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Abstract

We formulate the notion of pre-Calabi-Yau structure via the higher cyclic Hochschild
complex and study its cohomology. A small quasi-isomorphic subcomplex in higher
cyclic Hochschild complex gives rise to the graphical calculus of ξ∂-monomials. Develop-
ing this calculus we are able to give a nice combinatorial formulation of the Lie structure
on the corresponding Lie subalgebra. Then using basis of ξ∂-monomials and employ-
ing elements of Gröbner bases theory we prove homological purity of the higher cyclic
Hochschild complex and as a consequence obtain L∞-formality. This construction in
particular allows an easy interpretation of a pre-Calabi-Yau structure as a noncommu-
tative Poisson structure. We give an explicit formula showing how the double Poisson
algebra introduced in [25] appears as a particular part of a pre-Calabi-Yau structure.
This result holds for any associative algebra A and emphasizes the special role of the
fourth component of a pre-Calabi-Yau structure in this respect.

MSC: 16A22, 16S37, 16Y99, 16G99, 16W10, 17B63 Keywords: A-infinity structure, pre-Calabi-
Yau algebra, inner product, cyclic invariance, graded pre-Lie algebra, necklace bracket, Maurer-
Cartan equation, Poisson structure, double Poisson bracket, Hochschild (co)homology, L-infinity
structure, formality.

1 Introduction

The notion of pre-Calabi-Yau algebra appeared independently and more or less at the same time
in [14], [15], [19]. This structure is present in many different areas, including topology of compact
manifolds with boundary, algebraic geometry, symplectic geometry. For example, Fano varieties are
endowed with a pre-Calab-Yau structure, open Calabi-Yau manifolds have this structure, from the
HMS conjecture it is expected that the Fukaya wrapped category of an open symplectic manifold
have a pre-Calabi-Yau structure, etc. The important feature of this structure are degree shifts, so
it captures some essential moments present in the study of shifted structures. The definition of
the pre-Calabi-Yau structure can be given via the higher cyclic Hochschild complex (in this shape
it becomes applicable to infinite dimensional algebras as well, especially, to algebras with infinite
dimensional graded components). Namely, pre-Calabi-Yau structure is a solution of the the Maurer-
Cartan equation with respect to generalized necklace bracket in the higher cyclic Hochschild complex.

We study here the higher cyclic Hochschild complex (for definition see section 3), its homological
and Lie structure. One of the tools is to introduce on this complex a calculus of noncommutative
cyclic words with labels. We start with the free associative algebra A = K⟨X⟩ with finite number
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of generators X = {x1, ..., xr} and ’labels’ ∂1, ..., ∂r, ξ. Elements of free algebra K⟨X⟩ are written
cyclically on the circle and separated by labels. These generalised cyclic monomials with labels, which
we call ξ∂-monomials, represent operations on tuples of monomials from A and form a convenient
basis in the higher cyclic Hochschild complex. Whenever we are dealing with the higher cyclic
Hochschild complex itself, without embracing in further word combinatorics, we can speak of an
arbitrary formally smooth algebra A in the sense of Cuntz and Quillen [4].

To deal with the higher cyclic Hochschild complex C●(A) we choose a small subcomplex ξ●,
quasi-isomorphic to the whole complex. We specify in section 5 a particular embedding of the
subcomplex ζ● into C●(A) by choosing a basis of ξ∂-monomials in ξ● and describing the operation in
C●(A) corresponding to a given ξ∂-monomial. The operation is schematically shown in the following
picture.

Here the black arches are input monomials from A and green arches are output monomials. We
suppose orientation is clockwise everywhere, in particular, outputs are to be read from according to
this orientation. In the above picture we see the ξ∂-monomial which encodes an operation Φ ∶ A⊗3 →
A⊗5.

We describe the generalised necklace bracket which endows the higher cyclic Hochschild com-
plex with a graded Lie algebra structure. In section 6 we show how this bracket works in terms

of ξ∂-monomials. By this we not only prove that small subcomplex ζ
(●)
A is a Lie subalgebra in

g = (C(●)A (A), [, ]gen.neckl), but also give a concrete combinatorial formula for this bracket via ξ∂-
monomials. We prove that the bracket [A,B] of two ξ∂-monomials A and B is obtained from the
initial ones according the rule [A,B] = A ○B −B ○A, where A ○B described as follows. It is a lin-
ear combination of ξ∂-monomials obtained from ξ∂-monomials representing A and B by all possible
gluings of ∂j and xj as shown in the picture.
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Namely, we glue all ∂j from ξ∂-monomial A to a corresponding xj from B, then cut at the place of
gluing, and open up to obtain one new ξ∂-monomial (xj and ∂j disappear, all remaining monomials
are read off according to clockwise orientation).

The choice of this basis in higher cyclic Hochschild complex allows, among other things, an easy
interpretation of pre-Calabi-Yau structure as a noncommutative Poisson structure. Namely, the ξ∂-
monomial produce an obvious formal analogue of polyvector field which in turn create a Poisson
structure on the representation space of A, via kind of Schouten bracket. This phenomena was
observed in many particular situations, so hopefully the abstract formulation of what is going on
in terms of higher cyclic Hochschild complex and formal calculus of ξ∂-monomials on it refines the
understanding and can be applied to even wider variety of situations.

We discuss in section 4 how the double Poisson bracket invented by Van den Bergh [25] as a
structure which induce a Poisson bracket on representation space of algebra, appear as a part of
pre-Calabi-Yau structure. In [8] we gave a detailed proof of the following fact. Any pre-Calabi-Yau
structure with m4 = 0 on arbitrary associative algebra gives rise to a double Poisson bracket according
to the formula [8]:

(∗) ⟨g ⊗ f,{{b, a}}⟩ ∶= ⟨m3(a, f, b), g⟩,

Moreover, an arbitrary double Poisson bracket can be obtained from pre-Calabi-Yau structure
of special type, with only second and third multiplications m2 and m3 present. We comment here
on main idea behind this proof from the point of view of the definition of pre-Calabi-Yau structure
via higher cyclic Hochschild complex. The special role of the forth component m4 of pre-Calabi-Yau
structure is that in this case the precise isomorphism between these two structures can be constructed,
without any correcting terms.

In section 7 we concentrate on homological properties of the higher cyclic Hochschild complex and
prove its homological purity. We again use the small quasi-isomorphic subcomplex ζ●A, introduced in

section 5. From the expression of the differential in the whole dualised bar complex C
(●)
A (A), which

we spell out in section 5, we get a differential in ζ = ζ(●)K .
While the elements of higher cyclic Hochschild complex are defined as elements of Hom(A⊗m,A⊗N)ZN ,

invariant under ZN -acton, our homology calculations are reduced to a related non ZN invariant com-
plex ζ̄, corresponding to operations with fixed point. This is possible since the differential commutes
with the cyclisation procedure (see lemma7.12).

The complex with the fixed point ζ̄ = ⊕ζ̄km, where ζ̄k = { monomials u ∈ K⟨ξ, xi, ∂i⟩, starting from
ξ or ∂i, such that deg ∂u = k}K,deg ∂,ξu = m}K has natural bigrading by ∂-degree, and by degree
with respect to ξ and ∂ith, i = ¯1, r, which we call weight. Essential for our considerations will be
cohomological grading by ξ-degree: ζ = ⊕ζ(l), where ζ(l) = ⊕

m−k=l
ζkm.

Theorem 1.1. The homology of the complex ζ̄ = ⊕ζ̄km is sitting in the diagonal k =m. Consequently,
the complex ζ̄ = ⊕ζ̄(l), ζ̄(l) = ⊕

m−k=l
ζ̄km is pure, that is its homology is sitting only in the last place of

the complex ζ with respect to cohomological grading by ξ-degree. Homological purity hence holds for
the higher cyclic Hochschild complex ζ.

This purity result is obtained via use of the Gröbner bases theory in the ideals of free algebra and
the basis of ξ∂-monomials. As a consequence of purity result we are able to deduce L∞-formality for
this complex.
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2 General definitions

The typical example of an algebra in this paper is a free associative algebra A = ⟨x1, ..., xr⟩, the most
noncommutative algebra possible. We develop elements of noncommutative geometry based on this
algebra following the spirit of [16, 13]. For example, we adopt the ideology introduced and developed
in this paper, which says that noncommutative structure should manifest as a corresponding com-
mutative structure on representation spaces. Sometimes we consider instead of free algebra formally
smooth algebras in a sense of J. Cuntz and D. Quillen [4]:

Definition 2.1. An algebra A is formally smooth (=quasi-free) if and only if it satisfies one of the
following equivalent properties:

(1) (Lifting property for nilpotent extensions) for any algebra B, a two-sided nilpotent ideal
I ∈ B(I = BIB, In = 0 for n ≫ 0), and for any algebra homomorphism f ∶ A → B/I, there exists an
algebra homomorphism f̃ ∶ A→ B such that f = prB→B/I ○ f̃ is a natural projection.

(2) Ext2A−mod−A(A,M) = 0 for any bimodule M ∈ A −mod −A.
(3) The A-bimodule Ω1

A = Ker(mA ∶ A⊗A→ A) is projective.

We denote here by A−mod−A the category of all A-bimodules, which is the same as Ae-modules,
that is modules over Ae = A ⊗ Aop. We consider mainly Homs of A-bimodules or A⊗N -bimodules
which we denote HomA−mod−A or HomA⊗N−mod−A⊗N respectively.

To give a definition of pre-Calabi-Yau structure as it was originally defined in [14], [15], [19] we
need to start with the definition of A∞-algebra, or strong homotopy associative algebra introduced
by Stasheff [21].

In fact, there are two accepted conventions of grading of an A∞-algebra. They differ by a shift in
numeration of graded components. In one convention, we call it shifted convention, each operation
has degree 1. While the other, which we call a naive convention is determined by making the binary
operation of degree 0, hence the degrees of operations mn of arity n become 2 − n. If the degree of
element x in naive convention is degx = ∣x∣, then shifted degree in Ash = A[1], which fall into shifted
convention, will be degshx = ∣x∣′, where ∣x∣′ = ∣x∣ − 1, since x ∈ Ai = A[1]i+1.

The formulae for the graded Lie bracket, Maurer-Cartan equations and cyclic invariance of the
inner form are different in different conventions. We mainly use the shifted convention, but sometimes
need the naive convention as well.

Let A be a Z graded vector space A = ⊕
n∈Z

An, and C l(A,A) be Hochschild cochains C l(A,A) =

Hom(A[1]⊗l,A[1]), for l ⩾ 0, C●(A,A) = ∏
k⩾1

C l(A,A).

On C●(A,A)[1] there is a natural structure of graded pre-Lie algebra, defined via composition:

○ ∶ C l1(A,A)⊗C l2(A,A)→ C l1+l2−1(A,A) ∶

f ○ g(a1 ⊗ ...⊗ al1+l2−1) =

∑(−1)
∣g∣

i−1
∑
j=1
∣aj ∣

f(a1 ⊗ ...⊗ ai−1 ⊗ g(a1 ⊗ ...⊗ ai+l2+1)⊗ ...⊗ al1+l2−1)

The operation ○ defined in this way does satisfy the graded right-symmetric identity:

(f, g, h) = (−1)∣g∣∣h∣(f, h, g)

where

4



(f, g, h) = (f ○ g) ○ h − f ○ (g ○ h).
As it was shown in [6] the graded commutator on a graded pre-Lie algebra defines a graded Lie

algebra structure.
Thus the Gerstenhaber bracket [−,−]G:

[f, g]G = f ○ g − (−1)∣f ∣∣g∣g ○ f
makes C●(A) into a graded Lie algebra. Equipped with the derivation d = ad m2, (C●(A),m2)

becomes a DGLA, which is a Hochschild cohomological complex.
Graphically the corresponding composition can be depicted as follows.

f ○ g = ∑
inputs of f

(−1)σ

g f

1

With respect to the Gerstenhaber bracket [−,−]G we have the Maurer-Cartan equation

[m(1),m(1)]G = ∑
p+q=k+1

p−1
∑
i=1
(−1)εmp(x1, . . . , xi−1,mq(xj , . . . , xi+q−1), . . . , xk) = 0, (2.1)

where
ε = ∣x1∣′ + . . . + ∣xi−1∣′, ∣xi∣′ = ∣xi∣ − 1 = degxi − 1

The Maurer-Cartan in naive convention is:

[m(1),m(1)] = ∑
p+q=k+1

p−1
∑
i=1
(−1)εmp(x1, . . . , xi−1,mq(xj , . . . , xi+q−1), . . . , xk) = 0, (2.2)

where
ε = i(q + 1) + q(∣x1∣ + . . . + ∣xi−1∣,

Definition 2.2. An elementm(1) ∈ C●(A,A)[1] which satisfies the Maurer-Cartan equation [m(1),m(1)]G
with respect to the Gerstenhaber bracket [−,−]G is called an A∞-structure on A.

Equivalently, it can be formulated in a more compact way as a coderivation on the coalgebra of
the bar complex of A.

In particular, for example, associative algebra with zero derivation A = (A,m = m(1)2 ) is an A∞-
algebra. The component of the Maurer-Cartan equation of arity 3, says that the binary operation of
this structure, the multiplication m2 is associative:

(ab)c − a(bc) = dm3(a, b, c) + (−1)σm3(da, b, c) + (−1)σm3(a, db, c) + (−1)σm3(a, b, dc)

We can give now definition of pre-Calabi-Yau structure (in shiftedconvention).
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Definition 2.3. A d-pre-Calabi-Yau structure on a finite dimensional A∞-algebra A is
(I). an A∞-structure on A⊕A∗[1 − d],
(II). cyclic invariant with respect to natural non-degenerate pairing on A⊕A∗[1 − d], meaning:

⟨mn(α1, ..., αn), αn+1⟩ = (−1)∣α1∣′(∣α2∣′+...+∣αn+1∣′)⟨mn(α2, ...αn+1), α1)⟩

where the inner form ⟨, ⟩ on A ⊕A∗ is defined naturally as ⟨(a, f), (b, g)⟩ = f(b) + (−1)∣g∣′∣a∣′g(a) for
a, b ∈ A,f, g ∈ A∗

(III) and such that A is an A∞-subalgebra in A⊕A∗[1 − d].

The signs in this definition written in shifted convention are assigned according to the Koszul
rule, which is, by the way, not quite the case for naive convention, where the cyclic invariance with
respect to the natural non-degenerate pairing on A⊕A∗[1 − d], from (II) sounds:

⟨mn(α1, ..., αn), αn+1⟩ = (−1)n+∣α1∣′(∣α2∣′+...+∣αn+1∣′)⟨mn(α2, ...αn+1), α1⟩

The appearance of the arity n, which influence the sign in this formula, does not really fit with
the Koszul rule, this is the feature of the naive convention, and this is why it is more convenient to
work with the shifted convention.

The cyclic invariance condition and inner form symmetricity in shifted convention look like:

⟨mn(α1, ..., αn), αn+1⟩ = (−1)∣α1∣′(∣α2∣′+...+∣αn+1∣′)⟨mn(α2, ...αn+1), α1)⟩ (2.3)

⟨x, y⟩ = −(−1)∣x∣
′ ∣y∣′⟨y, x⟩ (2.4)

The most simple example of pre-Calabi-Yau structure demonstrates that this structure does exist
on any associative algebra. Namely, the structure of associative algebra on A can be extended to the
associative structure on A ⊕ A∗[1 − d] in such a way, that the natural inner form is (graded)cyclic
with respect to this multiplication. This amounts to the following fact: for any A-bimodule M the
associative multiplication on A⊕M is given by (a+f)(b+ g) = ab+af + gb. In this simplest situation
both structures on A and on A⊕A∗ are in fact associative algebras. More examples one can find in
[7], [3].

Note that the notion of pre-Calabi-Yau algebra introduced in [15], [19], [22], as an A∞-atructure
on A ⊕A∗, uses the fact that A is finite dimensional, since there is no natural grading on the dual
algebra A∗ = Hom(A,K), induced form the grading on A in infinite dimensional case. The general
definition via higher cyclic Hochschild complex, suitable for infinite dimensional algebra was given in
[15], [14], and we will use it here. It is equivalent to the definition, where the Hom(A,K) considered
as graded Hom: A∗ = ⊕(An)∗ = Hom(A,K), in case the graded components are finite dimensional.

3 Higher cyclic Hochschild complex

First, we should define higher cyclic Hochschild cochains and generalised necklace bracket.

Definition 3.1. For N ⩾ 1 the space of N-higher cyclic Hochschild cochains is defined as

C
(N)
cycl (A) ∶= ∏

r1,...,rN⩾0
HomA⊗N−mod−A⊗N (

N
⊗
i=1

A⊗ri ,A⊗Ncycl)
ZN ,
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With differential coming from dualised bar complex of A⊗N -bimodules. The A⊗N -bimodule struc-
ture on A⊗Ncycl is defined as follows: for any x1⊗ ...⊗xN ∈ A⊗Ncycl and elements a1⊗ ...⊗aN , b1⊗ ...⊗ bN ∈
A⊗N ,

(a1 ⊗ ...⊗ aN) ● (x1 ⊗ ...⊗ xN) ● (b1 ⊗ ...⊗ bN) = a1x1b2 ⊗ ...⊗ aNxNb1.

The symbol Hom(A⊗r,A⊗N)ZN means that we take only elements of Hom which are ’invariant’
with respect to obvious ZN -action.

Denote by C
(●)
cycl(A) = ∏N⩾1C

(N)
cycl (A) the space of all higher cyclic Hochschild cochains. Further

throughout the paper we omit subscript cycl, when it is clear that we are in cyclic situation, then
we write just C(●)(A) =∏N⩾1C

(N)(A). The complex obviously can also be considered as product of
corresponding K-module morphisms or as a collection of N operations with one output each.

The corresponding differential is written precisely in section 5.

Let us comment on the meaning of Hom(
N
⊗
i=1

A⊗ri ,A⊗N)ZN . An element of Hom(
N
⊗
i=1

A⊗ri ,A⊗N)
can be thought of as a collection of N operations from A⊗ri to A with one fixed point: the operation
from which we start, when we move along the circle on which all operations are situated. The cyclycity
requirement on the higher cyclic Hochschild complex says that together with each operation with
fixed point we have a sum of the same operations with all possible fixed points. It means that
operation is actually symmetrized by cyclic permutations of outputs. In other words, it can be

expressed in the following way. Consider an obvious action of ZN on Hom(
N
⊗
i=1

A⊗ri ,A⊗N), which
cyclically permutes N outputs (together with N participating operations). We require that elements
of the complex are ’invariant’ under ZN -action, that is the higher cyclic Hochschild complex is formed
by Hom(A[1]⊗r,A[1]⊗Ncycl)

ZN .

The space of all higher cyclic Hochschild cochains denoted C
(●)
K (A) or C

(●)
A (A) , depending on

whether K-module Homs or A⊗N - bimodule Homs are involved, sometimes we omit the K when it
is clear from the context.

Note, that C
(1)
K (A) is the space of usual Hochschild cochains.

Now we start to define a Lie bracket on the complex, and at this point it becomes important
which shifts of the grading on A we chose, so we consider the higher cyclic Hochschild complex with
the following shifts:

C
(N)
cycl (A) ∶= ∏

r1,...,rN⩾0
HomA⊗N−mod−A⊗N (

N
⊗
i=1

A⊗ri ,A[1]⊗Ncycl)
ZN .

Definition 3.2. The generalized necklace bracket between two elements f, g ∈ C(N)(A) is given as
[f, g]gen.neckl = f ○ g − (−1)σg ○ f, where composition f ○ g consists of inserting all outputs of g to all
inputs from f with signs assigned according to the Koszul rule.

Note that the point is not fixed in the elements of our complex, thus generalized necklace bracket
produces also operations without a fixed points, that is cyclicly invariant operations. We can think
of it as of insertion of operations with fixed points according to the rule, and then ’symmetrizing the
result’ by taking each resulting operation with all possible fixed points to the output.

The composition for the generalised necklace bracket can be graphically depicted as follows:
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f ○ g = ∑
f−inputs,

g−outputs

(−1)σ

g f

1

Since the defined above composition f ○g makes C(●) into a graded pre-Lie algebra, the generalized
necklace bracket obtained from it as a graded commutator, makes C(●) into a graded Lie algebra.
We denote it by g = (C(●)(A,A[1]), [, ]gen.neckl).

Let us denote by C(N,d) ⊂ CN(A): C(N,d) = C(N,dN(mod2)), where C(N,0) are cochains invariant
under ZN -action, and C(N,1) are anti-invariant cochains.

Definition 3.3. The d-pre-Calabi-Yau structure on A is an element from the space of higher cyclic
Hochschild cochains

C(N,d) ⊂ C(●)(A) =∏HomA⊗N−mod−A⊗N (
N
⊗
i=1

A⊗ri ,A⊗Ncycl)
ZN ,

m = ∑N⩾0m
(N), m(N) ∈ C(N,d)(A), i.e. ’invariant’ with respect to ZN action element of degree

(d − 2)(N − 2) −∑ ri and a solution to the Maurer-Cartan equation [m,m]gen.neckl = 0 with respect
to generalised necklace bracket.

Any such solution makes C(●)(A) into a DGLA with the differential adm. Indeed, adm become a
derivative, that is (adm)2 = 0: [[x,m],m] = 0 for any x if m is a solution of M equation: [m,m] = 0,
since [, ] satisfies a Jacobi identity.

Note that in the above definition if we would want to have operations of degrees not dependant
of degrees of inputs/outputs as solutions of Maurer-Cartan equations, we would use the following
shifted version of the higher cyclic Hochschild complex:

C(N) =HomA⊗N−mod−A⊗N (
N
⊗
i=1
(HomA[1]⊗ri ,A⊗Ncycl[2 − d])

ZN ,

For the sake of simplicity and clarity we in many occasions consider in this text the grading,
where A is sitting in the zero component: A0 = A. This prompts us to deal with 2-pre-Calabi-Yau
structures.

4 Double Poisson bracket and Maurer-Cartan equation

In this section we discuss a bijective correspondence between particular part of pre-Calabi-Yau struc-
ture and the structure of double Poisson bracket invented by Van den Bergh [25] as a structure which
produces the Poisson bracket on representation spaces.

Remind, that double Poisson bracket defined as a map {{⋅, ⋅}} ∶ A ⊗ A → A ⊗ A satisfying the
following axioms:

Anti-symmetry:

{{a, b}} = −{{b, a}}op (4.1)
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Here {{b, a}}op means the twist in the tensor product, i.e. if {{b, a}} = ∑
i
bi⊗ci, then {{b, a}}op = ∑

i
ci⊗bi.

Double Leibniz:

{{a, bc}} = b{{a, c}} + {{a, b}}c (4.2)

and double Jacobi identity:

{{a,{{b, c}}}}L + τ(123){{b{{c, a}}}}L + τ(132){{c{{a, b}}}}L (4.3)

Here for a ∈ A⊗A⊗A, and σ ∈ S3

τσ(a) = aσ−1(1)⊗ aσ−1(2)⊗ aσ−1(3).

The {{}}L defined as
{{b, a1 ⊗ ...⊗ an}}L = {{b, a1}}⊗ a1 ⊗ ...⊗ an

The connection between the two structures is described by the following theorem.

Theorem 4.1. Let we have A∞-structure on (A ⊕ A∗,m =
∞
∑

i=2,i≠4
m
(1)
i ). Define the bracket by the

formula
(∗) ⟨g ⊗ f,{{b, a}}⟩ ∶= ⟨m3(a, f, b), g⟩,

where a, b ∈ A, f, g ∈ A∗ and m3(a, f, b) = c ∈ A corresponds to the component of solution to the
Maurer-Cartan m3: A ×A∗ ×A → A corresponding to the cyclic tensor A⊗A∗ ⊗A⊗A∗. Then this
bracket does satisfy all axioms of the double Poisson algebra.

Moreover, pre-Calabi-Yau structures corresponding to the cyclic tensor A ⊗ A∗ ⊗ A ⊗ A∗ with
mi = 0, i ⩾ 4 are in the bijective correspondence defined by (∗) with the double Poisson brackets for
an arbitrary associative algebra A.

The detailed proof of this theorem, taking into account signs and other details, was given in [8]
in terms of definition 2.3 of pre-Calabi-Yau structure. We translate here main idea of this proof,
using definition 3.3 via higher cyclic Hochschild complex. It looks very transparent this way, which
emphasises another advantage of this definition.

In terms of definition 3.3 the Maurer-Cartan equation on ’invariant’ with respect to action of
cyclic group elements from the higher cyclic Hochschild complex of particular kind, described in the
theorem look like:
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Hence from the Maurer-Cartan the following equations follow:

These two clearly correspond to Leibnitz and Jacobi identities respectively. The thing to be
checked now related to the following fact. The element of the higher cyclic Hochschild complex
with two inputs and two outputs canonically corresponds (via the pairing on A ⊕A∗) to the maps
D ∶ A × A → A × A and M ∶ A × A∗ × A → A. This correspondence defined however only up to an
arbitrary permutation of terms A. To establish an isomorphism between the two structures, we then
need to choose appropriately this correspondence, which is done by formula (*). After that axioms of
double Poisson bracket can be checked, taking into account signs. Moreover we ensure that no other
axioms appear from the Maurer-Cartan equation in case of the structure (A ⊕A∗,m2 +m3), hence
all double Poisson brackets can be obtained from these structures, that is the map defined by (*) is
a surjection. This means that structures of mentioned type are indeed in a bijective correspondence
with the double Poisson brackets.

5 Small subcomplex in the higher cyclic Hochshild com-

plex

We consider now a subcomplex ζ of the higher cyclic Hochschild complex, which we define as follows.
Take a quotient complex

Rmin = 0→ Ω→ A⊗A→ A→ 0
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of the bar complex (considered as a complex of A-bimodules). Namely, Rmin = B/F , where B is the
bar complex

B = . . .A⊗A⊗A
D3→ A⊗A→ A→ 0

denote its usual differential by DA or just D, when it is clear that we are talking about complex of
A-bimodules.

Let F be the subcomplex generated by A⊗k with k ⩾ 4 and kerD3. i.e. F = ⊕A⊗⩾4 ⊕ KerD3 .
Note that Ω = A⊗A⊗A/kerD3 is isomorphic to the kernel of the multiplication map µ ∶ A⊗A→ A.
We equip Rmin with the grading for which R−1 = Ω and R0 = A ⊗ A. Thus we have a resolution
Rmin ∈ Compl(Ae −mod) of a diagonal bimodule A.

Then we consider Nth tensor power of Rmin:

R⊗Nmin ∈ Compl((Ae)⊗N −mod),

and dualise it by taking Hom to an A⊗N -bimodule A⊗Ncycl with the defined above structure.

Hom(Ae)⊗N (R⊗Nmin,A
⊗N
cycl) =∶ ζ

(N).

For N = 1 applying the functor HomAe(−,A) to Rmin ∈ Compl(Ae −mod) we get a subcomplex
ζ = Ann(F) = HomAe(Rmin,A) of the usual Hochschild complex C●(A,A) = HomAe(B,A):

C●(A,A) ⊃ HomAe(Rmin,A)

where
ζ = Ann(F) = {Φ ∈ C●(A,A)[1] ∶ Φ(h) = 0 for h ∈ F}.

Thus
ζ = Ann(F) = {chains in HomAe(B,A), turning F into 0}
= {Φ(a1 ⊗ ⋅ ⋅ ⋅ ⊗ an), s.t. Φ(a1 ⊗ ⋅ ⋅ ⋅ ⊗ an) = 0, n > 3 and
Φ(a1 ⊗ a2 ⊗ a3) = 0 iff a1 ⊗ a2 ⊗ a3 ∈ kerD3 = ImD4}.
That is, Φ ∈ HomAe(A⊗3,A) is in ζ if and only if it is an A-bimodule derivation, that is satisfies

the Leibnitz rule:

Φ(a1 ⊗ a2a3 ⊗ a4) = Φ(a1 ⊗ a2 ⊗ a3a4) −Φ(a1a2 ⊗ a3 ⊗ a4).

Note that HomAe(A⊗A,A) is naturally isomorphic to A, while HomAe(Ω,A) is naturally identified
with DerAe(A⊗3,A), which interprets ζ = HomAe(Rmin,A):

0← HomAe(Ω,A)
D∗3← HomAe(A⊗A,A)

D∗2← HomAe(A,A)← 0

as

0
D∗3← DerAe(A⊗3,A)

D∗2← A← K.

We can pass from HomAe to HomK, and since

HomAe(A⊗A,A) ≃ A, HomAe(A⊗n+2) ≃ HomK(A⊗n,A), HomAe(Ω,A) ≃ DerK ⊂ HomK(A,A)

we have an isomorphic complex over K:

ζK ∶ E = 0← DerKA←d∗2 A← 0

where DerKA is the space of usual derivations from HomK(A,A).
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We explain here in more details what we do in case of arbitrary N . We take Nth tensor power of
small complex Rmin and dualize it by HomA⊗N−mod−A⊗N (−,A⊗Ncycl).

The structure of A⊗N module on B is natural.
Now R⊗Nmin = (B/F)

⊗N = B⊗N/J where J = F ⊗ B⊗(N−1) + B ⊗ F ⊗ B⊗(N−2) + ... + B⊗(N−1) ⊗ F .
Here we need to check of course that J is a submodule in A⊗N -bimodule B⊗N .

Thus ζ
(N)
A = AnnJ = HomA⊗N−mod−A⊗N (R⊗Nmin,A

⊗N
cycl)

ZN ⊂ HomA⊗N−mod−A⊗N (B⊗N ,A⊗Ncycl)
ZN .

We can describe this annihilator as

ζ(N) = AnnJ = {Φ ∈ HomA⊗N−mod−A⊗N (B⊗N ,A⊗Ncycl))
ZN ∣

Φ(B⊗r ⊗F ⊗ B⊗s) = 0, ∀r + s = N − 1}.

This means ζ(N) = AnnJ formed by those element of vector space

E⊗N = ⋂
s+r=N−1

{B⊗r ⊗AnnF ⊗ B⊗s},

which are A⊗N -bimodule morphisms.
This leads us to the description of the small complex ζ(N) in terms of the appropriately chosen

basis.
Starting from this place, when we choose a basis, we will deal with a free algebra A, in stead of just

formally smooth algebra. The obvious free basis in ΩA−A consists of dxi = 1⊗ xi − xi ⊗ 1, and denote
the basis of free A-bimodule A⊗A by ξ. Let us denote the elements of dual bases in HomA−A(Ω,A)
and HomA−A(A⊗A,A) respectively by ∂i and ξ∗: ∂i(dxj) = δij1, ξ∗(ξ) = 1. Corresponding bases of
HomK(Ω,A) and HomK(A ⊗A,A) are {∂iu,u ∈ ⟨X⟩} and {ξu, u ∈ ⟨X⟩} respectively. The basis of

the complex ζ
(N)
K = HomK(R⊗Nmin,A

⊗N
cycl) thus consists of cyclic monomials on ξ∗, ∂i and xi which we

depict as follows. We will further write just ξ in stead of ξ∗.

Pic.1

This monomial, which we call ξ∂-monomial corresponds to the following operation, i.e. element
of the higher cyclic Hochschild complex HomK(A⊗n,A⊗k), where n is the ∂-degree of ξ∂-monomial
µ and k is its ∂, ξ-degree.

Let X-monomials u1, . . . , un be an input of Φµ. The output will be a linear combination of tuples
of monomials from A colored green in the following picture. All circles in the picture are oriented
clockwise, so one can read outputs following the orientation of the circles. The sum in the linear

12



combination is over all ’intersections’ of variables xi from the input monomials (black) with ∂i in the
ξ∂-monomial µ.

The ξ∂-monomial depicted below represent an operation Φ ∶ A⊗3 → A⊗5.

Pic.2

In terms of the above ξ∂-basis we now describe differentials D∗A = D∗ and D∗K = d
∗ in dualized

complexes.
Let us spell out first the usual differential DA on one copy of the bar complex B:

DA(u1 ⊗ ...⊗ un) = u1u2 ⊗ ...⊗ un − u1 ⊗ u2u3 ⊗ ...⊗ un + ... + (−1)nu1 ⊗ ...⊗ un−1un.

After we dualise this complex by HomA−mod−A(−,A), we get a usual dual differential D∗A:

(D∗Af)(u1⊗ ...⊗un+1) = f(u1u2⊗ ...⊗un+1)−f(u1⊗u2u3⊗ ...⊗un+1)+ ...+(−1)n+2f(u1⊗ ...⊗unun+1),

where f ∈ HomA−mod−A(B,A).
When we pass to HomK(B,A) an element h ∈ HomK(B,A) is defined by h(v1 ⊗ ... ⊗ vn) =

f(1⊗ v1 ⊗ ...⊗ vn ⊗ 1), since f is an A-bimodule morphism. Thus

(D∗Kh)(v1 ⊗ ...⊗ vn−1) = v1h(v2 ⊗ ...⊗ vn−1) − h(v1v2 ⊗ v2...⊗ vn−1) + ...

(−1)n−2h(v1 ⊗ ...⊗ vn−2vn−1) + (−1)n−1h(v1 ⊗ ...⊗ vn−2)vn−1,

where h ∈HomK(B,A).
Doing the same for the tensor product of N copies of the bar complex B and dualising it

by HomA⊗N−mod−A⊗N (−,A⊗Ncycl), we obtain the expression for the differential in the higher cyclic
Hochschild complex.

The differential obtained form the differential of the tensor product of bar complexes after dual-
ising by HomA⊗N−mod−A⊗N (−,A⊗Ncycl) is the following:

D∗h(v1, ..., vN) =
n

∑
α=1
(−1)s1+...+sα−1D∗αh(v1, ..., vN),

13



where vα = xα1 ...xαsα ∈ A
⊗sα ⊂ B, and

D∗αh(v1, ..., vN)
sα−1
∑
j=1
(−1)jh(v1 ⊗ ...⊗ vα−1 ⊗ xα1 ⊗ ...⊗ xαj x

α
j+1 ⊗ ...⊗ xαsα ⊗ vα+1 ⊗ ...⊗ vN)+

(1⊗ ...⊗ 1⊗ xα1 ⊗ ...⊗ 1) ● h(v1 ⊗ ...⊗ vα−1 ⊗ xα2 ⊗ ...⊗ xαsα ⊗ vα+1 ⊗ ...⊗ vN)+

(−1)sαh(v1 ⊗ ...⊗ vα−1 ⊗ xα1 ⊗ ...⊗ xαsα−1 ⊗ vα+1 ⊗ ...⊗ vN) ● (1⊗ ...⊗ 1⊗ xαsα ⊗ ...⊗ 1).

Here the element (1⊗ ...⊗1⊗xα1 ⊗ ...⊗1) has xα1 in the place α, the element 1⊗ ...⊗1⊗xαsα⊗ ...⊗1)
has x∣αsα in place α + 1(modN).

Note that we need the small complex ζ(n) to calculate cohomologies of the higher Hochschild
complex, so we want to ensure they do coincide. It is indeed the case for good enough algebras, this
is why we choose to work with formally smooth algebras at this stage.

When we substitute the small complex Rmin with its n-th tensor power and apply the functor
Hom⊗n(Ae), we get subcomplex ζ(n) of the higher Hochschild complex, which has the same cohomolo-
gies.

Proposition 5.1. Let A be a formally smooth algebra (in particular, free associative algebra). Then
HC(n)(A[1],A[1]) =Hζ(n).

Proof. Since both complexes are projective resolutions of A⊗n, and A is smooth, we have that the
statement is true.

The goal for the next section is to describe how the Lie bracket defined on the higher Hochschild
complex g = C●(A[1],A[1]) acts on elements of the basis consisting of ξ∂-monomials. In pre-
vious section we seen how ξ∂-monomials interpret as elements of g. That is, which element of
HomK(A⊗n,A⊗k) corresponds to a given ξ∂-monomial. By specifying this correspondence we gave
the concrete embedding of ζ(n) into the higher cyclic Hochschild complex C(●)(A). Now we will use
this correspondence to show that the necklace bracket of two ξ∂-monomials again sitting in the linear
span of ξ∂-monomials, and how this new ξ∂-monomials are constructed, which forms a foundation
of ξ∂-calculus.

6 Lie bracket on ζ(●)

We give here a constructive description of the bracket in the small subcomplex ζ
(N)
K of the Hochschield

complex in terms of ξ∂ calculus which makes it into a Lie subalgebra of C
(N)
K .

Theorem 6.1. I. The above described embedding ζK → C●(A[1],A[1]) is an embedding of complexes,
whose image is a Lie subalgebra of g = C●(A[1],A[1]) equipped with the generalised necklace bracket.

II. Precise combinatorial description of this bracket is given by (*) (Pic. 3).

Proof. To prove this we need to show that the bracket of the Lie algebra g = C●(A[1],A[1]) applied
to ξ∂-monomials yields a member of ζ, that is, a linear combination of ξ∂-monomials again.

Let A and B be two ξ∂-monomials. We perform composition of corresponding operations U ○W
from the Hochschild complex according to the necklace bracket rule. We will see that we can not
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express the resulting operation U ○W via ξ∂ monomials, but we can do it for the operation [U,V ] =
U ○W −W ○ U . Preform first U ○W . This composition of operations from C●(A) is realised as
application of ξ∂-monomial A to the input (according to the procedure described by pic.2), and then
application of ξ∂-monomial B to the output of the first operation. As an output of this composition
we will get linear combination of monomials from A ⊗ ti. We call such a monomial non-essential if
it is obtained as a result of gluing some letter xi from the input of operation A to some ∂i. Gluing
letters xj from the inside of operation A (red arcs in pic.2) to the ∂j will result in obtaining essential
monomials in the output of composition U ○W . Note that the copy of the same monomial present
in composition U ○W can be essential or not, depending on how it is obtained. Thus to be essential
is not a property of the monomial, but it just characterises the way it got into the output of the
composition of these operations.

We claim that non-essential output monomials for the operations U ○W and W ○ U will be the
same (with the same coefficients) and therefore they will cancel out in the bracket [U,W ] formed only
by the essential outputs meaning exactly that it is described by the operation following operation (*)
on ξ-∂ words. That is, letters xi from the monomial A (red in Pic. 3) are getting inserted in ∂i of
the second ξ∂ word B (and other way around for W ○U). Insertions of this kind alone define [A,B].

Pic.3

15



Thus the operation (*) on -monomials is described as follows.
The complete proof of this claim consists of consideration of 8 cases depending on which combi-

nations of ξ and ∂j surrounds the place of insertion as well as whether the two letters of the input
involved in the two compositions come from the same input or from different ones.

We illustrate he proof by the following example.
Example
Consider the following two operations from Pic. 4.

Pic.4

Namely, let A = ξu∂iv∂jwξ and B = ∂3y∂4z. As an input consider three monomials w1, w2 and
w3 of the form

w1 = axib, w2 = cxjdxte, w3 = fxsg.

We fixed certain points in them, to construct coupling monomials which will cancel in [U,W ].
Consider first operation corresponding to a ξ∂ monomial A. After inserting xi of w1 and xj of w2 into
∂i and ∂j of A, we get three outputs aw, udxte and cvb. After inserting xt from one of those outputs
udxte, and xs of w3 into the operation corresponding to B, we get four outputs for the composition
aw, cvb, udzg and fye. These are non-essential monomials since we started from letter xi in the
input w1 of operation U , not from the internal letter in the ξ∂-presentation of operation U .
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Pic.5

Next, consider composition of operations W ○ U . If we insert xs of w3 and xt of w2 into the
operation corresponding to B, we get two outputs fye and ucxjdzg. Now inserting xi of w1, and
xj of the second output into the operation defined by A, we get the same four outputs for the
composition: aw, cvb, udzg and fye.

Pic.6

This example demonstrate that compositions in different order exhibit the same non-essential
output monomials. As a matter of fact, the same argument works for every non-essential output
monomial, so we can see that all non-essential outputs cancel in [U,W ] = U ○W −W ○U .

7 Homological purity and formality

7.1 Homological purity of the higher Hochschild complex

The goal of this section will be to prove homological purity of the small complex ζ = ζ
(N)
K =

HomK(R⊗Nmin,A
⊗N
cycl)

ZN considered in previous sections. It is a subcomplex of a complex ζ̄ = HomK(R⊗Nmin,A
⊗N
cycl),

which is the version of the higher Hochschild complex, where we do not take invariants under ZN -
action, or in other words operations do have a fixed point. This complex can be described as
ζ̄ = {monomials u ∈ K⟨ξ, xi, ∂i⟩, i = ¯1, r, starting from ξ or ∂i}K. It will be instrumental in the
proof of purity for ζ. Our proof, using Gröbner bases techniques in the ideals of free algebras, for
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example those generated by one element associated to a differential, can be considered in a way as a
construction of corresponding homotopy map.

We naturally have a bigrading on ζ = ⊕ζkm: the grading by ∂-degree, and by degree with respect
to ξ and ∂ith, i = ¯1, r, which we call weight. That is, u ∈ ζkm, if deg ξ,∂u =∶ w(u) = m, and deg ∂u =∶
g(u) = k. Essential for our considerations will be the cohomological grading by ξ-degree: ζ = ⊕ζ(l),
where ζ(l) = ⊕

m−k=l
ζkm.

∂ ∂∂ ∂∂∂ ∂∂∂∂
↗ ∣ ↗ ∣ ↗ ↗

ξ ξ∂ ξ∂∂ ξ∂∂∂
↗ ∣ ↗ ∣ ↗

ξξ ξξ∂ ξξ∂∂
↗ ∣ ↗ ∣

ξξξ ξξξ∂
↗ ∣

ξξξξ

If ζm is a subcomplex of ζ, namely a slice consisting of elements of weight m, then we will use

also splitting ζm = ⊕
s
ζ
(s)
m , where s is an x-degree: u ∈ ζ(s)m , if w(u) =m, and deg x1,...,xr(u) = s.

The differential in bimodule Hom explained in section 5, in terms of ξ∂-monomials boils down to
the following differential on ζ:

d(u1ξu2ξ . . . un) =∑(−1)g(u1ξu2ξ...ui)u1ξu2ξ . . . ui∆ui+1 . . . un

if u1 ≠ ∅ (u1 starting with ∂i), here ∆ =
r

∑
i=1

∂ixi − xi∂i, and

d(ξu1ξu2ξ . . . un) = ξd(u1ξu2ξ . . . un) +
r

∑
i=1
[∂ixiu1ξu2ξ . . . un − ∂iu1ξu2ξ . . . unxi]

if the monomial starts with ξ. This is a differential in the tensor product of bar complexes dualised
by Hom (−,A⊗Ncycl).

Theorem 7.1. The homology of the complex ζ = (ζ, d), ζ = ⊕ζkm is sitting in the diagonal k = m,
consequently, the complex ζ = ⊕ζ(l), ζ(l) = ⊕

m−k=l
ζkm is pure, that is the homology is sitting only in

the last place of the complex with respect to cohomological grading by ξ-degree.

Proof. To prove this, we consider related complex ζ̂ with the following differential:

dζ̂(u1ξu2ξ . . . un) =∑(−1)
g(u1ξu2ξ...ui)u1ξu2ξ . . . ui∆ui+1 . . . un,

where ∆ =
r

∑
i=1

∂ixi − xi∂i.

We first prove that homologies are sitting in one place in the complex (ζ̂, dζ̂) and then reduce the

situation for (ζ̄, d) to this. After that simple argument of Lemma 7.12 shows that for the subcomplex
(ζ, d) ⊂ (ζ̄, d) the homology is also sitting in one place, if it is the case for (ζ̄, d).

Theorem 7.2. The m-th slice of the complex (ζ̂, dζ̂),

ζ̂m = {u ∈ K⟨ξ, xi, ∂i⟩ ∶ w(u) = degξ,∂u =m}
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for each m ⩾ 2 has non-trivial homology only in the last place with respect to cohomological grading
by ξ-degree.

Proof. Induction by m. We will first need to consider the following particular case: the case of one
ξ.

Lemma 7.3. Consider the place in (ζ̂m, dζ̂) for any m ⩾ 2, where degξu = 1, u ∈ ζ̂m (one but last

place in the complexes ζ̂m). Then the homology in this place is trivial.

Proof. Let dζ̂(u) = 0 for u ∈ ζ̂ with degξu = 1. We show that u ∈ Imdζ̂ . Since degξu = 1, u has the
shape

u =∑aiξbi, ai, bi ∈ K⟨x1 . . . , xr, ∂1 . . . ∂r⟩.

Then

dζ̂u =∑(−1)
g(aj)aj∆bj = 0.

Consider the ideal I in K⟨x1 . . . , xr, ∂1 . . . ∂r⟩ generated by ∆: I = Id(∆).
We will use the following lemma and notions of Gröbner bases theory to describe when this above

equality might happen.

Definition 7.4. Monomials u, v ∈ K⟨Y ⟩ form an ambiguity (u, v), if for some w ∈ K⟨Y ⟩, uw = wv.

Suppose in K⟨Y ⟩ we have fixed some well-ordering compatible with multiplication, for example,
(left-to-right) degree-lexicographical ordering: we fix an order on variables, say y1 < ... < yn, and
compare monomials on Y lexicographically (from left to right). Polynomials are compared by their
highest terms.

Definition 7.5. Let u, v be two monomials u, v, which are highest terms of the elements U,V from
the ideal I ∈ K⟨Y ⟩ ∶ U = u + ũ, V = v + ṽ, where ũ, ṽ ∈ K⟨Y ⟩, smaller then u, v ∈ ⟨Y ⟩ respectively:
ũ < u, ṽ < v. Then the resolution of the ambiguity (u, v) formed by monomials u, v is a polynomial
Uw −wV = ũw −wṽ, which is reducible to zero modulo generators of an ideal.

Definition 7.6. A reduction on K⟨Y ⟩ modulo generators of an ideal fi = f̄i+ f̃i, where f̄i is a highest
term of fi, is a collection of linear maps defined on monomials as follows: ruf̄iv(w) = uf̃iv, if w = uf̄iv,
and w otherwise.

The polynomial is called reducible to zero if there exists a sequence of reductions modulo gener-
ators of an ideal, which results in zero.

Lemma 7.7. (Version of Diamond Lemma [18]) Let A = K⟨y1 . . . , yn⟩/Id(r1, . . . , rm). Let M be the
syzigy module of the relations r1, . . . , rm, that is M is the submodule of the free K⟨y1 . . . , yn⟩-bimodule
generated by the symbols r̂1, . . . r̂m consisting of ∑ fir̂sigi such that ∑ firsigi = 0.

Then M is generated by trivial syzigies r̂iurj − riur̂j and the syzigies obtained by resolutions of
ambiguities between highest terms of relations (with respect to some ordering).

Let us fix the ordering ∂1 > ∂2 > ⋅ ⋅ ⋅ > x1 > x2 > . . . . Then the leading term of the polynomial ∆ is
∂1x1. It does not produce any ambiguities. Hence by Lemma 7.7 (version of Diamond Lemma), the
corresponding syzygy module M is generated by trivial syzygies, and therefore

(∗) ∑aj∆̂bj =∑uk(∆̂vk∆ −∆vk∆̂)wk

After we know this we can construct an element
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g =∑γkukξvkξwk

where γk ∈ C are chosen in such a way that in the following sum all summands have positive signs

dζ̂(g) =∑(ukξvk∆wk − uk∆vkξwk)

We can see then that the latter expression is just the same as the above formula (∗) with ∆̂
substituted by ξ, hence

∑(ukξvk∆wk − uk∆vkξwk) =∑ajξbj = u.

And we finally have

dζ̂(g) =∑ajξbj = u.

To continue the proof of Theorem 7.2, we need a basis of induction. So we prove that in the
complex (ζ̂2, dζ̂)

0→ . . . ξ . . . ξ ⋅ ⋅ ⋅→ . . . ξ . . . ∂ ⋅ ⋅ ⋅→ . . . ∂ . . . ∂ ⋅ ⋅ ⋅→ 0

the homology is sitting in the last place.
Since we already have Lemma 7.3, which deals with the case of one ξ it is equivalent to proving

exactness only in one term, where ξ-degree is equal to two. That is, we need to show that if degξu = 2,
deg∂iu = 0, and dζ̂(u) = 0, then u = 0. Write u = ξu0+v, where v does not have ξ on the first position.
Then we have

0 = dζ̂(u) = ξdζ̂(u0) +∆u0 + dζ̂(v).

The only term starting with ξ is ξdζ̂(u0), so dζ̂(u0) = 0. Since degξu0 = 1, we are in situation
of Lemma 7.3 and u0 = dζ̂(v0). Since u0 is free from ∂i, we have u0 = 0. Thus u = v = ∑xiui and
0 = dζ̂(u) = ∑xidζ̂(ui) implies dζ̂(ui) = 0. Applying the same argument to ui repeatedly, we arrive
at u = 0, as required.

Step of induction in the proof of Theorem 7.2. Let degξ,∂iu = m and u is homogeneous with
respect to ξ as well as with respect to xi, ξ, ∂i and u is not in the last term of the complex: degξu ⩾ 1.
We need to show that u ∈ Im(dζ̂) provided dζ̂(u) = 0. We present u = ξu0 + v, where v is not starting
from ξ. Then

dζ̂(u) =∆u0 + ξdζ̂(u0) + dζ̂(v) = 0.

The only term starting with ξ can not cancel with anything, so dζ̂(u0) = 0. Now degξ,∂i(u0) =m−1.
By induction hypothesis and Lemma 7.3 (if m = 2), u0 = dζ̂(w). Consider dζ̂(ξw) = ∆w + ξdζ̂(w).
Then

u′ = u − dζ̂(ξw) = ξu0 + v −∆w − ξdζ̂(w) = v −∆w.

Thus u′ equals u modulo Imdζ̂ and does not have ξ in the first position:

u′ =∑xjξuj +∑∂jξvj + v,

where ξ is absent from v in the first two positions. Then

20



0 = dζ̂(u
′) =∑xj∆uj −∑∂j∆vj +∑xjξdζ̂(uj) +∑∂jξdζ̂(vj) + dζ̂(v).

Considering terms with ξ in the second position, we deduce dζ̂(uj) = dζ̂(vj) = 0 for all j. By the

induction hypothesis uj = dζ̂(wj) and vj = dζ̂(sj). Now u′′ equals u′ modulo Imdζ and u′′ has no ξ
in the first two positions, where

u′′ = u − dζ̂(∑xjξwj +∑∂jξsj).

After repeating this procedure, at the end we get u = tξm modulo Imdζ̂ , where deg ξt = 0. Now

0 = dζ̂(tξ
m) = tdζ̂(ξ

m) and therefore t = 0 since dζ̂(ξ
m) =∆ξm−1 + ⋅ ⋅ ⋅ + ξm−1∆ ≠ 0. Hence u ∈ Imdζ̂ .

Now we prove the theorem for (ζ̄, d).

Theorem 7.8. The m-th slice of the complex (ζ̄, d),

ζ̄m = {u ∈ K⟨ξ, xi, ∂i⟩ ∶ w(u) = degξ,∂u =m}

for each m ⩾ 2 has non-trivial homology only in the last place with respect to cohomological grading
by ξ-degree.

Proof. First we need preliminary exactness result for the case of one ξ.

Lemma 7.9. Consider the place in (ζ̄m, d) for any m ⩾ 2, where degξu = 1, u ∈ ζ̄m (one but last
place in the complex). Then the homology in this place is trivial.

Proof. Let u ∈ ζ̄ be such that degξu = 1, degξ,∂iu ⩾ 2 and dζ̂(u) = 0. We have to show that u ∈ Im(d).
Write

u = ξu0 +∑aiξbi, ai ≠const.

Then

0 = d(u) =∑∂i[xi, u0] +∑(−1)σai∆bi.

Thus the following equality holds in A = K⟨x1 . . . , xr, ∂1 . . . ∂r⟩/Id(∆):

0 = d(u) =∑∂i[xi, u0]. (7.1)

Lemma 7.10. The equality ∑∂i[xi, u] = 0 in A implies [xi, u] = 0 in A for any i.

Proof. Let us consider ordering x1 > x2 > ... > ∂1, ∂2 > ..., then ∆ forms a Gröbner basis. Take a nor-
mal form N([xi, u]) ∈ K⟨x1 . . . , xr, ∂1 . . . ∂r⟩/ = K⟨XD⟩ with respect to the Gröbner basis of the ideal
Id(∆). In other words, we present the element [xi, u] ∈ K⟨x1 . . . , xr, ∂1 . . . ∂r⟩/ as a sum of monomials
which does not contain x1∂1 as a submonomial. Then element N(∑∂i[xi, u]) = ∑∂iN([xi, u]) = 0 in
K⟨XD⟩, hence N[xi, u] = 0 in K⟨XD⟩, which means [xi, u] = 0 in A.

Lemma 7.11. (Centralizer) If in A = K⟨x1 . . . , xr, ∂1 . . . ∂r⟩/Id(∆), [u,xi] = 0 for all i, then u ∈ K.
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Proof. Fix the ordering ∂1 > ∂2 > ⋅ ⋅ ⋅ > x1 > x2 > . . . The highest term of ∆ is ∂1x1. Then the set N
of corresponding Normal words (those which do not contain ∂1x1) is closed under multiplication by
x2 on either side: x2N ⊂ N and Nx2 ⊂ N .

Let u ∈ A and [u,xi] = 0 for all i. As every element of A, u can be written as a linear combination
of normal words: u = ∑ cjwj , where wj ∈ N are pairwise distinct and cj are non-zero constants. Then
0 = [u,x2] = ∑ cj(wjx2 − x2wj). Since wjx2, x2wj ∈ N , the last equality holds if and only if it holds
in the free algebra. Hence ∑ cjwj commutes with x2 in the free algebra and therefore u ∈ K[x2].
The same holds for any other xj , j ≠ 1 (they enter the game symmetrically) and therefore u is in the
intersection of K[xj] as subalgebras of A. Since this intersection is K, u ∈ K.

From (7.1), [xj , u0] = 0 in A for all i, according to Lemma 7.10. By the centralizer lemma u0 is a
constant in A. Since m ⩾ 2, u0 = 0 in A. Hence

u0 =∑ si∆ti

in the free algebra. Thus

u =∑ ξsi∆ti +∑aiξbi.

Now we substitute u with u′ = u(mod Im(d)), where

u′ = u − d(∑(−1)deg∂siξsiξti).

After cancelations, we get

u′ =∑aiξbi −∑
i,j

(−1)σ∂j[xj , siξti]

and therefore u′ has no terms starting with ξ. Thus

u′ =∑∂iui

and we fall into the situation of the differential dζ̂ on the complex ζ̂:

d(u′) =∑∂idζ̂(ui) ⇐⇒ dζ̂(ui) = 0.

By Theorem 7.2, ui = dζ̂(wi) and

u′ =∑∂idζ̂(wi) = d(−∑∂iwi),

which yields that u′ and therefore u belongs to Imd.

Now let deg ξu ⩾ 2. Suppose du = 0. We will show that u ∈ Imd. As before present it as u = ξu0 +v,
where v does not start with ξ. Then 0 = du = ξdζ̂u0+v

′, where v′ does not start with ξ, hence dζ̂u0 = 0.
By Theorem 7.2 u0 = dζ̂s for some s. Thus take u′ = u−d(ξs) = u−ξdζ̂s−... = ξdζ̂s+v−ξdζ̂s−..., and we
have a presentation of umodulo the ideal Imd as an element with no ξ at the first position: u = ∑∂iui.
Thus, du = dζ̂u and we can use Theorem 7.2 to ensure that u ∈ Imd. Indeed, since 0 = du = dζ̂u and
dζ̂u = −∑∂idζ̂ui, dζ̂ui = 0 for all i. Since deg ξui ⩾ 1, by Theorem 7.2 we have ui = dζ̂(wi) for
some wi. Thus u = ∑∂iui = −∑∂idζ̂wi = d(∑∂iwi). The latter equality d(∑∂iwi) = −∑∂idζ̂wi holds
because ∂iwi not starting with ξ. So u ∈ Imd, and this completes the proof of Theorem 7.8.
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Lemma 7.12. If the complex (ζ̄, d) is homologically pure, and homology is sitting in the last place
w.r.t cohomological grading by ξ-degree, the same is true for the complex (ζ, d).

Proof. The statement about ζ follows from the fact the cyclization of the complex commutes with
the differential in our case. This in turn deduced from the fact that the differential, given precisely
at the beginning of this section obviously commute with ZN action.

This lemma together with Theorem 7.8 completes the proof of Theorem 7.1.

7.2 Formality

The important consequence of the result on the homological purity of the higher cyclic Hochschild
complex is that we derive formality for these complexes in L∞ sense [12]. Various aspects of formality
have been studied extensively (for example [5, 1, 2, 23, 20]), some of them are famously difficult.

Definition 7.13. The complex (C,d) is formal if it is quasi-isomorphic to its cohomologies (H●C,0),
considered with zero differential, as L∞-algebra.

Theorem 7.14. The higher cyclic Hochschild complex C =∏
N
C
(N)
cycl (A) is formal.

Proof. Remind that in the higher cyclic Hochschild complex C = ∏
N
C
(N)
cycl (A) we have the following

grading and the subcomplex ζ quasi-isomorphic to this complex is situated with respect to this
grading in the following way: C = ⊕i∈ZCi, where i is a number of inputs minus number of outputs
of corresponding operation. ζ ⊆ C in such a way that ζ0 ⊆ C0 and ζ is 0 → ... → ζ0 → 0. Hence our
main Theorem 7.1 ensures that the homology of C is sitting in the zero place of the grading. Let us
consider the group action on C induced by scaling, namely, C∗ acts by λ(u) = λmu for u ∈ Cm. This
means that the action uniquely defines the grading.

Now consider (H●C,∞), the L∞-structure on the homologies obtained by the homotopy transfer
of Kadeishvili [9], constructive description of which is given in [11], one can find explanations also in
[24]. Since we had a reductive group action on (C,0) this action can be pulled through to (H●C,∞)
and so will be compatible with the new L∞-structure on H●C again. Thus the grading on (H●C,∞),
being defined by this action, is also natural, i.e. only zero component of it will be nontrivial.

Obviously, if there is only one component in the grading of L∞-algebra, only one multiplication
from L∞-structure can be non-zero. Since we shown that homology (H●C,∞) is sitting in zero
component only, and we are using convention where binary multiplication in infinity structure has
degree zero, only multiplication m2 can be present. Thus in the L∞-structure of (H●C,∞) mn = 0
for n ⩾ 3, and this implies formality. Indeed, for formality we need to show that (C,d) is quasi-
isomorphic to (H●C,0). Since for the L∞-structure it is always true that (C,d) is qiso to (H●C,∞),
it is enough to show that (H●C,0) is qiso to (H●C,∞), and this is the case when mn = 0, n ⩾ 3.
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