the restriction of Φ to the disc Dpi , where the point pi is now on the unstable bub-
ble Σ0. In order to be able to view it as a point of JX, we need to choose a coordinate
at pi. But the image of (Σ0 ∪ Σ′, (pi),Φ) in Mg,n under πg,n is (Σ′, (p1, . . . , p̃i, . . . , pn).
It does not know anything about pi! The point pi has disappeared under the map πg,n
and instead we now have the point p̃i on the other component Σ′. A local coordinate
at pi has nothing to do with a local coordinate at p̃i, and in any case the jet of Φ at pi
is completely independent of the jet at p̃i, viewed as a point of Σ′.

Thus, we see that we cannot extend the map J evi to a map (6.12). Of course, we

could try to use instead of Mg,n another moduli space (or stack), M̃g,n, in which the

component Σ0 and the point pi are included. For instance, we could take as M̃g,n the
moduli stack of prestable curves. Then unstable bubbles such as Σ0, with two marked
points, would be allowed. The problem is that this unstable component Σ0 has the
group of automorphisms C×. This group naturally acts on the corresponding space
JpiX of jets of maps Dpi → X, and as the result we are only able to identify JpiX with
JX up to this action. In other words, the restriction of Φ to Dpi only gives us a well-
defined element JX modulo the action of C×. Thus, the only observables that make
sense in this case are the differential forms that are invariant under this C×-action.
These are just the evaluation observables. They may be pulled back to Mg,n(X,β)
and we obtain the usual Gromov–Witten invariants. But the pull-back of more general
differential forms to Mg,n(X,β) is not well-defined.

This indicates that the differential forms J ev∗
i (ω̂i) on Mg,n(X,β) (which are well-

defined before the compactification) may have singularities when we try to extend
them to the boundary divisors in Mg,n(X,β). This is indeed the case for g = 0, n = 3,
as we have seen above. In general, the result will be similar. Thus, we see that these
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differential forms have poles along the boundary divisors in Mg,n(X,β). (Their residues

could potentially have poles on the codimension two boundary strata in Mg,n(X,β),
and so on.)

Let us summarize: in order to define the correlation functions of jet-evaluation ob-
servables, we need to regularize integrals of the form (6.11). However, the standard
prescription, which works well for the ordinary evaluation observables, cannot be ap-
plied. The reason is that the jet-evaluation maps J evi, well-defined in Mg,n(X,β) do

not extend to the moduli space Mg,n(X,β) of stable maps. Therefore we obtain in-

tegrals of differential forms on Mg,n(X,β) with poles on the compactification divisor.
To compute the correlation functions, we need to regularize these integrals. This is
directly related to the fact that the naive definition of the operators corresponding to
the jet-evaluation observables (in terms of the βγ-bc-fields) requires regularization, a
phenomenon familiar to us from the study of quantum mechanical models in Part I.
This regularization is not unique and leads to a mixing of operators (and states, via
the state–operator correspondence) with their logarithmic partners.

In other words, to obtain a true operator of the non-perturbative sigma model, we
need to take a jet-evaluation observable in its perturbative definition together with a
consistent set of regularization rules for all of its correlation functions. Changing the
regularization rules will mean adding to this operator its logarithmic partners.

Thus, divergence of the integrals expressing the correlation functions of the jet-
evaluation observables and potential ambiguity of their regularization are important
manifestations of the logarithmic nature of the sigma models in the infinite radius
limit. In Sections 6.4–6.7 we will present explicit examples of this regularization, which
indicate the existence of a rich and interesting structure underlying the correlation
functions of the jet-evaluation observables in the two-dimensional sigma model.

6.4. Regularization of correlation functions. The discussion of the previous two
sections implies that the naive three-point correlation functions of jet-evaluation ob-
servables on P1 diverge and require regularization. In this section we explain how to
implement this regularization and what it means for the operators of the sigma model.

Consider, for example, the correlation function of the evaluation observables ω1ψψ,
ω2ψψ, placed at the points 0, 1, and the jet-evaluation observable ω3ψψ∂X∂X placed
at ∞. Using formula (6.7), we obtain that the corresponding correlation function is
given by the integral

(6.13) q

∫

P1×P1×P1

3∏

α=1

ωα(Xα,Xα)d
2X1 ∧ d2X2 ∧ d2X3 ·

|X1 −X3|2|X2 −X3|2
|X1 −X2|2

(it corresponds to the instanton number 1, for dimensional reasons, hence the overall
factor q). This integral diverges when when X1 → X2. Writing

X2 = X + ξ/2, X1 = X − ξ/2,
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we obtain that the divergent part may be approximated by the integral

(6.14) q

∫

P1×P1×U

ω1(X,X)ω2(X,X)ω3(Y, Y )d2X ∧ d2Y |X − Y |4 d2ξ

|ξ|2 ,

where U is a small neighborhood of 0 in the ξ-plane. This integral has logarithmic
divergence in ξ.

We will now explain why this divergence is not really surprising. In fact, we have
observed and studied similar divergences in analogous quantum mechanical models
in Part I. In those models it was the definition of the distributions corresponding to
the states that required regularization. For instance, in the supersymmetric quantum

mechanical model on P1 we have states of the form XnX
n
, n ≥ 0, n ≥ 0, where X

is a coordinate on P1. The matrix element of an evaluation observable ω(X,X)d2X,
which is a differential form on P1, between this state and the co-vacuum is given by
the integral

(6.15)

∫
ω(X,X)XnX

n
d2X.

These integrals diverge in general, and we regularize them by the corresponding partie

finie (also known as the Epstein–Glaser regularization [17]). It is obtained by integrat-
ing over the domain |X| < ǫ−1, viewing the integral as a function in ǫ and picking
the constant term in this function. This regularization is best interpreted as a way to

extend the tempered distribution corresponding to XnX
n

to an ordinary distribution
on P1.

However, the resulting distribution is not canonical. Indeed, our prescription involved
the choice of a coordinate on P1. But such a coordinate is only unique up to a scalar.
So we could choose, say, 2ǫ as a small parameter, instead of ǫ. Then the answer will
change, because of the presence of logarithmic dependence in ǫ in the integral over the
domain |X| < ǫ−1. We will therefore pick up an extra term, which is a multiple of the

derivative of the delta-function at ∞, ∂n−1
X ∂n−1

X
δ
(2)
∞ . This is the logarithmic partner of

the state XnX
n
.

In other words, the distribution corresponding to XnX
n

is only well-defined up to

an addition of a multiple of ∂n−1
X ∂n−1

X
δ
(2)
∞ . We obtain that the space of “in” states

(more precisely, its subspace consisting of differential forms of degree 0) is a non-trivial
extension of the space of polynomials C[X,X ] by the space of delta-like distributions

C[∂X , ∂X ] · δ(2)∞ at ∞ ∈ P1. Furthermore, the Hamiltonian is not diagonalizable on this

space, but has Jordan block structure, mixing XnX
n

and ∂n−1
X ∂n−1

X
δ
(2)
∞ . (Note that

there is no mixing involving the vacuum state 1, corresponding to n = n = 0, and to
the purely chiral and anti-chiral states, with n = 0 and n = 0, respectively.)

Our Morse function on P1 has only two critical points, and hence P1 decomposes into
the union of two strata: C0 = P1\∞ and the point ∞. They give rise to the two sectors
in the space of “in” states. This is why states have at most one logarithmic partner
and the maximal size of the Jordan block appearing in the Hamiltonian is two. For
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manifolds of higher dimension there will be more sectors and hence more logarithmic
partners in general (see Part I for details).

We are now observing a similar phenomenon in the two-dimensional sigma model.
Indeed, one possible Hamiltonian interpretation of (6.13) is as the matrix element

(6.16) 〈ω1(X,X)ψψ | ω2(X,X)ψψ | ω3(X,X)ψψ∂X∂X〉
of the evaluation observable ω2ψψ between the excited state corresponding to

ω3(X,X)ψψ∂X∂X

and the co-vacuum state corresponding to ω1(X,X)d2X. Note that in contrast to one-
dimensional quantum mechanical models, in the two-dimensional theory we now have
the state–operator correspondence. We may then interpret the same integral as the
matrix element

(6.17) 〈ω2(X,X)ψψ | ω3(X,X)ψψ∂X∂X | ω1(X,X)ψψ〉,
in which differential forms ω1 and ω2 are interpreted as vacuum and co-vacuum states,
and ω3(X,X)ψψ∂X∂Xd2X is interpreted as an operator placed at the point 1. How-
ever, it is the interpretation (6.16) that is closest to the quantum mechanical matrix
element (6.15).

In light of the above discussion of the quantum mechanical models, it should not
come as a surprise that the integral (6.16) has logarithmic divergence. It is quite
similar to the logarithmic divergence of the integral (6.15), which, as we have seen
above, is responsible for the appearance of logarithmic partners.

Hence we follow the same strategy as in quantum mechanics and define the matrix
element (6.16) (or the matrix element (6.17)) as the partie finie regularization of the
integral (6.16). In other words, we cut out the part of the domain of integration
(which is the product of three copies of P1) which is within the radius ǫ of the diagonal
X1 = X2 with respect to the Fubini-Study metric. (In principle, here we could choose
an arbitrary metric; the ambiguity of this choice is one of the reasons that the resulting
regularized integral is not canonically defined.) We then evaluate the integral as a
function of ǫ. One can show that as a function in ǫ it may be uniquely represented in
the form

(6.18) C0 +
∑

i>0

Ciǫ
−i + Clog log ǫ+ o(1),

where the Ci’s and Clog are some numbers (see [36], pp. 70-71). The partie finie of the
above integral as the constant coefficient C0 obtained after discarding the terms with
negative powers of ǫ and log ǫ in the integral (6.16) and taking the limit ǫ→ 0.

Just as in the quantum mechanical case, this definition is non-canonical. It depends
on the choices we have made (such as the metric on P1). However, formula (6.13) shows
that the discrepancy for two different regularization schemes (with varying ω1, ω2) may
be represented as a multiple of the integral

(6.19) q

∫

P1

ω1(X,X)ω2(X,X) · ℓω3(X,X)ψψ,
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where, by definition,

(6.20) ℓω(X,X) =

∫

P1

|Y −X|4 ω(Y, Y )d2Y.

Note that ω3 is a coefficient in front of a (2, 2)-differential on P1, and the map (6.20)
is a canonical map from the space of (2, 2)-differentials on P1 to the space of (−1,−1)-
differentials, so that the integral (6.19) is well-defined. The integral kernel in Sec-
tion 6.20 is the inverse square of the absolute value squared of the so-called prime
form.

We now interpret (6.19) as the following matrix element:

(6.21) q〈 ω1(X,X)ψψ | ω2(X,X)ψψ | ℓω3ππ 〉 .
Here we have introduced the fermionic fields π, π in order to reduce the total fermionic
number (which counts the degree of the differential form on the moduli space of holo-
morphic maps) from 3 of the original matrix element (6.16) to 1. Hence we now
integrate over the moduli space of holomorphic maps from to P1 of degree 0 (that is,
the constant maps), which is one-dimensional.

6.5. Logarithmic partners. The upshot of this calculation is that

the state ℓω3(X,X)ππ is the logarithmic partner of ω3(X,X)ψψ∂X∂X,

just like ∂n−1
X ∂n−1

X
δ
(2)
∞ is the logarithmic partner of the state XnX

n
in quantum me-

chanics! Likewise, the operator ℓω3ππ(z, z) is the logarithmic partner of the operator
ω3ψψ∂X∂X(z, z).

Here it is useful to recall the structure of the space of states of the two-dimensional

sigma model on P1 from Section 4.1. The “big” space of states H̃ has a filtration

H̃≥i, i ∈ Z, where H̃≥i ≃ H̃≥j for all i, j and H̃≥i/H̃≥(i+1) ≃ H̃i, the space of delta-

forms on the ascending manifold (L̃P1)i corresponding to the ith preimage of the critical

set P1 ⊂ LP1 of constant loops. We have a “deck transformation” map sending H̃m to

H̃m+1 isomorphically. A physical state Ψ is a vector in H̃ which is an eigenvector of
this transformation with the eigenvalue q.

The space H̃ may be identified with a direct product

(6.22) H̃ =
∏

m∈Z

H̃m,

but not canonically. Let us choose such an identification, in such a way that the deck

transformation identifies all the H̃m with each other. Then it is convenient to identify

all of them with H̃0 and to write

H̃ = H̃0 ⊗ C[[T, T−1]],

where T is a formal variable. A vector in this space is then represented by a sum

Ψ =
∑

m∈Z

Ψ̃mT
m, Ψ̃m ∈ H̃0
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(without any convergence condition!). The deck transformation acts by multiplication
by T . Hence it sends this vector to

∑

m∈Z

Ψ̃mT
m+1.

The eigenvector condition on Ψ then becomes

(6.23) Ψ̃m = q Ψ̃m+1, m ∈ Z.

By this condition, Ψ̃0 determines the remaining Ψ̃m, and so the space of states becomes

isomorphic to H̃0. This is in fact how we defined it in Section 4.1. However, this
definition is non-canonical because to obtain it we need to choose the direct product

decomposition (6.22) of the “big” space of states H̃, which is non-canonical.

6.5.1. Toy model. It might be helpful to illustrate the difference between the space H̃0

and the true space of states by the following elementary example. Let V be a vector
space and suppose that we are given an extension

(6.24) 0 → V → V2 → V → 0.

Of course, any extension of vector spaces can be split, but if they carry additional
structures (such as OPE, correlation functions, etc., in our case), then there may not
be a splitting respecting these structures. We can iterate this extension and construct
new extensions

0 → Vn → Vn+1 → V → 0, n > 2.

The space Vn has a filtration 0 ⊂ V = V1 ⊂ V2 ⊂ . . . ⊂ Vn−1 ⊂ Vn = V such that
the consecutive quotients are all isomorphic to V . Let us label the filtration on V2n

as follows: V≥i = Vn−i, i = −n, . . . , n. Next, we take the limit of V2n when n → ∞
in a way compatible with this filtration. This means that to pass from V2n to V2n+2

we “glue” one V to V2n as a subspace and another V as a quotient. Then the limit
V∞ has a filtration V≥i, i ∈ Z, such that V≥i/V≥(i+1) ≃ V . (This is the analogue of

H̃.) Moreover, by construction, we have a canonical identification of V≥i with V≥j for
all i, j ∈ Z. Thus, we have a canonical “shift” operator S which maps V≥i to V≥(i+1)

isomorphically.
Now let V be the subspace of vectors v ∈ V∞ which are eigenvectors of this transfor-

mation with eigenvalue q ∈ C×, S(v) = qv. (This is the analogue of our space of states.)
If we choose a splitting of the exact sequence (6.24), then we identify Vn ≃ V ⊕n and
hence identify V∞ with the direct product of infinitely many copies of V , labeled by the
integers, splitting the filtration (V≥i). Then the space of eigenvectors of S as above may
be identified with any of these copies of V , for instance, the one labeled by 0 ∈ Z. Thus,
we obtain an isomorphism V ≃ V . But this isomorphism is not canonical! Indeed, if we
choose a different splitting of (6.24), that is, a different isomorphism V2 ≃ V ⊕V , then
the lift to V ⊕ V of a vector from the quotient V will be equal to v +M(v) for some
linear operator M : V → V . Therefore a vector of V which appears as v ∈ V under the
previous identification, will appear as the vector ṽ = v + qM(v) + q2M2(v) + . . . with
respect to the new identification.
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6.5.2. Back to the space of states of the sigma model. The fact that the space of states

cannot be canonically identified with H̃0 (which, we recall, is the chiral-anti-chiral de
Rham complex of X) has an important consequence. When we represent an excited

state of the theory in the form Ψ̃0 = ωψψ∂X∂X, say, tacitly choose a direct product
decomposition of the form (6.22). Indeed, this expression is well-defined as a (semi-

infinite) delta-form on the ascending manifold (L̃P1)0. But it is not intrinsically defined
as a state in the sigma model with the target P1, because of there are non-trivial

extensions of this space by the space of delta-forms of (L̃P1)1 and other ascending

manifolds in the closure of (L̃P1)0.
This is similar to writing an excited state in the quantum mechanical model on P1 as

a monomial XnX
n

on the big cell C0. It is really well-defined as a state in the model
on C0, but not in the model on P1, where it is actually mixed with its logarithmic

partner ∂n−1
X ∂n−1

X
δ
(2)
∞ . (Note, however, that the vacuum states, such as the monomial

1 in the quantum mechanical mode, or the states ω(X,X)ψψ in sigma model, are
intrinsically defined, as they are not mixed with anything.) The analogue of this in the
two-dimensional sigma model is the statement that the general states corresponding
to delta-forms on a particular ascending manifold of the Morse–Bott–Novikov–Floer
function, are mixed with the states corresponding to delta-forms on other ascending
manifolds which appear in its closure.

Therefore we should not be surprised that the state with

Ψ̃0 = ωψψ∂X∂X ∈ H̃0 ⊂ H̃,

which is a delta-form on the ascending manifold (L̃P1)0, is mixed with the state

Ψ̃′
1 ⊗ T = ℓωππ ⊗ T ∈ H̃0 ⊗ T ⊂ H̃.

This is now a delta-form on the ascending manifold (L̃P1)1, which lies in the closure of

(L̃P1)0. Now we can use the equivariance condition (6.23) to interpret this state as a

state in H̃0; namely, we identify Ψ̃′
1 with

Ψ̃′
0 = q ℓωππ ∈ H̃0.

Note that the appearance of q here, from the equivariance condition (6.23), matches
its appearance in the definition of logarithmic partners: in formula (6.21) we have to
introduce q by hand, because we express the residue of a divergent integral over the
moduli space of holomorphic maps of degree 1 (corresponding to the matrix element
(6.16)) in terms of an integral over the moduli space of holomorphic maps of degree 0.

In this example we have only one logarithmic partner. More generally, there may
be more of them, with higher powers of q (this is similar to what happens in quantum
mechanics).

6.5.3. Strata in L̃P1 and boundary divisors in MΣ(X,β). We note that the structure

of the ascending manifolds in L̃P1 exhibits an analogue of the “bubbling phenomenon”
discussed at the end of Section 6.2, which was ultimately responsible for the singularity
of the integrals such as (6.13). To see that, recall the interpretation of the covering
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L̃P1 of LP1 from Section 2.4 in which points of L̃P1 are realized as equivalence classes
of (continuous) maps γ̃ : D → X, where D is a unit disc. In this interpretation the

ascending manifold (L̃P1)0 is realized as the subset of equivalence classes of holomorphic

maps γ̃ : D → X, whereas the ascending manifold in its closure, (L̃P1)1, may be realized
as the set of equivalence classes of holomorphic maps in which a sphere “bubbles out”
at the origin of the disc (see Figure 6). This is in agreement with the description of the
boundary strata in MΣ(X,β) as the maps from a curve Σ in which a sphere “bubbles
out” at the point p.

Figure 6. Disc with a “bubble”.

The two pictures, the local one with L̃P1, and the global one with MΣ(X,β), are
actually closely related. Indeed, let us cut a small disc D around the point p from Σ.
Let Σ be the closure of Σ\D. Then D and Σ intersect along their boundary circles
and general holomorphic maps Σ → X may be described as loops S1 → X which
are simultaneous the boundary values of holomorphic maps D → X and Σ → X (see
Figure 7). Thus, we may identify the moduli space MΣ(X,β) of holomorphic maps
Σ → X (before the compactification) with the intersection of the space of boundary
values of holomorphic maps D → X and the space of boundary values of holomorphic
maps Σ → X, viewed as subsets in LP1 (see [31]).
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Figure 7. The curve Σ as the union of a disc D and its complement Σ.

These subsets isomorphically lift to the covering L̃P1, with the first subset lifting to

(L̃P1)0. The divisors in the stable map compactification MΣ(X,β) of MΣ(X,β) then

correspond to the intersection of the ascending manifolds (L̃P1)n, 0 < n ≤ β, which

lie in the closure of (L̃P1)0, with the space of boundary values of holomorphic maps
Σ → X. This is why we have such parallelism between the patterns of gluing the

boundary strata in L̃P1 and in MΣ(X,β).
This way the loci of singularities of the correlation functions of the jet-evaluation

observables may be directly linked to the structure of the closures of the ascending

manifolds in L̃P1 and hence to the non-trivial extensions in the space of operators of
the sigma model which, as we have seen above, ultimately lead to the appearance of
logarithmic partners.

Remark 6.1. Note that there is a difference between the two patterns: in the local

picture, on L̃P1, we do not fix the map of the bubbled sphere to P1, only its degree,
whereas in the global picture, on MΣ(X,β), we do fix it, up to rescalings. For this reason
the boundary strata in MΣ(X,β) have codimension one, whereas the corresponding
codimension of boundary strata in MΣ(X,β) grows linearly with the degree of the map
from the bubbled sphere. Note also that in MΣ(X,β) there are other boundary divisors
corresponding to spheres that bubble out away from the point p. They do not have

analogues in L̃P1.12

6.6. General case. We now investigate the general phenomenon of logarithmic mixing
of operators. In the formulas below we indicate the passage from a given operator to
its logarithmic partner by an arrow. The first example considered above is

A(X,X)ψ∂Xψ∂X −→ qBA(X,X)ππ,

12We thank A. Givental for a useful discussion of these issues.
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where

BA(X) =

∫

P1

A(Y )|X − Y |4d2Y.

Similarly, we obtain

A(X,X)ψ∂ψψ∂ψ −→ qBA(X,X)pp,

Consider next the case of purely bosonic operators. Suppose we have two partitions
λ and µ with |λ| = |µ| = 3. Then, using formula (6.8), we obtain

(6.25) Cλµ(X,X)DλXD
µ
X −→ q · BCλµ

π∂ππ∂π,

where the fermionic content of the log-partner is uniquely fixed by the dimension and
the ghost number (the πψ charge) considerations, and

(6.26) BCλµ
(X) = 4

∫

P1

d2Y Cλµ(Y )|X − Y |2(X − Y )ℓ(λ)(X − Y )ℓ(µ) .

The more general operator mixing for jet-evaluation observables may be described
similarly. Suppose that we wish to determine whether an operator A, of perturbative
conformal dimension (∆,∆) is log-mixed with operators ℓA(r), so that

(6.27) QL0Q
L0 (A) = Q∆Q

∆ ·
(
A+ log|Q|2

[
ℓA(1)

]
+ . . . +

1

k!

(
log|Q|2

)k [ℓA(k)
])

,

where we allow for multiple log-partners. Then for a test operator B with the same
perturbative conformal dimension we should have

(6.28) 〈A(z, z)B(0)〉 = z−2∆z−2∆

(
GAB +

k∑

r=1

(log |z|2)r
r!

GℓA(r),B

)
,

where GÃB is the perturbative Zamolodchikov metric. Therefore we could try to find
ℓA(r) by computing the two-point functions 〈A(z, z)B(0)〉 and interpreting the loga-

rithmic terms as the two-point functions 〈ℓA(r)(z, z)B(0)〉. As before, all of these cor-
relation functions may be computed in terms of (regularized) integrals over the moduli
spaces of holomorphic maps. This leads to a kind of bootstrap, which in principle should
enable us to compute the logarithmic partners by a recursive procedure. The first term
in this recursion corresponds to taking the perturbative part in 〈ℓA(r)(z, z)B(0)〉. Let
us discuss it in more detail in the case when r = 1. Let us write

ℓA(1) =
∑

m>0

ℓA(1)
m qm.

It is useful to pass to the logarithmic coordinate x = logX,ψx = ψX/X and write

x = x0 +

m∑

i=1

log

(
1 − w+

i z

1 − w−
i z

)
,

ψ = dx0 +
m∑

i=1

(
− dw+

i z

1 − w+
i z

+
dw−

i z

1 − w−
i z

)
(6.29)
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in the sector with the instanton number m. If two operators A and B are jet-evaluation
observables, that is, depend only on x, ψ and their derivatives, then the correlation
function 〈A(∞)B(0)〉 is given by the sum

∑

m∈Z+

qm
∫

M
P1 (P1,m)

A ∧B,

where MP1(P1,m) is the moduli space of degree m holomorphic maps from a paramet-
rized worldsheet P1 to the target P1. Let us assume for simplicity that if B(0) is not
a jet-evaluation observable, then 〈A(∞)B(0)〉 = 0, so we may restrict ourselves to
observables of this type.

Now, the moduli space MP1(P1,m) is acted upon by the group C× which preserves
the points 0 and ∞, and the correlation function is non-trivial only if the dimensions of
A and B coincide. Therefore the integrand will be C×-invariant, hence the integral will
be divergent, due to the volume of C×. We interpret this divergence as the log |z|2 term
in formula (6.28). Hence we can identify the prefactor with the two-point function of
ℓA

(1)
m and B. Thus, the correlator of the log-partner ℓA(1) of A and B should be equal

to the sum of the integrals of the differential forms corresponding to A and B over the
quotients of MP1(P1,m),m > 0, by C×.

The quotient MP1(P1,m)/C× may be compactified to the moduli space of stable

maps with two marked points, M0,2(P1,m), which is mapped by the evaluation maps
ev0 × ev∞ to P1 × P1. Let us denote the pre-image of the point (ex, ey) ∈ P1 × P1 by
M(x, y;m). This space is a particular compactification of the space of m-tuples of pairs
(w+

i , w
−
i ), i = 1, . . . ,m, which obey:

(6.30)

m∏

i=1

w+
i

w−
i

= ex−y

modulo the C×-action:

(6.31) (w+
i , w

−
i ) 7→ (tw+

i , tw
−
i ) , t ∈ C×

Then we compute the integral over this moduli space (using formula (6.8)) and interpret

the result as the perturbative correlation function of ℓA
(1)
m and B. As the result, we

obtain the following expression for ℓA
(1)
m :

(6.32) ℓA(1)
m (x) =

∑

B

B∨(x)

∫

P1

A(y)

∫

M(x,y;m)
Ωx,y(A,B;m) ∧ Ωx,y(A,B;m),

where Ωx,y(A,B;m) is a meromorphic top degree form on M(x, y;m) constructed out
of A and B. We sum over the space of all local operators using some basis B and the
dual basis B∨ with respect to the perturbative Zamolodchikov metric.

For example, if (in the notation of Section 4.4)

A = Aλµ(x, x)DλXD
µ
X,

B = Bλ′µ′;ν,κ(x, x)D
λ′XD

µ′
Xψ∂ν1−1ψ∂ν2−2ψ . . . ψ∂

κ1−1
ψ . . . ,
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then

Ωx,y(A,B;m) = ιE
dmw+ ∧ dmw−

d log
(∏

iw
+
i /w

−
i

)

∏

k

[
∑

i

(w+
i )λk − (w−

i )λk

] [
∑

i

(w+
i )−λ

′
k − (w−

i )−λ
′
k

]

× Det‖ (w+
i )−νk+k (w−

i )−νk+k ‖1≤i≤m 1≤k≤2m,(6.33)

where ιE is the contraction with the Euler vector field E = w+
i ∂w+

i
+ w−

i ∂w−
i
.

Formula (6.33) can be also derived using the free field realization with the help of
the holomortex operators Ψ± discussed in Section 4.7, along the lines of the OPE
calculation in Section 6.7.7.

The above integrals may further diverge. Their regularization, in turn, will give
rise to terms with higher power of logarithms in 〈A(z, z)B(0)〉, which we can use to

recursively compute A
(r)
m with r > 1. We will discuss this in more detail in the follow-up

paper [28].

6.7. Operator product expansion. An important feature of quantum field theory
is the operator product expansion (OPE) which gives rise to an algebraic structure
on the space of fields. The OPE may be described in especially nice terms in two-
dimensional conformal field theories (CFT), where the expansion may be written in
terms of the rational functions of the form (z − w)n(z − w)n. In logarithmic CFT the
expansion also involves terms with the logarithms log(z −w), log(z −w). Our analysis
of the two-dimensional sigma models in the infinite radius limit shows that they are
logarithmic CFTs. Therefore it is natural to ask whether the OPE in these models
may be computed and logarithmic terms be observed explicitly. In this section we will
address this question in the case of the target manifold P1 (this is the simplest non-
trivial case). We will show that there are instanton corrections to the OPE which do
involve logarithmic terms. However, these corrections only appear when we consider
observables involving both chiral and anti-chiral fields. The chiral algebra of the model
(which we have determined to be the global chiral de Rham complex in Section 4.5) is
free of logarithms.13

6.7.1. Instanton corrections to OPE: factorization approach. Our goal is to understand
the instanton corrections to the OPE in the sigma model on P1 in the infinite radius
limit. We will compute the OPE by studying the factorization of the four-point corre-
lation functions in a particular channel.

We start with the correlation function of dimension zero observables, inserted at the
points z1, z2, z3, z4 on the worldsheet P1, and consider the channel where z1 → z2, z3 →
z4 (see Figure 8).

13This is similar to the fact that in quantum mechanical models considered in Part I the subspaces of

purely chiral and anti-chiral states have bases (such as the monomial bases Xn, n ≥ 0, and X
n
, n ≥ 0,

in the P1 model) of true eigenvectors of the Hamiltonians; in other words, there are no Jordan blocks
in the Hamiltonian on the chiral and anti-chiral states.
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Figure 8. The degeneration of P1 with four points that we consider.

In principle, one could also try to do this by analyzing the three-point functions in
the limit when z1 → z2. However, the PGL2-invariance of the correlation functions of
dimension zero operators eliminates any free parameters in the three-point functions,
and therefore it is difficult to analyze the corresponding limit. In the case of four-point
functions we have one free parameter which we can use to study the limit.

Let ωi ∈ Ω2(P1), i = 1, 2, 3, be three smooth two-forms on P1, and f a smooth
function on P1). Consider the four-point function

(6.34)

〈
Oω1(z1)Oω2(z2)Oω3(z3)Of (z4)

〉
.

where Oω(z) = ω(X(z),X(z))ψψ(z, z), and Of (z) = f(X(z),X(z)). The complex
dimension of the moduli space of holomorphic maps Φ from P1 (with at least three
marked points) to P1 of degree d is 2d+1. Therefore the only non-zero contribution to
this correlation function will come from the component with d = 1, which is isomorphic
to PGL2 and which we compactify to (P1)3 by considering the values of Φ at z1, z2, z3,
denoted by X1,X2,X3 (see Section 6.2)14. The value at z4 is determined by these, and

14Recall from Section 6.2 that the stable map compactification M0,3(P1, 1) of this moduli space is
the blow-up of (P1)3 along the principal diagonal X1 = X2 = X3; thus, it differs from (P1)3 by a
measure zero subset.
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is equal to

(6.35) Φ(z4) =
λX1X23 +X3X12

X12 + λX23
= X3 +

λX23/X12

1 + λX23/X12
X13,

where

(6.36) λ =
z43z21
z41z23

.

Here and below we use the notation zij = zi − zj .
The correlation function is therefore equal to

(6.37) q

∫

P1×P1×P1

3∏

α=1

ωα(Xα,Xα)d2X1 ∧ d2X2 ∧ d2X3 f

(
λX1X23 +X3X12

X12 + λX23

)
,

where q = e−τ is the instanton parameter. This integral converges for smooth f and
ωα = ωα(X,X)d2X.

We now want to study the asymptotics of (6.37) in the limit z2 → z1, z3 → z4. In
an ordinary (non-logarithmic) CFT we expect to have the following OPE (recall that
conformal dimensions of the evaluation observables are equal to zero):

Oω1(z1, z1) Oω2(z2, z2) =
∑

A

A(z1, z1)z
∆A
12 z∆A

12 ,(6.38)

Oω3(z3, z3) Of (z4, z4) =
∑

B

B(z4, z4)z
∆B
34 z∆B

34 ,(6.39)

where A(z1, z1) denotes a field of conformal dimensions (∆A,∆A), and similarly for
B(z4, z4). (Recall that the conformal dimension of Oω is (0, 0).)

In the ordinary CFT we would have the following expansion of (6.37):

(6.40)

〈
Oω1(z1)Oω2(z2)Oω3(z3)Of (z4)

〉
→
∑

A,B

z∆A
12 z∆A

12 z
∆B
34 z∆B

34

〈
OA(z1)OB(z4)

〉
=

∑

A,B

(
z12
z41

)∆A
(
z12

z41

)∆A
(
z34
z41

)∆B
(
z34

z41

)∆B

GAB .

Here GAB is the Zamolodchikov metric, and GAB 6= 0 only for ∆A = ∆B ,∆A = ∆B .
Let us write

(6.41) λ =
z43z21

z41(−z41 + z43 + z21)
= −

∞∑

a,b=0

(a+ b)!

a!b!

(
z43
z41

)a+1(z21
z41

)b+1

.

If we formally expand (6.37) as a power series in λ near λ = 0, the coefficients should
give us the OPE (6.38), (6.39).
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6.7.2. Instanton corrections to the chiral part of the operator product expansion. The
lowest order term in λ is the term λ0. It is equal to the constant

(6.42) q

∫

P1

ω1

∫

P1

ω2

∫

P1

fω3,

which corresponds to

A(z1, z1) =

(∫

P1

ω1

∫

P1

ω2

)
1 , ∆A = 0,

B(z4, z4) = f(X(z4),X(z4))ω3(X(z4),X(z4))ψ(z4)ψ(z4) , ∆B = 0,

in (6.38), (6.39). This is in fact the term responsible for the quantum cohomology of
P1.

The terms in the OPE expansion of Oω1 and Oω2 which are analytic in λ near λ = 0
come from the terms of dimension (k, 0) which appear in front of λk. By expanding
the integrand in (6.37) in λ, we obtain the following terms proportional to λk:

q λk
∑

l

C(k,l)

∫

P1×P1×P1

ω1(X1,X1)ω2(X2,X2)d
2X1 ∧ d2X2

×
(
X2 −X3

X1 −X2

)k
(X3 −X1)

l ∂lX3
f(X3,X3)ω3(X3,X3)d

2X3,(6.43)

where

C
(k,l)
f =

(−1)k−l(k − 1)!

l!(l − 1)!(k − l)!
.

The integrals in (6.43) are conditionally convergent, for k > 1. We shall assume that
the prescription of the integration over the angles first is employed. The (k, l) term in
(6.43) can be interpreted in the following way. Perturbatively, the OPE Of (z, z)Oω(0)
we has the following terms analytic in z:

Of (z, z)Oω(0) ∼
∑

µ

z|µ|Oωf(µ,0)(0)

Oωf(µ,0) = ω(X,X)DµX ∂
ℓ(µ)
X f(X,X)ψψ(6.44)

(in the notation of Section 4.4). The operators Oωf(µ,0) are examples of the jet-

evaluation observables. The three-point function 〈Oω1(z1) Oω2(z2) Oωf(µ,0)(z3)〉 is sat-

urated by the one-instanton contribution, which, according to formula (6.8), is given
by the integral (6.43), where k = |µ|, l = ℓ(µ). We interpret this as the appearance of
the following terms in the OPE:

(6.45) Oω1(z, z) Oω2(0) ∼ q
∑

µ

z|µ|O12,µ(0),
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where

O12,µ = :C12,µ(X)

ℓ(µ)∏

i=1

(−1)µi−1 µi!

(2µi − 1)!
∂µi−1
z p : + terms with fermions,

C12,µ(X) =

∫

P1×P1

(X −X1)
ℓ(µ)(X −X2)

|µ|

(X1 −X2)|µ|
ω1(X1,X1)ω(X2,X2)d

2X1 ∧ d2X2.

Indeed, the two-point function of O12,µ and Oωf(µ,0) is equal to the integral (6.43) with

k = |µ|, l = ℓ(µ). To fix the fermionic terms in O12,µ, we need to compute more
two-point functions of this type.

To give an example of the fermionic terms arising in O12,µ, we consider the following
OPE, obtained in a similar way:

(6.46) Oω1(z, z) (ω2(X,X)∂zXψ)(0) ∼ q πV12(X)(0) + . . . ,

where we have a holomorphic vector field V12∂X given by the formula

(6.47) V12(X) =

∫

P1×P1

(X −X1)(X −X2)

X1 −X2
ω1(X1,X1)ω2(X2,X2)d

2X1 ∧ d2X2 .

By applying the supercharge Q =
∫
p(z)ψ(z)dz to both sides of (6.46), we obtain that

the z-term in (6.45), corresponding to µ = (1), is equal to

[Q, qπV12(X)] = q
(
:C12,(1)(X)p : + ∂XC12,(1)(X):ψπ :

)
,

which corresponds to the Lie derivative by the vector field V12(X)∂X (see Section 4.4).
Thus, we have

O12,(1) = :C12,(1)(X)p : + ∂XC12,(1)(X):ψπ : .

The second term involves the fermionic combination :ψπ: . Similar terms arise in front
of higher powers of z in (6.45).

6.7.3. Logarithmic terms in the OPE. A truly interesting term in the expansion of
(6.37) is

(6.48) λλ ≈
∣∣z12z34z−2

41

∣∣2 ,
which is equal to

(6.49) λλ

∫

P1×P1×P1

3∏

α=1

ωα(Xα,Xα) ∂X∂Xf(X3,X3)
|X1 −X3|2|X2 −X3|2

|X1 −X2|2
·

· d2X1 ∧ d2X2 ∧ d2X3.

This integral is very similar to the integral (6.13) studied above, and, like that
integral, it is also divergent. A troublesome region is X1 ≈ X2. To extract the divergent
part of (6.49), we write (similarly to the calculation in Section 6.4)

X1 = X − ξ/2, X2 = X + ξ/2.
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Then the divergent part of (6.49) may be approximated by the integral

(6.50) λλ

∫

P1
1×P1

3×U

ω1(X1,X1)ω2(X1,X1)
(
ω3∂X∂Xf

)
(X3,X3)|X1 −X3|4·

· d2X1 ∧ d2X3 ∧
d2ξ

|ξ|2 ,

where U is a small neighborhood of 0 in the ξ-plane. The integral (6.50) has logarithmic
divergence in ξ. This means that the naive model (6.38), (6.39) for the OPE that we
had assumed above is incorrect. What is going on here?

6.7.4. Expansion of integrals. We need to pause for a moment and try to understand
the analytic phenomenon that we have just encountered. The integral (6.37) is well-
defined for all values of λ. Yet, when we expand the integrand in λ near λ = 0, we obtain
divergent integrals. The reason is that we are trying to switch the order in which we
take two different limits: one corresponds to expansion in Taylor series, and the other
is the limit R→ ∞ we take by evaluating our integral over the region |Xi| < R in each
of the three P1. To understand this better, we consider as a toy model, the integral

(6.51)

∫ ∞

0

dt

(1 + λt)(1 + t)2
, λ ∈ R.

It converges for all non-negative values of λ. However, the integrals of the coefficients
in the expansion of the integrand in λ are divergent. The explanation is that the true
expansion of (6.51) in λ actually contains log λ. Indeed, the exact answer is

− 1

1 + λ
+
λ log λ

1 − λ2
.

When we try to expand it in the neighborhood of λ = 0, we find, in addition to a power
series in λ (corresponding to the first term), a power series times log λ.

On the other hand, we may first expand the integrand in (6.51) in a power series in
λ and then integrate the terms of this expansion. Then we obtain integrals of the form

(6.52)

∫ ∞

0

tndt

(1 + t2)
, n ≥ 0,

which diverge for n > 0, just like the integral (6.49). We would like to relate the partie

finie regularization of the integrals (6.52) and the logarithmic terms in the expansion
of (6.51).

Consider the following more general situation. Let fλ(t) be an analytic function in
λ with the Taylor series expansion

fλ(t) =
∑

n≥0

fn(t)λ
n,

Suppose that we have the following expansion:
∫ ∞

0
fλ(t)dt =

∑

n≥0

(Cnλ
n + Clog,nλ

n log λ)
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in a small neighborhood of λ = 0. On the other hand, we have (see [36], pp. 70-71)

(6.53)

∫ 1/ǫ

0
fn(t)dt = C ′

nǫ
0 +C ′

log,n log ǫ+
∑

i>0

C ′
i,nǫ

−i + o(1).

Empirical evidence from calculations with (6.51) and similar integrals suggests the
following conjecture:

(6.54) Cn = C ′
n, Clog,n = C ′

log,n.

It might be well-known to specialists in analysis, but we were unable to locate it in
the literature.

6.7.5. Back to the integral (6.49). We have found that the |λ|2-term in the expansion
of this integral is divergent. This means that our model (6.38), (6.39) for the OPE
was oversimplified, and in fact, in addition to the power terms in zij , zij, there are
logarithmic terms. Indeed, in view of our conjecture (6.54), we should expect the
term with |λ|2 as well as |λ|2 log |λ|2. Recalling (6.48), we find that the expansion of
|λ|2 log |λ|2 will contain the terms |z12|2|z34|2 log |z12|2 as well as |z12|2|z34|2 log |z34|2.
Note that since we consider the limit z12, z34 → 0, with finite z14, we are not expanding
in terms of z14. Such an expansion will be relevant when we consider the factorization
of the four-point function (6.34) in a different channel.

Te appearance of the term |z12|2|z34|2 log |z12|2 means that we should include the
term with |z12|2 log |z12|2 in formula (6.38). According to the above conjecture, to find
this term, we need to introduce the “cut-off” |ξ| > ǫ in the integral (6.49). Then the
ǫ0-term in the corresponding expansion of the form (6.53) should give us the correlation
function

〈A(z1, z1)B(z3, z3)〉
where A is the |z12|2-term in the OPE (6.38) and B is the |z34|2-term in the OPE (6.38).
These are in fact the terms in the perturbative OPEs of our operators, so we have

A = ω1(X,X)ω2(X,X)ψ∂ψψ∂ψ

and

(6.55) B = ω3(X,X)∂X∂Xf(X,X)∂X∂Xψψ,

On the other hand, we interpret the log ǫ-term in the expansion of (6.49) as the
correlation function

〈A(z1, z1)B(z3, z3)〉,
where now A is the |z12|2 log |z12|2-term in the modified OPE (6.38), and B is given by
formula (6.55). We reproduce this two-point function if we set

A = q ℓA(X,X)pp,

where ℓ(ω1ω2) is given by formula (6.20),

(6.56) ℓ(ω1ω2)(X,X) =

∫

P1

|Y −X|4 (ω1ω2)(Y, Y )d2Y.
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This is precisely the logarithmic partner of A(z, z) that we have already found in
Section 6.5. (This is not surprising because the two computations, one in Section 6.5,
involving three-point functions, and another one here, involving four-point functions,
are essentially equivalent.)

Thus, though naively the operator A(z, z) appears to be a primary field of conformal
dimension (1, 1), it is in fact a logarithmic primary, with the log-partner A(z, z) of exact
conformal dimension (1, 1). This logarithmic partner appears as the coefficient in front
of the logarithmic term |z12|2 log |z12| in the OPE (6.38).

Likewise, the appearance of the term |z12|2|z34|2 log |z12|2 in the integral (6.49) im-
plies that there is a logarithmic term |z34|2 log |z34|2 in the OPE (6.39). It is nothing
but the logarithmic partner of the field B(z, z) appearing in formula (6.55),

B = ℓ(ω∂X∂Xf)ππ,

which we had also found previously in Section 6.5.

Let us summarize: we have found the following terms in the operator product ex-
pansions (up to some numeric factors):

(ω1(X,X)ψψ)(z, z) (ω2(X,X)ψψ)(w,w) ∼ q

∫

P1

ω1d
2X

∫

P1

ω2d
2X · 1

+ (ω1(X,X)ω2(X,X)ψ∂ψψ∂ψ)(w,w)|z − w|2(6.57)

+ q (ℓ(ω1ω2)pp)(w,w)|z − w|2 log |z −w|2 + . . . ,

(ω(X,X)ψψ)(z, z) f(X,X)(w,w) ∼
(ω(X,X)∂X∂Xf(X,X)∂X∂Xψψ)(w,w)|z − w|2(6.58)

+q (ℓ(ω∂X∂Xf)ππ)(w,w)|z − w|2 log |z − w|2 + . . .

Of course, there are many other terms on the right hand sides of these formulas, but
in principle, they may all be computed in the same way as above.

In a similar way, we compute another example, when both observables are functions
on P1:

(6.59) f(X,X)(z, z)g(X,X)(w,w) ∼ (fg(X,X))(w,w)

+ |z − w|6 log|z − w|2 (Bf,g(X,X)π∂ππ∂π)(w,w) + . . . ,

where the coefficient function Bf,g(X,X) is given by the integral transform:

(6.60) Bf,g(X,X) =
∫

P1

d2Y Coeffy3y3

[
f(Y + y, Y + y)g(Y − y, Y − y)

∣∣∣(Y −X)2 − y2
∣∣∣
4
]
.

To compute the last line, we use the following correlation function:

(6.61) 〈A(X)ψ∂ψ∂2ψψ∂ψ∂2ψ(z) f(X(z1)) g(X(z2))〉 =

4

∣∣∣∣
z1 − z2

(z1 − z)(z2 − z)

∣∣∣∣
6 ∫

P1×P1×P1

d2X1d
2X2d

2X3 f(X1)g(X2)A(X3)

∣∣∣∣
X13X23

X2
12

∣∣∣∣
4

.
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Near the diagonal X1 = X2 the integral in (6.61) diverges in a power-like fashion:

(6.62)

∫
d2v

|v|8 ×
∫

P1×P1

f(X)g(X)A(Y )|X − Y |8d2X d2Y.

(The integral (6.61) also looks divergent at infinity in X1, X2, but this is an illusion.)
In order to extract the logarithmic term in the OPE (6.59), we have to expand the
integrand in (6.61) in X12 to get the term with logarithmic divergence. This gives the
integral (6.60).

6.7.6. Analogy with quantum mechanics. There is a precise analogy between the behav-
ior of the correlation functions of the sigma models observed above and the correlation
functions in quantum mechanical models studied in Part I.

These correlation functions are best understood in terms of the moduli spaces of
stable maps and their quantum mechanical analogues, compactified moduli spaces of
gradient trajectories.

In the quantum mechanical case (on P1), we considered in Section 5.2 of Part I the
two-point functions of the form

(6.63) ∞〈ω̂(t1)F̂ (t2)〉0 =

∫

P1

ωF (qz, qz), q = et2−t1 .

Here ω̂ and F̂ are observables corresponding to a two-form and a function on P1,
respectively. The integral is over the moduli space of gradient trajectories connecting
the point z = 0 (“north pole”) and the point z = ∞ (“south pole”) on P1. (This moduli
space may be compactified to P1.) We consider the expansion of (6.63) when t1 ≫ t2,
which corresponds to the limit q → 0.

In order to understand this limit, it is instructive to look at the moduli space M0,∞,2

of triples (t1, t2,Φ(t)), where t1 > t2 are points on the affine line R, and Φ(t) : R → P1 is
a gradient trajectory such that Φ(−∞) = 0,Φ(+∞) = ∞, modulo the diagonal action
of R,

(t1, t2,Φ(t)) → (t1 + u, t2 + u,Φ(t+ u)), u ∈ R

(see Section 2.6 of Part I). This moduli space is compactified to M0,∞,2 in a way similar
to the stable map compactification for the moduli space of holomorphic maps (see [12]).

We have a map M0,∞,2 → R>0 taking (t1, t2,Φ(t)) to t1 − t2. Then the moduli space
over which we integrate in (6.63) is just the fiber of this map over t1 − t2.

We also compactify R>0, which is isomorphic to the open interval (0, 1), by the closed
interval [0, 1], adding points at t = 0 and t = +∞. Then we have a map M0,∞,2 → [0, 1].
The limit of the integral (6.63) when t1 − t2 → +∞ (which corresponds to the point
1 ∈ [0, 1]) may be described in terms of integration over the fiber of the latter map over
1 ∈ [0, 1].

The result is the identity (5.6) presented in Section 5.2 of Part I. The expansion
of the integral (6.63) as q → 0 is expressed as the sum of three terms: the first one
involves the expansion of the function f in the Taylor series around the point 0 ∈ P1,
the second one involves the expansion of the two-form ω in the Taylor series around
the point ∞ ∈ P1 – these are power series in q (which converge on a small disc in
the q-plane), and the third term is the logarithmic correction which involves log(q). It
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balances out the first two terms and depends on the kind of regularization used in the
first two terms.

Now, the four-point function (6.37) may be analyzed in a similar way. Here we have
the moduli space of stable maps M0,4(P

1, 1), mapping to the Deligne–Mumford moduli

space M0,4, which is isomorphic to P1 via the double ratio λ given by formula (6.36).
The integral (6.37) is over a smooth fiber of this map at some λ 6= 0, 1,∞ (recall that
this fiber is the blow-up of (P1)3 at the main diagonal, so the integral is the same as
over (P1)3). We are interested in the expansion of this integral at λ = 0. Hence it
should be described in terms of the fiber of the map M0,4(P

1, 1) → M0,4 at λ = 0.
This is in a complete analogy with the quantum mechanical situation discussed

above. Indeed, the expansion of (6.63) near q = 0 is similar to the expansion of (6.37)
near λ = 0. The map M0,4(P

1, 1) → M0,4 is the analogue of the map M0,∞,2 → [0, 1].
In the quantum mechanical case, (regularized) integrals over the fiber of the latter
map over 1 ∈ [0, 1] (corresponding to q = 0) may be used to obtain the expansion
of (6.63) leading up to the identity (5.6) of Part I. Likewise, the expansion of (6.37)
near λ = 0 may be understood in terms of (regularized) integrals over the fiber of the
map M0,4(P

1, 1) → M0,4 at 0 ∈ P1 = M0,4 (which corresponds to λ = 0). This gives
rise to an identity which is is analogous to the quantum mechanical identity (5.6) of
Part I and describes completely the OPEs Oω1(z1)Oω2(z2) and Oω3(z3)Of (z4). We have
focused above on the logarithmic terms of these OPEs, which are obtained from the
logarithmic divergences of the integrals over the fiber at λ = 0. We will discuss the full
identity and the full OPEs that it describes in the follow-up paper [28].

6.7.7. Computation of the instanton corrections using the holomortex operators. In Sec-
tion 4.7 we have reviewed the description [25] of the sigma model with the target P1

as a deformation of a free field theory by the holomortex operators. This description
gives us an alternative way for computing the correlation functions and the OPE in the
sigma model on P1. Here we show how this works on the example of the OPE of two
simplest evaluation observables. Let f be a smooth function on P1, and ω a smooth
two-form on P1. They correspond to the dimension zero observables,

Of (z, z) = f(x(z), x(z)) , Oω(z, z) = ω(x(z), x(z))ψ(z)ψ(z).

Here we use the logarithmic variables x, x on P1 and the corresponding variables p, ψ, π
and their complex conjugates.

We wish to calculate their OPE

Of (z, z)Oω(0, 0),

using the holomortex description of the sigma model on P1.
Let us compute the one-instanton correction to this OPE and try to reproduce the

last term in (6.58), containing the logarithm. One-instanton correction corresponds to
including one holomortex operator of each kind, Ψ+(w+, w+) and Ψ−(w−, w−), given by
formula (4.23), and integrating over their positions, w+ and w− (note that according to
the definition, Ψ± transforms as a (1, 1)-form on the worldsheet, so that this integration
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is intrinsically defined). Thus, we need to study the integral

(6.64) q

∫
d2w+d

2w−

(
Of (z, z)Oω(0, 0)Ψ+(w+, w+)Ψ−(w−, w−)

)
,

where
Ψ±(z) = e±i

R z Pπ(z)π(z), P = p(w)dw + p(w)dw.

Inside the brackets, we take the ordinary, that is, perturbative OPE of the operators
involved in the framework of the free field theory. (The instanton corrections come
about due to the insertion and integration of the holomortex operators.)

The expression in brackets is given by the formula

(6.65) f(x(z), x(z))ω(x(0), x(0))ψ(0)ψ(0)e
i

R w+
w−

P
π(w+)π(w+)π(w−)π(w−).

We have the OPE

x(z)e
i

R w+
w−

P
= log

(
z − w+

z − w−

)
e
i

R w+
w−

P
+ :x(z)e

i
R w+
w−

P
: ,

and similarly for x(z). Therefore for any function f(x(z), x(z)) we have

f(x(z), x(z))e
i

R w+
w−

P
= :f(x̃(z), x̃(z))e

i
R w+
w−

P
: ,

where

x̃(z) = x(z) + log

(
z −w+

z −w−

)
,

x̃(z) = x(z) + log

(
z −w+

z −w−

)
.

The fermionic part of (6.65) is given by the formula

ψ(0)ψ(0)π(w+)π(w+)π(w−)π(w−) ∼
∣∣∣∣

1

w+
− 1

w−

∣∣∣∣
2

π(0)π(0).

Thus, (6.65) is equal to

:f(x̃(z), x̃(z))ω(x̃(0), x̃(0))e
i

R w+
w−

P
:

∣∣∣∣
1

w+
− 1

w−

∣∣∣∣
2

π(0)π(0).

Now we need to expand f(x̃(z), x̃(z)) at z = 0. Since we wish to reproduce the last
term in (6.58), we need to take the |z|2 coefficient in the expansion, which is equal to

(∂x∂xf)(x̃(0), x̃(0))
∂x̃

∂z

∂x̃

∂z

∣∣∣∣∣
z=0

= (∂x∂xf)(x̃(0), x̃(0))

∣∣∣∣
1

w+
− 1

w−

∣∣∣∣
2

plus terms that are less singular (in the variable a introduced below) as w+, w− → 0,
which do not contribute to the divergent part of the integral that we are trying to
calculate; hence we ignore them in this computation.

Substituting this back into the integral (6.64), we obtain that the naive |z|2-term in
the OPE is given by the integral

q|z|2π(0)π(0)

∫
d2w+d

2w−

∣∣∣∣
1

w+
− 1

w−

∣∣∣∣
4

:ω(x̃(0), x̃(0))(∂x∂xf)(x̃(0), x̃(0))e
i

R w+
w−

P
: .
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Let us set u = ex(0), v = eex(0) and make the following change of integration variables
(note that u is fixed in the integral):

(w+, w−) 7→
(
a = w+w− , v = u

w+

w−

)
.

Accordingly, we now write everything in terms of the algebraic coordinate X = ex on

P1 and use the corresponding fermionic variables, which we will denote by ψ′, ψ
′
, π′, π′.

Note that we have π′(0)π′(0) = 1
|u|2

π(0)π(0) and that

ω(x̃(0), x̃(0))d2x̃(0) = ω(x̃(0), x̃(0))
d2v

|v|2 .

Therefore in terms of our new variables we obtain the following integral:

q|z|2π′(0)π′(0)

∫
d2a

|a|2 d
2v|u− v|4 :ω(v, v)(∂v∂vf)(v, v)e

i
R au/v

av/u
P
: .

This integral diverges as a→ 0. As we explained before, the |z|2 log |z|2 term in the

OPE should be equal to the prefactor in front of the divergent term d2a
|a|2 . This prefactor

is equal to (note that in the limit a→ 0 the exponential operator drops out)

qπ′(0)π′(0)

∫
d2v|u− v|4ω(v, v)(∂∂f)(v, v) = q (ℓ(ω∂∂f)π′π′)(0),

which coincides with the last term in formula (6.58). Thus, we have reproduced a one-
instanton logarithmic correction to the OPE using the holomortex calculus! In a similar
way one can reproduce the logarithmic term in the OPE (6.57) (for the derivation of
the first term in (6.57), see [25], Section 3.4).

7. Gauged sigma models

The sigma models presented above can be treated, in a certain restricted sense, as the
quantum mechanical models on the loop space. However, the Floer function f , as we
have discussed, is only-well defined on a universal cover of the loop space. In addition,
it is not a Morse–Novikov function, for its critical points are not isolated. It is, however,
a Morse–Bott–Novikov function. In this section we shall consider a deformation of the
standard sigma model, which can be described using the Morse–Novikov functions, i.e.,
the functions on the covering space with isolated critical points. This deformation is
the sigma model in a background gauge field (we will see below for which gauge group).
Note that in this deformation we do not integrate over the gauge field, so it only plays
a classical role. But at the end of the section we will also comment on the models
obtained by integrating over the gauge field.

7.1. Quantum mechanical models. As before, we first look at the corresponding
quantum mechanical models. Let us start with the following simple observation con-
cerning deformations. In ordinary quantum mechanics on some phase space P the first
order action has the form

(7.1)

∫
pdq −H(p, q)dt
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The pdq part of the action is can be written, invariantly, as
∫
φ∗d−1ω, where φ : I → P

is the map of the worldline to the phase space. This term in the action does not
require additional geometric structures on the worldline. The term

∫
H(p, q)dt, which

is responsible for the non-trivial dynamics of the system, contains a one-form dt. There
are several ways to interpret dt in (7.1). We can view it as the ein-bien, i.e. defining a

metric g = dt2 on I, or as a gauge field A = dt. In the evolution operator exp
(
−TĤ

)
,

the time interval T will be interpreted as a length of the worldline in the first approach,
or as the holonomy of the gauge field in the second. In passing from one to two
dimensions both interpretations, with the metric and with the gauge field, prove useful.
Moreover, they become in a sense related.

Consider now the deformation problem. Suppose we wish to deform the Hamiltonian
H(p, q) by adding to it a small perturbation H → H + ǫh. The action (7.1) becomes

(7.2)

∫
pdq −H(p, q)dt − ǫh(p, q)dt.

Let us assume that the deformation forms a first class system with the original Hamil-
tonian, i.e., the Poisson bracket {H,h} is a linear combination of H and h. More
generally let us assume that the Hamiltonian of the model is a linear combination of
Hamiltonians Ha forming a representation R of a Lie algebra g = LieG:

[Ĥa, Ĥb] = fabc Ĥ
c,

or, classically,

{Ha,Hb} = fabc H
c.

In this case it is natural to couple Ha to a g-valued gauge field:

(7.3) S =

∫
pdq −Aa(t)H

a(p, q)dt.

The Lie algebra g acts in the phase space P by Poisson vector fields, and we assume
that this action integrates to the action of the Lie group G.

The evolution operator can be interpreted as the element P exp
∫ T
0 Adt of the Lie

group G, taken in the representation R in the Hilbert space of the model. The path
integral is invariant under the gauge transformations:

(7.4) A 7→ gAg−1 + gdg−1 , g : I → G , s.t. g(0) = g(T ) = 1 .

This is shown by performing a change of integration variables

(p(t), q(t)) 7→ g(t)(p(t), q(t)).

The main example of Part I, the quantum mechanics on P1 (i.e., P = T ∗P1) dealt
with the abelian g = R2 = LieC×. The gauge field in this case has two components
which can be normalized as: A = (αdt, βdt), the first component couples to the gradient
vector field 1

2

(
X∂X +X∂X

)
, the second component couples to the Hamiltonian vector

field i
2

(
X∂X −X∂X

)
. The time T evolution operator is equal to: qLqL, where L =

X∂X , L = X∂X , and q = e−
αT
2

+iβT
2 , q = e−

αT
2

−iβT
2 . We see that the evolution operator

(and correlation functions) are invariant with respect to the transformations β 7→ β +
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2π nT , for n ∈ Z. The conceptual reason for this invariance is the gauge transformation
(7.4),

(7.5) g(t) = e
2πint

T .

Clearly, α, or, more precisely, αT , is a gauge invariant.

7.2. Deformations of sigma models. Now let us move on to the sigma model case.
First of all, we wish to describe invariantly the analogue of the α, β-system above.
The phase space corresponding to the sigma model with the target space X and the
worldsheet Σ = S1 × R1 is P = T ∗LX, the cotangent bundle to the loop space. The

coordinates are
(
Xa(σ),X

a
(σ)
)
, the X-valued functions on S1, and the momenta are

the one-forms
(
Paσ(σ), P aσ(σ)

)
. The Hamiltonian is

Hα,β = α

∫

S1

(
Paσi∂σX

a − P aσi∂σX
a
)
dσ

+ β

∫

S1

(
Paσ∂σX

a + P aσ∂σX
a
)
dσ.(7.6)

Now let us write the analogue of the action (7.2):

(7.7) S =

∫

R1

dt

[∫

S1

(
Paσ∂tX

a + P aσ∂tX
a
)
dσ −Hα,β

]

=

∫

R1×S1

dtdσ
[
Paσ (∂tX

a − iα∂σX
a − β∂σX

a) + P aσ

(
∂tX

a
+ iα∂σX

a − β∂σX
a
)]
.

Using the complex coordinate z = αt− i (σ + βt) on Σ, the metric

(7.8) g = dzdz = α2dt2 + (dσ + βdt)2

and the redefinitions Paσ → − i
2paz, P aσ → − i

2paz, we show that up to the topological
terms, the action (7.7) becomes the bosonic part of the action (2.5). The parameters
α, β have been traded for the metric on the worldsheet Σ. Note that β is both a part of
the two-dimensional metric and a component of a one-dimensional gauge field, which
is nothing but the Kaluza-Klein gauge field corresponding to the compactification from
two to one dimension. Since we study the finite time evolution t ∈ I = [0, T ], one
can perform the coordinate transformation σ → σ + 2π ntT , n ∈ Z, which is trivial
at the endpoints. This amounts to acting on β via β 7→ β + 2π nT , which is a gauge
transformation (7.5).

In what follows we shall denote by Hα,β the full Hamiltonian corresponding to (2.5),
including the fermions.

Now suppose the target space X of our sigma model is the Kähler manifold with the
holomorphic C×-action, so that the corresponding U(1) subgroup acts isometrically.
We can then define a C×-action on the loop space with the isolated fixed points. These
fixed points are the constant loops which land at the fixed points of the C×-action in
X.

In this case we can deform theHα,β Hamiltonian by the one generating the C×-action
on the target space. Let us discuss the Lagrangian aspects of this deformation.



INSTANTONS BEYOND TOPOLOGICAL THEORY II 85

Let v be the holomorphic vector field on X, generating a holomorphic C×-action. A
holomorphic vector field can be multiplied by an arbitrary complex constant v → µv.
When this vector field generates C× we can fix its normalization by requiring that
i (v − v) generates U(1) = R/2πZ.

Consider the two-dimensional sigma model with the target space X, on the world-
sheet Σ = R × S1, with the following action, generalizing that in (7.7), (2.5):

(7.9) S =

∫

Σ

(
−ipa (∂zX

a + µva) − ipa
(
∂zXa + µva

)
+

+ iπa

(
Dzψ

a + µDbv
aψb
)

+ iπa

(
Dzψ

a + µDbv
aψb
))

d2z +

∫

Σ
τabdX

a ∧ dXb,

where µ ∈ C is a complex constant. The action (7.9) describes the quantum mechan-
ics on the loop space LX with the Hamiltonian Hα,β,γ,δ = Hα,β + h

eα,eβ
, where the

Hamiltonian h
eα,eβ

is given by:

(7.10) h
eα,eβ

= α̃

∫

S1

(
Paσv

a(X(σ)) + P aσv
a(X(σ)

)
dσ+

iβ̃

∫

S1

(
Paσv

a(X(σ)) − P aσv
a(X(σ))

)
dσ,

where α̃, β̃ ∈ R, µ = α̃+ iβ̃.
The equations of motion are the following modification of the equations of holomor-

phic maps:

(7.11) ∂zX
a + µva = 0.

The path integral localizes on the moduli space of solutions of these equations, in the
same way as in the ordinary sigma model.

Let us recapitulate. The loop space LX for Kahler X with U(1)-isometry has a
natural G = C× × C×-action. The first C× has been already exploited, its U(1) part
is the rotation of the loops. The second C× translates the loops in target space using
the target space C×-action. Thus, the quantum mechanical Hamiltonian (7.10) on LX

has four parameters, (α, β, α̃, β̃). The action

S =

∫
P · ∂tX dtdσ −

(
Hα,β + h

eα,eβ

)
dt,

given by the expression (7.9), is well-defined on the cylinder S1×R1. However, we wish
to study sigma models on more general worldsheets. To this end we need to find a way
to write the v-dependent couplings in (7.9) is a covariant way. Since the vector field v
generates a symmmetry of the target space, it is natural to couple it to a gauge field
on the worldsheet. In other words, we replace

(∂zX
a + µva)

by

∇zX
a := ∂zX

a +Azv
a,
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where Az is the (0, 1)-component of the gauge field. Since we don’t take a quotient of
X by the action C×, the gauge field is to be viewed as a background field, just like the
worldsheet complex structure:

(7.12) S = −
∫

Σ
d2z

(
ipa∇zX

a + ipa∇zXa
)

+ fermions +

∫

Σ
τabdX

a ∧ dXb.

7.3. Gauge group. What is the gauge group corresponding to the action (7.9)? Is it
C×, R, or U(1)? In other words, what are the gauge transformations of A = Azdz+Azdz
leaving invariant the correlation functions in the theory with the action (7.9)?

We are dealing with the twisted supersymmetric model. That model has a non-
anomalous U(1)L × U(1)R symmetry,

(7.13) Az 7→ Az + ∂zf , Az = A∗
z 7→ Az + ∂zf ,

for complex valued f . The transformation (7.13) is accompanied by the transformation
X 7→ exp(f · v)X, which is a z, z-dependent diffeomorphism of the target space. 15.

Thus, on a compact Riemann surface, the correlation functions in our model are
functions on the Jacobian, Jac(Σ), which we identify with the quotient of the space of
(0, 1)-forms Az by the action of the group of C×-gauge transformations:

(7.14) Az 7→ Az + ∂zf

Note that (7.13) is not a C×-gauge transformation of the full connection A = Azdz +
Azdz. Indeed, the C×-gauge transformation would transform Az 7→ Az + ∂zf , in ad-
dition to (7.14), in variance with (7.13). That transformation cannot be accompanied,
for general complex valued f , by a diffeomorphism of the target space and does not,
therefore, define a symmetry of the theory. In fact, by using (7.13) we can make A into
a unitary flat connection. So, in the end, the sigma model is naturally coupled to the
U(1)-flat connection. This result seems surprising and a little bit counterintuitive.

In order to understand it better, let us look at one example. We take X = CP1,
and Σ = T 2, the torus which is the quotient of the complex line by the lattice: z ∼
z + 2πi (m+ nτ), m,n ∈ Z, where

(7.15) τ = (β + iα)
T

2π
.

The vector field v on X is our friend X∂X +X∂X . The equations of motion read

(7.16) ∂zX +AzX = 0.

We may, and will, assume that Az = µ ∈ C is a constant. Let us perform a gauge
transformation (in fact, we should rather call it a change of variables in the path
integral):

(7.17) X(z, z) 7→ emz+mzX(z, z),

15Note that in the purely bosonic sigma models, which we shall study in Part III, the C×-gauge
invariance is broken generically by anomaly down to the U(1) gauge invariance. The issue here is the
definition of the measure in the path integral. In the bosonic model the chiral measure is defined using
a holomorphic top form which may be not invariant under the C×-action. Under the U(1)-action the
holomorphic top form is multiplied by the phase, which may cancel the similar phase of the conjugate
anti-chiral measure.
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accompanied by the change µ 7→ µ − m. The periodicity of the C×-valued function
requires:

2πi (m −m) = 2πim, m ∈ Z,

2πi (mτ − mτ ) = 2πin, n ∈ Z,(7.18)

which gives

(7.19) m =
n−mτ

τ − τ
, m, n ∈ Z.

So we see that the moduli space of physically inequivalent µ-parameters is an elliptic
curve; in particular, it is compact. This is in striking contrast with the situation in
quantum mechanics.

Indeed, the quantum mechanical analogue of the partition function of the sigma
model on the torus is the calculation of the path integral on the circle, i.e., the trace
of the evolution operator:

(7.20) Z(T, α, β) = Tr e−T(αHR×+βHU(1)).

We denote by HR× the Hamiltonian corresponding to the gradient vector field V =
−∇f , and by HU(1) the Hamiltonian corresponding to the Hamiltonian vector field

U = ω−1df . As the latter generates an action of U(1), the partition function (7.20) is
invariant under the shifts β → β + n for n ∈ Z. This is analogous to the n-dependent
shifts in (7.19). However, the gradient vector field generates an action of the group
R×, therefore no periodicity in the T -dependence16 is expected. The two-dimensional
result (7.19), however, predicts a periodicity of a new kind: T → T +m, m ∈ Z. It is
now time to explain the origin of this mysterious symmetry.

The truth of the matter is the existence of a novel symmetry of the loop space
LX, sometimes referred to as the spectral flow. It is related to the U(1) action on X.
Namely, we define an action of Z on LX by the formula

(7.21) x(σ) 7→ gn(x(σ)) = nx(σ) = einσ · x(σ),

where eiϑ · x denotes the action of the element eiϑ ∈ U(1) on x ∈ X.
Now, let U1, U2 be the vector fields on LX generating the compact subgroup U(1)×

U(1) ⊂ G = C× × C×, U1 being the rotation of the loop, U2 coming from the U(1)
action on X. Let V1, V2 denote the generators of R× × R× ⊂ G. We claim that

g∗nV1 = V1 + nV2 , g∗nU1 = U1 + nU2.

It then follows that

(7.22) g−1
n Hα,βgn = Hα,β + nhα,β

at the quantum level. Thus, the trace of the evolution operator has an additional
Z-symmetry, leading up to two integer parameters in (7.19).

16One should not confuse the periodicity of the analytic continuation of Z(T, α, β) which may occur
due to the integrality of the spectrum of HR× – here we are talking about the real values of T .
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As a side remark, note that we may define the space LXϑ of twisted loops which
satisfy

(7.23) x(σ) ∈ LXϑ , x(σ + 2π) = eiϑ · x(σ).

Then, (7.21) generalizes to the action of R on ∪ϑ∈S1LXϑ, covering the standard action
of R on S1 = R/Z: x(σ) 7→ ϑx(σ) = eiϑσ · x(σ). While we do not really need these
spaces here, they give rise to the twisted sectors in the space of states in the models
obtained by gauging away the group U(1) which will be discussed in Section 7.6.

We conclude this section with one further remark. One may wonder why the coupling
to the vector fields V1, U1 is most naturally described using the two-dimensional metric
while the coupling to the vector fields V2, U2 is described using the two-dimensional
gauge field. The reason is that V1, U1 are actually a part of a much larger Lie algebra
acting on the loop space, the complexification of the Virasoro algebra (with trivial
central charge in our supersymmetric case), while V2, U2 are the generators of the
Cartan subalgebra of the affine current algebra û(1)L × û(1)R (with the trivial level).
The former usually couples to the two-dimensional metric while the latter to the two-
dimensional gauge field.

7.4. Singularities of the gauge fields. We shall now show that we have to allow the
gauge fields with singularities. Indeed, take our starting example, Σ = R1×S1. We can
interpret (7.9) as (7.12) with the particular gauge field A = dt. If we compactify the
cylinder by adding two points, we get a two-sphere S2, with the coordinate z = e−t+iσ

(note that this z differs from the coordinate z used earlier in this section). The points
we have added are z = 0 and z = ∞. The gauge field

(7.24) A = −2dt =

(
dz

z
+
dz

z

)

has two singular points, at z = 0 and z = ∞. We can generalize (7.24) to

(7.25) A =

(
α
dz

z
+ α

dz

z

)
, α ∈ C.

The action (7.12) forces the map X(z, z) to obey:

(7.26) ∂zX
a +

α

z
va(X) = 0.

The condition of non-singularity near z = 0 or z = ∞ implies that

va (X (z = 0)) = 0, va (X (z = ∞)) = 0.

Thus the map X(z, z) sends the points z = 0 and z = ∞ to the fixed points of C×-
action on X. Consider the component Ma,b;d of the moduli space of such maps, for
which X (z = 0) = a, X (z = ∞) = b. In addition the component of the moduli space
is labeled by d =

[
X(S2)

]
∈ H2(X,Z). The dimension of the component Ma,b;d is equal

to

(7.27) dimMa,b;d = n−(b) − n+(a) +

∫

d
c1(X),
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where c1(X) is the first Chern class of X, and n± are the positive and negative Morse
indices of the critical points a, b. In order to understand (7.27) we should interpret the
dimension of Ma,b;d as the index of ∂-operator, acting on the space of linearized maps.

As we have already discussed, the points a, b, viewed as constant loops landing at
a, b, should be viewed as the critical points of Morse–Novikov function on the loop
space LX obtained by deformation of the Morse–Bott–Novikov function (2.15),

(7.28) f(γ̃) =

∫

D
γ̃∗(ωK) −

∫

S1

γ∗(H)dt,

where H is the Morse function on X, whose gradient vector field is v; it coincides with
the Hamiltonian of the U(1) action (here we use the notation introduced in Section 2.4).

This function is well-defined on the universal cover L̃X of LX. Its critical points are

the preimages in L̃X of the constant maps γ : S1 → P1 landing at the critical points of
H.

7.5. Sigma model on P1 in the background of a gauge field. We consider as an
example of the models studied above the supersymmetric sigma model with the target
P1 in the infinite radius limit, coupled to the vector field v = X∂X +X∂X , where X is
the algebraic coordinate on P1 (as studied in Part I) and the connection (7.25), where
we will assume that α is real, and −1 < α < 0. As discussed above, this model may
be recast as a quantum mechanical model on the loop space P1 with the Morse–Bott–
Novikov function (2.15) deformed to the Morse–Novikov function (7.28). The equation
of gradient trajectory is now (7.26), which we rewrite as follows:

(7.29) ∂zX +
α

z
X = 0.

Let us describe the space of “in” states of this model using the general results of

Section 3.6. Let L̃P1
0 (resp., L̃P1

∞) be the ascending manifolds in L̃P1 consisting of
(homotopy classes of) maps D → P1 satisfying (7.29) and such that 0 ∈ D 7→ 0 ∈ P1

(resp., ∞ ∈ P1). We denote by L̃P1
0,m and L̃P1

∞,m,m ∈ Z, their translates with

respect to the group π1(LP1) = Z acting on L̃P1. Let H̃0,m and H̃∞,m,m ∈ Z, be the
spaces of semi-infinite delta-forms supported on these ascending manifolds. Introduce
the big space of states

(7.30) H̃ =
∏

m∈Z

H̃0,m ⊕
∏

m∈Z

H̃∞,m.

The space H of “in” states of our model is non-canonically isomorphic to the space of
vectors

(Ψ0,m,Ψ∞,m)m∈Z ∈ H̃

satisfying the equivariance condition (3.36),

(7.31) Ψ̃0,m = qΨ̃0,m+1, Ψ̃∞,m = qΨ̃∞,m+1.

This condition determines all Ψ0,m,Ψ∞,m,m ∈ Z, from Ψ0,0,Ψ∞,0. Therefore we may
identify

H ≃ H̃0,0 ⊕ H̃∞,0.
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However, there are non-trivial extensions at play here, similar to those described in Sec-
tion 6.5, leading up to the non-diagonalizability of the Hamiltonian and the logarithmic
mixing of operators.

Let us now describe the spaces H̃0,0 and H̃∞,0 more precisely.

7.5.1. The space H̃0,0. Recall that H̃0,0 is the space of semi-infinite delta-forms sup-
ported on the maps D → P1 satisfying (7.29) and such that 0 ∈ D 7→ 0 ∈ P1. Maps of
this form may be written as follows:

(7.32) X(z, z) = |z|−α
∑

n≤0

γnz
−n,

where the series converges on a disc of small radius (recall that −1 < α < 0). Hence

we obtain natural coordinates γn, n ≤ 0, on L̃P1
0,0. The transversal coordinates are

γn, n > 0.

The space H̃0,0 may be modeled on the Fock representation of the chiral-anti-chiral
βγ-bc system associated with the open subset C0 = P1\∞ of P1. It is generated by the
fields

β(z) =
∑

n∈Z

βnz
−n−1, γ(z) =

∑

n∈Z

γnz
−n,

b(z) =
∑

n∈Z

bnz
−n−1, c(z) =

∑

n∈Z

cnz
−n,

and their complex conjugates. We have the standard OPEs

γ(z)β(w) =
1

z − w
+ :γ(z)β(w): ,(7.33)

c(z)b(w) =
1

z − w
+ :c(z)b(w): .

We set H̃0,0 = F0 ⊗ F0, where F0 is the Fock representation of the chiral βγ-bc
system, generated by a vacuum vector |0〉 such that

γn|0〉 = cn|0〉 = 0, n > 0, βm|0〉 = bm|0〉 = 0, m ≥ 0.

Therefore we have

F0 = C[γn, βm]n≤0,m<0 ⊗ Λ[cn, bm]n≤0,m<0 · |0〉.

The anti-chiral counterpart F0 is generated by the vector |0〉 satisfying analogous rela-
tions with respect to the anti-chiral generators.

7.5.2. Digression: chiral de Rham complex of P1. Likewise, we have the Fock represen-
tation F∞ of the chiral βγ-bc system associated with the open subset C∞ = P1\0 of P1.

It is generated by the vacuum vector |̃0〉 under the action of the Fourier coefficients of

the fields β̃(z), γ̃(z), b̃(z), c̃(z), satisfying the same relations as above, so that

F∞ = C[γ̃n, β̃m]n≤0,m<0 ⊗ Λ[c̃n, b̃m]n≤0,m<0 · |̃0〉.
F∞ is its anti-chiral counterpart.
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The two open sets, C0 and C∞, overlap over C×. On this overlap we also have the
chiral algebra which we denote by F× and we have two embeddings

(7.34) F0 = C[γn, βm]n≤0,m<0 ⊗ Λ[cn, bm]n≤0,m<0 · |0〉 →֒
C[γ−1

0 ] ⊗ C[γn, βm]n<0,m<0 ⊗ Λ[cn, bm]n≤0,m<0 · |0〉 = F×,

(7.35) F0 = C[γ̃n, β̃m]n≤0,m<0 ⊗ Λ[c̃n, b̃m]n≤0,m<0 · |0〉 →֒
C[γ̃−1

0 ] ⊗ C[γ̃n, β̃m]n<0,m<0 ⊗ Λ[c̃n, b̃m]n≤0,m<0 · |0〉 = F×,

The general formulas (4.6) give us transformation formulas between the fields with
and without tildes. We have

γ̃(z) = γ(z)−1 = γ−1
0

1

1 + γ−1
0

∑
n 6=0 γnz

−n
, c̃(z) = −γ(z)−2c(z),

β̃(z) = −:γ(z)2β(z): − 2γ(z):b(z)c(z): , b̃(z) = γ(z)2b(z).

These formulas give rise to an identification of two versions of F×, one in (7.34) and
the other in its counterpart (7.35) with the tildes. This in turn allows us to “glue”
together F0 and F∞ giving us the usual definition of the chiral de Rham complex on
P1 [40].

The cohomologies of the chiral de Rham complex on P1 (in the Cech realization) are
equal to the cohomologies of the two-step complex

(7.36) F0 ⊕ F∞ → F×,

with the differential being the sum of the embeddings (7.34) and (7.35).

7.5.3. The space H̃∞. Naively, one might expect that the space H̃∞ is equal to F∞ ⊗
F∞. But equation (7.29) written with respect to the coordinate Y = X−1 around the
point ∞ ∈ P1 has the form

∂zY − α

z
Y = 0.

A solution Y (z, z) of this equation such that Y (0, 0) = ∞ has the form

Y (z, z) = |z|α
∑

n<0

γ̃nz
−n.

Thus, unlike the solution (7.32), it involves only the negative modes of γ̃(z), not the

zero mode. Therefore we obtain that H̃∞ = F1
∞ ⊗ F

1
∞, where F1

∞ is generated by a

vacuum vector |̃1〉 satisfying

(7.37) γ̃n |̃1〉 = c̃n |̃1〉 = 0, n ≥ 0, β̃m |̃1〉 = b̃m |̃1〉 = 0, m > 0.

Hence we have

F1
∞ = C[γ̃n, β̃m]n<0,m≤0 ⊗ Λ[c̃n, b̃m]n<0,m≤0 · |̃1〉.

Thus, F1
∞ is different from F∞; in fact, we have a short exact sequence

(7.38) 0 → F∞ → F× → F1
∞ → 0,
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so that we have

F1
∞ ≃ F×/F∞.

The anti-chiral counterpart F
1
∞ is defined in a similar way.

7.5.4. Space of states. We conclude that the space of states of our model is non-
canonically isomorphic to the direct sum

(7.39) (F0 ⊗ F0) ⊕ (F1
∞ ⊗ F

1
∞).

However, the canonical structure is more complicated.
Let us look again at the ascending manifolds of the Morse–Novikov function. There

is one of them in each complex “semi-infinite” dimension, and the structure of their

closures is the following: the closure of L̃P1
0,n contains L̃P1

∞,n (as a complex codimen-

sion one stratum), and the closure of L̃P1
∞,n contains L̃P1

0,n+1 (also in codimension
one). This leads to non-trivial extensions between the spaces of delta-forms supported
on consecutive strata; namely, there are extensions

0 → H̃∞,n →? → H̃0,n → 0,

0 → H̃0,n+1 →? → H̃∞,n → 0,

which are obtained similarly to the the extensions of the spaces of delta-forms in the
quantum mechanical models discussed in detail in Part I.

Thus, the structure of the big space of states H̃ is more complicated: instead of the
direct sum decomposition (7.30), we have a space that has a canonical filtration such

that the alternating consecutive quotients are isomorphic to H̃0,n and H̃∞,n, n ∈ Z. The
space of states of our model is then obtained by imposing the equivariance condition
(7.31). The non-triviality of the above extensions leads to the non-diagonalizability of
the Hamiltonian, as we will see in the next subsection.

We remark that the above semi-infinite stratification of L̃P1 (and L̃X for a general
flag variety X) and the corresponding spaces of holomorphic delta-forms have been
considered in [19]. These spaces are representations of the affine Kac-Moody algebra
ĝ with level 0, which are closely related to the Wakimoto modules. In the N = (0, 2)
supersymmetric version the level 0 algebra ĝ gets replaced by the ĝ at the critical level
−h∨ (see [19, 23]). The corresponding models are closely related to the geometric
Langlands correspondence. This will be discussed in Part III of this article.

7.5.5. Action of the Hamiltonian. We now compute the action of the Hamiltonian using
as the prototype the formulas obtained in the quantum mechanical models in Part I.

According to the results of Section 4.8 of Part I, if we choose an identification of the
space of states with the direct sum of spaces of delta-forms on the ascending manifolds
Xα of the Morse function, then the naive Hamiltonian (which is the Lie derivative with
respect to the gradient vector field) will get a correction term given by the formula (up
to some constant factors, which we will ignore)

(7.40)
∑

α,β

δαβ ⊗ δαβ .
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Here the summation is over pairs of adjacent strata such that Xβ is a codimension one

stratum in the closure ofXα, and δαβ and δαβ are the holomorphic and anti-holomorphic
Grothendieck–Cousin (GC) operators acting between the spaces of holomorphic and
anti-holomorphic delta-forms on the two strata. Their definition is spelled out in Section
4.8 of Part I.

Formula (7.40) suggests that if we identify the space of states of our model with the
direct sum (7.39), then the naive Hamiltonian L0 +L0 will get a correction term equal
to

(7.41) δ(0,0),(∞,0) ⊗ δ(0,0),(∞,0) + δ(∞,0),(0,1) ⊗ δ(∞,0),(0,1),

where the δ’s are the infinite-dimensional analogues of the GC operators, which we will
now compute explicitly.

We start with the first summand. Its chiral factor, the operator

(7.42) δ(0,0),(∞,0) : F0 → F1
∞,

is supposed to take a holomorphic delta-form supported on the stratum L̃P1
0,0 and

extract its “polar part” along the codimension one stratum L̃P1
∞,0, as in Section 4.8

of Part I. Therefore this operator is equal to the composition

F0 →֒ F×
։ F1

∞,

where the first map is just the embedding (7.34), and the second map is the map in
the short exact sequence (7.38). According to (7.38), the latter map is an operator
S∞ : F× → F1

∞ whose kernel is equal to F∞. (The operator δ(0,0),(∞,0) is defined
similarly.) We now need to find the operator S∞.

7.5.6. Friedan–Martinec–Shenker bosonization. We will show that the operator S∞
arises naturally from the Friedan–Martinec–Shenker (FMS) bosonization [30], which
is a realization of the chiral βγ-system in terms of scalar fields. Recall that we are
presently considering the βγ-bc-system F∞, in which the generating fields have tildes.
But to simplify our notation, we will omit the tildes in the formulas below.

Introduce two chiral fields, u(z) and v(z) with the OPEs

u(z)u(w) = − log(z − w) + :u(z)v(w): ,

v(z)v(w) = log(z −w) + :v(z)v(w): .

The FMS bosonization formulas look as follows:

(7.43) γ(z) = eu(z)+v(z), β(z) = −:∂zv(z)e
−u(z)−v(z): .

It is easy to check that the fields β(z) and γ(z) satisfy the OPE (7.33).
Let us denote the (purely bosonic) βγ-chiral algebra by F∞,bos. Let L be the

(Minkowski) lattice chiral algebra L, generated from {enu+mv , n,m ∈ Z} under the
action of ∂zu(z), ∂zv(z) and their derivatives.

Formulas (7.43) give rise to a homomorphism F∞,bos → L. However, unlike the
well-known bosonization of fermions, this is not an isomorphism. Nevertheless, let us
invert γ(z), i.e., consider the bigger chiral algebra F

×
bos generated by γ(z)±1, β(z) and
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their derivatives. Let L0 be the subalgebra of the chiral algebra L, generated by the
one-dimensional sublattice

{en(u+v), n ∈ Z} ⊂ {enu+mv, n,m ∈ Z}
under the action of ∂zu(z), ∂zv(z) and their derivatives. Then

F×
bos ≃ L0

(see [20] for the proof). In particular, F×
bos and F∞,bos act on L.

Now let L1 ⊂ L be the subspace of L generated by {enu+(n+1)v , n ∈ Z}. Then the
vector ev ∈ L1 satisfies the relations (7.37). Thus, we obtain an embedding F1

∞,bos →֒
L1.

Consider the screening operator

S =

∫
ev(z)dz : L0 → L1.

It was proved in [20] that

KerS = F∞,bos ⊂ F×
bos = L0,

ImS = F1
∞,bos ⊂ L1.

Now let us add the fermionic bc-system Fferm generated by b(z) and c(z) and consider
the full chiral βγ-bc-system F∞ as above. We have

F× = F×
bos ⊗ Fferm = L0 ⊗ Fferm, F∞ = F∞,bos ⊗ Fferm.

Consider the operator

S∞ =

∫
ev(z)dz ⊗ 1 : L0 ⊗ Fferm → L1 ⊗ Fferm.

Then (note that the fermionic parts in F∞ and F1
∞ are the same)

KerS∞ = F∞,bos ⊗ Fferm = F∞,

ImS∞ = F1
∞,bos ⊗ Fferm = F1

∞.

Therefore we may, and will, view it as an operator acting from F× to F1
∞. Thus, we

have found an operator F× → F1
∞ whose kernel is equal to F∞. Composing it with

the embedding F0 →֒ F×, we obtain the sought-after GC operator (7.42). We conclude
that the GC operator is equal to the FMS screening operator!

7.5.7. Mystery of the FMS bosonization revealed. The FMS formulas have given us
what we were looking for, but what is the geometric meaning of these formulas? To
answer this question, let us look at the chiral algebra F× from the point of view of
the logarithmic coordinate x on C× such that γ = ex. We will denote the fields of the
corresponding chiral de Rham complex by x(z), p(z), ψ(z), π(z), and similarly for the
anti-chiral analogue. We have the OPE formulas (2.9),

x(z)p(w) =
i

z − w
+ :x(z)p(w): , ψ(z)π(w) =

i

z − w
+ :ψ(z)π(w): .
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Using the general transformation formulas (4.6) under the action of changes of vari-
ables, we find that

γ(z) = ex(z), β(z) = −i
(
:p(z)e−x(z): + :ψ(z)π(z)e−x(z):

)
,

c(z) = ex(z)ψ(z), b(z) = −ie−x(z)π(z),

Next, we make the T–duality transform of [25], Section 2.3,

p(z) 7→ ∂zU(z),

where U(z) has the following OPE with x(w):

U(z)x(w) = −i log(z − w) + :U(z)x(w): .

Then the above formulas become

γ(z) = ex(z), β(z) = −i
(
:∂zU(z)e−x(z): − :ψ(z)π(z)e−x(z):

)
,

c(z) = ex(z)ψ(z), b(z) = −ie−x(z)π(z).

Finally, observe that if we introduce an additional field φ(z) with the OPE

φ(z)φ(w) =
1

z − w
+ :φ(z)φ(w): ,

and bosonize the fermions ψ(z), π(z) by the usual formulas

ψ(z) = eφ(z), π(z) = ie−φ(z), ∂zφ(z) = −i:ψ(z)π(z): ,

then we can rewrite the above formulas as follows:

γ(z) = ex(z), β(z) = :∂z(−iU(z) + φ(z))e−x(z): ,

c(z) = ex(z)+φ(z), b(z) = e−x(z)−φ(z).

In particular, if we set u(z) = x(z) − iU(z) + φ(z), v(z) = −φ(z) + iU(z), then we
recover the FMS formulas (7.43).

Thus, the FMS formulas can be explained by extending the βγ-system to its super-
symmetric version and using the change of variables γ = ex in the corresponding chiral
de Rham complex, followed by the T–duality of [25] (see also [10] for a closely related
computation).

7.5.8. FMS screenings and holomortex operators. Now we can write the screening op-
erator S∞ in terms of the variables x(z), p(z), ψ(z), π(z). We find that

ev = e−φ+iU = −iπei
R

pdz.

Actually, we have worked above with the chiral de Rham complex on the open subset
C0 ⊂ P1, with the coordinate γ = ex. But we need to make our computation on the
open subset C∞ with the coordinate γ̃ = γ−1 = e−x. Therefore we need to replace
p 7→ −p, π → −π in the formulas, so that

ev = iπe−i
R

pdw.

Finally, we find that

S∞ = i

∫
πe−i

R

pdwdz.
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This formula expresses the GC operator δ(0,0),(∞,0) of formula (7.42) in terms of the

logarithmic coordinate on P1.
Likewise, we find that the anti-chiral operator δ(0,0),(∞,0) is given by the formula

−i
∫
πe−i

R

pdwdz. Hence the first correction term to the Hamiltonian is

δ(0,0),(∞,0) ⊗ δ(0,0),(∞,0) = −
∫
π(z)e−i

R

pdwdz ⊗
∫
π(z)e−i

R

pdwdz.

We interpret the latter integral as the integral

(7.44) −
∫
\ π(z)π(z)e−i

R

(p(w)dw+pdw)|z|2dσ :=

−
(∫

|z|=ǫ
π(z)π(z)e−i

R

(p(w)dw+pdw)|z|2dσ
)

ǫ0

,

where σ is the phase of z, regularized via the familiar Epstein–Glazer procedure.
Namely, we retain the ǫ0-term in the expansion of this integral as a function of ǫ.

Deformation of the Hamiltonian by this operator corresponds to the deformation of
the action by the integral

∫
π(z)π(z)e−i

R

(p(w)dw+pdw)d2z =

∫
Ψ−(z, z)d2z,

which is one of the two holomortex operators introduced in [25] and in Section 4.7.

7.5.9. The second holomortex. We claim that the second correction term δ(∞,0),(0,1) ⊗
δ(∞,0),(0,1) to the Hamiltonian (see (7.41)) corresponds to the second holomortex oper-
ator.

The chiral factor δ(∞,0),(0,1) is supposed to take a holomorphic delta-form supported

on the stratum L̃P1
∞,0 and extract its “polar part” along the codimension one stratum

L̃P1
0,1. The result is a holomorphic delta-form on L̃P1

0,1. The operator δ(∞,0),(0,1)

is its complex conjugate. Thus we obtain an operator H̃(∞,0) → H̃(0,1). By the q-

equivariance condition (7.31), H̃(0,1) is identified with H̃(0,0) up to multiplication by q.
Therefore we obtain an operator

H̃(∞,0) → H̃(0,0).

To compute this operator, we observe that we have a basic symmetry in our problem,
reversing the two critical points 0 and ∞. It acts by γ 7→ γ−1 = γ̃, or x 7→ −x.
The operator δ(∞,0),(0,1) ⊗ δ(∞,0),(0,1) may be obtained from δ(0,0),(∞,0) ⊗ δ(0,0),(∞,0) by
applying this change of variables, and multiplying by q (because of the equivariance
condition). Thus, we find that

δ(0,0),(∞,1) ⊗ δ(0,0),(∞,1) = −q
∫
π(z)ei

R

pdwdz ⊗
∫
π(z)ei

R

pdwdz,

which we again interpret as the integral

(7.45) − q

∫
\ π(z)π(z)ei

R

(p(w)dw+pdw)|z|2dσ,
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regularized, as above, via the Epstein–Glaser procedure.

We conclude that the naive Hamiltonian acquires the correction equal to the sum of
(7.44) and (7.45). This corresponds to the deformation of the action of the free theory
with the target C× by the holomortex operators∫

π(z)π(z)
(
e−i

R

(p(w)dw+pdw) + ei
R

(p(w)dw+pdw)
)
d2z =

∫
(Ψ−(z, z) + qΨ+(z, z))d2z.

By rescaling the different summands in the space of states, we can rewrite the integrand
as q1Ψ

+(z, z)+ q2Ψ
−(z, z), where q1q2 = q. If we choose q1 = q2 = q1/2, then we obtain

the action of the sigma model on P1 found in [25] and reviewed above in Section 4.7.

Let us summarize. We have adapted the quantum mechanical formulas from Part I
to compute the correction terms to the Hamiltonian of the sigma model on P1 coupled
to the vector field v. These correction terms are given by the infinite-dimensional
analogues of the Grothendieck–Cousin operators corresponding to adjacent semi-infinite

cells in L̃P1. We have found that they may be expressed as the screenings arising in the
FMS bosonization, which, in turn, coincide with the holomortex operators from [25]
and Section 4.7. Thus, we obtain that the Hamiltonian of our model is equal to the
deformation of the Hamiltonian of the free theory on C× by the holomortex operators,
as expected.

7.5.10. Cohomology of the supercharges. We can also use the quantum mechanical for-
mulas from Part I, Section 4.9, to derive the action of the supercharges of the sigma
model on P1. The total supercharge splits as the sum of two terms Q+Q, where (up
to a factor of −i)

Q =

∫
ψpdz +

∫
\
(
qei

R

P − e−i
R

P
)
πdz,

Q =

∫
ψpdz +

∫
\
(
qei

R

P − e−i
R

P
)
πdz.

These are the supercharges found in [25]. The cohomology of Q + Q is equal to the
quantum cohomology of P1, that is, H0 = H2 = C and H i = 0 for i 6= 0, 2. In [25]
we have also computed the cohomology of the right-moving supercharge Q and found
that we obtain the same answer (with the non-trivial cohomology occurring in degrees
0 and 1 with respect to the grading associated with Q).

Finally, let us compute the cohomology of the perturbative version of Q, that is,
when we set q = 0. Then the term q

∫
\ ei

R

Pπdz will disappear. The cohomology of the
resulting complex reduces to the cohomology of the two-step complex

F× S∞−→ F1
∞.

Because of the exact sequence (7.38), this complex has the same cohomology as the
complex (7.36), which is the Cech complex computing the cohomology of the chiral
de Rham complex of P1. Thus, we conclude that the cohomology of the right-moving
supercharge Q in the perturbative regime is isomorphic to the chiral de Rham complex
of P1, in agreement with the prediction of [37, 56]. (The same result was obtained in
[25] in a different way. See also [10, 18, 39, 33] for related work.) When we include
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the instantons, we turn on a non-zero parameter q and hence obtain an extra term
q
∫
\ ei

R

Pπdz in the differential. Because of this, the cohomology shrinks to the quantum
cohomology of P1.

Similar results may be obtained for other toric varieties, along the lines of the above
analysis and [25].

In Part III of this paper we will consider the N = (0, 2) supersymmetric sigma models
in the infinite radius limit. (We have studied the corresponding quantum mechanical
models in Part I, Section 6.4.) For the target manifold P1, we will find, by methods
similar to the ones used above, that cohomology of the (right-moving) supercharge is,
perturbatively, equal to the cohomology of the chiral algebra of differential operators of
P1, the purely bosonic version of the chiral de Rham complex [32]. This is in agreement
with [56]. When we include the instantons, the cohomology becomes identically zero,
so this model has spontaneously broken supersymmetry. This agrees with the results
of [57, 50] obtained by other methods. In Part III we will also obtain similar results for
the N = (0, 2) supersymmetric sigma model on the flag manifolds of simple Lie groups,
which, like the model on P1, possess affine Kac–Moody algebra symmetry of critical
level k = −h∨ [19, 23].

7.6. Gauging the Lie group symmetry. Let X be a Kahler manifold with the iso-
metric action of a Lie group G. We can gauge the infinite radius limit of the sigma
model on X described above to obtain a sigma model on X/G (in the infinite ra-
dius limit). To this end we enlarge the set of fields by adding the gauge multiplet:
(A,Ψ, φ, φ, η, χ,H), on which the Q-operator acts as follows:

QA = Ψ , QΨ = dAφ , Qφ = 0

Qφ = η , Qη = [φ, φ]

Qχ = H , QH = [φ, χ].

We then write the gauged sigma model action as follows:

S = S0 + Q·
(∫

Σ
tr (χ · (FA + µ(x, x)ω)) + tr

(
Ψ ⋆ dAφ

)
+ tr

(
η[φ, φ]

)

+ πiw
(
∂̄wx

i +AawV
i
a(x)

)
+ πiw

(
∂wx

i +AawV
i
a (x)

)

+ Gij
(
πiwpjw + piwπjw + Γ -terms

)
+ tr (χH)

)
.

The study of these models is beyond the scope of this paper (another model with
gauge symmetry, the four-dimensional Yang–Mills theory, will be discussed in the next
section). We note, however, that they may be analyzed following the same methods
that we have used in the study of the ordinary sigma models in the infinite radius
limit, in the preceding sections. In particular, the space of states of this model may be
described as certain extensions of spaces of delta-forms on semi-infinite strata in the
universal coverings of the loop space, as well as the twisted loop spaces, introduced in
Section 7.3.

The correlation functions are given by integrals over the moduli spaces of twisted
maps Σ → X corresponding to holomorphic principal G-bundles P over Σ (that is,
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holomorphic sections of the associated bundle P ×
G
X), satisfying a stability condition.

In the case when the observables represent equivariant cohomology classes, we obtain
gauge theory analogues of the Gromov–Witten invariants. (Another approach to these
invariants, via K–theory, is presented in [29].) These comprise the topological sector
of the gauged sigma model. More general correlation functions, such as the correlation
functions of gauge theory analogues of the jet-evaluation observables introduced above,
will be represented by divergent integrals over these moduli spaces. Their regularization
will involve the logarithmic mixing of the type discussed in Section 6.

8. Four-dimensional gauge theory

In this section we briefly discuss the four-dimensional analogue of our constructions.
The natural venue for the instanton physics is the place where they were originally
found, namely the four dimensional gauge theory [7]. The approach of this paper,
namely, the reduction to the supersymmetric quantum mechanics, the weak coupling
limit after some redefinition of the wave-functions, and the extraction of the spectrum
of the resulting Hamiltonian from the correlation functions, which typically reduce to
finite-dimensional integrals, works in the four-dimensional case as well. However, there
is yet another interesting twist of the story: the so-called equivariant Morse theory.

The plan of this section is the following. First, we discuss the gauged supersymmetric
quantum mechanics. The analogue of the τ → ∞ limit in this theory can be performed
in several ways, and the one which is most relevant for the four-dimensional gauge
theory will be reviewed. Then we briefly introduce the N = 2 twisted superfields, and
write the Lagrangian of the theory. In the limit τ → ∞ the path integral becomes
the sum of integrals over finite-dimensional moduli spaces of instantons, i.e., solutions
to the anti-self-duality equations on the curvature of the gauge field. We discuss the
analogue of the evaluation observables in this theory and conclude with the example
of the instanton correlation function in the case of G = SU(2) gauge theory, at the
instanton charge one. We find the logarithmic dependence of the correlator on the
positions of the operators, and conclude that the theory is a logarithmic conformal
theory in four dimensions.

8.1. Self-dual Yang–Mills theory. The obvious analogue of our “weak coupling
with instantons” limit in four dimensions is the so-called self-dual Yang–Mills theory.
The action of (ordinary, i.e., non-supersymmetric) Yang–Mills theory, on a Riemannian
manifold M4, i.e., the action of Euclidean theory, has the form:

(8.1) SYM =
1

4g2

∫

M4

trF ∧ ⋆F − iϑ

2π

∫

M4

trF ∧ F.

Using the decomposition

F = F+ + F−, ⋆F± = ±F±

of the curvature two-form, we can rewrite (8.1) as

(8.2) SYM =
i

4π

(
τ tr‖F−‖2 − τ ‖F+‖2

)
,
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where

τ =
ϑ

2π
+

4πi

g2

is the complexified coupling. Our limit consists of taking τ → ∞ while keeping τ finite.
In this limit the action (8.2) is not very useful. Instead, a first order action is more
adequate:

(8.3) SsdYM = −i
∫

M4

tr H+ ∧ F +
τ

4π
trF ∧ F.

At this point we need to fix our normalization of the Killing form tr on the Lie algebra
g of the Lie group G. We normalize it so that the instanton charge

− 1

8π2

∫

M4

trF ∧ F

assumes integer values, and is a non-negative integer on the anti-self-dual connections.

8.1.1. Supersymmetric Yang–Mills theory. Let us now discuss the N = 2 supersymmet-
ric Yang–Mills theory [51]. We shall consider, as in the case of the sigma models, the
twisted supersymmetry. This is done in order to have a naturally defined measure in
the path integral. In addition to the gauge field A, there are the fermionic one-form
ψ, self-dual two-form χ+, the fermionic scalar η, and the pair of bosonic scalar fields φ
and φ. All fields transform in the adjoint representation of the gauge group G. In the
standard super-Yang–Mills theory instead of the integer spin fields ψ,χ+, η one has a
pair of Weyl fermions, λαi, and their conjugates λα̇i, α, α̇, i = 1, 2. The bosonic symme-
try group of the physical theory is the group Spin(4) × SU(2)I . The twisting consists
of embedding Spin(4) into this group is a non-standard way, under which λα̇i = ψµ,

λαi = χ+⊕η. In the standard theory the fields φ and φ are complex conjugates of each
other. In the applications of the twisted theory to the Donaldson theory it is much
more natural to view φ and φ as independent fields [54]. In the modern language this
is a reflection of the fact that the mathematically better defined are the I-models, as
opposed to the B-models which look more natural physically (see the discussion of this
in the case of two-dimensional sigma models in [25]).

In order to proceed we need to know the normalizations of various terms in the
action of super-Yang–Mills theory. One way to fix the normalization is to view the
theory as the dimensional reduction of the six-dimensional minimal supersymmetric
gauge theory. In six dimensions the action reads, schematically:

S6dSYM =
1

4g2
6

∫
tr
(
F ∧ ⋆6F + λD/Aλ

)
.
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Upon reduction, one gets the four-dimensional action:

S4dSYM =
1

4g2

∫
tr
(
F ∧ ⋆F +DAφ ∧ ⋆DAφ+ volg [φ, φ]2

+ χ+ ∧D+
Aψ + η ∧ ⋆D∗

Aψ(8.4)

+ φ[χ+, χ+] + φ[η, η]volg + φ[ψ, ⋆ψ]
)

− iϑ

8π2

∫
trF ∧ F,

where

volg = g
1
2 d4x = ⋆1

is the metric volume-form. The last term in (8.4), the one with the theta-angle, can be
turned on in four dimensions without breaking Lorentz invariance. In six dimensions
this term requires an introduction of a background two-form (it is dual to the axion
scalar in four dimensions). Introduce the auxiliary self-dual bosonic two-form field H+,
and rewrite the gauge kinetic term:

(8.5) S4dSYM =

1

g2
Q ·
∫

tr

(
−iχ+ ∧ F + χ+ ∧H+ +

1

4
ψ ∧ ⋆DAφ+

1

4
volg η[φ, φ]

)
− iτ

4π

∫
trF ∧F.

Here we have used the topological supercharge Q, i.e., the supercharge εαiQαi which
becomes a scalar upon the twisting. It acts as follows:

QA = ψ , Qψ = DAφ

Qχ+ = H+ , QH+ = [φ, χ+](8.6)

Qφ = η , Qη = [φ, φ] , Qφ = 0.

8.1.2. The weak coupling limit τ → ∞. As (8.5) stands, it is not suited for considering
our limit g → 0 with τ fixed. However, let us perform the following simple field
redefinition:

(8.7)
(
φ, η,H+, χ+

)
7→
(
g2 φ, g2 η, g2 H+, g2 χ+

)

which keeps (8.6) intact. Now we are in position to take the g → 0 limit. Indeed, with
(8.7) the action (8.5) splits as:

(8.8) S4dSYM = SssdYM + g2 Q

∫
tr
(
χ+ ∧H+ + η[φ, φ] volg

)
,

where SssdYM is the action of the limit theory:

(8.9) SssdYM =
∫

tr
(
−iH+ ∧ F + iχ+ ∧D+

Aψ + η ∧ ⋆D∗
Aψ +DAφ ∧ ⋆DAφ+ [ψ, ⋆ψ]φ

)
− iτ

4π

∫
trF∧F.

The action (8.8) makes sense on any four-manifold M4. The twist made sure that on
any M4 this theory has at least one fermionic symmetry, generated by Q. The usual
feature of such a theory is the Q-exactness of the stress-energy tensor, which follows
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from the fact that all the metric dependence of (8.8) is contained in the Q-exact terms
in the Lagrangian.

The conformal invariance of (8.9) (even that of (8.8), at the classical level) is much
less appreciated. To achieve it, let us assume that φ is a scalar, degree zero field,

while φ and η are half-densities, i.e., transform as section of vol
1
2
g , under the coordinate

transformations. Then (8.9) can be rewritten, with explicit metric dependence, as (we
use the standard notation g = det(gµν)):

SssdYM = Q

∫
−igµµ′gνν′g 1

2 tr
(
χ+
µνFµ′ν′

)
+ gµνg

1
4 tr
(
ψνDµφ

)

− 1

4
Q

∫
gµνg

1
4 tr
(
ψµφ

)
∂ν log(g)(8.10)

− iτ

4π

∫

M4

trF ∧ F,

where Dµ = ∂µ + [Aµ, ·].
The path integral in the theory (8.3) localizes onto the anti-self-dual gauge field

configurations:

(8.11) F+
A = 0.

We now wish to apply our techniques to the case of gauge theory. To this end we need
to reformulate the theory as the quantum mechanics of the same type we encountered
before. It turns out that in addition to the complication of the configuration space being
non-simply connected, we have an additional feature – equivariance. We shall spend
some time discussing the equivariant versions of Morse theory and the supersymmetric
quantum mechanics.

8.1.3. Four-dimensional gauge theory as quantum mechanics. We can interpret the
four-dimensional gauge theory as supersymmetric gauged quantum mechanics [3, 51].
Let us consider the four manifold of the form M4 = R ×M3, where M3 is a compact
three-dimensional manifold. Let t denote the coordinate along the R factor. Let us
assume the four-dimensional metric to be of the product form:

(8.12) gµνdx
µdxν = dt2 + hij(~x)dx

idxj

where ~x = (x1, x2, x3) = (xi). The four-dimensional gauge field splits as:

A = Atdt+ a = Atdt+ aidx
i

Let Ba = ⋆3Fa be the three-dimensional magnetic field, a one-form on M3, valued in
the adjoint bundle. In the gauge At = 0 the anti-self-duality equation (8.11)

F+
A = 0 ⇔ ȧ+Ba = 0

can be interpreted as the gradient flow, with respect to the ”Morse function” f given
by the Chern–Simons functional

(8.13) f = −1

2

∫

M3

tr

(
ada+

2

3
a3

)
,
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if the metric on the space A of gauge fields on M3 is defined with the help of the metric
hij :

(8.14) haa =

∫

M3

tr δa ∧ ⋆3δa =

∫
d3x h

1
2hij trδaiδaj

This metric and the functional (8.13) are invariant under the gauge transformations
from the group G0, the component of identity of the full gauge group. Thus f can be

viewed as a Morse (or, if π1(M
3) 6= 0, a Morse–Bott) function on the space X̂ = A/G0 of

the gauge equivalence classes of connections on a principal G-bundle P on M3, together
with a choice of a path, up to homotopy, connecting the connection with the trivial
one.

The actual symmetry group of the gauge theory is G, and the actual configuration

space is X = X̂/Γ, Γ = π0(G) = G/G0. For example, for M3 = S3, and simple G, Γ = Z.

An important subtlety is related to the singularities of X and X̂. These arise because
the gauge group does not act freely on A. For example, the trivial connection a = 0 is
left fixed by the group G of constant gauge transformations, while generic a has a trivial
stabilizer. In addition, there is the whole zoo of connections which have a stabilizer H,
which is anywhere between G and the trivial one.

Gauge theory is supposed to give us a definition of the quantum mechanics on the
space with singularities of this form. Of course, such a singularity may or may not be a
serious issue. Consider, for example, quantum mechanics of a free particle on a group
manifold G. Now let us impose as a gauge symmetry the adjoint action of G. At the
level of wave-functions this is a very simple selection rule: only the Ad(G)-invariant
functions on G should be kept, in other words, only the characters of the irreducible
representations of G. Now, if we look at the quotient space X = G/Ad(G) = T/W , it
has singularities, and the point g = 1, the point with the maximal stabilizer, is one of
them. The vicinity of the point a = 0 in X is somewhat similar to the vicinity of the
point g = 1 in X.

A safe way to avoid dealing with the singular quotients is to discuss the instanton
equations in the gauge-covariant way. The equations (8.11), written in the form of the
evolution equations, read:

(8.15) ȧ = DaAt +Ba

We shall now discuss the general setup where the equations like (8.15) naturally appear.

8.1.4. Equivariant integration on the space of paths. We now study supersymmetric
quantum mechanics on a smooth manifoldX, possibly, infinite-dimensional. We assume
that X is endowed with G-invariant function f , which has the Morse property in the
directions transversal to G-orbits (so that it gives rise to an ordinary Morse function
on X/G if this quotient exists and is smooth). The corresponding gradient vector field
vµ = hµν∂νf commutes with the action of G. We define a generalization of the gradient
trajectory: given a map At : R → g, consider the equation

(8.16) ẋµ(t) = vµ(x(t)) + Vµa(x(t))A
a
t (t)
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A solution of this equation gives rise to an ordinary gradient trajectory on X/G, if it
exists. In general, we use this definition as a replacement of the notion of gradient
trajectory.

The space X of pairs (x(t), At(t)) is acted upon by the group G = Maps(R, G):

g : (x(t), At(t)) 7→
(
g(t) · x(t), g−1(t)∂tg(t) + g−1(t)At(t)g(t)

)

Ideally, we would like to divide X by G, however, the critical points may have stabilizers.
A safer route is to use the equivariant integration theory developed below.

We arrive at the quantum mechanical model with the following structure. The
configuration space of the theory is the space ΠTX × ΠTg × g. The functions on this
space are the differential forms on X × g, taking values in the space of function on
the Lie algebra g. The coordinates on the Lie algebra g are denoted by φ, φ, and the
coordinates on ΠTg are (φ, η), η = dφ.

The supersymmetry generator Q acts as follows:

Qxµ = ψµ, Qψµ = Vµ(φ) = φaVµa

Qφ = η, Qη = [φ, φ](8.17)

Qπµ = pµ, Qpµ = ∂µV
ν(φ)πν .

This generator squares to the infinitesimal gauge transformation of G, generated by φ:

Q2 = LV(φ) + ad(φ).

In order to ensure the nilpotent nature of Q, one imposes the condition of the G-
invariance:

H = (Ω•(X × g) ⊗ Fun(g))G .

In the Lagrangian approach this invariance is enforced with the help of the Lagrange
multiplier At which can be interpreted as a one-dimensional gauge field taking values
in g. Its superpartner Ψt obeys:

QAt = Ψt, QΨt = Dtφ = ∂tφ+ [At, φ].

The Lagrangian of a first order theory (or, rather, τ = ∞ theory) looks as follows:

(8.18) L = Q
(
−iπµ (ẋµ − Vµ(At) − vµ) + tr

(
ΨtDtφ

)
+ hµνV

µ(φ)ψν
)
.

Note that the Mathai-Quillen interpretation of the Lagrangian (8.18) can be deduced
from the lectures [14] on the so-called projection form.

The finite radius theory differs from (8.18) by

(8.19) ∆L =
1

λ
Q
(
hµνπµp

′
ν + tr

(
[φ, φ]η

))
.

8.2. Gauged quantum mechanics. At this stage it is perhaps useful to recall a few
facts about the gauged supersymmetric quantum mechanics and the τ → ∞ limit
in this context. The available reviews consider the zero-dimensional quantum field
theories, i.e., integrals over the quotient spaces, e.g., [14]. We need to discuss a quantum
mechanical version, corresponding to one-dimensional quantum field theories.

So let us consider the following more general situation. Let X be compact smooth
manifold with the compact simple Lie group G action. Let g = Lie(G) and V : g →



INSTANTONS BEYOND TOPOLOGICAL THEORY II 105

V ect(X) be the corresponding homomorphism of the Lie algebras. Let (xµ, ψµ) denote
local bosonic and fermionic coordinates on ΠTX. Let h = hµνdx

µdxν be a G-invariant
metric on X. Sometimes it is convenient to introduce a basis ta on g, and the corre-
sponding structure constants:

[ta, tb] = f cabtc

We shall assume this basis to be orthonormal with respect to the Killing form, which
we denote by tr. We shall fix the normalization of tr later.

8.2.1. Equivariant cohomology. We first discuss a finite-dimensional integral. Suppose
we wish to integrate differential forms over the quotient X/G, assuming it exists. The
forms on X/G are ΠTG-invariant forms on X. In other words, these are G-invariant,
horizontal forms on X, sometimes also called the basic forms:

(8.20) ̟ ∈ Ω•
basic(X) ⇔ LV(ξ)̟ = 0, ιV(ξ)̟ = 0 ∀ξ ∈ g

If (8.20) holds, then ̟ is a pull-back of some differential form ̟′ ∈ Ω•(X/G), of the
same degree. Sometimes the quotient X/G does not exist, because the group G may
be acting with fixed points, etc. In these circumstances one should use another model
of the de Rham complex of X/G. There are, in fact, several well-known models. For
example, one can use the Weil or Cartan models of equivariant cohomology of X. We
start by reviewing the Weil model. Instead of dividing X by G, and restricting the
de Rham complex of X, one multiplies it by an acyclic complex, which models the de
Rham complex of EG, a contractible space, on which G acts freely, and then imposes
the condition of being basic, i.e., being a pull-back from (X×EG)/G, the latter quotient
(by the diagonal action of G) always being well-defined. The de Rham complex of EG
is modeled by the Weil algebra W•(g) of g, the space of functions on ΠTg. The unusual
feature of this space is that the odd coordinates ca are viewed as one-forms (this is
not really unusual), but the even, bosonic, coordinates φa, are viewed as two-forms. In
other words, ΠTg is viewed not as a supermanifold, but rather as a graded manifold.
The differential (which eventually migrates to our supercharge Q) acts on

(8.21) Ω•(X) ⊗ W•(g)

as follows:

Q = dX + δ,

δc = φ− 1

2
[c, c] , δφ = [φ, c].

The cohomology of δ on W•(g) is one-dimensional (in degree 0), as it should be since
it represents the de Rham complex of the contractible space EG.

The action of the group ΠTG on Ω•(X) ⊗ W•(g) is generated by the operators ιa
and La = {Q, ιa}:

(8.22) ιa = ιVa +
∂

∂ca
, La = LVa + fdab

(
φd

∂

∂φb
+ cd

∂

∂cb

)
.

Of course, we are not interested in Ω•(X) ⊗ W•(g), we need the space of basic forms

W •
G(X) = (Ω•(X) ⊗ W•(g))basic ,
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which is defined as the subcomplex in Ω•(X)⊗W•(g), annihilated by ιa,La. The useful
observation of J. Kalkman is that the first order differential equations ιa̟(c, φ) = 0
can be solved by:

̟(c, φ) = e−c
aιVaα(φ),

where

α ∈ Ω•(X) ⊗ Fun(g), α(φ) ∈ Ω•(X).

The remaining equations La̟(c, φ) = 0 translate to the conditions of G-invariance on
α:

g∗α(φ) = α(gφg−1), ∀g ∈ G.
Thus, the de Rham complex of XG = (X × EG) /G is modeled on

Ω•
G(X) = (Ω•(X) ⊗ Fun(g))G

with the differential Q, which acts on α as follows:

(8.23) Qα(φ) = dXα(φ) + ιV(φ)α(φ)

When X/G exists, the space XG is a fiber bundle over X/G with the contractible fiber
EG. Whether X/G exists or not, the space XG is always a fiber bundle over BG, with
the fiber X. In this way, one sees explicitly the structure of the H•(BG) = (S•g∗)G-
module, which is also clear from the Cartan description.

8.2.2. Equivariant integration. Given a form α ∈ Ω•
G(X), in the case of free G-action,

we can ask the following natural question: how does one produce a basic form β ∈
Ω•

basic(X)? If G acts freely, then one can find the so-called connection forms Θa ∈
Ω1(X), i.e., the forms which obey

(8.24) ιVaΘb = δba, LVaΘb = −f bacΘc.

The connection form is defined up to a shift by a section of Ω1(X/G)×
G

g. The connection

Θ defines the curvature two-forms

F = dΘ +
1

2
[Θ,Θ] , F a = dΘa +

1

2
fabcΘ

b ∧ Θc,

which are automatically horizontal, ιVaF
b = 0. As far as the G-action is concerned,

the connection and curvature obey:

g∗F = g−1Fg , g∗Θ = g−1Θg.

Given α ∈ Ω•
G(X), i.e., a G-equivariant map from g to the differential forms on X,

α(φ) ∈ Ω•(X), we define:

(8.25) β = e−ΘaιVaα (−F ) .

The formula (8.25) defines obviously a G-invariant form. It is also not difficult to
convince oneself that β defined by (8.25) is horizontal, ιVaβ = 0. One should pay
attention to the ordering of the exponential, since the operations of contracting with
Va and multiplication by Θb do not commute, thanks to (8.24). Finally, note that
dβ = 0 if and only if Qα = 0.
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Given β ∈ Ωk(X)basic, k = dim(X/G), one should compute an integral

I(β) =

∫

X/G
β

The problem is to compute I(β) in terms of α ∈ Ω•
G(X). This is done using the

projection form [14].
As the result, we get the following form Γα ∈ Ω•+dimG(X):

(8.26) Γα =
1

Vol(G)

∫
dφdφdη e−ηaΘa−φa(φa+F a) α(φ).

One checks that if X/G exists, then I(β) =
∫
X Γα. The observation of [14] is that the

form Γα is not changed (in [14] the attention was only paid to the Q-cohomology, but
the argument can be recycled to show the actual form independence) if the canonically
normalized connection (8.24) is replaced by a general g-valued one form Σ = Σat

a on
X obeying

(8.27) ιVaΣb = Hab , LVaΣb = −f cabΣc,

where at every point x ∈ X the matrix Hab is a non-degenerate G-invariant, LVcHab =
0, bilinear pairing on gx, the tangent space to the G-orbit, passing through the point
x. The formula (8.26) gets modified to

(8.28) Γα =
1

Vol(G)

∫
dφdφdη e−η

aΣa+φ
a
(φbHab+dΣa) α(φ).

The relation to the previous formalism is achieved by writing ΘaHab = Σb, and by
changing the variables: η → η + [φ,Θ]. Finally, one may study the one-parametric
family of projection forms depending on a parameter λ (these forms do care about the
representatives, only for Q-closed forms α is the λ-dependence unobservable)

(8.29) Γα(λ) =

1

Vol(G)

∫

g×ΠTg

dφdφdη e−iη
aΣa+iφ

a
(φbHab+dΣa)− 1

λ
tr([η,η]φ)− 1

λ
tr[φ,φ]2 α(φ).

In the limit λ→ ∞ we get our original form Γα. In the limit λ→ 0 one gets an integral
realization of the relation between the G-equivariant and the W -invariant part of the
T -equivariant cohomology, where T and W are the maximal torus and the Weyl group
of G, respectively. Indeed, we can use the G-invariance to reduce the integral over φ
to the integral over t/W , t = Lie(T ). When λ is sent to 0, the 1

λ tr[φ, φ]2 term in (8.29)

dominates, and the integral over g/t part of φ and η becomes essentially Gaussian
(outside of the discriminant in t/W ):

(8.30) Γα(0) =
1

Vol(T )|W |

∫

t×ΠT t

dφdφdη ∆2(φ) e−iη
kΣk+iφ

k
(φjHkj+dΣk) α(φ),

where
∆2(φ) =

∏

roots of g

〈root, φ〉.

We close the section by giving some examples of equivariant forms. Let (X,ω) be a
symplectic manifold with the G-action preserving the symplectic form ω. Suppose that
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the G-action is Hamiltonian and one can define the moment map µ : X → g∗, such
that

ιVaω = −dµa.
Then Ω(φ) = ω + φaµa, as well as any functions of Ω(φ) are equivariantly closed.
Another source of equivariant forms comes from G-equivariant vector bundles E over
X. Let us denote the fiber of E over a point x ∈ X by Ex. The G-action on X lifts to
the action on E. In particular, g : Ex → Eg·x. Given a connection ∇ on E, i.e., a way
to parallel transport the vectors in Ex, the action of G on E can be decomposed into
the parallel transport from x to g · x and the action of G on the vector space Eg·x: for
any ξ ∈ g, and ψx ∈ Ex, we have:

(8.31) ξ · ψx = ∇V(ξ)ψx +R(ξ) · ψx.

Let F∇ = ∇2 denote the curvature two-form. The bundle E defines the so-called
equivariant Euler class EulerE ∈ HrkE

G (X). This cohomology class has many useful
representatives. A one-parametric family of such representatives is constructed given a
section s : X → E. Schematically, it is given by the Mathai-Quillen form

(8.32) EulerE(u) =

∫

ΠTE∗
x

eip·s+π·∇s−
1
2
u〈p,p〉− 1

2
u〈π,(ΓV(φ)+R(φ)+F∇)·π〉− 1

2
u〈π,Γµdxµp〉,

where ΓV(φ) = ιV(φ)Γ, and Γ is a connection one-form for ∇ on E. The differential
Q is made to act on the auxiliary fields (π, p), which are the fermionic and bosonic
coordinates on ΠE∗

x and E∗
x respectively, as follows:

Qπe = pe − Γheµπhdx
µ,

Qpe = R(φ)heπh − Γheµphdx
µ +

1

2
F heµνπhdx

µ ∧ dxν − ΓheµV
µ(φ)πh.

Finally, the simplest examples of the equivariant (and also equivariantly closed) forms
are invariant functions on g, e.g., invariant polynomials P (φ) ∈ C[g]G = C[t]W .

8.2.3. The first glimpses of quantum mechanics. So far we have discussed the integrals
of differential forms, or equivariant differential forms. We have also mentioned the
equivariant differential Q.

There are several points of view on Q and the equivariant forms. One viewpoint
treats the latter as the functions on some super (or graded) manifold, where Q acts as
the odd vector field, obeying the non-trivial (for odd fields) master equation

{Q,Q} = 0.

Another point of view identifies the equivariant forms with the wave-functions of a
supersymmetric quantum mechanics. In this approach Q is viewed as an operator
acting in the space of states of the quantum mechanical system. One also needs to
define a conjugate operator Q∗. For example, for

Q = ψµ (pµ + ∂µf) + χµV
µ
aφ

a + tr

(
η
∂

∂φ
+ [φ, φ]

∂

∂η

)
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we get:

Q∗ = χµh
µν (pν + ∂νf) + hµνψ

µVνaφ
a

+ tr

(
∂

∂η

∂

∂φ
+ [φ, φ]η

)
.

Note that the definition of Q∗ requires a metric on the Lie algebra and on X, whereas
the definition of Q is metric-independent.

8.2.4. Hamiltonian interpretation of gauged quantum mechanics. We can now elaborate
on the points of the section 8.2.3 and discuss the Hamiltonian interpretation of the
theory (8.18).

Note that the quantum mechanics with action (8.19) contains, as a subsector, the
quantum mechanics on the Lie algebra g. In fact, there are two versions of the theory.
In one, which is mostly adopted in the conventional physical applications, the variables
φ and φ are treated as complex conjugates. In this case we are dealing with some kind
of anharmonic oscillator on the complexification gC. In the second approach, which
is more directly related to the Mathai-Quillen form and equivariant cohomology, the
fields φ and φ are independent real Lie algebra valued variables. In this case one is
dealing with the indefinite oscillator on (dim g,dim g) signature space g ⊕ g.

In either case the Hamiltonian of the resulting model looks as follows:

(8.33) H = Lv − tr
∂2

∂φ∂φ
+ φ

b
(
Habφ

a + dΣb ∧ +facb
∂2

∂ηa∂ηc

)
+ ηbΣb∧

where
Hab = hµνV

µ
aV

ν
b , Σa = hµνV

µ
adx

ν

and we have dropped the term

(8.34) δH =
1

λ
tr[φ, φ]2 +

1

λ
tr (η[φ, η])

with which we may play in various ways. The simplest model appears to be with the
term (8.34) dropped, i.e., with λ = ∞. In this case the fields φ and φ enter at most
linearly and can be integrated out. If, instead, we send λ to 0, then the anharmonic
oscillator potential will force the Lie algebra g variables to be confined near a maximal
torus t, just like in the finite-dimensional example (8.30).

The standard approach to solving the model with the Hamiltonian (8.33) would be
to use the Born-Oppenheimer approximation. It consists in first solving the harmonic
(in the absence of (8.34)) oscillator in φ and φ, whose frequencies are given by the
eigenvalues of the induced metric Hab(x). If the group G acts on X without fixed
points, then the frequencies never go down to zero, and one can approximate the wave-
functions by the ground state wave-functions in φ, φ directions, times some forms on
the X space.

However, in the vicinity of a fixed point of the G the metric Hab(x) becomes de-
generate. Then the Born-Oppenheimer approximation can no longer be applied, and
the theory becomes more intricate. In particular, a new ”branch” develops, where the
wave function does not exponentially decay when φ goes to infinity.

We shall not discuss the transition between branches. Some of the remarks on this
problem (in the context of supersymmetric models with higher degree of supersymme-
try) can be found in [55].
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8.2.5. Example of the group manifold. Consider the example X = G where the group
G acts by the right multiplication.

The space of states of this model, viewed as the gauged quantum mechanics, is the
space of differential forms on G tensored with the space of functions of φ and with the
differential forms on another copy of g:

Ψ(g, dg, φ, φ, dφ).

It is customary to denote dφ by η, and it is convenient to denote by ψ the left-invariant
form g−1dg. Then the equivariant differential acts as follows:

Qg = gψ ,

Qψ = φ− 1

2
[ψ,ψ],

Qφ = 0,(8.35)

Qφ = η,

Qη = [φ, φ].

By passing to the G-invariant variables

A = dgg−1 , A∗ = gηg−1 + [A, gφg−1],

Φ = gφg−1 − 1

2
[A,A] , Φ∗ = gφg−1,(8.36)

we map Q to the following simple differential operator:

(8.37) Q = Φ
∂

∂A
+A∗ ∂

∂Φ∗
.

8.2.6. Observables in gauge theory. We now go back to the problem of our interest:
the four-dimensional supersymmetric twisted gauge theory. The first question which
we should address is what are the analogues of the evaluation observables in the gauge
theory. In the case of the twisted supersymmetric sigma model the evaluation observ-
ables O(x, ψ) have many nice properties: i) they corresponded to the dimension zero
operators; ii) the set of these operators is non-trivially acted upon by the supercharge
Q; iii) their definition did not require any short distance regularization perturbatively.
If the condition i) is relaxed one gets the jet-evaluation observables. Finally, these
observables have a clear geometric interpretation.

In gauge theory we must demand that the observables be gauge-invariant. The
gauge theory observables, analogous to the operators O(x, ψ) in sigma model are the
local gauge-invariant functionals O(A,ψ). These operators rarely obey the property
i). However, they do obey ii) and iii). Geometrically, these correspond to the GM4-
invariant differential forms on A+

M4 , the space of anti-self-dual gauge fields. Indeed, the

integral over H+ field enforces the anti-self-duality condition, F+
A = 0, and the integral

over the gauge equivalence classes of A becomes an integral over the moduli space of
instantons

(8.38) M = A
+
M4/GM4 ,
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where A+
M4 is the space of anti-self dual connections on M4 (satisfying equation (8.11))

and GM4 is the group of gauge transformations. Then the integration over χ+, η makes
ψ a one-form on M, valued in one-forms on M4 and satisfying the equation

(8.39) D+
Aψ = 0 , D∗

Aψ = 0 .

The last equation D∗
Aψ = 0 can be interpreted as a gauge-fixing for the fermionic gauge

symmetry δεψ = DAε. In classifying the observables we can replace the condition of
horizontality by the cohomology of the corresponding BRST operator, which acts as
follows:

(8.40) δψ = DAφ.

Thus, we define the gauge-evaluation observables as the cohomology of the operator
(8.40) acting on the gauge-invariant functionals O(A,ψ, φ).

After the functional integration over φ, the field φ becomes a curvature two-form

(8.41) φ =
1

∆A
[ψ, ⋆ψ],

where ∆A = DAD
∗
A + D∗

ADA is the gauge-covariant Laplacian (here acting on zero-
forms).

8.2.7. Universal connection. According to [54], it is convenient to think of φ,ψ, FA as
of the three components of the universal curvature:

(8.42) F = φ+ ψ + FA

of the universal connection on the universal principal G-bundle over M × M4. Let us
review the construction of this connection.

Let A(m) = Aµ(x,m)dxµ, m ∈ M, x ∈ M4 be a family of anti-self-dual connections
on M4, defined over some open domain U ⊂ M, so that for each m ∈ U , F+

A(m)
= 0 and

the gauge equivalence class obeys [A(m)] = m. Now let us study the m-dependence.
Clearly, the derivative ∂

∂miA(m) obeys the linearized instanton equation,

D+
A

∂A(m)

∂mi
= 0 .

Therefore it can be decomposed:

(8.43)
∂A(m)

∂mi
= ψi(m) +DA(m)εi(m),

where the set of one-forms ψi(m), i = 1, . . . ,dimM, obeys

D+
A(m)ψi(m) = 0, D∗

A(m)ψi(m) = 0 .

More precisely, the set (ψi) forms a basis in H1
m, which coincides with TmM in a nice

situation, where both H0
m and H2

m vanish. Assuming that this is the case, (εi) in (8.43)
is the set of compensating gauge transformations,

εi(m) = εi(x,m),
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which we can actually compute from (8.43) that

εi(m) =
1

∆A(m)
D∗
A(m)

∂A(m)

∂mi
.

In components:

ψi(m) = ψiµ(x,m)dxµ

Dµψiν −Dνψiµ +
1

2
ǫµνµ′ν′g

µ′µ′′gνν
′′

g
1
2 Dµ′′ψiν′′ = 0(8.44)

Dµ

(
gµνg

1
2 ψiν

)
= 0.

By combining A(m) and ε(m),

(8.45) A = A(m) + εi(m)dmi,

we arrive at (8.42) with

F = dA +
1

2
[A,A] = φ+ ψ + FA(m)(8.46)

ψ = ψiµdm
i ∧ dxµ

φ =
1

2
φijdm

i ∧ dmj

φij =
∂

∂mi
εj −

∂

∂mj
εi + [εi, εj ],

and (8.41) follows:

∆A(m)φij =
∂

∂m[i
D∗
A(m)

∂A(m)

∂mj]
+ [D∗

A(m)

∂A(m)

∂m[i
, ǫj]] −D∗

A(m)[
∂A(m)

∂m[i
, ǫj]]−

[
∂A(m)

∂m[i
, ⋆DA(m)ǫj]] + [DA(m)ǫi, ⋆DA(m)ǫj] = [ψi, ⋆ψj ] ,

as claimed.
The universal connection one-form A was defined over U ⊂ M, starting with a

section A(m) : U → A+
M4. Now, we may have chosen a different section:

A(m)′ = A(m)g(m) = g(m)A(m)g−1(m) + g(m)dg−1(m)

which is related to A(m) by the gauge transformation g(m). It will change the con-
nection one-form A by the corresponding gauge transformation. Hence the invariant
observables, like the differential forms trFl, are well-defined forms on M × M4.

8.2.8. Deformation complex, finite g2, and the gauge theory. The fermion kinetic term
of the theory in the limit (8.9) is directly related to the Atiyah–Hitchin–Singer (AHS)
complex, which is the instanton version of the deformation complex corresponding to
the general moduli problem. Recall that the AHS complex is built given a solution A
to the instanton equations, F+

A = 0. Then:

(8.47) 0 −→ Ω0(M4) ⊗P g −→DA Ω1(M4) ⊗P g −→D+
A Ω2,+(M4) ⊗P g −→ 0

The sequence (8.47) is indeed a complex, as D+
A ◦DA = F+

A = 0. The cohomology of

the AHS complex will be denoted by H i
[A]. The AHS complex and its cohomology in
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particular characterize the vicinity of the point [A] in the moduli space M. First of
all, if the only non-vanishing cohomology group of the AHS complex is H1

[A], then the

moduli space M is smooth, and its tangent space at [A] coincides with H1
[A]. If, on the

other hand, the zeroth cohomology H0
[A] of (8.47) is non-vanishing, then the moduli

space is singular, as the point [A] has a non-trivial stabilizer, G[A], whose Lie algebra is

isomorphic to H0
[A]. Finally, the group H2

[A] is an obstruction to the smoothness of M.

More precisely it is responsible for the possibility to extend the first order deformation
of [A], labeled by H1

[A], to the second order deformation. Indeed, suppose the first order

deformation a[1], which is a solution to

D+
Aa[1] = 0

up to the infinitesimal gauge transformation a[1] ∼ a[1] + DAϕ[1], is given. Then the
second order deformation a[2] has to be such that

D+
Aa[2] +

1

2
[a[1], a[1]] = 0

and it is defined up to the following transformations:

a[2] ∼ a[2] +DAϕ[2] + [a[1], ϕ[1]] +
1

2
[DAϕ[1], ϕ[1]].

Such a[2] can be found if and only if the image of [a[1], a[1]] in H2
[A] is zero. The map

K = [ · ,∧ · ] : H1
[A] ×H1

[A] −→ H2
[A]

is called the Kuranishi map. There exists a theory which identifies the germ M[A] of

the moduli space near the point [A] with the quotient of the preimage K−1(0) ⊂ H1
[A]

of zero in H1
[A] by the stabilizer G[A], M[A] ≈ K−1(0)/G[A].

The g2 → 0 limit of the gauge theory, as the infinite radius limit of the sigma model,
has some subtleties, related to the existence of unwanted zero modes. In our derivation
of the reduction of the path integral to the integral over the space M of instantons,
we assumed that the integral over the fermionic fields χ+ and η gave us the equations
(8.39). In general, however, it may happen that the conjugate operators

D+,∗
A ⊕DA :

(
Ω2,+ ⊕ Ω0

)
⊗P g → Ω1 ⊗P g

have non-vanishing kernel, which is clearly isomorphic to H2
m ⊕ H0

m (in this case the
space of solutions to the equations (8.39) has the kernel which is strictly larger then
the virtual tangent space TmM). Then the integral over these zero modes of χ+ and η
has to be regularized. Also, the fermionic zero modes χ+

0 , η0 are accompanied by the

bosonic zero modes H+
0 , φ0, which might produce infinities unless properly regularized.

Finally, the formula (8.42) for the field φ now has to be modified. Indeed, since DA

has zero modes on scalars, the solution to the equation

∆Aφ = [ψ, ⋆ψ]

now has to be written as

φ = φ0 +
1

∆A
[ψ, ⋆ψ],
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where φ0 solves DAφ0 = 0.
Let us now turn on the coupling constant g2, but only on the zero modesH+

0 , χ
+
0 , φ0, η0:

(8.48) ∆S = g2 Q

∫
tr
(
χ+

0 ∧H+
0 + η0[φ0, φ0]

)
,

where the zero modes are the solutions of the equations

DAφ0 = 0, D+,∗
A H+

0 = 0

DAη0 = 0, D+,∗
A χ+

0 = 0.(8.49)

There is one more subtlety related to the fact that we now treat the fields φ, η as
half-densities, but we shall ignore it.

Note that the supercharge Q preserves the space of zero modes:

Qφ0 = η0 , Qη0 = [φ0, φ0]

Qχ+
0 = H+

0 , QH+
0 = [φ0, χ

+
0 ].(8.50)

Thus the contribution of the vicinity of the point m ∈ M to the correlation function of
some ”evaluation observables” will be given by the integral

(8.51)

∫

H2
m

dH+
0 dχ+

0 e
R

itr(H+
0 [a[1],a[1]])−itr(χ+

0 [a[1],ψ[1]])−g2trH+
0 H

+
0 −g2trχ+

0 [φ0,χ
+
0 ]

·
∫

H0
m

dφ0dη0 e
R

trη0[a[1],⋆ψ[1]]−g
2tr(η0[φ0,η0])−g2tr[φ0,φ0]2,

which we should view as the differential form on H1
m by decomposing the corresponding

zero modes:

a[1] =

rkH1
m∑

i=1

ψi mi , ψ[1] =

rkH1
m∑

i=1

ψi dmi

The differential form (8.51) is the smooth (for g2 > 0) representative of the Poincare
dual to the zero locus of the kuranishi map. The φ0 dependence signifies the Gm-
equivariant nature of the differential form, while the integral over H0

m in (8.51) gives
the projection form, which is suited to define the integration theory over the quotient
K−1(0)/Gm. Now, it seems that even here we don’t need to take g2 > 0, as even in
the g2 → 0 limit we get something reasonable: the Poincare dual gets represented by
the delta form δ(K(m)), and the projection form gives what we expect it to give. In
fact, it depends on the degeneracy of the kuranishi map. In the nice situations, where
it is sufficiently non-degenerate, the g2 = 0 expression (8.51) defines a well-defined
differential form on H1

m. However this is not always the case, we give an example
momentarily.

The usefulness of having g2 > 0 at this point is the possibility of working with another
representative of the Poincare dual of the zero locus of K; namely, the Euler class of
the corresponding obstruction bundle ∪m∈MH

2
m written in terms of the curvatures of

the corresponding metric connections. This representation arises in the large g2 limit.
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In many applications involving the correlation functions of the BPS observables
both representatives are equally good, and sometimes one is simpler to work with than
another. In our story, we shall try to work with g2 = 0 for as long as it is possible.

Remark 8.1. In the case of two-dimensional sigma model coupled to the two-dimensional
topological gravity the discussion similar to the one we just had, is quite important in
figuring out the contribution of the degree zero maps of higher genus Riemann surfaces.
The analogous obstruction bundle is related, in this case, to the Hodge bundle on
the moduli space of Riemann surfaces. Taking into account its contribution, i.e., the
integrals of its Chern classes, to the Gromov-Witten invariants plays important rôle in
the modern topological string theory. �

Likewise, the trivial connection, A = 0, which is unavoidable in any gauge theory
in the sector with the trivial ’t Hooft fluxes, comes with the whole host of non-trivial
cohomology of the AHS complex:

H i
[0] = H i(M4,R) ⊗ g, i = 0, 1,

H2
[0] = H2,+(M4,R) ⊗ g.

Moreover, in this case the stabilizer G0 = G coincides with the group G itself, while
the kuranishi map is given by

K(m) = f cabm
akmblωp

∫

M4

ωp ∧ αk ∧ αl,

where (ωp)p=1,...,b+2
is the basis in the space of self-dual harmonic two-forms, and

(αl)l=1,...,b1 is the basis in the space of harmonic one-forms.
Now, to give an example of the necessity of g2 > 0 regularization, consider the case

of a simply-connected manifold M4. In this case the kuranishi map corresponding to
A = 0 is identically zero, so the expansion of the H+F+ + χ+DAψ term does not give
us anything interesting. The integrals (8.51) can be evaluated, to produce

(
Det′gadφ0

)b+2 +b0 ,

where the b+2 in the exponent comes from the H+
0 , χ

+
0 integral, while the origin of the b0

contribution is the measure on the φ0. The integral over η0, φ0 gives the determinants
which cancel each other. The unfortunate subtlety is the prime in the determinant. The
components of H+

0 , χ
+
0 , η0, φ0 which commute with φ0 do not enter the g2-dependent

part of (8.51). These modes should be taken care of separately. This and further
subtleties of the stack nature of the moduli space M are beyond the scope of this
paper.

8.3. Gauge theory and logarithms. We shall now discuss the main problem of our
interest – the appearance of logarithms in the correlation functions the four-dimensional
gauge theory.
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8.3.1. Evaluation observables in gauge theory. The correlation functions of the ”eval-
uation observables”, which we now take to be the gauge-invariant functionals of A,ψ
and φ (they correspond to the equivariant forms on A, the space of four-dimensional
connections), reduce, in the τ → ∞ limit, to the integrals over the moduli space of
gauge instantons. We shall need some description of these moduli spaces. Since we
wish to demonstrate the logarithmic nature of our theory, it suffices to consider the
simplest case, the charge one instantons, for the gauge group G = SU(2).

8.3.2. From correlation functions to matrix elements. First of all, we need to set up
our calculation in such a way so as to be able to interpret it quantum mechanically. It
is convenient to take as a four-manifold the four-sphere M4 = S4, which we can view
as the one-point compactification of R4 = C2 = H1, a quaternionic line. Let us use the
quaternionic notation: v = v0 + v1i+ v2j+ v3k ∈ H1, or, equivalently, the 2× 2 matrix
notation:

(8.52) v =

(
v0 + iv1 v2 − iv3

−v2 − iv3 v0 − iv1

)
=

(
w1 w2

−w2 w1

)
.

where (w1, w2) ∈ C2 represents the point (v0, v1, v2, v3) ∈ R4, upon some identification
R4 ≃ C2. The standard round metric on S4,

ds2 =
dv2

(1 + |v|2)2

is conformal to the metric on R × S3, with the points v = 0 and v = ∞ deleted,

ds2 =
1

4cosh2(t)

(
dt2 + dΩ2

3

)
,

where t = log|v|.
The path integral of the gauge theory on S4 can be interpreted as the vacuum matrix

element in the quantum mechanics, where the space of states is obtained by quantiz-
ing the gauge fields on S3. The Hamiltonian of the theory is the generator of the t
translations, H = ∂t, which is the dilatation operator in the v coordinates.

We claimed that the path integral on S4 computes a vacuum matrix element. The
precise vacuum states depend on the type of operators which are inserted at the points
v = 0 and v = ∞, because these are the only points points fixed by the dilatation
operator.

8.3.3. ADHM construction. The moduli space of charge one instantons on S4 is well-
understood. For our quantum mechanical purposes we should actually consider the
space of instantons which are located neither at v = 0 nor at v = ∞. For simplicity
we take G = SU(2) in what follows.

The instanton moduli are m = (b,m = ρg2), and (b,m) is identified with (b,−m),
so that M2,1 ≃ R4 ×

(
R4\{0}

)
/Z2.

The charge one SU(2) instantons on S4 are constructed with the help of a family of
operators

D+ =

(
b0 − z0 b1 − z1 I

−b1 + z1 b0 − z0 J†

)
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parametrized by the points z ∈ C2 ≈ R4 = S4 − {∞}. The ADHM equations imply
that

D+ =
(
rg1 ρg2

)
,

where detg1 = detg2 = 1,

g†1g1 = g†2g2 = 12×2, r2 = ‖b− z‖2, ρ2 = II† = J†J.

The ”observation point” z = z0 + z1j = b− rg1.
The gauge field is written in terms of the normalized solution Ψ to the equation

D+Ψ = 0, Ψ†Ψ = 12×2

as

(8.53) A = Ψ†dΨ.

We point out an important feature of the ADHM construction. If we let d in formula
(8.53) act not only on z but also on the moduli, then A becomes a universal connection,
that is, a connection on the universal bundle over

M × S4,

whose restriction onto a fiber m× S4 of projection to M gives the corresponding con-
nection on S4. In our case

Ψ =

(
ρg†1

−rg†2

)
1√

r2 + ρ2

and

A = xθ1 + (1 − x)θ2,

where θi = gidg
†
i , and

x =
ρ2

r2 + ρ2
.

The universal curvature F = dA + A2 and the corresponding trF2 invariant is given
by

(8.54) trF2 = d
[
x2 (3 − 2x)

]
∧ tr θ3

12,

where

θ12 = (g†2g1)d(g
†
1g2).

We can rewrite (8.54) in a more suggestive form, using quaternions:

(8.55) trF2 =
d4vz

(1 + |vz|2)4
,

where

vz =
1

ρ
g†2 · (b− z).

The geometry behind formula (8.55) can be found in [2].
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8.3.4. Gauge theory calculation. The following correlation function is a good candidate
for exhibiting the logarithmic structure of the four-dimensional gauge theory:

(8.56) COOS(x1, x2;x3) = 〈O(x1)O(x2)S(x3)GF(∞)〉 ,

where

O(x) = trφ2(x) , S(x) = trFµνF
µν(x),

and

GF(y) ∼
∏

a

δ(φa(y))δ(φ
a
(y))ηa(y) ×

∏

a

δ(λa(y))ca(y)ca(y)

is the operator which fixes the gauge transformations at the point y to be trivial (it
is a suitably regularized product of the Faddeev-Popov ghosts and the delta functions
δ(φa), all taken at one point in M4).

The correlator (8.56) is saturated by the charge one instanton. Indeed, on the moduli
space M2,1 of charge 1 instantons with the gauge group SU(2) the operators trφ2

become four-forms, and trF 2
µν – the density of the topological charge – a function.

The dimension of the moduli space M∞
N,k of charge k instantons with the gauge group

SU(N), considered up to the gauge transformations, equal to the identity at one point
(e.g., y = ∞), is equal to 4Nk.

Using the expressions (8.55) for the universal curvature invariants, computed with
the help of the ADHM construction, we reduce (8.56) to the following integral:

(8.57) COOS(x1,x2;x3) =
1

|x12|4
C

(
x12 · (x13 + x23)

|x12|2
)
,

where

(8.58) C(q) =

∫

R4×R4

d4v1

(1 + |v1|2)4
d4v2

(1 + |v2|2)4
|v−|4

(1 + |v+ − v− · q|2)4

with

v± =
v1 ± v2

2
,

and we use quaternionic notation.
Formula (8.57) is very suggestive in that it resembles the two-dimensional holomortex

formalism (see Section 4.7 and Section 6.7.7). Indeed, it looks like the correlation
function of two holomortex operators, inserted at the points v1 and v2. This suggests
that the four-dimensional Yang-Mills theory may be defined as a deformation of a
much simpler model by analogues of the two-dimensional holomortex operators. The
precise definition of these operators is beyond the scope of the present paper. We will
only remark that to observe this holomortex structure of the correlation functions it is
important to go beyond the topological sector of the Yang-Mills theory.

The integral (8.57) is invariant under the SU(2) rotations, q 7→ uqu, uu = 1. Thus,
we can assume that q = q ∈ C, or, in matrix form,

q =

(
q 0
0 q

)
.
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Without any detailed calculations it is clear that C(q) has singularities when q →
−1,+1,∞. These limits correspond to the situations, where the operator S hits one of
the operators O, or goes away to infinity.

The correlation function (8.57) can also be rewritten in the following symmetric form:

COOS(x1,x2;x3) = |x12|4 Γ
(
x2

12,x
2
13,x

2
23

)
,(8.59)

Γ(a12, a13, a23) =

∫

R3
≥0

d3t (t1t2t3)
3 e−(t1+t2+t3)

(t1t2a12 + t1t3a13 + t2t3a23)4
.

Note that the expression in the denominator in (8.59) can be rewritten using

t1t2|x12|2 + t1t3|x13|2 + t2t3|x23|2
t1 + t2 + t3

=

3∑

i=1

ti |xi − xt|2,

where

xt =
t1x1 + t2x2 + t3x3

t1 + t2 + t3
.

Therefore the integral (8.59) can be written as the integral over the plane triangle with
the vertices x1,x2,x3 (see Figure 9).

Figure 9. The triangle.

Let us introduce the kinematic variables

(8.60) s2 = |x12|/|x23| , s3 = |x13|/|x23|,
which obey the usual triangle inequalities

|1 − s2| ≤ s3 ≤ 1 + s2.
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The integrals (8.57),(8.59) can be reduced to the one-dimensional integral

(8.61) C(q) =

∫ +∞

−∞
dϑ ρ

(
s22 + s23 + 2s2s3 coshϑ

)
,

where the function

(8.62) ρ(m) =
m2 + 6m+ 3

(m− 1)6
log(m) − 10m2 + 19m+ 1

3m(m− 1)5

interpolates between

ρ(m) =
1

60
− 4

105
(m− 1) +

5

84
(m− 1)2 + . . .

for m→ 1, and

ρ(m) =

(
log(m) − 10

3

)
1

m4
+ 12

(
log(m) − 23

12

)
1

m5
+ . . .

for m→ ∞. The argument of the function ρ in (8.61) is bounded below by

mmin = (s2 + s3)
2 ≥ 1

(the equality is achieved only when the point x3 is on the line connecting x1 and x2).
Therefore the function ρ is finite for all values of ϑ, and the integral (8.61) converges
for all xi, i = 1, 2, 3.

Now we interpret the correlation function (8.56) as the vacuum matrix element

(8.63) 〈vac| O eiϕJ e−TH S |vacO〉.
Here the Hamiltonian H generates the radial evolution, with the position x1 of one of
the operators O being the origin, J is one of the SO(4) generators

J =

(
1 0
0 −1

)
,

in the notation of (8.52), and ϕ is the angular distance between the location z of S and
that of the second O, x2, when viewed from the point x1:

eiϕ =
1 − q

|1 − q| =
x12 · x32

|x12||x32|
.

Finally, the ”time” T is related to x1,x2 and x3 as follows:

eT =
|x12|
|x32|

= s2 .

The precise analytic expression for the correlation function (8.59) is rather complicated.
The function ρ(m) decays sufficiently fast for large m ≫ mmax ∼ 4. Therefore the

typical range of ϑ which contributes to the integral (8.61) is ∼ log
(

C
s2s3

)
where C is

a numerical constant of the order one. This is why we expect (8.61) to contain only
the simple logarithms log(s2), log(s3). This is a natural result for the one-instanton
correlation function, as we have argued in the case of quantum mechanics.

The upshot of this calculation is that the logarithms do appear in the correlation
functions of this model. This signifies the logarithmic nature of the four-dimensional
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conformal theory which we obtain in the τ → ∞ limit of the twisted N = 2 super-
Yang–Mills theory.

8.3.5. Operator product expansion and logarithmic partners. The next natural step in
our program is analogous to the computation of the instanton corrections to the OPE
in two-dimensional sigma models in Section 6.7. Let us investigate the asymptotics of
the correlation function COOS(x1,x2;x3) in the limit x2 → x1. The naive asymptotics
of the integral (8.58) as q → ∞ is a logarithmically divergent integral

C(q) ∼ 1

|q|4
∫

R4×R4

d4v1

(1 + |v1|2)4
d4v2

(1 + |v2|2)4
1

|v−|4
,

which is actually cut off at |v−| ∼ |q|−1, so that

COOS(x1,x2;x3) ∼
1

|x23|4
log

|x12|
|x23|

, x2 → x1.

We interpret this as the one-instanton correction to the OPE:

trφ2(x1) trφ2(x2) ∼ ΛQCD log|x12| tr(H+)2(x2) + . . .

This formula is analogous to the logarithmic terms in formulas (6.57) and (6.58) ob-
tained in sigma models. Continuing along these lines, we can find the analogues of the
jet-evaluation observables in the four-dimensional gauge theory and observe the loga-
rithmic mixing of these observables. We plan to study this in more detail in a follow-up
paper.

9. Conclusions

In this paper we have studied (twisted) supersymmetric two-dimensional sigma mod-
els and four-dimensional gauge theories in the τ → ∞ limit. We have used the quantum
mechanical models considered in Part I as a prototype. A special feature of these models
is that the path integral localizes on the finite-dimensional moduli spaces of instanton
configurations (holomorphic maps in two dimensions and anti-self-dual connections in
four dimensions). This gives us good control of the correlation functions and enables
us to describe rather explicitly the spaces of states and the spectra of these models.
However, to do this we must go beyond the topological sector and consider observables
that are not annihilated by the supercharge.

In two dimensions, we identify a large class of observables of this type which we
call jet-evaluation observables. These are differential forms on the jet space of the tar-
get manifold. They generalize the familiar evaluation observables in that they depend
not only on the value of a holomorphic map in the target manifold, but also on its
derivatives. Their correlation functions are given by integrals over the moduli spaces of
holomorphic maps, generalizing the Gromov–Witten invariants. However, in contrast
to the Gromov–Witten invariants, these integrals generally diverge on the boundary
divisors of the moduli spaces of holomorphic maps and need to be regularized. Their
regularization is not canonical, reflecting what we call logarithmic mixing of operators
(and states) of the sigma model. This is analogous to the appearance of the logarithmic
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structures in the quantum mechanical models which we studied in Part I. We have pre-
sented here many explicit examples of the correlation functions, OPE and logarithmic
mixing in two-dimensional sigma models, particularly, in the case of the target manifold
P1. We have also revisited the holomortex description of the latter model introduced
in [25] and shown that it may be used to effectively reproduce these results.

Our conclusion is that the twisted N = (2, 2) supersymmetric sigma models are
logarithmic conformal field theories, with central charge c = 0. Such logarithmic CFTs
have been extensively studied in the literature recently, see, e.g., [34, 38, 35, 47, 16, 41]
and references therein. These models are quite interesting for both theoretical reasons
and for their applications to condensed matter. Here we consider a new class of models
of this type which have many attractive features: they are defined geometrically (as
sigma models) and their correlation functions are computed explicitly as (regularized)
integrals over moduli spaces of holomorphic maps. We hope that further understanding
of these models will be beneficial for the investigation of logarithmic CFTs as well as
their physical applications.

In Part III of this paper we will study sigma models with less supersymmetry, such
as the N = (0, 2) and purely bosonic sigma models. These models are more difficult
to analyze because the definition of the measure in the path integral becomes more
problematic, which leads to various anomalies that we avoid in the N = (2, 2) models.
In particular, these models are not conformally invariant unless the target manifold is
Calabi-Yau. Nevertheless, they may still possess non-trivial chiral algebras of symme-
tries, such as an affine Kac–Moody algebra of critical level k = −h∨ in the case when
the target manifold is a flag manifold of a simple Lie groups. The latter models have
applications to the geometric Langlands correspondence. In addition, the models with
the target manifold P1 (and probably other flag manifolds as well) admit an analogue
of the holomortex description, similar to the one discussed above.

We have also studied the twisted four-dimensional supersymmetric Yang–Mills the-
ory. The τ → ∞ limit of this model may be studied along the same lines as above, with
the added complication that we need to take into account equivariance with respect to
the gauge transformations. However, much of the same structure that we have observed
in one- and two-dimensional models also appears in four dimensions. In particular, we
have computed some sample correlation functions (in the one instanton sector for the
group SU(2)) which exhibit the same logarithmic behavior that we have seen in lower
dimensions. These correlation functions are given by integrals over the moduli spaces
of anti-self-dual connections, which are described explicitly by the ADHM construction.
By careful analysis of these correlation functions we obtain logarithmic terms in the
OPE of the analogues of jet-evaluation observables. Thus, we find the same kind of log-
arithmic mixing of operators that we have seen in two-dimensional sigma models. We
believe that further investigation of these phenomena will lead to better understanding
of the four-dimensional gauge theory beyond its topological sector.
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19(3) (1973) 211–295.

[18] B. Feigin, Super quantum groups and the algebra of screenings for bsl2 algebra, RIMS Preprint.
[19] B. Feigin, E. Frenkel, Affine Kac-Moody algebras and semi-infinite flag manifolds, Comm. Math.

Phys. 128, 161–189 (1990).
[20] B. Feigin and E. Frenkel, Semi-infinite Weil complex and the Virasoro algebra, Comm. Math. Phys.

137 (199) 617–639.
[21] A. Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989) 575–

611.
[22] T. Frankel, Fixed points and torsion on Kähler manifolds, Ann. Math. 70 (1959) 1–8.
[23] E. Frenkel, Lectures on the Langlands Program and conformal field theory, Preprint

hep-th/0512172.
[24] E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Mathematical Surveys and

Monographs 88, Second Edition, AMS, 2004.
[25] E. Frenkel and A. Losev, Mirror symmetry in two steps: A–I–B, Comm. Math. Phys. 269 (2007)

39–86 (hep-th/0505131).
[26] E. Frenkel, A. Losev and N. Nekrasov, Instantons beyond topological theory I, Preprint

hep-th/0610149.
[27] E. Frenkel, A. Losev and N. Nekrasov, Notes on instantons in topological field theory and beyond,

Nucl. Phys. B Proc. Suppl. 171 (2007) 215–230 (hep-th/0702137).

http://lanl.arXiv.org/abs/math/0601532
http://lanl.arXiv.org/abs/math/0509681
http://lanl.arXiv.org/abs/hep-th/0512172
http://lanl.arXiv.org/abs/hep-th/0505131
http://lanl.arXiv.org/abs/hep-th/0610149
http://lanl.arXiv.org/abs/hep-th/0702137


124 E. FRENKEL, A. LOSEV, AND N. NEKRASOV

[28] E. Frenkel, A. Losev and N. Nekrasov, Logarithmic structures in two-dimensional sigma models,
to appear.

[29] E. Frenkel, C. Teleman and A.J. Tolland, Gromov–Witten gauge theory: the case of C×, to appear.
[30] D. Friedan, E. Martinec and S. Shenker, Conformal invariance, supersymmetry and string theory,

Nuclear Phys. B271 (1986) 93–165.
[31] A. Givental and B. Kim, Quantum cohomology of flag manifolds and Toda lattices, Comm. Math.

Phys. 168 (1995) 609–641.
[32] V. Gorbounov, F. Malikov and V. Schechtman, Gerbes of chiral differential operators, Math. Res.

Lett. 7 (2000) 55–66.
[33] V. Gorbounov, F. Malikov and V. Schechtman, Twisted chiral de Rham algebras on P1, in Graphs

and Patterns in Mathematics and Theoretical Physics, pp. 133–148, Proc. Sympos. Pure Math.,
73, AMS, 2005.

[34] V. Gurarie, Logarithmic operators in conformal field theory, Nucl. Phys. B410 (1993) 535–549.
[35] V. Gurarie and A. W. W. Ludwig, Conformal algebras of 2-D disordered systems, J. Phys. A35

(2002) L377–L384.
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